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Abstract

Liner shipping is one of the most important building blocks of modern international
trade. Throughout the year, a liner shipping company adjusts its network to seasonal
and general economic trends. Such a modification is a heavy intervention with large
financial burdens, making it necessary to use sophisticated planning techniques. Al-
though many researchers developed various optimization models for the liner shipping
industry, planners in liner shipping companies are still relying on inadequate decision
support tools that are not exactly tailored to their planning problems. Therefore, it is
of high importance that requirements of real-world planners are considered in mathe-
matical optimization models and decision support systems. To this end, extensions of
state-of-the-art optimization models and solution approaches are presented as well as
an analysis of real-world vessel data to evaluate travel times and a decision support
system with a newly developed problem-specific visualization technique. This work
shows that the gap between the practical world and the research world can be bridged
by incorporating practical requirements into optimization models as well as making
these models and their results more accessible, which increases the chances of planners
adopting these models in their daily operations.
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port system, visualization, cargo allocation, fleet deployment, service design, biased
random-key, genetic algorithm
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1. Introduction

With a tradition of more than 5,000 years, maritime transportation has seen plenty
of developments and technologies over the last thousands of years (Stopford (2009)).
Today, the amount of transported cargo per year surpassed 10 billion tons, making
maritime transportation one of the most important building blocks of modern inter-
national trade. In order to transport these large quantities, a fleet of about 49,000
vessels of all kinds are sailing around the world (UNCTAD (2016)).
Compared to other modes of transportation like air-based or land-based transporta-

tion, maritime transportation provides the highest transportation capacity with several
tens of thousands of tons on a single ship (Vahrenkamp and Kotzab (2012)). With
such a high transportation capacity, the transportation costs for a single cargo unit
becomes comparably small to the other transportation modes. Since the invention of
standardized cargo containers in the 1950s, liner shipping has become a reliable way
to transport cargo to locations around the world.
Similar to bus routes in public transport, vessels in liner shipping networks visit a

fixed sequence of ports at specified times in order to load and unload cargo. Just like it
is possible to switch from one bus line to another at certain stops, vessel schedules allow
for transshipments of cargo at selected ports of their routes. The liner shipping sched-
ules are publicly available such that customers can synchronize their transportation
with the vessel’s arrival and departure times. Throughout the year, these schedules
and the service networks are modified by liner carriers in order to adjust to seasonal
or general economic trends. Integrating these modifications into the service network
is a complex planning task. Unlike bus services that are usually restricted to a certain
part of the day before the buses drive back to their depot, vessels on liner services are
constantly sailing on their routes.
A modification of a service is a heavy intervention on the service network, usually

with large financial ramifications included. Sophisticated planning techniques should
be considered to keep the financial burden of such an intervention as low as possible. In
reality, many planners in liner shipping companies are still relying on their experience
and tools like spreadsheet software, which is not completely tailored to support such
a complex decision process.
The focus of this work lies on extending the state-of-the-art library of models and

algorithms to solve planning problems, where the basis of the decision process is the
modification of a liner service or the evaluation of such a modification. For this, four
research goals were posed:

1. Extend the scope of selected optimization models from liner shipping

3



1. Introduction

2. Develop techniques to better visualize optimization problems in liner shipping

3. Analyze real-world shipping data to improve the precision of existing optimiza-
tion models

4. Propose a decision support system to integrate developed models and visualiza-
tion techniques

The remainder of this thesis is structured as follows: Part I contains the synopsis of
this work, which starts with this introductory chapter. Chapter 2 contains background
information about relevant topics for this thesis like maritime transportation (Section
2.1), decision support systems (Section 2.2) and the methodology that was used in
this thesis (Section 2.3). An overview of the four research papers of this thesis is
given in Chapter 3. After this overview, Part II presents the research papers. It
starts with a work on liner shipping fleet repositioning in Chapter 4, followed by an
extension of the liner shipping cargo allocation problem in Chapter 5. The third paper
of this thesis presents several mathematical models for the liner shipping single service
design problem (Chapter 6). The final paper of this thesis presents a biased random-
key genetic algorithm for the liner shipping fleet problem, which is combined with a
hill climbing algorithm (Chapter 7). Finally, this thesis is concluded in Chapter 8 with
an overview of the contributions of this thesis as well as an outlook on possible future
research.
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2. Background

2.1. Maritime transportation

2.1.1. General overview

According to UNCTAD (2016), maritime transportation cargo can be split into three
categories: oil and gas, main bulk commodities and dry cargo. In 2015, about 2.95
billion tons of oil and gas and 2.95 billion tons of main bulk commodities have been
transported around the world. The amount of dry cargo in the same year was about
4.15 billion tons, resulting in a total sum of more than 10 billion tons. This is more
than double compared to what was transported in 1980, where the total amount of
transported goods reached 3.7 billion tons. From that time, this number has been
steadily growing. Only in 1985 and 2009 were some pullbacks1. The reason for the
most recent drop in 2009 was the worldwide financial crisis. This particular pullback
was already evened out in 2010 with a higher transportation volume than in 2008.
Although there was a growth in every area of maritime transportation, the largest
growth in this time frame has happened in the area of liner shipping, which belongs
to the category of dry cargo.

2.1.2. Liner shipping

In liner shipping, vessels are carrying standardized containers and sail on predefined
routes with a specified schedule (Stopford (2009)). The transportation of container-
ized goods began in the 1950s when Malcolm McLean shipped the first containers
on a specialized vessel and continued with the standardization by the International
Standardization Organization (ISO) in the late 1960s. This invention significantly im-
proved the handling of cargo at ports, as it unified several boxes or bags into a single
unit. Nowadays, the amount of transported containers has reached 175 Mio. TEU2

(UNCTAD (2016)).
Liner shipping companies operate cyclical services in order to transport container-

ized goods. A service connects several ports, which are visited in a specific order.
A service can be used to connect different trade regions, for example Europe and
Asia. Ports in a service are visited at fixed time periods, following a certain frequency
(usually weekly or biweekly).
Figure 2.1 presents an example of a liner shipping service network with three ser-

vices: Chennai Express, Asia-CA3 and Intra-WCSA. Each service has its own route
1the measurements from 1980 to 2005 are only available in 5-year-steps, see UNCTAD (2016)
2TEU = twenty foot equivalent units
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2. Background

Figure 2.1.: An example of a liner shipping service network from Tierney et al. (2014).

with multiple ports. Chennai Express is only serving ports in Asia and Intra-WCSA
is only serving ports in South America. The service Asia-CA3 connects these two
services by visiting ports on both continents.
Multiple vessels are assigned to a service, each taking a specific slot. Each slot has

its own schedule to visit the ports of the service. Depending on the desired frequency of
the service, the number of slots is selected such that the vessels of the service maintain
the frequency.
Whenever a vessel stops at a port, cargo is loaded or unloaded. This operation

is always performed by container cranes. Containers that are unloaded and are not
directly transported to the hinterland or transshipped to another vessel are stored in
container yards. Transshipments usually occur whenever the original port and the
destination port are not on the same service. In this case, the container needs to
be routed over the different services of the liner shipping company to bring it to its
destination. For shipments to the hinterland, containers are picked up by trucks, put
onto trains or on barges to bring them to their final destination. Trucks, trains and
barges are also moving containers from the hinterland to the ports to load them onto
container vessels.
As the container trade covers a large range of products that are transported, it

is heavily influenced by worldwide trends in consumer behavior. Furthermore, the
seasons of the year also have a great influence on the amount of containers to be
transported on specific liner services. For example, harvest times or holidays can lead
to a peaks in container demand for services connecting the harvest or holiday region.
Liner carriers need to adjust to these peaks in order to fulfill this temporary higher
demand. Not just at the time of these peaks, but also for the rest of the year, there is
a certain degree of cargo imbalances. Some regions have a higher export of containers
then other regions, where import is higher. This raises the problem, that liner carriers
have to reposition empty containers to locations, where they are needed.

6



2.1. Maritime transportation

Characteristics of liner shipping

There are specific container types for different purposes: containers with tanks to
transport liquids, containers with ventilation, 20 foot containers, extra high containers
or reefer containers to name a few examples. Reefer containers can carry cargo that
needs to be cooled down. For this, electricity is needed to power the cooling system
of the container. Container vessels provide a certain amount of places, called plugs,
for reefer containers, where they can be connected to electricity.
Since the first container vessels, the total capacity for containers has increased from

around 500 TEU to more than 20,000 TEU on the largest vessels. One of the main
reasons for this increase in vessel size is the economies of scale. According to Stopford
(2009), operating costs, capital costs and bunker costs “do not increase proportionally
with the transport capacity of the ship”. Stopford (2009) also points out that the
economies of scale diminish as the ships are getting bigger.
These three cost factors are items from a longer list of costs associated with running

a liner shipping business. In total the costs can be classified in five categories (Stopford
(2009)):

1. Operating costs

2. Periodic maintenance

3. Voyage costs (including bunker costs)

4. Cargo-handling costs

5. Capital costs

Running a liner shipping company is a capital intensive business. According to
Stopford (2009), a 1,200 TEU vessel costs $25 million in 2006. Due to the fierce
competition in the liner shipping business, carriers are forced to optimize their costs
such that they are able to offer competitive prices to their clients, while still trying to
achieve a certain degree of profitability. For this, it is critical for liner carriers to make
use of advanced planning methods like mathematical optimization to improve their
network structures, schedules and solve other planning problems related to operating
a liner business.

Planning problems in liner shipping

An overview of the planning problems that occur in liner shipping is given in Chris-
tiansen et al. (2007), Christiansen et al. (2013), Brouer et al. (2017) and Meng et
al. (2014). These publications classify planning problems according to their planning
horizons into strategic, tactical and operational problems.

7



2. Background

Figure 2.2.: Classification of selected liner shipping planning problems from Brouer
et al. (2017).

Figure 2.2 gives an overview of selected planning problems from the field of liner
shipping. It should be noted that these problems often depend on each other and a
decision on a strategic level will have implications to other decisions on a tactical or
even operational level. As an introduction into the general topic of planning problems
in liner shipping, some of the planning problems from Figure 2.2 will be discussed in
the following.
Due to the fact that a newly built vessel can be used for up to 30 years, it is obvious

that any decision involving the fleet is a strategic decision. One major strategical
decision is to determine the size of the fleet and its mix. With this planning problem,
the existing vessel types and sizes are adjusted as well as the number of vessels of each
type or size. The basis for this decision is the already existing fleet, the service network
of the liner shipping company and its future expectations of demands and economic
developments. With this, a management strategy for the fleet can be developed and
decisions like buying or selling vessels are supported (Christiansen et al. (2013)).
Another planning problem at the strategic level is the liner shipping network design,

as it determines the routes of the vessels. For this, it is important to identify ports
that should be visited and the sequence in which the port visits should happen. There
should be an estimate of possible future cargo that can be loaded or unloaded at the
ports in order to be able to evaluate possible services. Furthermore, the frequency of
the service needs to be fixed, because this also determines the number of vessels that
are needed on the service (Agarwal and Ergun (2008), Brouer et al. (2017)).
In order to evaluate any network modifications, planners can use the liner shipping

cargo allocation problem to compute the profit-maximum cargo flows possible on their
services, given deterministic cargo demands (Guericke and Tierney (2015)). Although
this problem is highly dependent on other planning problems like the network design
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2.2. Decision support systems

or the fleet deployment, optimization models often consider these problems separately
(Müller et al. (2017)).
At a tactical level, liner shipping companies need to make decisions about the as-

signment of vessels to routes, which is called the fleet deployment problem (Gelareh
and Meng (2010)). Vessel characteristics, the structure of the services and expected
demands have to be considered to be able to determine a good deployment. In prac-
tice, liner shipping companies are able to charter in additional vessels for their services
or they can charter out their vessels to other companies. The fleet deployment problem
supports liner carriers in these decisions.
Related to this problem is the liner shipping fleet repositioning problem. Whenever

the fleet deployment changes, vessels need to be repositioned to another service (Tier-
ney et al. (2014)). Usually, the majority of the fleet is actively sailing on a service as it
is too expensive to keep vessels at a port for a long time. Therefore, any fleet deploy-
ment change needs to be implemented during the actual operations of the services.
For this, the liner shipping fleet repositioning problem identifies optimal repositioning
activities in order to keep the costs for such a reassignment at a minimum.
At a short term horizon, liner shipping companies need to make decisions regarding

the actual operations of their vessels. For example, it is necessary to determine the
actual positioning of the containers on the vessel when containers are loaded, which
is called the stowage planning problem (Pacino (2012)). The stowage planning is used
to avoid unnecessary container movements at ports as well as balancing the container
load, guaranteeing its seaworthiness. Another goal of liner shipping companies is the
reduction of bunker fuel consumption to save costs by adjusting the vessel speed. Due
to the fact that bunker fuel consumption increases cubically with the speed of the
vessel (Brouer et al. (2013)), speed optimization is used to reduce bunker costs while
still holding the schedules of vessels. Furthermore, many liner shipping companies
have introduced the concept of “slow steaming”, where vessels sail below their design
speed (Meyer et al. (2012)).
Due to the size of the liner shipping network of a carrier, its deployed vessels and the

long time scales in liner shipping, all these planning problems are complex and need
detailed information of the fleet, the ports of the services and other conditions like
weather or expected demands. For this, sophisticated tools and methods are needed
to support the planners in solving these problems. Therefore, the use of mathematical
optimization models and decision support systems (DSS) becomes more and more
attractive for liner shipping companies.

2.2. Decision support systems

Planners, managers and executives in maritime transportation need to make many de-
cisions in a complex and dynamic environment, each with possibly large financial im-
pacts. Therefore, decision makers should have easy access to relevant information and
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tools available that support them in their decision making process. Computer-based
decision support systems have been developed to improve the planning capabilities of
planners.
A definition of a DSS can be found in Sauter (2010): “a DSS is a computer-based

system that supports choice by assisting the decision maker in the organization of
information and modeling of outcomes”. Technologically, such a system consists of
several components: data handling, model handling and the graphical user interface
(Shim et al. (2002)). These components serve special purposes like storing data or
support the user in modeling his planning problems. With the first development of
decision support systems in the 1970s, the focus of DSS has been on improving the
efficiency of the decision making process, as well as on improving the effectiveness of
a decision (Shim et al. (2002)). Since then, computer systems have become cheaper
and easier to access for the general public. Today, many DSS are web-based, where
the tools of the system are presented on a website. Such an approach improves the
maintainability of the system, as the user only has to install a browser on his client and
the core of the application can be maintained on a server. For a company with offices
or planners dispersed over several locations, it becomes easy to serve their planners
the same functions as well as the same data if necessary.
Despite the complexity of planning problems in maritime transportation, there are

only a few studies about DSS in maritime transportation available. Mansouri et al.
(2015) summarize the reasons for this lack of studies with the industry’s conservative
thinking and the attitude against the investment of resources. The same authors iden-
tify 12 relevant papers discussing DSS for maritime transportation. The underlying
planning problem for most of these papers is the vessel scheduling problem. Other
problems include liner shipping network design, risk assessment and the impact on the
economy and the environment.
Fisher and Rosenwein (1989), Kim and Lee (1997) and Bausch et al. (1998) all

present optimization models to solve the vessel scheduling problem. Their proposed
DSSs are focused on the idea of user friendly interfaces and use visualization tech-
niques like Gantt charts and geographical maps. Fagerholt (2004) proposes the DSS
“TurboRouter”, which aims at an intuitive and interactive system. For example, the
user is able to manually adjust computed schedules in TurboRouter. A web-based
DSS for for ship scheduling is presented in Lam (2010), supporting the analysis of
what-if scenarios on oil prices, cargo demands and other financial factors.

2.3. Methodology

2.3.1. Operations Research

It is generally accepted that the field of Operations Research (OR) was established
during World War II (Hillier and Liebermann (2001)). The allocation of troops and
resources in this war posed a complex problem for military planners. Therefore, they
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invited scientists to come up with solutions for these problems. These solutions were
the first steps in the field of operations research. By making use of mathematical
optimization, military planners had a science-based approach to solve their planning
problems.
Even after the war ended in 1945, it still had its effects on the industry in Europe and

other countries years later. The industrial problems were similar to those that were
solved by the OR scientists during war time: Limited resources had to be allocated to
the right places (Hillier and Liebermann (2001)). By making use of the developed OR
methods in a civilian context, it was possible to solve complex planning problems.
Although many of the standard theories and techniques were developed until the

1950s, a strong impact on the development of OR was made by the evolution of the
computer. In order to solve these complex problems, large quantities of computational
power are needed. The access to sophisticated systems to solve these planning prob-
lems became easier in the last decades. Today, with modern cloud technologies as well
as powerful personal computers or smartphones, everybody can have access to tools
using OR methods. Most of the time, this access is not obvious to the normal user as
it is perfectly integrated in today’s applications.

Mathematical Optimization Models

The basis for many OR applications are mathematical optimization models. These
models are used to represent planning problems with their relevant characteristics.
Depending on the nature of the mathematical expressions, different types of mathe-
matical models can be identified. If all expressions (in constraints and the objective
function) are linear expressions, the model is called a linear programming model (LP).
Expressions 2.1 to 2.4 from Suhl and Mellouli (2006) show a general definition of such
a linear programming model:

minimize z “
n
ÿ

j“1
cjxj (2.1)

s.t.
n
ÿ

j“1
aijxj ď bi @i P t1, ...,mu (2.2)

lj ď xj ď uj @j P t1, ..., nu (2.3)
xj P R (2.4)

The given model definition contains an objective function in Expression 2.1, con-
straints in Expression 2.2 and bounds in Expression 2.3. The objective function is
used to define the optimization goal of the model. In this case, the definition shows
a minimization goal, but it can be easily converted to a maximization model. The
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mathematical expression for the objective function (Expression 2.1) is built by us-
ing parameters (here cj) as well as decision variables (here xj). Parameters are fixed
values that cannot be changed during the optimization process. In contrast to this,
decision variables have to be changed during the optimization process to find the best
possible value for such a variable. The concrete values of all decision variables in the
model make up the final solution of an optimization problem. Based on the number of
decision variables there is a large pool of possible combinations to choose from, called
the search space (Blum and Roli (2003)). Usually, not every combination of decision
variables is possible and makes practical sense. Therefore, constraints (Expression
2.2) and bounds (Expression 2.3) are formulated to restrict the search space to only
those solutions that are feasible. Expression 2.4 shows that the decision variable in
this definition belongs to the domain of real numbers.
If the domain of every decision variable is defined as integer numbers, the model

becomes an integer programming model (IP). This is often the case for decisions, where
it is not possible to split something into the fractions of a single entity. Furthermore,
it is also possible to have a mixture of real number decision variables and integer
variables, resulting in a mixed integer programming model (MIP). As described by
Papadimitriou and Steiglitz (1982), both IPs and MIPs have a higher mathematical
complexity than an LP. There is no known algorithm at the moment that solves IPs
and MIPs in polynomial time, making it impractical to try to solve them optimally
in a practical application in many cases. Therefore, sophisticated solution techniques
are needed to solve these problems in a more practical time frame.
Another difficulty arises from any non-linearities that may be added to a model.

In order to use standard techniques to solve these models, the non-linearities need
to be linearized. This makes it possible to achieve a linear programming model, but
also has the disadvantage that there are precision losses in the solution. This is an
important factor in modeling liner shipping problems, as the bunker consumption
varies approximately cubically with the speed of a vessel and proportionally to factors
such as load and trim (Brouer et al. (2014)). Due to this, multiple linearization
techniques like piecewise linearization (Guericke and Tierney (2015), Reinhardt et al.
(2016)) or second-order cone programming (Du et al. (2015)) have found their way
into liner shipping optimization models.

2.3.2. Metaheuristics

As listed by Blum and Roli (2003), there are two types of algorithms for mathemat-
ical optimization problems: complete or approximate algorithms. When a complete
algorithm is used, it can be guaranteed that the optimal solution of the underlying
problem will be found at some point. Approximate algorithms sacrifice the guarantee
for optimal solutions in order to provide better runtimes in solving the problem. As
described in Section 2.3.1, the complexity of IP and MIP models often makes it impos-
sible to find the solution in a practical time frame. Therefore, approximate algorithms
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are used to solve these models. This is a critical issue during the development of a
computer-based solution procedure for an optimization problem, as it influences the
practicality of the overall decision support process.
According to Blum and Roli (2003), approximate algorithms can be categorized into

constructive methods and local search methods. The authors explain that constructive
methods generate a solution from scratch, while local search methods try to modify
an existing solution in order to find better ones. Metaheuristics can be seen as a
framework to guide constructive methods and local search methods. They combine
different strategies to explore the search space (Laporte and Osman (1996)), where
the search space is defined as the set of all feasible solutions (Blum and Roli (2003)).
The strategies to explore the search space can include complex learning processes to
efficiently converge to better solutions. Furthermore, they also include techniques to
avoid local optima. Local optima are the best solutions of a specific search space
region, but can be far from the global optimum. Many metaheuristic concepts are
based on analogies stemming from fields like mechanical engineering or nature.
The following parts of this section consist of concepts and characteristics of meta-

heuristics that have been used for the research presented in this thesis. For a deeper
understanding of these selected concepts or other concepts not listed here, we refer to
Blum and Roli (2003) or Gendreau and Potvin (2010).

Simulated Annealing

The Simulated Annealing algorithm (SA) was first presented by Kirkpatrick et al.
(1983). It has its origins in statistical mechanics and is based on the thermodynamic
process of cooling down matter (e. g. a metal) to the point where it forms a crystalline
structure. By making use of the Metropolis acceptance criterion, the algorithm decides
whether a solution with a worse quality than the current solution is accepted or not
(Gendreau and Potvin (2010)). Due to the cooling function, the probability to accept
worse solutions decreases during the execution of this algorithm. As described by
Blum and Roli (2003), there are different ways to define a cooling regime for an SA
and the selection of a regime is a crucial decision when this algorithm is used to
solve an optimization problem. It plays an important role in regard of computational
runtime and the extent of the search space exploration.

Tabu Search

In contrast to SA, where every iteration of the algorithm is considered independently
of previous iterations, Tabu Search (TS) follows a different strategy. TS uses local
search techniques to explore the search space and combines that with a memory, stor-
ing information about the previous moves through the search space (Glover (1991)).
At each iteration, different neighborhood operations can be used to transform the
current solution to the next solution. A tabu list stores specific information about
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the exploration in order to prevent “revisiting” already found solutions. This makes
it easier to avoid getting trapped in local optima in the search space. What kind of
information is stored depends on the configuration of the algorithm. It is possible to
store complete solutions or only some information about the last transformations. It
is also important to define the possibility to remove elements from the tabu list, called
an aspiration criterion. Gendreau and Potvin (2010) gives some details on how a tabu
list can be structured, what kind of information can be stored on a tabu list and how
an aspiration criterion can be formulated.

Genetic Algorithms

Genetic algorithms (GA) are based on the analogy of recombining individuals of a
population. Biological terms from genetics and evolutionary theory have found their
way into this metaheuristic concept. As presented by Holland (1975), the basic idea
of this concept is to have a population of individuals, where each individual has a
certain set of chromosomes, representing the solution of the individual. By using an
evaluation function to determine the quality of the solutions, specific individuals are
selected in order to recombine them and produce offspring for the next generation
of individuals. Such a recombination is called a crossover and there are thousands
of techniques to perform such a crossover (De Jong (1975)). Generally speaking,
a crossover takes the chromosomes of the parent individuals and selects particular
elements from these chromosomes in order to form a new offspring. Mutations might
change specific genes of randomly selected individuals to another value. This process
leads to a new generation of individuals where the next iteration of crossover and
mutation takes place. Individuals with better solutions have a higher chance to be
selected for a crossover, leading to the fact that over the iterations of this algorithm
the overall best solution improves until a stop criterion ends the GA.

2.3.3. Optimization projects

While there are some similarities to the course of an IT project, an OR project has
some specific characteristics. Generally, such a project can be divided in six, partly
overlapping, phases. These phases are described by Hillier and Liebermann (2001) as:

1. Problem definition and gathering of relevant data

2. Creating a mathematical model for the problem

3. Develop a computer-based solution procedure

4. Testing the model

5. Final implementation & deployment
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Problem definition & data. Phase 1 is the fundamental basis for an OR project. To-
gether with the actual planners, the planning process is analyzed and domain specific
requirements are gathered. Furthermore, the planning goals are fixed and what part
of the process should be optimized by the optimization model. In addition, indicators
are set up to measure the success of the model. It is also necessary to understand the
IT architecture, to develop relevant interfaces to other systems. This is obligatory for
the design of a DSS at a later point in such a project.

Modeling the problem. With the information of the actual planners, a mathemat-
ical optimization model can be formulated. This model should aim to represent the
planning question at hand as good as possible. For this, the elements of a mathe-
matical optimization model should be carefully designed and described. It might be
necessary to involve the actual planners at this stage to discuss the model together
with them. It should be noted though that planners are not always familiar with the
mathematical expressions of a model. Therefore, such a discussion should be carefully
prepared.

Computer-based solution procedure. After the mathematical model has been de-
veloped, it needs to be implemented such that the planning problem can be solved
programmatically. This phase is crucial for the following steps of an OR project. With-
out an implementation of a solution procedure, it is not possible to test the model
or to prepare a future deployment. One important consideration should be the time
frame in which an optimal or near-optimal solution should be found. Depending on
the complexity of the problem, it can take up to several hours, days or even longer to
find the optimal solution (see Section 2.3.1). Often this is not practical in a real-world
setting, where decisions might need to be taken several times a day. It can also be
satisfactory to find a good heuristic solution to present some kind of guidance on how
to solve the underlying problem.

Testing the model. In Phase 4, the actual planners have to be consulted again. Now
as the model is implemented and first results are generated, these results need to be
evaluated. The domain experts should check the results of the model and verify the
correctness of the solution. In case an error is found in the solutions, the source of the
error should be identified. Depending on the reason for the error, this starts another
iteration of modeling and testing. For the tests of the model, actual real-world data
should be used in order to have significant results that are worth discussing.

Final implementation & deployment. When the tests are completed and the so-
lutions have been accepted as reasonable, the final phase of an OR project starts.
Depending on the nature of the project, the goal and the current technical infrastruc-
ture of the customer, the implemented model needs to be made ready, such that it can
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be used in the planning tasks of the customer. A DSS tool needs to be implemented,
such that the user will be able to use the developed model and its solutions. This
phase wraps up the implementation before the system goes live on the customer side.
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This section provides a summary for each paper presented in Part II. These papers have
addressed multiple project phases as discussed in Section 2.3.3. An overview of the
addressed phases is given in Table 3.1. It should be noted that the final implementation
and deployment of a decision support system has not been a part of this research.

Müller and
Tierney (2017)

Müller et al.
(2017)

Tierney et al.
(2018)

Müller (2018)

Problem definition (X) X X (X)
Modeling X X X (X)
Computer-based solution procedure X X X X
Testing the model X X X X
Final implementation & deployment - - - -

Table 3.1.: Phases that have been addressed in the research of this thesis.

Chapter 4: Decision support and data visualization for liner shipping fleet repo-
sitioning. This paper contains an extension of the optimization model for the liner
shipping fleet repositioning problem (LSFRP) presented by Tierney et al. (2014). It
proposes a web-based decision support system, which contains an extended version
of a state-of-the-art simulated annealing solution approach. Furthermore, it contains
a study on how to display information such as cargo flows and interactions between
vessels. It was published in print in 2017 by the journal Information Technology and
Management.

Müller, D., Tierney, K.: Decision support and data visualization for liner shipping
fleet repositioning. Information Technology and Management, 18(3):203-221, 2017.

Conference presentations:

• International Conference on Operations Research, September 2015, Vienna

• Multikonferenz Wirtschaftsinformatik, March 2016, Ilmenau (as a peer-reviewed
extended abstract)

Contributions:

• Extension of a state-of-the-art optimization model of LSFRP to increase inter-
active decisions of the planner
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• Proposition of a web-based DSS for the LSFRP

• Introduction of a new visualization technique for liner services and evaluation
with other visualization techniques

Chapter 5: Integrating Fleet Deployment into the Liner Shipping Cargo Allo-
cation Problem. Due to the fact that liner carriers perform modifications on their
networks on a regular basis, there is a need for advanced tools to analyze the implica-
tions of such a change. In this paper, an extension of a state-of-the-art mixed integer
programming model for the liner shipping cargo allocation problem (LSCAP) is pro-
posed, which incorporates the optimization of vessel count and vessel classes for each
service. By using a computational analysis it is shown that such an integration can
increase the profitability of a carrier’s network. The paper was published in print in
the proceedings of the International Conference on Computational Logistics in 2017.

Müller, D., Guericke, S., Tierney, K.: Integrating fleet deployment into the liner
shipping cargo allocation problem. In International Conference on Computational
Logistics, pages 306-320. Springer, 2017.

Conference presentations:

• International Conference on Computational Logistics, September 2017, Southamp-
ton

Contributions:

• Extension of a state-of-the-art optimization model for the LSCAP

• Integration of the LSCAP and the fleet deployment problem

Chapter 6: Liner Shipping Single Service Design Problem with Arrival Time
Service Levels. This paper introduces three mathematical optimization models for
designing liner shipping services that guarantee the punctual arrival of vessels at a
specified service level. For this, an empirical analysis of vessel travel times of a real
liner shipping network has been performed. A simulation procedure based on real-
world data is used to demonstrate the effectiveness of the presented approach. In July
2018, the journal Flexibel Services and Manufacturing accepted it for publication.

Tierney, K., Ehmke, J.F., Campbell, A.M., Müller, D.: Liner Shipping Single Service
Design Problem with Arrival Time Service Levels. Flexible Services and
Manufacturing Journal, 2018.
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Contributions:

• Three mathematical models with increasing complexity to optimize the liner
shipping single service design problem, including arrival time service levels

• A simulation model to evaluate the performance of the optimization models

• Empirical analysis of real-world travel times of vessels on liner services

• Proposition of a distribution for delays of vessels on liner services

Chapter 7: A Biased Random-Key Genetic Algorithm for the Liner Shipping Fleet
Repositioning Problem. The state-of-the-art algorithm to solve the liner shipping
fleet repositioning problem is a hybrid of the heuristics Tabu Search and Simulated
Annealing presented by Becker and Tierney (2015). Although the algorithm is able
to solve the majority of the presented instances, there is still room for improvement
considering the gap to the optimal solution. Therefore, this paper proposes a biased
random-key genetic algorithm (BRKGA) to solve the liner shipping fleet repositioning
problem. The BRKGA is extended with a hill climbing algorithm to solve instances of
various sizes. This paper is published as a working paper at the DS&OR Lab (Working
Paper no. 1801) in July 2018.

Müller, D.: A Biased Random-Key Genetic Algorithm for the Liner Shipping Fleet
Repositioning Problem. DS&OR Lab Working Paper, no. 1801.

Conference presentations:

• International Conference on Operations Research, September 2017, Berlin

Contributions:

• Proposition of a random-key decoder for the LSFRP

• Proposition of four random-key definitions for the LSFRP

• Computational evaluation the four definitions

• Proposition of a BRKGA combined with hill climbing
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Daniel Müller* Kevin Tierney*

*University of Paderborn
Warburger Straße 100, 33098 Paderborn, Germany

mueller@dsor.de

Liner carriers move vessels between routes in their networks several times a year in
a process called fleet repositioning. There are currently no decision support systems
to allow repositioning coordinators to take advantage of recent algorithmic advances
in creating repositioning plans. Furthermore, no study has addressed how to visualize
repositioning plans and liner shipping services in an accessible manner. Displaying
information such as cargo flows and interactions between vessels is a complex task due
to the overlap of container demands and long time scales. To this end, we propose a
web-based decision support system designed specifically for liner shipping fleet repo-
sitioning that integrates an extended version of a state-of-the-art simulated annealing
solution approach. Our system supports users in evaluating different strategic settings
and scenarios, allowing liner carriers to save money through better fleet utilization and
cargo throughput, as well as reduce their environmental impact by using less fuel.

Keywords: liner shipping, fleet repositioning, decision support system, visualization

4.1. Introduction

Seaborne trade plays a major role in the world economy and is responsible for the
transportation of about 9.6 billion tons of goods per year UNCTAD (2014). In partic-
ular, the transport of containerized goods grew by 4.6 percent in 2013 and the total
volume reached 1.5 billion tons or 160 million 20-foot equivalent units (TEU). Ex-
cept for a short pullback during the financial crisis of 2008, the liner trade has been
growing for decades, meaning that more and more goods are transported by sea UNC-
TAD (2014). To participate in the seaborne trade, liner carriers have to make large
investments in vessels and equipment and are confronted with high daily operating
costs Fagerholt (2004). Sophisticated planning of a carrier’s operations is a necessity
for competing in this growing market. However, throughout the liner shipping indus-
try the planning of networks, including route construction and vessel movements, is
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still mostly performed manually. The emergence of new mathematical models and al-
gorithms offers liner carriers the opportunity to improve their processes with decision
support systems (DSS).
Containerized goods are transported on cyclical routes called services. Liner ship-

ping companies operate a number of these services in order to connect different trade
regions within their network. Figure 4.1 shows an example of a subset of a service
network of an industrial collaborator Tierney (2015). In this example, three services
serve ports in Asia, North America and South America. While the services “Chennai
Express” and “Intra-WCSA” each serve a single trade region, the service “Asia-CA3”
connects the regions in Asia and America.

Figure 4.1.: An example of a service network from a case study with an industrial
collaborator, from Tierney et al. (2015).

Services are generally operated with a certain periodicity (usually weekly or bi-
weekly) such that ports of a service are visited at a fixed time each period. Further-
more, services consist of multiple slots, where each slot is associated with a specific
vessel and a fixed schedule for the port calls. Depending on the periodicity of the
service, there are fixed time intervals between the schedules of the slots. In the exam-
ple of Figure 4.1, this could mean that a vessel is arriving at the port of Yokohama
(YOK) while another vessel is in the middle of the Pacific Ocean, and a third vessel
would be at the port of Balboa (BLB). In other words, several vessels are all sailing
on the service at the same time to maintain the desired frequency of the service.
Liner carriers must adjust their service networks on a regular basis due to trends

in the world economy and seasonal variations in cargo volumes. Carriers add, remove
and modify services to adjust to these changes. To carry out these modifications to
the network, vessels must be moved, or repositioned, to other services. Repositioning
coordinators generate an extensive plan for each repositioning of one or more vessels
with the goal of minimizing the costs for moving the vessel(s) while maximizing the
revenue earned from transporting customer cargo. This problem is referred to as the
liner shipping fleet repositioning problem (LSFRP) Tierney (2015).
Despite algorithmic advances in recent years to support repositioning coordinators,

these advances are not yet accessible for non-researchers. To the best of our knowledge,
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there is no DSS for the LSFRP in use at any carrier. Repositioning coordinators are
therefore still using spreadsheets (or other manual mechanisms) to create their plans.
The process of creating a repositioning plan can therefore take up to a couple of
days Tierney (2015), which is significantly more than the several minutes required by
modern heuristics Tierney et al. (2015). Although systems exist for other problems
in the area of maritime transportation Mansouri et al. (2015), they lack the specific
requirements of the repositioning problem and thus only offer limited guidance in
creating a DSS for the LSFRP.
A DSS that combines access to algorithmic approaches for the LSFRP as well as a

comprehensible and usable approach to display relevant data would create enormous
benefits for liner shipping companies. As fleet repositioning coordinators have signifi-
cant expert knowledge, they should be able to influence the behavior of such a system
to an extent where they can make ad-hoc adjustments of models, constraints or other
relevant aspects of the system.
In this paper, we present an interactive DSS for the LSFRP. We discuss various

visualization techniques to display relevant data of the liner shipping fleet repositioning
and general aspects of liner shipping. The visualization strategies we present have a
wide application within decision support systems in the maritime sector beyond fleet
repositioning. The main contributions of this paper can therefore be summarized as
follows:

1. A web-based DSS for the LSFRP

2. An extension of the state-of-the-art simulated annealing algorithm for the LS-
FRP to incorporate interactive decisions of the planner

3. Several visualization techniques to represent liner shipping services

This paper is structured as follows. Section 2 contains an overview of the literature
about the LSFRP followed by a description of liner shipping fleet repositioning in
Section 3. In Section 4, we present our system and discuss the interactivity of the
system as well as options for visualizing the fleet repositioning problem. Finally, in
Section 5, we conclude this paper and give an overview of our future plans for this
research topic.

4.2. Literature Review

4.2.1. Decision Support Systems in Maritime Transportation

Despite the fact that the shipping industry plays a major role in the world economy,
the number of DSSs in the literature for this industry is surprisingly low Fagerholt
(2004), Mansouri et al. (2015). In the area of bulk shipping, Fisher and Rosenwein
(1989) describe a system that finds optimal fleet schedules for bulk cargo pickup and
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delivery with a dual algorithm. This system uses Gantt-charts, showing the individual
schedules of the vessels, and maps for the itinerary of a selected vessel. Another
system by Bausch et al. (1998) for the transport scheduling of bulk products uses
spreadsheets and also Gantt diagrams to display and manage the proposed schedules.
This application uses a simulation to generate vessel schedules, from which a linear
set partitioning model selects the best alternatives. In Kim and Lee (1997), the focus
also lies on vessel scheduling in the bulk industry. In addition to a spreadsheet view,
this system uses a world map to display optimal schedules.
One of the more recent DSSs is TurboRouter, presented in Fagerholt (2004) and

Fagerholt and Lindstad (2007). This system focuses on scheduling and routing deci-
sions of liner shipping companies. TurboRouter supports manual planning and opti-
mization algorithms for automatic planning. Fagerholt reports a significant improve-
ment in Fagerholt and Lindstad (2007) of the quality of the schedules and the time
required for the planning process of the companies using their system. In Fagerholt
et al. (2009), the capabilities of the TurboRouter system are extended to solve fleet
deployment problems. A case study with industrial partners is presented, where the
authors show that the system produces improvements compared to the previous man-
ual planning.
The “MARISA” system, presented in Balmat et al. (2009) and Balmat et al. (2011),

incorporates a fuzzy approach to define risk factors for individual ships. The approach
considers static aspects of the vessels as well as dynamic aspects like meteorological
conditions. The MARISA system uses simulation techniques to calculate individual
risk factors for each vessel using this data. The tool uses a world map to present the
simulation results.

4.2.2. Design Studies

When a decision support system is created, it is important to use representations of
data that are relevant for domain experts and possible users of the system. Due to the
fact that the area of design studies considers visualization research from a problem-
driven perspective, it leads to systematic approaches on how to create visualizations
for a DSS.
In an extensive literature review, Sedlmair et al. (2012) search for methodologies

that can be used in the field of design studies. Using these sources, a general framework
is created for the realization of a design study. This framework consists of nine stages,
which contain the work before a design study, the core work of the design study and
the analytical reasoning after a design study. In addition to this general framework,
a list of 32 pitfalls is presented that can occur when realizing a design study.

Brehmer and Munzner (2013) argue that the core of visualizations are specific
tasks that can be defined by three aspects: why is the task performed, how is the
task performed and what are the inputs and outputs. They present a typology of
visualization tasks that contains a set of generalized tasks for each of these aspects,
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so that new visualization approaches can be classified according to this framework.

Only a few publications in the field of design studies focus specifically on tasks re-
lated to maritime transportation. Considering situational awareness in the maritime
area, Lavigne et al. (2011) identify three possible opportunities where new visualiza-
tions could improve the status quo. In addition to the identification of these oppor-
tunities, concrete designs are proposed for each task. By considering the proposed
systematic approaches, it is possible to analyze the planning processes of a problem
and create supporting visualizations for a DSS.

4.2.3. Liner Shipping Fleet Repositioning

Similar to the small amount of literature about DSSs in liner shipping, there are only
a few publications that focus on the LSFRP. Even in their extensive list of relevant
publications in the field of liner shipping, Christiansen et al. (2013) do not refer to
the LSFRP, showing that this area of research has been explored only recently. The
problem itself and the first mathematical approaches for solving the LSFRP were first
introduced in Tierney et al. (2012). Furthermore, Tierney et al. (2015) develops a sim-
ulated annealing algorithm with cargo flows that scales to large, real-world problems.
The approach finds higher profits compared to a reference scenario from industry. The
runtime of this algorithm is small enough such that the authors claim it is suitable for
a DSS, but do not provide such a system.

There is some significant work for other problems in the field of liner shipping like
the network design problem (NDP), as described in Agarwal and Ergun (2008) and
Brouer et al. (2014), and the vessel schedule recovery problem (VSRP), presented
in Brouer et al. (2013). The goal of the NDP is to define profitable services for a set of
demands, ports and a given fleet. The decisions of this problem are on a strategic level
and do not handle how vessels should be repositioned to generated services. In the
VSRP, the focus lies on recovering from disruptions due to weather conditions, port
congestion or other reasons. For the recovery, an action is chosen that might increase
costs and have an impact on cargo and customers. The set of activities available
to coordinators in the VSRP differs from the LSFRP, as does the timescale of the
problem.

In contrast to liner shipping, tramp shipping does not require services and fixed
schedules as tramp shipping companies engage in contracts for specific amounts of
cargo Brønmo et al. (2007), Korsvik et al. (2011). Therefore, it is not possible to
transfer problem-specific aspects from tramp shipping to the LSFRP even though the
objectives of tramp shipping problems are similar.
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4.3. Liner Shipping Fleet Repositioning

4.3.1. Problem Description

The liner shipping industry is a competitive and dynamic environment in which com-
panies adjust their networks multiple times throughout the year in order to survive.
By adjusting their networks, these companies adapt to seasonal variations in cargo de-
mand and other economic trends. Adjustments of the service network consist of adding
new services, removing services or modifying existing services. Whenever these changes
occur, vessels must be reassigned between the different services of the company, thus
these vessels have to be repositioned from one service to another service.
Each repositioning of a vessel is associated with costs due to lost revenue (from

cargo flow disruptions) and bunker fuel consumption. This causes further costs in the
context of the repositioning of a vessel. Therefore, the goal of liner shipping companies
is to minimize these costs by using profit generating activities during the repositioning.
Profit can be generated by carrying customers’ cargo and moving empty containers in
the network. In order to avoid cargo flow disruptions, it is important for models to
take these cargo flows into account.
A key cost-saving activity is slow steaming, in which a vessel sails below its design

speed Meyer et al. (2012). Since the fuel consumption of vessels is roughly cubic
according to the speed the vessel travels, slowing down can save considerable amounts
of money. Slow steaming has become a standard practice among the world’s liner
carriers. Another option is to use so-called sail-on-service opportunities to sail between
the original service and the goal service. Here, the repositioning vessel replaces another
vessel (the on-service vessel) in a specified service. The on-service vessel can then
be laid up or chartered to another company. These activities as well as the whole
repositioning process have to be planned within a horizon bounded by the earliest
time the vessel may stop sailing according to its original schedule and the time it must
begin operations on its new service. The time when the repositioning process starts
is called the phase-out and the time it ends the repositioning is called the phase-in.

Figure 4.2.: A repositioning (blue) from an original service (dashed red) to a goal
service (dotted green).
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Figure 4.2 shows an example of a repositioning. In this figure, a vessel repositioned
from a phase-out service (dashed red line) to a phase-in service (dotted green line).
The repositioning path is represented by a blue line. The figure shows that the phase-
out happens in the port of Dublin (DUB). After the phase-out, the vessel stops for
port calls in the ports of Le Havre (LEH), Rotterdam (RTM) and Bremerhaven (BRV)
before it arrives in Aarhus (AAR). Here, the vessel phases in in the goal service. The
port call in Le Havre also belongs to the goal service, but the repositioning coordinator
decides that the final phase-in should happen in Aarhus. This can be associated with
the schedule of the goal service or with cargo flow restrictions. In addition, the figure
shows that repositioning coordinators are able to induce or omit (add or remove) ports
during the repositioning. Rotterdam is neither called by the original service nor the
goal service, so the repositioning coordinator added this port to the repositioning path.
On the other hand, the port call of Felixstowe (FXT) has been omitted although it
can be found in the original and the goal services.
To solve the LSFRP, the problem is modeled as a graph Tierney (2015), where

nodes represent a visit of a vessel at a particular port at a specified time and arcs are
the allowed sailings between these visits. The graph includes all activities that are
relevant for the specific repositioning period. A solution for a repositioning problem
is then a path through this graph, which contains all activities that a vessel has to
undertake during a repositioning. We provide a formal mathematical model of the
problem in Appendix 4.6, and a more detailed description of the LSFRP can be found
in Tierney (2015).

Phase-Out and Phase-In

Vessels that are to be repositioned have to stop their normal operations on their
original service at a specific point in time to start the repositioning phase. This time
is the phase-out time of the vessel. Until the phase-out, the vessel sails according to
its schedule and visits ports as planned. After the phase-out, the vessel stops sailing
according to its schedule and undertakes different activities to reach the goal service.
When the repositioned vessel reaches the goal service, it has to phase into a slot of
the goal service. In order to minimize disruptions of customer cargo, the repositioning
coordinator sets a fixed time at which the latest phase-in can happen. After this
time, the vessel must start its regular operations according to the schedule of the new
service. The time between the earliest phase-out and the latest phase-in encompasses
the time frame for the repositioning.
As shown in Figure 4.2, the repositioning coordinator has the ability to decide

whether ports should be induced into the repositioning path that are not in the initial
service or in the goal service. Additionally, the coordinator can omit ports from the
initial service or the goal service in the repositioning if this would save money or allow
more containers to be carried.
Several countries have laws regarding how cargo may be transported within its bor-
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ders, called cabotage restrictions. These laws generally prohibit vessels registered in
foreign countries from transporting domestic cargo, and must be obeyed by any repo-
sitioning. Due to the fact that each country has its own version of these restrictions,
the consideration of all these restrictions is rather complicated. We therefore only
address them in certain cases within the LSFRP where they can be simply modelled
as omitting a port from the schedule of a vessel.

Sail-on-Service Opportunities

During the repositioning, the repositioning coordinator can decide to use sail-on-
service opportunities (SoS) to save costs. A SoS refers to a different service than
the initial service or the goal service. Therefore, there are at least two vessels involved
in a SoS. There is the repositioning vessel, which uses the SoS to connect two parts
of the service network and, in addition, there is the on-service vessel, which normally
sails on the SoS, but can be replaced by a repositioning vessel. When using an SoS,
the repositioning vessel uses the slot of the on-service vessel to sail temporarily on the
SoS. As described by Tierney et al. (2015), this activity saves significant amounts of
bunker fuel as there is only one vessel where there would have otherwise been two,
as the on-service vessel can be laid up at a port or it can be leased out for other
operations.
There are two options for starting an SoS. One option is to perform a transshipment

between the repositioning vessel and the on-service vessel. For this transshipment,
both vessels have to be at the same port, because all the cargo of the on-service vessel
will be unloaded and transshipped to the repositioning vessel. The second option is
to perform a parallel sailing for a specific amount of time. Here, both vessels sail “in
tandem”, with the on-service vessel only discharging its cargo, and the repositioning
vessel only loading cargo. Although the parallel sailing causes double bunker costs and
port fees, this procedure is sometimes less expensive than transshipping large amounts
of containers between the vessels.

Cargo and Equipment

Liner carriers earn money from transporting containers from one port to another port.
Cargo has a starting port and a destination port, as well as a latest delivery time at the
destination port. Carriers also carry empty equipment, which generally refers to empty
containers. Empty equipment is available in certain ports and is required in other
ports. Unlike cargo, which has a specific origin and destination, empty equipment can
be transported from any port with a surplus to any other port with a deficit. Due to
the fact that the total number of containers throughout the liner shipping industry is
very high, there is no need to specify exactly the size of the surplus or the deficit of
empty equipment at the ports. The transportation of equipment generates revenue,
as money is saved that would have been spent to transport the equipment with other
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options.
For their model of the LSFRP, Tierney et al. (2015) consider dry and refrigerated

(reefer) cargo. Specialized containers with refrigerator units (or cooling hookups)
are used to store cargo that needs to be cooled. These containers require electric
outlets or cooling connections on board a vessel, meaning they must be placed in
special slots that are correctly outfitted for this purpose. In contrast to this, dry cargo
uses standard containers without any further requirements. Vessels provide different
capacities for each of these cargo types. During the repositioning these capacities
have to be considered as dry cargo containers and reefer cargo containers are not
interchangeable for customers.
During the repositioning, it is possible to visit ports that are not on the initial

service, the goal service or a SoS if they have empty equipment. As these ports are
not included in any relevant schedules for the repositioning vessel and therefore do not
have a fixed time frame for visits, a call in these ports is flexible. In contrast to this,
all other port calls are inflexible as they have a fixed time for the visit.

4.3.2. Heuristic Solution Approaches

When LSFRP instances become too large, they become too difficult to solve with
standard mathematical solvers, even when using advanced techniques like column
generation. Therefore, Tierney et al. (2015) present a simulated annealing algorithm to
solve the larger instances. In addition to this, a late acceptance hill climbing algorithm
is presented in Tierney (2015), although its performance is limited in comparison to
simulated annealing. A reactive tabu search and hybrid simulated annealing approach
is introduced in Becker and Tierney (2015). We note that this approach can be inserted
into our DSS without any additional work thanks to its modular design.

Simulated Annealing

Simulated annealing, introduced by Kirkpatrick et al. (1983), is a local search heuristic
for solving combinatorial optimization problems. The algorithm changes its greediness
over time according to a temperature parameter that is reduced in each iteration of
the algorithm. The algorithm thus starts off accepting nearly any solution it sees,
and slowly starts accepting worsening solutions only with some probability. Due to
the decline of the temperature and the decline of the acceptance probability, the
search converges to a local optimum. Simulated annealing is considered as a general
tool for the field of operations research Eglese (1990) and has been used in diverse
applications such as in the planning of power systems Chen and Ke (2004), scheduling
problems Seçkiner and Kurt (2007) and routing problems Tavakkoli-Moghaddam et
al. (2007). Further information about the application of the simulated annealing
algorithm can be found in Dowsland and Thompson (2012).
The implementation of Tierney et al. (2015) uses a standard simulated annealing
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implementation that includes the Metropolis criterion for accepting solutions along
with an exponential cooling strategy. Reheating and restart strategies are used to
overcome local optima. During reheating, the temperature of the simulated annealing
is increased to a factor of the initial temperature of the algorithm. Multiple reheat-
ings can be performed before the algorithm is restarted from a new solution. Figure
4.3 summarizes this process. Candidate solutions are compared by evaluating the
objective functions of each solution. Two different methods are proposed to evaluate
the objective: a greedy approach and a linear program (LP). The greedy algorithm
can only be used if there are no flexible arcs on the path of a vessel and if it is not
possible to exceed the capacity of the vessel, even if all container demands on a path
are carried. The greedy approach greatly decreases the computation time required
for the objective function, as it avoids a call to an external solver. However, in more
complex vessel paths it is necessary to use an LP to evaluate the candidate solution.
In these situations, the flexible visitations have to be scheduled along the path, and
profitable cargo must be identified. A penalty function is used to allow violations of
certain constraints (such as multiple vessels using the same visitation) for infeasible
solutions to allow the search to move between feasible regions of the search space.
There are several neighbourhood operators available for the LSFRP. These neigh-

borhoods are composed of the addition of a specific port visit, the removal of a port
visit, a swap of two port visits, a random path completion of a randomly selected ves-
sel and demand destination completion, which adds a port to a path in order to fulfill
demands. These neighborhoods are extensively evaluated and described in Tierney et
al. (2015) and Becker and Tierney (2015).
Since the simulated annealing approach for the LSFRP uses a penalty function and

allows infeasible solutions, integrating repositioning coordinator requests is relatively
easy. These requests may make the problem infeasible, however the search quickly
restores feasibility and finds good solutions. By creating these ad-hoc adjustments,
the repositioning coordinator influences the structure of the graph representation of
the problem and therefore also the search space. If, for example, the repositioning
coordinator forbids a specific port, all visit nodes of this port will be removed from
the graph. Furthermore, the coordinator might change enter and exit times for a
specific visit. As the arcs of the graph are dependent on these times, they will also
change. In addition to the adjustments of the data objects, the general settings for the
simulated annealing algorithm can also be changed by the repositioning coordinator.
Some examples for such changes are adjustments on the temperature reduction factor,
the convergence temperature or the number of reheats before the solution is set back
to the initial solution.
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Figure 4.3.: Visual flow of the simulated annealing algorithm from Tierney et al. (2015)

4.4. Decision Support System

A decision support system for the LSFRP is greatly needed by the industry, as repo-
sitioning coordinators are still using spreadsheet software to manage their operations.
This limits their ability to visualize and comprehend complicated repositioning pro-
cedures, even when such plans would save money. Due to the long time scales in
liner shipping and the interactions between services and ports, fleet repositioning is
a challenging problem for a decision support system. Nonetheless, recent algorithmic
advances Tierney et al. (2015) have made it possible to create such a system for the
LSFRP.
We propose a DSS using the simulated annealing approach in Tierney et al. (2015)

with some small modifications to allow for fast resolving and interaction that supports
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Table 4.1.: Requirements for a DSS for the fleet repositioning problem.
Data Performance Functions Usability
Import/Export Loading times Planning User Guidance
Storage Fast optimization times Optimization Visualizations
Accessibility System requirements Reporting Interactivity

the requirements of the industry. We list key requirements for the DSS in Table 4.1
from the perspective of the carrier, followed by a discussion of several visualization
options, culminating with a recommendation for which one to use.
One of the key challenges in deploying a DSS at a company is integrating it within

the organization’s data management architecture. Today, most companies have an
existing IT infrastructure, where processes and policies are already fixed. To ensure
a DSS is used, it must be well integrated into the organization’s environment, as it is
very hard to integrate the company’s data into the DSS. Depending on the position
of the DSS in the processes of the company, the results of the DSS may be needed for
further operations. Therefore, the system should be able to import and export relevant
data in an existing data format or in a data format that can easily be converted to
an existing format. The LSFRP in particular draws on many different data sources
within a company and therefore this data exchange with other systems is an essential
part of a DSS for the LSFRP. Furthermore, decisions about data storage and data
accessibility in the DSS have to be considered. Usually, companies identify different
user groups with different user rights. The system should be able to incorporate such
an existing user hierarchy.
Additionally, the DSS needs to obey system requirements that are set by the com-

pany’s infrastructure and the problem specific requirements. A DSS has to solve the
LSFRP fast enough to allow the user to interact with the system. Furthermore, the
system needs to have fast loading times to encourage user adoption, otherwise the user
will think twice before starting a process or changing anything in the system.
Essential functions of a DSS can be categorized into planning, optimization and

reporting functions. In a system for the LSFRP, the planning functions will be used
by the repositioning coordinator to set up their environment, i.e. creating the master
data of vessels, services and port calls. In addition to this, the coordinator has to
set up important relations between this data. Using this basis, the repositioning
coordinator needs to be able to run optimizations and get solutions for his problems.
The optimization function contains the implementation of exact or heuristic methods
that are able to solve the underlying problem. For a discussion of the solutions of an
optimization problem, it is necessary to have reports about results, which our system
provides through visualizations.
The usability of the system is also critically important. Without good usability, the
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system will not be accepted by the key users of a company. User guidance is important
for the usability of a DSS, especially when existing processes rely on manual planning.
Without an intuitive structure and guidance within the system, planners will have a
hard time to adapt their processes to such a system. Furthermore, the DSS needs to be
able to visualize the problem in a way that is intuitive and clear. These visualizations
have to cover all relevant aspects of the problem. Ideally, the DSS provides the user
several possible ways to do their planning. The visualizations and the system itself
need to provide a degree of interactivity, allowing the user to use the system flexibly.
Our system uses a web-based approach, as this is operating system independent and

easy to deploy. This makes it possible to quickly create repositioning prototypes that
can be easily realized. Furthermore, user desktops may not be powerful enough to
solve the LSFRP. Thus, a client-server architecture ensures that user’s computers are
not tasked with arduous computations. These advantages of web-based approaches
are the basis for the increasing development of web-based systems (Wang et al. (2011),
Bhargava et al. (2007)).
On the server side, the system uses the Python framework Django1 to handle client

requests. On the client-side, the system makes use of standard web technologies like
HTML, JavaScript and CSS, which are supported by all modern browsers. In order
to solve the LSFRP in this system, we integrate the simulated annealing approach as
described by Tierney (2015). This algorithm is implemented in C++ to ensure fast
solution times, so the system uses the Cython2 library to wrap the C++ code and
make it accessible within Django.

4.4.1. Interactivity

In most DSSs, the process of solving a problem consists of the following steps: instance
setup, setting of solver parameters, starting the solver, waiting for the solution and
finally interpreting the solution. Depending on the solution techniques used, this
process is fixed and cannot be altered Piramuthu and Shaw (2009). It can often
be the case that the answers provided by an optimization system are not exactly
applicable to the real world, either due to outdated data or the level of abstraction of
the model. In the worst case, the planner has to invest additional time to alter his
setup and reoptimize his problem. These alterations in the setup create unnecessary
disruptions in the workflow of the planner. Especially, for a sensitivity analysis of a
given optimization result, this is time consuming.
Our system allows for interactivity during the solution process to avoid time con-

suming disruptions in the workflow of the repositioning coordinator. This is possible
thanks to the local search heuristic used for finding solutions, as it can start from
any valid or even only partially valid starting point and find a solution. Our system
allows for the adjustment of port calls, demands and general information of a scenario.

1https://www.djangoproject.com/
2http://cython.org/
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There are multiple views in the system that help the coordinator manipulate data and
restart their optimization process.
The DSS uses a scenario based approach. These scenarios can be used to eval-

uate planned repositionings or strategic settings/“what if” scenarios set in the far
future. Each scenario consists of its own set of vessels, port calls and services. Be-
fore an optimization, the coordinator has to prepare the relevant scenario data and
the optimization settings (CPU time, memory limits, etc.). When the repositioning
coordinator has finished his settings, he can start an optimization process using the
front-end interface of the system (Figure 4.4). This request is sent to the server where
relevant data is collected from the database. The data is then prepared such that it
can be transferred to the simulated annealing module. After the simulated annealing
algorithm has found a solution, this solution is stored in the database and a view with
the result is created. This view is then presented to the repositioning coordinator. The
results of the optimization are stored in the database so that the system can access
these results later, for re-optimization or modifications of scenarios.

DSS

DB

SQLite

Simulated
Annealing

Control

Client

Python
C++

HTML/CSS
Javascript

1. Start optimization

2. Get relevant data

3. Start SA run

4. Return solution

5. Store solution

6. Display solution

Figure 4.4.: Schema of the optimization process in the DSS.

Our prototype presents several options for ad-hoc adjustments/interactivity to the
user, requiring some modifications of the simulated annealing algorithm of Tierney et
al. (2015). A brief description of these options is given in Table 4.2. Further details
of these options and their implications are described in the following subsections.
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Table 4.2.: Ad-hoc adjustments and their implications on the SA approach.
Adjustment Extension of the SA approach
Changing the time of port calls -
Adding/Removing/Changing demands -
Blocking/Requiring a specific port calls Penalty function
Requiring a particular demand Penalty function
Using fixed time windows for flexible port calls Penalty function & MIP

Changing the time of port calls

Repositionings are planned several weeks or months before they are actually executed.
Due to this lead time, information will likely change before the repositioning takes
place, especially information about port calls in the services that are relevant for the
repositioning coordinator. When information about the times of port calls change, the
coordinator needs to evaluate his current plan in order to see if the plan is still valid,
and that the plan remains of high quality.
To adjust the times of port calls in our prototype, the user is able to select a specific

port call from a spreadsheet view and edit the arrival and departure time of this call
(Fig. 4.5). As these adjustments only impact parameters of the model Tierney et al.
(2015), the mathematical formulation and the simulated annealing algorithm remain
unchanged.

Figure 4.5.: Screenshot of the detail view of scenarios from the prototype system.

Adding/Removing/Changing demands

As the world economy is a highly dynamic market, container demands change greatly
over time. Our system prototype therefore enables the planner to adjust the demands
in a scenario, such as allowing for spot cargo in a particular location. Demands can
be modified such that their time frame is changed, as well as their amount, revenue
and container type (Figure 4.6). These changes only affect the parameters of the
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Figure 4.6.: Screenshot of the edit dialog for demands of a specific scenario from the
DSS.

mathematical model. Therefore, there is again no need to change the formulation of
the model or the implementation of the heuristic.

Blocking/Requiring specific port calls

Repositioning coordinators can have multiple reasons to block or require a specific port
call, such as an expected port strike or other concerns that would cause a delay in
the voyage of the repositioning vessel. In contrast to this, a repositioning coordinator
may want to require a port call if they are expecting a higher demand at a port during
the repositioning (e.g. the Christmas season). By adjusting a plan in this fashion,
the repositioning coordinator is able to evaluate the consequences compared to their
original repositioning plan.
As this adjustment directly influences decision variables of the mathematical model,

we need to adjust the model and the implementation of the simulated annealing algo-
rithm. For this we define two new sets:

V B Ď V
1 Set of blocked visits.

V R Ď V
1 Set of required visits.

We add the following constraints to the mathematical model, and enforce these
within the simulated annealing through a penalty function.

ÿ

sPS

ÿ

iPInpjq

ysij “ 1 @j P V R (4.1)

ÿ

sPS

ÿ

iPOutpjq

ysji “ 1 @j P V R (4.2)

ÿ

sPS

ÿ

iPInpjq

ysij “ 0 @j P V B (4.3)

ÿ

sPS

ÿ

iPOutpjq

ysji “ 0 @j P V B (4.4)
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The variable ysij is set to 1 if ship s uses arc pi, jq. Constraints (4.1) and (4.2) enforce
that there is exactly one arc to a required visit and one arc from a required visit that
must be part of the solution. Constraints (4.3) and (4.4) do the opposite, ensuring
that there is no arc in the solution that leads to or from a blocked visit.

Requiring a particular demand

During a repositioning it might be relevant to transport a particular demand, for
example if a high valued customer’s cargo might be disrupted by the repositioning.
Especially when the repositioning vessel is using a sail-on-service opportunity, this
option can be used to minimize disruptions to the cargo flow of the involved services.
The flow of demand is part of the decision of the mathematical model and requires
a slight modification. We simply require that the flow of a particular demand is set
to the maximum of the demand, i.e., xpo,d,qq “ apo,d,qq, where o is the origin of the
demand, d is a set of destinations, q is the container type, and apo,d,qq is the amount of
containers available. In the simulated annealing algorithm, we penalize solutions not
carrying required cargo flows.

Using fixed time windows for flexible port calls

Flexible port calls are visits at ports that are not scheduled on any service directly
involved in a repositioning. These ports have excess cargo and equipment and therefore
it can be profitable to visit these ports. Using flexible visits in a repositioning plan
is associated with some risk, as there is no guarantee that the time of such a visit
is possible. To the best of our knowledge, there are currently no integrated systems
between container terminals and shipping lines (even when both are owned by the same
group). Repositioning coordinators must therefore manually confirm whether berthing
times are available as planned Tierney (2015). In case the container terminal proposes
time windows to the repositioning coordinator, they can use these options in our
system to evaluate the consequences of these time windows for the whole repositioning
plan.
Allowing time window adjustments is more difficult to implement in the simulated

annealing algorithm, as the objective function evaluation changes significantly. The
algorithm normally uses an LP to schedule flexible visits along a fixed path. However,
time windows require binary variables, which turn it into a mixed-integer program
(MIP). This extension has serious consequences for the complexity of the model. While
an LP is solvable in polynomial time Khachiyan (1980), MIPs are NP-hard Karp
(1972). However, since only a few binary variables are required, in practice these
problems are easy to solve.
We propose the following mathematical formulation of time windows. We first

provide the parameters, followed by the variables and the constraints. We implement
the time window constraints in a soft fashion so that the user always receives a solution.
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This also allows us to penalize infeasible solutions, as the simulated annealing solution
may not always be feasible during search.

Sets and parameters:
V TW Ď V

1 Set of visits with time windows.
TW i Set of time window tuples pwEi , wXi qq for visit i P V TW .
PE, PX Penalties for when the time windows are violated.
wEi , w

X
i P R Time window enter and exit times for visit i P V TW .

Variables:
zEi , z

X
i The enter and exit time at flexible node i, respectively.

yTW
ik Indicates whether time window k P TW i for visit i P V TW is

being used (1) or not (0).
dEi , d

X
i Amount of time that the time window of visit i P V TW is missed

by (both for the enter and exit times of the window).

ÿ

kPTW i

wEi y
TW
ik ď zEi ` d

E
i ´ d

X
i @i P V TW (4.5)

zEi ` d
E
i ´ d

X
i ď

ÿ

kPTW i

wXi y
TW
ik @i P V TW (4.6)

ÿ

kPTW i

wEi y
TW
ik ď zXi ` d

E
i ´ d

X
i @i P V TW (4.7)

zXi ` d
E
i ´ d

X
i ď

ÿ

kPTW i

wXi y
TW
ik @i P V TW (4.8)

dEi , d
X
i ě 0 @i P V TW (4.9)

Constraints (4.5) and (4.6) are used to set the enter time at visit i, zEi , according to
the existing time windows. Constraints (4.7) and (4.8) function similarly for the exit
times. We calculate the amount of time the windows are missed using dEi and dXi ,
and add these values to the objective function. We note that since the objective is
maximized, the model will always try to minimize the penalties.

4.4.2. Case Study

We conduct a case study to show the effects of our interactive options and the workflow
of our system. For this study we recreated a typical decision process using publicly
available data. This data is derived from the public LSFRP instances from Tierney et
al. (2015) and the LINERLIB, established by Brouer et al. (2014) for benchmarking
models for the network design and fleet deployment problems in the liner shipping
industry. We have not deployed the system at a liner carrier, and therefore show
several hypothetical use cases for the system based on our experience and contact
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with carriers.
We examine three different LSFRP instances. We first solve them using the simu-

lated annealing algorithm. We then examine what happens when we perform sample
interactions with the system that a repositioning coordinator might reasonably under-
take. The instances we choose vary mainly in the number of vessels and the structure
of the services. Table 4.3 provides an overview of the instance properties, giving infor-
mation about the number of services as well as the number of vessels of each instance
and furthermore the number of port calls of each service in the three instances. The
maximum number of port calls of the services are 15, 17 and 26 for instances 1, 2
and 3, respectively. All instances share two common services, with 13 and eight port
calls each. All vessels used are Panamax sized vessels from the same vessel class. We
note that many repositioning scenarios deal with such vessels in practice as they are
very common. Furthermore, all the vessels that are indicated in Table 4.3 need to be
repositioned for each instance. While these vessels might be positioned on different
initial services, the fleet repositioning will bring them to the same goal service. We
now describe each instance in detail.

Table 4.3.: Properties of the three instances for our case study.
No. of services No. of vessels No. of port calls per service

Instance 1 5 3 13, 6, 8, 8, 15
Instance 2 5 4 13, 15, 17, 8, 14
Instance 3 4 9 13, 8, 8, 26

Instance 1. The first instance has three original services, one goal service and one
service, which can be used as an SoS opportunity. On each of the original services,
there is a single vessel that needs to be repositioned. These three vessels have a capac-
ity of about 5800 TEU for dry cargo and about 500 TEU for reefer cargo (Table 4.4).
The regions that are visited by the original services are Asia, North America, Europe
and the Middle East. All three vessels need to be repositioned to the goal service,
which only visits ports in South America. The connection to the other services is the
port of Balboa (Panama). In the final repositioning plan, the latest start of operations
of the goal service, should be in week 34 at the port of Balboa.

Table 4.4.: Properties of the vessels in Instance 1.
Dry/reefer capacity Original service Earliest PO week

Vessel 1 5814/490 Asia - N. America 33
Vessel 2 5814/490 Middle East - N. America - Europe 28
Vessel 3 5814/490 Asia 29
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Instance 2. The second instance consists of five services with port calls in Asia,
North America, Europe, the Middle East and North Africa. The original services of
the four vessels of this scenario operate in the regions Middle East, North America,
Europe and Asia (see Table 4.5). Vessel 1 and Vessel 2 are originally assigned to
the same service. Vessel 3 and Vessel 4 also have the same assignment. In the final
repositioning plan, all four vessels have to be repositioned to the goal service, which
only serves Asian ports. The latest start of operations for this goal service is in week
30 in the port of Chennai (India). For the creation of the repositioning plan, the two
remaining services can be used as SoS opportunities.

Table 4.5.: Properties of the vessels in Instance 2.
Dry/reefer capacity Original service Earliest PO week

Vessel 1 5814/490 Middle East - N. America - Europe 30
Vessel 2 5814/490 Middle East - N. America - Europe 29
Vessel 3 5814/490 Asia - N. America 30
Vessel 4 5814/490 Asia - N. America 29

Instance 3. In the third instance there are three initial services and one goal service.
Three vessels are assigned to each initial service, so that in this scenario nine vessels
need to be considered for the repositioning (see Table 4.6). The initial services are
visiting ports in Asia, South America, North America and Europe. The goal service in
this scenario shares most of these regions and is serving ports in Asia, North America
and South America. In the final repositioning plan, the latest start of operations is at
the port of Kaohsiung (Taiwan) in week 32.

Table 4.6.: Properties of the vessels in Instance 3.
Dry/reefer capacity Original service Earliest PO week

Vessel 1 5814/490 Asia 32
Vessel 2 5814/490 Asia 31
Vessel 3 5814/490 Asia 30
Vessel 4 5814/490 S. America - Asia 34
Vessel 5 5814/490 S. America - Asia 33
Vessel 6 5814/490 S. America - Asia 32
Vessel 7 5814/490 Europe - N. America - Asia 33
Vessel 8 5814/490 Europe - N. America - Asia 32
Vessel 9 5814/490 Europe - N. America - Asia 31

We evaluated the case study on a virtual machine with OpenSuse 13.2 and an Intel
Core 2 Quad processor (2.83GHz) with 4 GB of memory. The configuration of a real
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server for the DSS would be much more powerful in order to handle multiple processes
at the same time. However, since the system was used by a single user during the case
study, it was not necessary to choose another system setup.

Table 4.7.: Runtime comparison for the three instances of our case study in seconds.
Instance 1 Instance 2 Instance 3

Initial Plan 77.43 309.82 436.33
Block a port 125.43 392.36 393.96
Add time windows 80.35 341.95 600.00
Force a demand 239.89 494.22 600.00

An extensive computational evaluation of the simulated annealing algorithm is avail-
able in Tierney (2015), and our goal is not to duplicate this. Instead, we wish to give
insight into the interactive components of the system.
Table 4.7 shows the runtimes for the four planning steps of each instance in sec-

onds. As in the non-interactive case, more ports and vessels results in more difficult
instances. For these three scenarios, it takes on the average about 5.7 minutes to
generate a repositioning plan. The planning steps with the longest runtimes are step
three and four of Instance 3. These planning steps reached the time limit of ten min-
utes. These runtimes likely represent an improvement over the manual planning time
by the repositioning coordinator. Nonetheless, without the knowledge of possible re-
quirements for such a system, it is hard to evaluate whether this is fast enough for a
real system.

4.4.3. Visualizations

The plans created by the DSS must be easy to use and modify. As stated in Power and
Kaparthi (2002), the major tasks for a development of a web-based decision support
system are the data model and the user interface. Especially the design of appropriate
visualization approaches for relevant planning steps is a crucial task. By making use
of recent advances in the area of design studies, we propose several new visualizations
of repositioning plans.
Design studies are suitable to find a visualization technique for the LSFRP as they

are meant for problem-driven research Sedlmair et al. (2012). According to Sedlmair et
al. (2012), there are multiple steps that constitute a design study. Among other things,
these steps involve the analysis of the problem, the abstraction of data and tasks, the
design and implementation of the visualization technique and the evaluation of the
visualization. By using the information of repositioning coordinators we were able to
abstract relevant aspects of the problem (ports, port sequences, services, networks,
time, vessels, phase-out/phase-in and sail-on-services) and use them as evaluation
criteria for different visualization approaches of the fleet repositioning.
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Spreadsheet View

The spreadsheet view as presented by Fagerholt and Lindstad (2007) for the Tur-
boRouter system uses columns to represent time and vessels, and individual cells to
display port calls. With some changes, this view can be adapted to demonstrate ser-
vices and their port sequences as well. Although this view displays time, it is not
possible to include phase-outs, phase-ins and sail-on-services without making the view
too complex. In addition to this, the connection between vessels and their services is
not exactly clear, let alone the connections between services. We note, however, that
the spreadsheet view is the one repositioning coordinators are most familiar with.
Thus, we integrate these views into our user interface whenever possible, but add
extra constraints on the data that can be entered into the sheets.

Simple Graph

A simple approach to visualize services is to use a sequential graph for each service as
is displayed in Figure 4.7. Each graph consists of nodes for the port calls and arcs for
the sailings between calls. In order to add information about time, nodes and arcs can
be labeled. Nevertheless, these labels lack the precision to determine the chronological
order of phase-outs, phase-ins and the repositioning path. An example for this lack
of precision are the repositionings from Shanghai (SHA) to Ningbo (NGB) and from
Ningbo to Port Klang (PKG): The first repositioning ends at 16:00 and the second
starts at 12:30. It is not clear whether the second repositioning starts on one of the
next days or if it has started some time before. The same holds for the repositioning
from Santos (SSZ) to Savannah (SAV).

Service A

Service B

Service C

Asia

Asia

Asia

Europe

South America

North AmericaCentral
America

SHA NGB SHK SIN PKG PIR IST ILK CND

PUS SHA NGB SHK HKG SIN RIO SSZ BUE MVD NVT PNG SSZ RIO

NGB SHA PUS PCN NYC ILM SAV

08:00

16:00 12:30

15:00

06:45

12:00

Figure 4.7.: Sequential graphs to illustrate services and repositionings
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Connected Graph

By connecting separated graphs, it is possible to create a visualization that demon-
strates the network structure of services and the connecting ports (Figure 4.8). In
this view, the repositioning coordinator also has an overview of possible ports for the
repositioning path. Such a path could be displayed using additional arcs. However,
in this type of view it is problematic to add the dimension of time. There is the
possibility to add time labels to the arcs for repositionings, but this information has
the same problems as in the simple graph. Therefore, the repositioning coordinator is
not able to see the chronological relation between the possible port calls and the fixed
schedules of the services.

HKHKG

PAPCN

USNYC

USILM

USSAV

KRPUS

CNSHA

CNNGB

CNSHK

SGSIN
BRRIO

BRSSZ

ARBUE UYMVD

BRNVT

BRPNG

MYPKGROCND

UAILK

TRIST

GRPIR

12:00

23:00

12:00

15:00

10:00

16:00

17:00

20:00

Figure 4.8.: A connected graph to illustrate services and repositionings

Transit Graph

A typical way to visualize networks of stations and paths in public transport networks
is the “transit map” (Figure 4.9). This type of map is used for public transit plans
to show the intersections of services and the relation between stations. Transit maps
can give information about the time it takes to travel between two stations, but in the
case of the LSFRP this information is not enough. In contrast to public transit, time
distances between port calls are much longer. The repositioning coordinator needs
precise information about the schedules in order to fully understand the reposition-
ing plan, meaning this visualization provides insufficient information. This becomes
obvious by adding time labels to repositioning paths. These time labels are not clear
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about their chronological ordering (see simple and connected graph). In addition,
they lack the relation to scheduled port visits and slots of the services, which makes
it impossible for the repositioning coordinator to make good decisions.

HKHKG

CNSHA

CNNGB

CNSHK

SGSIN

MYPKG

GRPIR

TRIST

UAILK

ROCND

KRPUS PAPCN
USNYC USILM USSAV

BRRIO BRSSZ
ARBUE UYMVD

BRNVTBRPNG

12:0012:00

23:00

15:00 10:00

16:00

17:00

20:00

Figure 4.9.: A transit graph to illustrate services and repositionings

Service Graph

As the other approaches lack the ability of including the dimension of time, Figure
4.10 shows a visualization that is based on a time scale with days as the unit. By
using this scale, the view presents the port calls of the services as nodes according
to their occurrence. Additionally, arcs are used to represent sailings between ports.
Services are displayed as closed boxes with multiple compartments, representing the
associated vessels of each service. With this information, it is clear on which day the
vessels are performing their port calls and how much time it takes to sail between
two ports. There is no need for any kind of additional labels that might reduce the
usability of the view. Repositionings can be visualized by using extra arcs to show
the port nodes for the phase-out and phase-in. In this specific example, which is a
small extract from bigger service schedules, these repositioning arcs are visualized by
the red arrows from Service B to Service A and from Service A to Service C. Problem
specific aspects like the sail-on-service opportunities can also be added to this view as
can be seen in Figure 4.10.
Table 4.8 shows a summary of the previous comparison of the visualizations. The

techniques of Figures 4.7-4.9 all lack the possibility to represent repositioning specific
content like phase-outs (PO), phase-ins (PI) and sail-on-service opportunities (SOS).
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time

Service C

Service A

Service B

Vessel 3

Vessel 4

Vessel 5

Vessel 2

Vessel 1

Vessel 3
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Figure 4.10.: Our approach to illustrate services and repositionings.

Only in Figure 4.10 is it possible to include this relevant information without making
the view too complex or losing any usability.

Table 4.8.: Comparison of the visualization techniques
Ports Sequence Service Network Time Vessels PO/PI SOS

Spreadsheet X X X ˆ X X ˆ ˆ

Sequential X X X ˆ „ ˆ ˆ ˆ

Connected X „ „ X ˆ ˆ ˆ ˆ

Transit X X X X ˆ ˆ ˆ ˆ

Service X X X ˆ X X X X

Due to the fact that the service graph approach is best able to visualize the problem,
we implement it in our prototype. Figure 4.11 shows this implementation for a simple
test scenario. In this scenario, “vessel 1” needs to reposition from the initial service
(blue bars) to the goal service (green bar). The screenshot shows the planned port
calls for each of the services. The red line shows the repositioning path of “vessel 1”.
The filter menu on the left side of the screen the planner is able to adjust the time
horizon.
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Figure 4.11.: Screenshot of the service graph visualization in the prototype system.

4.5. Conclusion and future research

In this paper we design a DSS for the liner shipping fleet repositioning problem and
provide a novel visualization technique for displaying repositioning plans. Our pro-
totype shows that algorithms from the literature are ready for implementation in
real-world systems at liner carriers.
In addition to this, we improve the interactivity of the current state-of-the-art sim-

ulated annealing approach. By not constraining the repositioning coordinator in his
work, the process of creating repositioning plans with our system provides an exten-
sive planning environment. Several options for an extended interactivity have been
presented as well as their consequences for the most recent mathematical formula-
tion. Despite the increased complexity of solving the objective function evaluation
subproblem, we show that interactivity is not overly computationally expensive.
For future work, we intend to improve the system by providing the possibility to

analyze and compare the strategic scenarios of the repositioning coordinator. Further-
more, it is our goal to discuss additional requirements with repositioning coordinators
of liner shipping companies for this system.
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4.6. Appendix: LSFRP arc flow model

We now provide the arc flow model from Tierney (2015) with a brief explanation. The
model is based off of a graph with embedded LSFRP constraints, which we do not
reproduce here for brevity. It suffices to be given a graph G “ pV i Y V f , Ai Y Af q,
where V i (Ai) is the set if inflexible visits (arcs) and V f (Af ) is the set of flexible visits.
As a reminder, inflexible visits have fixed enter and exit times for vessels and inflexible
arcs have fixed sailing times and costs, whereas the amount of time a vessel spends on
a flexible visits or arc is a decision variable. We now present the table of parameters
for the mathematical model, followed by the objective function and constraints.

S Set of ships.
V 1 Set of visits minus the graph sink.
V i, V f Set of inflexible and flexible visits, respectively.
Ai, Af Set of inflexible and flexible arcs, respectively.
A1 Set of arcs minus those arcs connecting to the graph sink, i.e.,

pi, jq P A, i, j P V 1.
Q Set of equipment types. Q “ tdc, rf u.
M Set of demand triplets of the form po, d, qq, where o P V 1, d Ď V 1

and q P Q are the origin visit, destination visits and the cargo
type, respectively.

V q` Ď V 1 Set of visits with an equipment surplus of type q.
V q´ Ď V 1 Set of visits with an equipment deficit of type q.
V q˚ Ď V 1 Set of visits with an equipment surplus or deficit of type q (V q˚ “

V q` Y V q´).
uqs P R` Capacity of vessel s for cargo type q P Q.
MOrig

i , pMDest
i q ĎM Set of demands with an origin (destination) visit i P V .

vs P V
1 Starting visit of ship s P S.

tMv
si P R Move time per TEU for vessel s at visit i P V 1.
tEi P R Enter time at inflexible visit i P V 1.
tXi P R Exit time at inflexible visit i P V 1.
tPi P R Pilot time at visit i P V 1.
rVar
q P R` Revenue for each TEU of equipment of type q P Q delivered.
rpo,d,qq P R` Amount of revenue gained per TEU for the demand triplet.
cSail
sij P R` Fixed cost of vessel s utilizing arc pi, jq P A1.
cVarSail
sij P R` Variable hourly cost of vessel s P S utilizing arc pi, jq P A1.
cMv
i P R` Cost of a TEU move at visit i P V 1.
cPort
si P R Port fee associated with vessel s at visit i P V 1.
dMin
ijs P R` Minimum duration for vessel s to sail on flexible arc pi, jq.
dMax
ijs P R` Maximum duration for vessel s to sail on flexible arc pi, jq.
apo,d,qq P R` Amount of demand available for the demand triplet.
Inpiq Ď V 1 Set of visits with an arc connecting to visit i P V .
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Outpiq Ď V 1 Set of visits receiving an arc from i P V .
τ P V Graph sink, which is not an actual visit.

wsij P R`0 The duration that vessel s P S sails on flexible arc pi, jq P Af .
x
po,d,qq
ij P R`0 Amount of flow of demand triplet po, d, qq PM on pi, jq P A1.
xqij P R`0 Amount of equipment of type q P Q flowing on pi, jq P A1.
ysij P t0, 1u Indicates whether vessel s is sailing on arc pi, jq P A.
zEi P R`0 Defines the enter time of a vessel at visit i.
zXi P R`0 Defines the exit time of a vessel at visit i.
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The objective first consists of the sailing cost (4.10) that takes into account the
precomputed sailing costs on arcs between inflexible visitations, as well as the variable
cost for sailings to and from flexible visitations. Note that the fixed sailing cost
on an arc includes fuel costs, canal fees or even the time-charter bonus for entering
an SoS. The profit from delivering cargo (4.11) is computed based on the revenue
from delivering cargo minus the cost to load and unload the cargo from the vessel.
Equipment profit is taken into account in (4.12), and, finally, port fees are deducted
in (4.13).
Multiple vessels are prevented from visiting the same visitation in (4.14). The flow

of each vessel from its source node to the graph sink is handled by (4.15), (4.16) and
(4.17), with (4.16) ensuring that all vessels arrive at the sink.
Arcs are assigned capacities if a vessel utilizes the arc in (4.18), which assigns

the reefer container capacity, and in (4.19), which assigns the total container capac-
ity, respectively. Note that constraints (4.18) do not take into account empty reefer
equipment, since empty containers do not need to be turned on, and can therefore be
placed anywhere on the vessel. Cargo is only allowed to flow on arcs with a vessel
in (4.20). The flow of cargo from its source to its destination, through intermediate
nodes, is handled by (4.21). Constraints (4.22) balance the flow of equipment in to
and out of nodes. In contrast to the way cargo is handled, equipment can flow from
any port where it is in supply to any port where it is in demand. Since the amount
of equipment carried is limited only by the capacity of the vessel, no flow source/sink
constraints are required.
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Flexible arcs have a duration constrained by the minimum and maximum sailing
time of the vessel on the arc in (4.23). The enter and exit time of a vessel at inflexible
ports is handled by (4.24) and (4.25), and we note that in practice these constraints are
only necessary if one of the outgoing arcs from an inflexible visitation ends at a flexible
visitation. Constraints (4.26) sets the enter time of a visitation to be the duration
of a vessel on a flexible arc plus the exit time of the vessel at the start of the arc.
Constraints (4.27) controls the amount of time a vessel spends at a flexible visitation.
The first part of the constraint computes the time required to load and unload cargo
and equipment, with the final term of the constraint adding the piloting time to the
duration only if one of the incoming arcs is enabled (i.e., the flexible visitation is being
used).
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Liner carriers change their network on a regular basis, and they are therefore inter-
ested in a practical evaluation of the impact these changes have on the cargo flows in
their networks. Despite great advancements in the practical applicability of network
evaluators in recent years, vessel deployment continues to be considered as an input
into the problem, rather than a decision. In this paper, we propose an extension of a
state-of-the-art mixed integer programming model for the LSCAP that incorporates
the optimization of vessel count and vessel classes for each service. We perform a
computational analysis on liner shipping networks of different sizes and compare our
optimized results to fixed deployment scenarios. By integrating fleet deployment de-
cisions into the cargo allocation problem, liner carriers can increase the profitability
of their networks by at least 2.8 to 16.9% and greatly enhance their decision making.

Keywords: liner shipping, cargo allocation, fleet deployment

5.1. Introduction

Seaborne trade plays a critical role in global markets, and is responsible for transport-
ing more than 10 billion tons of goods per year UNCTAD (2016). Furthermore, since
the year 2000 the number of containers transported each year has almost tripled UNC-
TAD (2016). The challenge of designing, adjusting and operating liner shipping net-
works is thus becoming increasingly difficult to solve with current tools.
Containerized goods are transported in liner shipping networks on cyclical routes

called services. Liner shipping companies operate a number of these services to connect
different trade regions within their network. Services are generally operated with a
certain periodicity (usually weekly or biweekly) such that ports of a service are visited
at a fixed time each period. At each port of the service, cargo is loaded, unloaded or
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transshipped. Furthermore, cargo is transported in varying container types and sizes
(equipment types).
Liner carriers must regularly make changes to their network, such as adding new

services, changing the ports visited on a service, or removing services that are no
longer profitable. These network modifications can have far-reaching and non-obvious
effects on the network, such as changing the capacity or connection time between
ports that are not part of the subset of the network being changed. Liner carriers are
therefore interested in examining the impact of network changes on the cargo flows of
their networks, which has been formulated by the operations research community as
the liner shipping cargo allocation problem (LSCAP) (see, e.g., Guericke and Tierney
(2015)).
The LSCAP targets the strategic and tactical planning horizon of a carrier. It

computes the profit-maximal cargo flows on a predefined service network to provide
carriers with a holistic view of their network, under the assumption that the cargo flows
are deterministic. Models in the literature consider a number of detailed aspects, such
as transit time requirements and variable vessel speeds.
Another tactical planning problem in the liner shipping industry is the fleet deploy-

ment problem. This problem is solved to determine the number of vessels and the type
of vessel (vessel class) on a service. The assignment of vessels to services has a direct
influence on the capacity of the services and the possible vessel speeds. Currently,
these problems are solved independently of each other, with the output of the fleet
deployment problem being fed into the LSCAP as fixed numbers of vessels and vessel
types. However, the allocation of cargo is dependent on the capacity of the service
vessels and the schedule of the services, meaning adjusting the deployment could yield
higher profit in the LSCAP for the carrier. Simultaneously optimizing the cargo al-
location and deployment offers tactical level guidance to carriers for which types of
vessels should go where, and could even be used in a strategic context to determine
how many vessels of a particular type should be built or chartered.
We extend the LSCAP model in Guericke and Tierney (2015). The complete model

contains the following components: path restricted multicommodity flow, transship-
ments, complex routes, transit time requirements, leg based speed optimization and
empty container repositioning. We add the assignment of vessel classes to services and
the determination of the number of vessels of each service to the model.
With the help of our model, liner carriers can, for example, evaluate whether “up-

grading” a service to a bigger vessel class is profitable or not. Furthermore, carriers
can evaluate the effects of selecting different vessel classes and numbers of vessels for
their services. These decisions influence individual leg speeds and the overall schedule
of the service. This, in turn, changes how many containers can be transported, as
faster ships can better meet customer’s transit time requirements. We show in our
computational experiments, considering fleet deployment leads to an increase in profit
of several million dollars.
This paper is organized as follows. First, we review the related literature in Sec-
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tion 5.2. Then, Section 5.3 presents the cargo allocation problem with fleet deployment
and vessel class selection. In Section 5.4, the model is presented. Section 5.5 contains
the results of our computational experiments. Finally, Section 5.6 concludes and offers
an outlook on future work.

5.2. Literature Review
There is a wealth of work considering cargo allocation/cargo routing and fleet de-
ployment, however very little that addresses the intersection between these problems.
Table 5.1 presents a summary of relevant work. For details, we refer to Guericke and
Tierney (2015). The upper half of the table contains publications about cargo allo-
cation, while the lower half contains fleet deployment publications. The table only
refers to publications that consider complex service types. For an extensive overview
of other optimization problems in liner shipping, we refer to Brouer et al. (2017).

Table 5.1.: Overview of relevant publications about the fleet deployment problem and
the cargo allocation problem1.

Paper MCF TS TT TSD LBSO ER VC VCL

Akyüz and Lee (2014) X X X X - - - -
Karsten et al. (2015) X X X X - - - -
Guericke and Tierney (2015) X X X (X) X X - -
Branchini et al. (2015) - - - - - - (X) X
Wang et al. (2016) X X - (X) - X - -

Gelareh and Meng (2010) (X) - X - (X) (X) X X
Meng and Wang (2010) - - - - - - X X
Wang and Meng (2012) X X - - - - X X
Meng et al. (2013) X X - (X) - - X X

This article X X X (X) X X X X

5.2.1. Cargo Allocation
In the work of Akyüz and Lee (2014), a column generation approach is used to solve
the cargo allocation problem with service levels, which are defined as combinations of
vessel capacity and vessel speed. Although in Karsten et al. (2015) speed optimization
is not considered, they extend the previous mentioned literature by including transit
times and transshipment durations.
The publication of Guericke and Tierney (2015) integrates transit times and trans-

shipment durations as well as speed optimization on individual legs and empty con-
tainer repositioning. By integrating these requirements and aspects into a single
model, Guericke and Tierney (2015) provide a high level of realism, making it valuable
for liner carriers. Since varying vessel speed results in a non-linear optimization prob-
lem, the bunker consumption functions need to be linearized. We refer to Psaraftis

1MCF = Multiple cargo flows, TS = Transshipment, TT = Transit times, TSD = Transshipment
duration, LBSO = Leg based speed optimization, ER = Empty repositioning, VC = Vessel count,
VCL = Vessel class
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and Kontovas (2016) for a taxonomy of speed optimization publications, and various
formulations of the fuel consumption function.
The integration of contractual cargo and spot cargo is considered in Branchini et

al. (2015). A mixed-integer programming model is presented that optimizes cargo
assignments as well as the deployment and scheduling of vessels. Speed optimization
and empty container repositioning are not included in this model.
In the work of Wang et al. (2016), a chance-constrained optimization model is pre-

sented that considers deterministic and stochastic demand as well as various shipping
activities like container loading/unloading, transshipments and waiting times. The
model does not include any kind of speed optimization, but it does consider selecting
the best vessel class for a specific service.

5.2.2. Fleet Deployment
The fleet deployment problem is integrated with the optimization of vessel speed and
service frequency in Gelareh and Meng (2010). A mixed integer model considers transit
time restrictions and is evaluated on a set of randomly generated instances.
Another chance constrained model to solve the fleet deployment problem is presented

by Meng and Wang (2010). This model assumes a normal distribution for the cargo
demand of each service. Without considering leg based speed optimization, empty
container repositioning or transit times, the mixed integer programming model is
solved on nearly realistic instances.
The model of Wang and Meng (2012) considers transshipment operations combined

with the fleet deployment problem. For this, transshipments are allowed to be carried
out multiple times without restrictions. Vessels can either be used from the carrier’s
fleet or chartered to be deployed on services. The authors assume predetermined vessel
speeds for each service leg. In Meng et al. (2013), a two-stage stochastic programming
model that considers uncertainties in container demand and transshipment options is
used to solve the fleet deployment problem.

5.3. Problem description
Before we describe the details of our mixed-integer programming model we discuss the
aspects of the integrated cargo allocation and fleet deployment problem addressed in
this paper.

5.3.1. Cargo allocation problem
Cargo allocation models are used for a strategic or tactical evaluation of a given liner
shipping network. By considering possible cargo flows as well as fixed and variable
costs, it can determine the profitability of an entire network. Furthermore, liner
carriers are able to use the results of this model to refine their service schedules and
improve coordination with container terminals.
The solution of the cargo allocation model determines how much cargo from each

demand is carried and how that cargo is routed from its origin to its destination.

64



5.3. Problem description

Hamburg

Kristiansand

Stavanger

Tillbury

Antwerp
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B

Figure 5.1.: A simple liner shipping network in Northern Europe with two services con-
necting ports in Germany, Belgium, Denmark and Norway, from Guericke
and Tierney (2015).

When a single service contains both the origin and destination of a cargo demand, only
loading and unloading operations along with the routing within the service need to be
determined. For other cargo in which the origin and destination ports are distributed
over separate services, both services need to be connected by transshipping the cargo
at a shared port. If there is no port present in both services, multiple transshipments
will occur until the cargo arrives at its destination port. We allow split cargo flows,
but restrict the maximum number of paths the cargo may take.
Figure 5.1 shows a simple liner shipping network with two services. Both services

are connected by the transshipment port Hamburg, such that cargo can be transported
from Stavanger to Antwerp or Tillbury.
Cargo demands are associated with a maximum transit time between the demand’s

origin and destination. The transit time consists of the time cargo spends traveling
by ship added to the time it spends in port during transshipment. We take into
account the movement time of the containers on and off the ship, but use a constant
transshipment time due to the complexity of allowing this to vary.
Depending on the overall frequency of the service and the total call time in ports,

the remaining time can be spent for sailing between ports. The speed of the vessels
is adjusted such that this remaining total sailing time is enough to maintain the
periodicity of the service. Since the duration at sea is closely connected to the available
time for vessels to move cargo in ports, including speed optimization in the cargo
allocation problem is necessary. Additionally, speed optimization reduces bunker fuel
consumption, one of the main costs of operating a seagoing vessel Stopford (2009).
Vessels have a minimum and maximum speed in which the vessel can be operated.
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Buffer can be added between port visits on a schedule if the sailing time between the
ports is longer than the vessel would require even at its minimum speed. Buffer can
be used to hedge against uncertainty, although we do not directly consider this in our
model.

5.3.2. Fleet deployment

The assignment of vessels to services is a tactical planning problem in which, typically,
an entire shipping season is planned Christiansen et al. (2013). An assignment consists
of the selection of a vessel class for a service as well as the determination of the total
number of vessels for a service. Liner carriers use the fleet deployment problem to
regularly assess the cost-efficiency of their network structure based on current rates of
the charter-market. Dependent on the charter and bunker market, new vessels can be
hired or existing off-hired, or own vessels chartered out.
In our model, we integrate the selection of vessel classes for the services and the

determination of the number of vessels with the cargo allocation decisions. The goal
is to benefit from the close connection between these fleet deployment decisions, the
possible leg speeds and cargo moves. This integration also provides a more precise
estimation of possible profits Wang et al. (2016).
By optimizing the vessel class for each service, we take advantage of the specifi-

cations of these classes. In our case, vessel classes are defined by different minimum
and maximum speeds as well as differing capacities (called resource groups), port call
costs and charter costs. Resource groups can be, for example, the maximum weight
the vessel can transport, the maximum number of container slots or the maximum
number of reefer container plugs. We assume that only a single vessel class can be
assigned to a service, which is a reasonable assumption in practice.

5.4. A mixed integer programming model

In this section we provide the formal definition of the mixed-integer programming
model for the cargo allocation problem with speed optimization and fleet deployment.
This model is based on the formulation of Guericke and Tierney (2015), which uses a
directed graph as a representation of the problem. Nodes represent port calls and arcs
represent the legs between ports of a service. The graph includes a layered structure to
model multiple visits to the same port in a single service. For more details about the
graph formulation we refer to Guericke and Tierney (2015). In addition to adding fleet
deployment to the model, we also change the piece-wise linearization of the bunker
consumption costs to the more efficient approach of Reinhardt et al. (2016).
In the following, we define the relevant index sets of the model. It should be noted

that the majority of the index sets are equal to the original formulation. We added
two sets to define Cartesian products of other index sets.
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Sets
Q Set of vessel classes
P Set of ports
S Set of services
Ls Set of layers for service s
Ps Ď P ˆ Ls Set of ports for service s
Ls Ď Ps ˆ Ps Set of legs for service s

R Set of resources
G Set of resource groups
Rg Ď G Set of resources in resource group g

N Set of cargo flows
NOD
p Set of cargo flows whose origin or destination is port p,

NOD
p “ tn P N |on “ p_ dn “ pu

E Set of equipment types for empty container balancing
Π “ t0, 1, ...u Set of container paths
Ne Set of cargo flows and container paths of equipment type

e P E, Ne “ tpn, πq P N ˆΠ|en “ eu

HN “ SˆPˆQ Set of the Cartesian product of services, ports and vessel
classes

HF “ N ˆΠ Set of the Cartesian product of cargo flows and container
paths

We now introduce the parameters of the model. We add parameters for the secant
based linearization of the model. It is necessary to determine these secants for each
vessel class as the classes have different bunker cost functions.
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Parameters
fs P N` Frequency in days of service s
δ`ps, p, lq P Ls Incoming leg of service s to port p, l
δ´ps, p, lq P Ls Outgoing leg of service s from port p, l
Cgq P N` Capacity of vessel type q of resource group g
kMin
q P R` Minimum speed in knots of vessel type q
kMax
q P R` Maximum speed in knots of vessel type q

arc P R` Utilization of resource r of container c
on P P Origin of cargo flow n
dn P P Destination of cargo flow n
qMax
n P R` Maximum quantity of cargo flow n in the planning horizon
en P E Equipment type of cargo flow n
rn P R` Revenue in US$ of cargo flow n
θn P R` Maximum transit time of cargo flow n in days

tEpq P R` Duration in hours to move one container at port p with
vessel type q. A move is a loaded or unloaded container

tAddp P R` Additional constant duration (for pilotage, bunkering etc.)
required at port p in hours

t P N` Length of the planning horizon in days
ws Weekly volume adjustment parameter, ws “ fs

t
tFp P R` Fixed container storage duration in port p in days

φPCpq P R` Port call cost in US$ per call of vessel type q at port p
φDq P R` Depreciation/time charter cost of vessel type q
φCH
p P R` Container handling cost at port p per unit in US$
φTS
p P R` Transshipment cost at port p per unit in US$
φCe P R` Depreciation cost for one unit of equipment type e P E
φP P R` Penalty cost for services that have too few vessels deployed

gvlq Gradient of secant for bunker consumption approximation
of leg l P LS for vessel type q P Q

ivlq y-intercept of secant for bunker consumption approxima-
tion of leg l P LS for vessel type q P Q

MMax
q Max. amount of vessels of vessel type q P Q

MSMax
kq Max. costs to sail leg k P Ls with vessel type q P Q

MP
spl Maxiumum port duration for service s, port p, l

MS
sk Maximum sailing duration for service s, leg k

MC
n Maximum. duration for all container paths of cargo n P N

ε Small value for adjusting the transshipment indicator vari-
ables

Finally, we present the variables of the model. To support vessel class and count
decisions, several sets of new variables are required. As discussed previously, the
different vessel classes have different consumption functions, leading to different secant
sets. Consequently, the variables for leg durations and bunker costs per leg also need a
dependency on the vessel class. The main variables that are introduced to reflect the
new possible decisions of vessel class selection and setting the vessel count are yVsq and
γsq. Previously, γsq was a parameter that was set by the planner beforehand. Now, it
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can freely range on an integer scale larger than zero. The binary variable yVsq, however,
describes whether a specific vessel is assigned to a service or not.

Variables
yVsq Indicates whether vessel type q P Q is used on service

s P S
γsq P N` Vessel count of service s P S of vessel type q P Q
bskq P R` Bunker cost of leg k of service s for vessel type q
φF Fixed cost of all services in the planning horizon

αnπ P R` The quantity of cargo flow n on container path π over
the entire planning horizon

xsknπ P R` The quantity of cargo flow n P N for path π on leg
k “ pi, l, j, l1q P Ls of service s

xske P R` The amount of flow of equipment type e P E on leg
k “ pi, l, j, l1q P Ls of service s

lsplnπq,
usplnπq P R`

The amount of laden containers loaded and unloaded of
flow n P N to and from liner service s at port pp, lq P Ps
on container path π for vessel type q P Q

lspleq,
uspleq P R`

The amount of empty equipment loaded and unloaded
of empty flow e P E to and from liner service s at port
pp, lq P Ps for vessel type q P Q

yCPL
sknπ P t0, 1u Indicates whether leg k of service s is used to route cargo

n on path π
yCP
nπ Indicates whether cargo flow is n P N is routed on con-

tainer path π P Π
yTsplnπ P t0, 1u Indicates whether cargo n on path π is transshipped at

port pp, lq on service s

τTT
splnπ P R` The time in days per visit to unload a cargo n on path

π at service s port pp, lq for transshipment operations
τTF
splnπ P R` The time in days per visit to forward cargo flow n from

service s lth call of port p to the succeeding port (and
no cargo transshipment is performed)

τCP
sknπ P R` The total duration in days to route cargo flow n on path

π on service s leg k
τs Round trip time in days of service s
τVs Total relevant duration of all vessels of service s (number

of vessels times the planning duration)
τLskq P R` Duration in days to travel leg k in service s for vessel

type q
τSsk P R` Auxiliary variable specifying the duration in days it

takes service s to steam leg k P Ls over the whole plan-
ning horizon. τSs,k ď tSMax

s,k

τPspl P R` Auxiliary variable giving the duration in days that ser-
vice s calls port pp, lq

τBspl P R` The additional buffer for service s at port pp, lq in days
to hold the round trip time

ρVS
s P R` Slack variable allowing vessels in service s to steam

above maximum speed
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We now introduce the objective and constraints of the model.

max “
ÿ

nPN

ÿ

πPΠ

`

rn ´ φ
C
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˘

αnπ ´ φ
F
´
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sPS

φPρVS
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´
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ÿ

nPNOD
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qPQ
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´
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ÿ
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ÿ

πPΠ

ÿ

qPQ

φTS
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´
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ÿ
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ÿ

qPQ

φTS
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´
ÿ

sPS

ÿ

kPLs

ÿ

qPQ

bskq (5.5)

The objective function contains terms for revenue (5.1), container handling costs
(5.2), transshipment costs for laden (5.3) and empty containers (5.4) as well as for
bunker consumption costs (5.5). Furthermore, term (5.1) considers depreciation costs
for containers and adds fixed and penalty costs to the objective function. In compar-
ison to the objective function of Guericke and Tierney (2015), the dependency on the
selected vessel class was added to the terms (5.2) through (5.5). The fixed costs term
φF contains costs that are dependent on the selected vessel class, making it a variable
in our model. The bunker cost calculation in this model is simplified to the sum of all
bskq variables. The constraints of the model are as follows.

ÿ

πPΠ
αnπ ď qMax

n @n P N (5.6)
ÿ

pPPs

ÿ

lPLs

τPspl `
ÿ

kPLs

τSsk ´ ρ
VS
s “ τVs @s P S (5.7)

τSsk ď tSMax
sk @s P S k P Ls (5.8)

τTT
splnπ ě

ws
2 τPspl ` t

F
p ´MP

splp1´ yTsplnπq
@s P S, pp, lq P Ps,
n P N, π P Π (5.9)

τTF
splnπ ě wsτ

P
spl ´MP

sply
T
splnπ

@s P S, pp, lq P Ps,
n P N, π P Π (5.10)

xsknπ ď qMax
n yCPL

sknπ

@s P S, k P Ls,
n P N, π P Π (5.11)
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sknπ ě τSskws ´MS

sky
CPL
sknπ
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5.4. A mixed integer programming model
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P
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2 τ

P
sjl1nπ, if j “ dn

0, otherwise

@s P S,
k “ pi, l, j, l1q P Ls,
n P N, π P Π

(5.12)

αnπ ď qMax
n yCP

nπ @n P N, π P Π (5.13)
ÿ

sPS,kPLs

τCP
sknπ ď θn `MC

n p1´ yCP
nπ q @n P N, π P Π (5.14)

αnπ ď αnπ`1 @n P N, π P t0, ..., |Π| ´ 1u (5.15)

Constraints (5.6) to (5.15) are unchanged compared to Guericke and Tierney (2015)
as there are no direct dependencies on the vessel class selection or the determination
of the vessel count. Constraints (5.6) constrains the maximum volume on all con-
tainer paths of a single cargo flow. The period structure of the services is modeled in
the Constraints (5.7), including the durations at sea and the durations at the ports
and an upper bound for the total leg duration is given in Constraints (5.8). Con-
straints (5.9) and (5.10) are used to calculate the time it takes to transship a container
to another service or to simply forward the cargo to the next port of the service. In
Constraints (5.11), cargo flows are allowed if a particular leg is used and restrict the
leg capacity to the maximum cargo flow in the planning horizon. Constraints (5.12)
compute the transport duration for cargo flows for all service legs, considering trans-
shipment, forwarding and sea durations as well as port durations. Constraints (5.13)
are used to set the variable yCPnπ to one if a cargo flow is routed on a container path. In
Constraints (5.14), the maximum transit time is used to bound the sum of all single
leg durations. Constraints (5.15) is a symmetry breaking constraint for k-splittable
flow problems (see Petersen (2011)).

xsδ`ps,kqnπ `
ÿ

qPQ

lsknπq “ xsδ´ps,kqnπ `
ÿ

qPQ
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@s P S, k P Ps,
π P Π, n P N (5.16)
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ÿ
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γsqfs @s P S (5.28)
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tSMax
sk “ plij

t

fs
q{p

ÿ

qPQ

24kMin
q yVsqq @s P S, k P Ls (5.32)

Constraints (5.16) through (5.23) are adjusted to mirror the extension of deployment
and duration variables. Constraints (5.16) and (5.17) are used to balance the flows of
laden and empty containers. Constraints (5.18) and (5.19) compute the loading and
unloading of laden and empty containers. The capacity limitation on service legs is
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defined in Constraints (5.20). It should be noted that the capacity strongly depends
on the selected vessel class and therefore needs to be considered for the calculation
of the maximum capacity. Constraints (5.21) computes the port call duration. The
indicator variable for transshipments is set in Constraints (5.22) and (5.23).
Constraints (5.24) to (5.32) are added to the model to include the new linearization

approach as well as the fleet deployment decisions. Constraints (5.27) perform the
fixed cost calculation while Constraints (5.28) compute the round-trip time. Con-
straints (5.29) determine the total relevant duration and Constraints (5.32) the maxi-
mum duration of a service. Constraints (5.24) and (5.25) are used for the calculation
of the bunker costs. The linearization with secants can be seen in Constraints (5.24)
for a given number of secants λ. Constraints (5.25) are used to restrict the bunker
consumption costs for vessel classes that are not used. There are two additional con-
straints that handle fleet deployment decisions. First, Constrains (5.30) only allows a
single vessel class per service to be selected, and Constraints (5.31) restrict the number
of vessels of a specific class to zero if the class is not selected for a service. If a vessel
class is not selected for a particular service, the duration to travel a leg with that
specific vessel class is set to zero in Constraints (5.26).

5.5. Computational results

Our computational analysis is based on the same instance sets that are used in Guer-
icke and Tierney (2015), which consists of data from the public LINER-LIB database.
They represent small to medium-sized service networks in three different regions. For
each region, there are 30 different network variations. Table 5.2 provides detailed
information about the size of these regions regarding the number of ports, number
of legs, cargo flows and available vessel types. While the Baltic and WAF instances
represent small feeder networks, the Mediterranean instances portray a medium sized
network. Furthermore, we fixed the number of available container paths for our ex-
periments to one. The analysis of Guericke and Tierney (2015) provides more details
of the consequences if the number of container paths is increased.
The goal of our analysis is to determine to what extent integrating fleet deployment

with cargo allocation can improve the overall profit of a network. For this, we evaluate
our instances with dual six-core Intel Xeon X5650 2.67GHz CPUs and 32GB of RAM
per instance. We use Gurobi 7.0 with a time limit of 24 hours to solve our model.
To evaluate the effects of the proposed model, we fix the fleet deployment to the

Table 5.2.: LINER-LIB instance information (see Brouer et al. (2014)).
Instance Ports Cargo flows Legs Vessel types min/max services

Baltic 12 22 132 2 1/3
WAF 20 37 380 2 5/10
Mediterranean 39 365 1482 3 1/3
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5. Integrating Fleet Deployment into the Liner Shipping Cargo Allocation Problem

Table 5.3.: Average runtime in seconds, average MIP gaps and number of solved in-
stances for free and fixed runs.

Optimized Fixed

Avg. time Gap Solved Avg. time Gap Solved

Baltic 0.67 0.00 30/30 0.10 0.00 30/30
WAF 3618.06 0.46 29/30 44.92 0.00 30/30
Mediterranean 86400.00 356.81 0/30 58978.33 14.14 10/30
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Figure 5.2.: Performance of fixed and optimized deployments with Baltic instances.

originally planned vessel assignments. In the following analysis, we refer to these fixed
assignments using the term “fixed deployment”. The results from our newly proposed
model are referred to as “optimized deployment”.
Table 5.3 shows the average runtime in seconds, the average MIP gaps to the optimal

solution in percent, and the number of solved instances for optimized and fixed runs
over all instance regions.
For the WAF region, there is a single instance for the optimized deployment that

was not solved within the timelimit of 24 hours, having a gap of 13.7% to the optimal
solution. The last feasible solution in this case was found about 14.5 hours before
termination. In the given time frame, none of the Mediterranean instances could be
solved to optimality, and only three instances had a gap of less than 20% at the time
of termination.
In the fixed deployment, the same WAF instance that could not be solved in the

optimized case was solved in less than 13 minutes. Also, only 7 of the 30 Mediterranean
instances have an optimality gap of more than 10%.
Although feasible instances have been found in some of the Mediterranean instances,

in most cases the MIP gap is too big such that a further analysis of these feasible
solutions would not benefit this work. Therefore, the following analysis will only
evaluate the results of the Baltic and the WAF instances.
Figure 5.2 shows scatter plots of performance indicators for fixed and optimized

deployments with Baltic instances. Each point represents an instance. The leftmost
scatter plot shows the average utilization of the vessels as a percentage, the other
three display financial indicators in tens of million USD. The performance of the
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Figure 5.3.: Performance of fixed and optimized deployments with WAF instances.

optimized deployments is plotted on the x-axis and the performance of the fixed de-
ployments is plotted on the y-axis. The diagonal line illustrates data points in which
the performance of the fixed deployment is equal to the performance of the optimized
deployment, while points below the line mean the optimized solution had a higher
value than the fixed deployment (and a lower solution value for points above the line).
In the scatter plot showing the average utilization, only three instances have a better

utilization in the optimized case for the Baltic region. By repositioning more empty
containers, these instances increase the amount of used capacity of the vessels. It
can be observed that some instances have a different strategy when to unload cargo,
resulting in higher container path durations for their cargo. In these cases, cargo is
transported on additional legs compared to the optimized case, increasing the usage of
vessel capacity on these legs. In five of all the 53 services of the Baltic region (about
9.4%), the vessel class has been changed to increase the capacity of the service. In most
of these cases, the utilization of these services decreased, although the total amount
of transported cargo was increased in these instances, leading to higher revenues. The
overall additional profit in the Baltic instances is on average about 150,000 USD and
ranges from no difference at all to an increase of 1 million USD.
The scatter plots of the fixed and optimized deployment performance with WAF

instances are displayed in Figure 5.3. The structure of this figure is the same as for
the Baltic instances, except that the financial indicators are represented in units of
100 million USD.
About 45% of all the services (108 out of 238 services in total) show an adjustment

to the deployment. Due to these deployment changes, all WAF instances are able to
carry more cargo and generate higher revenues. In many cases, vessel classes with
higher capacity are assigned to the services, resulting in less utilization. There are
also cases in which smaller vessel classes are selected, which usually leads to higher
utilization of the vessels. It can also be observed that in some instances, the number
of vessels is increased to take advantage of slow steaming. Despite raising costs by
assigning more vessels and transporting more cargo, the overall additional profit is on
average about 21 million USD, ranging from 9 million to 46 million USD.
The evaluation of the selected performance indicators (average vessel utilization,
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5. Integrating Fleet Deployment into the Liner Shipping Cargo Allocation Problem

profit, total costs and revenue), shows that by optimizing the fleet deployment the
profit of a service network can be increased in many cases. Our proposed model
allows for increases in the overall capacity of a service network by adding more vessels
to a service or by switching vessels classes. Due to the higher capacity, more cargo
can be transported.

5.6. Conclusion and future research

In this paper we integrated fleet deployment decisions into a state-of-the-art cargo
allocation model. This extension combines two closely connected problems into a
single model, giving liner carriers a decision support tool that enables a practically
relevant analysis of their liner shipping service network. By providing the flexibility
of optimizing vessel classes of a service as well as the vessel count of a service, ser-
vices can be further improved regarding the profitability. To demonstrate this, we
evaluated instances of two LINER-LIB regions by comparing the previously planned
deployment with the results of our optimized deployment. We showed that the inte-
grated optimization of cargo allocation and fleet deployment leads to higher numbers
of transported cargo, therefore resulting in overall increases of profits of an average of
150,000 USD in the Baltic instances and an average of 21 million USD for the WAF
instances.
Future research can be performed on improving the solution time of this model, as

even the relatively small WAF instances take a long time to solve. For this, a column
generation approach or a heuristic approach could be implemented. Furthermore,
the current model includes assumptions about cargo handling and piloting times that
could be relaxed in a stochastic model.
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We introduce three mathematical models of increasing complexity for designing
liner shipping services that guarantee the punctual arrival of vessels at a specified
service level. On-time reliability is an important performance indicator for many liner
carriers, but current approaches for creating new routes in liner shipping networks
do not consider data-driven uncertainty. We perform an empirical analysis of vessel
travel times in a real liner shipping network to develop probability distributions that we
use within novel, chance-constrained mathematical models for liner shipping service
design. Our models are also the first to support variable vessel speeds for service
design. In our experiments, we use real-world data from 22 liner shipping routes and
evaluate the designed services using a simulation procedure that demonstrates the
effectiveness of our approach for reducing lateness. We show that our models can be
effectively used for decision support at a tactical level not only for designing services,
but also potentially for negotiating maximum demand transit times and prices with
customers.

Keywords: maritime transportation, liner shipping optimization, service design,
on-time guarantee
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6.1. Introduction

The liner shipping industry is situated at the center of global trade, providing effi-
cient and secure freight transportation on over 5,000 seagoing vessels (United Nations
Conference on Trade and Development (UNCTAD), 2015). Each year, more and more
freight is transported with standardized steel containers in liner shipping networks.
In 2015, over 171 million TEU1 of freight was carried across the oceans, representing
over 1.6 billion tons of goods (United Nations Conference on Trade and Development
(UNCTAD), 2015).
Liner shipping differentiates itself from other forms of maritime transportation, such

as tramp or industrial shipping, due to the periodic and cyclical nature of the routes
in liner shipping networks. In liner shipping, these routes, called services, visit a
sequence of ports within specified time windows on a periodic (usually weekly) basis.
Once a vessel reaches the last port in the sequence, it travels to the first port in
the sequence and starts again. As it may take more than a week to finish a round-
trip, it is often necessary to deploy more than one vessel to fulfill the periodicity
at the ports. The periodicity and reliability of liner shipping services have become
key selling points, resulting in liner shipping services forming the backbone of many
modern supply chains (Notteboom and Rodrigue, 2008). However, the planning of
efficient and reliable liner shipping services is challenging, as there are many sources
of delay that can send a vessel off-schedule, which can have expensive repercussions
throughout the supply chain (Notteboom, 2006). Sources of delays for vessels include,
for example, bad weather, port congestion, equipment breakdowns, labor disputes and
medical emergencies. These can cause a vessel to be late for its weekly time window
or even have to cancel its stop at a particular port. Moreover, it is not only important
that vessels arrive at ports when scheduled, but that the shipped containers (demands)
reach their destination in the time period that was guaranteed by the liner carriers,
as arrival uncertainty causes extra costs in the supply chain (Vernimmen et al., 2007).
Due to the periodicity and cyclical nature of liner shipping services, there are in-

terdependencies between the expected travel times of a service, the number of vessels
assigned to a service, and the resulting reliability of a service. When designing services
for their networks, liner carriers often add buffer time before each port call to reduce
the effect of such delays and increase the reliability of schedules. The amount of buffer
is usually determined based on the experience of planners or simple rules of thumb.
Liner carriers often have no analytical basis in the historical data for each port for
decision making, nor is the order of the service optimized to provide a certain amount
of reliability. Analytical tools are missing that allow for an exploration of costs and
reliability of liner shipping services considering the specific structure of the schedules
and the complex trade-offs.

1A single twenty foot equivalent unit (TEU) represents one twenty foot container, with two TEU
representing the commonly found forty foot container.
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6.1. Introduction

This paper focuses on the planning of a single service within a liner shipping network
that explicitly incorporates uncertainty in travel times. The ports that should be
visited and the berthing windows identifying when they should be visited are given as
inputs for all models. In addition to optimizing the route a service takes to ports, we
also consider the number of vessels necessary for running the service in conjunction
with the planned speed of the vessels. Our models provide an arrival time service level
to planners in a similar fashion to the service levels in Ehmke et al. (2015) for the well
known vehicle routing problem with time windows, with one key difference. In Ehmke
et al. (2015), lateness accumulates over the course of each vehicle’s tour. In the case
of liner shipping service design, during the execution of a route, planners have a range
of actions they can take to get a vessel back on schedule (see Brouer et al. (2013b)).
We do not explicitly model recourse actions in our tactical model, but assume that
they can be taken to avoid propagation of lateness. However, we analyze the impact
that propagation can have on the reliability of a service through simulation.
We present three mathematical models of increasing complexity for planning liner

shipping services to understand how different features influence the results. To estab-
lish these models, we begin with a data-driven investigation into the distribution of
travel times between different kinds of ports in liner shipping (see Section 6.3). This
provides an analytical background for how we model uncertainty in liner shipping. In
Section 6.4, we present the mathematical models and how they are able to accommo-
date the derived travel time distributions. In Section 4.1, we start with analyzing the
impact of different service level guarantees on the arrival time at different ports on the
design of cost-minimizing services, assuming the vessels plan to travel at their design
speed. This helps us quantify the impact of modeling uncertainty. In Section 4.2, we
expand the first model to explicitly consider the impact of varying speed levels on the
number of required vessels and the resulting arrival time service levels. Contrasting
the model of Section 4.1, we can now trade a smaller number of vessels for higher
speeds in service execution or vice versa. In order to provide acceptable service levels
with regard to port time windows, our first two models often create large buffers in
the services’ schedules. Thus, they ignore delivery time guarantees on freight. Our
third model, in Section 4.3, alleviates these limitations and helps us understand how
different levels of delivery time guarantees can impact the amount of freight that can
be carried when there are limitations on maximum container transit times.
In Section 5, we experiment with the use of the presented mathematical models

in a series of computational experiments. To this end, we apply the presented travel
time distributions to instances based on data from the well-known LINERLIB (Brouer
et al., 2013a) and compute the optimal solutions for the different models. Considering
different service levels through chance constraints in our optimization models, we ana-
lyze the trade-off between a larger fleet of vessels and adaptations of speed levels from
a tactical network design perspective. Then, we assess the operational performance
of these optimized services with a discrete-event simulation. The simulation evaluates
the optimized services by imitating individual service runs to determine the “actual”
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realized cost and quality of a service, analysing the impact of propagation of lateness
in the course of a round-trip. We provide a set of managerial insights based on these
results in Section 6.
In summary, our paper provides the following contributions:

1. a data-driven investigation of distributions of travel time for liner shipping ser-
vices,

2. the modeling of service guarantees on arrival times through chance constraints
for service design,

3. a model for service routing optimization with variable vessel speed (tactical
perspective),

4. and a simulation study to evaluate the effectiveness of the models (operational
perspective) and the impact of lateness propragation when executing the services.

In the following section, we delineate our modeling approach from related literature
in this field.

6.2. Literature Review

The liner shipping service design problem with arrival time service levels has connec-
tions to a number of different problem domains, including the areas of vehicle routing,
tramp shipping, and liner shipping. We now discuss the similarities and differences of
this work with related work in the literature, referring to Christiansen et al. (2013) and
Christiansen et al. (2004) for an overview of the entire area of maritime transportation
and Brouer et al. (2017) for an overview of liner shipping optimization.

6.2.1. Liner Shipping

We divide our discussion of related work within the area of liner shipping into two
subsections. First, we discuss related problems such as network design and fleet de-
ployment and then move into work addressing single service scheduling and routing.
Given the prevalence of delays in maritime applications due to storms, labor disputes,
and breakdowns, considering uncertainty is a natural extension to operations research
models for tramp, industrial and liner shipping. Nonetheless, there is little literature
considering stochastic elements in these problems.

Related Liner Shipping Problems

Liner shipping single service design can be considered a subproblem of the overall net-
work design problem and is considered a tactical problem in Meng et al. (2013). The
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network design problem is very difficult to solve with exact solution approaches (Agar-
wal and Ergun, 2008, Álvarez, 2009, Brouer et al., 2013a) and even for heuristics (Brouer
et al., 2014). Due to its difficulty, network design problems usually leave out or ab-
stract a number of important side constraints that we are able to include, such as the
handling of container transit times. We note that to the best of our knowledge, there
has not been any work on combining uncertainty with liner shipping network design
models.
Fleet deployment models are also related (see, e.g., Powell and Perakis (1997)),

as these assign a heterogeneous fleet of vessels to a set of services. In contrast to
these models, we do not try to size the vessel to the service we are designing. In
our approach, the vessel class is an input parameter. Fleet deployment models are
subject to different types of uncertainty than service/network design problems. A
key source of uncertainty for these types of problems is the amount of demand that
is shipped each week on each service. A chance-constrained model takes this into
consideration in Meng and Wang (2010), finding a minimal cost allocation of vessels
to services. We do not take demand uncertainty into account in our model, but this
would be a logical extension of our work. Transit time restrictions for demands were
recently considered in terms of the cargo allocation problem, which assigns containers
to routes in a network in Guericke and Tierney (2015), as well as for a time-constrained
multicommodity flow problem in Karsten et al. (2015). We solve a simplified version of
this problem as a part of our single service design. We do not consider transshipments,
making our cargo allocation easier in comparison.

Single Service Scheduling

Several papers determine vessel speeds and schedules for one (or more) service(s) under
uncertainty given a pre-defined port sequence. The key difference between these works
and our model is that we determine both the port sequence and the schedule. Delays
at ports are considered in Qi and Song (2012), in which delayed arrivals are penalized
in the objective function, reflecting a potential loss of goodwill. The authors discuss
how to compute the service level at each customer, acknowledging that prior delays
can accumulate. Furthermore, the paper focuses on special cases, such as with 100%
service levels for all customers. A drawback of this work is that the authors do not
use real data for their port time distributions, instead assuming uniform and normal
distributions. In a parallel work, Wang and Meng (2012a), the authors also seek
vessel speeds and a schedule under uncertainty for a new liner shipping service. They
create a mixed-integer non-linear stochastic programming model for the problem that
minimizes ship and fuel costs while maintaining a given service level. The problem is
solved using a cutting-plane algorithm.
The most relevant work in the area of liner shipping in terms of focusing on delays

is Lee et al. (2015). The paper assumes the routes are given and looks at the impact of
different steaming speeds for executing the route, given the stochastic nature of port
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Article Routing Lateness dist. Speed opt. Method
Wang and Meng (2012a) 7 Any Truncated Non-linear Non-lin. stoch. prog.
Wang and Meng (2012b) 7 Uniform & Normal Non-linear Non-lin. stoch. prog.
Qi and Song (2012) 7 Uniform/Normal Non-linear Sim. stoch. approx.
Song and Dong (2013) 3 7 Non-linear Heuristic Decomposition
Plum et al. (2014) 3 7 7 Branch-Cut-and-Price
Lee et al. (2015) 7 Normal/Any Non-linear Markov chains
Song et al. (2015) 7 Trunc. Normal Non-linear NSGA-II Deb et al. (2002)
Reinhardt et al. (2016) 7 7 Disc. secants MILP
Wang and Wang (2016) 7 7 Non-linear Polynomial time algorithm
Santini et al. (2017) 3 7 Disc. graph Branch and price
This paper 3 log-logistic 3P Disc. secants MILP

Table 6.1.: A categorization of related work within the area of liner shipping ser-
vice/schedule design.

operations. Buffers are planned into liner shipping schedules in order to maintain a
specified arrival service level. In contrast, not only do we perform route planning, we
also do not limit ourselves to only considering port delay. While port delays make
up a large percentage of the sources of delay (Notteboom, 2006), a number of other
sources exist that we are able to account for in our model.
A feeder network design problem is presented in Santini et al. (2017) that routes and

schedules several services within a geographically limited area. The authors use an
expanded time space graph so that vessel speeds can be precomputed and assigned as
costs directly to the arcs. The number of vessels used on the routes if fixed to a value
K, meaning the set of speeds for vessels and amount of buffer that can be inserted
into the schedule, is limited. Thus, Santini et al. (2017) does not consider arrival time
service levels.
The paper that motivates the basic form of our model is Plum et al. (2014). The goal

in this work is to design a single service given a set of ports that must be visited. A set
of container demands between ports must be satisfied while taking into account the
capacity restrictions of the vessels. Our first deterministic model (Phase 1) resembles
this work very closely, adding only the optimization of the number of ships on the
service. Furthermore, our models extend the work of Plum et al. (2014) with variable
vessel speed and arrival time guarantees, which represent important characteristics for
the liner shipping industry. A summary of the features of our models in relation to
the literature is given in Table 6.1.

6.2.2. Vehicle Routing with Time Windows

The well-known vehicle routing problem with time windows deals with the efficient
utilization of a fleet of vehicles to deliver goods in a transportation network (Kolen
et al., 1987). In particular, a set of customers is assigned to a fleet of vehicles such that
the number of vehicles is minimal, the order of customer visits is cost optimal, and
every customer is visited exactly once within its time window. Ehmke et al. (2015)
is among the most recent and related papers; they explicitly consider the interplay of
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stochastic travel times and time windows, ensuring service levels in routing through
chance constraints. For them, the largest challenge stems from the computation of
the combined arrival time distribution along a route, which we ignore in our approach
since we assume statistical independence between the individual sequences on a route.
Contrasting with vehicle routing approaches, liner shipping service design involves a
number of constraints usually not present in vehicle routing, such as a maximum con-
tainer transit time, the selection of feasible demand, and the consideration of varying
commodities.

6.2.3. Tramp and Industrial Shipping

Tramp and industrial shipping involve the transportation of bulk or liquefied goods
(but rarely containers) in a vehicle routing-like fashion. Tramp/industrial shipping
problems differ greatly from liner shipping problems in terms of the schedule struc-
ture. Whereas liner shipping has a periodic, fixed schedule like a public bus network,
tramp/industrial shipping more resembles taxis, in which ships sail wherever there
is a demand to be satisfied. However, despite their differences, all of these types of
shipping involve vessels that can be delayed in the same way, as well as have similar
cost profiles for sailing. Speed optimization has become a standard feature of tramp
shipping models (Norstad et al., 2011).
The most recent work in this area is Agra et al. (2015), which considers a maritime

inventory routing problem for liquefied natural gas with stochastic sailing and port
times. The authors determine routes and the quantity of gas to load/unload a priori
and model the problem as a stochastic program with recourse using scenarios. In
contrast, we compute distributions over the arrival times of vessels at ports. In Agra
et al. (2016), this work is extended to use a log-logistic distribution to model delays as
in our work. Uncertain sailing times are considered in Halvorsen-Weare et al. (2013),
motivated by a real energy company, Statoil, as well as uncertain production rates for
a natural gas provider. In Halvorsen-Weare et al. (2013), the same problem is solved as
in Halvorsen-Weare and Fagerholt (2013), but with robustness strategies added. The
sailing times are fitted to a log-logistic probability distribution, based on information
gathered for a gas tanker in Kauczynski (1994).
A method for creating replenishment schedules for offshore installations is proposed

in Halvorsen-Weare and Fagerholt (2011). The paper defines four weather states and
their impact on sailing speed and service time in ports at an offshore delivery location.
A key difference with our work is that the authors assume a set of routes already exist,
and they must choose which routes to use.

6.3. Data Exploration

A key challenge that arises in guaranteeing arrival time service levels for a liner ship-
ping service is determining what distribution underlies the travel time of the vessels. As
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discussed in the previous section, the maritime literature has several suggestions on ap-
propriate travel time distributions, including the log-logistic distribution (Halvorsen-
Weare et al., 2013). However, it is not clear a priori that this distribution is the best
fit for travel times of liner shipping services, and furthermore, it is not clear that
this distribution is appropriate for trips between all ports worldwide. To this end, we
gathered data from operating liner shipping service routes, including profiles of the
vessels used and the actual transit times of the vessels between ports. We first describe
the data we use for distribution fitting in more detail, including a frank discussion of
the strengths and weaknesses of our dataset, and finish with a presentation of the
distributions we found.

6.3.1. Data Sources and Integration

We have taken care to make our dataset as realistic as possible. To do this, we use
service information from the liner carrier COSCO and combine this with AIS (posi-
tioning) data from MarineTraffic regarding the vessels on 25 selected liner shipping
services. We note that we have no relationship with COSCO and use data regarding
their network because they offer detailed arrival time information for their services.
We gathered positioning data from the vessels’ transponders for the year 2014 and use
this data to check whether the vessels are on time or not by comparing it with the
planned schedule from COSCO (COSCO Shipping Lines, 2017). In total, our dataset
contains 40 ports, 118 vessels, 125 port to port connections, and records for 1872 tran-
sits between ports. This provides us with a list of transits between the ports visited
by the 25 services and an indication of how late (or early) the vessel was as compared
to the planned travel time.
Figure 6.1 shows three sample transits and their associated histograms, chosen be-

cause they represent a range of connection types: an intra-region connection ((a)), a
Pacific Ocean connection ((b)) and an Indian Ocean connection ((c)). While it is not
possible to generalize from the data of only a few connections, it is clear that even on
short connections, such as crossing the English channel, significant delays above the
scheduled sailing time are possible. Furthermore, we can see that some schedules are
planned with enough buffer that even delays of a couple of days do not cause lateness,
as in the case of the backhaul from Long Beach to Ningbo. Finally, some schedules
are tightly planned, as in the case of sailing from Singapore to the southern side of the
Suez canal. Here, significant delays of up to almost five days can occur. We note that
it is not unusual for connections to be assigned a speed faster than the vessel’s design
speed as in Figures 6.1a and 6.1c. These are likely connections where shippers wish
to have fast transit times and the carrier must meet these requests to carry shipper’s
cargo.
The data we use from the AIS transponders is the best data we can obtain, as

carriers we have spoken to do not keep track of more accurate statistics regarding
travel time. There are, however, weaknesses that we want to outline. An obvious
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Figure 6.1.: Histograms of travel times (in hours) of several port to port pairs. The
x-axis shows the varying travel times in hours between the ports. The y-
axis gives the frequency of a particular travel time. The scheduled transit
time is shown with a dashed red line and the travel time at the vessel’s
design speed with a solid magenta line.

issue is that we do not know what recourse actions were taken to avoid or reduce
lateness during operations. In particular, if a vessel is running late, a carrier may
instruct the captain to speed up to stay on schedule. We note that AIS data does
include the speed of the vessel, but even with the speed, we cannot assess whether
a speed-up was part of the original service schedule or not. Another source of error
in our data is that extremely late vessels may simply skip port calls to save time,
meaning we do not end up knowing how late they actually were. Furthermore, if no
vessel performs a particular port to port transit, we will have no data for it, and this
makes it difficult to know what distribution to use to model travel time for such a
connection when considering the creation of a new service. We attempt to counteract
some of the weaknesses in our approach by clustering the port to port connections
and by computing distributions between regions rather than individual ports. This
alleviates the problem for many connections.
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6.3.2. Distribution Fitting

We compute distributions based on intra and inter-region transit times, normalized
according to the average travel time for each region-to-region pair. To create distribu-
tions for any pair of ports worldwide, we aggregate and generalize the operational data
as follows. First, to generalize the port-to-port observations, we follow a common idea
in the network design literature (e.g. Mulder and Dekker (2014)) and cluster ports into
16 regions with the well known k-means algorithm, adjusting the ports between some
regions slightly by hand. The resulting clusters provide the input for our distribution
fitting. Second, between two regions or within a single region, for each pair of ports,
we normalize the travel times based on the mean empirical travel time between (or
within) the regions containing the ports. That is, given ports i and j from regions r
and s, we compute the average travel time between the regions and divide the travel
time between i and j by this value. Since not every pair of regions has sufficient data
to allow for an empirical fit of a distribution, we also compute a distribution across
all data that can be used for such port pairs.
We use the software EasyFit (MathWave Technologies, 2016) to generate a list of

distributions for each inter and intra region pair to narrow down the type of distribu-
tion to use across our data. In 17 out of 28 pairs with enough port to port transfers
to fit a distribution, the three-parameter log-logistic (ll3p) distribution is one of the
top three best fitting distributions, and in all other cases was still one of the best
fitting distributions. Other good fits included the Cauchy distribution and the four-
parameter Burr distribution. Given the previous use of the ll3p distribution in the
literature, we select it for the remainder of this work.
Figure 6.2 shows histograms and the best fitting normal and log-logistic probabil-

ity distribution functions for several region-to-region pairs. The x-axis provides the
normalized travel time, with the y-axis reflecting the frequency of a particular value.
There is a clear trend across all of the regions we consider. The normal distribution
has less probability mass than the ll3p distribution around on-time transits at time
0, which is a good indicator of why the log-logistic distribution is often the one with
the best fit. In many cases, the log-logistic distribution puts more mass near on-time
arrivals and is skewed to the right, reflecting a large number of vessels arrive late
and across a wide range of values. For a few region-to-region pairs, the log-logistic
distribution looks almost like the normal distribution, as is the case in Figure 6.2b,
and this further emphasizes the importance of fitting specific parameters for different
parts of the world, instead of only one set of parameters.
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Figure 6.2.: Histogram and probability distribution functions for several region-to-
region pairs. Blue bars show the histogram, a solid red line shows the
fit of the ll3p distribution, and the dashed green line the fit of a normal
distribution.

6.4. Mathematical Models

We construct an arc flow model that extends the one presented in Plum et al. (2014) to
find a cyclical route through ports given fixed port time windows. We decompose the
modeling of the extended problem into three phases, each one with added complexity.
This helps us understand the impact of different problem features and also their impact
on the solution time. Unlike in Plum et al. (2014), all of our models contain chance
constraints requiring vessels arrive at ports on-time with a specified arrival time service
level. In the first phase, we address the basic liner shipping service design problem,
requiring all demand to be transported without the maximum transit times on vessels
sailing at their design speeds used in Plum et al. (2014). The design speed is used to
provide schedules that can serve as a reasonable baseline for Phase 2 and Phase 3. In
the second phase, we relax the fixed sailing speed requirement and allow the vessel to
vary its speed, taking this into account in the objective function. In the third phase,
we impose maximum container transit times, but allow demand to be rejected if it
is not possible to meet the transit time limitations. The objective function in this
phase switches to profit maximization from cost minimization in Phases 1 and 2. As
mentioned in Section 6.1, our models do not consider propagation of lateness over the
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course of the service. This is because route planners have a range of actions they can
take to get a vessel back on schedule (see Brouer et al. (2013b)) if needed, including
skipping ports, negotiating new time windows, etc. We do not explicitly model these
recourse actions in our tactical model, because we do not know which ones could be
negotiated in each case. We assume, though, that such actions can be taken to avoid
propagation of lateness, but also create expenses that a company would want to avoid
if possible through on-time arrivals.

6.4.1. Phase 1: Design Speed Model

In Phase 1, we impose the following assumptions:

1. All ports are assigned a fixed port time window per week in which they are called.
The vessel must arrive before the port time window starts (planned arrival) and
may not leave until the window ends (planned departure).

2. Vessels must wait until the start of their time window if they arrive early at a
port.

3. Time windows must be satisfied with a confidence level of α (arrival time service
level). For example, α may be a value such as 75% or 90%.

4. Travel times between ports are statistically independent.

5. All vessels must plan on traveling at their design speed between ports.

6. All pickups and deliveries of demand must be served, assuming that the vessel
capacities are sufficiently large.

7. Forty foot containers are broken down into two twenty foot containers, and their
flow can be modeled in a continuous fashion.

8. All ports must be called exactly once.

9. The objective is to minimize the cost of the single route and the number of
vessels required.

10. The service frequency is weekly.

Note that the requirement that all ports must be called exactly once means we cannot
design butterfly or conveyor belt style routes. We note our model can be adjusted to
create such routes and in its current form can support having a port specified multiple
times. According to Song and Dong (2013), cycle routes (i.e., those where all ports are
visited once) are the most common topological structure and can be found in about
45% of services. We assume that one of the ports is arbitrarily identified as the start
port for the service, and it is also the end port since the route is cyclical. The starting
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port is assumed, without loss of generality, to be a port that has a time window that is
fully contained during the week, i.e., the time window does not intersect with Monday
at 12:00 AM.
We now define the mixed-integer linear program for the Phase 1 model.

Parameters

P “ t1, . . . , p, p` 1u Set of ports to call; ports 1 and p ` 1 represent the initial
port (and its return)

A Set of arcs pi, jq; we assume that the network is complete,
with no arcs into the initial port or out of the ending port

A1 All of the arcs of A with the addition of a single arc con-
necting the ending port to the initial port

K Set of demands
ok Origin of demand k P K
dk Destination of demand k P K
ak Amount of cargo of demand k P K
u Capacity of a vessel in TEU
tsi , t

e
i Time window start and end (respectively) within a week for

port i P P , where time 0 is Monday at 12:00 AM. The values
for the time window start and end time represent hours. The
latest arrival time has a domain tsi P t0, . . . , 167u, whereas
the earliest departure time tei P ttsi , . . . , 335u. This allows
port time windows to start and end in consecutive weeks.

cfij Fixed sailing cost for arc pi, jq P A
tαij Time for sailing arc pi, jq P A at the vessel’s design speed to

provide a service level of α
cv Charter cost per vessel per week

Variables

wi Service week at port i P P , where w1 “ 0
xij Indicates whether arc pi, jq P A is included in the service
τ si Start service time of a vessel at port i P P (hours from

beginning of service)
τ ei End service time of a vessel at port i P P (hours from be-

ginning of service)
τai Arrival time at port i P P (hours from beginning of service)
fkij Flow of demand k P K on arc pi, jq P A
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Objective and constraints

min cvwp`1 `
ÿ

pi,jqPA

cfijxij (6.1)

subject to
ÿ

pi,jqPA

xij “ 1 @j P P zt1u (6.2)

ÿ

pi,jqPA

xij “ 1 @i P P ztp` 1u (6.3)

τ si “ tsi ` 168wi @i P P (6.4)
τ ei “ tei ` 168wi @i P P (6.5)

τai ď τ si @i P P (6.6)
τ ei ` t

α
ij ď τaj `Mp1´ xijq @pi, jq P A (6.7)

w1 “ 0 (6.8)
ÿ

jPP ztoku

fkokj “ ak @k P K (6.9)

ÿ

jPP ztdku

fkjdk “ ak @k P K (6.10)

ÿ

pj,iqPA1

fkji “
ÿ

pi,jqPA1

fkij @k P K, i P P ztok, dku (6.11)

ÿ

kPK

fkij ď uxij @pi, jq P A1 (6.12)

xp`1,1 “ 1 (6.13)
xij P t0, 1u @pi, jq P A1 (6.14)

τai , τ
s
i , τ

e
i ě 0 @i P P (6.15)

fkij ě 0 @pi, jq P A1, k P K (6.16)
wi P Z` @i P P zt1u (6.17)

The objective function (6.1) includes the cost for vessels and the sailing cost for the
complete service. The variable wp`1 contains the week of the last port visit. Since
we are assuming a weekly service frequency, the last week also specifies the number
of vessels. Constraints (6.2) and (6.3) require that the service enters and leaves each
port exactly once, except for the initial and ending port. The time the vessel starts
and ends its visit at each port is determined in Constraints (6.4) and (6.5). The term
168wi converts the week selected for customer i to the appropriate hour from the start
of service. Constraints (6.6) restrict the arrival time to be before the start of the visit
at a port.
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We use a chance constraint to ensure that the service route has enough buffer at each
port to achieve the level of punctuality requested. Constraints (6.7) model a general
constraint that can be used with any probability distribution in which the inverse
CDF can be computed. These constraints force the arrival time at the next port to
always be greater than the departure time at the previous port plus the travel time
with an adequate buffer. We compute a bound for M as follows. First, we compute
a maximum path length (worst case tour) traveling salesman problem (TSP) through
all of the ports2. Given this “slow” TSP path, we then add extra buffer based on our
service level formulas to the path if required to reach a particular service level, and
further add buffer that considers when the vessel arrives at a port and how long it
must wait until the port is available.

To compute the value of tαij, consider, for example, the case of the normal distribution
where we want to guarantee a confidence level of α that we arrive on time. Assume
we have a parameter zα that provides the number of standard deviations associated
with a service level of α. We can then set tαij to be the mean travel time between i
and j plus zα times the standard deviation. Consider now the case of a non-normal
distribution such as the three-parameter log-logistic distribution. Given the scale
parameter σ, shape parameter ξ and location parameter µ, we want to find the value
of tαij providing the minimum required travel time between i and j enabling a service
level α. We can compute this from the inverse CDF as follows:

F´1
pα;σ, ξ, µq “

ˆ

1
α
´ 1

˙´1{σ
˜

ξ ` µ

ˆ

1
α
´ 1

˙1{σ
¸

.

If we are interested in comparing the results with a deterministic model, as we do in
our experiments, we can simply set tαij to a fixed value tij representing the travel time
at the design speed with no added buffer.

The visit to the initial port is specified to be in the initial week by Constraints (6.8).
Constraints (6.9), (6.10), and (6.11) are used to handle the flow of demands between
their supply and destination points as well as between transhipment points. These
are modeled in a similar way to Plum et al. (2014), but adapted to require that all
demand is served. The capacity of the vessel is enforced by Constraints (6.12) on each
arc, but only if a vessel is sailing on the arc. Should an arc not be used in the vessel
path, the flow capacity is set to zero. Constraint (6.13) connects the last port to the
first port, ensuring that the service’s route is complete. Lastly, Constraints (6.14),
(6.15), (6.16), and (6.17) define the variables appropriately.

2First, we note that this version of the TSP is NP-complete, but since our problems do not contain
many ports, it is easy to solve. Second, in later phases when speed can be adjusted we use the
slowest vessel speed allowed.
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6.4.2. Phase 2: Optimized Speed Model

While the Phase 1 model covers a number of basic properties of liner shipping service
design, in practice, planners can adjust the speed of the vessels to reduce sailing costs
or increase the probability of meeting tight deadlines. Hence, we adjust the fourth
assumption to the following:

4. Vessels may sail between their minimum and maximum speed, and the cost of
doing so will be reflected in the objective function.

We implement variable vessel speeds with several new sets of variables and parame-
ters. Since the distance between all ports is known in advance, the model can simply
decide the sailing duration for each leg of the service and the speed is known (dura-
tion / distance). The duration is used in a piecewise linearization to determine the
approximate bunker costs. Three new sets of variables are required:

γij The cost of sailing between i and j for arc pi, jq P A
ρij The duration for sailing between ports i and j for arc pi, jq P

A
βαij The amount of buffer added into the schedule between ports

i and j for arc pi, jq P A
We also need to add further parameters:

δ The speed of a vessel
δ˚ The design speed of a vessel
cB Cost per ton of bunker fuel
φgij Slope of the secant of bunker consumption cost function ap-

proximation
ωgij y-intercept of the secant of the bunker consumption cost

function approximation
tij The sailing time at the vessel’s design speed between i and

j for arc pi, jq P A
tMin
ij , tMax

ij The minimum or maximum sailing time between i and j for
arc pi, jq P A

Since the fuel consumption function of vessels is roughly cubic (Brouer et al., 2013a),
we use a piecewise linearization of the function in our Phase 2 model. One approxi-
mation for the non-linear bunker consumption function (Brouer et al., 2013a) is given
by

Bpδq “

ˆ

δ

δ˚

˙3

Bpδ˚q,

where δ is the vessel’s speed, δ˚ is the vessel’s design speed and Bpδ˚q is the bunker
consumption in tons of fuel per hour at the design speed. We use the secant approx-
imation presented in Reinhardt et al. (2016) to linearize this function and note that,
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due to the convexity of the function, no binary variables are necessary. We now show
their approximation, adjusting the notation to fit our model. First, we modify the
bunker consumption function to accept a travel duration between two ports with

B̂pρijq “

ˆ

tij
ρij

˙3

Bpδ˚qcB,

where ρij is the travel duration, tij is the sailing time at the vessel’s design speed as
previously defined, and cB is the cost per ton of bunker fuel. This function can be
approximated with a given number of secants, θ. Each secant g is defined with the
function

ĉijpρijq “ φgijρij ` ω
g
ij,

where φgij is the slope of the secant and ωgij is the y-intercept. Then, we can add the
following linear constraints to our model for computing the sailing cost:

γij ě φgijρij ` ω
g
ijxij @pi, jq P A, 0 ď g ă θ. (6.18)

Since the variables xij indicate whether an arc is being used or not, we ensure that the
sailing costs on the arc are only constrained when the arc is being used. Furthermore,
we replace the objective function (6.1) with the following:

min cvwp`1 `
ÿ

pi,jqPA

γij. (6.19)

To handle the arrival time service levels with varying speeds, we modify Constraints (6.7)
to include the decision variable ρij:

τ ei ` ρij ` β
α
ij ď τaj `Mp1´ xijq @pi, jq P A. (6.20)

In other words, the travel time from Phase 1 is replaced with the variable specifying
the travel duration on the arc, if the arc is used. We then require constraints ensuring
that the minimum duration according to the chosen service level is enforced:

ρij ` β
α
ij ě tαijxij @pi, jq P A. (6.21)

For a deterministic model, the term βαij can be set to zero. We then constrain the
minimum and maximum duration of the voyage using the parameters tMin

ij and tMax
ij

with the following constraint:

tMin
ij xij ď ρij ď tMax

ij xij @pi, jq P A. (6.22)

These constraints ensure that vessels do not sail faster or slower than is allowed should
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the arc be chosen. Finally, we impose bounds on the travel time, travel costs, and
buffer variables:

ρij ě 0, γij ě 0, βαij ě 0 @pi, jq P A. (6.23)

6.4.3. Phase 3: Optimized Speed with Maximum Transit Times Model

For our Phase 3 model, we require that demands are not carried for longer than their
maximum transit time. Requiring that all demand be served in combination with
transit times limitations can lead to infeasibility, especially when a high level of on-
time arrival is desired. A further assumption of our Phase 3 model is that the demands
at a port are the same each week. This is, of course, not the case in practice, but it is
sufficient for tactical level planning. In Phase 1 and 2, we wanted to see the impact
of service levels and speed optimization on serving the same demands, so we relaxed
this transit time requirement. Here, to enforce the maximum transit times, we will
relax the fifth assumption of Phase 1, namely that all demands must be carried. We
now have the following assumptions in addition to the Phase 2 assumptions (minus
assumption 5 from Phase 1):

10. All demands have a maximum transit time. This is a common assumption in
practice.

11. Demands can be rejected if their maximum transit times cannot be met.

12. The objective is to maximize the profit, i.e. the revenue from carrying cargo
minus the cost of sailing and cost of vessels.

These changes require two new variables:
yk This equals 1 if demand k is transported or 0 if it is not transported for k P K
δk This equals 0 when the service start time of the destination is greater than the

end service time of the cargo source for demand k for k P K. However, due
to the cyclical structure of liner shipping routes, it is possible that the start
service time of the destination is actually less than the end service time of the
source if the path of the cargo crosses the (arbitrary) “end” of the service.
When this occurs, this variable will be 1.

We also need to add further parameters:
rk The revenue of delivering a demand k
lk The maximum transit time of a demand k

For our new profit maximizing objective, we add the revenue of delivering a demand,
rk, to the objective function, and subtract the vessel and sailing costs from it:

max
ÿ

kPK

rkyk ´ c
vwp`1 ´

ÿ

pi,jqPA

γij. (6.24)
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We next replace Constraints (6.9) and (6.10), which control the start and end of the
flow of demand k, with the following:

ÿ

jPP ztoku

fkokj “ akyk @k P K (6.25)

ÿ

jPP ztdku

fkjdk “ akyk @k P K. (6.26)

Constraints (6.25) and (6.26) set the amount of containers to be carried for a particular
demand to 0 when yk is 0, ensuring that the demand is either taken in its entirety or
not at all.
Given the maximum transit time of a demand k, lk, we use the following constraints
to restrict the transit time:

τ sdk ě τ eok ´Mδk @k P K (6.27)
τ sok ě τ edk ´Mp1´ δkq @k P K (6.28)

τ sdk ´ τ
e
ok
ď lk `Mδk `Mp1´ ykq @k P K (6.29)

τ sdk ´ τ
e
ok
` 168wp`1 ď lk `Mp1´ δkq `Mp1´ ykq @k P K (6.30)

Constraints (6.27) and (6.28) set the value of δk depending on the schedule of the
vessel. When δk “ 0 (the “normal” case), the destination of demand k is scheduled
later than the origin. However, when δk “ 1, the destination comes after the “end”
of the service, meaning the scheduled time of the origin is actually later than the
destination in the model. Constraints (6.29) and (6.30) set the transit time limitation
depending on the value of δk. We then add one more set of constraints to the model
to connect the flow of each demand to its corresponding 0/1 variable:

fkij ď akyk @k P K, pi, jq P A. (6.31)

Finally, we add bounds constraints for the new variables:

yk P t0, 1u @k P K (6.32)
δk P t0, 1u @k P K. (6.33)

6.5. Computational Experiments

We will first describe how we create our instances and experimental design in Section
6.5.1. For our Phase 1 and 2 models, we simulate operations of the created schedules
to evaluate their performance with regard to cost and service quality. We describe our
simulation in Section 6.5.2. Then, we present our results of tactical planning for the
three models in Section 6.5.3. Finally in Section 6.5.4, we present sample schedules
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generated by our different models.

6.5.1. Instances

For our experiments, we want to compare the results from deterministic and stochastic
variants (with different service levels) of each model across a variety of instances. This
will help us understand the impact of different service levels, the ability to optimize
speed in the planning phase, and the impact of the maximum transit times. We also
want to understand how the underlying features of the created services, such as the
locations of the ports being considered, impact the results.
The instances are constructed using real demand data and vessel information from

the LINERLIB (Brouer et al., 2013a), which we combine with empirical travel time
distributions constructed from COSCO liner shipping services (as discussed in Section
6.3). We build 44 instances based on 22 existing COSCO services as follows. For
each COSCO service, we make a “standard” instance and a “tight” instance using
the service’s port calls. The standard instance matches the time windows from the
COSCO data, while the tight instance modifies the time windows to provide a schedule
with time windows as close together as possible. That is, all buffer between ports i
and j in the service’s port sequence is removed such that a vessel would have to sail
at maximum speed to be on time. However, we are only able to remove buffer time
up to a certain point, because the sum of all travel and port times has to be divisible
by the number of hours in a week. We therefore remove all buffers between all port
calls except for the return trip of the vessel to the origin port. For each instance,
we extract relevant demands from the LINERLIB, including the amount of containers
and the maximum transit time. For Phase 3, we also create a “relaxed” version that
allows the cargo to be delivered up to 1.5 times later than the original transit time.
This creates a total of 88 instances for Phase 3.
Since the LINERLIB data has been designed for the liner shipping network design

problem, i.e., for problems that may contain several services, it is not perfectly suited
towards single service design. This is because a significant amount of cargo is trans-
ported through hubs rather than along direct routes. To ensure our instances have a
realistic amount of cargo, we aggregate ports into 25 clusters (similar to the aggrega-
tion performed in Mulder and Dekker (2014)). We then assume each of those clusters
has some feeder services that will carry cargo to and from ports on the service we are
designing. In some cases, especially with cargo originating from Asia, this can result
in too much demand for any vessel to carry. We then randomly reduce the size of the
demands. We subtract the amount of time required to carry the cargo to the hub from
the transit time limit, along with three days for transshipment as done in Guericke
and Tierney (2015).
An overview of our instances is given in Table 7.3. The service name corresponds

to the COSCO service name. Note that our services in some cases do not exactly
correspond with the original services since we remove duplicate port calls. In addition
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Service Ports Demands Minimum vessels Service vessels Vessel type
abx 9 13 7 8 Post Panamax
aesa 12 14 10 13 Super Panamax
awe1 7 20 8 10 Super Panamax
awe2 7 12 9 10 Super Panamax
awe3 10 37 8 10 Super Panamax
awe4 7 18 9 11 Super Panamax
awe8 9 33 9 11 Super Panamax
cen 7 8 6 7 Super Panamax
ces 9 27 9 10 Super Panamax
ese 11 18 7 8 Super Panamax
fal1 11 18 9 11 Super Panamax
fax 5 6 7 7 Super Panamax
fwas 9 19 9 12 Super Panamax
fwax 10 22 12 12 Super Panamax
ne2 10 31 9 10 Super Panamax
ne6 11 29 10 11 Super Panamax
ne7 10 28 9 10 Super Panamax
psw1 4 6 5 6 Super Panamax
psw5 6 8 7 6 Super Panamax
tas1 7 16 4 4 Super Panamax
wsa 10 34 9 10 Super Panamax
wsa2 11 30 9 10 Super Panamax

Table 6.2.: Instance properties for the instances tested in this work. We note that on
psw5, the vessels from the carrier are slightly faster than the vessel we use
from the LINERLIB, hence one less vessel is required.

to the number of ports and port-to-port demands, we compute the minimum number
of vessels necessary to sail on the service using the original schedule and provide the
number of vessels the carrier assigned to each service. The vessel type dictates the
design speed, the minimum and maximum speed, as well as the (fixed) bunker costs
in tons per day at design speed (which we get from LINERLIB). For vessels of the
Post Panamax and Super Panamax classes, these values are as follows: design speed
16.5/17.0 knots, minimum speed 12 knots, maximum speed 23/22 knots, bunker costs
82.2/126.9 tons/day. We also assume a fuel price of $400 per ton.
We solve all instances with Gurobi version 7.0.2 (Gurobi Optimization, 2015) on

eight Intel Xeon E5506 CPUs at 2.13 GHz with a maximum runtime of 24 hours. For
each instance, we solve all of the models in Section 6.4. We experiment with modeling
the underlying travel time data as a normal distribution and as an ll3p distribution we
identified to be a better fit. We experiment with both to see if modeling travel time
data with a normal distribution, which is easy to use and fit, offers a similar quality
performance as the more accurate distribution. For both distributions, we experiment
with service levels of 70 and 90%, and, for the ll3p distribution, also for a service level
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of 95% because of its long tail. We also test a deterministic version with no added
buffer. This yields 8 runs for each instance and for each model. The output of each
run is an optimized schedule that contains the ordering of ports of a service (a service
design), the associated number of vessels that minimize the particular objective, the
optimized objective value, and the scheduled arrival and departure times at ports. In
Phase 2 and Phase 3, the optimized speed level between each pair of ports is also
reported.

6.5.2. Simulation

For each service that is created by Phase 1 and 2 models, we simulate the resulting
schedule to evaluate the impact of the varying service levels on “actual" costs and reli-
ability, imitating operations of individual service runs. The purpose of the simulation
is to analyze the impact of the stochastic travel time information and the possibility
of adapting speeds to fulfill service levels in liner shipping network design. From a
tactical perspective, the optimization models can create liner shipping services con-
sidering uncertainty through chance constraints as presented in Section 6.4. From an
operational perspective, the simulation now tries to realize the optimal plans from the
tactical level. We imitate that by drawing random travel times as an input for the
realization of a service. We let the simulation react with speed adaptation accord-
ing to the same degrees of freedom and cost parameters as our mathematical models,
which causes differences to the planned speeds and to the planned variable sailing
costs. Then, we can directly compare the planned costs (from optimization) with the
“actual” realized costs (from simulation) for the different optimization models.
To create this simulation, for each arc of a service, we sample the travel time between

ports using the ll3p distribution that has been fit to the particular OD pair as discussed
in Section 6.3. If the sampled travel time for an arc would cause a delay at the
destination port, the simulation increases the speed of the vessel (and reduces the travel
time) to make up for the delay, inducing higher sailing costs. If the sampled travel time
is less than what is required to arrive at the destination port on time, the simulation
decreases the speed (and increases the travel time) to reduce fuel consumption and save
money. Following the degrees of freedom of our optimization model in Phase 2, the
simulated speed and travel times are limited by the minimum and maximum speeds as
defined by the vessel type from the LINERLIB. As a consequence, in case of speed ups,
the simulated vessel may not be able to make up for all of the delay at the destination
port. The remaining lateness is then propagated to the next arc until the service
terminates. We propagate lateness in the simulation because, as mentioned earlier, it
is hard to anticipate which recourse action would be taken at each port where lateness
might occur. By letting it accumulate in the simulation, we can easily evaluate the
quality of the tactical planning and get an idea of the worst case performance of the
service.
More formally, the simulation creates individual services runs from an optimized
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schedule (including order of ports, scheduled departure and arrival times at ports, and
optimized speeds [only Phase 2]) as provided by Phase 1 and Phase 2 optimization
models. The discrete-event simulation process is as follows:

1. For each arc between ports i and j, a travel time trand
ij is sampled from the

appropriate travel time distribution. For the ll3p distribution, if trand
ij ą 10µij,

where µij is the empirical mean travel time from i to j, then trand
ij is set to 10µij.

We truncate the ll3p-generated travel times because the fitted ll3p distributions
often yield a very long tail, inducing unrealistically long sampled travel times.
Even if such a long travel time may occur in practice, e.g., due to a storm or a
port strike, we would not be able to deal with these by means of a more reliable
schedule or an adaption of speeds on a tactical planning level. In these cases,
ports would need to be skipped and other significant changes would need to be
made, which we do not want to consider here to allow for a fair comparison
between tactical planning and operations.

2. The delay at port j when sailing from i to j is computed as eij :“ ´ptsj´trand
ij ´tei q,

assuming that departure is at tei .

3. To determine the arc-specific speed δij that a vessel would need to sail to arrive
at port j on time, the simulation computes the sailing duration as follows:

ρij “ tsj ´ pt
e
i ` eijq.

Here, we assume that today’s sailing time between two ports i and j is ran-
dom, but known when leaving port i so we can react with an optimized speed
level. Implementing the idea of minimum and maximum sailing times from
Constraints (6.22), the sailing duration is restricted by minimum and maximum
sailing times:

tMin
ij ď ρij ď tMax

ij .

Finally, the arc-specific speed can be derived from the distance between the ports
∆ij, resulting in

δij “ ∆ij{ρij.

4. In case of a large positive delay, the resulting speed up may still not be enough
to achieve an on-time arrival, and the remaining delay will then be propagated
to the next arc.

Let us look at a numerical example for a schedule with tsj “ 1471.0, tei “ 918.0
and scheduled travel time of 549.71. The sample travel time from ll3p distribution
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is trand
ij “ 558.786. Next, eij “ ´p1471.0 ´ 558.786 ´ 918.0q “ 5.786. Last, ρij “

1471.0´ p918.0` 5.786q “ 547.214, i.e. δij “ 9345.0{547.214 “ 17.08.
The simulation was coded in Java 8 and run on a 64-bit Windows 10 machine. We

run 100,000 simulations per schedule.

6.5.3. Results

First, we present the results of computational experiments for Phase 1 and Phase 2
models including the results of the simulation. We then provide the results from
experiments with the Phase 3 model.

Phase 1 and 2 Results

In Table 6.3, we present averaged results for Phase 1 and 2 models grouped by standard
and tight instances. The first column is the service level and the second column
specifies the group of instances. The next three columns present results from the
Phase 1 optimization (tactical perspective). The column “Ves” represents the number
of vessels required for a service, “Var" is the variable sailing cost, and “Total" gives the
total costs including variable and vessel costs from the optimization. Recall that all
Phase 1 optimization runs assume the vessel sails at the design speed. The next five
columns represent the averaged results from the 100,000 simulations of each schedule
(operational perspective). This includes the variable sailing costs (“Var”), the number
of late ports per service that remains in spite of speed ups (“# Late”), the average
hours late per port when arrival to a port is late (“Late/p”), the percent of the time the
vessel sailed above the design speed (“Faster”), and the average speed traveled in the
simulation (“Spd”). The simulation assumes the use of the number of vessels selected
by the optimization, which is why the total cost in the simulation is not reported. For
Phase 2, the same results are reported. For the optimization, the additional column
“Spd" shows the average speed level chosen by the optimization, which allows for a
comparison of tactical and operational speed levels. We report the full set of Phase 1
and Phase 2 results in the electronic appendix.
First, we will examine the optimization outputs from Phase 1. As expected, the

number of vessels and total costs increase with service level guarantees as compared
with the deterministic results. For the standard instances, the number of vessels
required for ll3p with 95% service level is almost double the number in the deterministic
results (17.64 vs 9.73). For the tight instances, the vessels required for ll3p with 95%
service level are slightly more than double the number in the deterministic results
(17.86 vs 8.68). The corresponding total costs increase by 49% for the standard and
61% for the tight instances. The average number of vessels is slightly larger for the tight
instances than for the standard instances except when service levels are considered.
This indicates the deterministic solutions do not have many natural buffers in the
solutions.
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Next, we examine what happens when we simulate the operations of service runs
for these Phase 1 results. For deterministic instances, simulated variable costs are
slightly higher, which reflects the need of vessels having to sail above design speed to
minimize lateness. With deterministic values, the vessel would have to sail on average
45.38% (standard) or 64.73% (tight) faster than design speed to minimize lateness,
but this still leads to an average late arrival of 2.09 (standard) and 4.22 (tight). The
number of late ports per service is under 1 for all instances with service levels, but
when vessels are late, the average hours of lateness is over five hours except for ll3p 0.9
and ll3p 0.95 service levels. This indicates the utility of the better fitting distribution.
In Phase 2 optimization results, the variable sailing costs decrease for all instance

types, and the number of vessels remains close to the values found in the Phase 1
optimization results. The average planned tactial speed level drops from 16.5 or 17
knots in Phase 1 to as low as 12.46 knots with the ll3p 0.95 service level. In the
Phase 2 simulation, the variable costs, the number of late arrivals per service and the
average lateness is less than in the Phase 1 simulation, indicating the value of the
more detailed optimization model. The percentage of the service needing speed ups
in operations is significantly smaller than in the Phase 1 simulation, indicating the
gap between tactical and realized (simulated) speed tends to become smaller than in
Phase 1.
Figure 6.3 presents the discussed metrics graphically for another view. Figure 6.3a

compares the average optimal number of vessels for the different instances and phases.
It becomes clear that with the deterministic instances the number of required vessels is
the smallest, and higher service levels require larger number of vessels. Furthermore,
the deterministic tight instances require less vessels than their standard counterparts,
but this changes when introducing buffers, indicating the impact of stochastic infor-
mation.
Figure 6.3b displays the results of the simulations with the different travel time

distributions with regard to average hours of lateness at ports. It is obvious that
planning in a deterministic way leads to a significant amount of lateness on average,
especially for the tight instances (up to 43 hours in Phase 1 and up to 32 hours
in Phase 2). Interestingly, optimizing for speed levels (Phase 2) produces schedules
that help reduce the average amount of lateness. However, the best option to reduce
lateness is the inclusion of buffers. With norm 0.7 or ll3p 0.7 optimized schedules,
lateness can be reduced significantly. Considering the long tail of the ll3p distribution,
planning with a buffer based on ll3p 0.9 makes lateness almost disappear, of course
at the cost of a large number of required vessels. Here, the value of the more realistic
distribution, especially its long tail, comes into play for all instances and phases.
Finally, Figure 6.3c visualizes the total simulated costs, which include variable costs

arising from realizing schedules by simulation and fixed vessel costs provided by op-
timization. This metric yields the operational costs and should match the total costs
of tactical planning in an idealized setting. For almost all instances and phases, a
higher service quality comes at a higher total cost, mainly due to the larger number
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Figure 6.3.: Visualization of simulation results

of required vessels. Interestingly, for standard instances in Phase 1, including buffers
based on ll3p 0.7 can reduce total simulated costs a bit compared with the determin-
istic schedule. Enforcing a high service level based on ll3p 0.95 increases total costs
greatly, though.

Phase 3 Results

The main difference between Phase 3 and Phase 2 is the inclusion of revenue generation
and transit time limitations for container demands. For our experiments, we focus
on how much demand is carried under different service guarantees with these new
limitations. Table 6.4 shows the percentage of total available demand carried for
various ll3p service levels, along with the average increase in port-to-port travel time
over the deterministic Phase 3 model solution. We provide results for two different
settings of maximum transit times. The “LL” results use the maximum transit time for
container demands as listed in the LINERLIB, whereas “LL 1.5” uses the LINERLIB
maximum transit times multiplied by 1.5. As in Phases 1 and 2, we evaluate each
service with a standard (S) and a tight (T) instance. We provide these longer durations
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because the ones in the LINERLIB are tailored to Maersk Line’s network, which is
somewhat different than COSCO’s network. The longer durations also show how much
more demand can be carried when the restrictions are relaxed.
Our results show that when using the transit times in the LINERLIB, even a service

guarantee of 0.7 results in less than half of the containers of the deterministic solution
being carried on 12 services. The increase in transit times between ports to achieve
service levels is why cargo is not being carried, as in many cases the transit time is
over 50% higher for a service level of 0.7. Raising the maximum transit times by 50%
allows significantly more containers to be transported, resulting in only one service
where both the S and T variants at the 0.7 service level carry less than half of the
containers of the deterministic version. We note that in the case of awe2 at service
level 0.9, the average transit times slightly decrease over the deterministic solution
due to the selection of a different route.
The message for carriers from these results is clear: implementing a punctuality

guarantee requires them to either charge higher freight rates to shippers or to convince
shippers to accept higher maximum transit times. However, this work provides a
mechanism for quantitatively assessing how much extra revenue or transit time would
be necessary to run a profitable service. For example, on the abx service in the
standard case, the carrier only needs to convince their customers to accept 11% longer
transit times (on average around the service) for a 70% service guarantee. Our model
is particularly useful in this respect in comparison to models that do not optimize the
vessel route, as such models will not yield any insights when adjusting transit time
limitations or cargo revenues.

Runtime

Our mathematical model is solved in most cases relatively quickly using the Gurobi
solver. Figure 6.4 shows the number of instances solved at each point in time over
24 hours of runtime. In Phase 1, all 44 instances can be solved within a couple of
hours, with the vast majority solved in only a few minutes. The inclusion of speed
optimization in Phase 2 increases the difficulty of the model, however we note that
nearly all of our instances are solved within 10 hours regardless of the service level
desired. In Phase 3, the difficulty increases due to the extra freedom of the model to
optimize the cargo intake. Here, we are able to solve over half of the instances within
the first hour, with all but four instances solved before the timeout in the deterministic
case, and all but two instances for ll3p 0.95. For planning services that have a lifespan
of months or even years, a runtime of 24 hours or more is acceptable.

6.5.4. Sample Service Plans

Depending on the optimization model of the particular phase, the resulting schedules
may differ significantly, even when total costs are similar. We present some of the
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Service Cat.
Cargo carried (%) Transit time increase (%)

LL LL 1.5 LL LL 1.5
Det 0.7 0.9 0.95 Det 0.7 0.9 0.95 0.7 0.9 0.95 0.7 0.9 0.95

abx S 93 86 70 69 100 97 80 76 11 956 1446 9 854 1173
T 97 81 73 73 99 97 80 76 93 133 237 125 1132 289

aesa S 78 32 22 20 97 78 38 36 44 102 163 21 109 161
T 78 22 22 22 97 78 36 32 74 134 187 37 111 179

awe1 S 39 15 14 14 79 40 39 22 42 107 149 102 169 188
T 39 16 16 15 42 39 26 26 26 45 96 162 206 253

awe2 S 15 15 15 13 29 16 16 15 12 -1 35 30 38 69
T 15 15 15 13 36 18 16 15 11 -1 32 34 56 70

awe3 S 19 11 6 6 36 19 15 10 67 125 192 47 75 132
T 18 10 8 8 38 16 13 10 103 136 167 68 102 158

awe4 S 31 11 8 8 38 31 21 21 63 173 278 128 134 197
T 21 20 12 8 36 31 21 19 13 93 257 76 109 202

awe8 S 11 8 8 2 34 10 11 8 252 307 422 148 201 271
T 11 6 5 2 35 18 12 10 238 122 473 51 99 143

cen S 79 16 7 7 100 72 65 58 68 90 144 20 55 93
T 72 11 11 7 100 69 62 40 99 134 145 36 76 200

ces S 90 47 45 43 93 83 65 59 161 201 247 73 176 150
T 62 28 6 6 93 76 72 69 55 143 192 30 51 78

ese S 70 15 14 10 85 85 42 28 33 87 98 0 42 57
T 63 18 14 14 85 68 61 60 122 153 172 54 63 91

fal1 S 88 44 44 7 100 83 77 47 75 109 193 33 75 145
T 79 28 18 18 100 77 67 45 86 113 212 31 78 160

fax S 99 35 33 33 100 99 67 64 28 123 260 52 111 226
T 100 33 33 1 100 99 67 34 74 107 196 40 115 165

fwas S 98 69 35 15 99 99 74 57 19 210 328 5 68 100
T 98 76 36 11 99 100 74 57 37 105 332 140 256 375

fwax S 60 30 20 12 81 79 57 39 72 94 188 71 329 357
T 61 30 20 12 81 80 73 73 86 76 154 37 166 266

ne2 S 81 41 38 38 98 87 74 60 155 207 268 34 150 230
T 83 47 45 38 97 83 75 59 35 215 188 25 138 173

ne6 S 77 12 8 7 98 97 70 53 79 179 213 41 232 391
T 76 27 20 7 98 83 71 53 58 83 186 47 242 401

ne7 S 82 47 58 38 98 84 77 63 30 245 215 28 109 208
T 83 37 28 28 98 86 67 63 71 96 128 26 166 208

psw1 S 45 1 1 0 100 40 40 39 49 76 92 27 43 60
T 40 1 1 1 100 40 39 32 76 93 93 42 59 79

psw5 S 64 22 22 2 96 74 64 62 66 114 138 45 89 145
T 29 2 2 2 94 33 25 24 209 340 528 61 125 181

tas1 S 79 45 39 35 85 70 70 64 73 70 109 82 82 109
T 70 39 39 35 85 70 69 69 55 55 93 81 81 101

wsa S 94 39 37 37 97 86 69 44 163 268 284 50 143 228
T 94 20 17 4 98 86 65 43 169 207 514 43 214 350

wsa2 S 85 57 18 18 95 88 57 50 22 115 154 227 447 470
T 87 58 18 18 95 86 53 51 57 161 205 49 225 131

Table 6.4.: The percentage of total cargo carried in the Phase 3 model and increase in
port-to-port transit times over the deterministic solution for several service
levels using the ll3p distribution
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Figure 6.4.: The number of instances solved (y-axis) versus the runtime of Gurobi
(wall time) in hours in all phases for the deterministic model and all ll3p
models.

created schedules to understand the impact of the different assumptions on them.
Figures 6.5a – 6.5d compare the optimal schedules for the different phases of service

awe3 (standard). This service connects ports in North America with ports in East
Asia. In Figure 6.5, the dashed line reflects the result of the corresponding determin-
istic optimization, and the solid blue line shows a given service level. The sequence
number for each port is shown in a box with a color matching either the deterministic
or 0.7/0.9/0.95 service level solution. For Phase 1 (see Figure 6.5a), the optimal de-
terministic port order is HKG–YTN–KHH–SHA–PUS–SAV–CHS–ILM–PCN–ZLO–
HKG, requiring a total of 11 vessels and sailing costs of $2.871 million per rotation.
Including buffers based on ll3p 0.9 completely changes the order of the ports in the
optimal schedule, increasing the number of vessels to 16 and slightly reducing sailing
costs to $2.837 million per rotation. Simulation of these schedules reveals a significant
reduction of the speed ups required to ensure punctuality (from 40% to 4%). Interest-
ingly, although a high service level means investing in a large number of vessels, due
to slow steaming, the simulated sailing cost is so small that the simulated total costs
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can be reduced a bit ($7.264 million for deterministic vs. $7.072 million for ll3p 0.9 ).
The results of optimization of this instance for Phase 2 can be seen in Figure 6.5c.

Both schedules are different from their Phase 1 counterparts in the order of port visits,
and the schedules operate in opposite directions. The number of vessels remains
constant compared with Phase 1, but the optimized and realized speeds vary. For
the deterministic solution, we have a planned average speed of 13.8 knots, and for
the ll3p 0.9 based solution a value of 12.41 knots. When optimizing speed levels,
required speed ups can be reduced from 24% to 3%, reducing planned and simulated
variable sailing costs. However, due to the larger number of vessels, total simulated
costs increase significantly from 65.14 to 77.35, which is accompanied by an average
reduction of lateness from 2.7 to 0.2 ports per trip.
The Phase 3 solutions show the drop-off in cargo on the individual legs of the solution

for the 0.9 service level. Both the fronthaul and backhaul see significant reductions
in containers carried, with service level 0.9 taking 2.6x less cargo on the fronthaul
and 7.8x less on the backhaul. While many carriers would likely be willing to accept
reductions in utilization on the backhaul in exchange for high punctuality guarantees
(90% on-time would lead the industry by a significant margin), reductions in fronthaul
utilization are especially bad for a carrier’s profits.
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6.6. Conclusions

We solved the liner shipping service design problem with arrival time service levels.
We showed that a three parameter log-logistic distribution fits the journeys of liner
ships better than other distributions, such as the uniform or normal distribution, that
were previously used in the literature. Our mathematical models of the service design
problem use chance constraints to ensure that vessels arrive on time from a tactical
planning perspective. Simulation of schedule operations allows for the comparison of
planned total costs with “actual" total costs. Despite modelling a realistic version of
service design, the model is nonetheless computationally tractable with a state-of-the-
art mixed-integer programming solver. Our results show that services can be designed
with on-time guarantees and that the route a vessel takes heavily influences the service
level required. Furthermore, our model allows carriers to quantitatively assess what
level of service they wish to offer and can support them during negotiations with
shippers over prices and container transit time limitations.
This model provides a basis for several directions of future work. First, more detailed

disruption recovery actions could be considered not only in the simulation of the model
solution, but also in the model itself. Actions such as skipping ports or not fully
loading/unloading containers when severely delayed could be included, however these
would likely make the model significantly harder to solve. Furthermore, faster solution
techniques could be considered such as branch & price or heuristic approaches. These
would make the model more useful for operational decision support when negotiating
berthing windows with terminals. Finally, time windows could be made optional, i.e.,
instead of a planner specifying time windows, the model could determine optimal time
windows that the planner could then attempt to negotiate with a terminal.
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As liner carriers adjust their network of cyclical routes throughout the year, ves-
sels must be moved from one route to another in a process called fleet repositioning.
Although heuristics such as simulated annealing and reactive tabu search have been
used to solve the liner shipping fleet repositioning problem (LSFRP), there is still
room for improvement considering the gap to the optimal solution and the compu-
tational time. We propose solving the LSFRP with a biased random-key genetic
algorithm (BRKGA), as it can more effectively avoid infeasible solutions than the cur-
rently available heuristics. The inherent learning mechanism of the algorithm helps to
identify solutions with good objective values. We propose four different random-key
definitions and perform a computational analysis of these keys on publicly available
LSFRP instances. In a comparison with the state-of-the-art algorithm, a hybrid reac-
tive tabu search, we show that the BRKGA is able to find optimal solutions for small
and medium sized instances. Our results also show that the BRKGA is not able to
compete with the state-of-the-art for larger instances.

Keywords: liner shipping, fleet repositioning, biased random-key, genetic algorithm

7.1. Introduction

Seaborne trade’s relevance for the world economy has been growing steadily through-
out the last decades, reaching a total amount of transported goods of 10 billion tons
per year. As a part of the overall seaborne trade, the transportation of containerized
goods also shows a steady growth. In 2015, the number of transported containers per
year was almost three times as high as the amount in 2000, reaching a total number
of 175 million TEU1 and a transported volume of 1.7 billion tons UNCTAD (2016).
A total of 1.8 million vessels are under operation for the seaborne trade in general
and from this about 244,000 vessels are dealing with containerized goods. The largest
liner shipping company alone employs about 600 vessels for its trade.

1twenty foot equivalent unit
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Due to the enormous size of the liner shipping industry and its ongoing growth,
the operation of liner shipping networks has become a complex task for liner shipping
companies. The operation and coordination of these large amounts of vessels that
are distributed over the whole world on a long time scale is very complicated and
needs technical support from advanced algorithms and systems (Müller and Tierney
(2017)).
Liner shipping companies establish cyclical routes to connect ports in different trade

regions. These ports can be located in the same geographical area, e.g. the Mediter-
ranean sea, or they can be dispersed over multiple continents. These routes are called
services and are usually operated on a weekly or bi-weekly frequency. Due to this
fixed frequency, ports of a service are visited at a fixed time each period. Depending
on this frequency and the overall length of the service, the number of needed vessels
can be determined. These vessels have a specific schedule according to their time slot
in the service rotation.
Liner shipping companies are able to create a large network of connected ports

to transport containers by operating several services. Due to economic and seasonal
trends, liner carriers add, remove or modify services in their network on a regular
basis. In such a modification, vessels are reassigned to other services and have to be
repositioned from their current service to a new service. The repositioning of vessels
under consideration of the costs for operating and moving the vessels is known as the
liner shipping fleet repositioning problem (LSFRP)(Tierney et al. (2014)).
One of the major challenges in the LSFRP is the coordination of the vessels in regard

to their sailings. When a vessel is selected for repositioning, it has to start operating
on the goal service such that the schedule of the goal service is not altered. In between
the start of the repositioning, called the phase-out, and the start of operation at the
new service, called the phase-in, the repositioning coordinator has to plan a path that
considers the original schedule and the goal schedule.
There are exact approaches as well as heuristic approaches to solve the LSFRP. In

other publications, it has been shown that heuristics are more suitable for practical
applications as they provide a quick solution to instances of different sizes. The current
state-of-the-art algorithm for the LSFRP is a reactive tabu search approach, which is
combined with a simulated annealing algorithm (RTS-SA). Due to this hybridization,
the authors are able to increase the profits of several public LSFRP instances.
In this paper, we present four different random-key definitions for a biased random-

key genetic algorithm (BRKGA) to solve the LSFRP. We discuss the definition of the
random keys and the process to decode the keys in order to generate a solution. Our
computational experiments with public LSFRP instances show that the BRKGA is
able to find optimal solutions of small and medium-sized instances. Unfortunately,
the BRKGA has problems to find good solutions for larger instances and therefore is
not able to outperform the RTS-SA as the current state-of-the-art algorithm.
The main contributions of this paper can be summarized as follows:
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1. A definition for a random-key decoder for the LSFRP

2. Proposition of four different random-key definitions for the LSFRP

3. Computational experiments to compare the BRKGA with the RTS-SA

4. Proposition of the BRKGA combined with hill climbing

This paper is organized as follows: In Section 7.2, we will describe the LSFRP in
detail. Followed by Section 7.3 to introduce the general concept of BRKGAs as well
as specific details for the BRKGA for the LSFRP. Then, the results of the computa-
tional experiments will be presented in Section 7.4. Finally, the paper is concluded in
Section 7.5. An outlook on future research is also included in Section 7.5.

7.2. The Liner Shipping Fleet Repositioning Problem

Maritime transportation problems have been classified by Christiansen et al. (2007)
into the different planning horizons strategic, tactical and operational. Fleet size
and fleet mix decisions as well as ship design or market selection are decisions at a
strategic planning horizon. At a tactical level, planners need to decide about the
vessel deployment, the routing of vessels and their specific schedules. Furthermore,
the tactical level also considers container yard management and stowage planning.
Regarding the operational horizon, planners take decisions about vessel speed and the
actual routing of the vessels, considering external factors like weather.
Throughout the year, cargo demand is influenced by seasonal variations and general

economic trends. In order to survive in the competitive market of the liner shipping
industry, liner shipping companies need to adapt to these changes. This is mostly
done by adjusting and changing their network of liner services. These changes occur
on a strategic to a tactical planning horizon. Changing a liner service, includes adding
or removing a service as well as modifying an existing service. When such a change
occurs, liner shipping companies have to reassign vessels between services. The process
of moving a vessel from a service to another service is called repositioning.
The liner shipping fleet repositioning problem (LSFRP) was first mathematically

described in Tierney et al. (2012). The model reflects the goal of liner shipping
companies to minimize the cost of such a repositioning. For this, revenue generating
activities are incorporated into the repositioning plan of a vessel. These activities
include the transportation of customer cargo and empty containers. Transporting
customer cargo also helps avoiding cargo flow disruptions, which would be very costly
to the liner shipping company due to the lost revenue. Other costs are associated with
port calls and the bunker consumption of vessels.
Especially the bunker consumption gives liner shipping companies the opportunity

to save costs in their operations. Since the fuel consumption of vessels is roughly cubic
according to the vessels speed, sailing at less speed can save considerable amounts of
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money. In an activity called slow steaming Meyer et al. (2012), vessels sail below
their design speed, reducing the bunker consumption. This approach is a standard
procedure, to reduce sailing costs for liner carriers.
Furthermore, vessels can use so-called sail on service opportunities (SoS) to generate

additional revenue. On their way from their original service to the goal service, vessels
can sail on other services as well, replacing another vessel on this service (the on-service
vessel). While the repositioning vessel is performing its operation on this service, the
on-service vessel can be chartered to another company. A SoS can also be used to lay
up and maintain the on-service vessel, as the original vessel follows the schedule of the
on-service vessel and therefore no cargo flow disruptions on this service are happening.
The repositioning vessel needs to be at the same port as the on-service vessel in order

to make use of a SoS. There, all the cargo can be transshipped from the on-service
vessel to the repositioning vessel such that the repositioning vessel can transport the
cargo. Another option is to let the on-service vessel and repositioning vessel visit the
same ports at the same time, which is known as “in tandem” sailing (Tierney et al.
(2014)). The on-service vessels stops at every port to unload cargo until it is free
and is able to start alternative activities. The repositioning vessels operates as an
on-service vessel and loads and unloads cargo where necessary.
The cargo that needs to be transported is defined by its starting port and its des-

tination port. Furthermore, the latest delivery time at the destination port is known.
In addition to this specific customer cargo, empty equipment can also be transported.
Empty equipment refers to empty containers that are in surplus at some ports, while
other ports have a deficit of empty containers. In contrast to normal cargo, empty
containers can be transported to any port with a deficit. By transporting empty
containers, revenue can be generated as otherwise money would have to be spent to
transport these containers with other options.
In this model, containers can have two types: dry and reefer. Dry containers are

standard containers, without any further requirements. Reefer containers are used
to store cargo that needs to be refrigerated. For this, reefer containers need elec-
tric outlets and cooling connections, which are only provided on special places on a
container vessel. Each vessel type has a specific capacity of dry and reefer slots for
containers, which needs to be considered by the planning as dry and reefer cargo is
not interchangeable.
While planning the repositioning process, liner carriers have to consider a specific

planning horizon. This horizon is set by the repositioning coordinator and describe
the earliest time, the repositioning vessel may leave its original service and the latest
possible time the repositioning vessel may start its operations on the goal service. The
actual time when the repositioning vessel leaves its original service is called phase-out.
The time when the vessels arrives at the goal service and starts operating on the
schedule of the goal service is called phase-in. The phase-out and the phase-in have
to be within the planning horizon described before.
Furthermore, the repositioning coordinator has some freedoms in setting the path
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Figure 7.1.: A visualization of the graph structure of the LSFRP as presented by
Tierney et al. (2014).

for the repositioning vessel. He can use port calls of the original service and the goal
service. As described before, SoS are also an option to find relevant ports with cargo
for the repositoning path. In addition to these options, the repositoning coordinator
can omit or induce ports. It can be useful to omit a specific port, i.e. the vessel does
not stop at this port, because the timing of the repositioning does not allow for this
stop. On the other hand, a repositoning coordinator might decide to induce a port that
otherwise would not be visited, because there is some cargo that can be transported.
Such a port is also called flexible as this port is not included on the original service,
the goal service or a SoS and therefore has no fixed time window for a visitation. All
ports that are on a service have fixed time windows for a visitation and therefore are
called inflexible.

The mathematical formulation of the LSFRP is taking the different activities, possi-
ble port calls and sailings and creates a graph that describes the possible repositioning
plans for a vessel. Each node in this graph represents a port visit and the arcs between
the nodes represent the sailings between port visits. Figure 7.1 uses this definition to
present an example of three Phase-In options for a single repositioning vessel. In order
to solve this problem, Tierney et al. (2014) present a simulated annealing approach.
This approach is able to solve large, real-world problems, which is demonstrated by
solving public LFSRP instances. A case study extends the results and shows that
their algorithm has an advantage over a manual composed repositioning plan. Due to
the low runtime of the approach, the authors show that this algorithm can be inte-
grated in a decision support system for repositioning coordinators. A prototype of a
decision support system is presented in Müller and Tierney (2017). For the system,
the authors also extend the algorithm and the model to increase the flexibility for
repositioning coordinators. They present several practical use cases to demonstrate
the relevance for planners. In Becker and Tierney (2015), a new state-of-the-art algo-
rithm is presented that combines the simulated annealing with a reactive tabu search
algorithm. With this combination, the solutions for some of the previously mentioned
public LFSRP instances could be improved.
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7.3. A Biased Random-Key Genetic Algorithm for the LSFRP

7.3.1. Overview

Genetic algorithms are based on the evolutionary principle of natural selection and
“survival of the fittest”. The concepts of individuals, chromosomes, inheritance and
mutations are used to find good solutions for optimization problems. Since the first
presentation of the concept by Holland (1975), genetic algorithms have been developed
to solve complex optimization problems like the vehicle routing problem (VRP) (Baker
and Ayechew (2003)) or the job-shop scheduling problem (Pezzella et al. (2008)).
In the “classical” genetic algorithm, a specified number of individuals make up the

population of each generation. Every individual has a certain chromosome, which is
composed of bits. The structure of the chromosome (e.g. number of bits) is equal in
every individual, but the specific value of its’ chromosome differs. The chromosome
describes a solution to the optimization problem at question, turning the population
into a list of different solutions to the underlying problem. By using the objective
function of the problem as a fitness function, the individuals and their chromosomes are
evaluated. This leads to a ranking of the available solutions in the current generation
of individuals. Depending on the fitness evaluation, individuals are selected to build
the next generation of individuals. Individuals with a higher fitness value have a
higher chance to be selected. In a process called crossover, the genes of two selected
individuals at a time are then combined to generate a child individual. There are
multiple ways to combine the genes of the two parent individuals. In the end, a child
individual is generated, which contains genes from its parents, creating a totally new
solution. Furthermore, a mutation process is employed, where single or multiple genes
of some child individuals are altered.
The standard approach of genetic algorithms of defining problem specific chromo-

some encodings makes it necessary that for every problem to be solved, a new defi-
nition of the chromosome is necessary. Therefore, Bean (1994) proposed a different
approach for encoding the chromosome: random keys. In random-key genetic algo-
rithms (RKGA), instead of using bits, integers or other representations, floating point
values in the range of r0, 1s are used for building the chromosomes. With this ap-
proach, Bean (1994) aims at eliminating the offspring feasibility problem, which has
been a problem for many applications of a GA.
No matter what the underlying problem is about, random keys are used to represent

solutions to the problem. In order to evaluate an individual and its random key, a
deterministic and problem specific decoder is used. This decoder uses the random-key
chromosome to generate a solution from the solution space of the original problem.
In GAs, it can occur that the crossover between two parent individuals does not
necessarily produce a feasible offspring. By using random keys, the evaluation in the
decoder is implemented such that the random keys lead to feasible solutions. By
keeping the decoder deterministic, it is ensured that a specific random key will always
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result in the same solution.
In RKGAs, an elitist strategy is used to compose a new generation of individuals. In

an elitist strategy, a certain percentage of the best individuals in a previous generation
is directly copied to the next generation. The majority of the new generation is
produced by the parametrized uniform crossovers (Bean (1994)) of randomly selected
parents. In this crossover procedure, for each gene it is decided, which parent is used
as the source of the gene. This decision can be biased towards one of the parents.
Instead of mutating chromosomes of individuals, Bean (1994) proposes a process
called “immigration”. Here, at each generation totally new individuals are generated
by creating new random keys.
The random-key approach was extended by Gonçalves et al. (2011) by incor-

porating a different crossover strategy. In the so-called biased random-key genetic
algorithm (BRKGA), the population is divided into an elite group, which contains
the best individuals of the population. The rest is called non-elite. For the crossover,
one parent is selected from the elite group and the other from the non-elite group,
guaranteeing that one of both parents contains one of the best solutions of the current
population. The selection of the alleles for the new chromosome is done according to
a parametrized uniform crossover, which is described by Spears and DeJong (1991).
A user-defined parameter determines the probability to select the allele of the elite
parent. This parameter can be used to create a bias towards the elite parents by
setting the probability above 50%.
Figure 7.2 shows a comparison of the creation of a new generation in a standard

GA and the BRKGA. It demonstrates that the BRKGA defines an elite group of
individuals, which are directly copied to the next generation. Furthermore, one parent
is being selected from the elite group while the other parent is selected from the non-
elite group. In contrast to this, the standard GA considers the whole population with
equal probability for the selection of the parent individuals. The figure also hints at
the difference at mutating the solutions in the next generation. In a standard GA,
some individuals are selected and specific alleles are changed, creating a new solution.
In BRKGAs, new individuals are randomly created and added to the next population.

7.3.2. Implementation of the BRKGA

The main difference between a standard GA and a BRKGA is the definition of the
chromosomes of individuals. In standard GAs, a chromosome usually is very problem
specific and gives a direct indication of how the solution looks like. This is not pos-
sible in a BRKGA, as the chromosomes are composed of random float values. These
values are not directly connected to the problem or a solution of the problem. There-
fore a problem specific decoder is needed, which constructs a solution based on the
chromosome.
Algorithm 1 presents an overview of how the BRKGA is implemented for our exper-

iments. Lines 1-7 describe the initialization phase of the algorithm. The instance is
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Figure 7.2.: Visualization of population changes in standard GAs and BRGKAs. Fig-
ure adapted from Gonçalves et al. (2011).

accepted as an input to this function as well as a parameter vector, which is described
in Table 7.1.
Here, the instance file is parsed (line 1) and the relevant parameters for the algo-

rithm are set (line 2). In the initialization phase, the first generation of individuals
is also constructed (lines 4-6). Here, the population is filled with randomly generated
individuals, which are then decoded and evaluated.
An important step for the decoder happens in line 2: The nodes of the instance

are pre-evaluated. In this step, every node is evaluated regarding two different char-
acteristics. As discussed in Section 7.3.3, this evaluation will be used in the decode
function to construct a solution.
Line 7 describes the stopping criteria of the algorithm. There are three different

criteria that need to hold in order to proceed (Hottung and Tierney (2016)). The first
part states that the maximum number of generations (gmax) should not be exceeded,
where g is the current generation number. Also, if the amount of generations after the
last generation (gl) with an improvement exceeds the limit (gni), the algorithm stops.
Finally, there is a time limit on the algorithm, which is checked in line 7. These three
criteria depend on the specific parameter settings, which are set in line 2.
The main process of the BRKGA is described in the lines 8 to 19, which closely

resembles standard GA implementations. Line 8 and 9 demonstrate the use of an
elitist strategy. In this strategy, the population is sorted according to their objective
value and a specific portion of the best individuals is declared the elite. In the crossover
step (line 9), this elite is used to perform the crossover operation with the rest of the
population. Due to the biased approach of a BRKGA, the chromosome of the elite
parent is preferred against the chromosome of the non-elite parent. In addition to the
new individuals that are formed by this crossover operation, additional individuals
are created as mutants (line 10). Mutants are completely new individuals, where no
parents are used and the whole chromosome is created by randomly selected float
values.
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Algorithmus 1 : BRKGA for the LSFRP.
function BRKGA (instance, g)

Initialize_Algorithm();
P Ð Initialize_Population();
best Ð ´8;
best_individual Ð null;
foreach p P P do

if Decode(p) ą best then
best Ð Decode(p);
best_individual Ð p;

end
end
while (g ď gmax) and ((g - gl) ď gni) and (current_time ă time_max) do

E Ð Pick_Elite(P);
M Ð Generate_Mutants();
P’ Ð E Y Crossover(P\E, E) Y M;
foreach p P P’ do

if Decode(p) ą best then
best Ð Decode(p);
best_individual Ð p;
gl Ð g;

end
end
P Ð P’;

end
return best_individual;

Name Description
gmax Maximum number of generations
gl Last generation with an improvement
gni Limit of generations with no improvement

Table 7.1.: Description of the parameters for BRKGA function (Algorithm 1).

The population of the next generation is then created, by using the elite group of
the current generation, the individuals formed by the crossover step and the newly
generated mutants. This population is then decoded and the objective value of each
individual is checked whether it is better than the current best solution. If this is the
case, the current best individual is stored and the counter for the last iteration with
an improvement is set to the current generation number. When all individuals of the
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Algorithmus 2 : Decoding an individual
function Decode (p)

paths Ð H;
sorted_vessels Ð Sort(vessels, p.V);
foreach vessel in sorted_vessels do

previous_visit Ð null;
current_visit Ð vessel.start_Visitation;
current_path Ð H Y current_visit;
while not at instance.final_Visitation do

possible_destinations Ð Filter(current_visit.outgoing);
if possible_destinations = H then

return infeasible;
else

sorted_destinations Ð Sort(possible_destinations, p.D, p.M,
p.R);
current_visit Ð First(sorted_destinations);
if previous_visit ‰ null and previous_visit.is_Flexible then

Set_Speed(previous_visit, current_visit, p.S, vessel);
end
if current_visit.is_Flexible then

if previous_visit ‰ null then
Set_Speed(previous_visit, current_visit, p.S, vessel);

end
end

end
current_path Ð current_path Y current_visit;
previous_visit Ð current_visit;

end
paths Ð paths Y path;

end
p.Evaluation Ð Evaluate(paths);
return p.Evaluation;

new generation have been checked, the current generation is overwritten with the new
generation and the algorithm returns to line 7.
Lines 7 to 19 are performed until at least one of the stopping criteria is met. Finally,

the best individual is returned (line 21). If no feasible solution has been found, the
algorithm would return no solution at all.
The process of decoding an individual is presented in Algorithm 2. It is identified as

“Decode” in Algorithm 1. This algorithm is called with an individual as a parameter,
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therefore it must be called for every individual. It generates paths for every vessel.
These paths are evaluated to determine the objective value of this solution. Once
this solution is determined, this specific individual does not need to be evaluated
again. The individual contains its chromosome and therefore the used weights in this
function. These weights are used as vectors in this definition and describe the weights
for vessel selection (V), the weights for direct costs to the next visitation (D), weights
for minimal path costs (M), weights for expected revenue (R) and weights for the
determination of vessel speeds (S).

The first step in the evaluation of an individual is the sorting of the vessels according
to the vessel weights (V). For each vessel, the chromosome contains a weight value and
the vessels are sorted in descending order of their weights. For each of these vessels, a
path from its phase-out node to the phase-in node needs to be found. The phase-out
is known for each vessel and is indicated by the term “start_Visitation” in line 4. As
presented by Tierney et al. (2014), the graph of the instance contains a sink, a node
without any outgoing connections. As soon as this node is found during the path
generation of a vessel, the repositioning path has been found and a path is generated
for the remaining vessels (line 6). The specific process of generating the path for a
vessel is contained in lines 8 to 29.

Looking at the current visitation (either the starting visitation or a visitation later
on the path), possible outgoing edges need to be determined. As each visitation can
only be visited by a single vessel, it is important to filter out visitations that are not
available for this path (line 9). In order to keep track of visitations that have been used
by a vessel, a list of blocked visitations is maintained. In addition, this list contains
visitations that are indirectly blocked. Visitations might be indirectly blocked if they
have a single outgoing arc, which points to visitation that is used by a vessel.

In case there are possible destinations that can be used for the ongoing path gen-
eration, these destinations are sorted according to a weighted sum of direct costs for
the next visitation, the minimal path cost to the graph sink and the potential rev-
enue at the next visitation by using the weights from the chromosome (D, M, R) (line
13). After the possible destinations have been sorted, the best visitation of this list is
selected (line 14) and added to the current repositioning path (line 24). In case the
selected visitation is flexible, the arrival and departure time have to be set as well as
the sailing speed on the incoming and outgoing arcs of this node (line 16 and line 20).

After a path for every vessel has been found, the complete repositioning plan is eval-
uated in order to be able to compare this solution to the solution of other individuals.
The evaluation of the repositioning plan considers port call costs, sailing costs as well
as fixed costs for the vessels. It corresponds to the objective function of Tierney et al.
(2014).
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Name Description
v Weight for every vessel
a Weight for every arc of the graph
s Weight for the determination of the vessel speed on flexible arcs
d Weight for direct costs to the next visitation
m Weight for minimal costs for a path to the graph sink
r Weight for potential revenue of a visitation
oj Weight for each outgoing arc j of the starting visitations of the vessels

Table 7.2.: Description of the parameters for the four different BRKGA implementa-
tions.

7.3.3. Definition of the random keys

This section contains the definition and implementation details of four random-key
definitions for the LSFRP. Table 7.2 gives an overview over the parameters of the
random-key decoders. It should be noted that not all the parameters are used by
every decoder.

Arc based key definition (ABK)

The path generation for the vessels of an individual are based on selecting relevant
nodes along the vessel paths (see Algorithm 2). Therefore, a first simple approach of
defining a random key for the LSFRP would be to define weights for each arc in the
graph of an instance. In this random key, each vessel gets a weight assigned (v) in
order to determine the sequence of the vessels during the path generation. In addition,
every arc has its own weight in the random key, described by a. The last weight, s,
is used to determine the vessel speed on flexible arcs. During the decoding of an
individual, the arc weights are directly used to sort the possible next visitation on the
repositioning path of a vessel (Algorithm 2). Therefore, the sort function of line 9 in
Algorithm 2 would be modified to accept the vector of weights for every arc.

Visitation based key definition (VBK)

The information used in the random key of Section 7.3.3 to generate a vessel path
only refers to the general structure of the graph. By using the weights of each arc to
select the next destination in the path, there is no problem specific information used.
Making use of further information, like potential costs and revenue might enhance the
node selection in path generation.
For this random-key definition, a weight for each vessel (v) is also needed, to create

a ranking of the vessels. Furthermore, the random key contains three weight values
for each vessel. These weights are used to determine the specific path of each vessel.
Weight d is used for direct costs between visitations, weight p is used for the minimal
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path cost to the graph sink and weight r is used for the potential revenue of a visitation.
Again, the weight s is needed to determine the sailing speeds on flexible arcs.
For this random key to work, Algorithm 1 needs to be extended in the initialization

phase (lines 1-3) by another method called “Pre_Evaluate”. In this method, every
node of the instance graph is evaluated in order to determine possible direct costs to
the outgoing visitations and to determine the minimal path cost to the graph sink.
During the decoding of an individual, the possible revenue of any relevant visitation
is calculated on-the-fly. This can also be calculated beforehand in the initialization
phase of Algorithm 1. By doing it on the fly, it is possible to consider the current state
of the generated path and only take the demands into consideration that are available
in this state. In the path generation, these weights and their respective values are then
used to compute a weighted sum over the possible visitations. The visitation with the
highest value of the weighted sum will be selected for the vessel path (Algorithm 2,
lines 9-10).

Visitation based key definition with starting arcs (VBKSA)

This approach is an extension of the random-key definition of Section 7.3.3. Similar to
the definition of Section 7.3.3, the chromosome of this approach also contains weights
for the ranking of the vessels (v), the direct costs (d), minimal path costs (p), potential
revenue (r) and the speed of the vessels (s). The extension of Section 7.3.3 lies within
the weight oj. This key is defined for every outgoing arc of the starting visitations of
the vessels. When a path is generated for a vessel and the current visitation equals the
starting visitation of the vessel, the weights defined by oj are used to determine the
next visitation. The procedure of selecting the next visitation resembles the approach
of Section 7.3.3. After this first sailing of a vessel is determined, the arc weights are
not used for the rest of the path. For this, the same procedure as in Section 7.3.3 is
used to compute a weighted sum over direct costs, minimal path costs and revenue. In
order to integrate this approach into Algorithm 2, line 9 need to be modified such that
it uses the sort function with keys for the outgoing nodes from the starting visitation
or the keys for the costs and revenue depending on the current visitation.

Visitation based key definition with all arcs (VBKAA)

The final key definition in this paper is a combination of the approaches in Section 7.3.3
and Section 7.3.3. The chromosome of this approach contains keys for the vessel
ranking (s), the direct costs (d), the minimal path costs (p), the revenue (r), the vessel
speed determination (s) and for every arc of the graph (a). Similar to Section 7.3.3, a
weighted sum is computed to determine the next visitation on the generated path. For
this, the weights for direct costs, minimal path costs, revenue and the arc weights are
used. The visitation with the highest weighted sum value is used as the next visitation
on the path. This approach is integrated into Algorithm 2 by considering the weight
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vector for all arcs in the sort function.

7.4. Computational Evaluation

The computational evaluation is based on inspired public instances that are presented
in Tierney et al. (2014). These instances are inspired by real world liner services. An
overview of these instances is given in Table 7.3. In total there are 44 instances, with
varying numbers of vessels (|S|), graph nodes (|V |), inflexible and flexible arcs (|Ai|
& |Af |), demands (|M |) and sail-on-service opportunities (|SOS|). Furthermore, the
table shows the instance IDs as well as the number of ports with equipment surpluses
or demands (|E|).
The number of vessels of the instances range from three to eleven. The size of the

graph ranges from 36 nodes to 379 nodes and from 150 arcs to 13,705 arcs. Fur-
thermore, the number of demands ranges from 20 to 1,423. Not all instances have
ports with equipment surpluses/demands or sail-on-service opportunities. It should
be noted that the range of vessel count is not evenly distributed over the instances.
There are nine instances with three vessels, but only one instance with ten vessels.
Almost all of these instances have been solved to optimality in the publication of

Becker and Tierney (2015). An optimal solution is not known for the instances 35p
and 38p. The optimal solutions have been used by Tierney et al. (2014) and Becker
and Tierney (2015) to evaluate the performance of their algorithms and will be used
for the same purpose in this paper. The goal of this computational evaluation is the
comparison of the proposed random-key definitions in Section 7.3.3 with the state-
of-the-art algorithm presented by Becker and Tierney (2015). This algorithm will
be discussed in the following section. The optimal solutions are the baseline for the
comparison.
Each instance was solved 25 times with a time limit for each run of ten minutes. All

experiments were performed on Intel Xeon E5-2670 2.6GHz CPUs with 4 GB of RAM.
The RTS-SA was started with the same configuration as in Becker and Tierney (2015).
For the BRKGA, the population size of each generation is set to 100 individuals, with
10% belonging to the elite and 30% being mutants.

7.4.1. RTS-SA for LSFRP

The current state-of-the-art results on the given instances are achieved by an algo-
rithm presented by Becker and Tierney (2015). They extend the simulated annealing
algorithm of Tierney et al. (2014) with a tabu search strategy, resulting in a hybrid
approach. When the RTS-SA starts, it first performs an iteration of the simulated
annealing. After that, the algorithm alternates between the tabu search and the sim-
ulated annealing part until a solution is found.
There are different neighborhoods that are used in this algorithm, some from Tierney

et al. (2014), others are added by Becker and Tierney (2015). These neighborhoods
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ID |S| |V | |Ai| |Af | |M | |E| |SOS|
1p 3 36 150 0 28 0 1
2p 3 36 150 0 28 0 2
3p 3 38 151 0 24 0 2
4p 3 42 185 0 20 0 3
5p 3 51 270 0 22 0 3
6p 3 51 270 0 22 0 3
7p 3 54 196 0 46 0 4
8p 3 108 1,185 126 50 6 3
9p 3 108 1,185 126 50 10 3
10p 4 58 449 0 125 0 0
11p 4 62 499 38 125 6 0
12p 4 74 603 0 145 0 2
13p 4 80 632 0 155 0 4
14p 4 80 632 0 155 24 4
15p 5 71 355 0 173 0 0
16p 5 106 420 0 320 0 5
17p 6 102 1,198 0 75 0 0
18p 6 135 1,439 0 87 0 9
19p 6 135 1,439 0 87 33 9
20p 6 142 1,865 0 80 0 4
21p 6 142 1,865 0 80 13 4
22p 6 142 1,865 0 80 37 4
23p 6 153 1,598 159 89 71 9
24p 7 75 482 0 154 0 3
25p 7 77 496 0 156 0 0
26p 7 77 496 0 156 16 0
27p 7 79 571 0 188 0 0
28p 7 90 618 0 189 0 4
29p 7 90 618 0 189 19 4
30p 8 126 1,450 0 265 0 0
31p 8 130 1,362 0 152 0 0
32p 8 144 1,501 0 170 0 3
33p 8 212 2,227 433 179 50 3
34p 9 304 10,577 0 344 0 0
35p 9 357 11,284 35 874 118 4
36p 9 364 11,972 0 1,048 0 4
37p 9 371 11,371 0 1,023 114 7
38p 9 373 11,972 35 1,048 126 4
39p 9 379 11,666 0 1,109 0 7
40p 9 379 11,666 0 1,109 118 7
41p 10 249 8,051 0 375 0 0
42p 11 279 6,596 0 1,423 0 5
43p 11 320 13,058 0 1,013 0 0
44p 11 328 13,705 0 1,108 0 4

Table 7.3.: Properties of the instances tested for this work, from Tierney et al. (2014).

include add, remove and swap operations on the visitations as well as various path
completion procedures: random path completion, demand destination completion and
demand source completion. In the random path completion, a random vessel with its
path and a particular visitation along this path are selected. All subsequent visitations
are then removed from the path in order complete it with a random path to the graph
sink. In the demand destination and the demand source completion, a random vessel
is selected and its path is evaluated whether a demand exists where the origin or
the destination nodes are not included in the path. In this case, the demand is not
taken yet and both completion strategies try to vary the path such that it includes the
origin and destination nodes of this particular demand. Both procedures try to make
as little as possible variations on the original vessel path. The last neighborhood of
the RTS-SA is an ejection chain, which were introduced by Glover (1991) in order to
overcome local optima that are found by neighborhoods producing small changes. In
the case of the RTS-SA, the ejection chain is used for node swaps.
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ID Optimal RTS-SA ABK VBK VBKSA VBKAA
1p -39.83 -39.83 0.00 -39.83 0.00 -39.83 0.00 -39.83 0.00 -39.83 0.00
2p -39.83 -39.83 0.00 -39.83 0.00 -39.83 0.00 -39.83 0.00 -39.83 0.00
3p -61.77 -61.77 0.00 -61.77 0.00 -61.77 0.00 -61.77 0.00 -61.77 0.00
4p -46.62 -46.62 0.00 -46.62 0.00 -46.62 0.00 -46.62 0.00 -46.62 0.00
5p -8.21 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00
6p -8.21 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00
7p -11.49 -11.49 0.00 -11.49 0.00 -11.49 0.00 -11.49 0.00 -11.49 0.00
8p -8.21 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00
9p -8.21 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00 -8.21 0.00
10p 137.61 137.61 0.00 135.83 1.29 137.61 0.00 137.61 0.00 137.61 0.00
11p 137.61 137.61 0.00 - - 137.61 0.00 137.61 0.00 137.61 0.00
12p 138.55 138.55 0.00 136.42 1.54 138.55 0.00 137.61 0.68 138.22 0.24
13p 138.86 138.55 0.00 132.05 4.91 138.86 0.00 136.78 1.50 137.92 0.68
14p 138.86 138.86 0.00 136.78 1.50 138.24 0.45 136.78 1.50 136.78 1.50
15p -36.59 -36.59 0.00 -37.30 1.93 -37.30 1.93 -37.30 1.93 -37.30 1.93
16p -36.59 -36.59 0.00 -37.30 1.93 -37.30 1.93 -37.30 1.93 -37.30 1.93
17p -9.36 -9.90 5.72 -14.30 52.75 -9.36 0.05 -10.72 14.49 -9.50 1.52
18p 5.22 5.22 0.00 -4.30 182.45 5.22 0.00 0.22 95.80 5.22 0.00
19p 5.22 5.22 0.00 -4.52 186.54 3.77 27.86 -0.84 116.07 5.22 0.00
20p -11.85 -11.85 0.00 -15.11 27.53 -14.41 21.59 -14.25 20.23 -12.96 9.40
21p -11.85 -11.85 0.00 -15.18 28.11 -12.60 6.30 -14.41 21.59 -14.41 21.59
22p -11.85 -11.85 0.00 -14.41 21.59 -14.35 21.11 -13.61 14.83 -14.41 21.59
23p 5.22 5.22 0.00 -7.84 250.11 -3.96 175.89 -8.21 257.37 -3.01 157.62
24p -53.89 -53.89 0.00 -53.89 0.00 -53.89 0.00 -53.89 0.00 -53.89 0.00
25p -53.13 -53.13 0.00 -53.13 0.00 -53.13 0.00 -53.13 0.00 -53.13 0.00
26p -53.13 -53.13 0.00 -53.13 0.00 -53.13 0.00 -53.13 0.00 -53.13 0.00
27p -28.20 -28.20 0.00 -28.20 0.00 -28.53 1.17 -28.20 0.00 -28.20 0.00
28p -32.13 -32.13 0.00 -32.13 0.00 -32.14 0.04 -32.14 0.04 -32.13 0.00
29p -32.13 -32.13 0.00 -32.13 0.00 -32.14 0.04 -32.13 0.00 -32.13 0.00
30p 5.72 2.04 64.32 -0.09 101.50 - - - - - -
31p -12.08 -12.08 0.00 -14.45 19.65 -17.34 43.54 -16.01 32.56 -15.06 24.67
32p -10.92 -10.92 0.00 -13.29 21.73 -18.92 73.27 -17.02 55.90 -13.51 23.72
33p -10.92 -10.92 0.00 - - - - - - - -
34p -2.01 -4.79 138.53 -78.03 3782.22 -46.93 2234.73 -56.48 2709.75 -36.47 1714.21
35p - 133.97 - - - - - -96.35 - - -
36p 160.02 156.77 2.03 -120.86 175.53 - - -160.24 200.14 -343.38 314.58
37p 139.31 134.76 3.27 -84.60 160.73 -193.76 239.09 -76.00 154.56 -147.54 205.91
38p - 156.77 - - - - - -98.85 - - -
39p 161.53 155.61 3.67 -90.67 156.13 -128.77 179.72 -86.00 153.24 -117.47 172.72
40p 161.53 155.61 3.67 -95.86 159.34 -139.50 186.36 -77.79 148.16 -64.39 139.87
41p -39.60 -56.95 43.81 -238.48 502.22 - - -222.17 461.04 - -
42p 253.60 225.49 11.08 - - - - - - - -
43p 223.98 175.62 21.59 -95.14 142.48 - - -98.46 143.96 -87.83 139.21
44p 254.06 188.53 25.79 - - - - -152.72 160.11 - -

Table 7.4.: Every arc has a weight, no other evaluation, highest weight indicates the
path.

7.4.2. RTS-SA vs. BRKGA

Table 7.4 shows the optimal solutions for all used public LSFRP instances and the
solutions found by the RTS-SA. Furthermore, every of the four key definitions is
included in this table with two columns. The first column of each key definition
contains the objective function value, the second column contains the gap to the
optimal solution. The best solutions among the four proposed key definitions is printed
in bold.
It can be seen that the RTS-SA finds a solution for all instances, even the instances

where an optimal solution is not known at the moment. In contrast to this, the
BRKGA-ABK with weights for every arc does not find a solution for all instances.
Instead there are six instances without a solution of the BRKGA-ABK. With the
given key, 15 instances are solved optimally and six more have a gap to the optimal
solution of less than 5%. Another group of six instances have a gap value of about 50%
or less and the remaining instances have large gaps, the highest gap being 3782.22%.
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It should be noted that the instances with the larger gaps tend to be instances with
eight or more vessels. Except for one instance (11p), the instances that could not be
solved by the BRKGA-ABK also have eight or more vessels. The average gap over all
solved instances is 157.47%. This means that the solution of the BRKGA-ABK with
weights for every arc is on average 1.5 times lower than the optimal solution.
The results of the BRKGA-VBK can be found in the columns with the heading

“VBK”. In this key definition, problem-specific information like costs on arcs and
possible revenues are used to find the best repositioning. Similar to the results of the
BRKGA-ABK, not every instance could be solved by using the random-key definition
with direct costs, minimal path costs and expected revenues. In total, there are nine
instances that could not be solved, three more as the previous key definition. There
are 18 instances that have been solved optimally and three instances, where the gap is
less than 1%. In addition, there are three instances with a gap of less then 5%. Four
instances have a gap of less than 50% and the remaining instances have larger gaps
with the highest being 2234.73%. The average gap over all solved instances is 91.86%.
The columns with the “VBKSA” heading contain the results of the BRKGA-VBKSA

definition. This key definition extends the BRKGA-VBK weights only for the arcs
that leave the starting visitations of the vessels. With the extended key definition, 15
instances could be solved optimally. Furthermore, there are two instances with a gap
of less than 1% and four instances with a gap of less than 5%. There are five instances
where the gap is less than 50% and the remaining instances have larger gaps, except
for five that could not be solved at all. It should be noted that similar to the previous
results, the highest gaps occur at instances with vessel numbers of eight or higher.
The average gap over all instances is 122.24%.
The BRKGA-VBKAA definition is the last proposed key definition. The results are

presented in the “VBKAA” columns of Table 7.4. The table shows that there are 19
instances that could be solved optimally and seven instances that could not be solved
at all. Two instances have a gap of less than 1% and for more instances have a gap
of less than 5%. The rest of the instances have either a gap to the optimal solution
of less than 50% (five instances) or even larger gaps (seven instances). It should be
noted that the highest gap with this key definition is smaller than the highest gap
with the other key definitions. On average, the gap to the optimal solution is 79.81%,
which is the smallest compared to the previous definitions.

7.4.3. Overview & further analysis

As shown in the previous section, all proposed key definitions for a BRKGA to solve
the LSFRP have failed to achieve similar outcomes as the current state-of-the-art
algorithm RTS-SA. As presented in Table 7.5, the RTS-SA achieves an average gap
over all solved instances of only 7.71%, which is only about a tenth of the gap of
the best performing key definition. While the proposed key implementations have
problems with instances with nine or more vessels. Furthermore, the RTS-SA is able
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Key definition Solved Optimal I gap (%) σ (%)
ABK 38 15 157.47 604.56
VBK 35 18 91.86 372.74
VBKSA 39 15 122.24 430.34
VBKAA 37 19 79.81 281.89
RTS-SA 42 31 7.71 23.95

Table 7.5.: Summary of the results of all four random-key definitions.

Key definition Solved Optimal I gap (%) σ gap (%)
VBKAA 37 19 79.81 281.89
VBKAA with hill climbing 40 27 8.75 23.41
RTS-SA A/R/S 44 9 101.39 170.07
RTS-SA DC 44 13 46.51 100.83
RTS-SA PC 44 30 5.01 11.32
RTS-SA EC 44 28 10.57 27.88
RTS-SA SC 44 31 7.71 23.94

Table 7.6.: Summary of the further analysis of varying configurations of the RTS-SA
and the BRKGA-VBKAA.

to solve almost all instances with eight or less vessels optimally.
Therefore, there is no doubt that the RTS-SA has a better performance on the

used public instances and should be the preferred choice for decision support systems.
Nonetheless, the proposed BRKGA implementations have shown, that for smaller
instances they are also able to find optimal solutions.
In order to further evaluate the performance of the BRKGA approach, the best

performing key definition (VBKAA) is selected and compared against the performance
of the RTS-SA when some of the neighborhoods are excluded. Furthermore, the
BRKGA-VBKAA implementation is extended by a hill climbing algorithm that makes
use of some of the neighborhoods described in Tierney et al. (2014). These selected
neighborhoods include add, remove, demand completion and supply completion. For
this extension, the implementation as shown in Algorithm 1 is modified such that the
time for the BRKGA is limited to 90% of the total time. The last 10% of the total time
available to solve an instance is spent on the hill climbing algorithm. The results of this
analysis are presented in Table 7.62. For the different RTS-SA configurations it should
be noted that each line contains adds a new type of neighborhood to the configuration.
Therefore, RTS-SA DC not only includes the demand completion neighborhood, but
also the add, remove and swap neighborhoods.
The table shows that the integration of the hill climbing algorithm greatly improves

the overall performance and solution quality. Compared to the BRKGA-VBKAA
without hill climbing, three more instances are solved and seven more instances could
be solved optimally. The average gap can be reduced to 8.75%. The RTS-SA algorithm
also benefits from the various neighborhoods. RTS-SA with the add, remove and swap
neighborhood operators only solves nine instances optimally, compared to 31 optimal

2DC = demand destination completion, SC = demand supply completion, A/R/S =
add/remove/swap, PC = path completion, EC = ejection chain
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solutions for the full configuration. Also the average gap decreases when different
neighborhoods are included. Interestingly, the smallest average gap can be seen for
the results of the RTS-SA PC configuration, but the most optimally solved instances
are found in the RTS-SA SC configuration.
When the different RTS-SA configurations are compared to the different VBKAA

configurations, it becomes obvious that the VBKAA solutions are able to outperform
parts of the RTS-SA configurations. VBKAA without hill climbing achieves more
optimal solutions than RTS-SA A/R/S and RTS-SA DC, although it was only able to
generally solve 37 instances compared to 44. VBKAA with hill climbing shows a better
performance and shows similar values as the RTS-SA SC configuration for average gap
and standard deviation in the gap. Only for the number of solved instances as well
as the number of optimally solved instances, the VBKAA with hill climbing is worse
than any RTS-SA configuration except for RTS-SA A/R/S and RTS-SA DC.
The computational evaluation has shown that by adding these neighborhood oper-

ators, the solution quality of the BRKGA is greatly improved. For some instances,
the previously not known optimal solution was found in the first iterations of the hill
climbing algorithm, showing that the BRKGA solution was “close” to the optimal
solution. There are two explanations for this behavior. It is debatable whether the
optimal solution would have been found if there would have been more time for the
BRKGA to solve the instances. This would mean that the inherent learning mecha-
nism of the BRKGA in its current configuration is too slow for larger instances. For
some instances, it was observed that the BRKGA got stuck in local optima, which
were hard to leave in order to continue the exploration of the search space. An adjust-
ment of the BRKGA configuration might help in improving the diversification of the
solutions. As described by Blum and Roli (2003), a premature convergence to local
optima often is a major difficulty in setting up a genetic algorithm.

7.5. Conclusion and future research

In this paper, we presented four different random-key definitions for a BRKGA to
solve the LSFRP. It is shown how the BRKGA can be implemented and how the
proposed keys are used to decode an individual’s chromosome. This algorithm was
chosen to beat the current state-of-the-art: a RTS-SA implementation, which was
briefly described in this paper. With an extensive analysis, it has been shown that the
BRKGA is not able to outperform the RTS-SA with the proposed key definitions. In
an attempt to improve the general BRKGA performance a hill climbing algorithm was
added to the solution procedure of the BRKGA with selected neighborhood operators
from Tierney et al. (2014). This greatly improved the performance of the BRKGA,
but still leaves some gaps to the current state-of-the-art.
As described in the previous section, the BRKGA might show a better performance

with a different parameter setting. Future research may use parameter tuning ap-

135



7. A Biased Random-Key Genetic Algorithm for the Liner Shipping Fleet
Repositioning Problem

proaches to find the best configuration of the algorithm parameters. Furthermore,
other types of neighborhoods operators might be suitable for this algorithm such that
they could be included in the BRKGA with hill climbing. Until then, the RTS-SA pro-
posed by Becker and Tierney (2015) is still the best choice when it comes to selecting
a heuristic for the LSFRP.
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8. Conclusion

8.1. Summary

This thesis has covered selected topics from the area of liner shipping with a special
focus on planning problems surrounding modifications of a liner shipping service net-
work. Chapter 1 and Chapter 2 give an introduction into the topics of liner shipping,
decision support systems and selected metaheuristics. Part II contains the research
papers that have been produced for this thesis.
The main contributions of the thesis can be summarized as follows:

• Extension of the liner shipping fleet repositioning problem to increase interac-
tivity

• Evaluation of different visualization techniques for liner services

• Development of a prototypical DSS for the liner shipping fleet repositioning
problem

• Integration of the fleet deployment problem and the liner shipping cargo alloca-
tion problem

• Development of models with varying complexity for the liner shipping single
service design problem

• Empirical analysis of vessel travel times with real-world data

• A biased random-key genetic algorithm with hill climbing to solve the liner
shipping fleet repositioning problem

In Chapter 1, four research goals have been stated: (1) extending the scope of
selected optimization models from liner shipping, (2) developing techniques for better
visualization of liner services, (3) analysis of real-world shipping data and (4) proposing
a decision support system to integrate developed models and visualization techniques.
As shown in Chapter 4, a reasonable approach to extend the scope of optimization

models in liner shipping is focusing on increasing the flexibility and interactivity of
optimization models. Such an approach might lead to higher acceptance rates among
planners of such a model. Furthermore, Chapter 5 showed that the integration of
related decisions into a single model, improves the decision quality by using synergies
that otherwise wouldn’t be available.
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For the second goal, various visualization techniques have been presented in Chapter
4. These techniques are evaluated according to their capabilities to visualize specific
characteristics of liner services. Among other, these characteristics include ports and
their sequence within the service, vessels, the network structure and the time frame.
An empirical analysis of real-world shipping data has been performed in Chapter 6.

This work shows that real-world data can make great contributions to the field of liner
shipping. By using published service schedules and spatial data of a selected group of
vessels of these services, it was possible to compute a distribution for the lateness of
the vessels. This distribution was used to develop the optimization models as well as
the simulation model in Chapter 6.
Regarding the last research goal, Chapter 4 proposes a web-based decision support

system specifically for the liner shipping fleet repositioning problem. It includes dif-
ferent visualization techniques to display liner services. Furthermore, it integrates the
proposed extensions to the optimization model of Chapter 4. The system is developed
such that the solution algorithm could be exchanged, making it possible to use the
proposed biased random-key genetic algorithm of Chapter 7. Although the planning
tasks of Chapter 5 and Chapter 6 are different than the planning tasks of Chapter
4 and Chapter 7, they could be integrated into the proposed system. With minor
modifications of the data model and the graphical user interface, the system would be
able to present relevant information to the planner for each of the problems. As all
chapters discuss problems in liner shipping, they all work with liner services, vessels,
ports and time. Therefore, the proposed visualization techniques could be used for
any planning task discussed in this thesis.

8.2. Future research

As discussed in the individual chapters, the proposed models and solutions still leave
room for improvements and extensions. The following list presents a summary of ideas
for future research:

• The performance of the optimization model presented in Chapter 5 can be im-
proved by using a column generation or a heuristic approach.

• The optimization model from Chapter 5 includes assumptions about cargo han-
dling and piloting times that can be relaxed in a stochastic model.

• Additional empirical studies can be executed in order to analyze liner shipping
operations and improve the precision of optimization and simulation models in
this area.

Some of the presented ideas show that a close collaboration between real-world
planners and researchers would be ideal to develop practical optimization models.
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Even if such a collaboration is not always possible, there are many options to contribute
to the field of liner shipping and hopefully this thesis can be a motivation for such a
contribution.
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