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Abstract

The term “dyad ranking” refers to a new problem setting within preference learning.

Dyads are feature vector pairs that need to be ranked by machine learning models.

Existing ranking methods do not deliver good results for dyad ranking, since they

do not use all features of the dyads. Therefore, three generalizations of the Plackett–

Luce (PL) model, a statistical model for rank data, are introduced: Joint-Feature PL

(JFPL) uses joint-feature vector representations for the dyads, i.e. a mapping of a vector

pair to a single vector. The bilinear PL model (BilinPL), which takes up the idea of

JFPL, specifies the joint-feature map by means of the cross product. Experiments show

that BilinPL is superior to existing label ranking methods, because the dyad features

improve prediction performance and it can deliver predictions on new labels. The third

model, PLNetworks (PLNet), does not require the specification of a joint-feature map

but instead learns it. The model is based on a neural network and can capture non-linear

relationships among preferences.

Applications of dyad ranking include genetic algorithm recommendations, similarity

learning of images, and the configuration of image-processing pipelines using preference-

based reinforcement learning. To benefit from the probabilistic information produced

by the PL models, two visualization approaches based on multidimensional scaling and

unfolding are introduced.
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Zusammenfassung

Dyad Ranking ist eine neue Problemstellung innerhalb des Präferenzlernens. Dyaden

sind Paare von Merkmalsvektoren, die durch Modelle des Maschinellen Lernens in ein

Ranking überführt werden sollen.

Bestehende Ranking Methoden liefern keine zufriedenstellenden Ergebnisse für das

Dyad Ranking, weil nicht alle Informationen der Dyaden genutzt werden. Aus diesem

Grund werden drei Erweiterungen des Plackett–Luce (PL) Modells, einem statistischen

Modell für Rangdaten, vorgeschlagen: Joint-Feature PL basiert auf der Idee, Dyaden auf

jeweils einen gemeinsamen Merkmalsvektor abzubilden. In dem bilinearen PL Modell

(BilinPL) ist die Abbildung über das Kreuzprodukt zwischen Merkmalsvektorpaaren

definiert. Experimente zeigen, dass das BilinPL Modell eine bessere Prädiktionsgüte als

Label Ranking Methoden aufweist und Rankings über Labels prädizieren kann, die nicht

in den Trainingsdaten vorhanden sind. Das dritte Modell, PLNetworks (PLNet), basiert

auf einem Neuronalen Netzwerk und ermöglicht das Erlernen der Repräsentationen von

gemeinsamen Merkmalsvektoren.

Die Anwendungen umfassen das Meta-Learning zur Empfehlung von genetischen Al-

gorithmen, das Ähnlichkeitslernen und die Konfigurationsbestimmung von Bildverar-

beitungsketten auf Basis des präferenzbasierten Verstärkungslernens. Die probabilistis-

che Eigenschaft der Modelle wurde für zwei neue Visualisierungsmethoden genutzt, die

auf der Mehrdimensionalen Skalierung und dem Unfolding basieren.
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Notation, Abbreviations, and Acronyms

Notation

z Dyad, i.e., z = (x,y), where x ∈ X and y ∈ Y

X Feature space (domain), resp., Y and Z

ρ Ranking

% Collection of dyads / objects

π Permutation, also, σ (in context RL, π refers to policy)

ei One-hot vector, i.e. all entries zero except for the i-th component which is one

D Dataset

L Loss function

Λ Finite set of labels, i.e., Λ = {λ1, . . . , λM}

P Probability

SM Set of all permutations of the length M

N Number of training examples

xk The k-th vector within a collection (in bold typeface)

x
(n)
k The k-th vector of the n-th collection or sample

xi The i-th vector component of the vector x (in regular typeface)

x
(n)
k,i The i-th vector component of the k-th vector x in collection n

Φ(x,y) Joint-feature map, i.e. the vector representation of a dyad

z̄ Abbreviation for the joint-feature vector Φ(x,y)
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Notation, Abbreviations, and Acronyms

Abbreviations and Acronyms

API Approximate Policy Iteration

GA Genetic Algorithm

I.I.D. Independent and Identically Distributed

JF Joint-Feature

LCA Luce Choice Axiom

LTR Learning To Rank

MDS Multidimensional Scaling

ML Machine Learning

MLE Maximum Likelihood Estimation

MM Majorization–Minorization

NLL Negative Log-Likelihood

NN Neural Network

PL Plackett–Luce Model

ROL Rank Ordered Logit

RL Reinforcement Learning

RUM Random Utility Model

SGD Stochastic Gradient Descent

ZSL Zero-Shot Learning
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1 Introduction

1.1 Preference Learning

Preference learning is an emerging subfield of machine learning (ML) in which prob-

lem settings and methods about intelligent processing of preferences are studied and

developed (Fürnkranz and Hüllermeier, 2010, 2016).

Object ranking is one such preference learning setting (Cohen et al., 1999; Kamishi-

ma et al., 2011). It is about learning a ranking function by observing a subset of ranked

objects. The goal is to utilize a learned ranking function by applying it on a set of new

objects to find a meaningful ranking for them. An important aspect of the problem is that

each object is represented in terms of features or attributes. There is no differentiation

between where, when, or who would state the object rankings in this setting and all the

rankings are assumed to belong to the global context.

This aspect is different in another preference learning problem called label ranking

(Fürnkranz and Hüllermeier, 2003; Vembu and Gärtner, 2010; Zhou et al., 2014). It is

about learning a “label ranker,” which, given a new instance and a finite set of class

labels, can be used to predict a ranking over the labels. Before that, it is trained

using training examples, where each example consists of an instance—i.e., a collection

of features and an associated ranking over a finite set of labels. An instance can be

considered as a context that would be added to a ranking of labels. Depending on the

context, the set of labels can be ranked differently.

Both settings, namely object and label ranking, seem to have commonalities as well as

mutual shortcomings. They share the property of using feature descriptions. In object

ranking, the objects are described by feature vectors, whereas in label ranking only the

instances are expressed in terms of features. However, the first problem lacks the ability

to express object rankings under varying contexts, while the second problem is restricted

to dealing with class labels instead of objects. These mutual shortcomings in the two
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1 Introduction

settings are the main motivation for a more flexible alternative by focusing on using

feature vectors.

A categorization of machine learning and also of preference learning can be made

in terms of three types of learning: unsupervised, supervised, and reinforcement

learning (Goodfellow et al., 2016; Murphy, 2012; Shalev-Shwartz and Ben-David, 2014).

In a nutshell, with unsupervised learning one may aim to find and visualize structures

within a dataset such as groups of similar items. In contrast to that, in supervised

learning one aims to learn a relation between the description of an object and a target

structure, which, for example, can be a class label or a real value. The learning of a

relation from a finite amount of data should be done in such a way that it becomes

possible to predict targets on new objects in the best possible manner. Reinforcement

learning is different from the two former types. There, an agent must take decisions on

actions within an environment. An agent may learn from delayed feedback, since not

every single action is accompanied with an immediate response from which an agent can

learn from.

From this point of view, the supervised learning type is predominantly used in this

thesis. Reinforcement learning will also play a role, but in a lesser capacity and always

in connection with supervised learning.

1.2 Toward a new Problem Setting

A new setting that claims to express and to extend two existing preference learning

settings must capture commonalities, but should also exhibit new properties. A common

element in label and object ranking displays the fact that feature vectors describe objects

in object ranking and instances in label ranking. A way to extend object ranking could

be the attempt to introduce contexts in a similar fashion as instances existing in label

ranking. They could be represented as features vectors in the same way as instances in

label ranking. Likewise, a possibility to extend label ranking could be the attempt to

introduce feature vectors in the same way as objects exist in object ranking. This could

be accomplished by describing labels in terms of feature vectors just as objects. Hence, a

new setting, which offers feature descriptions for both contexts and labels, would extend

both the existing settings in a unifying way.
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1.2 Toward a new Problem Setting

Introducing such a unification requires a new and consistent nomenclature. Instead of

speaking of contexts, instances, labels, and objects, we may use rather abstract terms.

To this end, let us define, on the one hand, the domain X with the feature vectors xi,

which could be related to contexts or instances. And on the other hand, let us define the

domain Y with the feature vectors yj , which could be related to labels and objects. As

an illustration, the vectors of the hitherto defined domains could be arranged in a two-

dimensional schema (Figure 1.1). Moreover, the vectors of the X domain are arranged

as the rows, and the vectors of the Y domain are arranged as the columns.

x1
x2
x3

y1 y2 y3 y4 y5

x4

y6

Figure 1.1: Feature vectors arranged in a two dimensional schema.

It needs to be clarified what the term ranking refers to in the new setting. By reflecting

on the recently developed extended label ranking and object ranking scenario, it is clear

that the feature vectors of one domain are not considered in isolation, but they are

always related to the feature vectors from another domain. This means that feature

vector pairs are essential elements in the new setting that constitute rankings. We will

subsequently refer to a pair of feature vectors as a dyad. And dyads are the elements

from which the rankings are prepared.

Pairs also play a central role in dyadic prediction, an existing framework that covers

collaborative filtering and link prediction as problem instances (Hofmann et al., 1999;

Menon, 2013; Menon and Elkan, 2010b; Pahikkala et al., 2014). A key characteristic in

the framework is the possibility to address items by identifiers (IDs) and also optionally

by feature vectors called side-information. In collaborative filtering, the data consists of

ratings that users provided on items, e.g., on movies. One is interested there in methods

that can be used to predict ratings on items not yet rated by users. In link prediction,

the pairs are items of the same domain, e.g., pairs of people or pairs of molecules. The

problem there is to learn the affinities between pairs of such items and to predict hitherto

unknown links between new pairs.
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1 Introduction

In a sense, the new setting can be considered as a transfer of dyadic prediction to

the realm of preference learning. To enable a similar flexibility as dyadic prediction,

however, it should be allowed in the new setting to consider pairs over objects that are

from the same domain as in link prediction. Since the ranking of feature vector pairs is

the central aspect and the fact that it resembles dyadic prediction, we will refer to the

new setting as dyad ranking.

1.3 Research Questions

With the introduction of dyad ranking as a new preference learning setting, there are

several questions that come along with it:

• What are the key properties and advantages of dyad ranking compared to the

existing preference learning settings?

• More concretely, what is the advantage of considering label attributes rather than

pure class labels as in label ranking?

• In which (formal) way does dyad ranking provide a unifying view of the existing

preference learning problems such as label and object ranking?

• Which other similar settings are out there and how do they differ from each other?

• What kind of tasks can be expressed and solved with dyad ranking?

• On the methodological level, which methods are suitable for solving dyad ranking

tasks?

• What are the strengths and weaknesses of the various dyad ranking methods?

• What are the applications of dyad ranking?

1.4 Outline of the Thesis

The thesis is structured as follows. In Chapter 2, the dyad ranking setting is introduced

formally. This includes the definition of the basic elements of dyad ranking and the prob-

lem statement. Next, different prediction tasks and dyad types are identified. In Chapter

3, several related settings and methods are described and compared with dyad ranking.
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1.5 Contributions

The chapter that follows, Chapter 4, is about dyad ranking methods that address the

different dyad ranking tasks. The methods are introduced under a common methodolog-

ical framework based on joint-feature representations of dyads. The background of the

approaches covers discrete choice models and the Luce’s choice axiom.

Applications of dyad ranking include the ranking of genetic algorithms, the visual-

ization of dyad rankings using extensions of multidimensional scaling and unfolding,

similarity learning, and preference-based reinforcement learning. These are provided in

Chapters 5–7.

1.5 Contributions

Several publications resulted during the creation of this thesis. These are

• Schäfer D., Hüllermeier E. (2015) Dyad ranking using a bilinear Plackett-Luce

model. In: Proceedings ECML/PKDD-2015, European Conference on Machine

Learning and Knowledge Discovery in Databases, Springer, Porto, Portugal, pp

227-242 (Schäfer and Hüllermeier, 2015a)

• Schäfer D., Hüllermeier E. (2015) Preference-Based Meta-Learning using Dyad

Ranking: Recommending Algorithms in Cold-Start Situations. In: Workshop

MetaSel at PKDD/ECML (Schäfer and Hüllermeier, 2015b)

• Schäfer D., Hüllermeier E. (2016) Preference-based Reinforcement Learning using

Dyad Ranking. In: Proceedings DA2PL/EURO mini conference, DA2PL (From

Multiple Criteria Decision Aid to Preference Learning) (Schäfer and Hüllermeier,

2016b)

• Schäfer D., Hüllermeier E. (2016) Plackett-Luce networks for dyad ranking. In:

Workshop LWDA, Lernen, Wissen, Daten, Analysen, Potsdam, Germany (Schäfer

and Hüllermeier, 2016a)

• Schäfer D. (2017) A Latent-Feature Plackett-Luce Model for Dyad Ranking Com-

pletion In: Workshop LWDA, Lernen, Wissen, Daten, Analysen, Rostock, Ger-

many (Schäfer, 2017)
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1 Introduction

• Schäfer D., Hüllermeier E. (2018) Dyad Ranking using Plackett-Luce models based

on joint-feature representations. In: Machine Learning (Schäfer and Hüllermeier,

2018)

Parts of the bilinear Plackett–Luce model and the content of the chapters 2, 3 and 4.3

are published in (Schäfer and Hüllermeier, 2015a). This also includes, to some extent,

the experiments from the sections 7.1.1 and 7.1.2. The section 7.2.3 about cold-start

situations in preference-based meta-learning was used in the publication (Schäfer and

Hüllermeier, 2015b). The discussion on the relationship between the bilinear Plackett–

Luce model and matrix factorization from Section 4.3.2 was picked up in the publication

(Schäfer, 2017).

The publication (Schäfer and Hüllermeier, 2016a) was a result of what is described

about the Plackett-Luce networks in Chapter 4.4. The contents of Section 4.2 on

the Joint-Feature Plackett–Luce model and on the optimization with majorization–

minorization in Section 4.3.3, as well as Chapter 5 on multi-dimensional unfolding with

dyad ranking and parts of the experiments in Chapter 7 were published in (Schäfer

and Hüllermeier, 2018). The outcome of the chapters 6 and 6.4 on preference-based

reinforcement-learning was used, to a large extent, in the publication (Schäfer and

Hüllermeier, 2016b).
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2 Dyad Ranking

Dyad ranking is a preference learning setting, in which rankings of dyads play a central

role. The chapter is divided into four parts, where the basic concepts of the setting

are introduced first. This is followed by a formulation of dyad ranking as a supervised

learning problem. In Section 3, various prediction tasks are identified and described on

the basis of a two-dimensional schema. Finally, the key properties of the dyad ranking

setting are summarized in Section 4.

2.1 Basic Concepts

There are several elements in dyad ranking, and we begin with the definition of a dyad.

A dyad is a pair of feature vectors. To put it more formally, a dyad is specified as a

tuple of two feature vectors

z = (x,y) ∈ Z = X× Y , (2.1)

which are from two domains X and Y respectively, where X = Y is not excluded.

The dimensionality and the components of feature vectors can vary and depend on the

problem at hand. For the feature vectors, we will use the following notation subsequently:

x = (x1, x2, . . . , xr)
> ∈ X = X1 × X2 × · · · × Xr and (2.2)

y = (y1, y2, . . . , yc)
> ∈ Y = Y1 × Y2 × · · · × Yc . (2.3)

A domain Xi can, for example, be R, N or {0, 1}, where the latter would lead to a finite

domain X, if r (or c) are finite.

How does a problem or a method influence the choice of features? The properties

of objects that are relevant to solving a (prediction) problem have been represented as

a collection of features. In this sense, the kinds of features and the selection thereof

depend both on the problem and the method to solve the problem. A feature can either

9



2 Dyad Ranking

be learned by means of an ML method or be constructed manually. In the latter case,

a researcher or an engineer has to decide which among several attributes of an object

should be chosen. This requires knowledge of the problem and the method to be used.

A feature is typically a number of a certain scale, such as nominal, ordinal, interval or

ratio (Stevens, 1946), and describes a certain aspect of an object. It can also be either

informative or uninformative. In the first case, a feature contains information which can

be used to make predictions on novel dyads. In contrast, a feature of the second kind

does not offer such a possibility. It is then merely an identifier, just like a class label in

multi-class classification. If an object is already described by several numbers, it is often

of importance how to transform these numbers so that they can applied on ML methods.

An example is the scaling of values to a certain interval, such as [0, 1] or [−1, 1]. Which of

those decisions would be appropriate is part of a process called feature engineering. An

alternative to feature engineering is the learning of features—the so-called representation

learning (Bengio et al., 2013).

Next, we will turn to rankings over the previously mentioned dyads. The notation for

a ranking over a finite number of dyads is given by

ρ : zπ(1) � zπ(2) � . . . � zπ(M) , (2.4)

where ρ is an identifier for a ranking and the length is indicated by the number M .

Equivalently, a ranking (2.4) can be stated as a pair ρ = (%, π), which consists of a finite

collection % of dyads and a permutation. The kind of collections we consider are sets

with an associated index set I = [M ] = {1, 2, . . . ,M} respectively, where M may vary

across different ranking observations. A permutation π ∈ SM is used to address dyads

within a collection % so that π(i) can be interpreted as the index j of a dyad within %

put on the rank position i. Otherwise, the notation π−1(j) expresses the rank position

of the j-th dyad in the collection % = {z1, z2, . . . ,zM}. To ease readability, it is possible

to reorder the indices of the dyads within a collection % so that they match the special

permutation π = (1, 2, . . . ,M), where π(i) = i for 1 ≤ i ≤ M . Doing it that way, the

permutation notation in formula (2.4) can be omitted and it is possible instead to write

ρ : z1 � z2 � . . . � zM . (2.5)

These notations can be used to represent dyad rankings in a generic way. There are two

special kinds of dyad rankings which are of practical relevance. We cover these dyad

rankings next.

10



2.1 Basic Concepts

The first is a ranking where one of its members is fixed across a ranking, e.g. where

all dyads in a ranking are of the form zj = (x,yj); in this case, (2.5) can also be written

as

ρ : y1 �x y2 �x . . . �x yM . (2.6)

This form of ranking is called a contextual dyad ranking, and it corresponds to the main

type of ranking considered in the thesis.

Another special case is a dyad ranking of length two. This is referred to as a pairwise

(dyadic) preference and has the form (xi,yi) � (xj ,yj), which may also be in a con-

textualized form. Pairwise preferences can be generated in an unequivocal way from a

dyad ranking of the length M > 2 by converting it into
(
M
2

)
= M(M−1)

2 pairwise prefer-

ences. Pairwise comparisons are especially appealing in subjective preference judgements

(David, 1969) and hence can be motivated from this point of view. Moreover, the case

of pairwise preferences has been studied quite extensively within ML because it reduces

the problem of ranking to simpler learning problems such as binary classification (Dekel

et al., 2004).

y2 y7 y9

2

1

  

3  
  

x2
x5
x7

4

y1 y5 y6
1 4

  

2  

  

x1
x3
x4

3

y3

1   

  

x2
x3

2
y4 y5 y7

1

  

34
 

  

x1 2

y9

y8ρ1 ρ2 ρ3 ρ4

Figure 2.1: Example of a dyad ranking data set D that contains four rankings ρ1 − ρ4.

An example of a small dataset that comprises various dyad ranking types is illustrated

in Figure 2.1. It picks up the concept of a two-dimensional schema introduced in Chapter

1 and the dataset is denoted by D = {ρ1, ρ2, ρ3, ρ4}. The ranking ρ1 can be identified

from the figure as ρ1 : (x2,y7) � (x5,y2) � (x7,y7) � (x5,y9). The rankings ρ2 and

ρ3 are both contextual rankings, and ρ2 differs from the latter in that it is a pairwise

ranking.
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2 Dyad Ranking

2.2 Problem Statement

The goal in dyad ranking is to learn a “dyad ranker,” that is, a model

h : Z −→ S

that can be used to predict a ranking π̂, given a collection of dyads % as an input, where

Z := P (Z) is the power set of Z and S is the set of permutations over the natural

numbers. These numbers are used to indicate the dyads within a dyad collection % ∈ Z.

More specifically, the problem is to seek a model with optimal prediction performance

corresponding to finding a risk (expected loss) minimizer

h∗ ∈ argmin
h∈H

∫
Z×S

L(h(%), π) dP , (2.7)

whereH is the underlying hypothesis space, P is the joint measure P(%, π) = P(%)P(π | %)

on Z × S and L is a loss function on S.

A common choice for the loss L is a distance metric on rankings. Such a distance

metric can be used to measure the quality of a prediction with regard to a ground truth.

Some examples are the Kendall tau distance (Kendall, 1938), the Spearman distance, and

the Spearman footrule. The Kendall tau distance is defined as the number of discordant

pairs:

D(σ, π) = #
{

(i, j) | 1 ≤ i < j ≤ K, (σ(i)− σ(j))(π(i)− π(j)) < 0
}
. (2.8)

Related to it is the Spearman distance, which is the sum of the squared rank distances

D(σ, π) =
M∑
i=1

(σ(i)− π(i))2 ,

which used for the definition of the Spearman’s rank correlation coefficient, which is

1 − D(σ, π)/(M(M2 − 1)) (Spearman, 1904). The Spearman footrule distance is, in

contrast, based on the sum of the absolute differences

D(σ, π) =

M∑
i=1

|σ(i)− π(i)| .

The above-mentioned distance measures are related in the sense that there exist tight

bounds among them (Diaconis and Graham, 1977). Thus, optimizing for one of them

results in similar performances for the other measures.
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2.3 Prediction Tasks

Up to this point, we have seen the definition of the risk minimization principle, a

principle from statistical learning theory, that explains what we aim for when we want

to learn a dyad ranker. However, the joint measure P in (2.7) is typically unknown

in practical applications in such a way that a dyad ranker is learned from training

data instead. The training data is assumed to be a finite sample from an unknown joint

probability distribution. This reroute is referred to as empirical risk minimization, which

corresponds to seeking a dyad ranker, thus minimizing

h∗ ∈ argmin
h∈H

1

N

N∑
n=1

L(h(%n), πn) ,

using a (finite) training set Dtr = {(%n, πn)}Nn=1 = {ρn}Nn=1. A dyad ranker is thus a

result of a supervised learning process.

2.3 Prediction Tasks

The goal of the learning process is to produce a dyad ranker that can be used to make

ranking predictions on new dyads. Depending on the existence of dyads during the

training phase, there are different regions within X×Y identifiable on which predictions

can be carried out.

Two subsets within X and Y must be considered respectively in order to identify

them. Let X[tr],X[te] ⊂ X with X[tr] ∩ X[te] = ∅. And similarly, let Y[tr],Y[te] ⊂ Y with

Y[tr] ∩ Y[te] = ∅. The definitions of X[tr] and Y[tr] depend on the existence of dyads

within the training set D, the set of dyad rankings used to train a model. We define

the set X[tr] as a subset of the feature vectors x that are contained in the training set,

i.e., X[tr] =
{
x ∈ X | (x,y) ∈ Ω[tr]

}
, where Ω[tr] = {(x,y) ∈ %n | %n ∈ D}. And likewise,

we define the set Y[tr] as the set of feature vectors y that are contained in the training

set, i.e., Y[tr] =
{
y ∈ Y | (x,y) ∈ Ω[tr]

}
. In a similar way, the sets X[te] and Y[te] can be

defined on the basis of a test set.

Then, four regions within X × Y can be identified with these definitions (see Figure

2.2). Each of those regions corresponds to the Cartesian product between two of the sets

X[tr], X[te], Y[tr] and Y[te]. The division also enables the identification of four basic types

associated with the regions (see Table 2.1). Although Region 1 consists of dyads from

the training set D, this region is typically larger and exhibits feature vector combinations

that are not part of the training set.
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Figure 2.2: Dyads are represented as symbols (circle, upright triangle, upside-down tri-

angle, or square) within a rectangular schema. Dyad rankings are expressed

as a sequence of symbols connected with the directed edges. The predictions

for the rankings of new dyads can take place in up to four areas and mixtures

of those. An example for a predicted dyad ranking is indicated as a sequence

with dashed edges. It spans over all four areas.

Table 2.1: Categorization of dyads into four basic types. They differ in the way their

feature vectors belong to subsets within their domains.

Type 1 Type 2 Type 3 Type 4

X[tr] × Y[tr] X[te] × Y[tr] X[tr] × Y[te] X[te] × Y[te]

We go on by formulating typical prediction tasks involving dyadic data known in

literature (Pahikkala et al., 2014; Park and Marcotte, 2012; Stock et al., 2018). Four

main tasks can be identified as an analogy to the dyad types. Again, Figure 2.2 is useful

for explaining the different tasks. The first prediction task can be formulated as the

task of predicting the rankings of dyads within Region 1. The new dyads involved there

consists of novel feature vector combinations, where the feature vectors were encountered

individually by the learning algorithm at other Type 1 dyads. The second task is about

the prediction on dyads where the y feature vectors are known, but the x feature vectors

are completely new. Diametrical to this is the third task in which the y vectors are new,

but the x are known. The fourth task is about dyads containing feature vector members

that are completely new.
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2.4 Key Properties

These are the main tasks. However, since the predicted rankings can contain mixtures

of different dyad types, further tasks are conceivable. These include six tasks where the

predicted rankings span over two regions, four further tasks over three regions, and one

over all four regions. An example of the latter scenario is indicated in Figure 2.2 as a

ranking of dyads with dashed directed edges.

2.4 Key Properties

Dyad ranking is a supervised learning setting that comprises different prediction tasks.

The procedure of supervised learning and the prediction in dyad ranking is summarized in

Figure 2.3. A learning algorithm, also referred to as the learner, produces a dyad ranking

model, which can, in turn, be used to solve one of previously described prediction tasks.

It is assumed in the thesis that all the rankings processed by the learner are without

ties.

z1 z2

z3 z4 M
z5

ρ1

z3
    ≻ z1    ≻ z4

    ≻ z5
    ≻ z2

Training

L

Prediction

z4
    ≻  z1    ≻ z3

    ≻ z2
 

[te]

[tr] [tr] [tr] [tr]

[te] [te] [te] [te]

[te]

[te]

[te]

[te]

[te]

Figure 2.3: Dyad ranking two-step procedure. The output of a learning algorithm at the

training phase is a model (a dyad ranker). This can, in turn, be used at the

prediction phase for predicting the rankings of a given set of dyads.

One key property of the setting is that there is no a priori restriction on the length

of input and output rankings. Although the main focus is on the case where the feature

spaces consist of vectors, other types of spaces are also conceivable such as matrices

or tensors. Another key property of dyad ranking is that two domains are involved to

determine the features of the dyads. The two domains can be different, in which case

they are denoted by X and Y, or they can be identical, in which case they are denoted
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2 Dyad Ranking

both by X. In the case of two identical domains, dyad ranking methods may use the

order imposed by the tuple or treat them symmetrically., i.e. f(xi,xj) = f(xj ,xi).
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3 Related Settings and Methods

This chapter provides an overview of the settings related to dyad ranking. Each setting

is compared with dyad ranking at two levels, namely at the problem description level

and at the methodological level. The methods are chosen either because they share some

properties with the dyad ranking methods introduced later in Chapter 4, or they are well

established for a particular setting according to the literature. The problems discussed

in this chapter can be classified roughly in accordance with whether they are dealing

with ranking (R) or dyadic (D) data. According to these criteria, we will discuss those

which are provided in Table 3.1:

Table 3.1: Overview of the related settings.

Chapter Setting Type

3.1 Label Ranking D,R

3.2 Object Ranking R

3.3 Learning To Rank (in Information Retrieval) D,R

3.4 Collaborative Filtering D

3.4 Collaborative Ranking D,R

3.5 Conditional Ranking R

3.6 Dyadic Prediction D

3.7 Zero-Shot Learning D

All of these have in common that they can be explained on the basis of a two-

dimensional schema. There are, of course, further well-known settings, such as multi-

variate regression and multi-class or multi-label classification, whose components could

be arranged in such a schema as well. These are excluded from this chapter because

they are inherently covered by some of the introduced settings.
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3 Related Settings and Methods

3.1 Label Ranking

In label ranking, there are instance vectors with the associated rankings over a set of

class labels. The goal in this setting is to learn a label ranker, which, given a new

instance vector, is capable of predicting a ranking (total order) over labels (Fürnkranz

and Hüllermeier, 2010a; Vembu and Gärtner, 2010; Zhou et al., 2014).

Formally, in label ranking there is an instance space, X, that contains feature vectors

and a finite set of labels Λ = {λ1, . . . , λM}. A training dataset, Dtr = {ρi}Ni=1, is a set

of label rankings, where each label ranking ρ consists of an instance vector x with an

associated ranking over the labels. A ranking ρ is described by

λπ(1) �x λπ(2) �x . . . �x λπ(M) , (3.1)

where π(i) is the index of the j-th label in the set Λ put on rank position i. Otherwise,

π−1(j) denotes the rank position of the label with the index j.

A label ranker is a mapping X → SM , i.e. a mapping from the input space X to the

output space SM , which is the set of all permutations of the label set Λ. The learning

can be described with these notations as a mapping

h : X −→ SM ,

which can be used for prediction later on. Finding a model with an optimal prediction

performance is, therefore, the central part of the problem. It corresponds to finding a

risk (expected loss) minimizer

h∗ ∈ argmin
h∈H

∫
X×SM

L(h(x), π) dP , (3.2)

over a joint-measure P = P(x, π) = P(x)P(π |x). The underlying hypothesis space in

(3.2) is denoted by H and the loss function on SM is denoted by L. Having obtained the

model h∗, a ranking function can then be realized by the setting π̂ = h∗(x) and then

labels are arranged using π̂, as it is done in case of example ranking (3.1).

The prediction task can be stated as follows: Given a new instance vector x, apply

the learned label ranker on x to obtain a ranking over the finite set of labels.

The setting can be described in terms of a two-dimensional schema in a similar vein

as dyad ranking. This can be seen by arranging the instance vectors as rows and the

labels as columns (c.f. Figure 3.1). Moreover, by doing it that way, it is possible to
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3.1 Label Ranking

identify the prediction task to be of Type 2 according to Table 2.1. This means that

the labels are already known from the training phase while, the instances are new in the

prediction phase. One crucial difference with dyad ranking, however, is that the labels

in label ranking are not described by any features.

x2

x1

x3

x4

x5

λ1 λ2 λ3 λ4

3 1 2

1 3 2 4

1 2

? ? ? ?

? ? ? ?

Figure 3.1: Label ranking problem represented in a two-dimensional schema. In this

example, the label ranking is associated with x1 is λ3 � λ4 � λ1. What is

sought here are the label rankings for the new instance vectors x4 and x5.

We will now go on with the discussion of methods that have been developed to solve

the label ranking problem. To give an overview, the three considered methods are

Constrained Classification (CC), Ranking By Pairwise Comparison (RPC) and Linear

Plackett-Luce (LinPL). The CC and LinPL methods share properties with the dyad

ranking methods in terms of learning utility scores. Being based on the probabilistic

Plackett–Luce model, the LinPL approach is closely related to the dyad ranking methods

discussed in Chapter 4. RPC shares an idea with CC about tackling a complex problem

by using binary base models, but it differs from all other approaches in terms of learning

utility values for labels. The RPC method is considered because it is well established

and has a sound theoretical foundation. Two further neural network-based label ranking

approaches are discussed later on in Chapter 4.4 in conjunction with the PLNet approach

for dyad ranking.

3.1.1 Constrained Classification

Constrained classification (CC) is rather a framework than an approach tailored specif-

ically to label ranking (Har-Peled et al., 2002a,b). It is possible with CC to tackle

various other problems such as binary, multi-class, and multi-label classification. This is

accomplished in CC by considering each training example in terms of an instance vector

x ∈ Rr together with a set of constraints. A single constraint specifies the relative order
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3 Related Settings and Methods

of two labels for a particular training example—this is akin to, in terms of label ranking,

the expression of a ranking over M labels specifically as a new training example with

M − 1 constraints. In this way, the label ranking λ3 �x λ1 �x λ2 would be a training

example of the form {(λ3 �x λ1), (λ1 �x λ2)}). More generically, with a slight change

of notation, a label ranking

ρ : λπ(1) �x · · · �x λπ(M)

is expressed in the CC terms as(
x,
{

(λπ(i) � λπ(i+1)) | 1 ≤ i ≤Mn − 1
})

.

CC proceeds from linear (sorting) functions

fi(x) =
r∑

k=1

w>ik · xk = 〈wi,x〉, 1 ≤ i ≤M , (3.3)

with label-dependent weightswi. A preference statement λi �x λj can be expressed with

(3.3) as a positive constraint fi(x)−fj(x) > 0 and a negative constraint fj(x)−fi(x) < 0.

The assumption in CC is that functions produce utility scores in R which can be used

for the definition of a linear sorting classifier

h(x) = argsort
i=1...M

fi(x) . (3.4)

The classifier (3.4) returns for a given x a permutation π of the natural numbers 1 to

M , which can, in turn, be used to express a label ranking:

λπ(1) �x λπ(2) �x · · · �x λπ(M) .

To learn from this kind of information, a transformation step takes place on the thus

expressed data. A training example with the vector x ∈ Rr and M ′ pairwise constraints

will result, after the transformation, in the vector z ∈ RrM ′ with associated binary

classes. More specifically, the instance x with the positive constraint fi(x)− fj(x) > 0

corresponds to the transformed vector z, where the vector +1 · x is copied into the

components ((i − 1) · r + 1), . . . , (i · r), and −1 · x is copied into the components ((j −
1) · r+ 1), . . . , (j · r), whereas the remaining components of z are padded with zeros (an

expansion otherwise known as Kesler’s construction for multi-class classification (Duda

et al., 2000; Nilsson, 1965)). Similarly, the vector z can be constructed for a negative
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3.1 Label Ranking

constraint using reversed signs. These vectors form positive and negative examples

respectively and can then be fed into a linear binary classifier such as a support vector

machine that aims to find a separating hyperplane h(z) = 〈v, z〉 in RM ′r. To solve the

original problem, the weight portion vi associated with the label i must be extracted

from v and can then be used for the definition of fi(x) = 〈vi,x〉. These, in turn, can be

used to form a sorting classifier (3.4).

Algorithm 1 CC Online Algorithm for Label Ranking

Require: Input D = {(xn, {(λπn(i), λπn(i+1)) | 1 ≤ i ≤Mn − 1})}Nn=1, α−bound

1: repeat

2: Initialize α ∈ RN×M×M with zeros.

3: for n = 1 : N do

4: for i = 1 : Mn − 1 do

5: fi =
〈
wπ(i),xn

〉
6: fi+1 =

〈
wπ(i+1),xn

〉
7: if fi ≤ fi+1 ∧ αn,i,i+1 ≤ α−bound then

8: αn,i,i+1 = αn,i,i+1 + 1

9: wπn(i) = wπn(i) + xn . Promote

10: wπn(i+1) = wπn(i+1) − xn . Demote

11: end if

12: end for

13: end for

14: until Convergence

15: h(x) := argsort
i=1...M

〈wi,x〉

16: return h

An alternative approach to the problem is an online algorithm proposed by Har-Peled

et al. (2002a); this is based on the perceptron with an α−bound to make it more robust

against noise (Khardon and Wachman, 2007). The perceptron would converge in the case

where the preference information is without contradictions noise-free—this, however, is

not often the case in reality. Therefore, the α− bound limits the number of updates on

preference examples that are not consistent with the hypothesis class. The pseudo-code

of the online variant of CC is provided in Listing 1.
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3.1.2 Ranking By Pairwise Comparison

Ranking by pairwise comparisons (RPC) belongs to the class of learning by pairwise

comparison (LPC) methods, which are based on two steps: (i) decomposition of pref-

erence information and (ii) aggregation of learned results (Fürnkranz and Hüllermeier,

2003, 2010b; Hüllermeier et al., 2008).

For the decomposition step, the label ranking λπ(1) �x λπ(2) �x . . . �x λπ(M) over

M labels under a context x can be decomposed into K = M(M − 1)/2 many pairwise

preferences {λπ(1) �x λπ(2), . . . , λπ(1) �x λπ(M), . . . , λπ(M−1) �x λπ(M)}. A (binary)

classification model, Mi,j , can then be trained on each of them so that it produces the

value 1 if λi �x λj or the value zero if otherwise λj �x λi. Alternatively, instead of

producing outputs in {0, 1}, it is also possible to use (soft) binary classifiers that are

capable of producing values in [0, 1].

A trained model Mi,j can later be used to assign a valued (fuzzy) preference relation

to any example x by

Rx(λi, λj) =

{
Mi,j if i < j,

1−Mi,j if i > j .

The preference relation is then used for the aggregation step. This step can be realized

by using a simple voting strategy (Fürnkranz and Hüllermeier, 2010b; Hüllermeier and

Fürnkranz, 2004). A score for the label λi is obtained by S(λi) =
∑

λj 6=λi Rx(λi, λj). A

ranking of labels can then be realized from these scores by arranging them in accordance

with the sorting of the scores in descending order, i.e.,

(λi �x λj)⇐⇒ (S(λj) ≥ S(λj)) .

This voting approach is justified theoretically as it maximizes the expected Spearman

rank correlation between a true and a predicted label ranking (Hüllermeier et al., 2008)

under the assumption that the binary classifiers provide correct probability estimates,

which correspond to

Rx(λi, λj) =Mi,j(x) = P(λi �x λj) .

It has been discussed in (Hüllermeier et al., 2008) that with RPC it is in principle

possible to optimize other loss functions such as Kendall’s tau distance, but it requires

an adoption of the ranking procedure in the aggregation step of the approach.
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3.1 Label Ranking

3.1.3 Linear Plackett–Luce Model for Label Ranking

A further method for label ranking based on the Plackett–Luce model was proposed

in (Cheng et al., 2010). The main idea behind this approach is to re-parameterize the

original model by label specific functions that take the instance vectors x into account.

This is accomplished by replacing the original Plackett–Luce model parameters v =

(v1, . . . , vK) with label–dependent (log-linear) functions vi = vi(x),

vi = vi(x) = exp

(
d∑

k=1

wi,k · xk

)
= exp (〈wi,x〉) , (3.5)

where each function represents a utility score for the i-th label. The actual model

parameters become the label–dependent weight vectors wi in Equation (3.5), which can

be found via maximum likelihood estimation (MLE). The index 1 < i < K in wi,j

corresponds to the i-th label out of K labels (or “alternatives”) and the index 1 < k < d

refers to the k-th dimension.

Since the linear Plackett–Luce model is similar to the generalized Plackett–Luce ap-

proaches for dyad ranking in Chapter 4, the Plackett–Luce model and the MLE procedure

will be described in more detail there.

Given the estimates of these parameters, the prediction for new query instances x can

be done in a straightforward way: v̂ = (v̂1, . . . , v̂K) is computed based on (3.5), and a

ranking π̂ is determined by sorting the labels λi in decreasing order of their (predicted)

values v̂i. The ranking π̂ is a reasonable prediction, as it corresponds to the mode of the

distribution P(· | v̂).
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3.2 Object Ranking

Object ranking (or learning to order things) is a preference learning setting in which

the rankings of objects are of central importance (Cohen et al., 1999; Fürnkranz and

Hüllermeier, 2010; Kamishima et al., 2011). An object, in contrast to a label, has

attributes and is described in terms of a feature vector.
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Figure 3.2: Object ranking problem represented in a two-dimensional schema. In the

example, the objects for training are the sets %1, %2 and %3. They are accom-

panied by incomplete rankings over the objects o1-o4. What is sought here

are the objects rankings for the sets %4 = {o3,o4,o5} and %5 = {o1,o4,o6}.

The goal is to find a ranking function that accepts example rankings over a subset

O ⊂ O of objects as input, where O is a reference set of objects (e.g. the set of all

books). As output, the function produces a ranking (total order) � of the objects O.

More formally, the learning problem consists of learning a model

h : P (O) −→ S

that can be used to predict the ranking π̂, given a collection of objects % = {o1,o2, . . .}
as an input. More specifically, the problem is to find a model with optimal prediction

performance which corresponds to seeking an expected loss minimizer

h∗ ∈ argmin
h∈H

∫
P(O)×S

L(h(%), π) dP(%, π) , (3.6)

whereH is the underlying hypothesis space and L is a loss function on S. Having obtained

the model h∗, a ranking function can then be realized straightforwardly by using the

prediction π̂ = h∗(%) on % to arrange its objects by oπ̂(1) � oπ̂(2) � · · · � oπ̂(|%|). The

loss functions that can be used here correspond to those that have already been used in

dyad and label ranking.
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3.2 Object Ranking

The training information consists of a set of incomplete rankings Dtr = {ρn}Nn=1. This

means that the rankings ρn = (%n, πn) can be of different lengths and thus cover different

subsets On ∈ P(O) of objects. This point is illustrated in Figure 3.2.

The object and dyad ranking settings differ in some aspects, but they also have some

commonalities. Both have a similar goal: to obtain a ranker that can be applied on

sets of unordered objects. From this point of view, a dyad in dyad ranking could be

considered as a special kind of structured object. And in this regard, dyad ranking could

be considered as an extension of object ranking with dyads as special kinds of objects.

The other way around, object ranking can be seen as dyad ranking where all training

rankings are observed in a common neutral context. In this respect, it is straightforward

to apply dyad ranking methods to object ranking problems, too, namely by equating the

“object space” O with the “dyad space” Z. In this analogy, the prediction task would be

of Type 3 if the rankings with their respective neutral contexts are aligned at the rows

and the objects are aligned at the columns of the two-dimensional schema in Figure 2.2.

The other way around, if a suitable representation of dyads can be found in terms of

single objects, object ranking methods could be used for dyad ranking.

We will proceed with the methods that have been developed for object ranking. Co-

hen’s method is primarily chosen because it belongs to the seminal paper that defined

the object ranking problem. The second method, expected rank regression, is a well-

established approach for the object ranking setting. It is based on the Thurstone model

(Case V) from which a connection can be drawn with the methods we propose for dyad

ranking. Both methods are also cited in the survey article on object ranking from

Kamishima et al. (2011).

3.2.1 Cohen’s Method

Cohen’s method consists of two steps (Cohen et al., 1998, 1999). In the first step, a

preference function, PREF(oi, oj), is learned; it indicates whether to rank the object oi

before oj . And in the second step, a greedy ordering algorithm is applied for finding a

ranking of objects that maximally agrees with the preference function PREF. The main

assumption underlying Cohen’s method is the existence of object features that are of the

ordinal type; this is a rather restrictive assumption and limits the application of that

approach severely.
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The preference function PREF to be learned is composed of K preference functions

Rfk in the following way:

PREF(oi,oj) =
K∑
k=1

wkRfk(oi,oj) . (3.7)

The learning of weights w = (w1, . . . , wk) takes place in the first step, while the second

step is required later to obtain the actual rankings. The basic preference function Rfk

is induced by an ordering function f using the following definition:

Rfk(oi,oj) =


1 if fk(oi) > fk(oj)

0 if fk(oi) < fk(oj)

0.5 otherwise .

(3.8)

The ordering functions fk are feature extraction methods on the objects. Each of them

produces a real value that can be used for comparison. The use case provided in the orig-

inal papers by Cohen et al. is about combining the results of several searches performed

on a domain-specific search engine. More specifically, the functions fk are associated

with a certain search aspect, and they produce higher numbers for the documents listed

at higher top rank positions. Kamishima et al. (2011) propose to generalize this by

using the attributes of the objects in a more direct way where the ordering functions are

defined as fk(oi) = oik.

The procedure for learning the preference function PREF is given in Listing 2, in

which the loss function is defined as

Loss(Rk, ρ) =

∑
oi�oj∈ρ (1−Rk(oi,oj))

|ρ|
. (3.9)

The weight allocation algorithm is based on the Hedge algorithm (Freund and Schapire,

1997) and to some extent on the weighted majority algorithm (Littlestone and Warmuth,

1994).

The second step involves the calculation of PREF according to Eq. (3.7) on a set of

new objects. What follows is the application of a greedy order algorithm to produce a

ranking that agrees best with the PREF function. We will not go further into details at

this point and refer to the original publications.
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Algorithm 2 Weight Allocation Algorithm

Require: Input D = {ρn}Nn=1, β parameter ∈ [0, 1] (default: 0.9)

1: Initialize weights wk = 1
K

2: Create ordering functions fk, 1 ≤ k ≤ K
3: repeat

4: for n = 1 to N do

5: Create basic preference functions Rk using %n

6: Evaluate losses Loss(Rk, ρn) . See equation (3.9)

7: Update wk = wk · βLoss(Rk,ρn)

8: Normalize wk = wk/
∑K

k=1wk

9: end for

10: until Convergence

11: return w

3.2.2 Expected Rank Regression

Expected ranking regression (ERR) is an approach that can be combined with standard

regression techniques for learning and predicting the expected ranks (Kamishima et al.,

2005; Kamishima et al., 2011).

The assumption underlying ERR is that the learner is faced with a set of incomplete

object rankings ρn and that each ranking ρn has a complete unobservable counterpart

ρ∗n from which it is generated by deleting objects randomly according to the uniform

distribution. More specifically, it is assumed that the object rankings are generated

in accordance with the Thurstone model (Case V) (Marden, 1995; Thurstone, 1927).

Objects are arranged there in ascending order of the scores f∗(o) given by the normal

distribution, i.e. f∗(o) ∼ N (µ(o), σ2), where µ(o) is the mean in terms of a function

and σ is the standard deviation.

ERR makes use of the fact that the conditional expectation of the rank of an object

om of an underlying ground truth ranking, ρ∗n, given the incomplete ranking ρn, can be

calculated as

E[r(ρ∗n,om) | ρn] ∝ r(ρn,om)

|ρn|+ 1
, (3.10)

where r(ρn,om) denotes the rank of object om within the ranking ρn. The learning can

thus be done, for example, with multiple linear regression on a training set, which is of
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the form

D =

{(
oi,

r(ρn,oi)

|ρn|+ 1

)}N
n=1

,

where 1 ≤ i ≤ |ρn|. The outcome is the regression function f with the learned weight

w, which can be used to calculate scores on a set of new objects, e.g. with f(oi) =

〈w, [1, oi1, . . . , oic]〉. These scores can in turn be used to create rankings by arranging

the objects in ascending order of the scores.

28



3.3 Learning To Rank

3.3 Learning To Rank

Learning to rank (LTR1) is the application of machine learning for information retrieval

(Liu, 2011; Mohri et al., 2012). There is not just a single setting in LTR, but rather

a variety of settings that exhibit some similarities to those covered in this chapter.

Consequently, the methods also bear some resemblance.

? ?? ?? ?

? ?? ?? ?

d1 d2 d3 d4
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q2
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q4

20
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1
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Figure 3.3: Learning to rank problem represented in a two-dimensional schema. In this

example, training data consists of relevance degrees that are associated with

query-document pairs, where the degrees 2, 1 and 0 mean definitely, possibly,

and not relevant respectively. A global document ranking for a given (new)

query is sought.

The common theme in all LTR settings can be illustrated with a two-dimensional

schema, as it is provided in Figure 3.3. It consists of queries, documents, and an in-

complete matrix of preference judgments. The ultimate goal in LTR is to find a method

that can be used to provide a global ranking of documents for a given query. From the

learning point of view, the problem consists of learning from queries and the relevance

of documents with regard to them. Depending on the type of relevance judgments, it is

common in LTR to group learning algorithms into three kinds of approaches: the point-

wise, the pairwise, and the listwise approaches. Methods of the latter group require

the preference of documents in the form rankings. Pairwise approaches, in contrast, are

adopted to deal with the pairwise preference on documents. And pointwise approaches

can be used if the ground truth labels consist of the relevance degrees about single

documents.

We are going to proceed with the formulation of LTR in terms of a risk minimization

problem. Let X be the space of the feature vectors x = Φ(q, d), which are created

using the feature extraction functions Φ from query-document pairs. These functions

1Other abbreviations used in the literature are L2R or LeToR.
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are specific to information retrieval, and it is common in LTR literature to assume that

these vectors already exist. Again, we denote with % = {x1,x2, . . .} a collection of

vectors and with π ∈ S a permutation. The goal in LTR can then be stated as the

search for a model that minimizes

h∗ ∈ argmin
h∈H

∫
P(X)×S

L(h(%), π) dP(%, π) , (3.11)

where P(x, π) = P(x)P(π |x), H is the underlying hypothesis space and L is a loss

function on S. With this kind of problem formulation, we focus on the pairwise and

listwise approaches only. This is justifiable since they are closer to the approaches that

we study in dyad ranking.

Dyad ranking and LTR share similar concepts. One of the crucial concepts they share

is the relevance of preferences with regard to object pairs. And similarly, the preferences

are also the subject of learning in a supervised way. Moreover, if queries are seen as

the vectors x aligned at the rows and the documents seen as the vectors y aligned at

the columns of a two-dimensional schema, LTR is particularly close to what we consider

as contextual dyad ranking. The queries in LTR could be considered as the contexts

x for preference statements over the documents y. This correspondence becomes even

more distinct by considering the listwise approaches. They seem to be very close to

what is needed to solve dyad ranking problems as well because they require preference

information in the form of rankings as input and also produce rankings as output.

There are, however, crucial differences with dyad ranking. To begin with, the methods

in LTR are tailored to the information retrieval application. More concretely, the users

of a search engine are interested in good retrieval results at top positions of a ranking,

whereas the quality of an ordering deeper down the list is not much of a concern. This

impacts the way methods are constructed, learned, and evaluated. Evaluation measures

on rankings like mean average precision (MAP) (Baeza-Yates and Ribeiro-Neto, 1999) or

normalized discounted cumulative gain (NDCG) (Järvelin and Kekäläinen, 2000, 2002)

put higher emphasis on the top positions. This is a clear difference with dyad ranking

where such a constraint or specialization is not prescribed. A further difference between

LTR and dyad ranking is the way features are constructed. In LTR, queries and doc-

uments are usually not considered individually in terms of feature vectors, but there

are single feature vectors that represent query-document pairs. These features are, for
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example, constructed by using the term frequencies of query words in the documents

and outputs of models like BM25 (Robertson et al., 2009) or PageRank (Brin and Page,

1998).

As for the pairwise approaches, we will have look at RankNet and the support vector

machine adopted for the ranking problem, and all of these are well-established methods.

The ranking function of the latter is linear with respect to the weight vector and is thus

similar to the one used for the joint-feature Plackett–Luce model for dyad ranking in

Chapter 4.2. As for the listwise approaches, we will exemplarily inspect ListMLE and

ListNet. They are related to the dyad ranking approaches because they are based on

the Plackett–Luce model as well. ListNet and RankNet are discussed later in detail with

PLNet, a neural network-based approach for dyad ranking in Chapter 4.4.

3.3.1 Ranking Support Vector Machine

We will use RankSVM subsequently as a term for two similar approaches that are known

in the literature as Support Vector Ordinal Regression (SVOR) (Herbrich et al., 1998) and

Ranking SVM (Joachims, 2002; Joachims and Radlinski, 2007). The problem of ordinal

regression was adapted in the Ranking SVM approach specifically for the scenario of

information retrieval.

The aim of RankSVM is to learn a linear ranking function of the form w>Φ(q, d),

where w is a weight to be learned from data and φ is a feature extractor. Joachims

(2002) proceeds from the learning problem description (3.11), where rankings on query-

document pairs are taken as training information. The negative Kendall’s tau measure

is used there as the loss function L, and it is learned there in a pairwise fashion by

minimizing the number of discordant ranking element pairs. This, in turn, is equivalent

to determining the weight vectorw, which satisfies the maximum number of the following

inequalities:

∀ (q1, di) � (q1, dj) ∈ ρ1 : w>Φ(q1, di) > w
>Φ(q1, dj)

. . .

∀ (qn, di) � (qn, dj) ∈ ρn : w>Φ(qn, di) > w
>Φ(qn, dj) .
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Finding the weight vector w that satisfies all inequalities is an NP-hard problem2.

To solve it, at least approximately, the RankSVM approach is based on an SVM with

slack variables ξ
(k)
ij . The optimization problem with the above-mentioned inequalities as

constraints can therefore be stated as a quadratic problem (QP):

min
w

1

2
‖w‖2 + C

∑
ξ

(k)
ij

subject to:

∀ (q1, di) � (q1, dj) ∈ ρ1 : w>Φ(q1, di) ≥ w>Φ(q1, dj) + 1− ξ(1)
ij

. . .

∀ (qn, di) � (qn, dj) ∈ ρn : w>Φ(qn, di) ≥ w>Φ(qn, dj) + 1− ξ(n)
ij

∀i∀j∀k : ξ
(k)
ij ≥ 0 .

The standard classification SVM can be applied analogously to this problem as well.

To this end, it has to be applied on pairs of difference vectors Φ(qk, di) − Φ(qk, dj).

This can be seen when the constraints are rearranged to w>(Φ(qk, di) − Φ(qk, dj)) ≥
1− ξ(k)

ij . Solving quadratic programming problems, such as the given one, can be done,

for example, with interior point methods (Vanderbei, 1999), or more specifically, using

stochastic pairwise descent (Sculley, 2009). With such a learned weight vector, w, it

is possible to rank a set of documents for a new query, q, by just calculating scores

via w>Φ(q, di) and sorting them in descending order. Another notable aspect is the

possibility of extending this approach to the non-linear case using kernels (Chen et al.,

2017).

3.3.2 ListMLE

ListMLE is a listwise LTR approach based on the Plackett–Luce model and a linear

neuronal network (Xia et al., 2009a, 2008, 2009b). It is constructed to solve the learning

problem (3.11), whose empirical variant is

Remp(h) =
1

N

N∑
n=1

L (h(%n), πn) , (3.12)

for a given training dataset, D = {(%n, πn)}Nn=1, where %n = {x1, . . . ,xMn}. Again, a

permutation, π, determines the ranking of query-document elements that stem from an

2In computational complexity theory, non-deterministic polynomial-time refers to a specific class of

decision problems.
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associated collection, %. The permutations, therefore, provide the training information

for supervised learning. Xia et al. (2008) use a permutation level 0-1 loss; it is defined

as

L(h(%)) =

{
1 if h(%) 6= π

0 if h(%) = π .
(3.13)

The ranking function h is hereby defined with the scoring function g as

h(%) = argsort
i=1...M

g(xi) . (3.14)

To overcome the difficulty in optimizing the non-differentiable 0-1 loss function in

(3.13), the authors resort to the likelihood loss as a surrogate loss function, which is

specified as L = − logP (π | %; g) with

P (π | %; g) =

M∏
i=1

exp
(
g(xπ(i))

)∑M
k=i exp

(
g(xπ(k))

) ,

which, in fact, is a parameterized variant of the Plackett–Luce model.

In ListMLE, the function g is a linear neuronal network depicted in Figure 3.4. The

x1

output

xr

input

1 2layers

xk a

w b

Figure 3.4: ListMLE - linear neuronal network architecture. The network establishes the

scoring function g.

output of such a network is ai = 〈w,xi〉 + b, and the ranking function g is defined as

g(xi) = ai. The actual learning is performed via stochastic gradient descent, which is

summarized in Algorithm 3.
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Algorithm 3 ListMLE Training Algorithm

Require: Input D = {({x1, . . . ,xMn}, πn)}Nn=1, learning rate η, tolerance level ε

1: Initialize weight parameter w

2: repeat

3: for n = 1 to N do

4: Input
(
xπ(i)

)Mn

i=1
to the linear neural network and compute gradient ∇w

5: Update w = w − η · ∇w
6: end for

7: Calculate likelihood loss on the training set D
8: until Change of likelihood loss is below ε

9: return w

3.4 Collaborative Filtering and Ranking

A short overview of collaborative filtering (CF) is provided first and the closely related

problem called collaborative ranking (CR) is introduced afterward.

CF is a setting about user preferences on items, and CF methods are used to deliver

recommendations for users on items without the need of explicit information about

users and items. One of the main drivers for the creation of many CF methods was the

Netflix Prize competition in 2006—it explains why many CF methods are typically more

application-oriented and tailored to the recommender systems use case. The competition

enabled many researchers and practitioners access to large-scale preference data with

millions of user ratings for the first time (Koren and Bell, 2015). Additional information

on users is typically not made public due to privacy concerns. This may one of the

reasons why early CF methods were developed without requiring the features of users

and items. However, newer approaches are capable of utilizing those (Bayer et al., 2017;

He et al., 2017).

Figure 3.5 shows the elements involved in CF for the case of explicit preference data.

Users U = {u1, . . . , uN} are arranged at the rows, and the items I = {i1, . . . , iM} are

located at the columns of a two-dimensional matrix. The cells of the N ×M matrix R

consists of the rating values of users ranging from a to b, here 1 to 5, where a higher

grade rij corresponds to a higher preference that a user ui has for a particular movie ij .

The rating matrix is not fully observable and thus the task is to make statements about

the unknown cells.
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Figure 3.5: Collaborative filtering/ranking problem. In the example, the training data

consists of user-item pairs with associated ratings. The rating values for

empty cells are sought in case of collaborative filtering. In collaborative

ranking, in contrast, recommendations are given more directly in the form

of rankings instead—e.g. a ranking over the items i2, i3 and i4 would be the

prediction goal for User 2.

The ranking variant of CF is CR. It differs from the former in that the aim is not to

find unknown ratings as an intermediate step. The objective instead is the creation of

recommendation lists in a direct way. This is accomplished by predicting item rankings

for users instead of rating values (Weimer et al., 2008).

Both dyad ranking and CF/CR operate on preferences related to pairs and are of

course within the realm of preference learning. CF/CR methods exhibit typically a

stronger application-oriented character, for example, the consideration of temporal dy-

namics of user-item interactions, or the utilization of implicit data from user behavior

with a system, or the use of contextual environment information, or the incorporation

of counter-measures for fraud (Adomavicius and Tuzhilin, 2015; Hu et al., 2008; Koren,

2010; Rendle et al., 2009; Shi et al., 2014). Another issue has been found with CF/CR

in recommender systems—it is the cold-start problem (Schein et al., 2002). This refers

to the situation in which new users or new items enter a system. A challenge, then,

is to provide still meaningful recommendations on new entities. This situation has a

counterpart in dyad ranking and is described as a set of tasks involving the ranking of

different new types of dyads (i.e. Types 2–4), as described in Chapter 2.3.

From the dyad ranking viewpoint, CF and CR are different because their input types

are typically not rankings. Furthermore, CF and CR are concerned with two different

domains, which are typically users and items. Dyad ranking is more flexible in this

regard, as it allows for handling pairs over arbitrary domains.

As pointed out by Koren and Bell (2015), there are two broad techniques of CF: the
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neighborhood and the matrix factorization approach3. As for CF, we will have a look

at PMF (Salakhutdinov and Mnih, 2008), a traditional matrix factorization approach.

This approach is chosen because its relation with the bilinear Plackett–Luce model for

dyad ranking is discussed with regard to its extensibility as a matrix factorization ap-

proach in Chapter 4.3.2. And as for CR, we will concentrate on an approach proposed

by Volkovs and Zemel (2012). It is about the engineering of joint-feature representa-

tions for dyads using neighborhood techniques. It does not necessarily require explicit

features, although their incorporation can be done in a straightforward way. This is, in

particular, interesting because such joint-feature representations are the prerequisites to

use it together with JFPL, the first model for dyad ranking covered in Chapter 4.2.

3.4.1 Probabilistic Matrix Factorization

Probabilistic matrix factorization (PMF) is a method for collaborative filtering where

it is assumed that the rating matrix is of low rank (Salakhutdinov and Mnih, 2008).

Furthermore, the rating values rui of the matrix R are assumed to be either integers

ranging from 1 to K or real values. Salakhutdinov and Mnih (2008) propose to adopt a

probabilistic linear model with Gaussian observation noise—this is justified by the usage

of the root mean squared error (RMSE) evaluation measure on the test set. It is given

by

RMSE =

√
1

|Rtest|
∑

rui∈Rtest

(r̂ui − rui)2 , (3.15)

where r refers to the ground truth and r̂ is a prediction.

Let f(x |µ, σ2) be the probability density of the normal distribution with the param-

eters mean µ and variance σ2. The conditional distribution over the observed entries of

the rating matrix R ∈ RN×M is modeled then as

p(R |U ,V , σ2) =

N∏
u=1

M∏
i=1

[
f(rui |U>u·V i·, σ

2)
]Iui

(3.16)

where U ∈ Rk×N and V ∈ Rk×M are matrices of k-dimensional latent feature vectors

arranged in columns and Iui is an indicator variable, which is 1 if item i has been rated

by user u and 0 otherwise. Gaussian priors are furthermore proposed over the matrices

3Alternatively referred to as latent factor model.
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U and V to prevent the over-fitting of the model to the rating matrix. These are given

by

p(U |σ2
U ) =

N∏
u=1

f(Uu· | 0, σ2
UI)

p(V |σ2
V ) =

M∏
i=1

f(V i· | 0, σ2
V I) .

Taking the negative log-posterior over user and item features with hyper-parameters

λU = σ2/σ2
U and λV = σ2/σ2

V results in the objective

E =
1

2

N∑
u=1

M∑
i=1

Iui(rui −U>u·V i·)
2 +

λU
2
‖U‖2F +

λV
2
‖V ‖2F , (3.17)

which is equivalent to minimizing the sum-of-squared errors with quadratic regularization

terms. An evaluation of the model can be accomplished with (3.15) using r̂ui = U>u·V i· on

test user-item pairs. The algorithm for realizing the model is not concretely specified in

the original PMF publication (Salakhutdinov and Mnih, 2008). Thus, an implementation

could presumably be based on the alternating gradient descent in conjunction with the

Adam optimizer (Kingma and Ba, 2014).

3.4.2 Win-Loss-Tie: A Feature Based CR Model

The core idea of the win-loss tie (WTL) approach of Volkovs and Zemel (2012) is the

use of LTR methods to tackle the CR problem by extracting appropriate features. It is

based on the observation that both CR and LTR are similar if users are considered as

queries and items as documents. However, LTR methods typically rely on the existence

of the suitable feature representations of query-document pairs. The construction of

such features is hence the main aspect of the WTL method.

With a feature representation, it is possible to use any LTR method in WTL. In

(Volkovs and Zemel, 2012), it is proposed to evaluate rankings using NDCG and to use

LambdaRank (Burges, 2010; Burges et al., 2007) to learn a linear scoring function. The

scoring function for the user u ∈ U and the item i ∈ I has the following form:

f(u, i) = 〈w,Φ(u, i)〉+ [U(i) \ u = ∅] · b0 , (3.18)

where U(i) denotes the set of users that rated the item i and [P ] is the indicator function.

The second summand in (3.18) addresses the case where an item is not rated by any
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other users. In this case, the bias b0 provides a base score and Φ(u, i) is set to the zero

vector.

As requisite for extracting features suitable for LTR methods, WTL utilizes a notion

of similarity between user preferences in a similar way as the neighborhood techniques

in CF. To measure the similarity between the two users u and v in terms of their ratings,

one can use the Pearson correlation coefficient (PPC) (Resnick et al., 1994), which is

given by

sp(u, v) =

∑
i∈I(u)∩I(v)

(rui − r̂u)(rvi − r̂v)[ ∑
i∈I(u)∩I(v)

(rui − r̂u)2
∑

i∈I(u)∩I(v)

(rvi − r̂v)2

]1/2
, (3.19)

where I(u) denotes the set of items that user u has rated and r̄u refers to the mean rating

value across the items I(u). Another common alternative choice is the cosine similarity

(Breese et al., 1998), which is given by

sc(u, v) =

∑
i∈I(u)∩I(v)

ruirvi[ ∑
i∈I(u)∩I(v)

r2
ui

∑
i∈I(u)∩I(v)

r2
vi

]1/2
. (3.20)

With such a similarity measure, it is possible to extract further properties from the

preference data. Let Ku(i) be the set of the K most similar users of u that rated item i.

We can then define three K-dimensional vectors, where each component is defined with

v ∈ Ku(i) as

WINui(v) =
1

|I(v)| − 1

∑
j∈I(v)\i

[rvi > rvj ]

LOSSui(v) =
1

|I(v)| − 1

∑
j∈I(v)\i

[rvi < rvj ]

TIEui(v) =
1

|I(v)| − 1

∑
j∈I(v)\i

[rvi = rvj ] .

(3.21)

Basic descriptive statistics of these vectors are then extracted and used for the definition

of γ-vectors, whose construction is exemplarily shown for the WINui vector. The LOSSui

and TIEui vectors are constructed accordingly. The γ-vector consists of the mean value,
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the standard deviation, and the min and the max as follows:

γ(WINui) =µ(WINui), σ(WINui),min(WINui),max(WINui),
1

|Ku(i)|
∑

v∈Ku(i)

[WINui(v) 6= 0]

 .

(3.22)

The last component in (3.22) counts positive preference statements toward the item i

among the K neighbors of the user u. Finally, the joint-feature representations for the

scoring function (3.18) can be defined using the γ-vectors with

Φ(u, i) = [γ(WINui), γ(LOSSui), γ(TIEui), 1] . (3.23)

For the prediction of item rankings for a new user, u, the procedure is as follows. First,

for each item i ∈ I, the features Φ(u, i) are constructed using (3.21), (3.22), and (3.23).

Then a ranking of items can be generated using the learned scoring function f(u, i) from

Eq. (3.18).

39



3 Related Settings and Methods

3.5 Conditional Ranking
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Figure 3.6: Conditional ranking setting. (a) is the training information given in the form

of a multi-graph; (b) is the corresponding adjacency matrix.

Conditional ranking is a setting for relational data represented as multi-graphs (Pa-

hikkala et al., 2013, 2010). Nodes in the graph correspond to the objects that are

described by features. Directed edges are labeled so as to characterize a binary relation

between two nodes. The problem associated with conditional ranking is to rank nodes

relative to particular nodes of interest. This can also include new nodes that are not yet

part of the graph. Since rankings are always sought to be relative to other nodes, they

can be considered as being contextualized or ”conditioned” on these target nodes.

Figure 3.6 shows an example of a multi-graph in conditional ranking. It consists of

several nodes and edges that are labeled with a real value from the interval [0, 1]. An

edge corresponds to a single observation, where a higher number expresses a stronger

association. Multi-graphs, as opposed to standard graphs, are used in conditional rank-

ing to support multiple observations between two nodes such as those provided in the

example between the nodes v2 and v4. A ranking of the nodes conditioned on node v4

can furthermore be created by sorting the edge weights of (v4, v2), (v4, v3) and (v4, v5)

in descending order—this results in the ranking v3 �v4 v2 �v4 v5.

Graphs are of central importance in this setting, and depending on the type of edge

values, different settings can be considered. Ordinal edge values result in the instance

ranking setting and continuous edge values resulting in the object ranking setting.

In a nutshell, instance ranking is an umbrella term for bipartite and multipartite

ranking defined in (Fürnkranz and Hüllermeier, 2010). It is about finding a ranking

function that enables the ranking of instances x. The training information there consists

of instances and classes having a natural order.
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A second property of the graphs is the type of relations it expresses. The edges can

represent relations that are either symmetric or reciprocal. Symmetric relations lead

to graphs with non-directed edges. With real edge values, metric or similarity learning

problems can be tackled, while binary values lead to a two-class classification problem.

Reciprocal relations are expressed with directed edges, and every edge implicitly intro-

duces a complementary edge so that both edge values add up to one. The domains in

which reciprocal relations play a role are, for example, preference learning and bioinfor-

matics.

Formally, the data in conditional ranking is structured as a graph G = (V,E,Q),

where V denotes the set of nodes and E ⊂ V 2 identifies the set of edges. It is assumed

that the edge labels ye are generated from a non-observable relation, Q : V 2 → [0, 1].

With Q and a triplet of nodes v, v′, and v′′, it is possible to state a conditional ranking

(or rather preference) as follows

v′ �v v′′ ⇔ Q(v, v′) ≥ Q(v, v′′) . (3.24)

A training set consists of edge label pairs and is denoted as T = {(e, ye) | e ∈ E}. With

a training set, the learning objective can be stated as the minimization of the empirical

risk

h∗ ∈ argmin
h∈H

∑
v∈V

∑
e,e′∈Ev :ye<ye′

L(e, e′, h) , (3.25)

where Ev denotes the set of edges associated with node v and the loss function L is

defined as

L(e, e′, h) =


1 if h(e)− h(e′) > 0

0.5 if h(e) = h(e′)

0 if h(e)− h(e′) < 0 .

(3.26)

The objective (3.25) together with the loss function (3.26) is chosen this way to achieve

conditional rankings (3.24) with a learned model h.

The methods for conditional ranking differ from those of LTR in such a way that

they exploit only one domain and can thus be more efficient. Another difference is that

LTR methods predominantly use similarity relations. Conditional ranking methods, in

contrast, are more general in this regard because they can learn from arbitrary binary

relations. From an algorithmic point of view, conditional ranking methods could also be

used for dyadic relations although they were originally introduced for monadic relations.
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On a settings level, it is common for both conditional and dyad ranking to produce

predictions in the form of rankings. In most applications so far, however, conditional

ranking is concerned with graphs where the nodes stem from a single domain. From the

dyad ranking point of view, this is only one possible option. The ”conditioning” aspect in

conditional ranking with regard to preference relations is the counterpart of a contextual

dyad ranking. Conditional ranking, however, is fundamentally different and more flexible

in terms of handling various types of binary relations between objects. Furthermore, a

key difference to conditional ranking is that in dyad ranking the prediction and also the

ground truth are rankings.

The canonical method for conditional ranking, described in the seminal conditional

ranking paper, is a kernel-based regularized least squares (RLS) method to address

various scenarios (Pahikkala et al., 2010). It is related to the bilinear Plackett–Luce

model, described in Chapter 4.3, with respect to the joint-feature map it utilizes, which

is defined as the Kronecker product.

3.5.1 RankRLS

RankRLS is an approach based on regularized least-squares and was originally invented

for LTR acting on pairwise preferences; it has been adopted later for conditional ranking

(Pahikkala et al., 2007). It also resembles another approach called MPRank (Cortes

et al., 2007).

One assumption to solve conditional ranking tasks with RankRLS is that the square

loss on edges is a good surrogate for the non-convex loss function (3.26) introduced

above. The surrogate loss function is defined as

L(e, e′, h) =
[
(ye − ye′)− (h(e)− h(e′))

]2
, (3.27)

where the models h in RankRLS are stated in a dual representation, which is

h(e) = 〈w,Φ(e)〉 =
∑
e′∈E

aeK
Φ(e, e′) . (3.28)

The joint feature map Φ in (3.28) refers to a joint-feature map on edges; w and ae ∈ R
correspond to parameters to be learned and KΦ is a pairwise kernel. The Kronecker

product is defined as

Φ(e) = Φ(va, vb) = va ⊗ vb . (3.29)
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3.5 Conditional Ranking

And for the kernels in (3.28), there exist different possibilities, and their choice depend

on the assumed type of relation. If no special relation is assumed, then the Kronecker

product pairwise kernel is used:

KΦ
⊗(e, e′) = KΦ

⊗(va, vb, v
′
a, v
′
b) = K(va, v

′
a)K(vb, v

′
b) . (3.30)

In case of reciprocal relations, the kernel is defined as

KΦ
⊗R(e, e′) =

1

2
(K(va, v

′
a)K(vb, v

′
b)−K(va, v

′
b)K(vb, v

′
a)) , (3.31)

and in a similar way, a symmetric kernel can be expressed by exchanging the minus with

the plus sign.

The algorithmic aspects of RankRLS involve the solution of a system of linear equa-

tions with a conjugate gradient-based approach using different ways to prevent over-

fitting, namely the use of Tikhonov regularization and early-stopping (Engl et al., 1996;

Evgeniou et al., 2000). The actual implementation is provided in the software package

RLScore and is described in (Pahikkala and Airola, 2016).
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3.6 Dyadic Prediction
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Figure 3.7: Dyadic prediction represented in a two-dimensional schema. In this example,

the training data consists of dyads with associated numerical values (e.g.

ratings). Here we seek numerical values for the dyads (r1, c1), (r1, c4), (r2, c2),

and (r3, c3). If side-information about the dyads is available, it might be

possible to make predictions on dyads involving the new rows r4, r5 and the

new columns c5, c6.

Dyadic prediction is a setting which provides a unifying view of collaborative filtering

and link prediction (Menon, 2013; Menon and Elkan, 2010a,c). The key elements in these

settings are dyads with associated labels. Training information is given in this kind of

form, and the goal is to apply a learned model on new dyads to predict their unknown

labels. More specifically, in collaborative filtering the labels are ratings associated with

(user, item) pairs, while in link prediction the labels indicate the presence or the absence

of an edge between two nodes in a graph.

In contrast to the classification setting, the basic training information in dyadic pre-

diction does not consist of a tuple (x, y), x ∈ Rp, y ∈ Y. Instead, the x in dyadic

prediction is a dyad that consists of two entities x = (r, c) with r ∈ R, c ∈ C, the

so-called dyad members. A dyad member is characterized by having a unique identifier

and an optional association called side-information. The variable names r and c that

characterize a dyad are inspired by a rectangular schema in which the dyadic prediction

problems can be expressed. An example thereof is given in Figure 3.7.

The way dyads are defined is different from that of dyad ranking. This is owing to

the closer relation between dyadic prediction and CF. And as mentioned in Section 3.4,

early CF approaches did not take user and item attributes into account. Furthermore,

nodes in a link prediction graph are not necessarily described by features. These are

the reasons why the dyads in dyadic prediction are composed of numerical IDs. As an
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aside, an alternative definition of a dyad for dyadic prediction was used in (Pahikkala

et al., 2014), where dyads correspond to instance and task pairs, which are represented

in terms of informative feature vectors.

Side-information is a concept that also stems from the CF setting. It enables the

incorporation of user and item descriptions in the model. The ability of a model using

side-information provides a solution to cold-start problems (c.f. Section 3.4). In dyadic

prediction, the side-information is made up of feature vectors which can either be as-

sociated with r ∈ R, c ∈ C, or jointly with x = (r, c); it is denoted by sr, sc and src

respectively.

In comparison with dyad ranking, the dyadic prediction setting is similar in the sense

that it also acts on pair-input data and offers the same flexibility in terms of consid-

ering pairs from two domains or from one common domain. Although, as previously

mentioned, the definition of a dyad is different, a further difference in dyadic prediction

is the output space. Outputs are single values, e.g. ratings, whereas in dyad ranking

these are rankings. Dyadic prediction is flexible by supporting different ranges of ordinal

rating values, while dyad ranking has a counterpart in supporting rankings of different

lengths.

The first mentioned method for dyadic prediction is called Latent Feature Log-linear

Model (LFL) (Menon and Elkan, 2010a). It is related to the bilinear PL model for dyad

ranking in the sense that a top-one PL model with label features resembles a multinomial

logistic regression model (c.f. Chapter 4.3), which, in turn, is similar to the formulation

taken with LFL .

3.6.1 Latent Feature Log-Linear Model for Dyadic Prediction

The latent feature log-linear model (LFL) (Menon, 2013; Menon and Elkan, 2010a,b,c) is

the main approach for dyadic prediction as it provides the flexibility required to address

the various options of the setting.

To begin with, LFL can be considered rather as a variety of models, instead of a single

model, which are based on the multinomial logistic regression model using latent features.

The main assumption underlying these models is that the probability of observing a label

does depend log-linearly on the weighted (latent) features. Using the above-introduced

notation, the conditional probability of observing the label y ∈ Y = {1, 2, . . . , R} for the
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dyad x = (r, c) is given as

P(y |x = (r, c), θM1) =

exp

(
K∑
k=1

u
(y)
rk v

(y)
ck

)
∑
y′∈Y

exp

(
K∑
k=1

u
(y′)
rk v

(y′)
ck

) , (3.32)

where θM1 = {U (1), . . .U (R),V (1), . . . ,V (R)} are the parameters of the first model. A

latent feature, u
(y)
rk , in (3.32) is an element of the label-specific latent feature matrix U (y)

with |R| ×K entries and where K is the dimension of latent feature space. The feature

matrix V (y) is similarly defined with |C| ×K entries.

By adding a constant value of one at the last column of each row of the latent feature

matrices, it is possible to model a row, a column, and a label-specific bias at once. The

resulting model can be stated as

P(y |x = (r, c), θM2) ∝ exp

(
K∑
k=1

u
(y)
rk v

(y)
ck + a(y)

r + b(y)
c + µ(y)

)
, (3.33)

where θM2 = {U (1), . . . ,V (R),a(1), . . . ,a(R), b(1), . . . , b(R), µ(1), . . . , µ(R)} and a
(y)
r ∈ a(y)

is a row specific, b
(y)
c ∈ b(y) a column-specific and µy a label-specific bias.

Side-information can be incorporated into the model in a straightforward way. The

resulting model can then be stated as

P(y |x = (r, c), θM3) ∝ exp

(
K∑
k=1

u
(y)
rk v

(y)
ck + (w(y))>s̄rc

)
, (3.34)

using the concatenated side-information vector s̄rc := [sr, sc, src] and where the pa-

rameters are θM3 = {U (1), . . . ,V (R),w(1), . . . ,w(R)}.

In link-prediction, the rows and columns belong to the same domain. In the case where

the graph is unweighted and undirected, the prediction matrix would be symmetric and

binary. Symmetry can be enforced so that P(y = 1 | (r, c)) = P(y = 1 | (c, r)). In this

case, the LFL model can be stated (with y = 0 as the base class) as

P(y = 1 |x = (r, c), θM4) =
exp

(
ur·u

>
c·
)

1 + exp (ur·u>c·)
, (3.35)

with θM4 = {U}.
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3.6 Dyadic Prediction

There are different objectives of learning that depend on the type of labels. In the

case of nominal labels, Menon and Elkan (2010a) suggests to use the negative conditional

log-likelihood with an `2 regularization term. With the dataset {xn, yn}Nn=1, this is

fnom(θ) =
λ

2
−

N∑
n=1

log P(yi |xi, θ) . (3.36)

If otherwise the labels are of ordinal type, one may use the mean absolute error (MAE),

which is L(y, ŷ) = |y−ŷ|, to reduce the discrepancy between ground truth and prediction.

Let the model prediction function be F (x, θ), and let us define it to be the expectation

(mean) E[y] =
∑

y yP(y |x, θ), then the objective can be stated as

ford(θ) =
λ

2
−

N∑
n=1

|yi − F (x, θ) | . (3.37)

The parameters of the models can be learned with stochastic gradient descent (SGD)

(Bottou, 2010) or with L-BFGS (Liu and Nocedal, 1989). A two-step approach is pro-

posed to learn the LFL model with side-information. In the first step, the model is

learned with latent features only. And after this, in the second step, the latent features

are used to initialize a new model, in which only the weights for the side-information

vectors are optimized, while the latent features are kept fix.

With the learned weights, a prediction can be carried out by plugging a dyad and each

label y ∈ Y respectively into one of the formulas (3.32)-(3.36). The resulting probabilities

can then be used to choose the most probable label.
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3.7 Zero-Shot Learning
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Figure 3.8: Zero-shot learning problem.

Zero-shot learning (ZSL) is a classification setting where predictions are emphasized

for class labels that were not observed at training time (Xian et al., 2017). It is the main

characteristic that differentiates this from other settings such as standard classification,

where the sets comprising training and test class-labels are identical. The instances to

be classified in the ZSL literature stem predominantly from the computer vision domain

(Frome et al., 2013; Lampert et al., 2014; Mensink et al., 2012). We will concentrate on

ZSL in connection with multi-class classification, but it should be mentioned that the

problem of multi-label classification has also gained attention in the ZSL literature

(Lee et al., 2017; Sappadla et al., 2016).

The ZSL setting can be further partitioned into two variants, which are the classical

and the generalized setting (Xian et al., 2017). In the former, the predictions are carried

out only on those classes that have not been encountered at the training phase, whereas

the latter includes predictions over all available class labels that comprise training as

well as novel class labels. This difference is also reflected in Figure 3.8, which shows that

the problem of ZSL can be described in terms of a two-dimensional schema, where the

instances are aligned at the rows and the labels at the columns.

The formal description begins with the definition with the data domains, which are

an instance space X and a label space Λ. The label space is divided into the set of

labels Λ[tr] available for training and the set of labels Λ[te] that exist at the test phase.

The same distinction can in principle be made on the instance domain too, but this

distinction is omitted to keep the notation clear. The training set can, therefore, be

stated as D[tr] =
{(
xn, λ

[tr]
n

)}N
n=1

, where λ
[tr]
n ∈ Λ[tr]. The task associated with ZSL can
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3.7 Zero-Shot Learning

be stated with these definitions as the learning of a model h : X→ Λ that minimizes the

following empirical risk

Remp(h) =
1

N

N∑
n=1

L
(
h(xn), λ[tr]

n

)
, (3.38)

where L is a loss function for classification. The important point is that the model h

should be applicable at the test phase on the test labels λ[te] ∈ Λ[te], where Λ[te]∩Λ[tr] = ∅.
The generalized setting, in contrast, requires h to produce sensible results when it is

applied to a the larger label space, which is Λ[tr] ∪ Λ[te].

Both the ZSL and dyad ranking settings share the aspect of dealing with class labels,

resp. y vectors, at the prediction phase that are beyond those which were present at the

training phase. In ZSL, the prediction on new labels is an inherent part of the setting

and therefore a mandatory task. Whereas in dyad ranking there are different tasks, all

of which do not necessarily require the prediction of new y vectors. Another difference

lies in the output space. It consists of class labels in ZSL, whereas in dyad ranking these

are rankings.

Somewhat related is a setting with a similar name, which is called one-shot learning.

The emphasis to learn classifications has been put on very few examples (Fei-Fei et al.,

2006). The aspect of predicting new labels is present in nearly all considered settings

so far. The exception to this is label ranking and implicitly multi-class and multi-label

classification.

The first ZSL method, which will be described subsequently, is ESZSL. It is chosen

because its model formulation is based on a bilinear weight matrix. This is also the case

in the bilinear Plackett–Luce model for dyad ranking, though there are crucial differences

in the learning goal. The second method, PR, solves the ZSL task using rankings. It

does this by following a probabilistic approach on ranking—this is also the case with all

the proposed dyad ranking methods in this thesis including the Plackett–Luce model.

3.7.1 Embarrassingly Simple Approach to Zero-Shot Learning

ESZSL is an approach by Romera-Paredes and Torr (2015) that is similar to that of

(Pahikkala et al., 2014) and proceeds from the existing framework introduced in (Akata

et al., 2013). The idea there is that the relationship between instance features, class

labels, and label attributes can be modeled with two layers. The first layer is learned at
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the training stage and establishes a connection between the instance and the class label

attributes. The second layer, in contrast, is used to model the relationship between class

labels and class label attributes. This second layer is interchangeable because training

and test class labels are supposed to be different.

To describe ESZSL formally, the following notation is introduced. The number of

training class labels is denoted by M =
∣∣Λ[tr]

∣∣, and each label consists of c many label

attributes. Then, the class label signature is a matrix Y[tr] ∈ [0, 1]c×M . It contains

Boolean or real values in [0, 1] that characterize for each attribute its membership to a

class label. Let X[tr] ∈ Rr×N be a matrix of N instance vectors, where each is described

by r features. The ground truth classes associated with the instances is given by the

matrix C ∈ {−1, 1}N×M , in which the case of multiple class memberships per instance

vector is possible.

The learning problem consists of learning the weights W ∈ Rr×c for minimizing the

following objective

min
W
L
((

X[tr]
)>
W Y[tr],C

)
+ Ω(W ) , (3.39)

where Ω is a regularizer and L refers to a loss function. The assumption underlying

ESZL is that the relationship between instances and attributes can be modeled linearly.

The label prediction for a new instance vector, x, and a set of new class labels Λ[te] ={
λ

[te]
1 , . . . , λ

[te]
L

}
with the signature Y[te] =

{
y

[te]
1 , . . . ,y

[te]
L

}
can be stated as

λ
[te]
i ∈ argmax

i
x>Wy

[te]
i . (3.40)

The solution to the problem (3.39) is based on the following choice of the regulariza-

tion, which is

Ω(W ;Y,X) = α‖WY‖2Fro + β‖X>W ‖2Fro + γ‖W ‖2Fro. (3.41)

In (3.41), ‖ · ‖2Fro denotes the Frobenius norm (see appendix) and the scalars α, β, γ are

hyper-parameters. The rationale behind (3.41) is as follows. The first term is to ensure

that all signatures have a similar Euclidean norm in the instance feature space. This

should allow for fair comparisons between the signature vectors y and help in the case

of unbalanced training sets. The second term ensures that the variance of the instances

features on the attribute space is bounded. This should prevent an over-fitting on the

training instances. The third term is there to keep the value range of the weight matrix
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W bounded. With the choice of the hyper-parameters γ = αβ and the following loss

function

L(P ,C) = ‖P −C‖2Fro , (3.42)

the solution can be expressed in a closed form as

W =
(
XX> + αI

)−1
XCY>

(
YY> + βI

)−1
, (3.43)

where I is the unit matrix, where X = X[tr] and Y = Y[tr] are set for better readability.

3.7.2 Probabilistic Zero-Shot Classification with Semantic Rankings

The core idea of the PR approach is the use of pre-trained classifiers in combination

with a ranking-based representation of semantic similarity (Hamm and Belkin, 2015).

The latter aspect allows for the aggregation of semantic information from multiple het-

erogeneous sources.

A semantic ranking can be inferred by inspecting the closeness (or similarity as a

special case) of an object to other objects or by human judgement. For example, from a

set of objects Λ = {horse,mouse, dog, elephant, fly}, the semantic ranking of elephant

could be stated as πelephant : horse � dog � mouse � fly, if we think of closeness in

terms of size. This concept plays a crucial role in the model that is described next.

The model combines two kinds of top-K probabilistic ranking models and classification

approaches. We will focus on the top-K ranking versions of the Mallows (Fligner and

Verducci, 1986; Mallows, 1957) and the Plackett–Luce model (Luce, 1959; Marden, 1995;

Plackett, 1975), since this particular combination provides good performance in the

experimental evaluation in (Hamm and Belkin, 2015). For the classification approach,

the multi-class loss is used with multinomial logistic regression. Alternative classification

approaches would include one-vs-rest and one-vs-one.

The interrelation of the model parts is as follows. The multinomial logistic regression

model is learned on training data, which includes training instances and labels. For

a given instance x, it is possible with this model to produce the score fi(x), which

corresponds to the confidence of predicting a training class label i for the instance x.

The set of scoring functions {fi}, 1 ≤ i ≤ M is used then to define the parameters of

the first ranking model over M many training class labels. The second ranking model

produces a consensus ranking over multiple semantic rankings associated with a test class
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label. The probability of this consensus ranking, together with the scoring functions,

will be evaluated with the first model relating to a new test instance vector. The main

assumption underlying this approach is that semantic similarity is strongly correlated

with the instance features. We will proceed with the formal description of the model.

The probability for the test class λ[te] ∈ Λ[te] for a given instance vector, x, can be

stated as

P
(
λ[te] |x

)
=
∑
π∈SM

P (π |x) ·P
(
λ[te] |π

)
, (3.44)

where the second term of the right-hand side is

P
(
λ[te] |π

)
=

P
(
λ[te]

)
P
(
π |λ[te]

)∑
λ∈Λ[te]

P(λ)P(π |λ)
. (3.45)

The most probable test label is searched for at the prediction phase and this can be

evaluated with

λ̂[te] ∈ argmax
λ∈Λ[te]

P
(
λ[te] |x

)
. (3.46)

The first ranking model is used to express P (π |x) in Equation (3.44), and it is the

top-K version of the Plackett–Luce model. It can be stated as

P(π |v) =
K∏
i=1

vπ(i)

M∑
j=i

vπ(j)

, (3.47)

where the model parameters are defined as vi = exp(fi(x)), where fi is a scoring function

obtained from a multi-class classifier. More details of the Plackett–Luce model will be

explained in conjunction with the dyad ranking models in the upcoming chapter.

The second model is used to learn the probability P
(
π |λ[te]

)
in Equation (3.45).

Here the semantic rankings are aggregated to a consensus ranking using the Mallows

model (Mallows, 1957), or more concretely the top-K version from Fligner and Verducci

(1986). The Mallows model can be considered as a discrete analog of the Gaussian

distribution on rankings. It is a distance-based model that belongs to the family of

exponential distributions. Its specification is based on a location parameter, π0 ∈ SK
(mode, center), and a spread parameter, θ ≥ 0:

P(π | θ, π0) =
1

φ(θ)
exp

(
− θ ·D(π, π0)

)
, (3.48)
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Algorithm 4 PR Training Algorithm

Require: Input D1 = {xn, λ[tr]
n }Ntr

n=1, D2 = {πn, λ[te]
n }Nte

n=1, Parameter K (1 ≤ K ≤M)

1: Step 1

2: Train multi-class classifier using D1

3: Result: Scoring functions f1, . . . , fM

4: Step 2

5: Apply Top-K Mallows Model on D2

6: Result: Consensus ranking πλ0 for each λ ∈ Λ[te]

7: return results

where D is a distance function on SK (typically the Kendall distance) and φ(θ) a nor-

malization constant.

After the training, as outlined in Listing 4, predictions can be carried for a new

instance vector x using the following maximum a posteriori classifier,

λ̂[te] ∈ argmax
λ∈Λ[te]

K∏
i=1

exp
(
fπλ0 (i)(x)

)
∑M

j=i exp
(
fπλ0 (j)(x)

) , (3.49)

which returns the prediction for the most probable test class label.
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Dyad Ranking

4.1 Plackett-Luce Model

The Plackett–Luce (PL) model is a parameterized probability distribution on the set of

all rankings over a set of options (also called alternatives) y1, . . . , yK . It is specified by

the parameter vector v = (v1, v2, . . . vK) ∈ RK+ , in which vi accounts for the latent utility

of the option yi. The probability assigned by the PL model to the ranking π is given by

P(π |v) =

K∏
i=1

vπ(i)

vπ(i) + vπ(i+1) + . . .+ vπ(K)
=

K−1∏
i=1

vπ(i)∑K
j=i vπ(j)

. (4.1)

This model is a generalization of the well-known Bradley–Terry model (Bradley and

Terry, 1952; Marden, 1995), a model for the pairwise comparison of alternatives which

specifies the probability that “a wins against b” in terms of

P(a � b) =
va

va + vb
. (4.2)

Obviously, the larger va in comparison with vb, the higher the probability that a would be

chosen. Likewise, the larger the parameter vi in (4.1) in comparison with the parameters

vj , j 6= i, the higher the probability that yi would appear in a top rank.

The term ”skill” is sometimes used interchangeably for the PL parameter vi, referring

to the fact that in one of the early applications of the model a parameter is associated

with a particular horse in a horse race (Marden, 1995).

An example of a distribution represented by the Plackett–Luce model is given in Figure

4.1. There are three options. For each permutation of the three options, a real value

from the interval [0, 1] is assigned to it. Since the distribution is discrete, we speak of

probability masses that are assigned to the rankings.

An intuitively appealing explanation of the PL model can be given in terms of a vase

model: If vi corresponds to the relative frequency of the i-th option in a vase filled with
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Figure 4.1: The probability distribution of the Plackett-Luce model on rankings of length

three.

labeled balls, then P(π |v) is the probability to produce the ranking π by randomly

drawing balls from the vase in a sequential way and putting the option drawn in the

k-th trial on the position k (unless the option was already chosen before, in which case

the trial is annulled). This is why the PL model is also referred to as a ”multistage”

model.

A nice feature of the Plackett–Luce model is the ability to cope with incomplete

rankings. Assume that an incomplete ranking contains J options instead of K, where

J < K. The model can cope with them in a straightforward way because the probability

of an incomplete ranking is given by

P(π′ |v) =
J∏
i=1

vπ′(i)

vπ′(i) + vπ′(i+1) + . . .+ vπ′(J)
, (4.3)

i.e. by an expression of exactly the same form as (4.1), except that the number of

factors is J instead of K. Probability theory provides the same result by ”marginalizing

out,” i.e. summing over all probabilities of π of length K which include extensions of

the ranking π′ of length J . For example, extensions of the ranking 12 to the ranking of

length three would be 123, 132, and 312. The calculation of the marginals is clearly much

simpler via (4.3), especially for large K and small J . Marginals are the probabilities of

rankings over a subset of the options, and they can be computed easily for this model.
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4.1 Plackett-Luce Model

4.1.1 Basic Properties

Parameters The Plackett–Luce parameters are determined only up to a positive mul-

tiplicative constant because

P(π | s · v) =

K−1∏
i=1

s · vπ(i)∑K
j=i s · vπ(j)

=

K−1∏
i=1

s · vπ(i)

s ·
∑K

j=i vπ(j)

= P(π |v) .

To make the model parameters identifiable (or equivalently to choose an equivalence

class), one can set one of the latent utilities to zero, e.g. vK = 1. Another possibility is

to restrict the sum of the utilities to 1, i.e. to normalize them with vi = vi∑K
j vj

, 1 ≤ i ≤ K
(Gormley and Murphy, 2010).

Mode Ranking The ranking with the highest probability of the probability distribution

can be obtained in a straightforward way: just by sorting the alternative associated PL

utilities v1, . . . , vK in descending order. The probability of this and any other ranking

can then be obtained in O(K) respectively, see Listing 12 in the appendix.

4.1.2 Foundations

4.1.2.1 Luce Choice Axiom

Luce’s choice axiom (LCA) is part of a probabilistic choice theory based on two charac-

teristics. First, it is probabilistic, and second, the probability of choosing an alternative

from one set is related to the probability of choosing the same alternative from a larger

set of alternatives. The key point is that the standard axioms of probability theory alone

are not sufficient because they do not offer ”a connection between measures over different

sets composed of some of the same alternatives” (Pleskac, 2013). LCA establishes this

connection, namely the connection on how a decision maker selects an alternative from

a larger set is related to when he or she selects the same alternative from a smaller set

(and the other way around).

An example to illustrate the axiom is from Guiver and Snelson (2009) and can be

stated as follows: Suppose there are four options {A,B,C,D}, and the corresponding

probabilities of choosing from this set are (pA, pB, pC , pD). Now, if a subset {A,C} with

choice probabilities (qA, qC) is considered, then LCA states that qA/qC = pA/pC , thus

meaning that the probability ratio between two options is independent of any other

option of the set.
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4 Generalized Plackett–Luce Models for Dyad Ranking

The consequences of the LCA are known in the literature as IIA— the independence

from irrelevant alternatives and that choice probability is ratio scale (Luce, 1959). The

Plackett–Luce model is the distinct result of the claims being made with the LCA.

4.1.2.2 From the Choice Axiom to the PL Model

Let use define PB(i) to be the probability in such a way that i is the preferably cho-

sen option from the set B of several options. Luce stated a ranking postulate, which

was later generalized with the concept of L-decomposability for models based on choice

probabilities (Critchlow and Fligner, 1993). The postulate states that the probability

for every ranking π of length K is

P(π) = P{π(1),...,π(K)}(π(1)) ·P{π(2),...,π(K)}(π(2)) · · · · ·P{π(K−1),π(K)}(π(K − 1)) (4.4)

Luce began exploring (4.4) further with choice probabilities adhering to the LCA, which

are probabilities of the form

PB(i) =
pi∑
j∈B pj

. (4.5)

The combination of (4.4) and (4.5) indeed yields the PL model stated in Eq. (4.1) (Luce,

1959). Plackett later worked independently on a system of logistic models and his ”first

order model” coincided with Eq. (4.1) too (Plackett, 1975).

4.1.2.3 Connection to Thurstone’s Case V Model

In Thurstone’s Case V model, each alternative i has an associated unobserved but con-

tinuous random variable, Zi (Thurstone, 1927).(
π−1(1), π−1(2), . . . , π−1(K)

)
⇐⇒ zπ−1(1) < zπ−1(2) < . . . < zπ−1(K). (4.6)

The probability of observing a particular ordering is equal to the probability of the

corresponding order of the random variable realizations. Figure 4.2 shows exemplarily

the distribution of three random variables Zi.

The connection between the model (4.6) and the Plackett–Luce model (4.1) was found

by Yellott Jr (1977). Yellott stated that Thurstone’s Case V model fulfills Luce’s choice

axioms only if −Za are distributed according to the Gumbel (double exponential) dis-

tribution (Guiver and Snelson, 2009; Marden, 1995).
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Figure 4.2: Thurstone’s Case V model with three normally distributed random variables

having equal standard deviations. The corresponding ranking of alternatives

would be 2 � 3 � 1.

4.2 Joint-Feature Plackett-Luce Model

A generalization of the PL model (4.1) for the dyad ranking setting is introduced next,

where feature vectors1 are used to define the PL parameters v by means of (multivariate)

functions. They are modeled as log-linear functions of a dyad with a weight vector as a

parameter:

v(z) = v(x,y) = exp
(
〈w,Φ(x,y)〉

)
, (4.7)

where Φ(·) is a joint-feature map as commonly used in structured (output) prediction

(Tsochantaridis et al., 2005). The model is termed for this reason as Joint-Feature

Plackett-Luce model (JFPL). The probability for a ranking

ρ :
(
xπ(1),yπ(1)

)
�
(
xπ(2),yπ(2)

)
� . . . �

(
xπ(M),yπ(M)

)
,

can thus be stated with (4.7) as

P(ρ |w) = P((%, π) |w) =
M∑
m=1

exp
[
w>Φ

(
xπ(m),yπ(m)

)]
M∑
l=m

exp
[
w>Φ

(
xπ(l),yπ(l)

)] . (4.8)

A ranking over dyads is considered, because the relation of and the interaction between

the objects of a dyad are of importance. This circumstance encompasses two situations.

The first is when one object is part of every dyad within a ranking (cf. Section 2.1—a

contextual dyad ranking). And the second is when a ranking consists of dyads with

1These vectors may alternatively be called covariates, side- or auxiliary information.
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differing object pairings. An example for a real-world application for the first situation

is the preference of a person for listening to a specific style of music y depending on a

specific geographical location x. Here, a ranking of songs could be stated in regard to

the position of a person. An application for the second situation is similarity learning,

where a pair of similar things should be ranked higher than a pair of dissimilar things.

Another real-world application is the ability of a driver x to compete against other

drivers in regard to a personalized context (car and driving strategy) y for a race. Here,

a ranking could be stated that consists of dyads with differing driver and context pairings.

4.2.1 Inference

A ranking of dyads % =
{
z1, z2, . . . ,zM

}
can be predicted with the given weight vector

w by applying (4.7) on every z ∈ %. The dyads can then be ranked according to

the obtained parameter values v(·). The resulting ranking corresponds to the above-

mentioned mode ranking of the PL distribution.

More precisely, a function h(%) is a dyad ranker computed with

π̂ = h(%) = argsort
i=1...M

vi ,

on a set of latent utilities. As a result, the ranking of dyads within the set % can then

be stated as

zπ̂(1) � zπ̂(2) � · · · � zπ̂(M) .

4.2.2 Geometric Interpretation

A dyad ranking obtained by the aforementioned rule using (4.7) is equivalent to arranging

dyads according to

zi � zj ⇐⇒
〈
w,Φ(zi)

〉
>
〈
w,Φ(zj)

〉
,

where Φ(z) = Φ(x,y). A ranking over dyads can be induced for any weight vector

w, by projecting the joint-feature vectors of their corresponding dyads on to w with

Projw(Φ(z)) (c.f. appendix). The lengths of the projected vectors indicate the pref-

erence strengths and thus determine the ranks of the respective dyads in a ranking.

Alternatively, one can use the signed distances of the joint-feature vectors to a hyper-

plane having w as its normal vector. An example of this is given in Figure 4.3.
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z1

w

O

z2

z3

z4

Figure 4.3: Geometric interpretation of the JFPL model. The dyad ranking obtained

with the weight w corresponds to z3 � z2 � z1 � z4.

4.2.3 Properties

The JFPL model can be seen as a canonical approach to the dyad ranking setting. It

covers all properties that the setting offers: The rankings of different lengths can be

modeled as well as the special case of contextualized dyad rankings. The JFPL model

also puts no restrictions on the domain of the dyad member’s feature vectors. What is

necessary, however, is a joint-feature vector representation for the dyads.

There are many possibilities for the definition of joint-feature vectors. For example, a

joint-feature vector could be made up of the components of a higher-order polynomial,

which could, with a selection of some of those features, take on the following form:

Φ(x,y) =
(
x3

7,x3,y
2
5,y1,x

2
4y2,x1y2,x2y4, 1

)
. (4.9)

Another example for the construction of a joint-feature map was already provided

by the win–loss tie approach for CR in Chapter 3.4.2. There, the statistical properties

about a user-item rating matrix are used to compose a joint-feature vector with 17

joint-features.

The ability of quantifying the certainty (or likewise uncertainty) of a dyad ranking is

a further important property. It can be used in various of ways, e.g. for improving vi-

sualizations (c.f. Section 5.2.1), for balancing exploration and exploitation (c.f. Section

6.3.1.1), or for speeding up the learning process (c.f. Sections 6.4.3 and 7.5.1). Beyond

that, the possibility for a learner to abstain on pairwise preferences is also based on a

probabilistic foundation (Cheng et al., 2012). It enables the learner to declare pairwise
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4 Generalized Plackett–Luce Models for Dyad Ranking

preferences as incomparable on which the predictions are uncertain. This scenario is

similar the classification with a reject-option in which a classifier may refuse the predic-

tion of a class label. This is useful if the refusal of a class prediction is less costly than

to make an unreliable and potentially false prediction. In the case of ranking, there is

a further possibility besides a total rejection and full acceptance. It is the possibility of

predicting a partial order instead of a total order (ranking).

4.2.4 Connection to Discrete Choice Models

Approaches similar to the JFPL model can be found in the econometrics and psycho-

metrics literature where covariates2 play a role in explaining (representative) utility. In

particular, the rank ordered logit or the otherwise known exploded logit model is essen-

tially equivalent to the JFPL model regarding the specification of the covariates. These

are developed from a different theoretical framework and typically stated without the

notion of a joint-feature map φ(x,y).

Logit Model The derivation of the logit model from order statistic (random utility)

models follows that of (Train, 2009). A decision maker (or user), n, chooses from among

K alternatives. The utility (or profit) of choosing alternative j by the user n is expressed

by Unj . This quantity might be known by the user n, but is unknown to an external

observer (e.g. a researcher). The behavioral model assumed behind the choice of the

user for an alternative i is

Uni > Unj ∀j 6= i .

A researcher is not able to observe Uni, but might know the attributes of the alternatives

yni and the attributes of the user xn. And the attributes of the alternatives are assumed

to be related to the user n. This knowledge enables a researcher to specify a representa-

tion of the utility Uni denoted by Vni. And this representative utility is usually a function

of the attributes Vni = V (xn, yni) which involves parameters that need to be estimated

from data. In random utility models (RUM) it is assumed that Unj 6= Vnj , i.e. there are

aspects that the researcher cannot observe and hence the utility is a composition of

Uni = Vni + εni . (4.10)

2In ML terminology referred to as instances, feature vectors, or attributes.
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4.2 Joint-Feature Plackett-Luce Model

Table 4.1: The RUM model type and the form of the integral (4.11) depend on the

specification of f(·).

Model Integral has closed-form Distribution of f(·)

logit yes (i.i.d) extreme value

nested logit yes generalized extreme value

probit no multivariate normal

mixed logit no any + extreme value

The error εni captures aspects that affect the utility, but are not included in the rep-

resentation Vni. It is treated as a random variable, and the vector of errors is defined

as ε>n = (εn1, . . . , εnK). The probability that the user n chooses an alternative i can be

stated with it as

Pni = P[Uni > Unj ∀i 6= j]

= P[Vni + εni > Vnj + εnj ∀i 6= j]

= P[εnj − εni < Vni − Vnj ∀i 6= j] ,

which corresponds to the cumulative distribution, in which each random term εnj − εni
is below the quantity Vni − Vnj . Together with the joint density f(εn) of the random

error vector, the probability can be expressed as the integral

Pni =

∫
ε
I[εnj − εni < Vni − Vnj ∀i 6= j]f(εn)dεn . (4.11)

The specification of the density f(ε), which corresponds to the assumptions about the

distribution of the unobservable factors ε, determines different kinds of models (see Table

4.1). In the case of the logit model, the εnj ’s follow an extreme value distribution, or more

precisely, the type I extreme value or Gumbel distribution. Its cumulative distribution

function (CDF) is defined as

F (εnj) = exp(− exp(−εnj)) , (4.12)

and its probability density function (PDF) is given as

f(εnj) = exp(−εnj) exp(− exp(−εnj)) = exp(−εnj − exp(−εnj)) .

The full specification of the Gumbel CDF is F (x|µ, β) = exp(− exp(−(x − µ)/β))

and the PDF is given by f(x|µ, β) = 1/β exp(−(x − µ)/β − exp(−(x − µ)/β)). The
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Figure 4.4: Comparison of (standard) Gumbel and (standard) Gaussian distributions.

Left: cumulative distribution functions. Right: probability distribution func-

tions.

standard Gumbel refers to the configuration µ = 0 , β = 1, and Figure 4.4 shows it

in comparison with the normal (Gaussian) distribution. The PDFs and CDFs of the

normal (or Gaussian) distribution are given by F (x) = Φ((x− µ)/σ) with

Φ(x) =
1√
(2π)

∫ x

−∞
exp(−t2/2)dt

and f(x|µ, σ2) = (
√

2σ2π)−1 exp(−(x − µ)2/(2σ2)) respectively. The standard normal

distribution refers to the configuration in which there is zero mean and unit variance (µ =

0, σ2 = 1). From the figure it can be seen that the Gumbel PDF is not symmetric, and

it is right-skewed in comparison with the normal PDF (fatter right tail). The difference

between the errors that are distributed Gumbel or Gaussian is barely distinguishable

empirically (Train, 2009).

The difference between each two extreme value-distributed variables εnj and εni, i.e.

ε̄nji = εnj − εni, follows the logistic distribution

F (ε̄nji) =
exp(ε̄nji)

1 + exp(ε̄nji)
.

The key property of the logit is the underlying assumption that the unobserved portions

of utility (the εnj ’s) are independent—this gives rise to criticism and motivation for al-

ternative models. Other discrete choice models, such as the mixed logit, provide more
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flexibility in that the errors can be correlated. However, the rather strong assumption

underlying the logit can also be seen as a positive characteristic. This is because if the

representative utility Vnj is modeled well, then the remaining aspects, i.e. the unobserv-

able portion of utility εnj , should only contain white noise. From this perspective, the

logit just requires a correct representation V (·, ·).
If correlations between alternatives are of concern in logits, then they must be modeled

explicitly so that the errors remain independent3. With the choice of the cumulative

distribution (4.12) and the independence of the ε’s, we can rewrite the choice probability

(4.11) as

Pni =

∫ (∏
i 6=j

exp(− exp(−(εni+Vni−Vnj)))
)

exp(−εni) exp(− exp(−εni))dεni . (4.13)

The integral (4.13) has a closed-form expression, which is the logit choice probability

(McFadden, 1973):

Pni =
exp(Vni)∑
j exp(Vnj)

, (4.14)

where the representative utility Vnj is often specified as the function V (x(nj)) = β>x(nj),

which is linear in its parameter vector β. The algebraic operations to get from (4.13)

to (4.14) are provided in the appendix. The possibility to express probabilities in a

closed-form is the main advantage of the logit—this also makes it different to the other

models.

Rank Ordered Logit Model (ROL) An extension of the logit for rank-ordered obser-

vations is reported in (Allison and Christakis, 1994; Luce and Suppes, 1965); it relies on

the theoretical work of Marschak (1959).

It proceeds from the observation that the user i made a ranking of the options A,B,C

and D. And the utility of an option can be specified as Uij = β>x(ij) + εij with

j = A,B,C,D, where εij is following the Gumbel distribution. Then, the probability

of observing a particular ranking of the alternatives can be expressed as the product of

multiple standard logit models as follows:

Pr(B � D � A � C) =

exp(β>x(iB))∑
j=A,B,C,D exp(β>x(ij))

exp(β>x(iD))∑
j=A,C,D exp(β>x(ij))

exp(β>x(iA))∑
j=A,C exp(β>x(ij))

.
(4.15)

3At least if they are used for predictive purposes.
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Each logit in (4.15) refers to a pseudo-observation in which an alternative is chosen

from a set of remaining alternatives. The sets within consecutive logits are sets that

contain all alternatives excluding those that have been chosen before.

4.3 Bilinear Plackett–Luce Model

A particular choice of the joint-feature map is the Kronecker (tensor) product between

two vectors; this is specified by

Φ(x,y) = x⊗ y =
(
x1 · y1, x1 · y2, . . . , xr · yc

)
= vec

(
xy>

)
, (4.16)

which is a vector of the length p = r·c comprising all pairwise products of the components

of x and y, also known as cross-products. Thus, the inner product 〈w,Φ(x,y)〉 can be

rewritten as a bilinear form x>Wy with an r× c matrix W = (wi,j), in which an entry

wi,j can be considered as the weight of the interaction term xiyj . This choice of the

joint-feature map yields a bilinear version of the PL model:

v(z) = v(x,y) = exp(〈w,x⊗ y〉) = exp
(
x>Wy

)
. (4.17)

Given the ranking

ρ :
(
xπ(1),yπ(1)

)
�
(
xπ(2),yπ(2)

)
� . . . �

(
xπ(M),yπ(M)

)
,

the probability of it can be stated with (4.17) as

P(ρ |W ) =
M∑
m=1

exp
[
x>π(m)Wyπ(m)

]
M∑
l=m

exp
[
x>π(l)Wyπ(l)

] . (4.18)

4.3.1 Identifiability of the Bilinear PL Model

The bilinear PL model introduced above defines a probability distribution on dyad rank-

ings that is parameterized by the weight matrix W. An interesting question concerns

the identifiability of this model. Recall that, for a parameterized class of models M,

identifiability requires a bijective relationship between the models Mθ ∈ M and the

parameters θ, that is, models are uniquely identified by their parameters. Or, stated

differently, the parameters θ 6= θ∗ induce different models Mθ 6= Mθ∗ . Identifiability

is a prerequisite for a meaningful interpretation of parameters and, perhaps even more
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importantly, guarantees unique solutions for optimization procedures such as maximum

likelihood estimation.

Obviously, the original PL model (4.1) with constant skill parameters v = (v1, . . . , vK)

is not identifiable, since the model is invariant against the multiplication of the parameter

by a constant factor c > 0: The models parameterized by v and v∗ = (cv1, . . . , cvK)

represent exactly the same probability distribution, i.e. P(π |v) = P(π |v∗) for all

rankings π. The PL model is, however, identifiable up to this kind of multiplicative

scaling. Thus, by fixing one of the weights to the value 1, the remaining K − 1 weights

can be uniquely identified.

Now, what about the identifiability of our bilinear PL model, i.e. to what extent is

such a model uniquely identified by the parameter W? We can show the following result.

Proposition 1. Suppose that none of the y features vectors includes a constant feature,

i.e. |Yi| > 1 for each of the domains in (2.3), and that the x feature vectors includes

at most one such feature (accounting for a bias) in at least one ranking ρ. Then, the

bilinear PL model with skill values defined according to (4.17) is identifiable.

Proof: Recall that the standard PL model is invariant against multiplication with a

positive constant, and that this is the only invariance of the model (c.f. Section 4.1.1).

Since the bilinear PL model defined by (4.17) is log-linear in W, invariance on the level

of this parameter can only be additive. In the case of the bilinear PL model, this means

that the probability distribution over rankings becomes equal if

x>Wy = x>W∗y + γ , (4.19)

for all dyads in the rankings.

We will now proceed with the contraposition of the model parameter identification

condition, which is, W 6= W ∗ ⇒ P(ρ |W ) 6= P(ρ |W ∗). To prove this, we will show

that the equality P(ρ |W ) = P(ρ |W ∗) cannot be obtained.

By denoting the elements of W and W∗ by wi,j and w∗i,j , respectively, (4.19) means

that
r∑
i=1

c∑
j=1

(wi,j − w∗i,j)xiyj =
r∑
i=1

c∑
j=1

∆wi,jxiyj = γ .

In the first case, suppose that a ranking ρ has at least two dyads (xk,ym) and (xl,yn),

where either the x vectors differ in the feature i or the y vectors differ in the feature j
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and where ∆wi,j does not vanish. Then, it is clear that the γ is not independent of the

dyads. In fact, we may evaluate up to four different values of γ which are: γkm, γkn,

γlm, and γln, where γab is defined as γab =
∑

i

∑
j ∆wi,jxaiybj . Thus, with a varying

parameter, W, one obtains different γ values in dependence of the dyads. This, in turn,

results in different probability distributions.

The second case is where only one dyad member is changing while the other is repeated

or fixed. This corresponds to the situation of a contextual dyad ranking (2.6). Without

loss of generality, suppose the x vectors are repeated and there are at least two y vectors,

ym and yn, that differ in the feature j and ∆wi,j does not vanish for the feature xi 6= 0.

The vectors ym and yn then have an impact on γ, and a change of the weight parameter

W lead to a change of the probability distribution. Under the stated conditions, the

bilinear PL model is identifiable in both cases.

4.3.2 Connections to Related Models

Comparison between the Linear and Bilinear PL Models It is not difficult to see

that the linear PL model (3.5) from Section 3.1.3, subsequently referred to as LinPL, is

indeed a special case of the bilinear model (4.17), called BilinPL. In fact, the former is

recovered from the latter by means of a (1-of-K) dummy encoding of the alternatives:

The label yk is encoded by a K-dimensional vector with a 1 in the position k and 0 in

all other positions. The columns of the matrix W are then given by the weight vectors

w(k) in (3.5).

The other way around, LinPL can also be applied in the setting of dyad ranking, pro-

vided the domain Y of the alternatives is finite. To this end, one would simply introduce

one “meta-label” Yk for each feature combination (y1, . . . , yc) in (2.3) and apply a stan-

dard label ranking method to the set of these meta-labels. Therefore, both approaches

are in principle equally expressive. Still, an obvious problem of this transformation is

the potential size4

K = |Y| = |Y1| × |Y2| × . . .× |Yc|

of the label set thus produced, which might be huge. In fact, the number of parameters

that need to be learned for the model (3.5) is r · |Y|, i.e. r ·ac under the assumption that

each feature has a values. For comparison, the number of parameters is only r · c in the

4This is an upper bound, since in practice not all feature combinations are necessarily realized.
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bilinear model. Moreover, all information about relationships between the options (such

as shared features or similarities) is lost, since a standard label ranker will only use the

name of a meta-label while ignoring its properties.

Against the background of these considerations, one should expect dyad ranking to

be advantageous to standard label ranking, provided that the assumptions underlying

the bilinear model (4.17) are indeed valid, at least approximately. In that case, learning

with (meta-) labels and disregarding properties of the alternatives would come with

an unnecessary loss of information (that would need to be compensated by additional

training data). In particular, using the standard label ranking approach is supposedly

problematic in the case of many meta-labels and comparatively small amounts of training

data.

Having said that, dyad ranking could be problematic if the model (4.17) is in fact a

misspecification: If the features are not meaningful, or if the bilinear model is not prop-

erly reflecting their interaction, then learning on the basis of (4.17) cannot be successful.

In this regard, it is also interesting to mention that both approaches can be combined.

To this end, the feature vectors y are extended by a (1-of-K) dummy-encoding, i.e. dyad

ranking is used with feature vectors of the following form:

y =
(
y1, y2, . . . , yc, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

length K

)
(4.20)

Using this representation, subsequently called LinSidePL, the learner is in principle free

to exploit the side-information yi or to ignore it and only use the dummy labels.

In comparisons with the ROLs from Section 4.2.4, it can be stated that LinPL shares

similarities with those ROLs whose factors consist of multinomial logits, whereas BilinPL

resembles the case where the factors are conditional logits (Hoffman and Duncan, 1988).

Connection to Logistic Regression It is possible with dyad ranking to mimic label

ranking by expressing the y vectors in terms of labels. Moreover, it is possible to draw

a link between the BilinPL model and the logistic regression model. In the case where

rankings are of length 2, the BilinPL model can resemble the binary logistic regression

model because the x vectors can be considered as instances and the 1-of-K encoded y

vectors as binary classes. This means that the class labels take on the following form:

y1 = (1, 0)> and y2 = (0, 1)>.
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A connection can also be drawn between the LinPL model for label ranking and

the multinomial logistic regression model, when only the first stage of the PL model is

considered (Cheng and Hüllermeier, 2012). This connection can also be established with

the BilinPL model (4.17), where again it is required to express the class labels in terms

of the 1-of-K encoding. With ym := (0, . . . , 1 . . . , 0)> for 1 ≤ m ≤M , the probability of

observing the class c ∈ Y can be expressed as:

P(c |x) =
exp (xWyc)∑M

m=1 exp (xWym)
=

exp (〈βc,x〉)∑M
m=1 exp (〈βm,x〉)

, (4.21)

where βj := Wyj and the vector x is defined with an intercept term as x := [x′, 1],

so that an additional bias term αj is modeled like it is common in multinomial logistic

regression. The right-hand side of (4.21) corresponds to the standard notation of a

multinomial logistic regression model (Agresti, 2003).

Connection to the Latent Feature Log-Linear Model Recall that the LFL model for

dyadic prediction from Section 3.6.1 is capable of modeling the rating preferences of

users for items. It is furthermore capable of including side-information which results in

the following model,

P(y |x = (r, c), θ) ∝ exp

(
K∑
k=1

u
(y)
rk v

(y)
ck + (w(y))>s̄rc

)
, (4.22)

where θ = {U (1), . . . ,V (R),w(1), . . . ,w(R)} and s̄rc := [sr, sc, src]. This model also

exhibits a bilinear structure as well as the BilinPL model (4.17), i.e.

log v(z) = f(x,y) = x>Wy .

We have seen previously that with a 1-of-K encoding of y vectors, it is possible to

represent class labels. In a similar way, user and item entities could be represented as

class labels too. By setting xi = ei and yj = ej , it is possible to restate (4.22) as

f(xr,yc) = e>rWec . (4.23)

This specification, however, results in a model which would not be usable for predictive

purposes, since values associated with the combinations (r, c) would rather be ”remem-

bered” (Menon, 2013). This problem is tackled with the LFL model by a factorization

of W . This corresponds to the first summand under the exponential in (4.22).
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A common internal bilinear scoring function of both models can be pointed out by

considering side-information. To this end, let xi = [ei; si] and yj = [ej ; sj ], where ei

identifies the i-th entity and si is the side-information for that entity. It is, then, possible

to formulate a bilinear scoring function that contains multiple parts:

f(xi,yj) = x>i Wyj

= e>i W 1ej + s>i W 2ej + e>i W 3sj + s>i W 4sj , (4.24)

where the model weight W exhibits a block structure, which is illustrated in Figure 4.5.

1 M 1 cj
1

N
1

r

i W1 W3

W2 W4

Figure 4.5: Building blocks of the matrix W = [W 1,W 3;W 2,W 4].

The formulation (4.24) exhibits multiple parts. For instance, term two, s>i W 2ej ,

when embedded in a PL model, resembles the LinPL model used for label ranking from

Section 4.3.2. A model using term four, s>i W 4sj , would be the most versatile with

regard to cold-start predictions. The total bilinear scoring function resembles that of

model (4.22) up to the point that the matrix block W 1 is not factorized.

To recap, the inclusion of side-information is considered as an interesting option for the

LFL base model, and it is applicable if information on users and items is available. For

the BilinPL model, the existence of (predictive) feature representation for the domains

is a prerequisite. This along with the fact that the LFL model deals with nominal

(ordinal) rating data whereas the BilinPL model acts on ranking data can be termed as

vital differences between the models. Therefore, an option for future research would be

an extension of the BilinPL model for learning latent features.
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4.3.3 Learning the Bilinear PL Model

4.3.3.1 Learning via Maximum Likelihood Estimation

Suppose training data D to be given in the form of a set of rankings, i.e. rankings

ρ1, . . . , ρN of the following kind:

ρn :
(
x

(n)
1 ,y

(n)
1

)
�
(
x

(n)
2 ,y

(n)
2

)
� . . . �

(
x

(n)
Mn
,y

(n)
Mn

)
. (4.25)

The likelihood of the parameter vector w is then given by

L(w;D) = P(D |w) =
N∏
n=1

Mn−1∏
m=1

exp
(
w>z̄

(n)
m

)
∑Mn

l=m exp
(
w>z̄

(n)
l

) ,

where we set z̄
(n)
m := Φ(z

(n)
m ) and where Φ(z

(n)
m ) = x

(n)
m ⊗ y(n)

m . Instead of using the

formula directly, which involves many product terms, it is more common in MLE to

resort to the log-likelihood for numerical stability. The reason for this is that the limited

floating point representation in common computer architectures can exceed (underflow)

if a larger number of small probabilities are multiplied.

As in the case of the linear PL model, the learning problem can now be formalized as

finding the maximum likelihood estimate, i.e. the parameter

w∗ = argmax
w

L(w;D) , (4.26)

that maximizes the likelihood (Aldrich et al., 1997; Fisher, 1922) or, equivalently, mini-

mizes the negative log-likelihood (NLL)

`(w;D) = −
N∑
n=1

Mn−1∑
m=1

w>z̄(n)
m +

N∑
n=1

Mn−1∑
m=1

log

(
Mn∑
l=m

exp
(
w>z̄

(n)
l

))
. (4.27)

Since there is no analytical solution to this optimization problem, one has to rely on

gradient-based methods, where the gradient ∇` = ( ∂`n∂w1
, . . . , ∂`n∂wp

)> is defined with the

partial derivatives

∂`

∂wi
=

N∑
n=1

Mn−1∑
m=1

g(w)−1h(w)−
N∑
n=1

Mn−1∑
m=1

z̄
(n)
m,i, (4.28)

where

gm(w) =

Mn∑
l=m

exp
(
w>z̄

(n)
l

)
and

hm(w) =

Mn∑
l=m

z̄
(n)
l,i exp

(
w>z̄

(n)
l

)
.

72



4.3 Bilinear Plackett–Luce Model

For such methods, the convexity of the function to be minimized is of critical importance

(Boyd and Vandenberghe, 2004). It is, therefore, shown in the upcoming section that

the negative log-likelihood function (4.27) is indeed a convex function.

4.3.3.2 Convexity of the NLL

To show the convexity of the negative log-likelihood function (4.27), recall that

`(w;D) =
N∑
n=1

− log P(ρn |w) (4.29)

with

− log P(ρ |w) =
M−1∑
m=1

−w>z̄m︸ ︷︷ ︸
term 1

+
M−1∑
m=1

log

( M∑
l=m

exp(w>z̄l)

)
︸ ︷︷ ︸

term 2

, (4.30)

where the index n is dropped in ρn and in z̄
(n)
l for better readability. Using the fact (e.g.

from Luenberger (1973)) that a function comprising a sum of convex functions is convex

again, it needs to be analyzed if each of the summands in (4.30) is convex to state the

convexity for `(D,w). Term 1 is a linear function, which is both convex and concave (in

a non-strict sense) at the same time. Term 2 refers to the function

f(w) := log

(∑
l

exp(w>z̄l)

)
, (4.31)

and its convexity can be analyzed by restricting it to an arbitrary line (see Boyd and

Vandenberghe, 2004, Chapter 3). To this end, we specify the function

g(t) := f(w + tv) = log

(∑
l

exp((w + tv)>z̄l)

)
(4.32)

= log

(∑
l

exp(w>z̄l + tv>z̄l)

)
,

where v is a vector of the same dimensionality as w and t ∈ R. The function g : R→ R
represents a slice of the function f along a line in the direction of v. The function f is

convex if every such restriction is convex. A criterion for g(·) to be convex is that its

second derivative should always be positive. The first derivative of (4.32) is given by

g′(t) = h(t)−1

[∑
l

v>z̄l exp(wz̄l + tv>z̄l)

]
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with

h(t) =
∑
l

exp(wz̄l + tv>z̄l) .

The second derivative can be stated then as follows:

g′′(t) = h(t)−2

[∑
l

(v>z̄l)
2 exp

(
w>z̄l + tv>z̄l

)
·
∑
k

exp
(
w>z̄k + tv>z̄k

)
−
∑
l

v>z̄l exp(w>z̄l + tv>z̄l) · v>z̄k
∑
k

exp
(
w>z̄k + tv>z̄k

)]
= h(t)−2

[∑
l

∑
k

(v>z̄l)
2 · ξ(w,v, t)−

∑
l

∑
k

v>z̄l · v>z̄k · ξ(w,v, t)
]
,

with ξ(w,v, t) = exp
(
w>(z̄l + z̄k) + tv>(z̄l + z̄k)

)
. For all choices of x, v and t we

have:

g′′(t) = h(t)−2

[∑
l

∑
k

[(
v>z̄l

)2 − v>z̄l · v>z̄k] · ξ(w,v, t)
]

= h(t)−2

[∑
l

∑
k

[(
v>z̄l

)2
2

− v>z̄l · v>z̄k +

(
v>z̄k

)2
2

]
· ξ(w,v, t)

]

= h(t)−2

[∑
l

∑
k

[(
v>z̄l − v>z̄k

)2
2

]
· ξ(w,v, t)

]
≥ 0 .

The last argument shows that all possible second derivatives are positive because each

involved factor is equal or larger than zero, irrespective of a particular choice of v. The

function f is thus convex for every possible line restriction. And consequently, the NLL

(4.29) is a convex function.

4.3.3.3 Convex Optimization Approaches

From an optimization point of view, the NLL (4.27) is a scalar function ` : Rn → R,

and the minimization thereof is an unconstrained problem (Luenberger, 1973). Note

that in the optimization literature, the function to be minimized is usually denoted by

f and the variable as x. To prevent the cluttering of notation, we will continue with the

variable names introduced with the BilinPL model. The learning of its parameters will

subsequently be expressed in terms of convex optimization. Furthermore, the following

abbreviation will be used: The gradient of ` is a column vector g(w) = ∇`(w)> =

( ∂`
∂w1

, . . . , ∂`
∂wn

)>.
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Gradient Descent Gradient descent is a simple iterative optimization method for find-

ing a minimum of a function. It is a so-called first-order method because it utilizes the

first derivative for finding the direction toward a minimum. The method is specified by

the following iterative procedure:

wk+1 = wk − αkg(wk) , (4.33)

in which αk is a step size αk that is allowed to change at every iteration (Boyd and

Vandenberghe, 2004). Either one uses a fixed α, which may lead to poor convergence

if its value is taken too small. Or otherwise, one selects α at every iteration. The

determination of αk is called line search, in which an αk is searched so that

αk = argmin
α∈R>0

= `(wk − αg(wk)) . (4.34)

The line search can either be accomplished exactly (e.g. via the conjugate gradient

method) or approximately (e.g. via backtracking).

Newton’s Method In Newton’s method (also known as the Newton–Raphson method),

the idea is based on the approximation of ` locally with a quadratic function. To this

end, ` is approximated near the point wk using the truncated Taylor series:

`(w) ' `(wk) + g(wk)(w −wk) +
1

2
(w −wk)

>H(wk)(w −wk) .

The minimizer of the right-hand side leads to the following iterative scheme, which is

given by

wk+1 = wk −
g(wk)

H(wk)
. (4.35)

We assume that the Hessian matrix H is positive definite at w∗, which corresponds to

the (second-order) sufficiency criterion for a minimum at w∗. The method is well defined

near the solution w∗ as long as ` has continuous partial derivatives.

L-BFGS The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method

is the method of choice for BilinPL. It is a state-of-the-art (unconstrained convex) op-

timization method that approximates the BFGS algorithm using a limited amount of

memory. The method can deal with a large number of variables (high dimensional-

ity of w) due to its linear memory requirement by storing only a few vectors for the

approximation (Liu and Nocedal, 1989).
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4.3.3.4 Optimization via Iterative Majorization

The MM algorithm, proposed by Hunter (2004), belongs to the standard approaches for

the maximum likelihood estimation of the basic PL model parameters v. The acronym

MM stands for majorization–minimization (minorization–majorization) in the case of

minimization (maximization) problems. The prominent EM algorithm can be seen as a

special instance of MM (Dempster et al., 1977). While the standard Newton algorithm

could in principle be used to minimize the convex PL objective, it is known that the

MM approach is more robust and faster in direct comparison (Guiver and Snelson,

2009). Although MM algorithms often need more iterations, they perform specifically

well when operating far from the optimum point (Lange et al., 2000). The MM algorithm

is furthermore superior to Newton’s method in the context of PL model training because

the latter requires special countermeasures to prevent erratic behavior (Hunter, 2004).

The overall advantage of MM over Newton in terms of speed is mainly due to the time-

intensive inversion of the Hessian in every Newton step.

Recently proposed alternative optimization approaches are based on Bayesian infer-

ence. For example, Guiver and Snelson (2009) propose approximate inference based

on expectation propagation and Caron and Doucet (2012) make use of Gibbs sampling.

Maystre and Grossglauser (2015) propose an alternative approach for the basic PL model

that is based on interpreting the maximum likelihood estimate as a stationary distribu-

tion of the Markov chain. This enables a fast and efficient spectral inference algorithm.

Recall that in contrast to the basic PL model (4.1), the parameters vi are not real

numbers in the BilinPL model (4.17), but the functions of a weight vector w and a

joint-feature vector. To adopt the MM algorithm for obtaining w∗, we take a closer look

at MM and adopt the perspective of minimization by majorization of the NLL (4.27).

The MM algorithm is not a concrete method, but rather a prescription for constructing

optimization algorithms. The idea is to construct a surrogate (or auxiliary) function,

g, that majorizes a particular objective function, f . The surrogate function should be

simpler than the original function and should “touch” it at the so-called supporting point

u, i.e. g(u,u) = f(u), see Figure 4.6 for an example. Moreover, at this point, it should

also hold that g(w,u) ≥ f(w) for all w. The iterative majorization approach essentially

consists of the following steps, which drive the value of the objective downhill (Borg and

Groenen, 2005; De Leeuw and Mair, 2009):

76



4.3 Bilinear Plackett–Luce Model

Figure 4.6: Example of a function g (dotted line) that majorizes the BilinPL NLL func-

tion f (solid line). The function value of g is equal to that of f at the

supporting point u = 2 (circle).

1. Initialize the first supporting point u = u0

2. Find update w, so that g(w,u) ≤ g(u,u)

3. If f(u)− f(w) < ε, then stop and return w,

else set u = w and go back to line 2

For the case of BilinPL, we define the function f(w) = `(D,w). To get rid of the

logarithm in (4.27) and to simplify the objective, one can exploit the concavity of the

logarithm, i.e.

ln(x) ≤ ln(y) +
x

y
− 1 , (4.36)

which is a consequence of the “supporting hyperplane inequality” (Lange, 2016) or first-

order condition of concavity (Boyd and Vandenberghe, 2004):

f(y) ≤ f(x) + f ′(x)(y − x) , (4.37)

where the right-hand side of (4.37) is the first-order Taylor approximation of f at the
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point x. With (4.36), it is possible to express the surrogate function g(w,u) as follows:

g(w,u) =
N∑
n=1

Mn∑
m=1

∑Mn
l=m exp

(
w>z̄

(n)
l

)
∑Mn

l=m exp
(
u>z̄

(n)
l

)


+

N∑
n=1

Mn∑
m=1

log

(
Mn∑
l=m

exp
(
u>z̄

(n)
l

))
(4.38)

−
N∑
n=1

Mn∑
m=1

1−
N∑
n=1

Mn∑
m=1

w>z̄(n)
m .

Its gradient with respect to w is given by the partial derivatives

∂g

∂wi
=

N∑
n=1

Mn∑
m=1

∑Mn
l=m z̄

(n)
l,i exp

(
w>z̄

(n)
l

)
∑Mn

l=m exp
(
u>z̄

(n)
l

)
− N∑

n=1

Mn∑
m=1

z̄(n)
m , (4.39)

1 ≤ i ≤ d. To realize Step 2 of the MM algorithm, i.e. the update step, one needs to

find a vector, w∗, in such a way that at least approximately ∇g ≈ 0 (for a fixed vector

u). This can be accomplished by performing a single Newton step, (Lange et al., 2000),

with

w = u− [Hg(u,u)]−1∇f(u) . (4.40)

The Hessian of g is computationally less complex than that of f . Yet, for the minimiza-

tion of (4.27), it turns out that a quasi-Newton approach, such as the L-BFGS method

(Liu and Nocedal, 1989), is in practice much more efficient. The proclaimed advantages

of operating well in regions far from the optimum and the prevention of erratic behavior

could not be observed with L-BFGS in the experiments provided in Chapter 7.

4.3.3.5 Online Learning using Stochastic Gradient Descent

An interesting alternative approach, especially in the large-scale learning regime, is

stochastic gradient descent (SGD) (Bottou, 1998, 2010). The core idea of SGD is to

update model parameters iteratively on the basis of randomly picked examples. The

algorithm is explicated for the case of dyad ranking with the BilinPL model in Listing

5. It requires the specification of a data source, the total number of iterations, an initial

learning rate, and a regularization parameter.

The probabilistic nature of BilinPL can be leveraged (in Line 3 of the algorithm)

for sampling training instances in a selective way. More specifically, for each randomly
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sampled instance, our model allows for deriving the probability of the corresponding dyad

ranking (given the current parameter estimates), as well as the probability of alternative

rankings. Thus, it is possible skip parameter updates on examples on which the ranker

is certain about which results in a shorter training phase. It is also possible, thanks to

the probabilistic information, to implement some kind of active learning via uncertainty

sampling (Lewis and Gale, 1994; Settles, 2010). This refers to the technique in which

a classifier is applied on unlabeled examples and where a teacher is used to classify a

subset of the examples on which the classifier is highly uncertain about.

Algorithm 5 BilinPL with SGD

Require: data set S, initial learning rate η0, regularization parameter λ, number of

iterations

1: i ← 0

2: for i < nIter do

3: ρ← sample a dyad ranking (S)

4: w ← update(i, η0, λ, ρ)

5: i ← i+ 1

6: end for

7: return w

4.3.4 Prediction of Dyad Rankings with the Bilinear PL Model

After obtaining w via (4.26), the resulting model matrix W = vec−1(w) can be used to

predict rankings on dyads (for the definition of vec−1, refer to the appendix). To rank

the set % = {z1, . . . ,zM} of dyads one has to calculate the skills v(·) according to (4.17)

and rank the dyads correspondingly similar to the procedure described in Section 4.2.1.

That approach produces a ranking of dyads which exhibits the highest probability mass,

i.e. the mode of the probability distribution. The probabilistic information that comes

along at the inference can also be used, for example, for the prediction of partial orders

by abstaining on pairs for which P(zi � zj) ≈ 1
2 (Cheng et al., 2012).

The learned weights are furthermore amenable to a geometrical interpretation. To this

end, let w′ denote a projection into the others’ member space, i.e. w′ = (x>W )> ∈ Y

(or w′ = Wy ∈ X). The inner product 〈w′,y〉 (or 〈w′,x〉) defines then the preference

strength and can be interpreted like the JFPL model parameters in Section 4.2.2.
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4.3.5 Discussion

The BilinPL model relates to the JFPL model by means of a joint-feature map speci-

fication using the cross-products between dyad member feature vectors. With feature

engineering, it could be shown that BilinPL can resemble an existing method for la-

bel ranking, namely LinPL, and can extend that model further by the incorporation of

additional label descriptions, thus resulting in a model called LinSidePL.

A further extension can be realized with the use of pairwise kernels. With (4.16),

an explicit definition of the joint-feature map is introduced. In the case where the

dimensionality of the objects is higher than the number of training examples, it can

be advantageous to refer to an implicit representation via pairwise kernels. Using the

pairwise kernel

KΦ

(
(x′,y′), (x′′,y′′)

)
=
〈
Φ(x′,y′),Φ(x′′,y′′)

〉
, (4.41)

with the Kronecker product Φ(x, y) = x ⊗ y one is able to rewrite (4.41) using inner

products between the x and y vectors or equivalently using domain-specific linear kernels

(Basilico and Hofmann, 2004):

KΦ

(
(x′,y′), (x′′,y′′)

)
=
〈
x′,x′′

〉 〈
y′,y′′

〉
= Kx(x′,x′′)Ky(y

′,y′′) .

The domain-specific kernels would, in contrast, enable the modeling of non-linear rela-

tionships. The learning of such an extended BilinPL model is an interesting aspect for

future research.

The BilinPL model with an explicit definition of the joint-feature map, however, relies

on predictive dyad member feature vectors. Those can be engineered by combining or

transforming the attributes of objects. Coming up with good feature vectors is a time-

consuming undertaking, and it is tough to engineer them in a way that the bi-linearity

assumption would be in accordance with the preference structure of the data. To this

end, the PLNet approach is proposed in the next section that offers more flexibility with

respect to learning joint-feature representations.
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4.4 Plackett-Luce Networks

In this section, an alternative dyad ranking approach is described—it is called PLNet.

It allows for modeling utilities in a more flexible way compared to the BilinPL model

from the previous section. Instead of assuming a bilinear structure of the joint-feature

representation, the utilities are modeled in PLNet as (feed-forward) neural networks;

thanks to the hidden layer of such networks, important non-linear dependencies can

thus be captured (Rumelhart et al., 1986). One drawback of the BilinPL model is that

it relies on the joint-feature vector formulation that strongly depends on the dyad feature

vectors and thus the inductive bias it imposes onto the model can be suboptimal. PLNet

instead aims to learn the joint-feature vector representation and bypasses the necessity

for feature engineering.

4.4.1 Architecture

The core idea of PLNet is to learn real-valued (latent) utility functions u = g(x,y),

where g is the function implemented by a single multi-layer feed-forward neural network

and u determines the strength of the dyad z = (x,y) in a PL model. More specifically,

the probability of observing the ranking

ρ : (x1,y1) � (x2,y2) � . . . � (xM ,yM )

is given by

P (ρ |v) =

M−1∏
m=1

vm∑M
l=m vl

=

M−1∏
m=1

exp
(
um
)∑M

l=m exp (ul)
, (4.42)

that is, by the PL probabilities induced by the parameters

vm = exp
(
um
)

= exp (g(xm,ym)) .

PLNet is a multi-layer perceptron (MLP), and its structure is shown in Figure 4.8. It is a

directed graph organized in multiple layers and takes as input two vectors corresponding

to the members of a dyad. The layers are denoted by the numbers 1 to L and associated

with them are nodes (also called neurons). In this way, the layers exhibit the activation

vectors a(l) and the weight matrices W (l). Each node at a particular layer receives the

activation values from all the nodes one layer before it. The weight matrix of the layer l

hence consists of several column vectors, where each column vector is associated with a
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particular node, i, of the layer l. Each component j of the column vector (i.e. the j-th

row of the matrix), in turn, refers to the j-th node of the layer l − 1 before the layer l.

These weights are denoted by w
(l)
j,i ∈ R (see Figure 4.7). In the following paragraphs, the

superscript in round brackets will not be mentioned if the context is clear. A superscript

in rectangular brackets will be used instead to indicate the affiliation of the weights with

a particular network.

 

l-1 l

ai
(l)

a1
(l-1)

aj
(l-1)

w1,i
(l)

wj,i
(l)

Figure 4.7: PLNet layer weights and activations.

The construction exhibits some special properties. The first layer has nodes that

correspond to the features of the input data. Hence, there are no weights associated

with them and the activations a(1) are identical to the features. There is at least one

hidden layer in the architecture which has nodes using a sigmoidal activation function.

The output layer, in contrast, consists of only a single node whose activation produces

a scalar value using a linear activation function. Since there is only one node at the last

layer, the weight matrix of it is a single vector which is denoted by w(L) := W (L). The

values produced by this node are, thus, of the form u = 〈w(L),a(L−1)〉+ b(L).

The PLNet architecture shares some resemblance with the Siamese architecture (Brom-

ley et al., 1993; Chopra et al., 2005). In the training phase, the Siamese architecture

consists of two identical weight sharing neural networks whose outputs are connected

to a (symmetric) function (Bakir et al., 2007). The idea is to use one of both networks

after the training to produce a feature representation for a given single input (Nair and

Hinton, 2010). Siamese neural networks and extensions are typically applied in computer

vision for metric learning, where the training information consists of contrasting pairs

of similar and dissimilar images (Bell and Bala, 2015; Han et al., 2015; Veit et al., 2015;
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Wang et al., 2018, 2014). A difference between the Siamese architecture and that of the

PLNet is that the base network (MLP) of PLNet already takes dyads as input. Another

difference is that a varying number of identical MLPs are coupled together during the

training, as will be explained in the upcoming section.

The basic concepts common to MLPs are shortly reviewed. A node in a network has

the task to produce a real-valued output given a set of real valued inputs. These inputs

are either data in case of input nodes or else the outputs of other nodes. The inner

working of the node j consists of the computation of the net input (or excitation of

the neuron) denoted by netj = 〈w(j),a(j−1)〉+ b(j) (Patterson, 1998; Rojas, 1993). The

output a of a node is calculated by applying an activation function, σ : R → R, on the

net input. There are several possibilities for the specification of an activation function.

A sigmoidal function is commonly used for the nodes of the hidden layers and refers to a

function having a ”S”-shaped curve (Bishop, 1995). More concretely, we will primarily

use the logistic function

σ(x) =
1

1 + exp(−x)
,

when we refer to a sigmoidal function. It is sometimes also known as the ”squashing”

function because it non-linearly squashes values between zero and one. Another type

of activation function is the ”linear” function, which is the identity function σ(x) = x.

More recent activation functions, such as the rectified linear unit (ReLU), are possible

as well. The usefulness of ReLUs has been shown especially for the training of deep

neuronal networks (Glorot et al., 2011).

Technically, the bias term b(L) is not needed in the last layer, as it has no effect on the

PLNet model (4.42): With the choice of the exponential function (to ensure positivity

of the PL parameters) and the independence of b(L) of the inputs x and y, we have

v = exp
(
〈w(L),a(L−1)〉+ b(L)

)
= exp(b(L)) · exp

(
〈w(L),a(L−1)〉

)
, (4.43)

and as noted before, the PL model is invariant against the multiplication of the weights

with a positive scalar.

By the special choice of the linear activation function for the neuron at the output

layer, the architecture is related to the JFPL model (4.7) introduced in Section 4.2.

The activation output of the neurons of the penultimate layer can be considered as a

joint-feature vector, Φ(x,y), which is then linearly combined with a vector of weights to
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...

1

x1

y1
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hiddeninput

1 L-1 Llayers

Φ(x,y)

a(1) W(L-1) a(L-1) W(L) a(L)

w,Φ(x,y)

Figure 4.8: PLNet architecture. This kind of feed-forward neural network is composed

of several layers. Dyad members z = (x,y) are entered at the input layer,

whose nodes are connected to the nodes of the next layer. The inner (hidden)

layers have nodes endowed with a non-linear activation function. The output

layer, in contrast, only consists of a single node, which is equipped with the

identity activation function.

produce a utility score. Thus, the upper part of the network, i.e. the input layer down

to the penultimate layer, can be considered as the joint-feature map Φ(x,y).

4.4.2 Training

The training procedure builds upon the basic idea of back-propagation (Rumelhart et al.,

1986; Werbos, 1974), which, however, needs to be modified in various ways. First,

the original back-propagation algorithm is derived for the squared error between pre-

diction and target as a loss function, whereas PLNet seeks to minimize the negative

log-likelihood. Second, the targets in PLNet are rankings instead of real numbers.

The processing of a single ranking

ρn :
(
x

(n)
1 ,y

(n)
1

)
�
(
x

(n)
2 ,y

(n)
2

)
� . . . �

(
x

(n)
Mn
,y

(n)
Mn

)
is described in Listing 6. At the training step t, the current PL network gt, which we

refer to as the master network, is cloned Mn times, yielding Mn (read-only) PL networks
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Algorithm 6 PLNet Training

Require: Training examples ρn :
(
x

(n)
1 ,y

(n)
1

)
�
(
x

(n)
2 ,y

(n)
2

)
� . . . �

(
x

(n)
Mn
,y

(n)
Mn

)
1: Create Mn copies of master network gt.

2: Enter
(
x

(n)
k ,y

(n)
k

)
into network gt,k, 1 ≤ k ≤Mn.

3: Calculate derivatives using the outputs θ =
{
u[1], . . . , u[Mn]

}
.

4: Evaluate ∆w
[k]
j,i on networks gt,k

5: gt+1 ← update
(
gt,
∑

k ∆w
[k]
j,i

)

gt,k. The k-th dyad of ρn, when entered into the network gt,k, yields the output u[k].

Proceeding that way for all 1 ≤ k ≤Mn dyads, it is possible to evaluate the probability

of that ranking according to (4.42). Moreover, we can calculate errors to be used for

back-propagation. Recall that the NLL is given by

En = − log P (ρ |v) =

Mn−1∑
m=1

log

Mn∑
l=m

exp
(
u[l]
)
−
Mn−1∑
m=1

u[m] . (4.44)

With this specification of the NLL, the output error of the k-th network, 1 ≤ k ≤ Mn,

can be expressed as

δ[k] =
∂En

∂u[k]
=

[
k∑

m=1

exp
(
u[k]
)∑Mn

l=m exp
(
u[l]
)]− 1 . (4.45)

This value can then be used for back-propagation on the k-th virtual network to calculate

∂En
∂wj,i

, and thus ∆wj,i = η ∂En∂wj,i
, with the learning rate η.

The updates of the weights are not realized on the k-th network directly, but they

are used to carry out the weight adjustments in the master network instead. This can

either be accomplished by a single update

wj,i = wj,i −
∑
k

∆w
[k]
j,i , (4.46)

or by a sequence of updates wj,i = wj,i−∆w
[k]
j,i , 1 ≤ k ≤Mn. To justify the accumulation

of the weight changes from the individual networks, consider the error term (4.44) as a

function of the network outputs, i.e.

En

(
u[1](θ), u[2](θ), . . . , u[Mn](θ)

)
. (4.47)
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Note that En depends on the network parameters θ only indirectly via the outputs.

These can, in turn, be considered as functions that share the same variables. Taking the

total derivative of (4.47) with respect to wj,i ∈ θ, we obtain

∂En
∂wj,i

=
∂En

∂u[1]

∂u[1]

∂wj,i
+
∂En

∂u[2]

∂u[2]

∂wj,i
+ . . .+

∂En

∂u[Mn]

∂u[Mn]

∂wj,i
. (4.48)

The summand ∂En
∂u[k]

∂u[k]

∂wj,i
in (4.48) coincides with the objective of back-propagation on a

single network, k, i.e. the evaluation of ∂En
∂wj,i

with respect to the k-th network’s output

u[k].

An important point of the procedure is the processing of the training examples in a

batch-wise mode at the level of single dyad rankings. The latent utilities u[k], 1 ≤ k ≤Mn

obtained in that way can then be used for the calculation of the log loss (4.44).

The algorithm stops when the error has been diminished without overfitting the data.

We suggest early stopping as a means for regularization. To this end, the NLL values of

the training and validation data are tracked during the whole learning process (Prechelt,

2012). A good point to stop the training and to prevent over-fitting is when the validation

NLL value has reached a global minimum. In practical terms, to distinguish between

trend from noise, the checks for the event of having found a global minimum does not

take place at every iteration but for a certain interval, e.g. every 100 iterations. Finally,

predictions can be carried out straightforwardly using a trained PLNet, as described in

Section 4.2.1.

4.4.3 Applicability

PLNet can be applied also on the label ranking problem. One possibility to do this is

to use the dummy encoding from Section 4.3.2, in which the vectors of the Y domain

are expressed as one-hot vectors. By relaxing the input type from the vector pair (x,y)

to the single input vector z, the PLNet can also be applied on the problem of object

ranking (Cohen et al., 1999; Kamishima et al., 2011). It would consequently be possible

to apply PLNet also on ordered joint query-document vectors z = Ψ(q, d) as commonly

encountered in the learning to rank domain.

The PLNet master network has been described as a multi-layer perceptron, which

takes two feature vectors as inputs. It is, of course, possible and also more common in

practice to use it as a building block of a deeper neural architecture. The input layer of
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the PLNet can be considered as a concatenation layer of vector representations that are

created (or learned) by other parts of a network..

4.4.4 Comparison with Existing NN-based Approaches

An overview of other (preference) learning methods based on neural networks is provided

in this section that share some similarities with PLNet.

x1

x'1

output

xr

x'r

hiddeninput

1 2 3layers

a(3)

W(3)

W'(3)

W(2)

W'(2)

xk

x'k

Figure 4.9: Comparison Training architecture.

Comparison training refers to a framework introduced for learning from pairwise pref-

erences with a neural network, originally invented for the game backgammon (Tesauro,

1989). The network architecture consists of two subnetworks, which are connected to

a single output node that indicates which of two inputs is preferred over the other (c.f.

Figure 4.9). At the training phase, two input vectors of the same dimensionality x and

x′ are entered at a time together with a target output, which is 1, if x � x′ and 0

otherwise. The subnetworks are identical in the number of hidden layers, which can be

one or more, and they are also equivalent with regard to the weights of their hidden

nodes, i.e. W (2) = W ′(2). The subnetworks are connected to a single output node in

a way that the outputs of the last hidden layer nodes are weighted in the final output

node anti-symmetrically, i.e. W (3) = −W ′(3). Since both subnetworks are identical, it

is sufficient to use just one subnetwork for prediction later on. The architecture provides

consistent prediction results because comparisons become unambiguous and transitive.
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Both comparison training and PLNet have the idea of using parallel versions of a net-

work and they utilize back-progapation as a learning algorithm. The networks in PLNet,

in contrast, are not coupled in a asymmetrical way to support training. But both ap-

proaches output real values that can be used to sort vectors in a pairwise fashion in

case of comparison training and to sort vectors using their scores directly in the case of

PLNet. A major difference is, of course, that PLNet can process rankings as training

inputs, whereas comparison training is restricted to pairwise comparisons.

A similar approach called SortNet is proposed by Rigutini et al. (2011). They intro-

duced a three-layered network architecture called CmpNN, which takes two input object

vectors and outputs two real-valued numbers. The architecture, provided in Figure

4.10, establishes a preference function for which the properties of reflexivity and sym-

metry (but not transitivity) are ensured by a weight-sharing technique. More recently,

Huybrechts (2016) uses the CmpNN architecture (with three hidden layers) in the con-

text of document retrieval. The CmpNN architecture consists of two subnetworks with

x1

x'1

output

xr

x'r

hiddeninput

1 2 3layers

w(3)i',<

xk

x'k

a(3)>

a(3)<

w(3)i,<

w(3)i',>

w(3)i,>w(2)xk,i

w(2)x'k,i

w(2)xk,i'

w(2)x'k,i'

hi

hi'
bi'

bi b>

b<

Figure 4.10: CmpNN / SortNet architecture.

three layers that are coupled together so that both input vectors impact the calculations

within the subnetworks simultaneously and also the output nodes are influenced by both

subnetworks respectively. For each hidden node i in the upper subnetwork, there is a

hidden node i′ in the lower subnetwork. The coupling is established as follows: First,

by demanding w
(2)
xk,i′

= w
(2)
x′k,i

and w
(2)
x′k,i
′ = w

(2)
xk,i

, and second, by enforcing w
(3)
i′,> = w

(3)
i,<
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and w
(3)
i′,< = w

(3)
i,>. Furthermore, the biases are shared between the hidden nodes and

those of the outputs so that bi = b′i and b> = b<. In CmpNN training, the concatenated

vector [x,x′] is entered together with the output target

t = [t1, t2]′ =

{
[10]′ if x � x′

[01]′ if x′ � x .

The outputs of the network are denoted by a
(3)
> ([x,x′]) and a

(3)
< ([x,x′]). With them,

the network is optimized using training data by minimizing the following squared error

function:

E([x,x′], t]) = (t1 − a(3)
> ([x,x′]))2 + (t2 − a(3)

< ([x,x′]))2 . (4.49)

The CmpNN architecture shares some resemblance to PLNet regarding the aspect of

using parallel networks. The way they are coupled and the fact that multiple output

nodes are present in CmpNN is fundamentally different than in PLNet. Also, the way

the inference is established differs. In contrast to PLNet, predictions are possible with

CmpNN only on pairs with the rules{
x � x′ if a

(3)
> ([x,x′]) ≥ a(3)

< ([x,x′])

x ≺ x′ if a
(3)
< ([x,x′]) ≥ a(3)

> ([x,x′]) .

The Bradley–Terry model was re-parameterized by a single layer neural network (con-

sisting of a single sigmoid node) by Menke and Martinez (2008). It is used for predicting

the outcome of two-team group competitions by rating individuals in the application of

e-sports. The model offers several extensions such as home-field advantage, player con-

tributions, time effects, and uncertainty. That model differs from PLNet in the sense of

being tailored for pairwise group comparisons, albeit considering individual skills. The

inclusion of feature vectors is of no concern in that model, and the extension to rankings

is only suggested for future work.

The label ranking problem, introduced in Section 3.1, had been tackled with neural

network approaches previously (Kanda et al., 2012; Ribeiro et al., 2012). A multi-layer

perceptron (MLP) has been utilized by Kanda et al. (2012) to produce recommendations

on meta-heuristics (labels) on different meta-features (instances) within the realm of

meta-learning. This kind of neural network exhibits an output layer with as many nodes

as there are labels. The error signal used to modify the network’s weights is formed by

using the mean squared error on the target rank positions of the labels. In Ribeiro et al.
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(2012), more effort has been spent to incorporate label ranking loss information in the

back-propagation procedure. To this end, some variations of this procedure have been

investigated. Both previously discussed architectures are similar to each other and have

two essential limitations: First, they depend on a fixed number of labels, and second,

they cannot cope with incomplete ranking observations. In addition, they lack the ability

to provide probabilistic information on their predictions.

In the information retrieval domain, the neural network-based approaches RankNet

and ListNet have a probabilistic foundation (Burges et al., 2005; Cao et al., 2007).

RankNet (Burges et al., 2005) uses pairwise inputs to learn a utility scoring function

with the cross-entropy loss. To this end, the training data consists of object pairs

together with target probabilities, and it is an important difference with PLNet. These

quantify the probability to rank the first sample higher than the second. With the

introduction of target probabilities, this approach enables the interesting possibility of

modeling ties between samples. RankNet considers functions of the form f : Rd → R

so that f(zi) > f(zj) whenever zi is judged to be more relevant than zj . A concrete

utility function in RankNet can be obtained by training an MLP neural network on

pairwise observations using cross-entropy. An important feature of RankNet is that any

pair of observation {zi, zj} has an associated target probability of Pij ∈ [0, 1], which

is the probability of zi being ranked higher than zj , or in symbols zi � zj . According

to the RankNet authors, these target probabilities could be obtained by measuring the

preferences of multiple users on the pairs {zi, zj}.

In order to learn from that kind of data, the RankNet approach optimizes the cross-

entropy cost function

Cij = −Pij log(P̂ij)− (1−Pij) log(1− P̂ij) . (4.50)

The posterior probabilities P̂ij are modeled with a (utility) function, f , using the logistic

function so that

P̂ij ≡
exp(fij)

1 + exp(fij)
, (4.51)

where fij := fi − fj and fi := f(zi). With (4.51) it is possible to express (4.50) more

compactly as

Cij = −Pijfij + log [1 + exp (fij)] . (4.52)
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The formula (4.52) corresponds to the NLL objective of PLNet under the conditions

that all dyad rankings are of the length K = 2 and all Pij are set to one. This can be

seen by rearranging (4.52) further:

Cij = −Pijfi + Pijfj + log [1 + exp (fi − fj)]

= −Pijfi + log [exp (Pijfj)] + log [1 + exp (fi − fj)]

= −Pijfi + log [exp (Pijfj) + exp (fi − fj + Pijfj)]

= − log

[
exp (Pijfi)

exp (fi + Pijfj − fj) + exp (Pijfj)

]
�

ListNet (Cao et al., 2007; Luo et al., 2015) similarly uses the cross-entropy as a metric,

but in contrast to RankNet, it processes rankings of objects instead of pairwise prefer-

ences as training data. There are, however, some important differences between ListNet

and the PLNet approach:

• The learning approach in ListNet addresses only a special case of the PL distribu-

tion, namely the case of top-k data with k = 1.

• In ListNet, a linear neural network is used. This is in contrast to the PLNet

approach, in which non-linear relationships between inputs and outputs can be

learned. Linearity in the ListNet approach implies that much emphasis must be

put on engineering joint feature input vectors.

• In ListNet, the query-document features are associated with absolute scores (rel-

evance degrees) as training information, i.e. quantitative data, whereas PLNet

deals with rankings, i.e. data of qualitative nature.5

4.4.5 Illustration of the Joint-Feature Engineering Problem

In the following, the problem of finding good joint-feature representations is demon-

strated. To this end, the PLNet and BilinPL models are compared with each other.

The data used in this illustration has been sampled from a PLNet with three layers.

Its inputs are dyads composed of one-dimensional vectors, i.e. x,y ∈ [−1, 1]. The hidden

layer has 25 nodes, and all weights are initialized randomly from the uniform distribution

5We argue that using query-document-associated scores as PL model parameters is anyway question-

able, especially because these such scores are normally taken from an ordinal scale.
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in [−15, 15]. From a total of 400 dyads, 500 training and 50 test rankings were sampled

where each comprised five dyads.

For the BilinPL model, we chose from three different variants of input features. They

are based on the Kronecker product between object pair features to form joint-feature

vectors (resulting in first- and second-order models):

xf yf ⇒ zf Identifier

x y [x · y] BilinPL-1

[x, 1] [y, 1] [x, y, xy, 1] BilinPL-2

[x, x2, 1] [y, y2, 1] [x, x2, y, y2, xy, xy2, x2y, x2y2, 1] BilinPL-3

(a) (b)

(c) (d)

Figure 4.11: Log-skill landscapes of the methods PLNet and BilinPL. (a) is produced by

PLNet after learning from dyad rankings. (b)-(d) are produced by BilinPL

using different feature specifications.

Table 4.2 and the corresponding Figure 4.11 underpin two key aspects. First, the

expressiveness of PLNet can be much larger compared to the used BilinPL versions.

Second, the predictive quality varies strongly for BilinPL depending on the choice of dyad

features. This is because the usefulness of the joint-feature representation in BilinPL

crucially depends on it.
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Table 4.2: Results of the synthetic pair ranking data experiment.

PLNet BilinPL-1 BilinPL-2 BilinPL-3

Kendall’s τ 0.944 0.380 0.644 0.852

Figure 4.11 (a) (b) (c) (d)

4.5 Connections between the Models

JFPL, BilinPL, and PLNet are dyad ranking models, all of which are based on the

Plackett–Luce model. They can be considered as generalizations of it because each is

capable of modeling dyad rankings, where a dyad is represented as a pair of feature

vectors. The modeling of dyad ranking data is accomplished with JFPL on the basis

of weighted joint-feature representations. Representations of that kind are realized by

means of a joint-feature mapping function that can be applied on dyads.

The joint-feature map aspect can be used to show the interrelationship between the

three models. The BilinPL model can be seen as an instance of the JFPL model with

the specific choice of a joint-feature map, which is the cross-product between the feature

vectors x and y of a dyad. Likewise, the PLNet can also be seen as a JFPL model,

whose joint-feature map is represented as part of the network architecture that realizes

the mapping.

Table 4.3: Connection between JFPL and other generalized Plackett–Luce models.

Model Processing Φ JFPL/log(v)

BilinPL calc. cross-products Φ(x,y) = x⊗ y bi-linear 〈w,Φ(·, ·)〉
PLNet learn representation Φ(x,y) = net

(
θ+
)

non-linear 〈w,Φ(·, ·)〉

The connection between the models can thus be established with different specifi-

cations of the joint-feature map Φ(x,y), which is indicated in Table 4.3. The crucial

difference between the JFPL model, the BilinPL model, and the PLNet model is that

the first two require the engineering of features, while the latter can learn joint-feature

representations.
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5 Multidimensional Unfolding and Scaling

with Dyad Ranking

Multidimensional unfolding is an extension of multidimensional scaling (MDS) for two-

way preferential choice data (Borg and Groenen, 2005). As such, it is a useful visu-

alization tool for analyzing and discovering preference structures. In this section, we

examine how dyad ranking data can be visualized by combining the learned models with

multidimensional unfolding and scaling.

5.1 The Unfolding Problem

In multidimensional unfolding, the data is given as preference scores (e.g. rank-orders

of preferences), typically of n1 individuals for a set of n2 items (Borg et al., 2012). Indi-

viduals are represented as “ideal points” in a common lower-dimensional space together

with the items in such a way that their distances to the items are smaller, the more pre-

ferred they are. Unfolding methods produce point configurations in a lower-dimensional

space, as illustrated in Figure 5.1. The main assumption in unfolding is that all indi-

viduals perceive the world in the same way—this is reflected by one fixed configuration

of the items. The differences between individual preferences are realized by different

ideal point positions relative to the item points (Borg and Groenen, 2005). Early works

on unfolding by Coombs (1950) were motivated by the idea of expressing preferences of

individuals over items on a joint continuum called J scale, i.e. on a line. Folding the

line on an individual’s point allows one to study the preferences of that individual by

inspecting the resulting locations of the objects on it. The term “unfolding” then refers

to the inverse process of finding the common scale from the given preferences (Busing,

2010).

Technically, unfolding is a kind of multidimensional scaling, where the within-sets

proximities are missing. The objective in MDS is to find a point configuration, X, in a
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Figure 5.1: Illustration of multidimensional unfolding. Figure (a) shows an unfolding

solution, which is a configuration of points: users are represented as dots

and items as stars. In Figure (b), the isocontour circles of a particular user

are added. They facilitate reading his preference for the items. Here, the

preference order is i5 � i1 � i3 � i4 � i2.

lower-dimensional space in such a way that the point distances are in accordance with

the distances among the original data points. Kruskal (1964) introduced the squared

error function (raw) stress1, which is the objective that needs to be minimized:

σraw(X) =

√√√√∑
(i,j)

(
d̂i,j − di,j(X)

)2
, (5.1)

where di,j(X) are Euclidean distances between the points xi,xj ∈ X in the lower-

dimensional MDS space, and with

d̂i,j = f(δi,j) , (5.2)

the so-called disparities. Depending on the type of transformation f(·) on the input

dissimilarities δi,j , one distinguishes between nonmetric (or ordinal) MDS and metric

MDS.

Instead of a single configuration matrix X, there are two matrices involved in unfold-

ing: X1 of dimension n1 × p for the configuration of individuals and X2 of dimension

n2 × p for the items configuration, where p denotes the dimensionality of the unfold-

ing space. Correspondingly, the problem in unfolding can be stated as minimizing the

1Stress is an acronym for standardized residual sum-of-squares.
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following (raw) stress function:

σ2
r (X1,X2) =

n1∑
i=1

n2∑
j=1

(
d̂i,j − di,j(X1,X2)

)2
. (5.3)

5.2 Dyadic Unfolding

With a trained dyad ranking model, it is possible to produce a matrix of latent utilities

for pairs of possibly new feature vectors from two domains, for example, from the real-

valued vector spaces X = X1 ×X2 × · · · ×Xr and Y = Y1 ×Y2 × · · · ×Yc. Let X[tr] ⊂ X
be an n1 × r matrix and Y[tr] ⊂ Y an n2 × c matrix of feature vectors. Then, the skills

vi,j produced by the model on all pairwise vectors of X[tr] and Y[tr] can be grouped into

the matrix S of dimensionality n1 × n2.

A reasonable goal for visualizing this data would be to find a lower-dimensional rep-

resentation that takes all available proximities into account, which are in this case dis-

similarities ∆X between objects (feature vectors) from X, dissimilarities ∆Y between

objects (feature vectors) from Y, and the preferences on dyads that can be represented

by turning their (estimated) PL parameters into dissimilarities ∆S . A low-dimensional

configuration of the points X1 and X2 is sought in such a way that the distances of

points within X1 are in accordance with the dissimilarities ∆X , the distances of points

within X2 are in accordance with the dissimilarities ∆Y , and the distances of points be-

tween X1 and X2 are in accordance with ∆S . The objective of finding the configuration

points X1 and X2 can be stated as

σD = s(∆X ,∆Y ,∆S ,X1,X2) . (5.4)

The strength of the relation between the proximities and the resulting configurations

can, for example, be realized as a weighted sum of stress terms

σ2
D = ασ2

X + βσ2
Y + γσ2

S , (5.5)

with α+ β + γ = 1. Expanding (5.5) yields

σ2
D = α

∑
(i,j)

(
d̂

[X]
i,j − di,j(X1)

)2

+ β

∑
(i,j)

(
d̂

[Y ]
i,j − di,j(X2)

)2


+ γ

∑
(i,j)

(
d̂

[S]
i,j − di,j(X1,X2)

)2

 . (5.6)
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5 Multidimensional Unfolding and Scaling with Dyad Ranking

Typical formulations of stress, such as (5.1), like the one used in the formulation (5.6),

require dissimilarities δi,j or dissimilarity transformations called disparities d̂i,j = f(δi,j).

For the first two terms, these disparities can easily be obtained as pairwise Euclidean

distances between the feature vectors within X[tr] and Y[tr], respectively.

For the transformation of the skills vi,j , there are several possibilities. Borg (1981)

discusses functional relationships between the value scale v and distances in an unfolding

model. The most obvious relationship is di,j = 1/vi,j , which we call transformation

t1(vi,j) = 1/vi,j . Borg points out that a major drawback of this formula is that for almost

similar items, v requires to become infinitely large. A better alternative, originally also

motivated in (Krantz, 1967; Luce, 1961), is t2(vi,j) = di,j = log(1/vi,j) = − log(vi,j).

Please note that in the generalized PL models, the vi,j are ensured to be positive, but

not necessarily bounded. Therefore, the mapping t2 is extended by a subsequent affine

linear transformation to the unit interval. A further transformation (t3) is the rank-

transformation, which creates rank numbers in descending order of the PL v values.

5.2.1 Utilization of Probabilistic Information

Marden (1995) introduces Marginals as a term for a matrix M̂ that can be used to

characterize ranking data. In a sample of N (i.i.d.) rankings, which are all of the length

M , it is possible to state an M ×M matrix that is defined as

M̂(i, k) =
1

N

N∑
j=1

[πj(k) = i] . (5.7)

The entry M̂(i, k) corresponds to the relative frequency of the item i being ranked at

the position k. The i-th row is, therefore, the marginal distribution of the ranks assigned

to the item i. And the j-th column is the marginal distribution of the items given the

rank j.

Combining unfolding with the PL models offers the possibility to enrich the visualiza-

tions with probabilistic information. To this end, consider a particular dyad member, xj

(or ideal point in the unfolding terminology), and a neighborhood of M dyad members

yi with 1 ≤ i ≤M .

The marginals for an unfolding configuration can be obtained for an ideal point, xj ,

with the PL parameters vj = (vj,1, vj,2, . . . , vj,M )> by calculating the marginal distribu-
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5.3 Dyadic Unfolding with SMACOF

tion over the ranks 1 ≤ k ≤M with

M(i, k) =
∑
π∈Πk,i

P(π |vj) , (5.8)

where Πk,i = {π ∈ SM |π(k) = i}, i.e. the set of permutations containing the number

i at their k-th position. An entry, M(i, k), obtained with (5.8), corresponds to the

probability that yi is put on the position k in the ranking. Annotating yi with this

distribution (or a part of it, e.g. the most probable positions) provides useful additional

information.

As an example, consider a one-dimensional point configuration provided in Figure 5.2.

Let the PL parameters for the dyads % = {(x,y1), (x,y2), (x,y3)} be v = (0.1, 0.7, 0.2)>.

x y2 y3y1

Figure 5.2: One dimensional point configuration for the Marginals example.

The calculation of the probability of y2 being ranked first is then

M(2, 1) = P(231 |v) + P(213 |v) = 0.47 + 0.23 = 0.7 .

The complete marginals matrix can be calculated similarly and is provided for this

example in Table 5.1.

Table 5.1: Marginals. A cell corresponds to the probability of yi put on rank 1 ≤ k ≤ 3.

Rank → 1 2 3

y1 .10 .26 .64

y2 .70 .25 .05

y3 .20 .49 .31

5.3 Dyadic Unfolding with SMACOF

The problem of minimizing (5.5) can be tackled by considering two facts on unfolding

reported in the literature (Borg and Groenen, 2005). Given the preferences of individuals

on items as a matrix of dissimilarities ∆, it is possible to create an unfolding solution

using any regular MDS method that supports missing values. To this end, the method
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5 Multidimensional Unfolding and Scaling with Dyad Ranking

is applied to the matrix in which between-set dissimilarities are given and within-set

dissimilarities are missing. A matrix of that kind would exhibit a block structure as

follows:

∆MDS =

[
− ∆

∆> −

]
.

A particular method that supports missing values and thus unfolding is SMACOF, which

stands for “Stress Majorization of a Complicated Function” (De Leeuw, 1977; De Leeuw

and Heiser, 1977). This is a multidimensional scaling technique based on iterative ma-

jorization. The “complicated” goal function in SMACOF defines the optimization prob-

lem; it is a weighted sum of the squared error function called (raw) stress,

σ2
r = σ2

r (X) =
∑
i<j

wi,j

(
d̂i,j − di,j(X)

)2
. (5.9)

The non-negative weights wi,j in (5.9) were originally included and suggested by De

Leeuw to provide more flexibility. They can be used to express the importance of the

residuals d̂i,j−di,j(X) or can be used to handle missing data (Groenen and van de Velden,

2016). For multidimensional unfolding, the configuration matrix X can be decomposed

into two matricesX1 andX2, which are of dimensionality n1×p and n2×p, respectively.

A weight matrix W can also be included in this case, thus enabling the aforementioned

importance weighting or the indication of missing values. SMACOF requires W to be

irreducible, symmetric, non-negative, and hollow. The matrix W is structured into four

blocks and contains (n1 + n2)2 many entries:

W =

[
W 11 W 12

W 21 W 22

]
=

[
0 W 12

W 21 0

]
,

where W 11 = W 22 = 0 accounts for the property of missing within-set proximities.

As reported in (Borg and Groenen, 2005, Chapter 11.3), weights like those in the

weighted stress function (5.9) provide a certain degree of flexibility. It is, for example,

possible to mimic other stress functions such as those used in Sammon’s mapping, elastic

scaling, or S-Stress. Moreover, weights can be used to encode reliability on a proximity

so that proximities with large weights have more impact on a resulting MDS solution

than those that are less reliable.

Combining all these, “dyadic” unfolding can be performed by specifying an (n1 +n2)2

weight matrix W as

W =

[
W 11 W 12

W 21 W 22

]
=

[
α11> γ11>

(γ11>)> β11>

]
. (5.10)
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The dissimilarity matrix has a block structure and is given by

∆ =

[
∆X ∆S

∆>S ∆Y

]
,

where ∆S corresponds to the PL model parameters that are transformed to express

dissimilarity. The main difference with conventional unfolding is, therefore, the inclusion

of the within-set proximities.

The iterative procedure employed by SMACOF is described in Listing 7. It is guar-

anteed that stress is non-increasing and converges to a minimum, which, however, could

be local (De Leeuw and Heiser, 1977; Groenen and Heiser, 1996). The key point in this

Algorithm 7 SMACOF

Require: Dissimilarities δ, initial point configuration X0

1: s0 ← σr(X0), k ← 0

2: repeat

3: k ← k + 1

4: Update Xk via the Guttman transform

5: sk ← σr(Xk)

6: until (sk−1 − sk < ε or k = maxiter)

7: return Xk

approach is the update step for the current configuration, the so-called Guttman trans-

form. This step determines the descent direction of the majorized stress function (5.9).

More details on the derivation can be found in (Borg and Groenen, 2005; De Leeuw and

Mair, 2009; Groenen and van de Velden, 2016). The implementation of dyadic unfolding

is based on a Matlab port of smacofSym from the “smacof” R package (De Leeuw and

Mair, 2009).

5.4 Dyadic Multidimensional Scaling

Dyadic unfolding can be used in conjunction with dyad ranking for the most common

case, in which the two domains X and Y are different. However, in dyad ranking the

case where dyad members stem from a single domain does also exist. In this scenario,

an unfolding solution might be hard to interpret because a point can be part of ranking

and also be an ideal point at the same time.
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5 Multidimensional Unfolding and Scaling with Dyad Ranking

Instead, another approach called dyadic multidimensional scaling (DyMDS) is pro-

posed for this case, in which dyads of the form (xi,xj) are considered. Similar to dyadic

unfolding, the DyMDS approach does take the generalized PL models into account and

also provides a way to incorporate the dissimilarities of the raw data. We will furthermore

require for this approach that the dyads are symmetric so that (xi,xj) = (xj ,xi). This

is a requisite to apply MDS methods on the vij scores. The symmetry can be realized,

either by enforcing symmetry on the generalized model weights or by post-processing

the scores. A simple way of post-processing would be to calculate Vsym = 0.5 · (V >+V )

and to use these as dissimilarity values ∆S .

The DyMDS algorithm is outlined in Figure 5.3. First, the dissimilarities ∆S are

MDS MDS Proc Syn

ΔS ΔX

C2C1 C'2 C3

Figure 5.3: Dyadic Multidimensional Scaling (DyMDS) algorithm.

used as inputs for an MDS method. This, in turn, produces the configuration C1, a

set of points of dimensionality p. This configuration is used as a start configuration

for the application of a further MDS method. As input for the dissimilarities it takes

∆X , the pairwise dissimilarities between the x vectors. The outcome of the second

MDS application is the configuration C2. The next step ensures that the orientation

of points in C2 coincides as good as possible with those of C1. To this end, Procrustes

superimposition (Proc) is applied on C2 and C1 to generate another configuration, C ′2

(Gower, 1975). This is done by translating, rotating, and uniformly scaling the original

points in an optimal way, e.g. by the minimization of the sum of squared distances

among them.

The last step of the DyMDS is about finding a final configuration, C3, that allows

for the synthesis (Syn) of the point configurations C1 and C ′2. It requires a single

parameter, γ ∈ [0, 1], and similar to dyadic unfolding, it can be understood as a weight

that determines the influence of ∆S on a configuration. As outlined in Diagram 5.4, for

each configuration point xi ∈ C1 and x′i ∈ C ′2, a resulting point, xsi ∈ C3, is generated,

which is located on a straight line between xi and x′i in proportion to γ. More specifically,
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xi xsi x'i

C3 C'2C1

∈ ∈ ∈

1-γ γ

Figure 5.4: Synthesis of two point configurations.

the point xi is “moved” toward x′i by (1− γ) the amount of the total distance between

xi and x′i. In formula, this corresponds to

xsi = xi + (1− γ) ·
(
x′i − xi

)
. (5.11)

If γ = 1, the resulting configuration corresponds to C1, and otherwise if γ = 0, it

corresponds to C ′2.

5.5 Related Visualization Approaches for Ranking Data

Besides multidimensional unfolding, other approaches for visualizing ranking data have

been developed in the past (Alvo and Yu, 2014). For instance, the permutation polytope,

its combination with histograms, and its projections belong to the classical approaches

for visualizing ranking data (Marden, 1995). The main disadvantage of the classical

approaches is the difficulty of their interpretability with a growing number of ranking

items.

There are different visualization techniques based on the vector model of unfolding

introduced by Tucker (1960). The main idea is that subjects are represented as so-called

preference vectors, while items are identified as points. The closer the projection of an

item is to a subject vector, the more preferred it is. Techniques that are based on the

vector model include MDPref (Carroll and Chang, 1970), CATPCA (Meulman et al.,

2004), and VIPSCAL (Van Deun et al., 2005). A disadvantage is that the visualization

gets confusing as more and more preference vectors enter the scene.

More recently, Kidwell et al. (2008) proposed a visualization technique using MDS in

conjunction with Kendall distance on complete and partial rankings. The visualizations

are capable of highlighting clusters by utilizing heat map density plots.

An advantage of the newly proposed dyadic unfolding and scaling visualization over

this and all other techniques is its capability of providing reliability information on the
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5 Multidimensional Unfolding and Scaling with Dyad Ranking

distances between the points using a probabilistic ranking model. This is realized by

calculating for a chosen ideal point, x, and with regard to the (neighboring) y vectors,

their respective distribution over the ranks. This information can be used to realize an

interactive and enhanced unfolding visualization.
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using Dyad Ranking

Reinforcement learning (RL) is an established machine learning methodology for mod-

eling and optimizing the behavior of an autonomous agent acting in a dynamic environ-

ment (Sutton and Barto, 1998). A key component of RL is a numerical reward function,

which is used to provide positive or negative (and possibly delayed) feedback signals

for the agent’s actions. This quest for numerical information impedes the use of RL in

situations where precise rewards are difficult to specify.

This was the main motivation for preference-based reinforcement learning (PBRL),

which has recently been introduced as a generalization of conventional RL (Akrour et al.,

2011; Cheng et al., 2011). Instead of numerical rewards, it assumes weaker feedback in

the form of qualitative preferences between states or trajectories. A specific realiza-

tion of preference-based reinforcement learning is a combination of approximate policy

iteration (Dimitrakakis and Lagoudakis, 2008) and a preference-learning method called

label ranking (Vembu and Gärtner, 2010). Roughly speaking, label ranking is used to

generalize training information of the form “in state s, taking action a appears to be

better than action a′,” so that a ranking of all available actions can be predicted for all

states of the agent’s state space.

In this chapter, we propose an extension of this method in which label ranking is

replaced by dyad ranking. The main advantage of this extension is the ability of dyad

ranking to learn from feature descriptions of actions, i.e. properties of the actions a,

which are often available in reinforcement learning. This is not possible in standard label

ranking, where choice alternatives are merely identified by their name, but not charac-

terized in terms of attributes. Our speculation is that exploiting feature descriptions

will improve learning by generalizing, not only over the state space, but also over the

action space.
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6.1 Reinforcement Learning

Conventional reinforcement learning assumes a scenario in which an agent moves through

a (finite) state space S by repeatedly selecting actions from a set A = {a1, . . . ,ak}. A

Markovian state transition function δ : S ×A −→ P(S), where P(S) denotes the set of

probability distributions over S, randomly takes the agent to a new state, depending on

the current state and the chosen action. Occasionally, the agent receives feedback on its

actions in the form of a reward signal, r : S × A −→ R, where r(s,a) is the immediate

reward the agent receives for performing the action a in the state s. The goal of the

agent is to choose its actions so as to maximize its expected total reward.

The most common task is to learn a policy π : S −→ A that prescribes the agent how

to act optimally in each situation (state). More specifically, the goal is often defined as

maximizing the expected sum of rewards (given the initial state s), with future rewards

being discounted by the factor γ ∈ [0, 1]:

V π(s) = E

[ ∞∑
t=0

γtr(st, π(st)) | s0 = s

]
(6.1)

where (s0, s1, s2, . . .) is a trajectory of π through the state space. With V ∗(s) the best

possible value that can be achieved for (6.1), a policy is called optimal if it achieves the

best value in each state s. Thus, one possibility to learn an optimal policy is to learn an

evaluation of states in the form of a value function (Sutton, 1988), or to learn a so-called

Q-function that returns the expected reward for a given state-action pair (Watkins and

Dayan, 1992):

Qπ(s,a) = r(s,a) + γ · V π(δ(s,a))

6.1.1 Approximate Policy Iteration (API)

Instead of determining optimal actions indirectly through learning the value function or

the Q-function, one may try to learn a policy directly in the form of a mapping from

states to actions. A particularly interesting approach in this regard is approximate policy

iteration (API) with rollouts (Dimitrakakis and Lagoudakis, 2008; Lagoudakis and Parr,

2003). The key idea behind this approach is to use a generative model of the underlying

process to perform simulations that, in turn, allow for approximating the value of an

action a in a given state s. To this end, the action is performed, resulting in the state

s1 = δ(s,a). The value of this state is estimated by performing so-called rollouts, i.e.
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by repeatedly selecting actions following the policy π for at most T steps, and finally,

accumulating the observed rewards. This is repeated several times, and the average

reward over the rollouts is returned as an approximate Q-value Q̃π(s,a) for taking the

action a the state s (leading to s1) and following the policy π thereafter.

The rollouts are then used in a policy iteration loop, which iterates through each of

the sample states, simulates all actions in a state, and determines the action a∗ that

promises the highest Q-value. If a∗ is significantly better than all alternative actions in

this state, a training example, (s,a∗), is added to the training set T , suggesting that a∗

is the best action to take in the state s. Eventually, T is used for a policy generalization

step, i.e. to induce the state-action mapping S −→ A that forms the new policy π′; the

underlying problem to be solved is a standard (multi-class) classification problem. This

process is repeated several times until some stopping criterion is met (e.g. if the policy

does not improve from one iteration to the next).

6.2 Preference-based Reinforcement Learning

The key idea of preference-based reinforcement learning (PBRL) is to replace the (quan-

titative) evaluation of individual actions by the (qualitative) comparison between pairs

of actions (Cheng et al., 2011; Fürnkranz et al., 2012). Comparisons of that kind are

in principle enough to make optimal decisions. Besides, they are often more natural

and less difficult to acquire, especially in applications where the environment does not

provide numerical rewards in a natural way.

The basic piece of information we consider is a pairwise preference of the form ai �s aj ,

or, more specifically, ai �πs aj , suggesting that in the state s, taking action ai (and

following policy π afterwards) is better than taking action aj .

Evaluating the trajectory t = (s0, s1, s2, . . .) in terms of its (expected) total reward

(6.1) reduces the trajectories in comparison with real numbers; thus, comparability is

enforced and a total order on trajectories is induced. More generally, and arguably more

in line with the idea of qualitative feedback, one may assume a partial order relation A

on trajectories, which means that the trajectories t and t′ can also be incomparable. A

contextual preference can then be defined as follows:

ai �πs aj ⇔ P(t(ai) A t(aj)) > P(t(aj) A t(ai)) , (6.2)
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where t(ai) denotes the (random) trajectory produced by taking action ai in the state

s and following π thereafter, and P(t A t′) is the probability that the trajectory t is

preferred to t′.

6.2.1 API with Label Ranking

In (Fürnkranz et al., 2012), preference-based reinforcement learning is realized in the

form of a preference-based variant of API, namely a variant in which, instead of the

classifier S −→ A, a so-called label ranker is trained for policy generalization. In the

problem of label ranking, the goal is to learn a model that maps instances to rankings

over a finite set of predefined choice alternatives (Vembu and Gärtner, 2010). In the

context of PBRL, the instance space is given by the state space S, and the set of labels

corresponds to the set of actions A. Thus, the goal is to learn a mapping

S −→ Π(A) ,

which maps states to the total orders (permutations) of the available actions A. In

other words, the task is to learn a function that can rank all available actions in a state

according to their preference (6.2).

More concretely, a method called ranking by pairwise comparison (RPC) is used for

training a label ranker (Hüllermeier et al., 2008). RPC accepts training information in

the form of binary (action) preferences (s,ak � aj), indicating that in the state s, the

action ak is preferred to the action aj . Information of that kind can be produced thanks

to the assumption of a generative model, as described in Section 6.1.1. Subsequently,

we refer to this approach as API-LR.

6.3 PBRL using Dyad Ranking

In comparison with the original, the classification-based approach to approximate policy

iteration (Section 6.1.1), the ranking-based method outlined in Section 6.2.1 exhibits sev-

eral advantages. For example, pairwise preferences are much easier to elicit for training

than examples of the unique optimal actions a∗. Besides, the preference-based approach

better exploits the gathered training information—for example, it utilizes the pairwise

comparisons between any two actions.
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In both approaches, however, the actions ai are treated as distinct elements with no

relation to each other; indeed, neither classification nor label ranking does consider any

structure on the set of classes A (apart from the trivial discrete structure). Yet, if classes

are actions in the context of RL, A is often equipped with a non-trivial structure because

actions can be described in terms of properties/features and can be more or less similar

to each other. For example, if an action is an acceleration in a certain direction, as in

the mountain car problem (see Section 6.4 below), then “fast to the right” is obviously

more similar to “slowly to the right” than to “fast to the left”.

Needless to say, the exploitation of feature descriptions of actions is a possible way

to improve learning in (preference-based) RL, and to generalize, not only over the state

space S, but also over the action space A. It may allow, for example, to predict the

usefulness of actions that have never been tried before. To realize this idea, we will make

use of dyad ranking in the way it is explained next.

6.3.1 API with Dyad Ranking

We are now ready to introduce approximate policy iteration based on dyad ranking (API-

DR) as a generalization of API-LR. The former is quite similar to the latter, except that

a dyad ranker is trained instead of a label ranker. To this end, training data is again

produced by executing a number of rollouts on states, starting with a specified action

and following the current policy; see Algorithm 8.

In addition to the representation of actions in terms of features, API-DR has another

important advantage. Thanks to the use of the (bilinear) PL model, it is not only able

to predict a presumably best action in each state, but also informs about the degree

of confidence in that prediction. More specifically, it provides a complete probability

distribution over all rankings of actions in each state. Information of this kind is useful

for various purposes, as will be discussed next.

6.3.1.1 Exploration versus Exploitation

The rollout procedure (Algorithm 9) is invoked by the subroutine Evaluate Dyad Ranking

(Line 6 of Algorithm 8). And there the PL model is used in its role as a policy, which

means that it has to prescribe a single action, a∗, for each state s. The most obvious
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Algorithm 8 Approximate Policy Iteration based on Dyad Ranking

Require: sample states S, initial (random) policy π0, max. number of policy iterations

p, subroutine Evaluate Dyad Ranking for determining dyad rankings for a given

state and a set of permissible actions in that state.

1: function API-DR(S, π0, p)

2: π ← π0, i ← 0

3: repeat

4: π′ ← π, D ← ∅
5: for all s ∈ S do

6: ρs ←Evaluate Dyad Ranking (A(s), π)

7: D ← D ∪ {ρs}
8: end for

9: π ← Train Dyad Ranker (D), i ← i+ 1

10: until Stopping Criterion (π, p)

11: return π

12: end function

approach is to compute, for each action a, the probability

P(a |W , s) =
exp(s>Wa)∑K
i=1 exp(s>Wai)

(6.3)

of being ranked first and to choose the action maximizing this probability.

Adopting the presumably best action in each state corresponds to pure exploitation.

It is well known, however, that successful learning requires a proper balance between

exploration and exploitation. Interestingly, our approach suggests a very natural way of

realizing such a balance simply by selecting each action a according to its probability

(6.3).

As an aside, we note that a generalization of the top-1 variant of the BilinPL model

is known in the literature as a softmax called the Boltzmann exploration (Cesa-Bianchi

et al., 2017; Kuleshov and Doina, 2010). It can be used to control the degree of explo-

ration in a more flexible way:

P(a |W , s) =
exp(c · s>Wa)∑K
i=1 exp(c · s>Wai)

(6.4)

for the constant c ≥ 0; the larger c, the stronger the strategy focuses on the best actions.
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6.3 PBRL using Dyad Ranking

Algorithm 9 Probabilistic Rollout Procedure

Require: Initial state s0, initial action a0, policy π, discount factor γ, number of rollouts

K, max. length(horizon) of each trajectory L, generative environment model E

1: function Rollout(π, s0, a0,K, L)

2: for k ← 1 to K do

3: while t < L and ¬Terminal State(st−1) do

4: (st, rt) ← Simulate(E, st−1, at−1)

5: (at, pt)← Utilize Policy(π, st)

6: Q̃k ← Q̃k + γtrt

7: t ← t+ 1

8: end while

9: // Remaining rollouts can be skipped if pt-values are high

10: end for

11: Q̃← 1
k

∑k
i=1 Q̃i

12: return Q̃

13: end function

6.3.1.2 Uncertainty Sampling

Another interesting opportunity to exploit probabilistic information is uncertainty sam-

pling. Uncertainty sampling is a strategy for active learning in which those training

examples are requested and for which the learner appears to be maximally uncertain

about (Settles, 2010). In binary classification, for example, these are typically the in-

stances that are located closest to the (current) decision boundary.

In our case, the distribution (6.3) informs about the certainty or uncertainty of the

learner regarding the best course of action in the given state s (or alternatively, the

uncertainty about the true ranking of all actions in that state). This uncertainty can

be quantified, for instance, in terms of the entropy of that distribution or the margin

between the probability of the best and the second-best action. Correspondingly, those

states can be selected as the sample states S in Algorithm 8 for which the uncertainty

is the highest.
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6 Preference-based Reinforcement Learning using Dyad Ranking

6.4 Standard Benchmarks

To primarily demonstrate the API-DR approach, two well-known problems in RL are

tackled: the inverted pendulum problem and mountain car. Instead of being dependent

on numerical reward information that is indeed given in these benchmark problems, the

API-DR approach can cope with weaker information in the form of preferences. Though

not the focus of the upcoming experiments, it is imaginable that an advantage of the

approach could be if the numerical information is afflicted with noise.

6.4.1 Inverted Pendulum

The inverted pendulum (also known as cart pole) problem (IP) is to balance a pendulum

attached on top of a cart. The only way to stabilize the pendulum is by moving the

cart, which is placed on a planar ground, to the left or to the right. We adopt the

experimental setting from Lagoudakis and Parr (Lagoudakis and Parr, 2003), in which

the position of the cart in space is not taken into account (see Figure 6.1 (a)).

motor

motor

l

m

θ

(a) (b)

g

Figure 6.1: Schematic diagrams of (a) the inverted pendulum and (b) the mountain car

problem. In (a) the goal is to keep the pendulum close to the vertical axis

for a period of time, whereas in (b) an underpowered motor must be used in

interaction with the gravity to reach the star.

In the original formulation, three actions are possible, and they are mapped onto the

forces of {−10, 0, 10} Newtons. The state space is continuous and two-dimensional. The

first dimension captures the angle θ between the pole and the vertical axis, whereas the

second dimension describes the angle velocity θ̇. Here, the dot notation refers to the first

derivative of a function with respect to time. The transitions of the physical model are

112



6.4 Standard Benchmarks

Parameter Symbol Value Unit

Gravity g 9.81 m/s2

Cart mass M 8.0 kg

Pendulum mass m 2.0 kg

Pendulum length l 0.5 m

Table 6.1: Generative model parameters of inverted pendulum.

determined by the nonlinear dynamics of the system; they depend on the current state

s = (θ, θ̇) and the current action value a, respectively:

θ̈ =
g sin(θ)− αml(θ̇)2 sin(2θ)/2− α cos(θ)a

4l/3− αml cos2(θ)
,

where θ̈ is the second derivative in time, α = 1/(m + M) and the residual parameters

are chosen as in Lagoudakis and Parr (see Table 6.1).

6.4.2 Mountain Car

The mountain car problem (MC) consists of driving an underpowered car out of a valley

(see Figure 6.1 (b) for a schematic diagram). The agent must learn a policy that considers

the momentum of the car when driving the car along the valley sides. It can basically

power or throttle forward and backward. At each time step, the system dynamics depend

on the state st = (xt, ẋt) and the action at. It is described by the following equations:

xt+1 = b1(xt + ẋt+1)

ẋt+1 = b2(ẋt + 0.001at − 0.025 cos(3xt)),

where b1 is a function that restricts the position x to the interval [−1.2, 0.5] and b2

restricts the velocity to the interval [−0.07, 0.07]. In case the agent reaches xt = −1.2,

an inelastic collision is simulated by setting the velocity ẋ to zero. The gravity depends

on the local slope of the mountain, which is simulated with the term 0.025 cos(3xt). As

long as the position x is less then 0.5, the agent receives zero reward. If the car hits

the right bound (x = 0.5), the goal is achieved, the episode ends, and the agent obtains

Reward 1.
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6 Preference-based Reinforcement Learning using Dyad Ranking

In both problems, the actions are simulated to be noisy—this results in non-deterministic

state transitions. Thus, the learner is required to perform multiple rollouts. In partic-

ular, we add random noise from the intervals [−0.2, 0.2] and [−0.01, 0.01] to the raw

action signals for IP and MC, respectively.

6.4.3 Experimental Results

Full and partial action set evaluations We hypothesize that the incorporation of action

features can improve the quality of learned policies, especially in situations where data

is scarce. To this end, the quality the policies learned by API-LR1 and API-DR are

measured under different conditions. We chose a moderate number of 17 actions on

both environments by dividing the original number range into 17 equally sized parts.

Thus, the action spaces for IP and MC are given, respectively, as follows:

AIP = {−10,−8.75,−7.5,−6.25, . . . , 10}

AMC = {−1,−.875,−.75,−.625, . . . , .875, 1} .

Recall that while API-DR can interpret the actions as numbers and hence hence to

exploit the metric structure of the real numbers, API-LR merely considers all actions as

distinct alternatives.

We furthermore defined three conditions referred to as complete, partial, and duel.

Under the first condition, preferences about the entire action set are available per state.

In the partial condition, the learner can only learn from three randomly drawn actions

per state. In the last condition, only two actions are drawn, leading to only one preference

per state. Under all conditions, the number of the sampled states |S| was set fixed to 50

for the MC task and 100 for the IP task. For evaluation, we follow (Cheng et al., 2011;

Dimitrakakis and Lagoudakis, 2008) by plotting the cumulative distribution of success

rates over a measure of complexity, i.e. the number of actions needed throughout the

API procedure for generating a policy that completes a task successfully. In MC, a task

is solved successfully if the car has reached the goal at the top of the mountain as fast as

possible, i.e. with the fewest number of steering decisions. Opposed to that, the task is

tackled successfully in IP if the pendulum has not fallen down within a period of time,

i.e. a horizon of 700 (time) steps in the experiments.

1Throughout all experiments we used the RPC method with logistic regression as the base learner.
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Figure 6.2: Performance of the methods for the inverted pendulum (first column) and

the mountain car task (second column).

In the case of the MC/IP tasks, the number is obtained by summing up the average

numbers of actions performed for each of the K rollouts realized on initial (state, action)

pairs2. The point (x, y) in these plots can be interpreted as the minimum number of

actions, x, required to reach a success rate of y.

The results are provided in Figure 6.2. It can be seen that the performance of API-

LR and API-DR are almost on par with a slight advantage of API-LR at the complete

scenario. For all other scenarios with partial information, the API-DR is superior to

API-LR, where the use of action values has a positive effect on the performance.

Action set transfer Another important advantage of modeling side-information on

actions is the ability to make predictions on actions that were not present in the training

phase (c.f. ZSL (Larochelle et al., 2008; Palatucci et al., 2009)). In ZSL, predictions

2Note that the number of actions is not fixed per rollout and rather depends on the quality of the current

policy. This includes the case that rollouts can stop prematurely before the maximal trajectory length,

L, is reached.
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6 Preference-based Reinforcement Learning using Dyad Ranking

must be carried out on class labels that were not present during training. With API-DR,

it is possible to do similarly a policy prediction on actions that were unknown before. In

terms of transfer-learning, the BilinPL model is learned using the action set A0 (source

task) and the trained model is used later on in environments where the action sets are

composed differently (target tasks) (Lazaric, 2012). The modified action sets that we

consider simulate a certain condition of the control unit motor; these are:

A1 - Motor Failure: intensity levels of actions diminished or even missing,

A2 - Motor Boost : contains additional actions with higher intensity levels.

A trained policy for the MC task applied on the action sets A0, A1 and A2 can be

seen in Figure 6.3. The learned policy manages to achieve the goals successfully under

all different action set compositions.

Efficiency of Uncertainty Rollouts In this experiment, the benefit of using “uncertainty

rollouts,” as described in Section 6.3.1.2, is investigated. To this end, API-DR is used

with the BilinPL model in two different ways on the inverted pendulum problem. This

first version takes uncertainty into account, whereas the second does not. The first has

the capability to skip those rollouts about which the uncertainty is low. As evaluation

metric, the absolute numbers of actions performed during the rollouts are used. The

result is shown in Figure 6.4 and suggests that the uncertainty rollout technique can

help to improve the runtime performance of API-DR.
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6.4 Standard Benchmarks

Figure 6.3: Trajectories of a policy visualized in state space of the mountain car problem

beginning at the same state s0 = (−0.65,−0.01). Figure (a) shows a policy

on the action set A0, whereas Figures (b) and (c) show trajectories using the

action sets A1 and A2, which correspond to the motor “failure” and “boost”

scenarios.
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Figure 6.4: API-DR with and without uncertainty rollouts.
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7 Experiments on Dyad Ranking

To evaluate the performance of the dyad ranking methods BilinPL and PLNet, as well as

the usefulness of the dyad ranking setting itself, a number of experiments are conducted.

• In the first part, the advantage of dyad ranking over label ranking is investigated

using learning curves on synthetic data. This is followed by a series of experiments

with semi-synthetic data. The learned models are used, in turn, to demonstrate

the usefulness of the dyadic unfolding method.

• The second part is about the application of dyad ranking for meta-learning. The

advantages of taking the label feature description into account is also a major topic

in this part. Furthermore, the zero-shot learning aspect is also investigated in this

context.

• As a proof of concept, a dyadic unfolding solution is created on a modeled multi-

label classification problem. To this end, PLNet is trained using the calibrated

label ranking technique.

• In the fourth part, approximate policy iteration with dyad ranking is used as a

preference-based reinforcement learning approach for the application of determin-

ing image-processing pipeline configurations.

• The fifth, and the last part, is about the application of dyad ranking for similarity

learning on images. In this part, the special case of dyad ranking is interesting—

here the feature vectors stem from a common domain. Moreover, the modeled

similarity is visualized using DyMDS.

In addition to BilinPL and PLNet, the LinPL model (as implemented by Cheng et al.

(2010)) and the following state-of-the-art label ranking methods are used in the first

two parts as baselines: ranking by pairwise comparison (RPC, Hüllermeier et al. (2008))
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7 Experiments on Dyad Ranking

and constrained classification (CC, Har-Peled et al. (2002a,b)), both with logistic regres-

sion as the base learner1. For comparing with conditional ranking, the QueryRankRLS

method is used as implemented in the software package RLScore (Pahikkala and Airola,

2016). BilinPL and PLNet are realized in Matlab, and as a proof of concept, the latter is

also implemented in Python based on the TensorFlow deep learning framework (Abadi

et al., 2016).

7.1 Comparison with Label Ranking

7.1.1 Learning Curves on Synthetic Data

The goal of the first experiment is to identify the conditions under which the use of label

attributes are advantageous. Ideal synthetic ranking data is created to this end by sam-

pling from the Plackett–Luce distribution according to the BilinPL model specification

under the setting (2.6) of contextual dyad ranking. A realistic scenario is simulated in

which y vectors can be missing, i.e. the observed rankings are incomplete. In terms of

label ranking this means that labels can be missing. The connection between vectors

and labels is provided by a bijection between a collection of vectors and a collection of

labels. In terms of dyad ranking, there is a collection of the vectors {y1,y2,y,3 , . . .},
whereas label ranking methods just use the labels {λ1, λ2, λ3, . . .}. Thus, the vector yi

can be considered as a label description for the label λi.

To simulate missing labels, a biased coin is flipped for every vector yi, and it is decided

with the probability p ∈ [0, 1] to keep it or to delete it. A missing rate of p = 0.3 was

chosen, which means that on average 70% of all vectors of the training set are kept, while

the remaining vectors are removed. The feature vectors of the dimensionality c = 4 for

the y vectors and the dimensionality r = 3 for the instance vectors x were generated

by sampling the elements from a standard normal distribution (except for one constant

instance feature to account for a bias). The weight components were sampled randomly

from a normal distribution with mean 1 and standard deviation 9. The predictive per-

formance is then determined on a sufficiently large number of (complete) test examples

and it is furthermore averaged over 10 repetitions. Recall that CC, LinPL, and RPC

are pure label ranking methods that cannot exploit any attribute information on labels.

1CC was used in its online variant, as described in (Hüllermeier et al., 2008).
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7.1 Comparison with Label Ranking

More specifically, the data is created using three nested loops. In Loop 1, features are

sampled for each vector yi, 1 ≤ i ≤ M , and are kept fixed for the other inner loops. In

Loop 2, the data is generated for the different folds by creating the ground truth bilinear

matrix underlying the ranking distributions and the test set; it is kept fixed for the next

inner loop. In the third and last loop, training sets of different sizes are produced—this

includes the generation of the new instance vectors x and their corresponding orderings

over the y vectors.

5  10 20 40 80 200 400
0.2

0.4

0.6

0.8

1

5  10 20 40 80 200 400
0.4

0.6

0.8

1

5  10 20 40 80 200 400
0.4

0.6

0.8

1

5  10 20 40 80 200 400
0.5

0.6

0.7

0.8

0.9

1

K
en

da
ll'

s 
Ta

u

Number of Training Instances Number of Training Instances

no. of labels=5 no. of labels=10

no. of labels=40no. of labels=20

CC
LinPL

RPC
PLNet
QRRLS

BilinPL
CC
LinPL

RPC
PLNet
QRRLS

BilinPL

K
en

da
ll'

s 
Ta

u

Figure 7.1: Learning curves (generalization performance as a function of the number of

training examples) of the ranking methods for different numbers of labels.

The learning curves are shown in Figure 7.1 for different numbers of y vectors (la-

bels). Overall, all ranking methods can learn and predict correctly if enough training

data is available. In the limit, they all reach the performance of the “ground truth”:

Given complete knowledge of the true PL model, the optimal (Bayes) prediction is the

mode of that distribution (note that the average performance of that predictor is still

not perfect, since sampling from the distribution will not always yield the mode). As

expected, BilinPL benefits from the additional label description compared to the other
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7 Experiments on Dyad Ranking

label ranking approaches over a wide range of different training set sizes and numbers

of labels. In comparison with the other approaches, the learning curves of PLNet and

RankRLS are less steep and require careful tuning of their regularization parameters.

7.1.2 Benchmark on Semi-Synthetic UCI Data

A compilation of datasets were compiled recently to assess the performances of label

ranking algorithms (Cheng et al., 2009). The data sets are semi-synthetic in the sense

of being based on real multi-class and regression datasets taken from the UCI Machine

Learning Repository (Asuncion and Newman, 2007; Lichman, 2013), and these are mod-

ified so as to fit the setting of label ranking; see Table 7.1 for the main properties of such

data. For the multi-class datasets, rankings were generated by training a naive Bayes

classifier on the complete dataset and ordering the class labels according to the predicted

class probabilities for each example. For the regression datasets, a subset of instance

attributes were removed from the data and interpreted as labels. Rankings were then

obtained by standardizing the attributes and then ordering them by size. This approach

is justified by assuming that the original attributes are correlated and the remaining

features contain information about the values and hence the ranking of the removed

attributes.

Table 7.1: Semi-synthetic label ranking data sets and their properties.

Classification Regression

data set # inst.(N) # attr.(d) # labels(M) data set # inst.(N) # attr.(d) # labels(M)

authorship 841 70 4 bodyfat 252 7 7

glass 214 9 6 calhousing 20640 4 4

iris 150 4 3 cpu-small 8192 6 5

pendigits 10992 16 10 elevators 16599 9 9

segment 2310 18 7 fried 40769 9 5

vehicle 846 18 4 housing 506 6 6

vowel 528 10 11 stock 950 5 5

wine 178 13 3 wisconsin 194 16 16

7.1.2.1 Experimental Results

We compare the performance of BilinPL and PLNet to other state-of-the-art label rank-

ing methods using five-time repeated 10-fold cross-validation. For PLNet, we use three
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7.1 Comparison with Label Ranking

layers with 10 neurons for the hidden layer. Labels were encoded for BilinPL and PLNet

in terms of 1-of-K dummy vectors without utilizing further label descriptions. For Bil-

inPL, an additional bias term (constant 1) is added to the representation of instances.

The results provided in Table 7.2 suggest that PLNet is highly competitive, even

compared with RPC, which is known for its strong performance. Most probably, this is

due to its ability to model latent utilities in a flexible nonlinear way. The price to pay

is an increased tendency of overfitting in cases where this flexibility is not needed. This

can be seen on datasets with many attributes, but a small number of instances. Linear

models are advantageous than PLNet if their inductive bias is correct, which is the case,

for example, for the fried data.

7.1.3 Unfolding of Label Ranking Predictions

The PLNet model is used on the example of the vowel dataset to construct an unfolding.

Being capable of modeling non-linear relationships, PLNet could outperform all other

methods specifically on this dataset. The vowel data consists of 528 instances and 11

labels. The data is split into the ratio 90/10 for training and test, and the transformation

t2 was applied. The new ideal point configuration was obtained after 123 iterations with

a stress value of 0.1630 under the setting α = β = 0 and γ = 0.8 in (5.10).

In Figure 7.2, the isopreference contours are drawn for a particular test instance

denoted as a triangle. The mode predicted by our model for this instance is the ranking

L10 � L8 � L9 � L1 � L2 � . . ., which is reflected by the unfolding reasonably

well. In the figure, the unfolding is supplemented by a list of top three positions (with

corresponding probabilities) for each label according to (5.8). The complete marginal

distributions are given in Table 7.3, with the values shown in the visualization highlighted

in the bold font.
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Table 7.2: Results on the UCI label ranking datasets (average Kendall τ ± standard

deviation). The winning method per dataset is indicated in bold face.

data set BilinPL CC PLNet QRRLS RPC-LR

authorship 0.931±0.013 0.916±0.015 0.908±0.025 0.432±0.043 0.917±0.020

bodyfat 0.268±0.059 0.245±0.052 0.251±0.040 0.284±0.057 0.285±0.061

calhousing 0.220±0.011 0.254±0.009 0.272±0.014 0.215±0.011 0.243±0.010

cpu-small 0.445±0.016 0.468±0.017 0.500±0.019 0.376±0.012 0.449±0.016

elevators 0.730±0.007 0.770±0.009 0.788±0.009 0.570±0.007 0.749±0.008

fried 0.999±0.000 0.999±0.000 0.951±0.010 0.996±0.001 1.000±0.000

glass 0.835±0.072 0.830±0.079 0.846±0.080 0.818±0.075 0.889±0.057

housing 0.655±0.040 0.639±0.044 0.703±0.033 0.579±0.038 0.672±0.041

iris 0.813±0.112 0.800±0.109 0.960±0.049 0.800±0.064 0.911±0.047

pendigits 0.892±0.003 0.896±0.002 0.905±0.005 0.561±0.003 0.932±0.002

segment 0.903±0.008 0.910±0.008 0.939±0.008 0.720±0.011 0.929±0.009

stock 0.704±0.016 0.714±0.016 0.882±0.020 0.663±0.016 0.774±0.024

vehicle 0.855±0.020 0.850±0.025 0.872±0.025 0.776±0.031 0.855±0.015

vowel 0.581±0.026 0.577±0.046 0.805±0.016 0.574±0.026 0.644±0.021

wine 0.929±0.052 0.914±0.069 0.942±0.034 0.923±0.065 0.925±0.054

wisconsin 0.629±0.028 0.612±0.030 0.514±0.028 0.630±0.031 0.632±0.027

average rank 3.063 3.438 2.000 4.500 2.000
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Figure 7.2: Unfolding representation of modeled label rankings of the vowel dataset

with PLNet. Triangles denote instances (upright/gray: training, upside-

down/green: testing) and class labels are indicated with L[1-11]. The circles

indicate isopreference contours for a test instance at their center. The class

labels (vowels) are arranged in such a way that those which are closer to the

test instance are better suited than those that are far away. The uncertainty

that comes along with such an arrangement is indicated by probabilistic in-

formation of the form x : y, where x denotes a rank position and y is the

corresponding probability. These numbers are calculated for that particular

test instance relating to the labels and are given in Table 7.3.
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Table 7.3: Marginal distributions on a subset of labels for the highlighted test instance

in Figure 7.2. The top three probabilities are written in bold-face. For each

label, the square brackets indicate the sorting of probabilities in descending

order.

Ranks

1 2 3 4 5 6 7

L
a
b

el
s

2 0.001[6] 0.086[4] 0.445[1] 0.356[2] 0.104[3] 0.008[5] 0.000[7]

3 0.001[6] 0.059[4] 0.310[2] 0.438[1] 0.174[3] 0.018[5] 0.000[7]

4 0.000[6] 0.015[5] 0.078[4] 0.151[3] 0.574[1] 0.182[2] 0.000[7]

7 0.000[6] 0.004[5] 0.019[4] 0.038[3] 0.148[2] 0.791[1] 0.000[7]

8 0.013[4] 0.821[1] 0.149[2] 0.016[3] 0.001[5] 0.000[6] 0.000[7]

10 0.985[1] 0.015[2] 0.000[3] 0.000[4] 0.000[5] 0.000[6] 0.000[7]

11 0.000[7] 0.000[6] 0.000[5] 0.000[4] 0.000[3] 0.000[2] 1.000[1]

7.2 Configuration Learning for Genetic Algorithms

In the following experiment, dyad ranking methods are applied within the setting of

meta-learning for algorithm recommendation, a setting described in Brazdil et al. (2008).

This means, in particular, that for a given problem instance, the aim is to predict

a ranking of genetic algorithm (GA) configurations. In terms of dyad ranking, the

x vectors correspond to instances (TSP problems) and the y vectors correspond to

algorithm descriptions.

The meta-learning framework provides several degrees of freedom, including the way in

which meta-data is acquired (see Figure 7.3). The meta-features as part of the meta-data

should be able to relate a problem instance (e.g. a dataset) to the relative performance

of the candidate algorithms. They are usually made up by a set of numbers acquired

by using descriptive statistics. Another possibility is probing a few parameter settings

of the algorithm under consideration (Pfahringer et al., 2000). The performance values

of those landmarkers can then be used as instance-features for the meta-learner. In

addition to the meta-features, the meta-data consists of rankings of the configurations,

i.e. a sorting of the variants in decreasing order of the algorithm performance.

By analogy with the majority classifier typically used as a baseline in multi-class

classification, the meta-learning literature suggests a simple approach called the average
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Figure 7.3: The components of the “meta-learning for algorithm recommendation”

framework shown above are based on (Brazdil et al., 2008). The left box

shows the meta-data acquisition process, which consists of the problem (or

dataset) description and the evaluation of the algorithms on the problems (or

datasets). The box on the right side, the meta-level learning part, shows the

meta-learning process and its outcome. In this case study, the meta-learner

must be able to deal with qualitative data in the form of rankings and is

furthermore allowed to use additional knowledge (side-information) about

the algorithms, if available.

ranks (AR) method (Brazdil et al., 2008). This approach corresponds to the Borda count

in the ranking literature and produces a default prediction by sorting the alternatives

according to their average position in the observed rankings. The AR of the configuration

aj , 1 ≤ j ≤M , which occurs in Nj of the N rankings, is defined as

Rj =

∑Nj
i=1Ri,j
Nj

,

where Ri,j is the rank of aj within the ith ranking (in which it occurs). If the data contain

rankings in which not all configurations obtained a rank—i.e. the case of incomplete

rankings—the AR formula is adapted as follows (Brazdil et al., 2008):

Rj =

∑N
i=1 bi,j∑N

i=1 1{Ri,j 6=∅}

with

bi,j =

{
Ri,j if Ri,j 6= ∅
0 else ,

where ∅ indicates a missing rank value.

In this experiment, the focus is set on the task of ranking configurations for genetic

algorithms (GAs). These GAs are applied on different instances of the traveling salesman

problem (TSP). For the training, the GA performance averages are taken to construct

127



7 Experiments on Dyad Ranking

rankings, in which a single performance value corresponds to the distance of the shortest

route found by a GA. All the GAs share the properties of using the same selection

criterion, which is “roulette-wheel,” the same mutation operator, which is “exchange

mutation,” and the “elitism” of 10 chromosomes (Mitchell, 1998).

The performance of three groups of GAs are tested on a set of TSP instances. The

groups are determined by their choice of the crossover operator, which is cycle (CX),

order (OX), or partially mapped crossover (PMX) (Larrañaga et al., 1999). Problem

instances are characterized by the number of cities and the performances of three land-

markers.
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Figure 7.4: Genetic Algorithms are ranked according to the results they produce on the

TSP problem. The ground truth ranking in terms of path length in this

example is GA44 � GA46 � GA72.

In total, 246 problems are considered, with the number of cities ranging between 10

and 255. For each problem, the city locations (x, y) are drawn randomly from the uni-

form distribution on [1, 100]2. Moreover, 72 different GAs are considered as alternatives

with their parameters as optional label descriptions. They share the same number of

generations, 500, and a population size of 100. The combinations of all the other pa-

rameters, namely the crossover type, crossover rate, and the mutation rate, are used for

characterization:

• Crossover types: {CX, OX, PMX}

• Crossover rates: {0.5, 0.6, 0.7, 0.8, 0.9}

• Mutation rates: {0.08, 0.09, 0.1, 0.11, 0.12}
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7.2 Configuration Learning for Genetic Algorithms

The three landmarker GAs have a crossover rate of 0.6 and a mutation rate of 0.12,

combined with one of the three crossover types, respectively. They are excluded from

the set of alternatives to be ranked. An example of this scenario is provided in Figure

7.4. The label and dyad rankers are faced with rankings under the different conditions

(M,N), with N being the number of training instances and M the average length of the

rankings (M of the 72 alternatives are chosen at random, while the others are discarded).

7.2.1 Experimental Results

The results in Table 7.4 are quite consistent with the previous studies. Again, they

confirm that additional information about labels can principally be exploited by a learner

to achieve better predictive performance. In particular, BilinPL can take advantage of

this information for small values of M and compares favorably to the other label rankers

(and, in addition, has the advantage of being able to rank GA variants that have not

been used in the training phase). As expected, standard label rankers (in this case, CC)

surpass BilinPL only for a sufficiently large amount of training data. PLNet is superior

to other approaches in cases of many labels and instances.

7.2.2 Unfolding of Genetic Algorithm Configurations

The BilinPL model is used to create an unfolding solution for the meta-learning problem.

To this end, the BilinPL model is trained first on 120 examples, each of which provides

an incomplete ranking over only five of the 72 random configurations. The model was

then used to predict the rankings on 126 new problem instances and to complement

the missing ranking information about the 120 training examples. Dyadic unfolding

was then performed (using transformation t2) and the pairwise within-set distances of

points in X and Y . The calculation of the ideal point configuration under the setting of

α = 0.1, β = 0.1, and γ = 0.8 required 24 SMACOF iterations with a final stress value

of 0.0975.

The resulting unfolding configuration, shown in Figure 7.5, nicely reveals the degree

of suitability of GA configurations for particular TSP problems: GAs of the types OX

and PMX are more suitable for smaller problems, while GAs of the type CX are better

suited for TSPs with a larger number of cities. Moreover, the types of GA are reflected

well by the different clusters. Each cluster is again (sub-)clustered according to mutation

rates, as indicated by different hues of colors. Isocontour circles are drawn exemplarily
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245 (CX, OX, PMX) = (   ,   ,   ) 

Figure 7.5: Unfolding of GA configuration preferences modeled with BilinPL. Trian-

gles reflect training (upright/gray) and testing (upside-down/green) TSP

instances, and circles refer to GA configurations. A random selection of in-

stances are annotated with their associated numbers of cities. Instances are

distributed across a curved formation with fewer cities at the one end and

many at the other end. The circles around a training instance with 166 cities

represent isopreference contours, which help identifying suitable solutions.
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7.2 Configuration Learning for Genetic Algorithms

Table 7.4: Average performance in terms of Kendall’s tau and standard deviations of

different meta-learners and different conditions (average rankings lengths M

and the numbers of training instances N).

M N AR BilinPL CC LinPL PLNet QRRLS RPC

5

30 .192 ± .063 .727 ± .014 .290 ± .063 .317 ± .049 .602 ± .057 .598 ± .041 .158 ± .052

60 .358 ± .046 .766 ± .014 .428 ± .040 .452 ± .041 .651 ± .049 .633 ± .021 .311 ± .038

90 .404 ± .030 .770 ± .014 .573 ± .042 .575 ± .037 .685 ± .063 .634 ± .028 .372 ± .035

120 .430 ± .029 .777 ± .009 .610 ± .031 .619 ± .022 .727 ± .031 .644 ± .025 .387 ± .032

10

30 .423 ± .054 .775 ± .007 .539 ± .054 .551 ± .049 .724 ± .035 .634 ± .018 .397 ± .043

60 .487 ± .017 .781 ± .004 .690 ± .021 .696 ± .013 .744 ± .022 .652 ± .022 .493 ± .037

90 .523 ± .014 .781 ± .007 .726 ± .015 .726 ± .012 .774 ± .010 .657 ± .024 .576 ± .018

120 .522 ± .015 .783 ± .006 .750 ± .014 .748 ± .014 .783 ± .017 .661 ± .026 .620 ± .020

20

30 .516 ± .037 .781 ± .005 .722 ± .019 .722 ± .015 .747 ± .037 .659 ± .016 .622 ± .018

60 .549 ± .014 .784 ± .005 .763 ± .013 .758 ± .014 .787 ± .010 .659 ± .024 .714 ± .022

90 .561 ± .014 .787 ± .006 .779 ± .010 .774 ± .013 .793 ± .013 .656 ± .033 .751 ± .021

120 .571 ± .022 .787 ± .008 .786 ± .010 .782 ± .010 .794 ± .012 .659 ± .036 .772 ± .014

30

30 .554 ± .028 .782 ± .005 .753 ± .013 .746 ± .018 .772 ± .019 .655 ± .018 .717 ± .019

60 .567 ± .008 .785 ± .003 .782 ± .007 .775 ± .009 .791 ± .008 .661 ± .020 .767 ± .011

90 .578 ± .008 .787 ± .004 .791 ± .005 .786 ± .005 .798 ± .003 .663 ± .015 .781 ± .006

120 .580 ± .011 .786 ± .006 .794 ± .005 .789 ± .007 .799 ± .007 .666 ± .024 .787 ± .005

around a particular instance (here a training problem with 166 cities) to support the

inspection of the GA ranking.

7.2.3 Addressing Cold-Start Problems

Additional descriptions in the form of feature vectors are known in the recommender

systems domain, where they are typically called side-information and are used for tack-

ling cold-start problems. These problems refer to situations where preference indicators

(e.g. ratings) for new users or new items are not yet available. In these situations, side-

information is helpful because it enables to put existing and new entities into relation.
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Figure 7.6: Three kinds of cold-start problems are shown. They are characterized in such

a way that no preference indicators are available for algorithms or problems.

Side-information can help in these situations for inferring preferences and

thus recommendations.

In this section, we make use of dyad ranking to predict the rankings of candidate

algorithms contextualized by problem instances, assuming that the algorithms exhibit a

representation in terms of a feature description. By generalizing over both, attributes of

problems as well as algorithms, it becomes possible to tackle cold-start scenarios in which

predictions are sought for algorithms that never occurred in the training data. A similar

viewpoint is taken in the meta-learning domain by (Misir and Sebag, 2013; Stern et al.,

2010), where algorithm recommendation is tackled by means of collaborative filtering

(CF) techniques. However, in contrast to the description of users and items in standard

CF, side-information for describing problems in meta-learning is usually carefully crafted

(Brazdil et al., 2008). As testbed, we present the experimental results on the task of

genetic algorithm (GA) recommendation in the cold-start situation corresponding to the

box C2 (at the lower right corner) in Figure 7.6.

The (preference) meta-learning dataset for this experiment consists of rankings over

72 different parameterized genetic algorithms (GAs) applied on instances of the traveling

salesman problem. The experimental protocol follows a leave-one-out cross validation

(LOOCV) procedure over a total number of 246 examples (problems) and 72 GAs de-

scription vectors is applied: For the vector yj (1 ≤ j ≤ 72), the BilinPL model is trained
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7.3 Multi-label Ranking of Musical Emotions

Table 7.5: Results of the meta-learning cold-start experiment. Rank deviations (data

are mean±sd) of the reference (C1) and the cold-start situation (C2) relating

to the ground truth are shown. Baseline is Borda Count/Average Ranks in

C1.

GA 1 2 3 4 5 6

Baseline 8.41 ± 7.27 9.59 ± 17.34 8.18 ± 7.88 7.19 ± 12.27 5.99 ± 4.33 14.80 ± 10.46

Reference 5.65 ± 4.92 4.09 ± 5.00 6.01 ± 5.21 4.19 ± 5.62 5.11 ± 3.79 6.33 ± 5.96

Cold-start 5.65 ± 4.93 3.98 ± 4.77 6.02 ± 5.16 4.19 ± 5.58 5.16 ± 3.80 6.35 ± 5.95

GA 7 8 9 10 11 12

Baseline 5.28 ± 3.66 16.02 ± 18.59 7.88 ± 5.85 6.72 ± 4.78 11.34 ± 12.27 17.21 ± 11.52

Reference 7.76 ± 5.39 4.69 ± 5.72 6.30 ± 5.74 5.73 ± 5.11 5.66 ± 5.49 6.48 ± 5.15

Cold-start 7.86 ± 5.32 4.70 ± 5.72 6.30 ± 5.73 5.79 ± 5.12 5.67 ± 5.50 6.81 ± 5.21

...

GA 67 68 69 70 71 72

Baseline 11.79 ± 15.55 11.96 ± 7.56 9.35 ± 7.87 13.56 ± 16.99 13.24 ± 11.40 8.33 ± 7.85

Reference 6.54 ± 5.94 6.44 ± 5.48 8.06 ± 6.10 5.01 ± 5.55 7.62 ± 6.64 6.49 ± 6.02

Cold-start 6.62 ± 5.99 6.35 ± 5.50 8.22 ± 6.15 5.06 ± 5.55 7.98 ± 6.83 6.50 ± 6.02

on 245 examples and is then used to predict the ranking over all 72 vectors for the left

out example in two variants.

In the first variant (the “reference” situation [C1]), a method is trained on data where

the vector yj is part of the training set, whereas in the second variant (the “cold start”

situation [C2]) the same method is trained on data where yj is completely omitted. In

addition to the Kendall τ value that is used to quantify the quality of a predicted ranking

in relation to a ground truth ranking, the deviation between the predicted rank of yj

and the true rank is recorded.

The empirical results given in Table 7.5 suggest that the Kendall τ performances of

the reference and cold-start situations are almost identical. Therefore, side-information

can be used beneficially with the BilinPL model.

7.3 Multi-label Ranking of Musical Emotions

In this experiment, PLNet is used to rank labels that are specified in a multi-label clas-

sification context. The Emotions dataset is about songs that were annotated by experts

using multiple emotional labels based on the Tellegen–Watson–Clark model (Trohidis
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et al., 2008). In total, 593 songs from a variety of genres (Classical, Reggae, Rock, Pop,

Hip-Hop, Techno, Jazz) were used from which 72 rhythmic as well as timbre features

were extracted and used as a feature representation.

To apply dyad ranking on this kind of multi-label data, the preference (x, y) � (x, y′)

is constructed for each song x and each pair of emotions y, y′ in such a way that y is

associated with (or relevant for) x, but y′ is not. Once being trained on this data, a dyad

ranker will be able to predict a ranking of emotions, contextualized by a song. Note,

however, that such a ranking represents a total order, but no (absolute) separation of

relevant and non-relevant labels. This problem has been addressed by a technique called

calibrated label ranking (Brinker et al., 2006; Fürnkranz et al., 2008): An additional

calibration label is introduced which models exactly this separation. Correspondingly,

the preferences of all relevant labels over the calibration label and of the calibration label

over all non-relevant labels are added to the training data.

PLNet is trained on 391 examples. The features were scaled to the unit interval,

and the six labels, including the calibration label, were encoded using 1-of-k encoding.

The network consists of one hidden layer with 10 neurons and is trained using the

procedure described above. The trained PLNet is then used to make predictions on

202 test examples. Training and test skills are used for dyadic unfolding with α = 0,

β = 0, γ = 1. After 90 iterations of SMACOF, a final stress value of 0.0560 and a point

configuration was obtained, which is shown in Figure 7.7.

As can be seen, the unfolding nicely reflects the similarity between emotions. For

example, quiet-still is located much closer to relaxing-calm than to happy-pleased. Like-

wise, angry-aggressive and amazed-surprised are close to each other, but quite far from

the other emotions. Overall, the unfolding suggests a spectrum ranging from quiet-still

to amazed-surprised, and the songs are distributed along that spectrum. The absolute

fit seems to be better for the left side of the spectrum, as can be seen from the difference

between the songs and the emotions.
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C

amazed-surprised
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happy-pleased

sad-lonely

quiet-still
relaxing-calm

Figure 7.7: Unfolding representation of the modeled multi-label rankings of the Emotions

dataset with PLNet. Triangles denote instances (upright/gray: training,

upside-down/green: testing) and six class labels. For a test instance located

at the center of the two dotted circles, a special calibration label (C) divides

the set of labels into two groups. Labels closer to the test instance are more

appropriate than those that are more distant.
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7.4 Configuration of Image Processing Pipelines

The next case study elaborates on the idea of using PBRL for the purpose of algorithm

selection and configuration (Brazdil and Giraud-Carrier, 2018), especially in domains

where the results produced by an algorithm might be difficult to assess numerically.

As an example, we consider the problem of configuring image-processing pipelines to

enhance the quality of an input image. The idea is that for a human, a comparison

between two candidate pictures x,x′ is again easier than an absolute quality assessment

(here, we mimic such a comparison by applying a similarity measure, defining preference

for x in terms of proximity to some reference x∗).

An image-processing pipeline is a sequence of possibly parameterized operators where

each operator takes an image as input and produces an image as output. The quality of

a pipeline is influenced by the choice of operator types, the number of operators, their

order, and, of course, the parameterization. We consider the choice of an operator with

certain parameters as an action, which is taken by a policy learned with API-DR. The

approach is outlined in Listing 10 and slightly differs from the basic version of Section

6.3.1.

Note that with the judgements on the quality of the pipelines, the function in Line 15

extracts pairwise preferences on (state,action) pairs, and all these preference pairs are

added to the training set T . The policy model is trained in a supervised way on these

preferences at the end of each round and can then be used for the next round for further

improvement.

The problem is related to algorithm configuration and algorithm selection (Lindauer

et al., 2015). In algorithm configuration, there are instance vectors and one algorithm to

process these instances. The algorithm can be adjusted with a parameter configuration

and a model is sought, with the latter determining which parameters to set optimally

for a new instance vector. This problem is different from the pipeline scenario as there

are several configurable operators (algorithms) involved. In this aspect, the pipeline

configuration problem is similar to the algorithm selection problem. That problem is

about learning a model that can suggest one algorithm from a portfolio of diverse algo-

rithms that delivers the best performance on a given instance. A crucial difference with

that and also with the algorithm configuration problem is, however, that in the pipeline

configuration problem not all instances exist a priori, but the majority of instances are
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Algorithm 10 Pipeline Policy Training Algorithm

Require: Input D = {(xn,x∗n)}Nn=1, max pipeline length L

1: Initialize random policy model π

2: repeat

3: Sample a number of training examples S ⊂ D
4: T = ∅
5: for n = 1 to |S| do

6: for l = 1 to L do

7: if l = 1 then x
(l)
n = xn

8: else x
(l)
n = x′(l−1)

n

9: end if

10: for i = 1 to |A| do

11: x′ni = apply operator(x
(l)
n ,ai)

12: x̂ni = rollout(x′ni , π)

13: end for

14: ρn = evaluate pipeline outputs {x̂ni}
|A|
i=1 . human or machine (with x∗n)

15: Tn = generate pairwise preferences(ρn)

16: T = T ∪ Tn
17: x′(l)n = choose subsequent state of the best performing pipeline (ρn)

18: end for

19: end for

20: Train (π, T )

21: Evaluate policy (π,D)

22: until No policy improvements

23: return π

created dynamically during the transformation process. Furthermore, the training signal

is not available immediately after each configuration/algorithm choice, but only at the

end of a pipeline evaluation.

7.4.1 Experimental Protocol

The policy model in this scenario is PLNet, which is capable of learning non-linear

relationships between the preferences of state-operator configuration pairs (x,y). The

input consists of a 1-of-K encoding for the pipeline operator positions and another 1-of-

K encoding for the operator-parameter combination. Furthermore, PLNet is configured
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with three layers, including one hidden layer with 10 neurons. All weights of the network

are initialized randomly (by means of the uniform distribution) between −0.1 and 0.1,

and the actual training is performed via stochastic gradient descent using 20 epochs and

an initial learning rate of 0.1.

The set of image operators the learner can choose from consists of the logarithmic op-

erator (Gonzalez and Woods, 2002), the γ operator, and the brightness operator. Each

of those can be parameterized with different values (real numbers). Additionally, three

further operators are available, namely an unsharping mask filter, histogram normaliza-

tion, and a stop operator, all of which have no parameters. The stop operator enables

a policy to control the length of a pipeline; it is usually applied when the outputs are

good enough.

The images that are processed with the pipeline stem from the Fashion-MNIST dataset

(Xiao et al., 2017). It consists of 60k training and 10k gray scale images, where each

image has 28x28 pixels and belongs to one of 10 classes. The first hundred images from

the original training set are used to create a pipeline training dataset that consists of

distorted and ground truth image pairs. A distorted image, x, is generated from a ground

truth image by applying the pipeline Op1(2.5) → Op2(1.4) → Op1(1.5) → Op1(2.0) in

reverse order on ground truth images x∗. This essentially serves the purpose to examine

whether or not the learner is able to recover the ground truth. A test dataset is generated

in the same way on the first hundred images of the original test dataset.

As for the evaluation, we make use of the structured similarity (SSIM) measure (Wang

et al., 2004). The overall quality of the policy model is measured in terms of the mean

average error (MAE) between the produced and the ground truth images

E =
1

N

N∑
n=1

|1− sim(xn,x
∗
n)| , (7.1)

where N is the number of (distorted, ground truth) image pairs.

7.4.2 Results

The (averaged) learning curve of the learned policies is shown in Figure 7.8. It reflects the

reduction in the error with an increasing number of rounds. The learning algorithm first

enters an exploration phase, taking advantage of the (Boltzmann) exploration strategy

of PBRL-DR, as described in Section 6.3.1.1. The latter is also responsible for the

cool-down phase and the convergence of the policy.
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Figure 7.8: (a) Learning curve of the policy model over a number of rounds. (b) Image-

processing pipeline with intermediate results. ID refers to a damaged input

and IGT refers to the ground truth image. The output is provided after the

application of the image operator Op4.
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7.5 Similarity Learning on Tagged Images

In this last case study, we apply dyad ranking for similarity learning on image data and

make use of the DyMDS technique to visualize image similarities. Observations are in

the form of pairwise preferences over dyads (i.e. rankings of Length 2), and all dyad

members stem from a common domain. The images under consideration are taken from

the Caltech256 dataset, and each of them belongs to one of several categories (Griffin

et al., 2007). The images mainly contain a single object so that images can be identified

with classes quite unambiguously. The study serves as a proof of concept for the case in

dyad ranking where the data stems from a single common domain.

7.5.1 Learning Image Similarity using Dyad Ranking

A collection of images in which each image is tagged with a class label can be used to

infer a notion of preference. For similarity learning, the reasonable assumption is made

that a pair of images sharing the same label are mutually more similar to each other

than a pair of images with different labels.
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x4

x1

x3
x2

x4
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Figure 7.9: Elicitation of dyad rankings from multi-class data. Panels (a) to (c) show

different ways to find dyad rankings of Length 2 in which the dyad at the

first rank position contains instances that are more similar to each other

compared to the instances contained in the dyad put at the second rank

position.

Given a finite set of class labels, there are multiple ways to construct dyad rank-

ings based on this idea, as depicted in Figure 7.9. In Panels (a)-(c), there are dyad

rankings where the first-ranked dyad contains instances that are similar and the second-
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ranked dyad contains instances that are dissimilar. These rankings are, thus, of the form

(x1,x2) � (x3,x4). Panel (b) is a special case of (a) in which one of the second-ranked

dyad instances belongs to the same class as those from the first-ranked dyad. Panel (c)

is again a special case of (b) in which one of the instances of the second-ranked dyad

coincides with one of the instances of the first-ranked dyad. This can be translated into

the following contextualized preference statement: “Instance x1 is more similar to the

instance x2 than to x3” (Cheng and Hüllermeier, 2008).

Since the extraction of all possible dyad rankings from the multi-class data would

lead to a prohibitively large dataset for conventional maximum likelihood estimation

procedures (such as L-BFGS), the model is learned in an online fashion by sampling

dyad rankings on the fly (cf. Section 4.3.3.5). This online approach is called SiDRa,

which stands for “Similarity Learning using Dyad Ranking.”

An important feature of the learning algorithm is the possibility of combining it with a

selective sampling strategy (cf. Listing 11), which leverages the probabilistic information

provided by the (bilinear) PL model. Roughly speaking, by selecting dyad pairs for which

the (predicted) preference is highly uncertain, this strategy implements a simple form of

uncertainty sampling. Compared to simple random sampling, it speeds up the learning

process because an equivalent model can be constructed with fewer parameter updates.

Algorithm 11 Selective Sampling with Bilinear PL

1: procedure selectiveSampling(S,w)

2: [x′,y′]← sampleDyad(S)

3: repeat

4: [x′′,y′′] ← sampleDyad(S) . See constraints (a)-(c) in Figure 7.9.

5: x ← [x′ ⊗ y′ − x′′ ⊗ y′′]
6: until (uncertaintyHigh(w,x)))

7: return (x′,y′) � (x′′,y′′)

8: end procedure

The implementation is also available in DyraLib and is based on Matlab with parts

written in C++. This approach is also encouraged by existing metric learning approaches,

which typically use training examples of Type (c) in Figure 7.9 (Bellet et al., 2013). To

this end, of course, a suitable feature representation for the images is needed.
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7.5.2 Construction of Image Features

The Caltech256 dataset has already been used for image similarity learning before

(Chechik et al., 2009, 2010). The authors of these papers used a feature engineering

approach, in which images are represented as sparse bag-of-visual words vectors. Tak-

ing advantage of recent progress in deep learning, we utilized deep convolutional neural

networks (CNN) for generating feature representations. More concretely, we used a pre-

trained CNN model called AlexNet, which has been created on the basis of the ImageNet

dataset (Jia et al., 2014; Krizhevsky et al., 2012). For each image, 4096 dimensional

sparse feature vectors were obtained from the outputs of the sixth fully connected (6fc)

layer of the convolutional neural network.

7.5.3 Application of DyMDS on Learned Image Similarity

The original data Caltech 256 dataset consists of 30607 images (in jpeg format) where

each image belongs to one of the 256 classes (Griffin et al., 2007). We used a special

subset of the dataset that comprises images from 10 different classes, as proposed in

Appendix B of (Chechik et al., 2010). These are bear, skyscraper, billiards, yo-yo,

minotaur, roulette-wheel, hamburger, laptop- 101, hummingbird, and blimp.

SiDRa was run with the learning rate η = 0.1 and the regularization parameter λ =

0.0001. The dyad rankings were obtained during the learning process by sampling images

involving all possible cases (a)–(c), as outlined in Figure 7.9. The final BilinPL model

comprised a weight matrix of 16 million elements (= 40962) and took 30K iterations.

The model was then used to calculate the matrix V of latent utility values for images

in the test set. To apply the matrix on DyMDS, the matrix V is first made symmetrically

and then the rank-transform (t3) of values from the strictly lower-triangular matrix was

performed. The upper triangular matrix is complemented by mirroring the values from

the lower triangular matrix afterward.

γ=1 γ=0.75 γ=0.5 γ=0.25 γ=0

Figure 7.10: DyMDS configurations for varying γ values on the Caltech256 dataset.
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7.5 Similarity Learning on Tagged Images

The configurations produced by DyMDS for a varying number of γ values are shown

in Figure 7.10. The different colors represent class labels, and it can be seen that points

are clustered together which are from the same class. This confirms in principle the

viability of dyad ranking as an approach toward similarity-learning.

Which of the thus produced configurations represents a good configuration cannot

be answered in an unequivocal way. The reason for this is that a configuration can be

considered in conjunction with ground-truth labels2 as a kind of clustering solution. And

clustering in principle is well-known to be an ill-posed problem (Jain, 2010). Therefore,

it is hard to determine a good configuration.

Despite this difficulty, there exist measures that aim to characterize the quality of

clustering. Internal clustering validity measures pick up properties that are intrinsic

to datasets, and their mathematical formulation represents ideas of how good clusters

should ideally be (Van Craenendonck and Blockeel, 2015). The following two measures

are based on the idea that a good clustering can be expressed as the ratio of cluster

compactness and separation. Compactness expresses that points within a cluster should

be similar, while separation refers to the idea that points from different clusters should

be dissimilar. The first of such measures is Davies–Bouldin (DB) (Davies and Bouldin,

1979). The compactness in DB is defined as the distance of points to its cluster centroid.

And the separation is defined as the distances between all the cluster centroids. This

measure should ideally be low. The second of those measures is Caliński-Harabasz (CH)

(Caliński and Harabasz, 1974). The definition of compactness in CH coincides with that

of DB. However, the definition for cluster separation is different, and it is based on the

distances between cluster centroids and the global data centroid. In contrast to DB, this

measure should ideally be high.

Both DB and CH are used to characterize the configurations on varying γ values,

which are provided in Table 7.6. While a mixture of configurations with a γ value of

0.25 is preferred by the DB measure, a mixture with γ = 0.5 provides higher values of the

CH measure. The latter configuration (with γ = 0.5) is chosen to create a visualization

with the original images plotted on top of the configuration data points in Figure 7.11.

Besides the grouping of similar objects into clusters, it seems that at a broader scale

2Ground-truth labels in Caltech256 are available because the dataset is typically used to apply multi-

class methods on it.
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7 Experiments on Dyad Ranking

Table 7.6: Cluster validity measures Davies–Bouldin and Caliński-Harabasz for DyMDS

solutions with varying γ. The best results are indicated in bold-face.

γ 1.0 0.75 0.5 0.25 0.0

DB 2.021 1.519 1.302 1.230 1.267

CH 146.626 168.167 171.377 148.321 112.414

things with corners are organized on the right side, whereas more roundish things are

located on the left side.

Figure 7.11: Dyadic MDS solution of Caltech256 Images with γ = 0.5.
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8 Conclusion

The thesis addressed the research question of how preference learning on dyad ranking

data can be tackled in a principled way.

Dyad ranking was introduced as a new preference learning setting that enables the

unification of existing problems such as label and object ranking. It was defined formally

in Chapter 2 and several prediction tasks were described henceforth. The setting extends

label ranking in the sense that feature representations about labels can be taken into

account. And it can also be considered as an extension of the object ranking setting in the

sense that rankings of objects can be expressed under varying contexts. In comparison

with label ranking, it was found that with dyad ranking (i) predictions become more

reliable under the condition of scarce training information with the BilinPL model and

(ii) ranking predictions become possible over labels that were not existent at the training

phase, if additional descriptions about labels are utilized.

All dyad ranking models described in Chapter 4 have in common that they are gen-

eralizations of the PL model. The assumption underlying the JFPL model is that dyad

rankings can be modeled with a PL model whose parameters are expressed as the func-

tions of a weight vector and a joint-feature mapping representing the dyads. The BilinPL

model was then introduced as a particular instantiation of it that imposes the Kronecker

product as a concrete prescription for the joint-feature mapping function. Both the JFPL

and the BilinPL model have in common that they require the proper engineering of fea-

ture vectors to capture preferences faithfully. In terms of the former model, these are

single joint-feature vectors, while it requires the engineering of feature vector pairs for

the latter. PLNet, in contrast, generalizes the PL model by being based on a neural

network formulation of the PL model parameters. It differs from the former two in that

joint-feature representations are learned instead of being engineered. It can furthermore

capture non-linear relationships between input features and rankings.
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8 Conclusion

By being based on the Plackett–Luce model, all introduced models have a probabilistic

foundation. The benefits of possessing this key property could be demonstrated in terms

of improving the learning process and enhancing preference visualizations with additional

information concerning the uncertainty of the predictions.

In Chapter 5, the benefits of the latter aspect could be shown in an application where

multidimensional unfolding was combined with dyad ranking models to provide visual-

izations. In Section 7.2.2, the performances of genetic algorithms on various instances

of the traveling salesman problem modeled by the BilinPL model are visualized in an

intuitive way. From an ”ideal point” that represents a TSP problem, those genetic algo-

rithms can be identified immediately for solving the problem well. The visualization is

also used in Sections 7.1.3 and 7.3; this time in combination with PLNet. There it has

been used to visualize the rankings of emotions for different pieces of music.

The case in dyad ranking in which dyads are composed of pairs from the common

domain X is addressed with the application of dyad ranking for similarity learning in

Section 7.5. A strong point of the approach is that the similarity obtained with the dyad

ranking model SiDRa can again be used for the visualization with DyMDS from Section

5.4. This, in turn, makes it possible to indicate the uncertainty of the data similarity

visually.

In Chapter 6, dyad ranking was utilized for preference-based reinforcement learning.

To this end, API-DR was introduced as a novel approach for approximate policy iteration

on dyadic preference data. It has the advantage of utilizing descriptions of actions and

uses probabilistic information for balancing exploration and exploitation. An application

of it is the learning of image-processing pipeline configurations, described in Section 7.4.

So far, the proposed models are learned with the maximum likelihood principle. A

future work could be devoted to minimize other error measures, e.g. to emphasize top

rank positions of the ranking predictions. This aspect is important if the number of

objects to be ranked is high and if only the top-N ranked objects are of importance.

This requirement is usually the case in large-scale information retrieval applications.

Future work could also be devoted to a generalization of the dyad ranking setting to

support the ranking of k-tuples of feature vectors instead of dyads. As an example, dyad

ranking would be limited in modeling the case where users (domain X), items (domain

Y), and at the same time contexts as a third domain are subject to rankings.
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Last but not least, the aspect of modeling ties in rankings has not received much

attention in this work so far. And approaches beyond those that are based on the PL

models are also conceivable for dyad ranking in future research.

147





9 Appendix

Definitions

Identity Matrix The identity matrix Ik is a k× k square diagonal matrix, in which the

off-diagonal elements are all zero and the diagonal elements are all one. For example:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Frobenius Norm

Let U ∈ RN×M be a real-valued matrix with N rows and M columns. The squared

Frobenius norm of matrix U is given by ‖U‖2F = trUU> =
∑N

i=1

∑M
j=1 |uij |2.

Linear Map

Let V and W be vector spaces over R. The function f is a linear map (or linear), if for

any two vectors x and y and any scalar α the following two conditions are fulfilled:

f(x+ y) = f(x) + f(y)

f(αx) = αf(x) .
(9.1)

Scalar and Vector Projection

Let v and w be two vectors of a common vector space. The scalar projection of v onto

w is given by Sw(v) = 〈v, w
‖w‖〉 ∈ R. And the vector projection of v onto w is a new

vector in the direction of w defined as

Projw(v) = Sw(v)
w

‖w‖
=
〈v,w〉
‖w‖2

w .
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9 Appendix

Iverson Bracket The Iverson bracket converts the logical proposition P into a number

and is denoted by

[P ] = 1{P} =

{
1 if P is true

0 if P is false .

Vector Representation of a Matrix

Given a matrix X ∈ Rm×n with

X =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 .

Then vec(X) is a vector representation of X, in which the rows are stacked along one

dimension, i.e.

vec(X) = (x11, x12, . . . , x1n, x21, x22 . . . , xmn) = x .

With the knowledge of m and n, the inverse operation vec−1(x) returns the matrix X

for the given vector x.

Partial and Total Orders

The following terminology from order theory is often used in the label ranking literature

to define basic concepts (Vembu and Gärtner, 2010). This happens, in particular, given

the binary relation � and the (finite) set S. Given any elements a, b, c ∈ S, we can

consider the following properties:

(i) a � a (reflexivity)

(ii) if a � b and b � a then a = b (antisymmetry/asymmetry)

(iii) if a � b and b � c then a � c (transitivity)

(iv) a � b or b � a (totality/comparability)

A binary relation, �, on S with Axioms (i)-(iii) is a partial order. The pair (S,�) is

then called a partially ordered set or just poset. The partially ordered set (S,�) with

Axioms (ii)-(iv) is called a totally ordered set. The relation � with properties (ii)-(iv) is

consequently called a total order. There are also other names for the total order relation;
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these are: linear order, a (strict) ranking, or a permutation. In the case where ties exist,

we speak of a partial ranking.

An alternative term for a ranking is a (rank) ordering, which is a sequence of elements

where the element put on top has Rank 1, put second has Rank 2, and so on. An

incomplete ordering is an ordering on a subset of available elements.

Kendall’s Tau Rank Correlation Measure

The Kendall’s tau coefficient (Kendall, 1938) is a rank correlation measure commonly

used in the label ranking literature (Vembu and Gärtner, 2010; Zhou et al., 2014). It is

defined as

τ = τ(π, π̂) =
C −D
C +D

(9.2)

=
C −D

K(K − 1)/2
(9.3)

= 1− 2D(
K
2

) = 1− 4D

K(K − 1)
(9.4)

with C and D the number of concordant (put in the same order) and discordant (put

in the reverse order) label pairs, respectively, and K the length of the rankings π and

π̂ (number of labels). Kendall’s tau assumes values in [−1,+1], with τ = +1 for the

perfect prediction π̂ = π and τ = −1, if π̂ is the exact reversal of π.

The importance of Kendall’s τ for information retrieval has been shown in (Joachims,

2002). It is related to further ranking performance measures such as Average Precision

and to average rank in case of a binary relevance scale.

Lemma 1. Kendall’s τ is a metric. For any π, σ, ρ ∈ SM the following properties hold:

(i) τ(π, σ) ≥ 0 (non-negativity)

(ii) τ(π, σ) = 0⇔ π = σ ( identity of indiscernibles)

(iii) τ(π, σ) = τ(σ, π) (symmetry)

(iv) τ(π, σ) ≤ τ(π, ρ) + τ(ρ, σ) (triangle inequality)
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9 Appendix

Spearman’s Rank Correlation Measure

Given the two rankings π, π′ of the length K, the Spearman rank correlation measures

the strength of the association between the rankings as

ρ = 1− 6D(π, π′)

K(K2 − 1)
,

with the sum of squared rank distances

D(π, π′) =
m∑
i=1

[
π(i)− π′(i)

]2
.

The measure ρ is, thus, a linear transformation (normalization) of D.

Derivation of Logit Choice Probabilities

The derivation to get from the discrete choice probability integral (4.13) to the closed-

form logit choice probability (4.14) is given in (Train, 2009). This is a remarkable result

because it enables the expression of choice probabilities in closed-form.

From (4.13) we have

Pni =

∫ ∞
t=−∞

(∏
j 6=i

exp(− exp(−(t+ Vni − Vnj)))
)

exp(−t) exp(− exp(−t))dt ,

with t = εni. By using Vni − Vni = 0 we have

Pni =

∫ ∞
t=−∞

(∏
j

exp(− exp(−(t+ Vni − Vnj)))
)

exp(−t)dt

=

∫ ∞
t=−∞

exp
(
−
∑
j

exp(−(t+ Vni − Vnj))
)

exp(−t)dt

=

∫ ∞
t=−∞

exp
(
− exp(−t)

∑
j

exp(−(Vni − Vnj))
)

exp(−t)dt
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By defining s = exp(−t), s.t. − exp(−t)dt = ds we can rewrite Pni as

Pni =

∫ 0

s=∞
exp

(
− s

∑
j

exp(−(Vni − Vnj))
)

(−ds)

=

∫ ∞
s=0

exp
(
− s

∑
j

exp(−(Vni − Vnj))
)
ds

=
exp(−t

∑
j exp(−(Vni − Vnj)))

−
∑

j exp(−(Vni − Vnj))

∣∣∣∣∣
∞

0

=
1∑

j exp(−(Vni − Vnj))
=

exp(Vni)∑
j exp(Vnj)

.

Pseudocodes

Evaluation of a Ranking Probability

The effort for calculating the Plackett–Luce model probability P(π|v) =
∏M−1
i=1

vπ(i)∑M
j=i vπ(j)

for the ranking π of the length M is O(M), see Algorithm 12.

Algorithm 12 Evaluation of Plackett–Luce Model Probability P(π|v)

Require: Permutation π, Plackett–Luce parameter v ∈ RM

1: p, i ← 1

2: s ← vπ(M)

3: for i < M − 1 do

4: s← s+ vπ(M−i)

5: p← p · vπ(M−i)/s

6: i ← i+ 1

7: end for

8: return p

Sampling from the Plackett–Luce model distribution

Listing 13 describes the process of sampling a ranking from the Plackett–Luce model

distribution. It mimics the vase metaphor from Silverberg (Marden, 1995) by drawing

colored balls from a vase at several stages. It proceeds until all M colors are assigned

to a rank. Another possibility to sample from the PL distribution can be realized by

taking random samples from the Gumbel (double exponential or extreme value type I)
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9 Appendix

distribution whose PDF is

g(x|µ, β) =
1

β
exp

(
−(x− µ)

β

)
exp

(
− exp

(
−x− µ

β

))
.

PL parameters defined as vi = exp
(
µi
β

)
with a fixed β = 1 correspond to the i-th

item in a ranking induced by the Thurstonian model (Guiver and Snelson, 2009). This

relationship enables the alternative sampling algorithm in Listing 14.

Algorithm 13 Sampling from the Plackett–Luce model distribution (Vase)

Require: Plackett-Luce parameter v ∈ RM

1: M ← length(v)

2: r ← v . Initialize remaining skills.

3: stage ← 1

4: for stage < M do

5: p← r/
∑
ri . Update probabilities vector.

6: id ← draw ball from vase (p)

7: ordering(stage) = id

8: r(id)= 0 . Update remaining skills.

9: stage ← stage + 1

10: end for

11: return ordering

Algorithm 14 Sampling from the Plackett–Luce model distribution (Extreme Value)

Require: Plackett-Luce parameter v ∈ RM

1: r ← take random sample from EV(log(v), 1)

2: ordering = arg sort(r,descending)

3: return ordering
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Cheng, W., Dembczyński, K., and Hüllermeier, E. Label ranking methods based on

the Plackett-Luce model. In J. Fürnkranz and T. Joachims, editors, Proceedings of

the 27th International Conference on Machine Learning (ICML-10), pages 215–222.

Omnipress, Haifa, Israel, 2010.
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and E. Hüllermeier, editors, Preference Learning, pages 1–17. Springer-Verlag, 2010a.
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editors, Proceedings ECML/PKDD–2014, European Conference on Machine Learning

and Knowledge Discovery in Databases, pages 517–532. Springer Berlin Heidelberg,

Nancy, France, 2014.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., and Salakoski, T. Learning to

rank with pairwise regularized least-squares. In SIGIR 2007 workshop on learning to

rank for information retrieval, pages 27–33. 2007.

Pahikkala, T., Waegeman, W., Airola, A., Salakoski, T., and De Baets, B. Condi-

tional ranking on relational data. In Machine Learning and Knowledge Discovery in

Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September

20-24, 2010, Proceedings, Part II, pages 499–514. Springer Berlin Heidelberg, 2010.

Palatucci, M., Pomerleau, D., Hinton, G. E., and Mitchell, T. M. Zero-shot learning

with semantic output codes. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams,

and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages

1410–1418. Curran Associates, Inc., 2009.

Park, Y. and Marcotte, E. M. Flaws in evaluation schemes for pair-input computational

predictions. Nature methods, 9(12):1134, 2012.

Patterson, D. W. Artificial Neural Networks: Theory and Applications. Prentice Hall

PTR, 1st edition, 1998.

Pfahringer, B., Bensusan, H., and Giraud-Carrier, C. G. Meta-learning by landmarking

various learning algorithms. In Proceedings of the Seventeenth International Confer-

ence on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA,

June 29 - July 2, 2000, pages 743–750. Morgan Kaufmann Publishers Inc., 2000.

175



References

Plackett, R. L. The analysis of permutations. Journal of the Royal Statistical Society.

Series C (Applied Statistics), 24(2):193–202, 1975.

Pleskac, T. J. Decision and choice: Luce’s choice axiom. In P. Bona, editor, International

encyclopedia of social and behavioral sciences (2nd ed. Department of Psychology,

Michigan State University, 2013.

Prechelt, L. Early stopping—but when? In Neural Networks: Tricks of the Trade, pages

53–67. Springer, 2012.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. Bpr: Bayesian

personalized ranking from implicit feedback. In Proceedings of the 25th conference on

uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. Grouplens: an open

architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM

conference on Computer supported cooperative work, pages 175–186. ACM, 1994.

Ribeiro, G., Duivesteijn, W., Soares, C., and Knobbe, A. J. Multilayer perceptron for

label ranking. In Proceedings ICANN, 22nd International Conference on Artificial

Neural Networks, pages 25–32. Springer, Lausanne, Switzerland, 2012.

Rigutini, L., Papini, T., Maggini, M., and Scarselli, F. Sortnet: Learning to rank by a

neural preference function. IEEE transactions on neural networks, 22(9):1368–1380,

2011.

Robertson, S., Zaragoza, H., et al. The probabilistic relevance framework: Bm25 and

beyond. Foundations and Trends R© in Information Retrieval, 3(4):333–389, 2009.

Rojas, R. Theorie der neuronalen Netze: Eine systematische Einführung. Springer,
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