
Stefan Löwen

Integration of Parked Cars into Car4ICT

Bachelorarbeit im Fach Informatik

20. Dezember 2016

Please cite as:
Stefan Löwen, “Integration of Parked Cars into Car4ICT,” Bachelor Thesis (Bachelorarbeit), Heinz Nixdorf Institute,
Paderborn University, Germany, December 2016.

Distributed Embedded Systems (CCS Labs)
Heinz Nixdorf Institute, Paderborn University, Germany

Fürstenallee 11 · 33102 Paderborn · Germany

http://www.ccs-labs.org/

http://www.ccs-labs.org/

Integration of Parked Cars into Car4ICT

Bachelorarbeit im Fach Informatik

vorgelegt von

Stefan Löwen

geb. am 15. Januar 1994
in Gütersloh

angefertigt in der Fachgruppe

Distributed Embedded Systems
(CCS Labs)

Heinz Nixdorf Institut
Universität Paderborn

Betreuer: Florian Hagenauer
Prof. Dr. Falko Dressler

Gutachter: Prof. Dr. Falko Dressler
Prof. Dr. Johannes Blömer

Abgabe der Arbeit: 20. Dezember 2016

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer

als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder

ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde.

Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als

solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance

from third parties.

I certify that the work has not been submitted in the same or any similar form for

assessment to any other examining body and all references, direct and indirect, are

indicated as such and have been cited accordingly.

(Stefan Löwen)

Paderborn, 20. Dezember 2016

Abstract

Cars rapidly gain importance for the information and communication infrastructure

in modern cities. The Car4ICT project aims at making cars the base for all communi-

cation systems in a city. To improve its stability and versatility stable network nodes

are needed. Instead of deploying expensive and hard to maintain roadside units it is

possible to use clusters of parking cars as stable and powerful nodes.

In this thesis I used existing prototype implementations of Car4ICT and the

Virtual Cord Protocol (VCP) to build a prototype of this concept. VCP is used as the

routing protocol inside of a parking cluster. I built a system that allows the creation

of large VCP networks with limited hardware and extended the VCP prototype with

an implementation of a Distributed Hash Table (DHT). I further accelerated reliable

data transmissions of the VCP prototype.

Using DHT I enabled Car4ICT nodes to easily keep their service tables in sync.

To conclude the integration of VCP into Car4ICT, however, some work remains to be

done.

iii

Kurzfassung

Autos gewinnen zunehmend an Relevanz für die Informations- und Kommunikati-

onsinfrastruktur moderner Städte. Das Car4ICT Projekt schlägt Autos als Grundlage

für die gesamte Kommunikationstechnologie einer Stadt vor. Um die Stabilität dieser

Plattform zu verbessern und neue Anwendungsbereicht zu erschließen, sind aller-

dings stabile Netzwerkknoten notwendig. Anstatt auf teure und wartungsintensive

Roadside Units zu setzen, ist es möglich, parkende Autos zu Clustern zusammenzu-

schließen und somit stabile, leistungsfähige Netzwerkknoten zu schaffen.

Im Laufe der vorliegenden Arbeit habe ich zwei existierende Prototypen für

Car4ICT und das “Virtual Cord Protocol” (VCP) verwendet, um einen Prototypen

dieses Konzeptes zu entwickeln. VCP wird hierbei als Technologie für die Vernetzung

der parkenden Autos untereinander eingesetzt. Ich habe ein System entwickelt, das

es erlaubt, mit wenig Hardware große VCP-Cluster zu testen. Desweiteren habe ich

den VCP Prototypen um Funktionen erweitert, die es erlauben, ein VCP-Cluster als

verteilte Hashtabelle (DHT) zu verwenden. Im Zuge dessen habe ich die Funktionen

des VCP Prototypen zur zuverlässigen Datenübertragung durch eine wesentlich

schnellere Implementierung ersetzt.

Aufbauend auf der verteilten Hashtabelle habe ich den Car4ICT-Prototypen so

angepasst, dass er seine Service-Tabelle verteilt speichern und somit zwischen mehre-

ren Instanzen synchron halten kann. Zur vollständigen Integration parkender Autos

in die Car4ICT Plattform müssen jedoch noch einige Änderungen umgesetzt werden.

v

Contents

Abstract iii

Kurzfassung v

1 Introduction 1

2 Fundamentals 3

2.1 Vehicular Networking . 3

2.2 Distributed Hash Tables . 7

2.3 The Virtual Cord Protocol . 7

2.4 Macvlan . 14

2.5 Hard- and Software Requirements . 14

2.6 Related Work . 15

3 Implementation 17

3.1 Concept . 17

3.2 Changes to VCP . 18

3.3 Changes to Car4ICT . 27

3.4 Remaining Work . 28

4 Validation and Evaluation 29

4.1 Routing Layer . 29

4.2 DHT . 31

4.3 Car4ICT distributed ServiceTable . 34

5 Conclusion 37

Bibliography 45

vii

Chapter 1

Introduction

Cars are almost ubiquitous in modern cities and will be so in future cities as well.

The Car4ICT project, proposed by Altintas et al. [1], aims at using these cars to

form a city-wide communication system. The proposed way of achieving this is

by enabling cars to wirelessly communicate with their neighboring cars using e.g.,

IEEE 802.11p [2] based Dedicated Short-Range Communication (DSRC) and thus

creating a loosely connected network spanning the city. At the same time these cars

can give other machines or humans the possibility to connect to the network (e.g.,

via WiFi) and offer or request services. The cars can also offer or request services

themselves. Offered services can be storage space, computing power, sharing of an

internet connection and the like.

Such a network is great in many ways. Since it does not require pre-deployed

infrastructure to be present, it can automatically be established wherever there

are enough cars available. This not only holds for modern cities but is especially

useful in disaster situations where other means of communication are destroyed,

but Car4ICT-equipped vehicles (e.g., emergency vehicles) are available [1]. But the

Car4ICT network can also complement existing, working communication systems

like LTE or WiFi hotspots.

Simulations of Altintas et al. [1] have shown that such a Car4ICT network is

already reliable at densities starting at 85 vehicles per km2, but nevertheless the

high mobility of cars and additional connectivity issues caused by buildings and

other obstacles can make the network unstable [3]. One option to further stabilize

the network would be to rely on existing infrastructure or to deploy Roadside Units

(RSUs), but that would make the platform infrastructure-dependent again and thus

mitigate one of its benefits.

A different way to reach the goal of further stabilizing the network is based on

the observation that parked cars are present in exactly the contexts in which RSUs

would be needed to support a Car4ICT network (i.e., cities). Parking cars could

1

2 1 Introduction

form local clusters and act as a solid, powerful network node. The additional battery

usage for parked cars is tolerable as shown by Sommer, Eckhoff, and Dressler [4,

Section 4.1]. This makes the use of parked cars a good alternative to pre-deployed

infrastructure for improving Car4ICT’s stability. Additionally, they would make the

network even more versatile by providing large amounts of storage space, computing

power, sensor data and the like. This approach was first proposed by Hagenauer

et al. [5].
The goal of this thesis is to evaluate this approach by implementing a prototype

of a Car4ICT network that uses the Virtual Cord Protocol (VCP) for clustering parked

cars. In order to do this I will build on existing prototype implementations of Car4ICT

(without the parked cars) and VCP and integrate them into one system. The Car4ICT

prototype is the result of the Master Thesis “Prototype Implementation of the Car4ICT

Framework” by Simon Merschjohann [6]. The VCP prototype is the result of the

Bachelor Thesis “Experimenteller Aufbau und Validierung von VCP im Rahmen des

BATS-Projekts” by Bernhard Weber [7].

Chapter 2

Fundamentals

In this chapter I am going to introduce terms, concepts and other works that this

thesis builds upon and that are needed to understand it. I am going to focus mainly

on VCP and Car4ICT since they are the fundamentals for the prototype developed in

this thesis.

2.1 Vehicular Networking

Vehicular Communcation has seen many advancements in recent years. On the one

hand cars are getting more and more connected to Infrastructure like LTE to provide

passengers with information and entertainment. On the other hand there is a lot of

research regarding DSRC based Inter-Vehicular Communication (IVC). IVC has many

safety applications but is not limited to this area. Concepts like Car4ICT suggest

using such connected cars as the main communication infrastructure.

2.1.1 DSRC

DSRC is short for Dedicated Short-Range Communication. The term is generally

used to refer to short-range to medium-range wireless communications between two

cars or between cars and other electronic devices, like RSUs.

An important document specifying DSRC is the IEEE 802.11p [2]. It is an

amendment to the IEEE standard 802.11-2007 [8] for Wireless Local Area Networks

(WLANs) and is meanwhile incorporated into the newest revision of the standard [9].
It specifies the use of frequencies in the licensed Intelligent Transportation Systems

(ITS) band of 5.9 GHz (5850 - 5925 MHz) for Vehicular Networks. The use of these

dedicated frequencies reduces interferences with consumer applications working

with IEEE 802.11a/n/ac which use the 5 GHz band (5150 - 5350 MHz and 5470 -

5725 MHz in Europe) [10, p.8].

3

4 2.1 Vehicular Networking

Traditional WLANs require the creation of a Basic Service Set (BSS) before

communication is possible [8, p.24]. IEEE 802.11p further defines a mode called

OCB-Mode which allows the transmission of data frames outside the context of a

BSS [2, p.2]. This is especially useful in Vehicular Ad Hoc Networks (VANETs),

where the duration of communications between fast-moving cars is often very short,

because the OCB-Mode allows immediate communication.

2.1.2 Car4ICT

Car4ICT is a research and development project of the Distributed Embedded Systems

Group at the University of Paderborn1 in cooperation with the Toyota InfoTechnol-

ogy Center. The project aims to investigate vehicles as the main Information and

Communications Technology (ICT) resource. Its goal is to make vehicles the base

for communication in future smart-cities [1] and even for inter-city communications

[11]. What is special about this is that it is not about making cars communicate but

to use them for establisihng a base-network which is then used for all other kinds of

communication by others.

One of the reasons behind making this project is that future smart cities are

probably going to produce and consume huge amounts of data. Centralized and

infrastructure-based communication technologies such as cellular networks could

be quickly overloaded and are also susceptible to natural disasters. Rebuilding them

after such disasters takes large amounts of time and resources. Cars, however, will

probably be ubiquitous in future cities (even after disasters) and will be equipped with

a wide range of communication technologies as well as large amounts of processing

power. This makes them an excellent choice as a base for communication.

Car4ICT defines two roles for entities participating in a network. First there are

the consumers and providers, also called users. A user can be a sensor offering its

sensor-readings, a human using a smartphone, a car providing storage space or any

other technical device that is able to somehow participate in the network. Second

there are the so-called members. Members in Car4ICT are always cars. They are the

core of the network and are reponsible for routing messages inside the network and

keeping track of all offered and requested services. It is important to note that it is

possible for a car to act as user and as a member at the same time. Members mainly

communicate via DSRC, although other means of communication are possible. Users

connect to the network via members, e.g., by using a WiFi hotspot offered by a

member.

As already mentioned, users are able to offer and request services. This is the

main communications paradigm in Car4ICT. All communication is built around

service offers and service requests. A service is identified by an Identifier consisting

1see http://www.ccs-labs.org/projects/car4ict/

http://www.ccs-labs.org/projects/car4ict/

2.1 Vehicular Networking 5

of a hash and a list of metadata items. The hash can be a human-readable word

like, e.g., “temperature” for a sensor offering temperature readings or “cpu” for a

car offering computing power or it can be an actual hash of the content, e.g., when

offering a file. The metadata is an arbitrary list of key-value pairs. Typical entries

could be location=Paderborn, type=video, size=500MB and the like. An update

on the Car4ICT concept [11] introduces Position and Validity as mandatory metadata

elements2. Position is mainly needed to make Store-Carry-Forward (SCF) possible,

which is needed for routing over long distances, and Validity gives the providing side

of a service more control over the expiration time of the entry instead of relying on

default values for discarding service table entries. Table 2.1 shows an example of

how a service table could look.

hash metadata providing user

hash(file1) type=video, size=500MB, topic=sports 5
hash(file1) type=video, size=500MB, topic=sports 48
storage type=hours, size=100GB 8
cpu architecture=ARM, mhz=800 13
chat rooms=cooking,technology 8

Table 2.1 – Example Car4ICT service table containing hashes, metadata and
ids of the respective users offering the service.

For offers the hash field is mandatory and can optionally be extended with

metadata to filter the results (e.g., filtering by position to get only nearby offers).

For a request, however, the hash is optional and the identifier can consist only of

metadata items. The result will then contain all services matching these items,

regardless the hash.

The process of a user requesting a service generally looks like this:

1. The user authenticates against a member of the network by sending security

credentials.

2. If the car is able to successfully verify the credentials, it sends an access grant

to the user.

3. The user sends a request to the car, including an identifier.

4. The car checks its service table looking for services matching the request. If

matches are found, it sends an answer to the user containing a list of identifiers

of the services including ids for the users offering them. If there is no matching

service in the local service table of the member-car then the car may start a

search among other members that are reachable via DSRC, using an expanding

2Since the used Car4ICT prototype by Merschjohann [6] was written before this change I will continue
to treat these elements as non-mandatory.

6 2.1 Vehicular Networking

ring search algorithm, or via another communication medium like e.g., LTE.

to find more distant services.

5. The requesting user decides which service he wants to use and initiates com-

munication with the offering user. The Data packages needed for this commu-

nication are routed by the members.

Figure 2.1 visualizes this process of a user requesting a service.

Access

Request/Reply

Search/Data

User

MemberMember = User

Search/Data

Figure 2.1 – Communications taking place between users, members and
external infrastructure when a user requests a service. – based on [1, Figure 2]
– ©2015 IEEE

2.1.2.1 Existing Prototype

Simon Merschjohann developed a prototype implementation of Car4ICT as part of

his master thesis “Prototype Implementation of the Car4ICT Framework” [6]. This

prototype consists of several separate applications of which the Car4ICT controller,

available as a controller binary, is one of the main components. Each running

instance of the Car4ICT controller represents exactly one member car of the Car4ICT

network. It is responsible for service discovery (it keeps a local service-table in

memory), message routing and communication with users. Additionally it is able

to run so-called Car4ICT applications directly as part of its own process. A Car4ICT

application is what takes the user role in the Car4ICT prototype. These Applications

can either be controlled by humans (e.g., via a smartphone) or by machines to

provide or use services.

There are two examples of such applications available in the prototype. A

WideAreaStorageApp and a TextCharApp, both consisting of a server part that offers the

service and a client part that requests and uses the service. The WideAreaStorageApp is

an example of a simple file storage service while the TextCharApp offers a chat service

with multiple chatrooms. Instead of running directly as part of the Car4ICT controller,

apps can also use the Car4ICT gateway component, usable via the apploader binary,

to run in a separate process and connect to a controller for sending and receiving

messages. Apps using the Car4ICT gateway can even run on a different machine than

2.2 Distributed Hash Tables 7

the controller they are using since the gateway only needs to be able to communicate

with the controller via a UDP connection.

The last component of the prototype is the Topology Manager. It allows the

simulation of complex scenarios involving multiple Car4ICT controllers running on

the same machine. It does so by simulating the quality of connections between

cars based on given success-probabilities and is therefore able to mimic complex

real-world scenarios that would otherwise require lots of hardware to be successfully

tested.

2.2 Distributed Hash Tables

A Distributed Hash Table (DHT) is a distributed system that provides data access in

a manner similar to that of a hash table. Probably the best known implementations

of DHTs are Tapestry [12], CAN [13], Chord [14], and Pastry [15].
Data in a DHT is organized in (key, value) pairs and data items are accessed

via their respective key. Each DHT has to define an address space. Each node is

responsible for a certain range of these addresses so that the whole address space is

covered.

The general process of storing a data item is to take the key and put it through a

hash function that returns an address from the address space. The key in this case

can be the value itself, a file name or an arbitrary key that is somehow attached to the

value. The node responsible for the address that the hash function returned is then

used as the location to store the (key, value) pair. Assuming a good uniformity of

the chosen hash function, this leads to quite evenly distributed storage of the data

items.

Data access is done similarly. The key is hashed onto the address space and the

node responsible for the resulting address is asked for the value that corresponds to

the key.

In summary a DHT provides the two basic functions

• put(key, value) and

• get(key) → value.

If a distributed system is able to provide these functions it can be called a DHT or

characterized as DHT-like.

2.3 The Virtual Cord Protocol

The Virtual Cord Protocol (VCP) is a routing protocol proposed by Awad, German,

and Dressler [16], that also provides data management functionality as known

8 2.3 The Virtual Cord Protocol

from DHTs. It is mainly designed for Wireless Sensor Networks (WSNs) which are

characterized by very limited resources and high mobility. It works by assigning each

node a unique, virtual address based on its relative position and organizing these

addresses on a virtual cord. It then utilizes this cord for routing and uses the virtual

addresses to provide DHT functionality. A key feature is that instead of establishing

a base network using one of the routing protocols typically used in Mobile Ad Hoc

Networks (MANETs) 3 and building the Distributed Hash Table (DHT) on top of it,

like many widely known DHT implementations 4 do, it combines both layers and

is thereby able to reduce overhead significantly. Another key feature is that it uses

physical proximity information to make sure that neighbors on the virtual cord are

also physically close unlike e.g., in Virtual Ring Routing (VRR) [20].

2.3.1 Structure

Addresses in VCP are values within an interval [S, E]. Usually, a good choice is to use

floating-point numbers between S = 0.0 and E = 1.0 as this enables a theoretically

unlimited number of addresses. In the following I will stick with this choice of

interval for reasons of clarity. These addresses are arranged on a virtual cord in

ascending order, the first node having the address 0.0 and the last node having the

address 1.0.

Each node has one address, but depending on the order of nodes joining, it

might be necessary for a node to create a so-called virtual node (see Section 2.3.2).

Creating such a virtual node is functionally equivalent to assigning another address

to the creating node. Figure 2.2 depicts a simple VCP network containg both types

of nodes and the virtual cord connecting them.

Figure 2.2 – Example of a simple VCP Network. Node 0.6 is a virtual node
created by node 0.5. The line shows the formed virtual cord.

Each node is responsible for a certain range of addresses on the cord. The exact

range is not explicitly defined in any of the proposing papers for VCP [16], [21],
3e.g., DSDV [17] , DSR [18] or AODV [19]
4e.g., Tapestry [12], CAN [13], Chord [14] and Pastry [15]

2.3 The Virtual Cord Protocol 9

[22]. A valid definition would be that every node with address A is responsible for all

addresses in the range [A, succ(A)). Using this definition, the node 0.5 in Figure 2.2

would be responsible for the address range [0.5,0.55) and the virtual node 0.6

would be responsible for [0.6, 0.75). Responsible means that the node receives and

processes all messages with a destination address in its responsibility interval. In

addition to its own position, each node stores the addresses of its predecessor and

successor on the cord as well as a table of physically reachable nodes which are

simply called neighbors [22]. The references to predecessor and successor, as well as

the table of neighbors, are heavily used in network operation, i.e., joining operations

and routing.

The concept of nodes being responsible for an address range so that the whole

address range is covered makes VCP suitable as a DHT, hence it is also called a

“DHT-like protocol” [16]. What this means is that VCP can easily provide the two

functions put(key, value) and get(key) → value . To implement this, one

has to hash the key onto the address range used by VCP, i.e., [0.0,1.0] , and then

send the appropriate put or get to the resulting address.

2.3.2 Joining Nodes / Network Establishment and Operation

Nodes in VCP keep track of their neighbors via periodic hello messages. Each node

that is part of a VCP network sends these short messages with a predefined frequency.

If a node wants to join a network, it first of all listens for these hello messages for

some time to see whether there is an existing VCP network in its range. If it does not

encounter any hello messages in this waiting period, it creates a new VCP network

by starting to send periodic hello messages. If the node encounters one or more hello

messages during its listening phase, it tries to join the network.

The design of the join operation makes VCP networks highly scalable. A joining

node causes changes only to its direct neighbors. If the joining node can communicate

with an end node only, i.e., a node with address 0.0 or 1.0, it joins the network by

overtaking the end node’s address. The former end node gets a new address and

both nodes update their predecessor and successor references.

If the joining node can communicate with two nodes that are adjacent on the

cord it chooses an address in between these nodes. It then informs both nodes of

the change so that they can update their adjecency references.

If neither of the aforementioned conditions is met and the node can only com-

municate with one node (or multiple non-adjacent nodes) it asks this node to create

a virtual node. The asked node then creates a virtual node between itself and its

predecessor or successor and thereby enables the joining node to take an address

between the address of the real node and the address of the created virtual node.

Examples for each of these three cases are shown in Figure 2.3.

10 2.3 The Virtual Cord Protocol

Figure 2.3 – Basic join operation in VCP. The dashed circles mark the com-
munication range of the respective joining node. – Source: [21] – ©2008
IEEE

2.3.3 Routing

As already mentioned, each node keeps a reference to its respective successor and

predecessor on the cord. The only exception to this rule are the first node, which does

not have a predecessor and the last node, which lacks a successor. These references

can already be used for a simple but reliable form of routing. As every node lies on

the cord, a sent message can simply travel along the cord until it reaches the node

responsible for the destination address of the node. During this, each node has to

compare the message’s destination to its range of responsible addresses and either

keep the message (because it is responsible for it) or pass it to either its successor

or predecessor. Assuming an intact cord without failing nodes, this provides an

absolutely reliable method of routing without deadlocks.

Figure 2.4 – VCP routing path using shortcuts. – Source: [21] – ©2008 IEEE

2.3 The Virtual Cord Protocol 11

VCP, however, tries to take additional neighborhood information into account.

Each node gets the hello messages of its physical neighbors. Since these hello message

contain the address of the sender, each node knows about all addresses that are

reachable to it. So a node making a routing decision does not have to stricly follow

the cord but can decide to take shortcuts by directly passing the message to the

neighbor that is closest to the destination. Figure 2.4 shows such a routing path for

a message from 0.25 to 0.78. Simulations have shown that this routing algorithm

leads to routing paths with a very low stretch ratio. Even in large networks (up to

225 nodes) the stretch ratio stays below 25% [21]. The stretch ratio is defined as

stretch ratio=
length of path taken by VCP

length of shortest path
. (2.1)

Broadcasting a message in VCP is straight forward. The broadcasting node simply

has to send the message to the end node positions 0.0 and 1.0. To prevent loops

and to guarantee that all nodes are reached, shortcuts are disabled when routing

broadcast messages.

2.3.4 Failing Nodes

The above-mentioned network operations work very well as long as all nodes are

functioning as expected. However, this does not hold anymore if we assume that

nodes can fail. Since nodes in WSNs tend to fail frequently, there has to be a way

to deal with such failures. A simple but inefficient way would be to shutdown and

rebuild the whole network. This, however, is only feasible in small networks and

low frequencies of failing nodes.

A better approach is to try to repair the network [21]. For a failing endnode the

respective successor or predecessor can take over the end position. If an intermediate

node fails and its successor and predecessor are in each others range, the cord can

also be repaired quite easily. If, however, the successor and predecessor of a failed

intermediate node cannot reach each other, the network is separated and cannot be

repaired. In this case, the successor and predecessor of the failed node have to take

over the appropriate end positions for their network segment and thereby create

two independent but functional networks.

Awad et al. [22] also extend the initially proposed version of the VCP routing

algorithm with failure tolerance so that routing can continue to work even when the

network is not yet repaired. If the failed node is the destination node of a message

then it might be possible for the last reachable neighbor of the node to handle the

request. This is possible, e.g., for DHT-put-messages where it is easy for the neighbor

to store the data. If, however, the message is a DHT-get-request, then the connection

counts as failed. A method to prevent such failures of DHT-get-messages would be

12 2.3 The Virtual Cord Protocol

to introduce data replication onto neighboring nodes. If the failed node is not the

destination node but lies on the route to the destination then the routing nodes send

back No Path messages and try to find an alternative path that circumvents the failed

node. The exact details of this process are not important for this thesis and can be

found in the proposing paper [22].

2.3.5 Existing Prototype

Bernhard Weber developed a prototype implementation of VCP as part of his bachelor

thesis “Experimenteller Aufbau und Validierung von VCP im Rahmen des BATS-

Projekts” [7]. This prototype consists of a VCP-Daemon, written in C++, as well

as a shared library that allows other applications to interact with the VCP daemon.

Additional components are a VCP-Daemon_Client, written in C++, and a Simulator,

written in Java, which were used for evaluation in his thesis.

Using a compile-time switch the VCP daemon can be switched between simulator

mode and normal mode.

• When compiled in normal mode, the daemon uses a real network interface to

send and receive packets. For sending, it uses a raw socket to be able to skip

the transport layer and send packets directly on the network layer. This allows

the VCP daemon to define it’s own addressing scheme, the VCP adressing,

instead of using IP.

• When compiled in simulator mode the daemon uses a local TCP port for sending

and receiving packets. The packets are, however, the same packets that it

would have sent via the raw socket in normal mode, i.e., including the ethernet

header [7, p.29]. The port must then be connected to an application that

handles the correct delivery of the packets. An example of such an application

is the Java Simulator also written by Bernhard Weber in the context of his

thesis.

The C compatible shared library can be used by other programs to connect to the

VCP daemon and retrieve status information as well as to send and receive messages.

To receive messages the using application has to register a listener that includes

several callback functions for different types of messages and events. The callback

messages are then called when the appropriate event occurs.

Although working, the prototype has several limitations which are important to

note since they influenced this thesis significantly.

1. The first limitation is the lack of DHT functionality. Although this is an impor-

tant part of VCP and is also mentioned as such in the thesis by Weber [7] the

prototype does not include functionality to save data in the network.

2.3 The Virtual Cord Protocol 13

2. The second limitation is in the available modes of transmission for messages.

The provided modes are:

(a) Unreliable transmission: Reception of messages is not acknowledged by

the receiving node. The sender has no infomation about the failure or

success of the message transmission.

(b) Transmission with single-hop-sessions: A session, which guarantees and

acknowledges the correct delivery of a message, is created for each hop

on the path to the destination. The sending node can only know that its

message reached the first hop and does not get any information about

further hops. Especially the sender does not know if its message reached

the destination.

(c) Transmission with single-hop-sessions and a so-called nested session: In

addition to the single-hop-sessions mentioned in Item 2b a session is

established between sender and receiver. This is the only option if the

sending node needs to be sure that its message was delivered successfully.

The problem here lies in the delays created by the transmission modes using

single-hop-sessions. As shown in Table 2.2 single-hop-sessions introduce

significant delay.

mode of transmission min max avg

unicast unreliable 0 ms 1 ms 0 ms
unicast single-hop-sessions 304 ms 536 ms 334 ms
unicast nested sessions 307 ms 362 ms 331 ms
broadcast unreliable 0 ms 10 ms 0 ms
broadcast single-hop-sessions 748 ms 2292 ms 1405 ms
broadcast nested sessions 908 ms 2098 ms 1695 ms

Table 2.2 – Transmission times of messages in the original VCP prototype for
each transmission mode. 50 messages were transmitted in each mode. In
unicast modes the destination was chosen randomly. In broadcast mode all 8
nodes in the test setup had to receive the message. – Source: [7, p.61]

3. Another limitation is the behavior on node failure. As detailed in Section 2.3.4,

the simplest but most inefficient reaction to node failure would be a network

restart. The prototype unfortunately implements this behavior [7, p.45].

4. The VCP daemon is designed to identify each instance network-wide via the

unique MAC address of the WiFi-card that it is using (when compiled in normal

mode). This limits the number of VCP daemon instances in an experiment to

the number of available machines, or, to be exact, the number of available

WiFi-cards.

14 2.4 Macvlan

5. Messages in the VCP network are size-limited to one ethernet frame. [7, p.47]
This requires additional logic in software that wants to transfer larger amounts

of data.

2.4 Macvlan

Macvlan5 is a linux network driver that allows the creation of multiple sub-interfaces

on one physical network interface. Each one of these sub-interfaces has its own MAC

address. A macvlan interface can be set into one of the four modes Private, VEPA,

Bridge, and Passthru, which define different rules for the delivery of packets. The

Bridge-mode connects all sub-interfaces of a parent interface like a bridge. Packets

between such sub-interfaces are delivered locally without being sent out to the

physical interface. Packets destined for foreign MAC addresses are sent via the

physical interface and broadcasts are delivered locally and also sent out.

2.5 Hard- and Software Requirements

To develop the prototype it was important to be able to test it on real hardware that

is as similar as possible to the targeted platform. At the CCS Labs I had three “PC

Engines alix3d3” devices at my disposal which I will further refer to as the alix boxes

or by their respective hostnames alix3, alix4, and alix5. The alix boxes are small

single board computers with a 500 MHz AMD Geode LX800 CPU and 256 MB of DDR

DRAM. Each box is equipped with a VIA Rhine III VT6105M ethernet card as well as

two wireless network cards:

• A Qualcomm Atheros AR5413/AR5414 card (using the ath5k driver)

• A Qualcomm Atheros AR922X card (using the ath9k driver)

The installed operating system is a Debian GNU/Linux 8.5 (jessie). To be able

to use 802.11p it has a custom kernel with modifications by Lisovy, Sojka, and

Hanzálek [23]. With their modifications to the ath9k driver and some system utilities6

it is possible to put the AR922X card into OCB mode and onto the 5.9GHz band (see

Section 2.1.1).

5see linux kernel source: /drivers/net/macvlan.c
6https://github.com/CTU-IIG/ search for 802.11p

https://github.com/CTU-IIG/

2.6 Related Work 15

2.6 Related Work

2.6.1 Parked Cars in VANETs

Parked cars as support for VANETs and RSUs have already been investigated for

several different use-cases.

Liu et al. [24] looked at using parking cars as an alternative for RSUs for relaying

messages of driving cars. Parked cars have the advantage of being available in high

numbers and without the high costs that deploying and maintaing RSUs implies. They,

however, did not include aspects of clustering, storing data or providing services other

than relaying of messages. Sommer, Eckhoff, and Dressler [4] also consider single,

unclustered cars replacing RSUs, but look specifically at improving intersection safety

by using parked cars to forward safety messages that would otherwise be blocked

by buildings or other obstacles.

Malandrino et al. [25] look at how parked cars can assist existing RSUs in

providing content downloading to cars from a central entity. Their simulations

showed that leveraging parked cars in cunjunction with existing RSU infrastructure

highly improves download performance as well as coverage and content freshness.

The approach that is most similar to the one in this thesis, is taken by Dressler,

Handle, and Sommer [26] in “Towards a Vehicular Cloud - Using Parked Vehicles

as a Temporary Network and Storage Infrastructure.” They look at clustering cars

using VCP to form vehicular clouds which are then used for storing and retrieving

data. The authors, however, focus mainly on the needed extentions to VCP to allow

for the needed routing between formed clouds.

The paper this thesis is based on is by Hagenauer et al. [5]. The idea is to extend

the already described Car4ICT platform with parked cars. These parked cars form

local clusters and are thereby able to work as a large RSU providing stable network

nodes and long-running data transfers. Those clusters act as a single Car4ICT node

with high computing power, storage capabilities and possibly many offered services

from nodes inside the cluster.

Chapter 3

Implementation

As already mentioned previously, the work in this thesis is heavily based on ex-

isting prototypes of VCP and Car4ICT which are introduced in Section 2.3.5 and

Section 2.1.2.1. As I did not develop the whole system from scratch but was bound

to what these existing prototypes offered, I was not able to fully design and plan

a coherent system from the ground up but had to plan my work around what was

already there. Instead I created a list of changes and new features that would be

needed in each of the prototypes to integrate them with each other.

One of the main challenge in the implementation phase was to understand the

existing prototypes and the details of their design and to find ways to extend them

with the needed functionality in an efficient and extendable way. In the following

chapter I am going to describe the concept of the planned system and then proceed

to present the changes I have come up with.

3.1 Concept

To integrate parked cars into Car4ICT I planned to connect cars parking within the

same parking lot into one network using VCP. So each parking car needs a running

VCP daemon. I will call a network of parking cars that are connected via VCP a

cluster. To keep the WiFi channel free, most of cars within a cluster will disable their

Car4ICT radio (but still keep the other Car4ICT functionality running). Only a subset

of the cars in a parking lot keep their Car4ICT radio enabled; these cars are called

gateways. See Figure 3.1 for a visualization of this structure.

A cluster tries to occur as one big node to the Car4ICT network. Therefore all

Car4ICT related traffic is routed via the gateways which take over the communication

for the whole cluster.

All nodes within a cluster should be able to continue runnig Car4ICT applications,

thereby acting as service-consumers and -providers. But since not all of them can be

17

18 3.2 Changes to VCP

Figure 3.1 – General concept of the planned system. Each parking car has an
active VCP module, most cars have disabled their Car4ICT radio but can still
run Car4ICT Apps. Only some nodes, called gateways, have Car4ICT radio
enabled.

expected to have active Car4ICT radio, a convergence layer is needed that routes out-

going messages from cluster-internal Car4ICT applications to appropriate gateways

and delivers messages received by gateways to the appropriate cluster-nodes that run

the applications. In order to do this, the service table needs to be extended with a

field noting the VCP address of the cluster-node providing a service. Additionally this

service table needs to be kept in sync between all gateways of a cluster. The planned

way to accomplish this is to store the service table using the DHT functionality of

VCP, evading the need for more complex synchronization schemes.

3.2 Changes to VCP

In this section I will describe the changes to the VCP prototype that were needed

and how I approached their implementation.

3.2.1 Multiple Daemons per Machine

To run and evaluate reasonably sized vehicular networks on limited hardware it is

necessary to be able to simulate multiple cars per machine. The Car4ICT prototype

was already developed with this requirement in mind and has features for this, like

the topology manager mentioned in Section 2.1.2.1. The VCP prototype on the other

hand is designed to identify each daemon network-wide via the unique MAC address

of the WiFi-card that it is using. It uses the MAC address to identify the respective

next hop of a message that is being routed through the VCP network. This limits the

number of VCP daemon instances to the number of available machines. As VCP is

used as the networking technique for parking cars it is especially important to be

able to run larger numbers of VCP daemons. It was therefore necessary to extend

the VCP daemon with this feature.

3.2 Changes to VCP 19

One way to run multiple VCP daemons on one machine is the Java Simulator

mentioned in Section 2.3.5. This simulator is, however, unsuitable for the intended

purpose for the following reasons:

1. It is restricted to running locally and does not allow communication via WiFi

between machines. It is therefore only useful for simulating VCP networks on

one machine but not for simulating larger networks with multiple daemons

per machine that span across multiple machines.

2. It is a Graphical User Interface (GUI) based application that depends on a

running X-Server. These dependencies are usually not available on embedded

systems.

3. It is very resource hungry which is not suited for embedded/low-power systems.

Table 3.1 presents a rough view of the RAM and CPU usage on my development-

notebook which has a dual-core Intel Core i5-4310U CPU running at a base

frequency of 2.00GHz and 12GB of RAM. The used simulation consisted of

9 VCP nodes arranged in a 3x3 grid and sending hello-messages in intervals

of 5 seconds. Especially the RAM usage of 350MB would already exceed the

available memory in many embedded systems.

Situation RAM usage (RSS7) CPU usage

After startup 135MB 3%
Simulation loaded but not running 150MB 5%
Simulation running (idle) 500MB 30%

Table 3.1 – Approximate resource usage of the Java Simulator as reported by
the ps command. Measured on a system with an Intel Core i5-4310U CPU
running at a base frequency of 2.00GHz and 12GB of RAM.

I therefore tried extending the code to use an additional local ID to tell daemon-

instances on the same machine apart but this showed to be rather complex as

the daemon was designed from the ground up with the assumption that the MAC

address is a unique identifier of a daemon. I would have needed to heavily modify

the message format, the routing, and many other aspects of the system. While trying

this I came to the conclusion that the code is not easily extendable. Therefore I

decided to implement the needed feature using other methods. I first attempted to

use the macvlan driver of the linux kernel but failed due to packet losses which I

could not explain and so I decided to develop a custom system. The failed attempt

as well as the custom system are explained in the following two subsections.

7Resident Set Size (RSS)

20 3.2 Changes to VCP

3.2.1.1 Failed Attempt with Macvlan

As described in Section 2.4 the linux kernel’s macvlan driver allows the creation of

multiple virtual network interfaces, each having a separate MAC address. To use

this feature I had to compile the ocb-enabled kernel mentioned in Section 2.5 with

activated macvlan driver. I then ran a test using two alix boxes. I will refer to them

as machine A and machine B in this section. On both machines I created macvlan

interfaces and started multiple VCP daemons/nodes, assigning each daemon one

interface and therefore its own, unique MAC address. I then started the VCP network

and observed the following behavior:

• All nodes could successfully receive hello-messages of all other nodes.

• Unicast packets – which are used for all normal communication in VCP apart

from hello messages – between nodes running on the same machine arrived

successfully.

• Unicast packets between nodes running on different machines did not arrive.

To investigate the problem I wrote a small C program that could send custom

ethernet packets using a given network interface and destination MAC address. I

then followed the following steps:

1. On machine B I created two macvlan interfaces, in bridge mode, using the

commands seen in Listing 3.1.

2. On both machines I set the ath9k network interface into OCB mode and

configured them to use the same channel. The wired network interfaces (eth0)

were connected to a switch.

3. For each of the interfaces wlan1-ath9k, mac_wlan, eth0, and mac_eth, I

started sudo tcpdump -e -i $INTERFACE ether proto 0x1234 on ma-

chine B. This shows all incoming packets on the given interface and filters

them (using my custom protocol type 0x1234) so that I only see the packets

sent using my small program.

1 ip link add mac_eth link eth0 type macvlan mode bridge
2 ip link add mac_wlan link wlan1 -ath9k type macvlan mode bridge
3 ip link set mac_eth up
4 ip link set mac_wlan up

Listing 3.1 – Commands to set up macvlan interfaces

3.2 Changes to VCP 21

4. On machine A I used the small C program to send multiple packets for each

of the network interfaces on machine B. Packets were sent using the wire-

less interface wlan1-ath9k and the wired interface eth0 to the following

destination addresses:

• The MAC address of the target network interface

• A random, non-existent, unicast MAC address

(e.g., 00:00:00:00:00:00)

• A random, non-existent, multicast MAC address

(e.g., ff:00:00:00:00:00)

• The broadcast MAC address (ff:ff:ff:ff:ff:ff)

destination MAC address frame arrived at
wlan1-ath9k mac_wlan eth0 mac_eth

NICs MAC, unicast yes no yes yes
random MAC, unicast no no yes no
random MAC, multicast yes yes yes yes
broadcast yes yes yes yes

Table 3.2 – Table showing which packets arrived at which network interface on
machine B. The entry in bold print was responsible for the failed communication
between VCP daemons running on different machines.

As seen in Table 3.2 the macvlan interface created on top of a wireless interface

did not receive unicast packets from machine A. This was the reason for the failure

of communication between VCP daemons running on different machines.

To make sure that the lost packets were not caused by the modifications Lisovy,

Sojka, and Hanzálek [23] made to the ath9k driver, I ran the experiment multiple

times, changing the setup a little bit each time. The following changes to the setup

described above were tested:

1. The wireless network interfaces on both machines were put into managed

mode and connected to an unencrypted access point, instead of using the OCB

mode (compare Item 2).

2. I used ath5k cards in managed mode instead of the ath9k cards.

3. I used a newer linux kernel version (version 4.6.4) without any modifications.

As this kernel does not support OCB mode, the tests were restricted to managed

mode. This kernel version was, again, tested with the ath9k as well as with

the ath5k cards.

22 3.2 Changes to VCP

The results in all of these experiments were the same. Despite extensive debugging I

could not find the reason for these packet losses and therefore dropped the macvlan

approach.

3.2.1.2 VCP routing layer

Since I could not solve the problem of lost packets when using macvlan I decided

to implement the functionality myself. To do this I developed a system similar to

the Java Simulator developed by Weber [7] but with reduced resource usage and

without the overhead of a graphical user interface. The result was a program written

in C++ that I called VCP routing layer.

When compiling the VCP Daemon in simulator mode (compare Section 2.3.5)

the daemon opens a TCP socket and sends all packets via this TCP socket instead of

using a raw socket like when compiled in normal mode. I made use of this simulator

mode and made my VCP routing layer connect to the provided TCP socket. When

started in simulator mode the VCP daemon requires a MAC address as a parameter.

This address is used for identifying the daemon in the network. As the daemon is

not assigned a real network interface with a MAC address this MAC address can be

arbitrarily chosen but has to be unique in the formed VCP network.

Figure 3.2 – Internal Structure of the VCP routing layer

As seen in Figure 3.2 the routing layer internally creates multiple instances

of a Communicator class. An instance of the routing layer has exactly one Hard-

wareCommunicator and a theoretically unlimited number of LocalCommunicator

objects.

• A LocalCommunicator is responsible for the communication with a locally run-

ning VCP daemon via the provided TCP socket. It delivers messages destined

for the daemon and receives messages sent by the daemon to forward them

to their destination. All LocalCommunicator objects are stored in a map and

identified via the MAC address of their assigned VCP daemon.

3.2 Changes to VCP 23

To be able to deliver messages to their correct destination a LocalCommunicator

has to parse the ethernet header of the message received from the daemon

and extract the destination MAC address. It then executes one of the following

actions:

– If the destination MAC address is found in the map of LocalCommunicators

the message is handed to the corresponding LocalCommunicator which

sends it to the attached daemon.

– If the destination address is a unicast address but is not found in the map

of locally managed MAC addresses it is handed to the HardwareCommu-

nicator which sends it via its attached network interface.

– If the destination address is the broadcast MAC address the message is

handed to all other LocalCommunicators as well as to the HardwareCom-

municator. This way the message is delivered to the whole VCP network.

• The HardwareCommunicator is responsible for handling incoming and outgoing

messages via the physical network interface. If the HardwareCommunicator

gets a message from a LocalCommunicator it always adds an ethernet header

with ff:ff:ff:ff:ff:ff as destination address and 0x1234 as ethertype

and broadcasts it via the attached network interface. It hereby keeps the

pre-existing ethernet header intact. Because the message is broadcasted,

all other machines in the network receive the message via their respective

HardwareCommunicator. If a HardwareCommunicator receives a message via its

network interface it discards the outer header and, like the LocalCommunicator,

extracts the destination MAC address from the inner ethernet header. Based

on the destination MAC address it then either forwards it to the appropriate

LocalCommunicator, broadcasts it to all LocalCommunicators or discards it

if it does not find the target VCP daemon in its list. Note that it does not

rebroadcast the message if it cannot deliver it as this would lead to a broadcast

storm.

Each Communicator runs in its own thread using the functionality of the <thread>

header provided by the C++11 Standard Library. For messages that need to be sent

to the attached daemon or network interface each communicator has a message

queue. Messages can be enqueued by all communicators but only dequeued by the

owning communicator after the message was handled. To synchronize the access to

the queue and ensure fast handling of new messages without busy-waiting I again

relied on functionality8 available in the C++ Standard Library since C++11.

The VCP routing layer needs a list of TCP ports to connect to and the MAC

addresses to be used for the VCP daemons that it manages. But to allow for situations

8mostly <thread>, <mutex>, and <condition_variable>

24 3.2 Changes to VCP

in which not all VCP daemons join the network at the same time, e.g., when a new

car enters a parking lot, it does not require all those TCP ports to be served right

away. It periodically checks each port for a serving VCP daemon and adds new

deamons to the map of LocalCommunicators.

Figure 3.3 shows an example setup of two machines each running three VCP

daemons using the developed VCP routing layer. An important limitation to men-

tion is that all nodes that are connected to the same routing layer instance have

perfect reception. There is, unfortunately, no functionality like the Car4ICT topology

manager (compare Section 2.1.2.1) that enables the simulation of unreliable or bad

reception between the nodes.

Figure 3.3 – Schematic view of the VCP routing layer running 6 VCP daemons
on 2 machines.

3.2.2 DHT Functionality

To be able to store and synchronize data inside a cluster I planned to use the DHT

functionality of VCP. Unfortunately, the VCP prototype lacked this feature (compare

Section 2.3.5) and therefore I had to implement it myself. As mentioned before,

the code of the VCP prototype turned out to be very hard to modify or extend. I

therefore decided to implement the needed functionality as a separate layer again. I

later merged this layer into the Car4ICT prototype, but as it is still possible to use it

without Car4ICT I will continue to describe it separately for the sake of clarity.

The DHT functionality comes in form of a C++ program that can be compiled

into an executable binary or be integrated into other software components (as

done in Section 3.3). It attaches to a VCP daemon using the provided shared

library which communicates with the actual VCP daemon instance via a TCP socket.

Besides functions to get status information about the daemon’s actual position and

3.2 Changes to VCP 25

responsible positions, the shared library provides methods to send messages in

each of the three transmission modes mentioned in Section 2.3.5 as well as a way

to register callback methods which are called when messages are received or the

daemon’s position changed.

To store a (key, value) pair in the VCP network, the source daemon has to

calculate the hash of the key and convert that hash to a VCP address. It then has to

send a message to that destination address containing the key and value to store. For

hashing I decided to use the SuperFastHash function by Paul Hsieh which promises to

be very fast while still having a good distribution of hashes. This makes it well-suited

for low-powered systems.

For the actual storage of data on the destination node I developed a simple

StorageManager interface and built an InMemoryStorageManager class implementing

this interface. The InMemoryStorageManager simply stores all (key, value) pairs in

a map kept in memory. Due to this design it is, however, easily possible to implement

other storage managers to, e.g., store the data on disk.

3.2.2.1 Message Format

For the DHT related communication between VCP daemons I defined a special

message format which can be seen in Figure 3.4.

Figure 3.4 – Format of a DHT Message

Message Type: I defined four different message types: INSERT, GET, ANSWER,

and REMOVE. An INSERT requires a key and a value to be present in the message and

is used to store the (key, value) pair at the receiving node. A GET requires only

a key and asks the receiving node to answer with an ANSWER message containing

either the associated value or a not found notice if there is not such key stored. And

finally a REMOVE message requires a key and asks the receiving node to delete the

associated (key, value) pair from its storage.

Key, Value, Key Size, Value Size: The key and value size fields store the size

of the contained key and value in bytes and are needed for correct parsing of the

message on the receiving side. The size of both of these fields limits the maximum

key size to 28 − 1 Bytes and the maximum value size to 232 − 1 Bytes. Both sizes

may be 0 which indicates that a key or value is not present in the message.

Value Type: This field was introduced to mark values that require special handling

apart from the usual storing and retrieving. If no special handling is required this

26 3.2 Changes to VCP

field is set to a default value. An example for the usage of this field can be found in

Section 3.3.

3.2.2.2 Long Messages

The size limitation of messages in the VCP prototype to one ethernet frame per

message (compare Section 2.3.5) heavily limits its suitability for DHT. To allow

for messages containing larger values I introduced a mechanism for splitting DHT

messages into multiple parts if needed. Each message or message part is wrapped in

a so-called DHT packet which has the format shown in Figure 3.5.

Figure 3.5 – Format of a DHT Packet

Prefix: Each DHT packet starts with a prefix which is used to identify the contents

of a VCP message as a DHT packet. In the current implementation the prefix is set

to the 3 Bytes DHT. If this prefix is not present in a VCP message received from the

daemon, the DHT implementation ignores it.

Packet Type: The packet type must be set to SINGLE if the DHT packet fully

contains a single DHT message. If a DHT message is split into multiple parts the

packet type must be set to INCOMPLETE for all but the last packet. The last packet of

such a multi-packet transmission must have the type LAST to signal to the parser

that this packet concludes the transmission of a multi-part DHT message.

In addition to these types a special ACK type has been defined which is only

used for acknowledging the successful reception of a packet. Although the VCP

prototype provides dedicated transmission modes for sending messages reliably, these

transmission modes introduce a lot of overhead due to the used single-hop-sessions

(compare Section 2.3.5). Therefore I decided to only use the unreliable transmission

mode and implement my own reliability mechanism which uses acknowledgements

only between the end nodes of a communication.

Sequence Number: The sequence number is used to enumerate the packets of

a multi-packet message. At the receiver they are used to correctly reassemble the

DHT message. For packets of type SINGLE the sequence number is always 0. For ACK

packets the field contains the sequence number of the packet that is acknowledged.

Payload: The payload contains the full DHT message for SINGLE packets or a

part of the message for multi-packet messages. For packets of type ACK the payload

is defined to have the fixed length of 8 bytes and has to contain the VCP address to

which the acknowledged packet was sent.

3.3 Changes to Car4ICT 27

This ACK payload is needed because each node is responsible for a whole range

of addresses. Therefore the node acknowledging a message often has a different

address than the one the original packet was sent to. The payload containing the

original destination address enables the correct mapping of the acknowledgement

to the sent packet.

3.2.2.3 Leaving and failing Nodes

When a VCP daemon fails, the VCP prototype initiates a full network restart. This

leads to all nodes getting new positions in the network. For the DHT such a scrambling

of addresses would equal a deletion of all data as GET all requests would be sent to

the wrong nodes (except for the case that a node gets its old address after a restart).

To prevent data loss in these cases, DHT clients detect address changes and

changes in the responsibility range of their connected VCP daemon. When such a

change happens, the DHT client goes through its storage and moves all (key, value)

pairs to their new, correct storage location. For the case of a VCP daemon wanting

to gracefully exit a VCP network, e.g., when a car leaves a parking lot, I also imple-

mented a function that can be called to copy all DHT data to the node’s predecessor.

This way the data of the leaving car is not lost but remains available in the DHT.

3.3 Changes to Car4ICT

In this section I describe the changes that were needed in the Car4ICT prototype

and how I approached their implementation.

3.3.1 Distributed Service Table

For a VCP cluster to be able to act as one Car4ICT node, all gateways have to have

their service tables synchronized. Instead of storing a copy of the service table on

each gateway and keeping it in sync between gateways I decided to use the DHT

functionality of VCP. Thus there is only one copy of the service table that is stored in

the DHT and no further synchronization is needed.

In Car4ICT it is possible that two cars offer services with the exact same hash. A

car requesting this hash would then get the IDs of both cars as an answer. It is also

possible for a car to update the metadata of an offered service. Further the Car4ICT

prototype periodically deletes service table entries that have not received an update

(e.g., by re-offering the same service) for a specified amount of time. Implemented

with the DHT functionality described in Section 3.2.2 all these features would require

frequent read-modify-overwrite operations as the DHT implementation can on store

one value per key.

28 3.4 Remaining Work

To overcome this inefficiency, I integrated the DHT implementation into the

Car4ICT controller and extended it by functionality specifically tailored for managing

a distributed service table. I use the Value Type field of a DHT message (compare

Figure 3.4) to mark the INSERT and GET messages as containing a value of type

ServiceTableEntry.

On the storing side I then store the service table entries in a list. If a service table

entry is received that matches the service hash and car-ID of an already existing

entry, I update only this entry with the new metadata and also update its timestamp.

Therefore cars do not need to first request all data regarding a key, update it and

then restore it but can simply send their updated service table entry and rely on the

receiving side to handle the update.

To integrate the distributed storage into the Car4ICT controller I converted the

existing, local ServiceTable into an abstract service table interface and made the

local ServiceTable implement this interface. I then made my distributed version of

the ServiceTable implement the same interface. This way a controller can easily be

switched between using the local or the distributed storage variant or the ServiceTable.

3.4 Remaining Work

Unfortunately, due to lack of time, I was not able to implement further functionality

on the Car4ICT side of this integration. To complete the concept described in

Section 3.1 several features have still to be integrated into the Car4ICT controller.

Specifically, at the current point of implementation, all cars in a VCP cluster

still keep their Car4ICT radio enabled. To get the benefit of a large-scale, stable

Car4ICT node a gateway selection mechanism has to be developed and all Car4ICT

traffic has to be routed through these gateways. Further a handover between these

gateways is needed to allow for long-running data transmissions. The needed data

synchronization for a handover could build on the DHT functionality described in

Section 3.2.2.

Chapter 4

Validation and Evaluation

To validate the correct functionality and evaluate the performance of the developed

components I conducted several tests and experiments. The following chapter

presents these tests and their results as well as the conclusions that can be drawn

from these results.

4.1 Routing Layer

To examine the correctness and performance of the VCP routing layer, I set up an

experiment on the alix boxes. On each box I started a VCP routing layer instance

and a number of VCP daemons9 that used the routing layer. The number of nodes

per machine started at 5 and went up to 50 in steps of 5. So in the first run I had a

network of 15 VCP nodes (3 machines with 5 nodes each) and in the last run I had

a network of 150 VCP nodes. The network initiating node (the node that starts the

network by sending out hello messages) always was on the alix3 box. Each of the

configurations ran for 100 seconds before being terminated. To get more data for

the following statistical analysis I ran the whole experiment three times.

To validate the correct function of the routing layer I looked at the neighbor

tables of the VCP daemons and especially at the number of distinct network nodes

listed in the tables. As the alix boxes stood right next to each other they were in each

others range and all nodes should be able to see the whole network. Figure 4.1 shows

the average number of nodes in a VCP daemon’s neighbor table as a percentage of

the network size. These values can be seen as a metric for the connectedness of

the network. One can quickly see that with 5 VCP daemons running on each alix

box all nodes had 100% of the network (i.e., 15 nodes) in their neighbor tables.

The network was therefore fully connected. I conclude that the VCP routing layer is

working as intended and is capable of managing at least 5 nodes per machine even
9Configured with the default parameters found in [7]

29

30 4.1 Routing Layer

on very limited hardware like the alix boxes. Manual checks of the daemon’s log

files and neighbor tables confirm this. With 5 nodes per machine the CPU usage of

the routing layer was at around 5% (the VCP daemons added another 5%) and its

memory usage was approximately 500 kB. This shows that the developed routing

layer is well-suited for use on low-resource hardware.

5 10 15 20 25 30 35 40 45 50

Nodes per machine

0

20

40

60

80

100

Fo
un

d
no

de
s

(i
n

%
)

alix3
alix4
alix5

Figure 4.1 – Average network nodes (in percentage of all available network
nodes) that each node had in its neighbor table 100 seconds after network
start. Nodes with virtual nodes were still counted as one.

With an increasing number of nodes per machine the overall connectedness of

the network decreased. This indicates that network sizes with 10 or more nodes

per machine were too much for the alix boxes to handle. An important observation

here is that the connectedness of nodes running on alix3, the machine with the

network initiating node, is almost always significantly higher than on the two other

boxes. The same observation can be made when looking at the CPU usage seen in

Figure 4.2. While the CPU usage on the alix machine rises with increasing number

of nodes, the CPU usage on the other boxes roughly stays the same (starting at 20

nodes per machine). This suggests that the alix3 box is overloaded with such high

numbers of nodes and therefore cannot respond to the join requests of nodes from

the other machines – at least not before their requests time out (compare [7, p.82]).

To further check this assumption I looked at the reasons that the VCP daemons

gave for failed communication sessions. The most frequent reason here was an ack

timeout. Again the number of reported ack timeouts per node rose quickly on the

alix4 and alix5 while staying comparably low on the alix3 (see Figure 4.3).

So I come to the conclusion that the VCP routing layer does not treat nodes

running on other machines fairly compared to nodes running on the same machine.

This lead to the observed effect of higher connectedness and significantly higher

load on the machine with the network initiating node. Meanwhile most of the nodes

on the other machines could not communicate and spent a lot of time waiting for

4.2 DHT 31

5 10 15 20 25 30 35 40 45 50

Nodes per machine

0

10

20

30

40

50

60

70

80

90

A
vg

. C
PU

 u
sa

ge

alix3
alix4
alix5

Figure 4.2 – Average CPU usage on the alix boxes in the first 100 seconds
after network start.

5 10 15 20 25 30 35 40 45 50

Nodes per machine

0

10

20

30

40

50

A
C

K
 t

im
eo

ut
s

pe
r

da
em

on

alix3
alix4
alix5

Figure 4.3 – Average number of Session ACK timeouts per daemon.

ACKs for their join requests. This waiting without possible communication explains

the lower CPU usage on these machines.

During all experiments the memory usage of the VCP routing layer lay below

2 MB and the overall memory usage of the routing layer and the daemons was

below 120 MB. Therefore the low amount of memory did not pose a problem for

the experiment.

4.2 DHT

To validate the correct functioning of my DHT functionality I built a small dht_-

test_client which allowed me to manually generate and send DHT messages and

to display status information of the VCP daemon and the attached DHT client. I

also, temporarily, replaced the SuperFastHash function with a simple function that

allowed me to directly use VCP addresses as DHT keys and thereby directly choose

32 4.2 DHT

the location at which a key-value pair is stored. This change was very minimal and

should not influence the results of the following experiment in any way.

I started two VCP daemons on each of the alix boxes. The resulting network of 6

nodes can be seen in Figure 4.4. Then I performed several DHT related actions and

documented their effect.

Figure 4.4 – The test network right after startup.

Insert: From node 0.0 I sent three INSERT messages with the keys 0.6, 0.75

and 0.9 to their appropriate storage destination. All these addresses fall into the

responsibility range of node 0.5 or one of its virtual nodes. On all three messages

the daemon running node 0.5 and its virtual nodes reported successful storage of

the key-value pair. Each of the transmissions took approximately 650ms.

Get: From node 0.625 I retrieved all three key-value pairs by sending a GET

message to each of the addresses. Again, the daemon responsible for 0.5 and its

virtual nodes responded and sent the requested values to 0.625. To check if there

were any errors during storage or retrieval, I compared the values that arrived at

0.625 with the original values stored from 0.0. The comparison showed, that there

were no errors in the retrieved data.

Multi-Packet Messages: The values I stored were randomly generated, 10 kB

long strings. I chose 10kB long messages because 10 kB are too large for a single

DHT packet and therefore the messages each got split up into 10 packets. Each of

these packets was successfully sent by the sender and acknowledged by the receiver.

This ensured that not only the storage capabilities of the DHT implementation were

tested but also the ability to split and transfer large messages.

Leaving Nodes: To test the function for a graceful exit of a node as well as the

network behaviour on node failure I made the daemon running nodes 0.5, 0.75

4.2 DHT 33

and 0.875 leave the network. For each of the virtual nodes the daemon transferred

the stored key-value pair to the respective predecessor on the cord. The affected

predecessor nodes were 0.25, 0.625, and 0.8125.

After successfully copying its data to the predecessor nodes, the daemon exited

the network. After 30 seconds, which is the configured Node TTL, the other nodes

registered the failure of a network node and initiated a network restart. As a result

each daemon got assigned a new VCP address and the data items, distributed over

3 nodes before, were successfully moved to their destination in the new network.

The new network, including the storage location of the data items is depicted in

Figure 4.5.

Figure 4.5 – The network, including the storage location of data, after a
network restart.

4.2.1 Speed measurements

As described in Section 3.2.2.2 I built a new reliability layer for VCP messages instead

of using the already provided sendReliable methods provided by the VCP daemon.

This choice was made because the provided method uses so-called nested-sessions

combined with single-hop-sessions to ensure reliable transmission of messages,

which is a lot of unnecessary overhead. My implementation, however, only sents

one acknowledgement per packet from the destination node to the source node of a

data transmission.

To evaluate the provided performance improvement of this feature, I planned to

send messages over multiple hops and measure the time until an acknowledgement

is received. Since VCP’s routing makes use of shortcuts, the maximum hop count

that I could establish with the alix boxes was 2. This could be done by placing

the alix boxes in a row with gaps that are big enough for the first box to be out of

the transmission range of the last box. A hop count greater than two could not be

realized using the alix boxes.

34 4.3 Car4ICT distributed ServiceTable

I therefore decided to run this evaluation using the Java Simulator written by

Bernhard Weber. Using this simulator I could setup a chain of 11 VCP nodes so

that each node could only communicate with its predecessor and successor. I then

connected to the end nodes of the chain and sent messages from node 1.0 to the

address 0.0. 50 messages were sent using the sendReliable method of the VCP

daemon, i.e., using nested-sessions as reliability mechanism, and 50 messages were

sent using my new end-to-end acknowledgements. To ensure that the message would

not be split, I chose a message size of 500 bytes.

1000 1100 1200 1300 1400

End-To-End ACKs

3100 3200 3300 3400 3500

Nested session

Time until ACK (in ms)

Figure 4.6 – Measured time until an acknowledgement was received for VCP
messages sent via 10 hops.

As can be seen in Figure 4.6 the end-to-end acknowledgement system was, in most

cases, more than three times faster than the nested-session system. Since all data

transfers in the DHT implementation use end-to-end acknowledged transmission,

this greatly benefits its performance.

4.3 Car4ICT distributed ServiceTable

As the integration into Car4ICT is not finished yet it was difficult to thoroughly test

the implemented changes. I set up two simple tests which I am going to describe in

the following.

The first test I performed used the dht_test_client that I already used in

Section 4.2. I extended this test tool with functionality that allowed me to manually

construct service table entries and store them in the DHT network using the special

value type for the DHT INSERT message. By checking the local storage on the

destination node of these storage requests I verified that the service table entries

were correctly stored. I then generated a service table entry using the same hash

as before but with different metadata items. The INSERT message using this entry

lead to a successful update of the service table entry on the destination node. GET

messages asking for the hash were successfully answered with the correct service

table entry. This test verified that the DHT implementation applied the correct special

behavior specified for service table entries.

For the second test I started two Car4ICT controllers and connected them to a

small VCP network. The first controller was configured to offer a Car4ICT service

4.3 Car4ICT distributed ServiceTable 35

with the hash CHAT. The second controller was configured to request the same hash.

The controllers’ log files showed that they were able to successfully offer and request

their specified service by inserting the related service table entry into the DHT and

reading it back. Due to the not implemented functionality further communication

between the Car4ICT controllers was not possible.

Chapter 5

Conclusion

During the course of this thesis I became familiar with the existing prototype im-

plementations of VCP [7] and Car4ICT [6]. I developed a concept of how parked

cars, using the VCP prototype, could be integrated into Car4ICT. I continued by

identifying the changes that needed to be implemented in each of the prototypes.

To enable the creation of large parking lots in form of VCP networks, even on

limited hardware, a layer had to be developed which allowed multiple VCP daemons

to run on one machine. In the process I discovered and investigated a problem

with the macvlan kernel driver in combination with wireless network cards. These

problems made macvlan unsuitable as a solution to the task which is why I wrote a

separate layer that made multiple VCP daemons per machine possible. Tests of this

layer showed that it was able to run at least 5 VCP daemons per machine, even on

machines with a very low-powered 500 MHz CPU.

To enable data storage and synchronization between cars in a parking lot, I

extended the VCP prototype with a DHT functionality that was missing before. In the

course of this development I enabled the VCP prototype to handle large messages

that need to be split for transmission. I also developed a new mechanism for reliable

data transmission which speeds up transmission by factor 3 when compared to the

original reliability mechanism of the VCP prototype.

The Car4ICT prototype was modified to be able to use the DHT implementation

to store a distributed version of its service table. This makes it unnecessary to

implement complex synchronization strategies between gateways of a VCP cluster.

Unfortunately I was not able to fully complete the integration of parked cars

into the Car4ICT platform. I was, however, able to make important steps on the

path to a working integration by realizing many of the needed changes. To finalize

the integration of parked cars into Car4ICT, some work still remains to be done. A

gateway selection algorithm has to be implemented and gateways need the ability to

perform a handover to allow for long-running data transfers. Additionally, messages

37

38 5 Conclusion

from and to cars running Car4ICT applications inside a VCP network need to be

routed via these gateways.

List of Abbreviations

BSS Basic Service Set

DHT Distributed Hash Table

DSRC Dedicated Short-Range Communication

GUI Graphical User Interface

ICT Information and Communications Technology

ITS Intelligent Transportation Systems

IVC Inter-Vehicular Communication

MANET Mobile Ad Hoc Network

RSS Resident Set Size

RSU Roadside Unit

SCF Store-Carry-Forward

VANET Vehicular Ad Hoc Network

VCP Virtual Cord Protocol

VRR Virtual Ring Routing

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

39

List of Figures

2.1 Car4ICT communications between users, members, infrastructure . . 6

2.2 Example of a simple VCP Network . 8

2.3 Basic join operation in VCP . 10

2.4 Basic join operation in VCP . 10

3.1 General concept of the planned system 18

3.2 Internal Structure of the VCP routing layer 22

3.3 Schematic view of the VCP routing layer running 6 VCP daemons on

2 machines. 24

3.4 Format of a DHT Message . 25

3.5 Format of a DHT Packet . 26

4.1 Average network nodes (in percentage of all available network nodes)

that each node had in its neighbor table 100 seconds after network

start. Nodes with virtual nodes were still counted as one. 30

4.2 Average CPU usage on the alix boxes in the first 100 seconds after

network start. 31

4.3 Average number of Session ACK timeouts per daemon. 31

4.4 The test network right after startup. 32

4.5 The network, including the storage location of data, after a network

restart. 33

4.6 Measured time until an acknowledgement was received for VCP mes-

sages sent via 10 hops. 34

41

List of Tables

2.1 Example Car4ICT service table . 5

2.2 Transmission times of messages in the original VCP prototype 13

3.1 Approximate resource usage of the Java Simulator 19

3.2 Table showing which packets arrived at which network interface on

machine B. 21

43

Bibliography

[1] O. Altintas, F. Dressler, F. Hagenauer, M. Matsumoto, M. Sepulcre, and C.

Sommer, “Making Cars a Main ICT Resource in Smart Cities,” in 34th IEEE

Conference on Computer Communications (INFOCOM 2015), International

Workshop on Smart Cities and Urban Informatics (SmartCity 2015), Hong

Kong, China: IEEE, Apr. 2015, pp. 654–659. DOI: 10.1109/INFCOMW.2015.

7179448.

[2] IEEE, “Wireless Access in Vehicular Environments,” IEEE, Std 802.11p-2010,

Jul. 2010. DOI: 10.1109/IEEESTD.2010.5514475.

[3] F. Hagenauer, C. Sommer, S. Merschjohann, T. Higuchi, F. Dressler, and O.

Altintas, “Cars as the Base for Service Discovery and Provision in Highly

Dynamic Networks,” in 35th IEEE Conference on Computer Communications

(INFOCOM 2016), Demo Session, San Francisco, CA: IEEE, Apr. 2016, pp. 358–

359. DOI: 10.1109/INFCOMW.2016.7562101.

[4] C. Sommer, D. Eckhoff, and F. Dressler, “IVC in Cities: Signal Attenuation by

Buildings and How Parked Cars Can Improve the Situation,” IEEE Transactions

on Mobile Computing, vol. 13, no. 8, pp. 1733–1745, Aug. 2014. DOI:

10.1109/TMC.2013.80.

[5] F. Hagenauer, C. Sommer, T. Higuchi, O. Altintas, and F. Dressler, “Using

Clusters of Parked Cars as Virtual Vehicular Network Infrastructure,” in 8th

IEEE Vehicular Networking Conference (VNC 2016), Poster Session, Columbus,

OH: IEEE, Dec. 2016, pp. 126–127.

[6] S. Merschjohann, “Prototype Implementation of the Car4ICT Framework,”

Master’s Thesis, Department of Computer Science, Aug. 2016.

[7] B. Weber, “Experimenteller Aufbau und Validierung von VCP im Rahmen des

BATS-Projekts,” Bachelor Thesis, Institute of Computer Science, Mar. 2014.

[8] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications,” IEEE, Std 802.11-2007, 2007. DOI: 10.1109/IEEESTD.2007.

373646.

45

http://dx.doi.org/10.1109/INFCOMW.2015.7179448
http://dx.doi.org/10.1109/INFCOMW.2015.7179448
http://dx.doi.org/10.1109/IEEESTD.2010.5514475
http://dx.doi.org/10.1109/INFCOMW.2016.7562101
http://dx.doi.org/10.1109/TMC.2013.80
http://dx.doi.org/10.1109/IEEESTD.2007.373646
http://dx.doi.org/10.1109/IEEESTD.2007.373646

46 Bibliography

[9] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications,” IEEE, Std 802.11-2012, 2012.

[10] ETSI, “Broadband Radio Access Networks (BRAN); 5 GHz High Performance

RLAN; Harmonized EN Covering the Essential Requirements of Article 3.2 of

the R&TTE Directive,” ETSI, EN 1.8.1, Mar. 2015.

[11] F. Hagenauer, C. Sommer, R. Onishi, M. Wilhelm, F. Dressler, and O. Altintas,

“Interconnecting Smart Cities by Vehicles: How feasible is it?” In 35th IEEE Con-

ference on Computer Communications (INFOCOM 2016), International Work-

shop on Smart Cities and Urban Computing (SmartCity 2016), San Francisco,

CA: IEEE, Apr. 2016, pp. 788–793. DOI: 10.1109/INFCOMW.2016.7562184.

[12] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An Infrastructure

for Fault-tolerant Wide-area Location and Routing,” Berkeley, CA, USA, Tech.

Rep., Apr. 2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network,” SIGCOMM Comput. Commun. Rev., vol. 31,

no. 4, pp. 161–172, Aug. 2001. DOI: 10.1145/964723.383072.

[14] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,” in

ACM SIGCOMM 2001, San Diego, CA: ACM, Aug. 2001, pp. 149–160.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems,” in IFIP/ACM International Con-

ference on Distributed Systems Platforms (Middleware), Heidelberg, Germany,

Nov. 2001, pp. 329–350.

[16] A. Awad, R. German, and F. Dressler, “P2P-based Routing and Data Man-

agement using the Virtual Cord Protocol (VCP),” in 9th ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2008),

Poster Session, Hong Kong, China: ACM, May 2008, pp. 443–444. DOI:

10.1145/1374618.1374678.

[17] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) for Mobile Computers,” Computer Communications

Review, pp. 234–244, 1994.

[18] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks,” in Mobile Computing, T. Imielinski and H. F. Korth, Eds., vol. 353,

Kluwer Academic Publishers, 1996, pp. 152–181.

[19] C. E. Perkins and E. M. Royer, “Ad hoc On-Demand Distance Vector Routing,”

in 2nd IEEE Workshop on Mobile Computing Systems and Applications, New

Orleans, LA, Feb. 1999, pp. 90–100.

http://dx.doi.org/10.1109/INFCOMW.2016.7562184
http://dx.doi.org/10.1145/964723.383072
http://dx.doi.org/10.1145/1374618.1374678

Bibliography 47

[20] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron, “Virtual

Ring Routing: Network routing inspired by DHTs,” in ACM SIGCOMM 2006,

Pisa, Italy: ACM, Sep. 2006.

[21] A. Awad, C. Sommer, R. German, and F. Dressler, “Virtual Cord Protocol

(VCP): A Flexible DHT-like Routing Service for Sensor Networks,” in 5th IEEE

International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2008),

Atlanta, GA: IEEE, Sep. 2008, pp. 133–142. DOI: 10.1109/MAHSS.2008.

4660079.

[22] A. Awad, L. ’. Shi, R. German, and F. Dressler, “Advantages of Virtual Ad-

dressing for Efficient and Failure Tolerant Routing in Sensor Networks,” in

6th IEEE/IFIP Conference on Wireless On demand Network Systems and Ser-

vices (WONS 2009), Snowbird, UT: IEEE, Feb. 2009, pp. 111–118. DOI:

10.1109/WONS.2009.4801850.

[23] R. Lisovy, M. Sojka, and Z. Hanzálek, “IEEE 802.11p Linux Kernel Implemen-

tation,” Industrial Informatics Research Center, Czech Technical University,

Praque, Czech Republik, Technical Report, Dec. 2014.

[24] N. Liu, M. Liu, W. Lou, G. Chen, and J. Cao, “PVA in VANETs: Stopped cars are

not silent,” in 30th IEEE Conference on Computer Communications (INFOCOM

2011), Mini-Conference, Shanghai, China: IEEE, Apr. 2011, pp. 431–435. DOI:

10.1109/INFCOM.2011.5935198.

[25] F. Malandrino, C. Casetti, C.-F. Chiasserini, C. Sommer, and F. Dressler, “The

Role of Parked Cars in Content Downloading for Vehicular Networks,” IEEE

Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4606–4617, Nov.

2014. DOI: 10.1109/TVT.2014.2316645.

[26] F. Dressler, P. Handle, and C. Sommer, “Towards a Vehicular Cloud - Using

Parked Vehicles as a Temporary Network and Storage Infrastructure,” in 15th

ACM International Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc 2014), ACM International Workshop on Wireless and Mobile Technolo-

gies for Smart Cities (WiMobCity 2014), Philadelphia, PA: ACM, Aug. 2014,

pp. 11–18. DOI: 10.1145/2633661.2633671.

http://dx.doi.org/10.1109/MAHSS.2008.4660079
http://dx.doi.org/10.1109/MAHSS.2008.4660079
http://dx.doi.org/10.1109/WONS.2009.4801850
http://dx.doi.org/10.1109/INFCOM.2011.5935198
http://dx.doi.org/10.1109/TVT.2014.2316645
http://dx.doi.org/10.1145/2633661.2633671

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 Vehicular Networking
	2.2 Distributed Hash Tables
	2.3 The Virtual Cord Protocol
	2.4 Macvlan
	2.5 Hard- and Software Requirements
	2.6 Related Work

	3 Implementation
	3.1 Concept
	3.2 Changes to VCP
	3.3 Changes to Car4ICT
	3.4 Remaining Work

	4 Validation and Evaluation
	4.1 Routing Layer
	4.2 DHT
	4.3 Car4ICT distributed ServiceTable

	5 Conclusion
	Bibliography

