
Models and Constructions for
Secure Reputation Systems

M.Sc. Jakob Juhnke

January 21, 2019

A dissertation submitted to the

Department of Computer Science

Paderborn University
for the degree of

Doktor der Naturwissenschaften
(doctor rerum naturalium)

Supervisor: Prof. Dr. rer. nat. Johannes Blömer

accepted on the recommendation of

Prof. Dr. Johannes Blömer
Paderborn University

Prof. Dr. Tibor Jager
Paderborn University

defended on
December 18, 2018

Acknowledgements

I would like to thank Johannes Blömer for giving me the opportunity to work in his research
group, for expanding my knowledge on modern cryptography, and for interesting discussions
about my research.

Furthermore, I thank my former colleagues Dr. Peter Günther and Dr. Gennadij Liske for
unofficially mentoring me, for providing great hints regarding scientific practice, and for
helpful comments on the security definition I developed for this dissertation.

Besides Peter and Gennadij, I also thank my colleagues Claudia Jahn, Fabian Eidens, and
Sascha Brauer for being such great friends supporting me and my family whenever needed,
and for having much fun both at the office and in our spare time. In particular, I thank
Claudia for organizing wonderful events, for solving problems unrelated to research, and for
handling the daily business.

Moreover, I want to thank Fabian Eidens, Jan Bobolz, Nils Löken, Sascha Brauer, Dr.
Kathrin Bujna, and Denis Diemert for their help in solving some mathematical issues,
for fruitful discussions about definitions and techniques I apply in this thesis, and for
proof-reading.

Of course, I also thank my family, especially my wife Silvana and my children, for motivating
me in times I wanted to quit, for reminding me to take breaks whenever it was stressful,
and for their patience in general.

Finally, I want to thank Prof. Dr. Hanno Lefmann from the Chemnitz University of
Technology for teaching me the basics of scientific practice and for motivating me to keep
on researching after finishing my studies of computer science.

Abstract

In this thesis we consider reputation systems and their security from a cryptographic
perspective. The security properties a reputation system has to provide, as well as attacks
against them and appropriate countermeasures, are extensively discussed in the literature
and well understood. However, no generally accepted security model has emerged. This
is due to the fact that some properties seem to mutually exclude each other, which
complicates the design of models for secure reputation systems. Interestingly, each of the
security properties can be realized with cryptographic primitives, albeit not necessarily
simultaneously. Hence, it is reasonable to analyze the security of reputation systems in a
cryptographic context.

Our main contribution is the design of two models for cryptographically secure reputation
systems. The first model we propose follows an experiment-based approach to define
security and extends the model of (dynamic) group signatures. Experiment-based security
definitions have the advantage that they allow one to precisely formalize the desired security
properties. But this approach is also susceptible to miss subtle details in the security
definition. Therefore, we propose a second model, defined as an ideal functionality in the
Universal Composability Framework. This ideal functionality defines security implicitly
and is therefore able to cover subtle security properties, and is also able to overcome certain
other disadvantages of the first model. Furthermore, the second model eliminates some
disadvantages of the first model. Moreover, the Universal Composability Framework guar-
antees security for concurrently composed applications, which is an important property for
reputation systems. For both security models we additionally provide efficient constructions
of reputation systems that are provably secure in their respective model.

Zusammenfassung

In dieser Dissertationsschrift betrachten wir Reputationssysteme und deren Sicherheit vor
einem kryptographischen Hintergrund. Die Sicherheitseigenschaften, die ein Reputationssys-
tem erfüllen sollte, werden in der Literatur ausgiebig diskutiert und verstanden. Gleiches
gilt für Angriffe gegen Reputationssysteme und deren Gegenmaßnahmen. Allerdings hat
sich bisher kein allgemein akzeptiertes Sicherheitsmodell etablieren können. Dies liegt vor
allem daran, dass sich einige Sicherheitseigenschaften zu widersprechen scheinen und sich
vermutlich gegenseitig ausschließen, was die Definition eines Sicherheitsmodells erschwert.
Interessanterweise ist jede dieser Eigenschaften, einzeln betrachtet, mit Hilfe von kryptogra-
phischen Verfahren realisierbar. Daher erscheint es vernünftig, die Sicherheitseigenschaften
von Reputationssystemen im kryptographischen Kontext zu analysieren.

Das Hauptresultat dieser Arbeit ist der Entwurf von zwei Modellen für sichere Reputa-
tionssysteme. Das erste Modell nutzt experiment-basierte Sicherheitsdefinitionen auf der
Grundlage des Sicherheitsmodells von Gruppensignaturen. Experiment-basierte Sicherheits-
definitionen haben den Vorteil, dass sich mit ihnen die gewünschten Eigenschaften sehr
präzise formalisieren lassen. Ein wesentlicher Nachteil ist jedoch, dass feine Details von
Sicherheitsanforderungen leicht übersehen werden und somit nicht formalisiert werden. Aus
diesem Grund stellen wir ein zweites Modell vor, welches als eine ideale Funktionalität
im sogenannten Universal Composability Framework alle Sicherheitseigenschaften nur im-
plizit definiert. Dadurch ist es jedoch möglich, auch Details von Sicherheitseigenschaften
abzudecken. Darüber hinaus hat das erste Sicherheitsmodell einige Nachteile, welche im
zweiten Modell behoben werden. Außerdem bewahren Applikationen, die im Universal
Composability Framework definiert sind, ihre Sicherheitseigenschaften, wenn sie mit anderen
Applikationen kombiniert werden, was insbesondere für Reputationssysteme wichtig ist.
Für jedes der beiden Sicherheitsmodelle präsentieren wir ebenfalls effiziente Konstruktionen
von Reputationssystemen, die im jeweiligen Modell als sicher bewiesen werden.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Notation . 5
2.2 Cryptographic Primitives . 6

2.2.1 Hash Functions and Random Oracles 6
2.2.2 Commitment Schemes . 7
2.2.3 Public-Key Encryption . 10
2.2.4 Digital Signatures . 11
2.2.5 Group Signatures . 13
2.2.6 Interactive Proofs . 15
2.2.7 Non-Interactive Proofs . 22

2.3 Group Generators and Bilinear Maps . 28
2.4 Cryptographic Hardness Assumptions . 29

2.4.1 Decisional Assumptions . 29
2.4.2 Computational Assumptions . 30

3 Reputation Systems and their Security 33
3.1 Essential Functionality . 33
3.2 Attacks against Reputation Systems . 34

3.2.1 Unfair Feedback . 35
3.2.2 Inconsistent Behavior . 35
3.2.3 Identity-based Attacks . 36

3.3 Desired Properties and Cryptographic Considerations 37

4 Models and Constructions for Secure Reputation Systems 39
4.1 A Model for Reputation Systems . 39

4.1.1 Architecture and Algorithms . 39
4.1.2 Security Notions . 42
4.1.3 Discussion . 49

4.2 Construction of a Reputation System . 50
4.2.1 Building Blocks and Intuition . 50
4.2.2 The Reputation System . 56

5 Universal Composability 61
5.1 Protocol Execution and Security . 62
5.2 Technical Details . 64

xii Contents

6 Reputation Systems in the Universal Composability Framework 67
6.1 An Ideal Functionality for Reputation Systems 67

6.1.1 Intuition . 67
6.1.2 The Formal Definition . 69
6.1.3 Security Properties . 75

6.2 Realizing Reputation Systems . 78
6.2.1 Building Blocks and Intuition . 78
6.2.2 The Protocol . 82

7 Further Extensions and Future Research 87
7.1 Considering Adaptive Adversaries against FRS 87
7.2 Incorporating Revocation into FRS and ΠRS 88
7.3 Attribute-based Ratings . 88

8 Security Proofs 89
8.1 Experiment-based Security . 89

8.1.1 Proof of Anonymity . 90
8.1.2 Proof of Public Linkability . 93
8.1.3 Proof of Traceability . 97
8.1.4 Proof of Strong Exculpability . 100

8.2 UC-Security . 101
8.2.1 Foundations . 103
8.2.2 Definition of the Simulator . 107
8.2.3 Indistinguishability of the Ideal and Real Protocols 110
8.2.4 The Reductions used within the Security Proof 115

Bibliography 123

Introduction 1
In a nutshell, the goal of a reputation system is to provide reliable information about
previous transactions in an application with interacting users. To explain the meaning of
that, it is necessary to consider the application, the reputation system, and the different
roles of the interacting users successively. Typically, in an application users interact with
each other in two different roles, as a consumer or as a provider of some object. The kinds
of available objects depend on the application, for example in online marketplaces the
objects are products offered for purchase, in file-sharing communities they can be the files
to share or the bandwidth supplied by other users, and in bulletin board systems every
comment is an object. In such an application the consumers have to decide which object
from which provider they want to consume. This can be problematic, especially when
similar objects are available or the consumers have not interacted with a specific provider
before. To resolve this issue, a reputation system can be incorporated into the application.
Such a system enables users to rate the quality of consumed objects and the behavior of
their corresponding providers. In the context of reputation systems, the consumption of
objects is called a transaction and a user rating a transaction acts in the role of a rater.
Thus, by collecting, evaluating, and aggregating ratings from all raters, the reputation
system can provide condensed information about previous transactions. Therefore, when
future behavior of providers and the quality of provided objects can be estimated based on
the information supplied by the reputation system, they can be helpful in a user’s decision
process. To allow such estimations, the reputation information must be reliable, which can
only be guaranteed when this information is protected against manipulation.

Basically, protection against manipulation is possible by preventing attacks, or mitigating
an attack’s effects when it cannot be prevented. Throughout the literature many different
attacks are discussed and appropriate countermeasures are proposed to secure various
aspects of reputation systems. Nevertheless, no generally accepted security model for
reputation systems has emerged. This is because conflicting security properties complicate
the design of holistic security models. This is exemplified by considering the security
properties linkability and anonymity. Linkability requires that every user can check whether
or not two ratings for the same transaction were created by the same rater. Thus, linkability
is a mechanism to prevent specific attacks in reputation systems. In contrast to that,
without anonymity a rater must fear discrimination due to negative ratings, which leads to
dishonest ratings to avoid reprisals. But with dishonest ratings a reputation system cannot
provide reliable information. Therefore, raters must be anonymous when supplying ratings,
which seems to be in conflict when ratings are linkable. This further demonstrates that

2 1 Introduction

more properties than those motivated by countermeasures against specific attacks have to
be considered in models for secure reputation systems.

By further analyzing the concrete security requirements of reputation systems it turns out
that besides anonymity and linkability also traceability and non-frameability need to be
considered. Traceability ensures that the identity of any rater can be determined by a
designated manager of the reputation system. Thereby, accountability can be realized, which
is another mechanism to prevent attacks in reputation systems conflicting with anonymity.
Related to traceability, non-frameability guarantees that honest raters are not blamed for a
rating they did not create. The combination of traceability and non-frameability enables
penalizing dishonest raters.

Having identified a set of natural security properties for reputation systems, in this thesis
we want to answer the following research question:

How can one design a holistic security model for reputation
systems that supports all of the identified security properties
simultaneously, and that can be combined with arbitrary

applications?

We address this question by considering reputation systems from a cryptographic perspective.
The described security properties are similar to those provided by group signatures, which
have been studied extensively in cryptography. As a consequence, formal security models
for group signatures exist and it is well known how to realize the described properties in
that context, although not necessarily simultaneously. Therefore, it is reasonable to use
group signatures as a basis to define security models for reputation systems.

Contribution and Outline of this Thesis

As pointed out above, no generally accepted security model for reputation systems has
emerged yet. However, since reputation systems are used more and more frequently, their
security concerns gain in importance. So there is a need for a holistic security model that
supports arbitrary applications, as formulated above as our research question. To answer
this question, in this thesis we propose two comprehensive models for secure reputation
systems and provide constructions that fulfill all defined security properties.

For the first proposed model we use experiment-based security definitions. These allow
to precisely formalize the desired security properties. However, with this approach it is
possible that subtle details are missing. A more intuitive approach is used for the second
model, where we formulate an ideal functionality for reputation systems in the Universal
Composability Framework. Here, the security is defined implicitly and hence specific security
properties are harder to identify. For both security models we also provide constructions
that are provably secure. These constructions show some similarities, but the security proofs
are remarkably different. In the experiment-based security proofs it is possible to focus
on an individual security property, whereas all security properties have to be considered
simultaneously in the Universal Composability Framework. Nevertheless, we provide the
technical preliminaries for both approaches in this thesis, which is organized as follows.

3

Chapter 2: Due to their previously noted similarities to group signatures, it is sensible to
consider reputation systems from a cryptographic perspective. Indubitably, reputation
systems are more complex than group signatures, so further cryptographic primitives
are needed to construct secure reputation systems. The cryptographic primitives used
in this work are hash functions, commitment schemes, public-key encryption, digital
signatures, and proof systems, which are introduced in Chapter 2. Additionally, this
chapter contains notational conventions, foundational mathematical concepts related
to bilinear groups, and the cryptographic hardness assumptions used in this work.

Chapter 3: Before presenting to the definition of a security model for reputation systems,
we introduce their functionality and typical attacks in Chapter 3. Based on known
countermeasures against those attacks we further describe the similarities of reputation
systems and group signatures in detail. Finally, we sketch how group signatures can
be used to formulate a security model for reputation systems.

Chapter 4: After introducing the essentials in Chapter 2 and Chapter 3, we propose the
first comprehensive model for secure reputation systems in Chapter 4. Initially, we
describe the architecture of secure reputation systems. Subsequently, we formally
define and discuss the four security properties anonymity, public linkability, traceability,
and strong exculpability that a secure reputation system must fulfill. Besides that,
we also provide a construction based on group signatures that is provably secure in
the proposed model.

Chapter 5: To further improve the model proposed in Chapter 4, we consider reputation
systems in the Universal Composability Framework. This framework is designed
to guarantee security under concurrent composition of arbitrary protocols, which is
a very important property for practical applications. In Chapter 5 we review the
Universal Composability Framework by introducing its basic concept and discussing
various technical details.

Chapter 6: With the foundational concepts from Chapter 5, we propose a second security
model for reputation systems in the Universal Composability Framework in Chapter 6.
Since the security properties in this model are harder to identify than those presented
in Chapter 4, we also provide an exhaustive discussion about security. As for the first
model, we present a construction of a secure reputation system in the second part of
this chapter.

Chapter 7: Albeit proposing comprehensive models for secure reputation systems,
there are some technical issues and additional interesting properties that need to be
considered in future research. These aspects are discussed in Chapter 7.

Chapter 8: To increase readability of this thesis, Chapters 4 and 6 do not contain proofs
showing that the provided constructions of reputation systems are secure in their
respective model. Instead, we provide these proofs in Chapter 8, which finalizes this
thesis.

4 1 Introduction

Publications related to this Thesis

This thesis, especially the chapters 4, 6, 7, and 8, is based on the following publications
with substantial contribution of the author.

[BEJ18] Johannes Blömer, Fabian Eidens, and Jakob Juhnke. „Practical, Anonymous,
and Publicly Linkable Universally-Composable Reputation Systems“. In: Topics
in Cryptology – CT-RSA 2018. Ed. by Nigel P. Smart. Vol. 10808. Lecture
Notes in Computer Science. San Francisco, CA, USA: Springer, Heidelberg,
Germany, Apr. 2018, pp. 470–490. doi: 10.1007/978-3-319-76953-0_25.
Full Version: Cryptology ePrint Archive, Report 2018/029. https://eprint.
iacr.org/2018/029. 2018.

[BJK15] Johannes Blömer, Jakob Juhnke, and Christina Kolb. „Anonymous and Publicly
Linkable Reputation Systems“. In: FC 2015: 19th International Conference
on Financial Cryptography and Data Security. Ed. by Rainer Böhme and
Tatsuaki Okamoto. Vol. 8975. Lecture Notes in Computer Science. San Juan,
Puerto Rico: Springer, Heidelberg, Germany, Jan. 2015, pp. 478–488. doi:
10.1007/978-3-662-47854-7_29. Full Version: Cryptology ePrint Archive,
Report 2014/546. http://eprint.iacr.org/2014/546. 2014.

Furthermore, the author of this thesis also contributed to the following publications that
are related to advanced signature schemes.

[BEJ18a] Johannes Blömer, Fabian Eidens, and Jakob Juhnke. „Enhanced Security
of Attribute-Based Signatures“. In: Cryptology and Network Security - 17th
International Conference, CANS 2018, Naples, Italy, September 30 - October 3,
2018, Proceedings. Ed. by Jan Camenisch and Panos Papadimitratos. Vol. 11124.
Lecture Notes in Computer Science. Springer, 2018, pp. 235–255. doi: 10.1007/
978-3-030-00434-7_12.

[BJL15] Johannes Blömer, Jakob Juhnke, and Nils Löken. „Short Group Signatures
with Distributed Traceability“. In: Mathematical Aspects of Computer and
Information Sciences - 6th International Conference, MACIS 2015, Berlin,
Germany, November 11-13, 2015, Revised Selected Papers. Ed. by Ilias S.
Kotsireas, Siegfried M. Rump, and Chee K. Yap. Vol. 9582. Lecture Notes in
Computer Science. Springer, 2015, pp. 166–180. doi: 10.1007/978-3-319-
32859-1_14.

https://doi.org/10.1007/978-3-319-76953-0_25
https://eprint.iacr.org/2018/029
https://eprint.iacr.org/2018/029
https://doi.org/10.1007/978-3-662-47854-7_29
http://eprint.iacr.org/2014/546
https://doi.org/10.1007/978-3-030-00434-7_12
https://doi.org/10.1007/978-3-030-00434-7_12
https://doi.org/10.1007/978-3-319-32859-1_14
https://doi.org/10.1007/978-3-319-32859-1_14

Preliminaries 2
In this chapter we introduce notational conventions used throughout this thesis and
provide the required cryptographic background. The notational conventions are defined in
Section 2.1. In Section 2.2 we introduce the required cryptographic primitives and their
formal definitions. Our constructions of reputation systems rely on cyclic groups of prime
order and bilinear mappings, which are defined in Section 2.3. Finally, the cryptographic
hardness assumptions guaranteeing security of our constructions are defined in Section 2.4.

2.1 Notation

By x := y we denote the assignment of the value y to the variable x. For a finite set S
we denote the sampling of an element of S according to the uniform distribution and its
assignment to variable x by x←u S. For a probabilistic algorithm A running on input y we
denote the operation of assigning the output of A to the variable x by x←A(y). When an
algorithm A expects an input y from some specific set S, we implicitly assume that A can
efficiently verify the membership of y ∈ S and that A outputs the special error symbol ⊥
in case y /∈ S.

The set of all possible outputs of a (randomized) algorithm A on input y we denote by
[A(y)]. We denote by A(y : O1,O2, . . .) or AO1,O2,...(y) an algorithm A on input y with
access to the oracles O1,O2, By A(y; r) we denote running a de-randomized algorithm
A on input y and randomness r.

For interactive algorithms A and B we denote by (a, b)← 〈A(y) ↔ B(z)〉 the output of
their interaction, where a is the output of A(y) and b is the output of B(z). If only one
of both parties generates output, according to the definition of the interaction, we write
x← 〈A(y)↔ B(z)〉.

Unless stated otherwise, a probabilistic polynomial-time algorithm A is an algorithm running
in strict probabilistic polynomial-time. That is, there exists a bound, polynomial in the
length of the inputs, on the number of steps in each possible run of A, regardless of the
outcome of its internal random choices. We also say an algorithm A is efficient when it
runs in probabilistic polynomial-time. In contrast to that, a problem is infeasible when no
efficient algorithm can solve it with more than negligible probability, where a negligible
function is defined as follows:

6 2 Preliminaries

Definition 2.1: Negligible Function - [KL07]
A function f : N → R is negligible if for every positive polynomial p there exists a value
N ∈ N such that for all n > N , where n ∈ N, it holds that f(n) < 1

p(n) . 4

2.2 Cryptographic Primitives

In this section we briefly introduce and formally define the most important cryptographic
primitives that are used in this thesis.

2.2.1 Hash Functions and Random Oracles

A function H : X → Y is called a hash function, if Y is a finite nonempty set and |X| > |Y |.
This definition implies that for every hash function H there exist different inputs x, x′

such that H(x) = H(x′), so called collisions. In cryptography, finding collisions of a
hash function must be infeasible. This property is called collision-resistance and was
first formally defined by Damgård [Dam88]. For a complexity theoretic treatment the
definition of collision-resistance considers families of hash functions instead of a just one
hash function.

Definition 2.2: Hash Function Family - [Dam88; Can+07]
A collection of functions H = {Hλ : Kλ ×Xλ → Yλ}λ∈N is a family of hash functions, if Kλ

and Yλ are nonempty finite sets and |Xλ| > |Yλ| holds for all λ ∈ N. 4

Definition 2.3: Collision-Resistant Hash Function Family - [Dam88; Can+07]
A family of hash functions is a family of collision-resistant hash functions, if the following
conditions hold:

• for all λ ∈ N, elements from Kλ can be sampled efficiently according to the uniform
distribution,

• there exists an algorithm Eval that on input (1λ, k, x) outputs Hλ(k, x) in polynomial-
time, where k ∈ Kλ and x ∈ Xλ,

• for all probabilistic polynomial-time adversaries A there exists a negligible function
negl such that

Pr
[
k←u Kλ, (x1, x2)←A(1λ, k) : x1 6= x2 ∧Hλ(k, x1) = Hλ(k, x2)

]
≤ negl(λ),

where the probability is taken over the random choice of k and the random bits used
by A.

A member of a collision-resistant hash function family is also called collision-resistant. 4

In this work we will always use hash functions in combination with other cryptographic
primitives. To simplify the notation of hash functions in such contexts we omit the security

2.2 Cryptographic Primitives 7

parameter λ and the key k. That means, when no confusion is possible, we denote the hash
function Hλ(k, x) by H(x) and assume that k is publicly available.

An idealization for hash functions is the so called random oracle model, introduced by
Bellare and Rogaway [BR93]. In this model a hash function H : X → Y is chosen uniformly
at random from the set of all functions from X to Y and the only way to evaluate H
is to query a public oracle O. In general, cryptographic schemes proven secure in the
random oracle model are more efficient than schemes in the standard model, but the security
guarantees are weaker. This is because random oracles cannot be realized in practice, as
proven by Canetti, Goldreich, and Halevi [CGH04]. Nevertheless, replacing random oracles
with collision-resistant hash functions in practical applications is still a reasonable heuristic
for the purposes of practical security.

2.2.2 Commitment Schemes

A commitment scheme enables a party, the committer, to commit to some secret value m
by sending a commitment c to a receiver. After this commit phase, the committer can open
the commitment in a decommit phase to reveal m to the receiver. Before the committer
initiated the decommit phase the receiver should gain no information about m from c,
which is called hiding. During the decommit phase the committer should not be able to
reveal some m′ 6= m to the receiver, which is called binding. The formal definition of a
(non-interactive) commitment scheme is given in Definition 2.4. The security properties
hiding and binding are defined in Definitions 2.5 and 2.6, respectively.

Definition 2.4: Commitment Scheme - [Dam00; DG03]
A (non-interactive) commitment scheme Π for message spaceM consists of three proba-
bilistic polynomial-time algorithms:

KeyGen(1λ) takes as input the security parameter λ. It outputs a public key pk .

Commit(pk ,m) takes as input the public key pk and a message m ∈ M. It outputs a
commitment c and a decommitment d .

Reveal(pk , c, d) takes as input the public key pk , a commitment c, and a decommitment
d . It outputs a message m ∈M or the error symbol ⊥ /∈M.

A non-interactive commitment scheme is correct, if for every λ ∈ N and every m ∈ M it
holds

Pr
[
pk ← KeyGen(1λ), (c, d)← Commit(pk ,m) : Reveal(pk , c, d) = m

]
= 1. 4

Remark: In a more general definition of commitment schemes, as given by Halevi and
Micali [HM96] or Fischlin [Fis01], Commit and Reveal are interactive protocols between the
committer and a receiver. In the commit phase both parties interactively form a commitment
by executing the protocol Commit. Analogously, in the decommit phase the committer and
the receiver run the protocol Reveal to reveal the value m. Non-interactive commitment
schemes are the special case of such protocols, where only a single message is sent in both
phases. That means, in the commit phase the committer computes (c, d)← Commit(pk ,m)

8 2 Preliminaries

and sends c to the receiver, whereas in the decommit phase the committer sends d to the
receiver computing m← Reveal(pk , c, d). In this work we will only consider non-interactive
commitments, hence we omit the definition of interactive commitment schemes. ¤

Definition 2.5: Hiding Commitment Schemes - [Dam00; Fis01]
The hiding property of a non-interactive commitment scheme Π is defined via the following
experiment:

Experiment Exphide
A,Π(λ)

pk ← KeyGen(1λ)

(m0,m1,St)←A(pk)

b←u {0, 1}
c← Commit(pk ,mb)

b′←A(St, c)

If b = b′ ∧m0,m1 ∈M Then
output 1

Else output 0

We say a (non-interactive) commitment scheme Π = (KeyGen,Commit,Reveal) is computa-
tionally hiding, if for all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

Pr
[
Exphide

A,Π(λ) = 1
]
≤ 1

2
+ negl(λ). 4

Definition 2.6: Binding Commitment Schemes - [Dam00; Fis01]
The binding property of a non-interactive commitment scheme Π is defined via the following
experiment:

Experiment Expbind
A,Π (λ)

pk ← KeyGen(1λ)

(c, d1, d2)←A(pk)

If Reveal(pk , c, d1) 6= Reveal(pk , c, d2) Then
output 1

Else output 0

We say a (non-interactive) commitment scheme Π = (KeyGen,Commit,Reveal) is com-
putationally binding, if for all probabilistic polynomial-time adversaries A there exists a
negligible function negl such that

Pr
[
Expbind

A,Π (λ) = 1
]
≤ negl(λ). 4

A special variant of commitment schemes are trapdoor commitments. In such schemes there
exists a trapdoor that allows to open a commitment to arbitrary values. This trapdoor

2.2 Cryptographic Primitives 9

is neither handed to the committer nor to the receiver. Instead, it is used within security
proofs to generate the adversary’s view.

Definition 2.7: Trapdoor Commitment Scheme - [Abe+10; DG03; Gro09]
A (non-interactive) trapdoor commitment scheme Π for message spaceM consists of five
probabilistic polynomial-time algorithms:

KeyGen(1λ) takes as input the security parameter. It outputs a public key pk and a
trapdoor td .

Commit(pk ,m) takes as input the public key pk and a message m ∈ M. It outputs a
commitment c and a decommitment d .

Reveal(pk , c, d) takes as input the public key pk , a commitment c, and a decommitment
d . It outputs a message m ∈M or the error symbol ⊥ /∈M.

TCommit(pk , td) takes as input the public key pk and the trapdoor td . It outputs an
equivocal commitment ĉ and an equivocation key ek .

TReveal(pk , ĉ, ek ,m) takes as input the public key pk , an equivocal commitment ĉ, the
corresponding equivocation key ek , and a message m. It outputs a decommitment d̂ .

A non-interactive trapdoor commitment scheme is correct, if for every λ ∈ N and every
m ∈M it holds

Pr
[
(pk , td)← KeyGen(1λ), (c, d)← Commit(pk ,m) : Reveal(pk , c, d) = m

]
= 1

and

Pr

 (pk , td)← KeyGen(1λ)
(ĉ, ek)← TCommit(pk , td)

d̂← TReveal(pk , ĉ, ek ,m)

: Reveal(pk , ĉ, d̂) = m

 = 1.
4

Besides hiding and binding, secure trapdoor commitments have to fulfill the trapdoor
property, which states that commitments and decommitments generated by executing
Commit are indistinguishable from those generated by executing TCommit and TReveal.

Definition 2.8: Trapdoor Property - [Abe+10; DG03; Gro09]
The trapdoor property of a non-interactive trapdoor commitment scheme Π is defined via
the following experiment:

10 2 Preliminaries

Experiment Exptd
A,Π(λ)

(pk , td)← KeyGen(1λ)

(m,St)←A(pk)

b←u {0, 1}
If b = 0 Then

(c, d)← Commit(pk ,m)

Else
(c, ek)← TCommit(pk , td)

d← TReveal(pk , c, ek ,m)

b′←A(St, c, d)

If b = b′ ∧m ∈M Then
output 1

Else output 0

We say a (non-interactive) trapdoor commitment scheme Π = (KeyGen,Commit,Reveal) ful-
fills the computational trapdoor property, if for all probabilistic polynomial-time adversaries
A there exists a negligible function negl such that

Pr
[
Exptd

A,Π(λ) = 1
]
≤ negl(λ). 4

2.2.3 Public-Key Encryption

Public-key encryption schemes enable parties to communicate privately with each other
without having to share secret information. For this to work, every party that wants to
receive private messages generates a personal pair (pk , sk) of public and secret keys. A
sender can use the public key pk to encrypt a message and send it to the receiver. Using
the secret key sk the receiver can then decrypt the message. It is important not to reveal sk
to anyone, as the security of public-key encryption relies on the secrecy of sk . The formal
definitions of public-key encryption and its security are given in Definitions 2.9 and 2.10.

Definition 2.9: Public-Key Encryption Scheme - [Bel+98; NY90]
A public-key encryption scheme Π for message space M consists of three probabilistic
polynomial-time algorithms:

KeyGen(1λ) takes as input the security parameter. It outputs a public key pk and a
corresponding secret key sk .

Enc(pk ,m) takes as input the public key pk and a message m ∈ M. It outputs a
ciphertext ct .

Dec(sk , ct) takes as input the secret key sk and a ciphertext ct . It outputs a message
m ∈M or the error symbol ⊥ /∈M.

2.2 Cryptographic Primitives 11

A public-key encryption scheme is correct, if for every λ ∈ N and every m ∈M it holds

Pr
[
(pk , sk)← KeyGen(1λ) : Dec(sk ,Enc(pk ,m)) = m

]
= 1. 4

Definition 2.10: Security against Chosen Ciphertext Attacks - [Bel+98; NY90]
The security of a public-key encryption scheme Π against an adversary A that runs an
adaptive chosen ciphertext attack is defined via the following experiment:

Experiment Expcca
A,Π(λ)

(pk , sk)← KeyGen(1λ)

(m0,m1,St)←A(pk : Decsk)

b←u {0, 1}
ct∗← Enc(pk ,mb)

b′←A(St, ct∗ : Decsk)

If (b = b′) ∧ (A did not query Decsk (ct))
∧ (|m0| = |m1|) ∧ (m0,m1 ∈M) Then
output 1

Else output 0

Oracle Decsk (ch)

Output m← Dec(sk , ch)

In this experiment the adversary has access to a decryption oracle Decsk which can be used
to obtain decryptions of adversarially chosen ciphertexts.

We say the public-key encryption scheme Π is secure against adaptive chosen ciphertext
attacks (or CCA-secure), if for all probabilistic polynomial-time adversaries A there exists
a negligible function negl such that

Pr
[
Expcca

A,Π(λ) = 1
]
≤ 1

2
+ negl(λ). 4

Remark: Another important security definition for public-key encryption schemes is that
of security against chosen plaintext attacks (CPA-security). This weaker notion is defined
analogously to CCA-security, but the adversary has no access to the decryption oracle. ¤

2.2.4 Digital Signatures

Digital signature schemes enable parties to exchange messages such that every receiver can
determine the origin of a message and verify its integrity. For this purpose a sender generates
a personal secret signing key sk and a corresponding public verification key pk . Using the
signing key a sender can compute a signature for some message. The message-signature
pair is then sent to a receiver who is able to verify it using the public verification key of the
sender. This basic idea is formalized in Definition 2.11. Certainly, signatures can guarantee
integrity as long as the signer is the only party that can generate them. This requirement
is formally defined in Definition 2.12.

12 2 Preliminaries

Definition 2.11: Digital Signature Scheme - [GMR88]
A digital signature scheme Π for message spaceM consists of three probabilistic polynomi-
al-time algorithms:

KeyGen(1λ) takes as input the security parameter. It outputs a public key pk and a
corresponding secret key sk .

Sign(sk ,m) takes as input the secret key sk and a messagem ∈M. It outputs a signature
σ.

Verify(pk ,m, σ) takes as input the public key pk , a message m ∈M, and a signature σ.
It outputs a bit v ∈ {0, 1}.

We say a signature σ is valid for message m ∈ M with respect to public key pk if
Verify(pk ,m, σ) = 1, and invalid otherwise.

A digital signature scheme is correct, if for all λ ∈ N and all m ∈M it holds

Pr
[
(pk , sk)← KeyGen(1λ) : Verify(pk ,m,Sign(sk ,m)) = 1

]
= 1. 4

Definition 2.12: Existential Unforgeability under Chosen Message Attacks -
[GMR88]
The existential unforgeability of a digital signature scheme Π against an adversary A that
runs an adaptive chosen message attack is defined via the following experiment:

Experiment Expeuf−cma
A,Π (λ)

Q := ∅
(pk , sk)← KeyGen(1λ)

(m∗, σ∗)←A(pk : Signsk)

If Verify(pk ,m∗, σ∗) = 1
∧m∗ /∈ Q ∧m∗ ∈M Then
output 1

Else output 0

Oracle Signsk (m)

σ← Sign(sk ,m)

Q :=Q∪ {m}

In this experiment the adversary has access to a sign oracle Signsk which can be used to
obtain signatures on adversarial chosen messages.

We say the digital signature scheme Π is existentially unforgeable under a chosen message
attack (or EUF-CMA-secure), if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

Pr
[
Expeuf−cma

A,Π (λ) = 1
]
≤ negl(λ). 4

In Definition 2.12 we require an adversary to output a forgery σ∗ for some message m∗

that was not queried to the signing oracle Signsk previously. An alternative formulation
would be to add the tuple (m,σ) to the set Q in the oracle definition and to test whether
(m∗, σ∗) ∈ Q in the winning condition. This is an important difference as in the first case

2.2 Cryptographic Primitives 13

randomized signatures are not considered as a forgery while they are in the second case.
Since we will use randomizable signatures in this work we rely on the slightly weaker notion
of EUF-CMA security.

2.2.5 Group Signatures

Group signatures, introduced by Chaum and van Heyst [Cv91], are a generalization of
digital signatures and allow a group of users to anonymously produce signatures on behalf
of the entire group. In this section we informally restate the concepts of static and dynamic
group signature schemes and their security properties. We do not provide formal definitions,
because the security definitions for the reputation systems proposed in Chapter 4 are similar
to those of (dynamic) group signatures.

Static Group Signature Schemes

A formal model for static group signatures schemes and their security is defined by Bellare,
Micciancio, and Warinschi [BMW03]. Such a scheme consists of a single group manager
and a fixed group of users. To initialize the group signature scheme a trusted setup phase is
necessary which generates the group public key and the group manager’s public key, hands
the group manager’s secret key to the group manager, and outputs personal secret signing
keys to every user. Using these secret signing keys every user can sign messages on behalf of
the group. With respect to the group public key everybody, even outsiders, can verify the
validity of message-signature-pairs. In case of misbehaving users, the group manager is able
to extract the signer’s identity from valid signatures, which is called opening a signature.

As discussed in [BMW03], full-anonymity and full-traceability are the two security properties
to consider for static group signatures:

Full-anonymity means that an adversary in possession of all secret signing keys of the
users and with access to an opening oracle is not able to tell which user generated a
signature. This strong property also implies unlinkability, which in turn means that
it is hard to tell whether or not two signatures were produced by the same user.

To ensure that the opening mechanism is useful, full-traceability requires that no group
of colluding users can produce signatures which cannot be opened to a user of the
coalition. This property has to hold even when all users collude and the group
manager’s secret key is known to the coalition, which also implies that it is hard to
produce signatures which cannot be opened at all.

By combining digital signatures, public-key encryption, and non-interactive zero-knowledge
proofs Bellare, Micciancio, and Warinschi [BMW03] present a generic construction of static
group signatures and prove its security.

14 2 Preliminaries

Dynamic Group Signature Schemes

In contrast to static groups, dynamic group signature schemes are more flexible as they
allow users to join the group over time. This seems to be a minor modification of the model
for static group signatures, but it requires many adjustments - especially regarding the
security properties.

Comprehensive formal definitions for dynamic group signatures are given by Bellare, Shi,
and Zhang [BSZ05]. Following their notation, dynamic group signatures consist of a single
opener, a group of users with unique identities, and a dedicated issuer. During a trusted
setup phase the group public key, the opener’s public key, and the issuer’s public key are
generated and published, the opener’s secret key and the issuer’s secret key are handed to
the opener and the issuer, respectively. To become a group member a user has to generate
a personal public and secret key pair, which in turn is used to execute an interactive group
joining protocol with the issuer. During this protocol the user’s secret signing key is
generated such that the issuer does not know the entire key. By combining the personal
public key, the corresponding secret key, and the secret signing key a user is able to sign
messages on behalf of the entire group. Everyone in possession of the group public key can
verify the validity of message-signature-pairs. As in static group signatures, the opener can
open signatures to extract the identity of a signer by using the opener’s secret key. But
instead of simply outputting the obtained identity, the opener has to generate a proof that
the claimed user is really the author of a given signature. For security reasons this proof
can be verified, which is called judging, to ensure that the opener does not blame an honest
group member.

The security properties of dynamic group signatures according to [BSZ05] are anonymity,
traceability, and non-frameability :

To break anonymity an adversary is asked to determine which user generated a specific
signature. In this process the adversary acts as the issuer, can obtain all secret keys
from group members by corrupting them, and has access to an opening oracle. As for
static group signatures this implies the unlinkability of signatures.

A dynamic group signature scheme is traceable, if it is infeasible to produce signatures
that cannot be opened, or for which no opening proof can be generated. In this
scenario the issuer must be honest to prevent the creation of dummy-users that are
unknown to the opener. But an adversary can create honest group members, corrupt
them to obtain their secret keys and interact with the issuer on their behalf.

Non-frameability states that it is hard to produce an opening proof blaming an honest
group member having generated a signature, when he did not. An adversary against
non-frameability can corrupt the opener, the issuer, and all but one group members.
As a consequence, this property relies on the user’s personal secret key used during
the interactive group joining protocol, but which is unknown to the issuer.

To achieve these properties simultaneously it is important that every party can obtain
authenticated copies of the different public keys. Otherwise, users could modify their keys
over time. Therefore, Bellare, Shi, and Zhang [BSZ05] assume the existence of a public-key
infrastructure, but also other models are suitable to achieve this.

2.2 Cryptographic Primitives 15

As for static group signatures Bellare, Shi, and Zhang [BSZ05] present a generic and
provably secure construction for dynamic group signatures based on digital signatures,
public-key encryption, and non-interactive zero-knowledge proofs systems.

2.2.6 Interactive Proofs

Interactive proofs enable a party P to convince another party V interactively that some
statement is true. At the same time they ensure that P can not convince V when a
statement is false.

Definition 2.13: Interactive Proof System - [GMR89; MY08]
A pair of interactive algorithms (P,V), the computationally unbounded prover P and the
probabilistic polynomial-time verifier V, is an interactive proof system for language L if
there exists a negligible function negl such that

• Completeness: ∀x ∈ L : Pr [1← 〈P(x)↔ V(x)〉] ≥ 1− negl(|x|)

• Soundness: ∀x /∈ L : for every interactive algorithm P∗ it holds

Pr [1← 〈P∗(x)↔ V(x)〉] ≤ negl(|x|).

We say V accepts x after interacting with P if V outputs 1, and V rejects x otherwise. 4

For practical (cryptographic) applications a computationally unbounded prover is not useful.
Therefore, it is reasonable to reduce the prover’s computational power to probabilistic
polynomial-time. But then the prover is as powerful as the verifier and hence is only able
to prove trivial statements (statements the verifier can verify on its own). For this reason
the prover gets an auxiliary input w, called a witness, to make him more powerful than the
verifier. Such a system is called interactive argument.

Definition 2.14: Interactive Argument System - [MY08]
A pair of interactive probabilistic polynomial-time algorithms (P,V), the prover P and the
verifier V , is an interactive argument system (or computationally sound proof) for language
L if there exists a negligible function negl such that

• Completeness: ∀x ∈ L ∃w : Pr [1← 〈P(x,w)↔ V(x)〉] ≥ 1− negl(|x|)

• Soundness: ∀x /∈ L : for every interactive probabilistic polynomial-time algorithm
P∗ it holds

Pr [1← 〈P∗(x)↔ V(x)〉] ≤ negl(|x|).

We say V accepts x after interacting with P if V outputs 1, and V rejects x otherwise. 4

Remark: Restricting the prover P to probabilistic polynomial-time means that P ’s running
time is bounded by p(|x|) for some polynomial p and all w. Hence, increasing the length of
w does not increase P’s running time bound. ¤

16 2 Preliminaries

The definitions for interactive proofs and arguments capture the concept of interactively
convincing another party of the validity of some statement. It requires that for all valid
statements accepting interactions can be implemented (completeness) and that all accepting
interactions are for valid statements (soundness). But there is no requirement on the
strategy the prover executes. For cryptographic applications it is desirable to hide as much
information as possible from a verifier. This property is captured by the definition of zero-
knowledge. Since this definition requires the concept of (computationally) indistinguishable
probability distributions, this is defined first.

Definition 2.15: Indistinguishability of Probability Distributions - [MY08]
Two probability distribution ensembles {Xz}z∈S and {Yz}z∈S , indexed by strings in some
finite set S, are computationally indistinguishable, denoted by {Xz}z∈S

c≡ {Yz}z∈S , if for
all probabilistic polynomial-time algorithms D there exists a negligible function negl such
that for all z ∈ S it holds

|Pr[D(Xz, z) = 1]− Pr[D(Yz, z) = 1]| ≤ negl(λ). 4

Definition 2.16: Black-Box Zero-Knowledge - [GMR89; MY08]
An interactive proof system (P,V) for language L is black-box zero-knowledge if there
exists a probabilistic polynomial-time algorithm S, called the simulator, such that for every
verifier V∗ it holds{

VIEWV∗(〈P(x)↔ V∗(x, z)〉)
}
x∈L, z∈{0,1}∗

c≡
{
SV∗(x, z)

}
x∈L, z∈{0,1}∗ .

By VIEWV∗(〈P(x) ↔ V∗(x, z)〉) we denote the computation history of V∗ consisting of
V∗’s inputs, the contents of its random tape and all messages V∗ received from P during
the protocol execution. 4

Remark: Interactive black-box zero-knowledge argument systems are defined analogously:
the only difference to Definition 2.16 is that P is given the witness w as auxiliary input.
The auxiliary input z given to V∗ in Definition 2.16 models additional knowledge about x
that V∗ already possesses, for example from previous interactions with P. ¤

The basic idea of zero-knowledge is that the knowledge a verifier obtains by interacting
with a prover can be computed by the verifier itself. This is expressed by the definition of a
simulator that is able to produce the verifier’s view while being as powerful as the verifier:
S is a probabilistic polynomial-time algorithm without access to a witness w. Instead,
the computational power of S comes from the oracle (black-box) access to the verifier. A
weaker variant of black-box zero-knowledge is to only consider the honest verifier V in
Definition 2.16, instead of arbitrary verifiers V∗. Interactive proofs and arguments satisfying
the weaker notion are called honest-verifier zero-knowledge.

With the notions of interactive proofs and arguments the concept of convincing a verifier
of the validity of some statement is captured. However, these notions do not state explicitly
what it means for a prover to know something about the statement to prove. This is
captured by the notion of proofs of knowledge.

2.2 Cryptographic Primitives 17

Definition 2.17: Proofs of Knowledge - [BG93]
Let κ : {0, 1}∗ → [0, 1] be a function and R ⊆ {0, 1}∗ × {0, 1}∗ a binary relation. Further,
define LR = {x | ∃w : (x,w) ∈ R} and R(x) = {w | (x,w) ∈ R}.

An interactive probabilistic polynomial-time algorithm V is a knowledge verifier for relation
R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive algorithm P such that for all x ∈ LR it
holds Pr [1← 〈P(x)↔ V(x)〉] = 1.

• Validity: There exists a probabilistic expected polynomial-time algorithm E such
that for every interactive algorithm P∗ and for all x ∈ LR it is the case that
EP∗(x) ∈ R(x) ∪ {⊥} and it holds

Pr[EP∗(x) ∈ R(x)] ≥ Pr [1← 〈P∗(x)↔ V(x)〉]− κ(x).

The algorithm E is called a (universal) extractor that either outputs a witness w for x such
that (x,w) ∈ R, or the special symbol ⊥. 4

As shown by Bellare and Goldreich [BG93], the knowledge error κ can be reduced via
m sequential repetitions to essentially κm and via parallel repetitions to 0, when κ is
small enough. Regardless of this, proofs of knowledge for a relation R are not necessarily
interactive proof systems for LR because soundness is not required. However, an interactive
proof system (P,V) is also a proof of knowledge when V is a knowledge verifier. By
restricting the class of provers in Definition 2.17 to interactive probabilistic polynomial-time
provers with auxiliary input one obtains arguments of knowledge.

A special class of efficient protocols, combining interactive argument systems, honest-verifier
zero-knowledge, and arguments of knowledge, is called Σ-protocols.

Definition 2.18: Σ-Protocol - [Dam02]
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation and define LR = {x | ∃w : (x,w) ∈ R} and
R(x) = {w | (x,w) ∈ R}.

An interactive argument system (P,V) for LR is a Σ -protocol for relation R if it is of the
form

1. P sends a message a, the announcement, to V.

2. V sends a random t-bit string ch, the challenge, to P.

3. P sends a message r, the response, to V. Then V accepts or rejects depending on
(x, a, ch, r).

and the following three conditions hold:

• Completeness: ∀(x,w) ∈ R : Pr [1← 〈P(x,w)↔ V(x)〉] = 1

• Special Soundness: For all x ∈ {0, 1}∗ and all pairs of accepting interactions (a, ch, r),
(a, ch ′, r′) on input x, where ch 6= ch ′, it is possible to compute a witness w in
probabilistic polynomial-time such that (x,w) ∈ R.

18 2 Preliminaries

• Special Honest-Verifier Zero-Knowledge: There exists a probabilistic polynomial-time
algorithm S that on input x ∈ LR and a uniformly random ch outputs an accepting
interaction of the form (a, ch, r) with the same probability distribution as interactions
between an honest P and an honest V on input x. 4

As shown by Damgård [Dam02], completeness and special soundness imply that every
Σ-protocol is an interactive argument of knowledge with knowledge error 2−t, where t is
the length of the verifier’s challenge. The special honest-verifier zero-knowledge property is
a stronger notion than honest-verifier black-box zero-knowledge, because it requires the
simulator to output accepting interactions that are distributed identically to real interactions
and that this is possible for every challenge ch.

Concurrent Composition of Interactive Protocols

The definitions for interactive proofs (arguments), zero-knowledge and proofs of knowledge
only consider the execution of some protocol between two parties. A more realistic scenario
is to consider an execution of several protocol instances where messages from different
parties are arbitrarily interleaved. The message scheduling is controlled by an adversary
under the restriction that all messages are scheduled in the right order. This concurrent
interaction is defined in Definition 2.19.

Definition 2.19: Concurrent Interaction - [DNS98; DNS04; Ros06]
The concurrent execution of an interactive two-party protocol (P,V), denoted by (P̂, V̂),
is controlled by an adversary A that schedules the messages exchanged between P̂ and V̂.
The parties P̂ and V̂ act as follows:

• When P̂ (V̂) receives (init,m, ID) from A, create a new copy of P (V) and run P(m)
(V(m)). For the i’th init-message we denote this copy of P (V) by Pi (Vi) and its
input by mi. The identifier ID is used as a label to identify the protocol instance of
(P,V). When P (V) generates a message m′ to send to its corresponding V (P), P̂
(V̂) sends (m′, ID) to A.

• When P̂ (V̂) receives (message,m, ID) from A, hand m to P (V) as a message sent
within (P,V) associated with ID. If no such associated P (V) exists, ignore the
message. When P (V) generates a message m′ to send to its corresponding V (P), P̂
(V̂) sends (m′, ID) to A.

• When P̂ (V̂) receives halt from A, stop the execution of all protocol instances and
generate the output.

The output of P̂ is the vector of all outputs of the instantiated Pi’s with their associated
identifiers, namely [(ID1, p1), (ID2, p2), . . .], where pi denotes Pi’s output. The output of
V̂ is a vector of all inputs, transcripts and outputs of the instantiated Vi’s with their
associated identifiers, namely [(ID1, x1, t1, v1), (ID2, x2, t2, v2), . . .], where xi denotes an
input, ti denotes a complete transcript and vi denotes Vi’s output. 4

2.2 Cryptographic Primitives 19

Remark: To emphasize that P̂ and V̂ get multiple inputs during a concurrently composed
interaction, we denote their inputs as vectors. Concretely, we denote the execution of a
concurrently composed protocol on input ~x by 〈P̂(~x)↔ V̂(~x)〉. ¤

In Definition 2.19 A models a higher-level process that initiates protocol executions, provides
the parties’ inputs, and controls an asynchronous network. The actual protocol instances
are executed independently of each other and are managed by P̂ and V̂, respectively.

To give an example, consider the possible concurrent execution of two instances of a
Σ-protocol in Figure 2.1.

P̂ A V̂

P
1 (x

,w
)

P
2 (x
′,w
′)

V
1 (x
′)V

2 (x
)

V̂ outputs [(1, x′, (a2, ch2, r2), v1), (2, x, (a1, ch1, r1), v2)],
where v1, v2 ∈ {0, 1}

(init, (x,w), 2)

(init, (x′, w′), 1)

(init, x′, 1)

(init, x, 2)
(a1, 2)

(a2, 1)
(message, a1, 2)

(message, a2, 1)

(ch1, 2)

(ch2, 1)

(message, ch1, 2)

(message, ch2, 1)

(r1, 2)

(r2, 1)

(message, r1, 2)

(message, r2, 1)

halt halt

Figure 2.1: Example of two concurrently executed Σ-protocol instances

By considering concurrent interaction according to Definition 2.19 for interactive proof
systems and arguments, it is not hard to see that completeness is preserved, because all
protocol instances are executed independently. Moreover, if there would exist a composed
prover P̂∗ that is able to convince a composed verifier V̂ about some false statement with
more than negligible probability, then P̂∗ could be transformed into an ordinary prover
P∗ executing an interactive proof (or argument) by emulating the concurrent conditions.
Hence, also soundness is preserved under concurrent composition of interactive proofs and

20 2 Preliminaries

arguments. Unfortunately, a similar statement regarding zero-knowledge protocols does not
hold.

Definition 2.20: Concurrent Black-Box Zero-Knowledge - [DNS98; DNS04]
An interactive proof system (P,V) for language L is concurrent black-box zero-knowledge if
there exists a probabilistic polynomial-time algorithm S, called the simulator, such that for
every composed verifier V̂∗ it holds{

VIEWV̂∗(〈P̂(~x)↔ V̂∗(~x, z)〉)
}
~x∈L∗, z∈{0,1}∗

c≡
{
S V̂∗(~x, z)

}
~x∈L∗, z∈{0,1}∗ .

By VIEWV̂∗(〈P̂(~x) ↔ V̂∗(~x, z)〉) we denote the computation history of V̂∗ consisting of
V̂∗’s inputs, the contents of its random tape and all messages V̂∗ received from P̂ during
the protocol execution. 4

The definition of concurrent black-box zero-knowledge considers composed verifiers V̂∗ that
are able to influence the message scheduling. This is because V̂∗ is not forced to respond
immediately to messages from P̂. Furthermore, V̂∗ could send messages to P̂ that depend
on messages received earlier in other protocol instances. An example of a problematic
message scheduling, originally suggested by [DNS98] [DNS98], is given in Figure 2.2.

V1 V2 . . . Vn−1 Vn
�

�
. . .

�

�

�

�
. . .

�

�

An arrow from the right to the left indicates a message sent from the verifier Vi to
the prover P̂ , whereas an arrow from the left to the right indicates a message sent
from the prover P̂ to the verifier Vi. Since V̂∗ controls all Vi’s, the messages sent
by Vi can depend on all previous messages.

Figure 2.2: Example of a message schedule for n instances of a 4-move interactive protocol

To simulate the interaction shown in Figure 2.2 the straight-forward approach of simulating
each of the n instances as in the case without concurrency does not work. The problem
that arises is that simulating an instance could influence the simulation of another instance,
due to the possible dependency of messages. This results in an exponential running time
for the straight-forward simulator to simulate instance 1, as shown in more detail by
Dwork, Naor, and Sahai [DNS98]. Hence, zero-knowledge is not preserved under concurrent
composition.

2.2 Cryptographic Primitives 21

Fortunately, for Σ-protocols Damgård [Dam00] shows how obtain concurrent black-box zero-
knowledge in the auxiliary string model by combining them with trapdoor commitments.
In the auxiliary string model, also known as the common reference string model [CF01], an
auxiliary string with a predefined distribution is given as an additional input to all parties
involved in a protocol. It is often assumed that a trusted third party chooses and pub-
lishes that string. Damgård’s technique to construct concurrent black-box zero-knowledge
arguments from Σ-protocols and trapdoor commitment schemes works as follows.

Lemma 2.1: Damgård’s Technique - [Dam00]
Let pk be the public key of a secure trapdoor commitment scheme and let (P,V) be
a Σ-protocol for some relation R. Then the following protocol (P ′,V ′) is a concurrent
black-box zero-knowledge argument of knowledge.

1: On input (x,w, pk), where (x,w) ∈ R, the prover P ′ computes a by executing P(x,w),
computes (c, d)← Commit(pk , a), and sends c to the verifier V ′.

2: On input (x, pk) the verifier V ′ sends a random challenge ch to P ′.
3: The prover P ′ hands the challenge ch to P to obtain r as the provers response and

sends (r, a, d) to V ′.
4: The verifier V ′ accepts x, if and only if V accepts (x, a, ch, r) and a = Reveal(pk , c, d).

We call this composed protocol a Σ̂-protocol. �

Sketch of Proof. We have to show that the protocol is complete, sound, concurrent black-box
zero-knowledge, and an argument of knowledge.

Completeness follows from the completeness of the underlying Σ-protocol and the correctness
of the trapdoor commitment scheme. Analogously, soundness follows from the soundness of
the Σ-protocol. To prove that the Σ̂-protocol is concurrent black-box zero-knowledge we
define the following simulator S that interacts with a concurrently composed verifier V̂∗:

1: On input ~x the simulator S runs the KeyGen algorithm of the trapdoor commitment
scheme to obtain (pk , td) and hands (~x, pk) to V̂∗.

2: For all i ∈ {1, . . . , |~x|}, S runs TCommit(pk , td) to obtain (ĉi, ek i) and sends ĉi to V̂∗.

3: When S receives a challenge chi from V̂∗, he runs the special honest-verifier zero-
knowledge simulator of the Σ-protocol on input (xi, chi) to obtain an accepting
transcript (ai, chi, ri). Then S runs TReveal(pk , ĉi, ek i, ai) to obtain a decommitment
d̂i and sends (ri, ai, d̂i) to V̂∗.

Since the trapdoor commitment scheme is secure, especially the trapdoor property is
fulfilled, transcripts generated by S are indistinguishable from real protocol transcripts.
Furthermore, S can instantly react on challenges from V̂∗ such that no rewinding is needed.
Hence, the Σ̂-protocol is concurrent black-box zero-knowledge. That the Σ̂-protocol is
also an argument of knowledge follows from binding property of the trapdoor commitment
scheme and the special soundness of the underlying Σ-protocol.

22 2 Preliminaries

2.2.7 Non-Interactive Proofs

The purpose of non-interactive proofs is basically the same as for their interactive counterpart.
They enable a party P to convince another party V that some statement is true, but without
interacting with V. Naturally, the question of whether non-interactive proofs can be zero-
knowledge or proofs of knowledge arises. Indeed this is true, albeit the missing interaction
needs to be compensated. For this reason Blum, Feldman, and Micali [BFM88] introduce a
common reference string in their definition for non-interactive proof systems that replaces
interaction to support zero-knowledge. Unfortunately, this definition only allows to prove a
single statement for a fixed common references string. A definition supporting polynomially
many proofs is given by Feige, Lapidot, and Shamir [FLS99].

Definition 2.21: Non-interactive Argument System - [FLS99; GOS06]
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary NP-relation and define LR = {x | ∃w : (x,w) ∈
R}. A non-interactive argument system Π consists of three probabilistic polynomial-time
algorithms:

KeyGen(1λ) takes as input the security parameter. It outputs a common reference string
crs.

P(crs, x, w) takes as input a common reference string crs and a tuple (x,w) ∈ {0, 1}∗ ×
{0, 1}∗. It outputs an argument π or the error symbol ⊥.

V(crs, x, π) takes as input a common reference string crs, a bitstring x ∈ {0, 1}∗, and
an argument π. It outputs a bit b ∈ {0, 1}.

We call Π a non-interactive argument system for relation R, if there exists a negligible
function negl such that

• Completeness: for every (unbounded) algorithm A it holds

Pr
[
crs ← KeyGen(1λ), (x,w)←A(crs), π←P(crs, x, w) : V(crs, x, π) = 1

]
= 1,

if (x,w) ∈ R.

• Soundness: for every probabilistic polynomial-time algorithm P∗ it holds

Pr
[
crs ← KeyGen(1λ), (x, π)←P∗(crs) : V(crs, x, π) = 1

]
≤ negl(λ),

if x /∈ LR.

We say V accepts π for x if V outputs 1, and V rejects π for x otherwise. 4

Remark: Analogously to interactive proofs and arguments, we call Π a non-interactive
proof system, when the soundness conditions holds for unbounded provers P∗. In this case
the output π of the prover P is called a proof, rather than an argument. ¤

2.2 Cryptographic Primitives 23

To define zero-knowledge for non-interactive proofs (arguments) it is important to note
that the same common reference string should be used for polynomially many proofs.
Furthermore, depending on the application a non-interactive proof system is used in, it
may be possible that an adversary is able to query proofs for adaptively chosen statements.
A definition capturing this adversarial behavior is called adaptive multi-theorem zero-
knowledge.

Definition 2.22: Adaptive Multi-Theorem Zero-Knowledge - [FLS99; GOS06]
A non-interactive proof system Π for an NP-relation R is adaptively multi-theorem zero-
knowledge, if there exists a probabilistic polynomial-time algorithm S = (S1,S2), called the
simulator, such that for every probabilistic polynomial-time algorithm V∗ there exists a
negligible function negl such that

Pr[Expzk
V∗,Π(1λ) = 1] ≤ 1

2
+ negl(λ),

where the experiment Expzk
V∗,Π is defined as follows:

Expzk
V∗,Π(1λ)

1: b←u {0, 1}
2: If b = 0 Then crs ← KeyGen(1λ)

3: Else (crs, td)←S1(1λ)

4: b′←V∗Ob(crs)

5: If b = b′ Then
6: output 1

7: Else output 0

O0(x,w)

1: π←P(crs, x, w)

2: return π

O1(x,w)

1: If (x,w) /∈ R Then
2: return ⊥
3: Else π←S2(crs, td , x)

4: return π

In this experiment the malicious verifier V∗ can query an oracle that either outputs proofs
generated by an honest prover P or by the simulator S using a simulator trapdoor td . 4

This definition basically states that simulated and real proofs are computational indis-
tinguishable, but it also implies that common reference strings generated by KeyGen are
indistinguishable from simulated ones. A similar approach is used to define non-interactive
zero-knowledge (NIZK) proofs of knowledge.

Definition 2.23: NIZK Proof of Knowledge - [De +01]
A non-interactive zero-knowledge proof system Π for an NP-relation R is a proof of
knowledge, if there exists a probabilistic polynomial-time algorithm E = (E1, E2), called the
extractor, such that the following conditions hold:

• Uniformity: for every algorithm A it holds

Pr[crs ← KeyGen(1λ) : P∗(crs) = 1] = Pr[(crs, td)←E1(1λ) : P∗(crs) = 1]

• Extractability: for all algorithms P∗ there exists a negligible function negl such that

Pr[(crs, td)←E1(1λ), (x, π)←P∗(crs), w←E2(crs, td , x, π) : (x,w) ∈ R]

≥ Pr[crs ← KeyGen(1λ), (x, π)←P∗(crs) : V(crs, x, π) = 1]− negl(λ). 4

24 2 Preliminaries

When considering proofs of knowledge that are also zero-knowledge, simulated proofs
should not enable an adversary to prove false statements. This property is not covered
by Definition 2.23, since the malicious prover P∗ has no access to simulated proofs. The
notion of simulation sound extractability extends proofs of knowledge in that effect.

Definition 2.24: Simulation Sound Extractability - [Gro06]
A non-interactive adaptive multi-theorem zero-knowledge proof of knowledge Π for an NP-
relation R is simulation sound extractable, if there exists a probabilistic polynomial-time
algorithm SE such that for every probabilistic polynomial-time adversary A there exists a
negligible function negl such that

Pr[Expsse
A,Π(1λ) = 1] ≤ negl(λ),

where the experiment Expsse
A,Π is defined as follows:

Expsse
A,Π(1λ)

1: (crs, tds, tde)←SE(1λ)

2: Q := ∅
3: (x, π)←AS(·)(crs)

4: w←E2(crs, tde, x, π)

5: If (x, π) /∈ Q
∧ (x,w) /∈ R
∧V(crs, x, π) = 1 Then

6: return 1

7: Else return 0

S(x)

1: π←S2(crs, tds, x)

2: Q :=Q∪ {(x, π)}
3: return π

In this experiment SE is a probabilistic polynomial-time algorithm that outputs a common
reference string crs and corresponding trapdoors tds and tde for simulation and extraction.
The probabilistic polynomial-time algorithms S2 and E2 are the second-stage simulator
from Definition 2.22 and the second-stage extractor from Definition 2.23, respectively. 4

Remark: In this definition the adversary has direct access to the simulator S2 and can
query proofs for any x ∈ {0, 1}∗. ¤

Both definitions of witness extraction consider extractors that generate common reference
strings together with appropriate extraction trapdoors. This is because rewinding a prover,
as for interactive proofs of knowledge, does not seem to be helpful, since there is no
interaction an extractor could use to ask „tricky“ questions. Interestingly, this problem
does not arise for proofs of knowledge in the random oracle model. The most popular
technique to construct zero-knowledge proofs of knowledge in the random oracle model is
the Fiat-Shamir heuristic.

The Fiat-Shamir Heuristic

The Fiat-Shamir heuristic, introduced by Fiat and Shamir [FS87] and refined by Bernhard,
Pereira, and Warinschi [BPW12], is used to transform Σ-protocols into non-interactive

2.2 Cryptographic Primitives 25

simulation sound extractable proof systems that are secure in the random oracle model. It
is important to note that in the random oracle model no common reference string exists.
Hence, the definitions for non-interactive proof systems, zero-knowledge, and proofs of
knowledge differ from those in the common reference string model.

Informally, non-interactive proof systems and zero-knowledge proofs in the random oracle
model are defined as in Definitions 2.21 and 2.22 by removing the KeyGen algorithm, the
common reference string crs , and the simulation trapdoor td . The simulator is responsible
to answer queries to the random oracle and to generate valid proofs for any statement,
even for false statements. Since the simulator controls the random oracle, he is able to
patch it as needed to generate valid proofs. For proofs of knowledge in the random oracle
model also no common reference string exists and hence no extraction trapdoor. But the
extractor can rewind provers and controls the random oracle. Thereby, its behavior is
more comparable to the extractor from Definition 2.17 of interactive proofs of knowledge,
when the interaction is emulated via the random oracle. Since the prover must query the
random oracle to generate a valid proof, the extractor can answer differently to queries
in the first run and the rewound runs of a prover. Formal definitions for non-interactive
proofs, zero-knowledge, and simulation sound extractability are given in [BPW12].

Definition 2.25: Fiat-Shamir Transformation - [FS87; BPW12]
Let (PΣ,VΣ) be a Σ-protocol and H a collision-resistant hash function. The Fiat-Shamir
transformation of (PΣ,VΣ) is the non-interactive proof system FSH(PΣ,VΣ) = (P,V),
defined as follows:

P(x,w)

1: run PΣ(x,w) to obtain a
2: compute ch :=H(x, a)

3: finish the run of PΣ on ch to obtain r
4: output π := (a, ch, r)

V(x, π)

1: If ch = H(x, a) Then
2: output (VΣ(x, a, ch, r) = 1)

3: Else output 0

4

The zero-knowledge simulator S for this transformed Σ-protocol works as follows. On
input x, S chooses a random challenge ch as an honest verifier would do and runs the
special honest-verifier zero-knowledge simulator SΣ(x, ch) to obtain an accepting transcript
(a, ch, r). Then S patches the random oracle H such that H(x, a) := ch. It is possible that
during the patching a collision occurs, but this happens only with negligible probability.

The knowledge extractor E for (P,V) runs a prover P∗ to obtain an accepting transcript
(a, ch, r) for some statement x, rewinds P∗ up to the point where the random oracle was
queried for (x, a) by P∗, and lets the random oracle output a different value ch ′ for the
same query (x, a) to obtain another accepting transcript (a, ch ′, r′). By running the special
soundness extractor EΣ from the Σ-protocol, E obtains a witness w such that (x,w) ∈ R.

The Fiat-Shamir heuristic is often used to construct signatures of knowledge [CL06; GM17].
These are digital signatures proving knowledge of the secret signing key that corresponds to
the public key of the scheme. Before presenting the construction of signatures of knowledge
from Σ-protocols, we need to introduce hard relations.

26 2 Preliminaries

Definition 2.26: Hard Relation - [Dam02]
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary NP-relation. We say the relation R is hard, if the
following conditions hold:

• There exists a probabilistic polynomial-time algorithm G, called the generator, that
on input 1λ outputs a pair (x,w) ∈ R such that |x| = λ.

• For all probabilistic polynomial-time algorithms A there exists a negligible function
negl, such that

Pr[(x,w)←G(1λ), w′←A(x) : (x,w′) ∈ R] ≤ negl(λ). 4

WhenR is a hard relation with generator G, (P,V) is a non-interactive proof system obtained
from the Fiat-Shamir transformation of a Σ-protocol for R, and H is a collision-resistant
hash function, the following construction is a signature of knowledge:

KeyGen(1λ): run G(1λ) to obtain (x,w) ∈ R and output (pk := x, sk := w)

Sign(sk ,m): run P(pk , sk) to obtain the proof π, but compute the challenge by setting
ch :=H(m, pk , a), and output the signature σ := π

Verify(pk ,m, σ): run V(pk , σ), but compute the challenge by setting ch :=H(m, pk , a)
and output 1, if and only if V accepts.

The correctness of this signature scheme follows from the correctness of the underlying
Σ-protocol. Due to the simulation sound extractability of (P,V) the signature scheme is
also existentially unforgeable under chosen message attacks. In the proof of this statement a
potential forger can query signatures for messages of his choice and the Sign-oracle responds
with simulated proofs. If this forger is then able to output a valid forgery σ1 for some
message m, the extractor is invoked to obtain a second forgery σ2 for the same message.
From these two forgeries it is possible to compute a witness w′ such that (x,w′) ∈ R, due
to the special soundness property of the Σ-protocol. Since the relation R is assumed to
be hard, the forger can output the forgery σ1 only with negligible probability. Hence, the
signature scheme is existentially unforgeable under a chosen message attack.

A general proof for the security of signatures of knowledge in the random oracle model is
given by Pointcheval and Stern [PS00], called the Forking Lemma. Unfortunately, generating
the second forgery needed to compute a witness is only possible in expected polynomial
runtime. An improved version of the Forking Lemma is given by Bellare and Neven [BN06],
called the General Forking Lemma, that provides worst-case guarantees.

Lemma 2.2: General Forking Lemma - [BN06]
Fix q ∈ N and a set H of size h := |H| ≥ 2. Let IG be a probabilistic algorithm, called the
input generator, and let A be a probabilistic algorithm that on input (x, h1, . . . , hq) returns
a tuple (J, St), where x is the output of IG, h1, . . . , hq ∈ H, J ∈ {0, . . . , q} and St is some
state information. Further let

εA := Pr[x← IG, h1, . . . , hq←u H, (J, St)←A(x, h1, . . . , hq) : J ≥ 1]

and the forking algorithm FA associated to A be the probabilistic algorithm that takes x
as input and proceeds as follows:

2.2 Cryptographic Primitives 27

FA(x)

1: Pick random bits ω for A

2: h1, . . . , hq←u H
3: (I, St)←A(x, h1, . . . , hq;ω)

4: If I = 0 Then return (0,⊥,⊥)

5: h′I , . . . , h
′
q←u H

6: (I ′,St′)←A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q;ω)

7: If I = I ′ ∧ hI 6= h′I Then return (1, St,St′)

8: Else return (0,⊥,⊥)

Define the success probability of FA as

εFA
:= Pr[x← IG, (b,St,St′)← FA(x) : b = 1].

Then it holds

εFA ≥ εA ·
(
εA
q
− 1

h

)
. �

Applying this lemma to signatures of knowledge leads to the following matching:

• q is the number of queries to a random oracle H,

• H is the image space of the random oracle H,

• IG is the generator G of the hard relation R,

• x is the statement generated by G,

• the hi’s are the queried hash values,

• A reduces the security of the signature scheme to the hardness of R,

• St and St′ are a forged signatures,

• and J is the index of the hash query needed to compute the forgery.

When FA outputs (1, St,St′), the special soundness extractor can be used to compute a
witness w such that (x,w) ∈ R.

It is not hard to see that FA is a probabilistic polynomial-time algorithm, when A is
probabilistic polynomial-time, since FA invokes A only twice. Hence, this lemma can be
used when hard relations are considered with respect to strict probabilistic polynomial-time
rather than expected probabilistic polynomial-time.

28 2 Preliminaries

2.3 Group Generators and Bilinear Maps

In this work we define security properties with respect to prime order groups and their
corresponding group generators.

Definition 2.27: Group Generator - [KL07]
A group generator, denoted by GrGen, is a probabilistic polynomial-time algorithm that,
on input 1λ, λ ∈ N, outputs a description of a group GD = (p, G, g), where p is the prime
order of the cyclic group G, |p| = λ, and g ∈ G is a generator of G. 4

Before defining bilinear group generators we review some concepts related to bilinear maps,
following the notation of [BLS04].

Definition 2.28: Bilinear Groups - [BLS04]
Let G1,G2, and GT be cyclic groups of prime order p. A bilinear map e : G1 ×G2 → GT is
a map with the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp : e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: for u 6= 1G1 and v 6= 1G2 : e(u, v) 6= 1GT .

Further, we call (G1,G2) a bilinear group pair, if the group operations in G1,G2, and GT ,
and the map e are efficiently computable. The bilinear map e is also called a pairing. 4

According to [GPS08], pairings over prime order groups are categorized into three types:

Type-1: The symmetric pairing setting where G1 = G2.

Type-2: An asymmetric pairing setting where G1 6= G2, but there exists an efficiently
computable isomorphism φ : G2 → G1.

Type-3: An asymmetric pairing setting where G1 6= G2, but there does not exist an
efficiently computable isomorphism.

Throughout this work only Type-2 and Type-3 pairings will be used, which are generated
by a bilinear group generator. As a convention, for Type-1 pairings we assume that g1 = g2

holds, whereas g1 = φ(g2) holds in the Type-2 case.

Definition 2.29: Bilinear Group Generator
A bilinear group generator, denoted by BiGrGen, is a probabilistic polynomial-time algorithm
that, on input 1λ, λ ∈ N, outputs a description of bilinear groups GD = (p, G1, G2, GT , e,
g1, g2), where p is the prime order of the groups G1,G2, and GT , |p| = λ, e is the pairing,
g1 ∈ G1 is a generator of G1, and g2 ∈ G2 is a generator of G2. For Type-2 pairings BiGrGen
also outputs the isomorphism φ. 4

Note that bilinear group generators can be used as group generators according to Defini-
tion 2.27 by reducing the output to (p,G1, g1), (p,G2, g2), or (p,GT , e(g1, g2)).

2.4 Cryptographic Hardness Assumptions 29

2.4 Cryptographic Hardness Assumptions

In this section we give the formal definitions of all cryptographic hardness assumptions our
constructions rely on.

2.4.1 Decisional Assumptions

The decisional assumptions introduced in this section are mainly, but not exclusively, used
to build public-key encryption schemes. Depending on the pairing type we have to consider
different but related assumptions.

Definition 2.30: Decision Diffie-Hellman – DDH [Bon98]
Given a group description GD = (p,G, g) and a tuple (gα, gβ, gγ) ∈ G3, where α, β←u Zp,
the Decision Diffie-Hellman Problem is to decide whether γ = α · β or γ←u Zp.

We say the Decision Diffie-Hellman Assumption holds for group generator GrGen if for all
probabilistic polynomial-time adversaries A there exists a negligible function negl such that∣∣∣Pr

[
A
(
GD, gα, gβ, gα·β

)
= 1
]
− Pr

[
A
(
GD, gα, gβ, gγ

)
= 1
]∣∣∣ ≤ negl(λ),

where GD← GrGen(1λ), and α, β, γ←u Zp. The probability is taken over the random bits
used by GrGen, the uniform random choices of α, β, γ←u Zp and the random bits used by
A. 4

For Type-3 pairings it is believed that the Decision Diffie-Hellman Problem is hard in both
G1 and G2. This assumption is often referred to as the Symmetric External Diffie-Hellman
Assumption (SXDH).

Definition 2.31: Symmetric External Diffie-Hellman – SXDH [GSW10]
We say the Symmetric External Diffie-Hellman Assumption holds for bilinear group generator
BiGrGen if for all probabilistic polynomial-time adversaries A and B there exist negligible
functions neglA and neglB such that∣∣∣Pr

[
A
(
GD, gα1 , g

β
1 , g

α·β
1

)
= 1
]
− Pr

[
A
(
GD, gα1 , g

β
1 , g

γ
1

)
= 1
]∣∣∣ ≤ neglA(λ)

and ∣∣∣Pr
[
B
(
GD, gδ2, gε2, gδ·ε2

)
= 1
]
− Pr

[
B
(
GD, gδ2, gε2, gω2

)
= 1
]∣∣∣ ≤ neglB(λ)

hold, where GD← BiGrGen(1λ) and α, β, γ, δ, ε, ω←u Zp. The probability is taken over the
random bits used by BiGrGen, the uniform random choices of α, β, γ, δ, ε, ω←u Zp, and the
random bits used by A and B, respectively. 4

Note that the SXDH Assumption does not hold for Type-1 and Type-2 pairings:

Type-1: Since G1 = G2, on input (GD, A,B,C), adversary A can compute e(A,B) and
compare it to e(g1, C). If both are equal he knows that C = gα·β1 , otherwise C is a
random group element. An analogous argument can be given for B.

30 2 Preliminaries

Type-2: Using the isomorphism φ : G2 → G1, on input (GD, A,B,C), adversary B can
compute e(φ(A), B) and compare it to e(φ(g2), C). As in the Type-1 setting, if both
are equal B knows that C = gδ·ε2 , otherwise C is a random group element.

Hence, in these settings cryptographic primitives relying on the hardness of Decision Diffie-
Hellman can not be used. For this reason, Boneh, Boyen and Shacham introduce the
Decision Linear Problem [BBS04].

Definition 2.32: Decision Linear – DLIN [BBS04]
Given a group description GD = (p,G, g) and a tuple (u, v, w, uα, vβ, wγ) ∈ G6, where
α, β←u Zp, the Decision Linear Problem is to decide whether γ = α+ β or γ←u Zp.

We say the Decision Linear Assumption holds for group generator GrGen if for all probabilistic
polynomial-time adversaries A there exists a negligible function negl such that∣∣∣∣ Pr

[
A(GD, u, v, w, uα, vβ, wα+β) = 1

]
−Pr

[
A(GD, u, v, w, uα, vβ, wγ) = 1

] ∣∣∣∣ ≤ negl(λ),

where GD← GrGen(1λ), u, v, w←u G and α, β, γ←u Zp. The probability is taken over the
random bits used by GrGen, the uniform random choices of u, v, w←u G, α, β, γ←u Zp and
the random bits used by A. 4

Although defined for a single group (p,G, g), Boneh, Boyen and Shacham prove that the
Decision Linear Assumption holds in generic bilinear groups [BBS04].

2.4.2 Computational Assumptions

The security of our constructions relies on the following computational assumptions: the
Discrete Logarithm Assumption, the Strong Diffie-Hellman Assumption [BBS04] for Type-1
and Type-2 pairings and the Pointcheval-Sanders Assumption [PS16] for Type-3 pairings.

Definition 2.33: Discrete Logarithm – DLog [KL07]
Given a group description GD = (p,G, g) and a tuple (h,D), the Discrete Logarithm
Problem is to output the the value x ∈ Zp such that hx = D.

We say the Discrete Logarithm Assumption holds for group generator GrGen if for all
probabilistic polynomial-time adversaries A there exists a negligible function negl such that

Pr [A (GD, h,D) = logh(D)] ≤ negl(λ),

where GD← GrGen(1λ) and h,D ←u G. The probability is over the random bits used by
GrGen, the uniform random choice of h,D←u Zp and over the random bits used by A. 4

Definition 2.34: Strong Diffie-Hellman – SDH [BB04]
Given a group description GD = (p,G1,G2,GT , e, g1, g2) of Type-1 or Type-2 pairings
and a tuple

(
gγ2 , g

(γ2)
2 , . . . , g

(γq(λ))
2

)
, the Strong Diffie-Hellman Problem is to output a pair(

g
1

x+γ

1 , x

)
, where x ∈ Zp.

2.4 Cryptographic Hardness Assumptions 31

We say the Strong Diffie-Hellman Assumption holds for bilinear group generator BiGrGen
if for all probabilistic polynomial-time adversaries A and for every polynomially bounded
function q : Z→ Z there exists a negligible function negl such that

Pr

[
A
(
GD, gγ2 , g

(γ2)
2 , . . . , g

(γq(λ))
2

)
=

(
g

1
x+γ

1 , x

)]
≤ negl(λ),

where GD← BiGrGen(1λ) and γ←u Zp. The probability is over the random bits used by
BiGrGen, the uniform random choice of γ←u Zp and over the random bits used by A. 4

Definition 2.35: Pointcheval-Sanders – PS1 [PS16]
Given a group description GD = (p,G1,G2,GT , e, g1, g2) of a Type-3 pairing, choose
x, y←u Zp, g←u G1, g̃←u G2, and set X := gx, Y := gy, X̃ := g̃x, Ỹ := g̃y and define the oracle
O(m) as follows: on input m ∈ Zp, choose h←u G1 and output (h, hx+m·y).

Given (GD, g, Y, g̃, X̃, Ỹ) and unlimited access to oracle O, the Pointcheval-Sanders Problem
is to output a tuple (m∗, s, sx+m∗·y), where s 6= 1G1 and m∗ was not queried to O.

We say the Pointcheval-Sanders Assumption holds for bilinear group generator BiGrGen if
for all probabilistic polynomial-time adversaries A there exists a negligible function negl
such that

Pr
[
AO(·)

(
GD, g, Y, g̃, X̃, Ỹ

)
=
(
m∗, s, sx+m∗·y

)]
≤ negl(λ),

where GD← BiGrGen(1λ). The probability is taken over the random bits used by BiGrGen
the uniform random choices of x, y←u Zp, g←u G1, g̃←u G2, and over the random bits used
by A. 4

Reputation Systems and their
Security 3

A reputation system is the digital equivalent of word-of-mouth advertising and recommenda-
tion, meaning that a reputation system collects and aggregates feedback about attributes of
individual objects and publishes the aggregated results as reputation scores. Such systems
are always used in conjunction with other applications in which many users need to interact.
The purpose of a reputation system in those situations is to provide reliable information
about the past behavior of the users, expressed by their reputation score. Hence, reputation
systems are an important tool to manage risk when engaging in transactions with users who
have not interacted before. In business applications they are also an important marketing
tool, as high reputation is assumed to imply high reliability of the business partner.

3.1 Essential Functionality

While the architecture of a reputation system depends on the application it is used for, its
functionality is always the same. To illustrate this functionality, we describe how users,
acting as consumers and providers of some object, interact with each other, utilizing the
reputation system. In the first step, the consumer uses the reputation scores, provided by a
reputation system, to select a provider of the application for future interactions. Then the
consumer initiates an interaction by sending an application-specific request to the selected
provider, which in turn handles the request and sends a response back to the consumer.
After consuming the response according to the application, the consumer, now acting as a
rater, evaluates it to generate a rating, which contains feedback about the selected provider
and its response. The rating is then handed to the reputation system.

Since the reputation system collects all ratings from all raters, it can aggregate them by
evaluating a reputation function to generate reputation scores for the providers. These
scores are published again to support other consumers in their decision and selection process.
A depiction of this functional cycle of reputation systems, originally provided by Jøsang
and Golbeck [JG09], is given in Figure 3.1.

Based on the assumption that future experiences will be similar to the past, reputation
scores represent a measure of reliability that is deduced from prior experiences various
consumers have made. Hence, prospective consumers can use reputation scores as a basis
to decide whether or not to interact with providers. Unfortunately, reputation scores lose
their expressiveness, and are therefore not reliable, when they can be manipulated.

34 3 Reputation Systems and their Security

Reputation
System Consumer/Rater Providers

publish scores

select

request

handle
request

response

consume
and
evaluate

rate

evaluate
reputation
function

Figure 3.1: Functional Integration of Reputation Systems

When manipulations in reputation systems are considered, it is important to distinguish
between preventing manipulations and mitigating their effect. This distinction is necessary,
because there exist attacks against reputation systems, discussed in the next section, that
cannot be prevented. Nevertheless, their effects on the reputation scores must be mitigated
to provide reliable scores. Preventing an attack means that, no matter what strategy a
malicious party executes, it is infeasible to successfully run the attack. In contrast to this,
mitigating the effect of an attack means that it is possible to detect the attack enabling
further mechanisms to reduce its influence on reputation scores.

One approach to mitigate the effect of manipulations is to consider reputation functions that
are robust, where robustness, according to Zhang et al. [Zha+12], means that reputation
scores for honestly behaving parties are higher than scores for malicious parties. For this
purpose various metrics and reputation functions based on different mathematical models
have been proposed. Such metrics include, but are not limited to, models based on the
Dempster–Shafer theory (or evidence theory) [YS02], Hidden Markov Models [MAB09],
β-probability density functions [IJ02; Tea+06], or clustering based approaches [Liu+11]. As
shown by Marsh, Basu, and Dwyer [MBD12], a major drawback of such complex reputation
functions is that in most cases users do not understand them. Consequently, the users do
not trust the complete reputation system, which makes it useless. To address this problem,
Sänger and Pernul [SP18] propose a new concept for the presentation of reputation scores
that allows users to understand complex metrics and hence increases trust in the reputation
system.

Another approach against manipulations is to prevent them by securing the process of
rating generation. Since this process already starts when some user selects a provider for
interaction, various attacks against reputation systems with different goals exist. The most
important attacks and appropriate countermeasures are discussed in the next section.

3.2 Attacks against Reputation Systems

With robust reputation functions and a user-friendly presentation of reputation scores, it
is possible to mitigate the effect of manipulations while preserving the users’ trust in the
reputation system, as briefly discussed in the previous section. To further strengthen the
security of reputation systems, it is important to impede and prevent different attacks
against them.

3.2 Attacks against Reputation Systems 35

Typical attacks against reputation systems are discussed in various works [HZN09; JG09;
SL12] and can be categorized into three different classes, according to Koutrouli and
Tsalgatidou [KT12]. These categories are Unfair Feedback, Inconsistent Behavior, and
Identity-based Attacks. In the following we describe the different classes and typical attacks
of each class.

To simplify the following discussion, from now on we merge the roles of consumers and
raters and call a party acting in one of both roles a user or a rater. Furthermore, the
objects consumed and provided by different parties are called products (or services). These
products are purchased, which means that the transaction is complete and the provider
hands a rating token as a part of his response to the rater. We stress that this denotation
does not imply a restricted applicability of the provided reputation systems to business
applications. It is only introduced to simplify the description of the security models and
constructions.

3.2.1 Unfair Feedback

The class of unfair feedback attacks comprises all attacks where raters generate unfairly
high or low ratings to increase the reputation score of colluding providers or to decrease
the reputation score of competing providers. Providing unfairly high ratings is called ballot
stuffing, whereas providing unfairly low ratings is called bad mouthing. Ballot stuffing can
be used as a strategic attack, but it can also be the result of pressure from the provider,
when a rater fears negative consequences from negative ratings. To prevent such situations,
the rater must be anonymous or the rating must be kept secret until both parties have sent
their ratings to the reputation system.

A special case of unfairly high ratings is the self-rating attack (also known as self-promoting).
For self-rating attacks a malicious party tries to increase its own reputation by rating himself.
Such an attack is possible when users are not accountable for ratings and the cost for
generating ratings is low. With a tracing mechanism that enables a dedicated party to find
out the identity of a rater accountability can be realized. To increase the cost for generating
ratings a reputation system can require a rater to bind its rating to a previously executed
transaction. When multiple ratings bound to the same transaction are linkable, this further
impedes self-ratings attacks.

3.2.2 Inconsistent Behavior

Parties executing inconsistent behavior attacks exploit the reputation system by behaving
differently as expected. These attacks are especially performed in business applications,
where users have to pay for interactions. Typical attacks of this type are traitor attacks.
Here, a malicious provider behaves appropriately for a while to build a high reputation
score, but suddenly changes its behavior. The malicious provider accepts negative ratings
for its bad behavior, because they are compensated by many positive ratings deserved
previously. Mechanisms against bad mouthing further prohibit the adequate reduction of
the reputation score. To give an example for this attack, consider a malicious provider
that gets positive ratings for some low-priced products, and hence has a high reputation

36 3 Reputation Systems and their Security

score. When selling small numbers of some high-priced products, the provider can provide
products of low quality to increase its financial profit, without the fear of a decreased
reputation. This concrete attack is called value imbalance attack. A variation of this attack
can be executed by discriminating a minority of users, while to the majority of users a
malicious provider behaves properly. Both attacks allow the provider to preserve a good
reputation, as long as the positive ratings compensate the negative ones.

A completely different behavioral attack is to not provide ratings for others. The motivation
behind this is to not support competitors and increase their reputation. By that, the
attacker retains his advantage for being selected for interactions, while not apprehending
accusations for providing unfair feedback.

Unfortunately, inconsistent behavior attacks cannot be prevented, because such attacks do
not directly exploit properties of the rating generation process, but address the reputation
function in use. Indeed, inconsistent behavior is still valid behavior within a reputation
system. Nevertheless, Chen et al. [Che+10] propose a scheme resilient to traitor attacks,
based on the Cobweb Theorem [Eze38], that can be incorporated into reputation functions
and also other works consider inconsistent behavior attacks [IJ02; SXL05; Sun+06] to
mitigate their effects.

3.2.3 Identity-based Attacks

Since reputation systems are intended to provide reliable information about previous
transactions with concrete providers, reputation scores must be bound on the identities
of those providers. Hence, it might be beneficial for malicious providers to attack the
mechanism used to manage identities in the reputation system.

In a Sybil attack an adversary generates multiple identities and is hence able to behave
as multiple users and providers simultaneously. Therefore, the adversary can influence
the reputation system more than honest parties with a single identity. The susceptibility
of a reputation system to Sybil attacks depends on the cost for identity generation and
the initial influence a newly generated identity has in the system. Sybil attacks can be
prevented with a trusted certification mechanism, where the identity of a user is bound to
a cryptographic certificate. This solution impacts the privacy of users as multiple shows
of a certificate are linkable, which enables the certificate verifier to generate user profiles.
Hence, to preserve privacy other techniques than simple certificate shows are necessary.

With a whitewashing attack a malicious provider evades negative consequences of low
reputation scores by generating a new identity. This is only useful in reputation systems
that provide an initial reputation score for new identities that is higher than the attacker’s
current score. Since this attack is similar to the Sybil attack, whitewashing can be prevented
with an appropriate identity management.

Other identity-based attacks do not exploit the identity management directly, but focus on
the authenticity of messages and parties. Attacks of this category comprise impersonation,
man-in-the-middle attacks, and repudiation. Impersonation means that an attacker operates
on behalf of a noninvolved user to initiate interactions with providers or to generate
unfair ratings. With a man-in-the-middle attack a malicious party can try to alter ratings

3.3 Desired Properties and Cryptographic Considerations 37

or reputation scores during the transmission between a user and the reputation system.
Repudiation means that users and providers are not accountable for their actions, which
allows the execution of arbitrary attacks without fearing consequences. All these attacks
can be prevented by authenticating all actions of parties to guarantee accountability.

3.3 Desired Properties and Cryptographic Considerations

As discussed in the previous sections, reputation systems need to be protected against
various attacks to provide reliable and honest ratings. Albeit many attacks and their
countermeasures have been considered in the literature [Del00; Ste06; And+08; HZN09;
Ker09; CSK13; Has+13; PLS14; Zha+16; Fig+17], no generally accepted security model for
reputation systems has emerged. With robust metrics and reputation functions the effect of
manipulations can be mitigated, but they cannot be prevented. Therefore, also the process
of rating generation must be secured. In this section we discuss the security properties of
the rating generation process and further propose techniques to achieve them.

Averting manipulations in reputation systems means that concrete attacks must be prevented
or at least weakened. For the identity-based Sybil attack Douceur [Dou02] has shown that
it can only be avoided with cryptographically secure certificates that bind the identity of a
party to a certificate. This mechanism also prevents whitewashing. Furthermore, certificates
and digital signatures provide accountability, authenticity, and integrity, which are needed
to prohibit impersonation, man-in-the-middle attacks, and repudiation. So it is reasonable
to also consider other attacks and security properties in a cryptographic context.

Besides authenticity, also privacy has been identified as a key property of reputation
systems [Del00; Ste06; Ker09; CSK13; MK14]. Here, privacy means that providers do not
learn the identity of a rater and the actual value of a rating at the same time. This can be
achieved in different ways. To give an example, Dellarocas [Del00] proposes anonymous
interactions to prevent unfair ratings. The anonymity ensures that the identity of a rater is
hidden, so this approach provides privacy. In contrast to this, Kerschbaum [Ker09] encrypts
ratings without guaranteeing anonymity, so the identity of the rater is known, but the
rating value is hidden. Therefore, this approach also provides privacy, which shows that
anonymity is only one possible way to achieve privacy. But since anonymity is an often
desired property in many applications, it should also be ensured in a reputation system.

With anonymity raters cannot be punished for negative ratings, which allows them to rate
honestly. But at the same time anonymity facilitates bad mouthing. This demonstrates
the conflict between anonymity and authenticity in reputation systems. To address this
problem, a tracing mechanism can be implemented that enables a dedicated party to rescind
the anonymity of misbehaving raters. But then the question arises how misbehaving raters
can be detected, especially when bad mouthing, ballot stuffing, or self-ratings are considered
simultaneously. For this purpose, ratings need to be bound to a previous transaction [SL03;
SXL05] and the reputation system has to ensure that every transaction can only be rated
once. This allows to detect multiple ratings from the same rater for a specific transaction
and the misbehaving rater can be identified using the tracing mechanism.

38 3 Reputation Systems and their Security

Summarizing the discussed aspects, a secure reputation system should provide:

• an identity management based on cryptographic certificates,
• a binding of ratings to transactions,
• linkability of multiple ratings from one author for a single transaction,
• authenticity and integrity of ratings,
• anonymity for raters, and
• a tracing mechanism to rescind anonymity.

Furthermore, a model for secure reputation systems should allow to build systems indepen-
dently from specific applications and reputation functions. To achieve this it is important
that ratings can be arbitrary objects, for example numerical values or textual reviews. But
also encrypted ballots, as used by Kerschbaum [Ker09], and other complex constructions
are conceivable. With some extensions, all of these properties are achievable by dynamic
group signatures. However, the concept of group signatures does not meet all the require-
ments for reputation systems. In particular, reputation systems do not consist of a single
group of users. Rather one can think of reputation systems as a family of group signature
schemes - one for each product. Moreover, a single provider might have multiple products
that have to be treated differently. Hence, when looking at security and anonymity, group
signature schemes for different products cannot be considered in isolation.

Let us provide some intuition how dynamic group signatures can be used as the basic
cryptographic primitive to formulate a security model for reputation systems. Dynamic
group signature schemes already provide an identity management, authenticity and integrity
of signed messages, anonymity for signers, and a tracing mechanism to rescind anonymity.
By replacing the signed message of a group signature with the actual rating value, the same
properties can be achieved in a reputation system. When for each product a new dynamic
group signature scheme is set up, a secret signing key, generated during the interactive
group joining protocol, can be used as a rating token. Only with this token it is possible to
generate a rating, which basically is a group signature that binds a rating to a transaction.
Due to the anonymity property of group signatures this binding does not reveal the identity
of a rater. Furthermore, the security properties traceability and non-frameability of dynamic
group signatures ensure that rating tokens cannot be forged, which prevents faking ratings.
In addition to this, traceability and non-frameability also guarantee that ratings cannot
be generated on behalf of other users, that every rating can be traced back to its author,
and that the tracing party is not able to blame an honest user being the author of a rating
when it is not. The last property needed for secure reputation systems is linkability. Since
linkability weakens anonymity, it is an undesired property for group signatures. Moreover,
extending group signatures to support linkability is not expedient, because ratings for
different products from the same rater should not be linkable. Hence, the separation of
different products must explicitly be considered in the definition of linkability. The basic
idea to achieve this is to introduce unique tags that depend on the rater’s identity and the
product under consideration, but hide the identity of the rater. Including such tags in the
ratings allows to define a linking mechanism that finds linkable ratings.

Concrete models for secure reputation systems and constructions fulfilling the defined
security properties are presented in Chapter 4 and Chapter 6. The security models focus on
the process of rating generation, beginning with an interaction of a user and a provider.

Models and Constructions for
Secure Reputation Systems 4

This chapter is based on our paper „Anonymous and Publicly Linkable Reputation Systems“,
presented at the International Conference on Financial Cryptography and Data Security
2015 [BJK15].

We begin this chapter by defining our model for reputation systems based on group
signatures and providing associated experiment-based security definitions. Subsequently,
we present a construction that is secure in the proposed model.

4.1 A Model for Reputation Systems

In this section we present a model for reputation systems based on dynamic group signatures,
as defined by Bellare, Shi, and Zhang [BSZ05]. We start by introducing the different parties
and the algorithms they execute.

4.1.1 Architecture and Algorithms

A meaningful reputation system must provide reliable, and honest ratings. Furthermore, it
should be flexible in the sense that it can be combined with many different applications.
Therefore, we focus on the process of secure rating generation and exclude the aggregation
of ratings and the evaluation of a specific reputation function from our model.

A reputation system consists of one authority called System Manager, a set of authorities
called the (product) providers, and a set of raters. The system manager provides the system
manager’s public key smpk and is able to trace raters. Every provider maintains items
(or products) with corresponding item-based public keys ipk [item], which will be used by
the raters to rate a specific item. Raters have unique identities i ∈ N and may become
members of the system by registering at the system manager. Figure 4.1 illustrates the
architecture of our reputation system.

The specification of a reputation system is a tuple RS = (KeyGenSM , KeyGenP , KeyGenR,
RegisterSM , RegisterR, Join, Issue, Rate, Verify, Open, Link, Revoke) of polynomial-time
algorithms. Their functionality is described as follows.

40 4 Models and Constructions for Secure Reputation Systems

System Manager

Rater 1

Rater 2

...

Rater n

Provider 1

Provider 2

. . .

Provider m

1) registering 3) verifying registration information

2) request rating key

4) hand rating key
to rater after purchase

Figure 4.1: Informal architecture of our reputation system.

KeyGenSM(1λ): This randomized algorithm is run in the setup phase by the system
manager to create the system manager’s public key smpk and the system manager’s
secret key smsk . The secret key smsk contains elements which allow tracing of raters
and the creation of revocation tokens.

KeyGenP (1λ, item): This randomized algorithm is run by a provider for every item
he maintains. For the given item this algorithm creates an item-based public
key ipk [item] and a corresponding item-based secret key isk [item]. The tuple
(item, ipk [item]) is added to the ItemList .

KeyGenR(1λ, i): This randomized algorithm is run to create the rater’s public and secret
key pair (rpk [i], rsk [i]). The rater’s public key rpk [i] is used during the registration
to the system, the corresponding secret key rsk [i] is used to create ratings.

RegisterSM(StSM ,MSM),RegisterR(StR,MR): These randomized interactive algo-
rithms are run by the system manager and a prospective rater i ∈ N. During this
protocol the rater’s public and secret key pair (rpk [i], rsk [i]) is chosen by using the
KeyGenR algorithm. If the system manager accepts, the tuple (i, rpk [i]) is added to
the registration table reg . The input parameters of the algorithms are some state
information and a message, which was received from the communicating partner. It
is assumed that the rater starts the interaction.

Join(StR,MR), Issue(StP ,MP): These randomized interactive algorithms are run by a
rater i ∈ N and a provider. The input parameters of the algorithms are some state
information and a message, which was received from the communicating partner. It
is assumed that the rater starts the interaction. The first message of the rater must
contain his public key rpk [i], an item, and his identity i. If Issue accepts, the provider
sends a personal rating key for the given item rrsk [i, item] to the rater and saves the
tuple (rpk [i], rrsk [i, item]) in the identification list ILitem for the specified item.

Rate(item, smpk , ipk [item], rrsk [i, item], rsk [i],M): This randomized algorithm is
run by a rater to create a rating for the specified item. Given an item, the system
manager’s public key smpk , an item-based public key ipk [item], the rating key for

4.1 A Model for Reputation Systems 41

the given item of rater i rrsk [i, item], the secret key of rater i rsk [i], and a message
M , Rate computes and outputs a rating σ on M under the given keys.

Verify(item, smpk , ipk [item],RL,M, σ): This deterministic algorithm can be run by
every party, even by an outsider, having access to the public ItemList , the system
manager’s public key smpk , the revocation list RL, a message M and a candidate
rating σ for M , to obtain a bit v. We say that σ is a valid rating for M with respect
to the given keys, if and only if the bit v is 1.

Open(smpk , smsk ,M, σ): This deterministic algorithm is run by the system manager
to open ratings. Given the system manager’s public key smpk , the system manager’s
secret key smsk , a message M and a rating σ, output the identity of the rater or
failure.

Link(item, smpk , ipk [item], (M ′, σ′), (M ′′, σ′′)): This deterministic algorithm can
be run by every party, even by an outsider, having access to the public ItemList , the
system manager’s public key smpk and two message-rating pairs (M ′, σ′), (M ′′, σ′′),
to obtain a bit `. If Link outputs ` = 1, we call σ′ and σ′′ are publicly linkable ratings.

Revoke(smpk , smsk , i): This deterministic algorithm is run by the system manager to
revoke raters in case of misuse. Given the system manager’s public key smpk , the
system manager’s secret key smsk and the identity of the rater to revoke, compute
the revocation token rrt [i] and add it to the public revocation list RL.

Figure 4.2 illustrates the interaction of the described parties and the algorithms involved.
It is not hard to see that the number of providers is not important in this model: a
single provider has the same capabilities as a colluding set of providers. Therefore, in all
formal definitions we will only consider a single provider. Additionally, we assume that
the correctness of rating keys from the provider given to a rater can be checked using only
public parameters.

System Manager

Rater i Provider

1)(smsk , smpk)← KeyGenSM
Open
Revoke

5)σ← Rate 2)(ipk [item], isk [item])← KeyGenP
4b) verify registration information

3a)RegisterR
3b)RegisterSM

4a)Join

4c)Issue
Outsiders Verify, Link

Figure 4.2: Interaction of the parties within a reputation system.

42 4 Models and Constructions for Secure Reputation Systems

Correctness: A reputation system must satisfy the following correctness requirements:
For all i ∈ N, all item ∈ {0, 1}∗, all (smpk , smsk) ∈ [KeyGenSM], all (ipk [item], isk [item]) ∈
[KeyGenP], all (rpk [i], rsk [i]) ∈ [RegisterSM]× [RegisterR], all rrsk [i, item] ∈ [Join]× [Issue],
and all rrt [i] ∈ [Revoke]:

Verify(item,smpk , ipk [item],RL,M,

Rate(item, smpk , ipk [item], rrsk [i, item], rsk [i],M)) = 1

⇐⇒ rrt [i] /∈ RL,
Open(smpk ,smsk ,M,

Rate(item, smpk , ipk [item], rrsk [i, item], rsk [i],M)) = i,

and

Link(item,smpk , ipk[item],

(M ′,Rate(item, smpk , ipk [item], rrsk [i, item], rsk [i],M ′)),

(M ′′,Rate(item, smpk , ipk [item], rrsk [i, item], rsk [i],M ′′))) = 1.

Informally, that means

• honestly generated ratings of non-revoked raters will be accepted by the Verify
algorithm,

• honestly generated ratings can be traced back to the correct rater, and

• two different ratings for the same item generated by a single rater will be detected by
the Link algorithm.

4.1.2 Security Notions

To model the different attack capabilities of an adversary, we introduce certain oracles,
which will be used in the definitions of security. The oracle definitions given in Figure 4.3
and Figure 4.4 are based on those for dynamic group signatures [BSZ05]. Therefore,
we assume that a security experiment has run KeyGenSM to obtain (smpk , smsk), and
manages the global sets HR, CR, RR, J IR, QR, reg , ItemList , and ILitem . Except
ItemList , ILitem , and reg all sets are only used within the formal definitions of oracles and
security experiments. With HR we denote the set of honest raters, with CR the set of
corrupted raters. The set RR contains all identities of raters that currently engage in the
registration protocol. The set J IR contains all identities of raters that currently engage in
the join-issue protocol. With QR we denote the set of queried ratings. All sets are assumed
to be initially empty.

AddR(i): To add honest raters to the system the adversary can call this add rater oracle
with an identity i ∈ N as argument. The oracle adds i to the set of honest raters
and executes the registration protocol by running RegisterSM and RegisterR. When
RegisterSM accepts, the tuple (i, rpk [i]) is stored in the registration table reg . When
RegisterR accepts, the pair (rsk [i], rpk [i]) is the key pair of rater i. The oracle returns
rpk [i] to the adversary.

4.1 A Model for Reputation Systems 43

AddItem(item): An adversary can add items by using this add item oracle. The oracle
then runs the KeyGenP algorithm to obtain a secret and a public key for the specified
item. Afterwards, the item is added to the ItemList and the public key of the item
is returned to the adversary.

RSK(i): To get the secret key rsk [i] of an honest rater i ∈ N an adversary can call the
rater secret key oracle with an identity i as argument. Then the rater i is added to
CR and rsk [i] is returned to the adversary.

RRSK(i, item): To get the secret rating key rrsk [i, item] of a corrupted rater i ∈ N for a
specified item, an adversary can call the rating key oracle with an identity i and an
already existing item as arguments. If no rating key is found, the oracle generates a
new one and returns it to the adversary.

RevR(i): To get the revocation token of an honest rater i ∈ N an adversary can call this
revoke rater oracle with an identity i as argument. Then the revocation token is
added to RL and returned to the adversary.

GRate(i, item,M): An adversary can use the generate rating oracle to obtain a valid
rating for the message M with respect to the rating key of rater i ∈ N, and the
item-based public key ipk [item]. The queried rating is added to QR and returned to
the adversary.

SndToP(i, item, rpk [i],MP): After corruption of rater i ∈ N, the adversary can use
this send to provider oracle to engage in a join-issue protocol with the provider. The
adversary provides the item and the public key of rater i for which he wants to get a
secret rating key. Furthermore, the message MP is sent to the provider. The oracle
honestly executes the Issue protocol and computes a response to MP . If Issue accepts
the communication, the rater’s secret rating key is saved in the identification list
ILitem and MR contains the tuple (rpk [i], rrsk [i, item]).

SndToSM(i,MSM): Similarly to the SndToP oracle, the send to system manager oracle
can be used by an adversary to engage in a registration protocol with the system
manager. The adversary provides an identity i ∈ N and a message MSM sent to the
system manager. The oracle honestly executes the RegisterSM protocol and saves
(i, rpk [i]) in the registration table reg [i], if and only if RegisterSM accepts. The rater
i is added to CR.

WItemList(item, ipk): An adversary can use the write to item list oracle to manipulate
the item-based public key of the specified item. If ipk = ε the item is deleted from
the list. Otherwise, the specified public key is set.

WIdentList(item, i, rpk [i], rrsk): Using the write to identification list oracle an adver-
sary can modify the secret rating key of rater i ∈ N for the specified item. If rrsk = ε
the key information about rater i is deleted from the list.

Open(item,M, σ): The opening oracle can be used by the adversary with a message M ,
a rating σ and an item as arguments to get the output of the Open algorithm.

44 4 Models and Constructions for Secure Reputation Systems

AddR(i): // everybody
If (i ∈ HR ∪ CR) Then return ε.
HR :=HR∪ {i}
StiR := (smpk , i)

MR := ε

StiSM := (smpk , smsk)

(StiR,MSM ,modei)← RegisterR(StiR,MR)

While (modei = continue) do
(StiSM ,MR,modei)←RegisterSM (StiSM ,MSM)

If (modei = accept) Then reg [i] := (i, rpk [i])

(StiR,MSM ,modei)← RegisterR(StiR,MR)

return rpk [i]

RRSK(i, item): // corrupted raters
If (i /∈ CR) Then return ε.
If (item /∈ ItemList) Then return ε.
If ((rpk [i], ·) /∈ ILitem) Then

StiR := (smpk , ipk [item], rpk [i], i)

MR := ε

StiP := (smpk , rpk [i])

(StiR,MP ,modei)← Join(StiR,MR)

While (modei = continue) do
(StiP ,MR,modei)← Issue(StiP ,MP)

If (modei = accept) Then
ILitem := ILitem ∪{(rpk [i], rrsk [i, item])}

(StiR,MP ,modei)← Join(StiR,MR)

return rrsk [i, item]

Open(item,M, σ): // everybody
If (item /∈ ItemList) Then

return failure.
return Open(smpk , smsk ,M, σ)

RevR(i): // corrupted raters
If (i /∈ HR) Then

return ε.
RL :=RL ∪ {rrt [i]}
return rrt [i]

RSK(i): // corrupted raters
If (i /∈ HR) Then

return ε.
HR :=HR \ {i}
CR := CR ∪ {i}
return rsk [i]

Figure 4.3: Oracles

4.1 A Model for Reputation Systems 45

AddItem(item): // everybody
If (item ∈ ItemList) Then return ε.
(ipk [item], isk [item])← KeyGenP (item)

ItemList := ItemList ∪{(item, ipk [item])}
return ipk [item]

WItemList(item, ipk): // corrupted provider
ItemList := ItemList \{(item, ipk [item])}
If (ipk 6= ε) Then

ItemList := ItemList ∪{(item, ipk)}
return 1

WIdentList(item, i, rpk [i], rrsk):
If (item /∈ ItemList) Then return 0.
If ((i, rpk [i]) 6= reg [i]) Then return 0.
ILitem := ILitem \{(rpk [i], rrsk [i, item])}
If (rrsk 6= ε) Then

ILitem := ILitem ∪{(rpk [i], rrsk)}
return 1

SndToP(i, item, rpk [i],MP): // corrupted raters
If (i /∈ CR) Then return ε.
If (item /∈ ItemList) Then return ε.
If (i /∈ J IR) Then StiP := ε.
J IR := J IR ∪ {i}
(StiP ,MR,modei)← Issue(StiP ,MP)

If (modei = accept) Then
(rpk [i], rrsk [i, item]) := MR

ILitem := ILitem ∪{(rpk [i], rrsk [i, item])}
J IR := J IR \ {i}

If (modei = deny) Then J IR := J IR \ {i}
return (MR,modei)

SndToSM(i,MSM): // corrupted raters
If (i ∈ HR ∪ CR) Then return ε.
If (i /∈ RR) Then StiSM := (smpk , smsk)

RR :=RR∪ {i}
(StiSM ,MR,modei)←RegisterSM (StiSM ,MSM)

If (modei = accept) Then
reg [i] := (i, rpk [i])

CR := CR ∪ {i}
RR :=RR \ {i}

If (modei = deny) Then RR :=RR \ {i}
return (MR,modei)

GRate(i, item,M): // everybody
If (i /∈ HR) Then return ε
If (item /∈ ItemList) Then return ε
If ((rpk [i], ·) /∈ ILitem) Then

StiR := (smpk , ipk [item], rpk [i], i)

MR := ε

StiP := (smpk , rpk [i])

(StiR,MP ,modei)← Join(StiR,MR)

While (modei = continue) do
(StiP ,MR,modei)← Issue(StiP ,MP)

If (modei = accept) Then
ILitem := ILitem ∪{(rpk [i], rrsk [i, item])}

(StiR,MP ,modei)← Join(StiR,MR)

σ←Rate(item, smpk , ipk [item], rrsk [i, item], rsk [i],M)

QR :=QR∪ {(item, i,M, σ)}
return σ

Figure 4.4: Oracles

46 4 Models and Constructions for Secure Reputation Systems

Experiment Expanon
A,RS(λ)

HR := ∅, CR := ∅,RL := ∅, ItemList :=∅, reg :=∅,RR := ∅,J IR := ∅,QR := ∅
(smsk , smpk)← KeyGenSM (1λ)

(i0, i1, item,M, St)←A(smpk : AddR,RSK,RevR,GRate,SndToSM,WItemList,WIdentList,Open,
choose)

b←u {0, 1}
σ← Rate(item, smpk , ipk [item], rrsk [ib, item], rsk [ib],M)

d←A(σ, St: AddR,RSK,RevR,GRate,SndToSM,WItemList,WIdentList,Open, guess)

If ((item, i0, ·, ·) ∈ QR) ∨ ((item, i1, ·, ·) ∈ QR)
∨ (i0 /∈ HR) ∨ (i1 /∈ HR) ∨ (rsk [i0] ∈ RL) ∨ (rsk [i1] ∈ RL)
∨ (A queried Open(item,M, σ)) Then
return 0

return d = b

Experiment Exppublink
A,RS (λ)

HR := ∅, CR := ∅,RL := ∅, ItemList :=∅, reg :=∅,RR := ∅,J IR := ∅,QR := ∅
(smsk , smpk)← KeyGenSM (1λ)

{(item,mi, σi)}|CR|+1
i=1 ←A(smpk : AddItem,SndToP,SndToSM)

If ∃i ∈ {1, . . . , |CR|+ 1} :
Verify(item, smpk , ipk [item],RL,mi, σi) = 0 Then
return 0

If ∃i, j ∈ {1, . . . , |CR|+ 1} :
i 6= j ∧ Link(item, smpk , ipk [item], (mi, σi), (mj , σj)) = 1 Then
return 0.

return 1

Figure 4.5: Experiment Definitions for Anonymity and public Linkability

4.1 A Model for Reputation Systems 47

Experiment Exptrace
A,RS(λ)

HR := ∅, CR := ∅,RL := ∅, ItemList :=∅, reg :=∅,RR := ∅,J IR := ∅,QR := ∅
(smsk , smpk)← KeyGenSM (1λ)

(item,m, σ)←A(smpk : AddR,AddItem,RSK,RRSK,RevR,GRate,SndToP,SndToSM,Open)

If (Verify(item, smpk , ipk [item],RL,m, σ) = 0) Then
return 0

If (Open(smpk , smsk ,m, σ) = failure) Then
return 1

i← Open(smpk , smsk ,m, σ)

If (i ∈ CR) ∨ ((item, i,m, σ) ∈ QR) Then
return 0

return 1

Experiment Expstr−ex
A,RS (λ)

HR := ∅, CR := ∅,RL := ∅, ItemList :=∅, reg :=∅,RR := ∅,J IR := ∅,QR := ∅
(smsk , smpk)← KeyGenSM (1λ)

(item,m, σ)←A(smpk : AddR,RSK,RevR,GRate,SndToSM,WItemList,WIdentList,Open)

If (Verify(item, smpk , ipk [item],RL,m, σ) = 0) Then
return 0

If (Open(smpk , smsk ,m, σ) = failure) Then
return 0

i← Open(smpk , smsk ,m, σ)

If (i /∈ HR) ∨ ((item, i,m, σ) ∈ QR) Then
return 0

return 1

Figure 4.6: Experiment Definitions for Traceability and Strong Exculpability

48 4 Models and Constructions for Secure Reputation Systems

Using the oracle definitions from Figure 4.3 and Figure 4.4 we can define the security
experiments. In our reputation system we need anonymity, traceability, public linkability
and strong exculpability. The anonymity and traceability experiments are based on [BSZ05],
the public linkability experiment is based on [FS07] and the strong exculpability experiment
is based on [KY04; Ate+00; BSZ05]. The experiments are defined in Figures 4.5 and 4.6.

Definition 4.1:
A reputation system RS is anonymous if for all probabilistic polynomial-time adversaries
A there exists a negligible function negl such that

Pr[Expanon
A,RS(λ) = 1] ≤ 1

2
+ negl(λ).

The probability is taken over all random bits used in the experiment and by A. 4

The anonymity experiment Expanon
A,RS(λ) asks an adversary to distinguish which of two

honest raters generated a rating for some item, where the raters, the message, and the
item are chosen by the adversary. In this setting it is possible to corrupt the provider
and all raters, except those the adversary wants to be challenged on. This restriction is
necessary because otherwise the adversary could possibly link different ratings to determine
the rater’s identities. Analogously, revocation of those raters is prohibited.

The anonymity requirements can slightly be relaxed to an experiment where an adversary
is not allowed to query the Open oracle. We denote this modification by CPA-anonymity
and the anonymity experiment as defined in Figure 4.5 by CCA2-anonymity, analogously
to [BBS04].

Definition 4.2:
A reputation system RS is publicly-linkable if for all probabilistic polynomial-time adver-
saries A there exists a negligible function negl such that

Pr[Exppublink
A,RS (λ) = 1] ≤ negl(λ).

The probability is taken over all random bits used in the experiment and by A. 4

The public linkability experiment Exppublink
A,RS (λ) asks an adversary to output message-rating

pairs, for the same item chosen by the adversary, such that all pairs are valid and there are
no two pairs that can be linked. The number of pairs must be one more than the number
of raters in the system. We allow the adversary to corrupt all raters, but the provider has
to be honest. If the provider would be corrupt, he could create rating keys for non-existing
raters.

Definition 4.3:
A reputation system RS is traceable if for all probabilistic polynomial-time adversaries A
there exists a negligible function negl such that

Pr[Exptrace
A,RS(λ) = 1] ≤ negl(λ).

The probability is taken over all random bits used in the experiment and by A. 4

4.1 A Model for Reputation Systems 49

The traceability experiment Exptrace
A,RS(λ) asks an adversary to output a message-rating

pair, for some item chosen by the adversary, which is valid but cannot be traced back to a
corrupted rater. In this experiment the provider must be honest because he could generate
rating keys for non-existing raters.

Definition 4.4:
A reputation system RS is strong exculpable if for all probabilistic polynomial-time adver-
saries A there exists a negligible function negl such that

Pr[Expstr−ex
A,RS (λ) = 1] ≤ negl(λ).

The probability is taken over all random bits used in the experiment and by A. 4

The strong exculpability experiment Expstr−ex
A,RS (λ) asks an adversary to output a message-

rating pair, for some item chosen by the adversary, which is valid and can be traced back
to an honest rater. We give an adversary the possibility to corrupt raters and the provider.
Because the provider can always generate rating keys for non-existing raters, we force the
adversary to output a rating on behalf of an honest rater.

4.1.3 Discussion

The defined experiments imply two different attack scenarios:

In the first scenario, for anonymity and strong exculpability, we allow an adversary
to corrupt the provider and a set of raters. We omit an oracle enabling the adversary
to send corrupted data to honest raters in the Join, Issue-protocol, because this func-
tionality is covered by the WItemList and WIdentList oracles. Due to the assumption
that all rating keys are publicly verifiable (as stated in Section 4.1.1), an honest rater
would only accept valid keys in the join-issue protocol. The same is implicitly done
by our oracles and in the experiments.

In the second scenario, for public linkability and traceability, providers are assumed
to be honest, whereas a set of raters can be corrupted. In particular, this implies that
raters and providers are disjoint sets. The restriction to honest providers is necessary
because a corrupted provider could generate rating keys for non-existing raters. With
an appropriate identity management this can be prevented and we could also allow
corrupted providers in the experiments for public linkability and traceability.

Albeit based on dynamic group signatures, our model for reputation systems and the
corresponding security properties are defined with respect to an honest system manager:
during the Open algorithm no opening-proof is generated and hence non-frameability is not
considered. This is just a simplification that allows us to concentrate on the combination of
anonymity and linkability in a system of simultaneously existent group signature schemes.
Nevertheless, we include strong exculpability as a related but weaker notion than non-
frameability to protect honest raters. To add non-frameability to reputation systems the
same techniques as in dynamic group signatures can be used. They are applied in the
construction provided in Chapter 6.

50 4 Models and Constructions for Secure Reputation Systems

Another important issue is that of timing the operations. The provider may correlate
transactions and ratings by their timing, thereby threatening the anonymity of raters.
Hence, our reputation systems needs a mechanism to prevent such attacks. In [CSK13;
Ker09; GK11] different solutions to this problem are proposed, which can be incorporated
into our construction.

4.2 Construction of a Reputation System

In this section we define our reputation system based on the Decision Linear Problem
(Definition 2.32) and the Strong Diffie-Hellman Problem (Definition 2.34). To give some
intuition for this system we provide an honest-verifier zero-knowledge proof of knowledge in
Section 4.2.1. The complete construction of our reputation system is given in Section 4.2.2.

4.2.1 Building Blocks and Intuition

As discussed in Section 4.1.2 strong exculpability prevents honest raters from being blamed
for having rated some product when the rater did not submit said rating. To achieve this
property, every rater chooses his personal secret key rsk and uses it to generate ratings.
Unfortunately, the SDH Problem is not well suited to support such a feature directly. Hence,
we extend the SDH Problem and use the extension in our construction.

Definition 4.5: extended Strong Diffie-Hellman – eSDH
Given a group description GD = (p,G1,G2,GT , e, g1, g2) of Type-1 or Type-2 pairings and
a tuple

(
h, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq(λ))
2

)
, where h←u G1, the extended Strong Diffie-Hellman

Problem is to output a triple
(

(g1 · hy)
1

x+γ , x, y
)
, where x, y ∈ Zp.

We say the extended Strong Diffie-Hellman Assumption holds for bilinear group generator
BiGrGen if for all probabilistic polynomial time adversaries A and for every polynomially
bounded function q : Z→ Z there exists a negligible function negl such that

Pr
[
A
(
GD, h, gγ2 , g

(γ2)
2 , . . . , g

(γq(λ))
2

)
=
(

(g1 · hy)
1

x+γ , x, y
)]
≤ negl(λ),

where GD← BiGrGen(1λ), h←u G1, and γ←u Zp. The probability is over the random bits
used by BiGrGen, the uniform random choice of γ←u Zp, h←u G1, and over the random bits
used by A. 4

Lemma 4.1:
If the Strong Diffie-Hellman Assumption holds for bilinear group generator BiGrGen, then
the extended Strong Diffie-Hellman Assumption also holds for BiGrGen. �

Proof. Let GD be a group description GD = (p,G1,G2,GT , e, g1, g2) output by BiGrGen(1λ)
and let A be a probabilistic polynomial-time algorithm that solves the eSDH Problem for
some polynomially bounded function q with probability ε(λ). We construct a probabilistic

4.2 Construction of a Reputation System 51

polynomial-time adversary B that solves the SDH Problem for function q with probability
ε(λ)− 1

p , as follows:

Given an instance of the SDH Problem
(
GD, gγ2 , g

(γ2)
2 , . . . , g

(γq(λ))
2

)
, B chooses α←u Zp

and computes h := gα1 . Then B hands
(
GD, h, gγ2 , g

(γ2)
2 , . . . , g

(γq(λ))
2

)
as the eSDH Problem

instance to adversary A. When A outputs a solution
(

(g1 · hy)
1

x+γ , x, y
)
, B computes

c := (1 + α · y)−1 and

(
(g1 · hy)

1
x+γ

)c
= (g1 · hy)

c
x+γ =

(
g1 · gα·y1

) c
x+γ = g

(1+α·y)
x+γ

· 1
(1+α·y)

1 = g
1

x+γ

1 ,

and outputs
(
g

1
x+γ

1 , x

)
as a solution for his SDH Problem instance.

The running time of B is composed of the random choice of α, the running time of A, and
the transformation of A’s solution. Since all of these are probabilistic polynomial-time, B
is a probabilistic polynomial-time algorithm.

In the case that (1 +α · y) is not invertible B aborts, but this happens only with probability
1
p . Hence, B outputs a solution to the SDH Problem for function q with probability ε(λ)− 1

p .
Since the SDH Assumption holds for bilinear group generator BiGrGen, the probability
ε(λ)− 1

p is negligible, which is only possible when ε(λ) is negligible. That in turn means
that the eSDH Assumption holds for bilinear group generator BiGrGen.

Analogously to dynamic group signatures, our construction of a reputation system is based
on non-interactive zero-knowledge (NIZK) proofs of knowledge. In the following, we present
an honest-verifier zero-knowledge protocol to prove possession of a solution to the extended
Strong Diffie-Hellman Problem. This protocol will be transformed into a NIZK proof by
applying the Fiat-Shamir heuristic 2.25.

In our protocol the prover has to convince an honest verifier that he knows a triple (A, x, y)
such that Ax+γ = g1 ·hy, where A, g1, h ∈ G1 and x, y, γ ∈ Zp. The value γ is neither known
by the prover nor the verifier. The public values of the protocol are a group description
GD of Type-2 bilinear groups as the output of a bilinear group generator BiGrGen, six
random elements d, f, h, u, v, w ∈ G1, the value C = hy, and the value W = gγ2 . To obtain a
provably secure protocol we assume that the Decision Linear Assumption and the extended
Strong Diffie-Hellman Assumption hold for BiGrGen.

Remark: The triple (A, x, y) is a solution of the extended SDH Problem, if and only if
the equation e(A, g2)x · e(A,W) · e(h, g2)−y = e(g1, g2) holds. This will be used in the
protocol. ¤

Protocol 4.1:
The following protocol is executed by a prover P , proving knowledge of a solution (A, x, y)
to an eSDH Problem, and an honest verifier V. Both have access to the public values
(GD, d, f, h, u, v, w,C,W), as described above.

52 4 Models and Constructions for Secure Reputation Systems

P : Choose α, β, µ←u Zp, compute

T1 := uα T2 := vβ T3 :=A · wα+β T4 := dµ T5 := fµ+y

and the helper values
δ1 := x · α δ2 := x · β.

Now P and V run a Σ-protocol to prove knowledge of (α, β, x, y, µ, δ1, δ2):
P : Choose rα, rβ, rx, ry, rµ, rδ1 , rδ2 ←u Zp, compute

R1 := urα R2 := vrβ

R3 := e(T3, g2)rx · e(w,W)−rα−rβ · e(w, g2)−rδ1−rδ2 · e(h, g2)−ry

R4 := T rx1 · u
−rδ1 R5 := T rx2 · v

−rδ2

R6 := drµ R7 := f rµ+ry

and send (T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7) to V.
V : Choose c←u Zp as a challenge and send c to the prover P.
P : Compute sα := rα + c · α sβ := rβ + c · β

sx := rx + c · x sy := ry + c · y
sµ := rµ + c · µ
sδ1 := rδ1 + c · δ1 sδ2 := rδ2 + c · δ2

and send them to the verifier V.
V : Accept if all of the following equations hold:

R1 = usα · T−c1 R2 = vsβ · T−c2

R3 =
e(T3, g2)sx · e(T3,W)c

e(w,W)sα+sβ · e(w, g2)sδ1+sδ2 · e(h, g2)sy · e(g1, g2)c

R4 = T sx1 · u
−sδ1 R5 = T sx2 · v

−sδ2

R6 = dsµ · T−c4 R7 = fsµ+sy · T−c5 N

Theorem 4.1:
Protocol 4.1 is an honest-verifier zero-knowledge argument of knowledge of an eSDH triple
(A, x, y) under the Decision Linear Assumption. �

Proof. The proof follows from the Lemmas 4.2, 4.3, and 4.4.

Lemma 4.2:
Protocol 4.1 is complete. �

Proof. If the prover P is honest and in possession of a triple (A, x, y) such that Ax+γ ·h−y =
g1, he follows the computations specified for him in the protocol. In this case the verification
equations hold:

usα · T−c1 = urα+c·α · (uα)−c = urα = R1 (4.1)

vsβ · T−c2 = vrβ+c·β · (vβ)−c = vrβ = R2 (4.2)

4.2 Construction of a Reputation System 53

e(T3, g2)sx · e(T3,W)c

e(w,W)sα+sβ · e(w, g2)sδ1+sδ2 · e(h, g2)sy · e(g1, g2)c

=
e(T3, g2)rx+c·x · e(T3,W)c

e(w,W)rα+c·α+rβ+c·β · e(w, g2)rδ1+c·δ1+rδ2+c·δ2 · e(h, g2)ry+c·y · e(g1, g2)c

= R3 ·
(

e(T3, g2)x · e(T3,W)

e(w,W)α+β · e(w, g2)δ1+δ2 · e(h, g2)y · e(g1, g2)

)c
= R3 ·

(
e(A · wα+β, g2)x · e(A · wα+β,W)

e(wα+β,W) · e(w, g2)x·α+x·β · e(h, g2)y · e(g1, g2)

)c
= R3 ·

(
e(A, g2)x · e(wα+β, g2)x · e(A,W) · e(wα+β,W)

e(wα+β,W) · e(wα+β, g2)x · e(h, g2)y · e(g1, g2)

)c
= R3 ·

(
e(A, g2)x · e(A,W) · e(h, g2)−y · e(g1, g2)−1

)c
= R3 ·

(
e(Ax, g2) · e(Aγ , g2) · e(h−y, g2) · e(g1, g2)−1

)c
= R3 ·

(
e(Ax ·Aγ · h−y, g2) · e(g1, g2)−1

)c
= R3 ·

(
e(g1, g2) · e(g1, g2)−1

)c
= R3 (4.3)

T sx1 · u
−sδ1 = (uα)rx+c·x · u−rδ1−c·δ1 = (uα)rx+c·x · u−rδ1−c·x·α

= (uα)rx · u−rδ1 = R4 (4.4)

T sx2 · v
−sδ2 = (vβ)rx+c·x · v−rδ2−c·δ2 = (vβ)rx+c·x · v−rδ2−c·x·β

= (vβ)rx · v−rδ2 = R5 (4.5)
dsµ · T−c4 = drµ+c·µ · (dµ)−c = drµ = R6 (4.6)
f sµ+sy · T−c5 = f rµ+c·µ+ry+c·y · (fµ+y)−c = f rµ+ry = R7 (4.7)

So the verifier will always accept when the prover is honest.

Lemma 4.3:
For an honest verifier, transcripts of Protocol 4.1 can be simulated under the Decision
Linear Assumption. �

Proof. We describe a simulator S that outputs transcripts for Protocol 4.1 that are indis-
tinguishable from real protocol transcripts. At first, S chooses Â←u G1 and ŷ, α, β, µ←u Zp,
and computes

T1 := uα T2 := vβ T3 := Â · wα+β T4 := dµ T5 := fµ+ŷ.

The remainder of the simulation is independent of the values (Â, ŷ, α, β, µ) and defines the
simulator for the Σ-protocol that is integrated in Protocol 4.1. Hence, it can be used for
pre-specified tuples (T1, T2, T3, T4, T5).

S chooses c, sα, sβ , sx, sŷ, sµ, sδ1 , sδ2 ←u Zp and computes
R1 := usα · T−c1 R2 := vsβ · T−c2

R3 :=
e(T3, g2)sx · e(T3,W)c

e(w,W)sα+sβ · e(w, g2)sδ1+sδ2 · e(h, g2)sŷ · e(g1, g2)c

R4 := T sx1 · u
−sδ1 R5 := T sx2 · v

−sδ2

54 4 Models and Constructions for Secure Reputation Systems

R6 := dsµ · T−c4 R7 := fsµ+sŷ · T−c5

using the verification equations from Protocol 4.1.
Finally, S outputs the simulated transcript
(T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ2).

Now we show that the transcripts created by S are indistinguishable from transcripts of
the real protocol under the Decision Linear Assumption.

The triple (T1, T2, T3) of real transcripts is a Linear Encryption of A under the public key
(u, v, w). Hence, it is indistinguishable from a random triple output by S under the Decision
Linear Assumption. Analogously, the 6-tuple (h, d, f, C, T4, T5) in real protocol transcripts
is an instance of the Decision Linear Problem that is indistinguishable from a completely
random 6-tuple of simulated transcripts.

By choosing the values sα, sβ, sx, sŷ, sµ, sδ1 , sδ2 , and c uniformly at random during the
simulation, the values R1, R2, R3, R4, R5, R6, and R7 are fixed such that the verification
equations hold. Therefore, the tuple (R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ1)
is simulated perfectly, as required for the special honest-verifier zero-knowledge property of
Σ-protocols.

Using a standard hybrid argument, it follows that transcripts generated by the simulator
S are indistinguishable from transcripts of the real protocol under the Decision Linear
Assumption.

Lemma 4.4:
Protocol 4.1 is an argument of knowledge. �

Proof. At first, we describe an Extractor E ′ for the Σ-protocol that is integrated in Proto-
col 4.1. Then we show how E ′ can be used to construct an extractor for Protocol 4.1.

According to the special soundness property of Σ-protocols the extractor E ′ gets two accept-
ing transcripts (a, c, r) and (a, c′, r′) as input, where the announcement a = (T1, T2, T3, T4,
T5, R1, R2, R3, R4, R5, R6, R7) is identical for both transcripts, c 6= c′, and the responses
r = (sα, sβ, sx, sy, sµ, sδ1 , sδ2) and r′ = (s′α, s

′
β, s
′
x, s
′
y, s
′
µ, s
′
δ1
, s′δ2) are different. From these

inputs E ′ can compute the values (α̂, β̂, x̂, ŷ, µ̂, δ̂1, δ̂2) by setting

∆c := c− c′ ∆sα := sα − s′α ∆sβ := sβ − s′β
∆sx := sx − s′x ∆sy := sy − s′y ∆sµ := sµ − s′µ

∆sδ1 := sδ1 − s′δ1 ∆sδ2 := sδ2 − s′δ2
and computing

α̂ :=
∆sα
∆c

β̂ :=
∆sα
∆c

x̂ :=
∆sx
∆c

ŷ :=
∆sy
∆c

µ̂ :=
∆sµ
∆c

δ̂1 :=
∆sδ1
∆c

δ̂2 :=
∆sδ2
∆c

.

Using these values E can compute Â = T3 · w−α̂−β̂ and output (Â, x̂, ŷ).

4.2 Construction of a Reputation System 55

By inspecting the verification equations for both transcripts it follows that the extracted
values are exactly the ones the prover knows:

R1 = usα · T−c1

R1 = us
′
α · T−c′1

}
⇒ 1G1 =

usα · T−c1

us′α · T−c′1

= u∆sα · T−∆c
1

⇒ T∆c
1 = u∆sα ⇒ T1 = uα̂

R2 = vsβ · T−c2

R2 = vs
′
β · T−c′2

}
⇒ 1G1 =

vsβ · T−c2

vs
′
β · T−c′2

= v∆sβ · T−∆c
2

⇒ T∆c
2 = v∆sβ ⇒ T2 = vβ̂

R6 = dsµ · T−c4

R6 = ds
′
µ · T−c′4

}
⇒ 1G1 =

dsµ · T−c4

ds
′
µ · T−c′4

= d∆sµ · T−∆c
4

⇒ T∆c
4 = d∆sµ ⇒ T4 = dµ̂

R7 = fsµ+sy · T−c5

R7 = fsµ+sy · T−c5

}
⇒ 1G1 =

fsµ+sy · T−c5

fs
′
µ+s′y · T−c′5

= f∆sµ+∆sy · T−∆c
5

⇒ T∆c
5 = f∆sµ+∆sy ⇒ T5 = f µ̂+ŷ

R4 = T sx1 · u
−sδ1

R4 = T
s′x
1 · u

−s′δ1

}
⇒ 1G1 =

T sx1 · u
−sδ1

T
s′x
1 · u

−s′δ1
= T∆sx

1 · u−∆sδ1

⇒ T∆sx
1 = u∆sδ1 ⇒ α̂ ·∆sx = ∆sδ1

R5 = T sx2 · v
−sδ2

R5 = T
s′x
2 · v

−s′δ2

}
⇒ 1G1 =

T sx2 · v
−sδ2

T
s′x
2 · v

−s′δ2
= T∆sx

2 · v−∆sδ2

⇒ T∆sx
2 = v∆sδ2 ⇒ β̂ ·∆sx = ∆sδ2

R3 =
e(T3, g2)sx · e(T3,W)c · e(g1, g2)−c

e(w,W)sα+sβ · e(w, g2)sδ1+sδ2 · e(h, g2)sy

R3 =
e(T3, g2)s

′
x · e(T3,W)c

′ · e(g1, g2)−c
′

e(w,W)s
′
α+s′β · e(w, g2)

s′δ1
+s′δ2 · e(h, g2)s

′
y

⇒ 1GT =

e(T3, g2)∆sx · e(T3,W)∆c · e(g1, g2)−∆c

e(w,W)∆sα+∆sβ · e(w, g2)∆sδ1+∆sδ2 · e(h, g2)∆sy

⇒
(

e(g1, g2)

e(T3,W)

)∆c

=
e(T3, g2)∆sx

e(w,W)∆sα+∆sβ · e(w, g2)∆sδ1+∆sδ2 · e(h, g2)∆sy

By taking ∆c-th root we obtain
e(g1, g2)

e(T3,W)
= e(T3, g2)x̂ · e(w,W)−α̂−β̂ · e(w, g2)−α̂·x̂−β̂·x̂ · e(h, g2)−ŷ

which can be rearranged as

e(g1, g2) = e(T3, g2)x̂ · e(w−α̂−β̂,W) · e(w−α̂−β̂, g2)x̂ · e(h, g2)−ŷ · e(T3,W)

= e(T3 · w−α̂−β̂, g2)x̂ · e(h, g2)−ŷ · e(T3 · w−α̂−β̂,W)

By setting Â = T3 · w−α̂−β̂ it holds

e(g1, g2) = e(Â, g2)x̂ · e(h, g2)−ŷ · e(Â,W).

56 4 Models and Constructions for Secure Reputation Systems

4.2.2 The Reputation System

We apply the Fiat-Shamir transformation (Definition 2.25) on Protocol 4.1 to obtain a
signature of knowledge which is secure in the random oracle model. By extending this
signature scheme we construct a reputation system. We use the challenge c as a part of
the signature rather than the values R1, . . . , R7, modeling the value c as the output of a
random oracle. This technique is widely used in the context of group signatures [BBS04;
BS04; Ate+00].

In a reputation system, the provider publishes items for which the ratings are created.
Every rater can create a single rating for every item without losing anonymity. Due to the
public linkability two ratings for one item by the same rater can be detected. In such a
case, the anonymity of the cheating rater is revoked by the system manager. By publishing
a revocation token the system manager can declare ratings from the cheating rater as
invalid. This invalidity can be checked by every verifier using verifier-local revocation [BS04;
NF06].

We assume the communication between raters and the system manager and between raters
and the provider to take place via secure channels. Furthermore, the rater’s public key
rpk [i] is certified by the system manager, such that the provider can verify the integrity of
the public keys during the Join-Issue protocol.

In the following we assume that every party has access to a group description GD of Type-2
bilinear groups generated by a bilinear group generator BiGrGen on input 1λ, and two hash
functions H : {0, 1}∗ → Zp and H1 : {0, 1}∗ → G2. Furthermore, as in [BBS04], we use
Linear Encryption - a CPA-secure Elgamal-like encryption scheme based on the Decision
Linear Problem (Definition 2.32).

KeyGenSM (1λ)

1: Select w←u G1, ξ1, ξ2←u Zp and compute u :=w
1
ξ1 , v :=w

1
ξ2 . The values (u, v, w) are the

public key of the Linear Encryption, the values (ξ1, ξ2) are the corresponding secret
key.

2: Select d̂←u G2, ζ←u Zp and compute d := φ(d̂), h := dζ as the basis for public linkability
and revocation.

3: Set smpk := (u, v, w, h, d, d̂) and smsk := (ξ1, ξ2, ζ) as the system manager’s public and
secret keys.

KeyGenP (1λ, item)

1: Select g2item ←u G2 and set g1item := φ(g2item).
2: Select γitem ←u Zp and set Witem := gγitem2item

.
3: Add the item-based public key ipk [item] := (g1item , g2item ,Witem) to the ItemList and

keep isk [item] := γitem secret as the item-based secret key.

KeyGenR(1λ, i)

1: Select yi←u Zp, set rpk [i] := hyi and rsk [i] := yi as the rater’s public and secret keys.

4.2 Construction of a Reputation System 57

RegisterSM (StSM ,MSM),RegisterR(StR,MR)

R: The prospective rater sends his identity i to the system manager.
SM : If reg [i] is already set Then

output error and exit.
Else run KeyGenR to obtain the tuple (rpk [i], rsk [i])

set reg [i] := (i, rpk [i])

send (rpk [i], rsk [i]) and a certificate for rpk [i] to the rater i.

Join(StR,MR), Issue(StP ,MP)

R: Look up the public key for the used item ipk [item] = (g1item , g2item ,Witem) ∈ ItemList
and send (i, rpk [i]) and the certificate for rpk [i] to the provider.

P : If the certificate for rpk [i] is invalid or (rpk [i], ·) ∈ ILitem Then
output error and exit.

Else select xiitem ←u Zp and compute Aiitem := (g1item · rpk [i])
1

xiitem
+γitem

store (rpk [i], rrsk [i, item] := (Aiitem , xiitem)) in the identification list ILitem for
item

hand rrsk [i, item] to the rater i as his rating key for item

Rate(item, smpk , ipk [item], rrsk [i, item], rsk [i],M)

1: compute f̂ ∈ G2 by f̂ :=H1(item).
2: choose α, β, µ←u Zp, and compute

T1 := uα T2 := vβ T3 :=A · wα+β T4 := dµ T5 := φ(f̂)µ+y

δ1 := x · α δ2 := x · β.
3: choose rα, rβ, rx, ry, rµ, rδ1 , rδ2 ←u Zp and compute

R1 := urα R2 := vrβ

R3 := e(T3, g2)rx · e(w,W)−rα−rβ · e(w, g2)−rδ1−rδ2 · e(h, g2)−ry

R4 := T rx1 · u
−rδ1 R5 := T rx2 · v

−rδ2

R6 := drµ R7 := φ(f̂)rµ+ry

4: compute a challenge value c using H:
c :=H(M, item, smpk , ipk [item], T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7).

5: compute
sα := rα + c · α sβ := rβ + c · β
sx := rx + c · x sy := ry + c · y
sµ := rµ + c · µ
sδ1 := rδ1 + c · δ1 sδ2 := rδ2 + c · δ2

6: output the rating σ := (item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2).

58 4 Models and Constructions for Secure Reputation Systems

Verify(item, smpk , ipk [item],RL,M, σ)

1: compute f̂ ∈ G2 by f̂ :=H1(item).
2: compute

R1 := usα · T−c1 R2 := vsβ · T−c2

R3 :=
e(T3, g2)sx · e(T3,W)c

e(w,W)sα+sβ · e(w, g2)sδ1+sδ2 · e(h, g2)sy · e(g1, g2)c

R4 := T sx1 · u
−sδ1 R5 := T sx2 · v

−sδ2

R6 := dsµ · T−c4 R7 := φ(f̂)sµ+sy · T−c5

3: If c 6= H(M, item, smpk , ipk [item], T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7) Then
4: output 0.
5: For Each D ∈ RL do

6: If e(T5, d̂) = e(D · T4, f̂) Then
7: output 0.
8: output 1.

Open(smpk , smsk ,M, σ)

1: run Steps 1-4 of the Verify-algorithm
2: If Step 4 outputs 0 Then
3: output failure

4: compute Aiitem := T3 · T−ξ11 · T−ξ22

5: For Each e ∈ ILitem do
6: If e = (rpk , (Aiitem , xiitem)) for some rpk and some xiitem Then
7: For Each r ∈ reg do
8: If r = (i, rpk) for some i Then
9: output i
10: output failure

Link(item, smpk , ipk [item], (M ′, σ′), (M ′′, σ′′))

1: run Steps 1-4 of the Verify-algorithm for (M ′, σ′) and (M ′′, σ′′)

2: If Step 4 outputs 0 for at least one of (M ′, σ′) and (M ′′, σ′′) Then
3: output 0

4: compute f̂ ∈ G2 by f̂ :=H1(item)

5: If e(T ′5 · T
′′−1
5 , d̂) = e(T ′4 · T

′′−1
4 , f̂) Then

6: output 1

7: Else
8: output 0

Revoke(smpk , smsk , i)

1: look up rpk [i] in reg [i]

2: compute rrt [i] := rpk [i]
1
ζ

3: set RL :=RL ∪ {rrt [i]}

4.2 Construction of a Reputation System 59

Remark: We assume the communication between raters and the system manager and
between raters and the provider to take place via secure channels. Furthermore, the rater’s
public key rpk [i] is certified by the system manager, such that the provider can verify the
integrity of the public keys during the Join, Issue-protocol. Since we assume the system
manager to be honest, we can let him choose the rater’s public and secret keys.

We further stress that the provided construction does not consider concurrent executions
of the interactive protocols, although the security model is designed for this purpose. To
guarantee security in concurrent executions the technique of Damgård for constructing
concurrent zero-knowledge protocols, Lemma 2.1, can be used. This technique is applied in
the construction of a secure reputation system in Chapter 6. ¤

Correctness: The correctness of the reputation system can be shown as follows:

• Protocol 4.1 is correct, so every honestly created rating will be declared as valid.

• Revocation token are computed correctly.

• For honestly created ratings the system manager can always recover the identity of
the rater, because of the correctness of the Linear Encryption.

• Two ratings for the same item by the same rater are declared as publicly linked.

• Every secret rating key rrsk [i] created by the provider can be publicly verified by

e(Aiitem , g2)xiitem · e(Aiitem ,W) · e(h, g2)−yi = e(g1, g2).

The security of the provided construction is shown by proving the following lemmas. Their
formal proofs are given in Chapter 8.

Lemma 4.5:
If the Decision Linear Assumption holds for bilinear group generator BiGrGen, the reputation
system defined in Section 4.2.2 is CPA-anonymous. �

The basic idea to prove anonymity is to guess the two identities the adversary will choose
in the anonymity experiment, such that an instance of the Decision Linear Problem can be
incorporated into the adversary’s challenge. This is similar to the proofs of CPA-security
for public-key encryption schemes, hence the name CPA-anonymity.

Lemma 4.6:
If the Strong Diffie-Hellman Assumption holds for bilinear group generator BiGrGen, the
reputation system defined in Section 4.2.2 is publicly linkable. �

To prove this lemma we adapt a technique of Boneh and Boyen [BB04]. This technique
transforms an instance of the Strong Diffie-Hellman Problem

(
Gγ̂2 , G

(γ̂2)
2 , . . . , G

(γ̂q(λ))
2

)
into values (g1, g2,W) and {(Ai, xi)}q(λ)−1

i=1 , such that g1 = φ(g2),W = gγ2 , and for each
i ∈ {1, . . . , q(λ)− 1} it holds e(Ai, g2)xi · e(Ai,W) = e(g1, g2), while γ and γ̂ are unknown.

60 4 Models and Constructions for Secure Reputation Systems

If an adversary is able to generate a new pair (A, x), it can be used to compute a solution
to the given SDH instance. Our adaption of this technique will generate similar values
(g1, g2, h,W) and {(Ai, xi, yi)}q(λ)−1

i=1 , such that (g1, g2,W) is used as an item-based public
key, yi is used as the secret rating key of rater i with corresponding public key hyi , and
each (Ai, xi) is used as the rating key of rater i for the item defined by (g1, g2,W).

To obtain a new triple (A, x, y) from an adversary A against the public linkability of the
reputation system we apply the General Forking Lemma (Lemma 2.2). For this purpose
we define an algorithm B, that interacts with A, such that the forking algorithm FB from
the General Forking Lemma obtains two related accepting transcripts of the signature of
knowledge used as a rating. Then, the extractor defined in Lemma 4.4 is invoked to compute
a tuple (A, x, y). A similar technique is used by Boneh, Boyen, and Shacham [BBS04]
to prove the security of a group signature scheme, but they apply the Forking Lemma of
Pointcheval and Stern [PS00].

Lemma 4.7:
If the Strong Diffie-Hellman Assumption holds for bilinear group generator BiGrGen, the
reputation system defined in Section 4.2.2 is traceable. �

The proof of traceability is similar to that of linkability, because the attack scenario is the
same. The proofs only differ in some technical details, but are based on the same idea.

Lemma 4.8:
If the Discrete Logarithm Assumption holds for bilinear group generator BiGrGen, the
reputation system defined in Section 4.2.2 is strongly exculpable. �

Similar to the proof of anonymity, we guess the identity the adversary will attack. This
allows us to use an instance of the Discrete Logarithm Problem as the rater’s public key.
When we guessed the identity correctly, we apply the General Forking Lemma to obtain a
second rating from the same rater. These two related ratings can then be used to solve the
Discrete Logarithm Problem.

Universal Composability 5
As seen in the previous chapters, the security of cryptographic systems is often defined by
considering the execution of a cryptographic task in isolation. On the one hand, this approach
allows to construct efficient schemes achieving exactly the demanded properties. On the
other hand, there are no security guarantees when running different schemes concurrently,
as it is done in practical applications. Hence, to define security for more complex systems
the execution environment must be considered. Furthermore, when different schemes are
composed to realize more complex systems, the security of the composition is not implied
by the security of the components. A general framework that combines the isolated view on
a cryptographic task, the consideration of the execution environment, and allows for secure
composition of different components is the Universal Composability Framework, introduced
by Canetti [Can01].

In the Universal Composability Framework a cryptographic task is described as an ideal
functionality F that acts as a trusted and incorruptable party. Every party involved in the
cryptographic task hands its inputs securely to F , which in turn computes the outcome
and hands each party its prescribed output. To model protocols running concurrently to
F an environment Z chooses the inputs of the parties and collects their outputs. For a
practical application the ideal functionality F is replaced by a cryptographic protocol Π in
which the parties communicate with each other to compute their outputs. The security
of such a system is defined by considering Z as an interactive distinguisher that has to
decide whether it interacts with the ideal process, the execution of the cryptographic task
using F , or the real-world protocol Π. Since only choosing inputs and receiving outputs
does not appropriately model adversarial behavior, Z can communicate with a real-world
adversary A that attacks Π. This adversary can corrupt parties, controls the messages
they exchange, and tries to influence the protocol execution such that the environment Z
obtains additional information that might help to distinguish F and Π. But in the ideal
process the parties do not communicate and have no internal states. Hence, it would be
easy to distinguish between Π and F . Therefore, an ideal process simulator S is introduced
that communicates with F and emulates a protocol execution of Π in the ideal process. If
this emulation is indistinguishable from a real protocol execution, we say Π UC-realizes F ,
which means that an interaction with Π and A leaks as much information as interacting
with F and S. By this security definition it is possible to prove a general composition
theorem, which basically states that the composition of secure protocols is also secure.

62 5 Universal Composability

5.1 Protocol Execution and Security

Similar to the work of Goldreich, Micali, and Wigderson [GMW87], security in the Universal
Composability Framework is defined by comparing a real execution of a cryptographic
protocol with an ideal process.

Every cryptographic protocol is executed with respect to a given environment Z, which
models all concurrently running protocols, including those protocols providing inputs to or
obtaining outputs from the protocol under consideration. That means, the environment
Z chooses the inputs for every party πi executing a protocol Π and obtains its outputs.
Furthermore, the environment can freely interact with an adversary A that attacks the
protocol Π by controlling the communication between the parties πi. In particular, A can
interact with every party πi, but is not able to access the inputs and outputs of πi. The
execution of a protocol Π with an adversary A and an environment Z is formally described
by Canetti [Can01], modeling all parties as a special kind of interactive Turing machines.
We provide a simplified version:

• Z only hands inputs to other parties. The first party Z hands inputs to is the
adversary A. All other parties Z hands inputs to are parties πi executing protocol Π.

• The adversary A can send messages to every other party in the system, namely to Z
and all parties πi currently executing Π.

• All parties πi can send messages to A. When party πi wants to send a message m
to party πj , it sends (i, j,m) to A, because A controls the communication. A is not
forced to deliver m to πj .

• Every party πi and the adversary A hand their respective outputs to Z.

A special message A can send to some party πi is a corruption message. When πi receives
such a message, it sends its internal state to A and becomes inactive. The internal state
contains all inputs, all random bits used, and all messages the party exchanged with others.
If the code of πi is erasing, it depends on the protocol which information is sent to A.
Typically, in such cases at least the random bits are erased directly after their usage and
hence are not available to A after corruption. In contrast to this adaptive corruption, a
special case of corruption is that of non-adaptive corruption, where an adversary A has
to declare which parties are corrupted before the protocol execution starts. Corruption
messages during protocol execution are ignored in that case. Independent of the corruption
model, a corrupted party is fully controlled by A and the term „corrupted party πi“ is used
synonymously for „adversary A“. We note that other corruption models are realizable in
the Universal Composability Framework, but those are not of interest in this work.

In the execution of an ideal process, also called ideal protocol, the parties πi do not
communicate to compute their outputs, but hand their inputs directly and reliably to an
ideal functionality F which in turn securely computes the outputs for every party. When
a party πi obtains an output from F it is immediately handed to Z. By that mechanism
the parties πi are dummy parties as they do not execute any code. By that definition a
real cryptographic protocol Π is replaced in the ideal protocol by the ideal functionality F .
Analogously, the adversary A attacking Π is replaced by an ideal adversary S, also called a
simulator. Since corrupting the dummy parties in the ideal protocol and observing their

5.1 Protocol Execution and Security 63

communication as in the real protocol execution does not make any sense, the simulator
S interacts directly with F . The ideal functionality F can use this interaction to provide
S with additional information an adversary in a real protocol would obtain anyway. This
mechanism models the leakage of information during protocol execution. In the reverse
direction F receives the corruption messages from S and can react accordingly. That means,
when S wants to corrupt a dummy party πi, F marks πi as corrupted, hands all inputs
and outputs of πi generated so far to S, and forwards all future inputs and outputs to S.
For non-adaptive corruptions this implies that F ignores all corruption messages that were
sent by S after the start of the protocol execution.

With the description of protocol execution of real and ideal protocols, we now turn to the
definition of security in the Universal Composability Framework. The basic idea is to define
security by stating that no environment can distinguish a real protocol execution from an
ideal protocol execution. That means, the environment runs an interactive probabilistic
process in which it provides inputs to different parties, with respect to some security
parameter. At the end of this process the environment has to output its guess with which
protocol it interacted.

As argued by Canetti [Can01] it is important to consider balanced environments in the
definition of security. An environment is balanced when the overall length of all inputs
given by the environment to the parties executing a protocol is at most λ times the length
of the input given to the adversary, where λ is the security parameter. Without balanced
environments it would be possible to execute protocols in a way such that an adversary is
not able to deliver all messages sent, which is an unnatural situation.

Definition 5.1: Protocol Emulation - [Can01]
Let Π and Φ be protocols that are executable in probabilistic polynomial-time. We
say that Π UC-emulates Φ, if for any probabilistic polynomial-time adversary A there
exists a probabilistic polynomial-time algorithm S such that for any balanced probabilistic
polynomial-time environment Z it holds{

EXECΦ,S,Z(λ, z)
}
λ∈N,z∈{0,1}∗

c≡
{

EXECΠ,A,Z(λ, z)
}
λ∈N,z∈{0,1}∗

where EXECΦ,S,Z(λ, z) denotes the output of environment Z interacting with protocol
Φ and adversary S on input the security parameter λ and auxiliary information z and
EXECΠ,A,Z(λ, z) denotes the output of environment Z interacting with protocol Π and
adversary A on input the security parameter λ and auxiliary information z. 4

In this definition the environment Z is treated as an interactive distinguisher and the
algorithm S is a simulator that generates a view for Z such that the execution of Φ is
indistinguishable from an execution of Π. So, to prove that one protocol emulates another
it is necessary to provide an appropriate simulator S. In the special case where Φ is an
ideal protocol and Π UC-emulates Φ, we then say that Π UC-realizes Φ.

Definition 5.2: Realizing Ideal Functionalities - [Can01]
Let F be an ideal functionality and let Π a protocol. We say Π UC-realizes F , if Π
UC-emulates the ideal protocol for F . 4

64 5 Universal Composability

By that definition, an ideal functionality F defines both correctness and security. Every
protocol Π realizing F is correct because the outputs in both protocol executions on the
same inputs must be indistinguishable. Moreover, the information an adversary obtains
by interacting with Π must also be obtainable by interacting with F , which guarantees
security. Based on that it is possible to compose protocols without losing their correctness
and security properties. To illustrate what a composed protocol is, consider three protocols
Π,Φ, ρ, where ρ uses Φ as a subroutine and Π UC-emulates Φ. Then the composed protocol
ρΦ→Π is identical to ρ, but whenever a party would run Φ in the original protocol, it instead
runs Π. Due to the UC-emulation of Φ, the protocol Π can be used as an alternative. This
is formalized as the Universal Composition Theorem.

Theorem 5.1: Universal Composition - [Can01]
Let Π,Φ, and ρ be protocols that are executable in probabilistic polynomial-time and let Π
UC-emulate Φ. Then the protocol ρΦ→Π UC-emulates ρ. �

This theorem allows to define and analyze complex tasks in a modular way. Therefor, a
task T is split into several modules t1, t2, . . . , tn. Then, each module can be realized by an
appropriate protocol. After that, a protocol for task T can be defined, that uses the ideal
functionalities of the modules t1, . . . , tn. Finally, the task T can be realized by applying
the composition theorem to replace the ideal protocols for t1, . . . , tn with their respecting
realizations.

5.2 Technical Details

In this section we will highlight some technical details that are important to prove security
in the Universal Composability Framework.

Identifying Parties and Functionalities

Protocols in the UC Framework are executed concurrently to other protocols, which is
modeled by an environment Z providing inputs to and obtaining outputs from the protocol
under consideration. This also includes the execution of multiple copies of a single protocol
Π. These copies are called instances of Π, that are executed by several parties π. To allow
communication between those parties, a unique party identifier pid is associated to them.
Furthermore, it is important that parties only communicate with others executing the same
protocol instance. For this reason, also every instance of a protocol has an session identifier,
called sid . Hence, each party can be identified with the tuple (pid , sid). Whenever a
party π with identifier (pid , sid) receives a message with a session identifier sid ′ 6= sid ,
this message will be ignored, because it does not belong to the protocol instance currently
executed by π. Analogously, received messages with recipient pid ′ 6= pid are ignored. For
simplicity we assume that the pid and sid are provided by the environment Z during the
first activation of a party. This also holds for the ideal functionality F : the first activation
of F contains a session identifier, which will be used by the instance of F as global identifier
for the current protocol execution.

5.2 Technical Details 65

Delayed Output

In many situations handing outputs from an ideal functionality F immediately to its
recipients is not desirable. Therefore, a functionality F can use the mechanism of delayed
output, where F informs the adversary that some output is available and waits for the
permission of the adversary to hand it to its recipient. This allows to model delays in
message delivery, which is natural in distributed protocols. For public delayed output a
functionality F sends a special message to the adversary, which contains the output v, its
designated recipient πi, and a unique query identifier. When the adversary responds to this
message by sending the query identifier back to F , the output v is handed to πi. For private
delayed output the mechanism is the same, but F does not include the output v in its
message to the adversary. It is also possible to send an output v to a set of recipients π by
informing the adversary about (v, π) and handing the output to a party πi ∈ π, whenever
the adversary responds with the query identifier and a party identifier. This is basically
the same as informing the adversary about (v, πi) for all πi ∈ π separately.

Message Transmission

In the most basic form a party πi sends the message m to party πj by handing (sid , i, j,m)
to A and expecting A to deliver this tuple to πj . But A is not forced to deliver this
message, since A models an asynchronous, unauthenticated, and unreliable network. A is
allowed to hand a modified tuple (sid , i, j,m′) to πj , or even to not deliver a message at all.
This communication model is called the bare model. Based on that, ideal functionalities
for authenticated and secure message transmission can be used to strengthen the security
properties of the communication channels. With ideally authenticated communication
channels an adversary is able to read the contents of a message, but is forced to deliver
the message unmodified to the determined recipient. Secure communication channels
additionally ensure that the adversary is unable to read the message sent.

Hybrid Protocols and Models

The Universal Composition Theorem states that the protocol ρΦ→Π UC-emulates the
protocol ρ, when Π,Φ, and ρ are protocols executable in probabilistic polynomial-time and
Π UC-emulates Φ. Since there is no further restriction on Φ, it is possible that Φ is an ideal
protocol. In this case the protocol ρ is said to be a hybrid protocol, as it combines a real
protocol execution with invocations of ideal functionalities. The ideal functionalities used in
a hybrid protocol ρ are known to every party and have unique session identifiers sid to ensure
that only parties executing ρ can interact with them. A peculiarity of hybrid protocols is
that the environment Z also knows that dedicated subroutines of a hybrid protocol ρ are
ideal functionalities. Thus, hybrid protocols are said to be executed in a hybrid model. In a
formal proof that a hybrid protocol ρ UC-emulates some ideal functionality F , a simulator
S has to generate a view for the environment Z that is indistinguishable from a protocol
execution of ρ in the hybrid model. Since the ideal functionalities ρ uses as subroutines do
not exist in the ideal protocol for F , they have to be simulated by S.

66 5 Universal Composability

Defining Simulators

The definition of UC-emulation allows to construct individual simulators S for different
adversaries A. But Canetti [Can01] also provides alternative formulations of UC-emulation
that are equivalent to Definition 5.1. The most important ones are UC-emulation with
respect to the dummy adversary and with respect to black-box simulation. Both formulations
simplify the construction of simulators.

The dummy adversary is an adversary that only delivers messages between the environment
Z and the parties executing a protocol; there is no further interaction of A and other parties
in the system. This means that the environment has full control over the communication,
which also includes corruption messages. As shown by Canetti [Can01], a simulator for the
dummy adversary can be transformed into a simulator for an arbitrary adversary. Hence,
to prove that a protocol Π UC-emulates a protocol Φ, it is sufficient to construct a single
simulator S considering the dummy adversary.

Another alternative formulation of UC-emulation is that of black-box simulation. For this
kind of simulation a single simulator Ŝ with black-box access to an adversary A is considered.
To be able to apply the model of protocol execution as described in the previous section,
the black-box simulator Ŝ and the adversary A are encapsulated into a shell simulator S,
as follows:

• The shell simulator S is given Ŝ and A, and internally executes an instance of both
algorithms.

• Whenever S receives input from the environment Z, it forwards this input to A.
Every outgoing message from A is given as input to Ŝ. If Ŝ wants to deliver messages
to some party, this is carried out by S.

• Whenever S receives an incoming message from some party, it forwards this message
to Ŝ. Every output of Ŝ is given to A as an incoming message. If A generates outputs,
these are handed to the environment Z by S.

Since this shell simulator is fixed for all black-box simulators and all adversaries, in formal
proofs of UC-emulation it is often implicitly assumed that S exists and only the black-box
simulator Ŝ is defined. Albeit having black-box access to an adversary A, the simulator
Ŝ can not rewind A. This is due to the fact that A may exchange messages with the
environment and rewinding A would cause exchanging these messages again. Since this does
not happen in the real protocol execution, an environment can easily distinguish between
the ideal and real protocol executions. Hence, rewinding A is not possible.

Reputation Systems in the Universal
Composability Framework 6

This chapter is based on our paper „Practical, Anonymous, and Publicly Linkable Universally-
Composable Reputation Systems“, presented at the Cryptographers’ Track of the RSA
Conference 2018 [BEJ18].

The model presented in Chapter 4 has several drawbacks. The most important issue of the
model is that raters and providers are disjoint sets, which makes this model unusable in
many applications. But also traceability and linkability are considered separately, which
does not appropriately model the intuition of linkability, because the provided security
definitions do not imply that linkable ratings can be opened to the same identity. This
problem is pointed out by Kaafarani and Katsumata [KK18], albeit the construction given
in Chapter 4 ensures this property. However, such issues highlight that experiment-based
security definitions might not cover all subtle security properties.

To resolve the disadvantages of the reputation system presented in Chapter 4, we provide a
new model and a corresponding realization of a reputation system in this chapter. The new
model enables users to rate each other, meaning that raters and providers are treated as
users with different roles. Furthermore, and most importantly, we formalize this model in
the Universal Composability Framework to ensure that realizations are composable with
arbitrary applications. Since models in this framework describe an ideal functionality, also
non-obvious security properties are covered.

6.1 An Ideal Functionality for Reputation Systems

In the first part of this section we give some intuition to our ideal functionality of a
reputation system FRS. The second part concerns the formal definition of FRS in the
Universal Composability Framework [Can01]. We discuss the functionality and its security
properties in the third part of the section.

6.1.1 Intuition

Similar to the model presented in Chapter 4, our new model focuses on the process of secure
rating generation, meaning that the aggregation of ratings and evaluating an application
specific reputation function is not considered to obtain a system that can be combined with
arbitrary applications. We consider reputation systems where users within the system can

68 6 Reputation Systems in the Universal Composability Framework

rate each others products. The term product refers to anything that can be used as a basis
for ratings, for example traded goods or services. Each user in our system has to register
once at a System Manager, before a product can be rated. This gives the System Manager
the ability to punish misbehaving users. Therefor the system must prevent users to register
with different identities. When users do not want to rate products at all, a registration is
not necessary - publishing products and verifying ratings is independent of the registration,
which increases trust in the system. Analogously to registering, a product must be purchased
before it can be rated. To further increase trust in the reputation system, raters must
be able to rate purchased products anonymously. Without anonymity raters may tend to
rate dishonestly when they fear negative consequences from the provider. At the same
time a provider must be protected against unjustified negative ratings. This is achieved
by giving the System Manager the ability to revoke the anonymity of a rater. Of course,
the System Manager must not be able to accuse an honest user having misbehaved. The
negative side-effects of anonymity are that self-ratings, meaning ratings for a product from
the provider, are hard to prevent and that a single rater, who purchased a product, could
rate this product multiple times. Therefore, we require a reputation system to explicitly
forbid self-ratings and to provide linkable ratings, where everybody, even outsiders of the
system, must be able to detect multiple ratings from the same user for the same product.

In the Universal Composability Framework every activation of a party corresponds to a
specific task the party has to execute. Hence, to define a model for reputation systems in
that framework, we have to provide multiple activations that build a reputation system.
To give some intuition to these activations we briefly describe them before heading to the
formal definition of FRS.

The KeyGen activation is used by the System Manager PSM to generate and publish public
parameters pp. These parameters enable the System Manager to open ratings to
obtain the identity of the rating’s author.

The Register activation is an interactive protocol, initiated by a user Pi to register with
the System Manager PSM. Being registered is a prerequisite to generate ratings.

With the NewProduct activation a user Pi can generate public information ppk that
combines a product identifier prod an the user’s identity. The value ppk is used to
assign ratings to a dedicated product from a specific user. Hence, two values ppk1

and ppk2 must be different, when they are generated by different users, even when
the used product prod is the same.

A user Pi executes the interactive Purchase protocol with another user Pj to purchase a
product prod with associated public information ppk from Pj . Besides user registration,
this is the second prerequisite to rate the purchased product. It is important that Pi
and Pj are different parties to ensure that users cannot rate their own products.

The Rate activation is used by a user Pi, acting as a rater, to anonymously generate and
publish a rating σ with respect to the rating-message m assigned to a dedicated
product. As mentioned above, the user Pi must be registered and must have purchased
the specified product beforehand.

6.1 An Ideal Functionality for Reputation Systems 69

With the Verify activation every user can verify whether or not a given rating σ for
a rating-message m and a specified product is valid. A rating is valid, when the
anonymous author of the rating is registered and purchased the specified product.

By executing the Link activation with two ratings for the same product any user can
determine whether or not both ratings were generated by the same user. In any case
the identity of the author(s) is kept secret.

To determine the author of a rating the System Manager PSM can use the Open activation.
When he also wants to provide publicly verifiable information that the claimed user
is really the author of a rating, he can generate an opening-proof τ with the OProof
activation. Opening-proofs can be verified with the Judge activation by any user.

Besides these activations, the formal definition of FRS contains the internal activations
VfyProd, VfyRtg, LinkRtgs, and RebLDB. They are only introduced to provide reusable
descriptions of often executed computations. VfyProd is used to verify that a party Pj
and a product prod are properly combined in ppk . VfyRtg comprises all steps to verify a
rating, whereas LinkRtgs comprises all steps to link ratings. With RebLDB the consistency
of the linking information is guaranteed. All these internal activations are described in
more detail in the following two sections.

6.1.2 The Formal Definition

Our ideal functionality for reputation systems FRS is influenced by the ideal functionalities
for digital signatures FSIG [Can04], public-key encryption FPKE [Can01] and group signatures
[Ate+05]. It interacts with a simulator S and the parties PSM, P1, P2, . . . , Pn. The party PSM

acts as the System Manager, whereas the parties Pi correspond to the users within the rep-
utation system. Furthermore, FRS manages the lists Params,Reg,Prods,Purch,Ratings,
and Open to store important information. Before giving the formal definition of FRS, we
explain how these lists are used. We also introduce the notation needed in the definition of
FRS.

Params: This list stores all pairs of the form (PSM, pp) containing public parameters the
simulator S gives to FRS during KeyGen-requests. The first component of a pair is
fixed to PSM, whereas the second component represents the actual parameters given
by S.

Reg: The list Reg stores pairs of the form (pp, Pi) containing registration information.
The first component stores the public parameters the registrated party used in the
Register-protocol, whereas the second component is the registrated party.

Prods: All products that are used within the reputation system are stored as 4-tuples of
the form (Pi, prod , ppk , b) in the list Prods. The first component of a tuple declares
the product owner, the second is a product identifier (a bitstring chosen by the
environment), the third specifies the corresponding product-public key and the fourth
component is a validity bit. There can exist different products with the same product
identifier, but only for different product owners. The validity bit indicates whether
the product-public key matches the given product owner and the product identifier.

70 6 Reputation Systems in the Universal Composability Framework

Purch: When some party successfully purchased a product, this information is stored
as 4-tuple (Pi, Pj , prod , ppk) in the list Purch. For every tuple in the list the first
component represents the purchaser, whereas the other components determine the
product that was purchased (the product owner, the product identifier and the
product-public key).

Ratings: The list Ratings stores the most complex information as 10-tuples of the form
(pp, Pi, Pj , prod , ppk ,m, σ, b, lid , oid). The components of each tuple represent the
following information:

1. pp - the public parameters a rating is generated for,

2. Pi - the identity of the rater ((pp, Pi) should match an entry in Reg),

3. Pj - the product owner of the product the rating is generated for,

4. prod - the product identifier of the product the rating is generated for,

5. ppk - the product-public key of the product the rating is generated for (the tuple
(Pi, Pj , prod , ppk) should match an entry in Purch),

6. m - rating message (a placeholder for high-level applications),

7. σ - the rating,

8. b - the validity bit (indicating whether the rating is valid),

9. lid - the linking-class identifier, which is managed by the algorithm RebLDB,

10. oid - the opening-proof identifier.

The linking-class identifier is needed to model the linkability property: two ratings
with the same linking-class identifier have the same author. The opening-class
identifier binds a list of opening-proofs to a specific rating. Whenever a new rating
is added to the list Ratings, FRS uses the current value of a global counter LIDC
as the linking-class identifier and increments the counter. The subsequent execution
of RebLDB ensures that the rating is put into the correct linking-class, according
to the linkability-relation. A more detailed explanation of this behavior and the
oid -mechanism is given in the discussion of the security properties of FRS.

Open: This list stores all opening-proofs as 4-tuples of the form (oid , τ, b, P). The first
component is an opening-proof identifier that binds a tuple to a specific rating with
the same identifier. The second component is the actual opening-proof. The third
component is a validity bit indicating whether the proof is valid and the fourth
component is the claimed party that shall be the author of the associated rating.

The value oid = ⊥ within a rating expresses that the rating was not opened yet and
hence no opening-proof exists. To uniquely bind opening-proofs to ratings a global
counter OIDC is used and incremented whenever a new opening-proof is bound to
an unopened rating.

6.1 An Ideal Functionality for Reputation Systems 71

To manipulate the described lists, we introduce two operations:

• adding a tuple v to a list L is expressed by L.Add(v), and

• replacing a tuple vold with a tuple vnew is expressed by L.Rep(vold, vnew).

Replacing a tuple vold means that this tuple is removed from the list, while the tuple vnew

is added to the list.

The classical notation to address components of tuples is using indices, i.e. v = (v1, . . . , vn),
where vi is the i’th component of tuple v. We deviate from this notation to prevent confusion
with different variables and address the i’th component of a tuple v by v[i].

Whenever the functionality FRS misses some information, the symbol ⊥ is used to highlight
this fact. Also the simulator S can output this symbol to indicate that it is not able to
respond to a request. Depending on the situation, this is not necessarily a failure.

With these prerequisites we now give the formal definition of FRS.

FRS

FRS interacts with parties PSM, P1, . . . , Pn, and the ideal adversary (simulator) S. Further
it manages the lists Params,Reg,Prods,Purch,Ratings, and Open, which are initially
empty, and the counters LIDC ,OIDC , which are initialized with 0. All outputs from FRS

to some party P are public delayed outputs.

Registry Key Generation: On input (KeyGen, sid) from PSM

1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: Send (KeyGen, sid) to S and receive (KeyGen, sid , pp) from S.
3: Set Params.Add(PSM, pp) and send (KeyGen, sid , pp) to PSM.

User Registration: On input (Register, sid , pp′) from Pi

1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: Send (Register, sid , pp′, Pi) to S and receive (Register, sid , pp′, Pi, b) from S.
3: If PSM and Pi are honest ∧ (PSM, pp′) ∈ Params ∧ (Pi, pp′) /∈ Reg Then f := 1.
4: Else If PSM is honest ∧ (PSM, pp′) /∈ Params Then f := 0.
5: Else f := b.
6: If f = 1 Then Reg.Add(pp′, Pi).
7: Send (Register, sid , pp′, Pi, f) to Pi and PSM.

Product Addition: On input (NewProduct, sid , prod) from Pi

1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: Send (NewProduct, sid , Pi, prod) to S and receive (NewProduct, sid , Pi, prod , ppk) from
S.

3: If (P ′, prod ′, ppk , 1) ∈ Prods, where (P ′, prod ′) 6= (Pi, prod) Then
output error and halt.

4: Else Prods.Add(Pi, prod , ppk , 1) and send (NewProduct, sid , prod , ppk) to Pi.

72 6 Reputation Systems in the Universal Composability Framework

Purchase: On input (Purchase, sid , Pj , prod , ppk) from Pi

1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: If Pi = Pj ∨ VfyProd(sid , Pj , prod , ppk) = 0 Then ignore the request.
3: Send (Purchase, sid , Pi, Pj , prod , ppk) to S and receive (Purchase, sid , Pi, Pj , prod , ppk ,
b) from S.

4: If Pi and Pj are honest Then f := 1.
5: Else f := b.
6: If f = 1 Then Purch.Add(Pi, Pj , prod , ppk).
7: Send (Purchase, sid , Pi, Pj , prod , ppk , f) to Pi and Pj .

VfyProd: On internal input (sid , Pj , prod , ppk)

1: Send (VfyProd, sid , Pj , prod , ppk) to S and receive (VfyProd, sid , Pj , prod , ppk , b) from
S.

2: If (Pj , prod , ppk , f ′) ∈ Prods Then f := f ′.
3: Else If b = 1 ∧ Pj is honest Then output error and halt.
4: Else If (P ′, prod ′, ppk , 1) ∈ Prods, where (P ′, prod ′) 6= (Pi, prod) Then

Set Prods.Add(Pi, prod , ppk , 0) and f := 0.
5: Else Set Prods.Add(Pi, prod , ppk , b) and f := b.
6: Return f .

Rate a Product: On input (Rate, sid , pp, Pj , prod , ppk ,m) from Pi

1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: If (pp, Pi) /∈ Reg

∨ (Pi, Pj , prod , ppk) /∈ Purch
∨ (pp, Pi, Pj , prod , ppk ,m′, σ′, 1, lid , oid) ∈ Ratings for some m′, σ′, lid Then
ignore the request.

3: If PSM is honest Then
Send (Rate, sid , pp, Pj , prod , ppk ,m) to S and receive (Rate, sid , pp, Pj , prod , ppk ,
m,σ) from S.

4: Else Send (Rate, sid , pp, Pi, Pj , prod , ppk ,m) to S and receive (Rate, sid , pp, Pi, Pj ,
prod , ppk ,m, σ) from S.

5: If (pp, P ′, Pj , prod , ppk ,m, σ, 0, lid , oid) ∈ Ratings for some P ′, lid , oid Then
Output error and halt.

6: Set r := (pp, Pi, Pj , prod , ppk ,m, σ, 1,LIDC ,⊥) and LIDC := LIDC +1.
7: Set Ratings.Add(r) and run RebLDB(sid , r,⊥).
8: Send (Rate, sid , pp, Pj , prod , ppk ,m, σ) to Pi.

Verifying a Rating: On input (Verify, sid , pp, Pj , prod , ppk ,m, σ) from Pi (or PSM)
1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
3: Send (Verify, sid , pp, Pj , prod , ppk ,m, σ, f) to Pi (or PSM).

6.1 An Ideal Functionality for Reputation Systems 73

VfyRtg: On internal input (sid , pp, Pj , prod , ppk ,m, σ)

1: If VfyProd(sid , Pj , prod , ppk) = 0 Then ignore the request.
2: Send (Verify, sid , pp, Pj , prod , ppk ,m, σ) to S and receive (Verify, sid , pp, Pj , prod , ppk ,
m,σ, b, P) from S.

3: If (pp, X ′, Pj , prod , ppk ,m, σ, f ′, lid ′, oid ′) ∈ Ratings for some X ′, f ′, lid ′ and oid ′

Then X :=X ′, f := f ′, oid := oid ′.
4: Else If b = 0 ∨ P = Pj Then

SetRatings.Add(pp,⊥, Pj , prod , ppk ,m, σ, 0,⊥,⊥), X :=⊥, f :=0, and oid :=⊥.
5: Else If Pj is honest ∧ P 6= ⊥ ∧ (P, Pj , prod , ppk) /∈ Purch Then

Output error and halt.
6: Else If P 6= ⊥ ∧ P is honest Then output error and halt.
7: Else If P = ⊥ ∧ PSM is honest Then output error and halt.
8: Else Set r := (pp, P, Pj , prod , ppk ,m, σ, 1,LIDC ,⊥), X := P , f := 1, and oid :=⊥.

Set LIDC := LIDC +1, Ratings.Add(r), and run RebLDB(sid , r,⊥).
9: Return (X, f, oid).

Linking Ratings: On input (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1) from Pi (or PSM)
1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: Set b := LinkRtgs(sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1).
3: Send (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1, b) to Pi (or PSM).

LinkRtgs: On internal input (sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1)

1: Set (Xk, fk, oidk) := VfyRtg(sid , pp, Pj , prod , ppk ,mk, σk) for k ∈ {0, 1}.
2: Send (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1) to S, receive (Link, sid , pp, Pj , prod ,

ppk ,m0, σ0,m1, σ1, b) from S, and set f := 0.
3: If f0 = f1 = 1 Then
4: Let rk ∈ Ratings be rk := (pp, Xk, Pj , prod , ppk ,mk, σk, 1, lidk, oidk), for k ∈ {0, 1}.
5: If lid0 = lid1 Then f := 1.
6: Else If X0 = X1 ∧X0 = ⊥ ∧X1 = ⊥ Then f := b.
7: Else If X0 6= X1 ∧X0 6= ⊥ ∧X1 6= ⊥ Then f := 0.
8: Else If (Xk = ⊥ ∧X1−k 6= ⊥ ∧X1−k is honest) for k = 0 ∨ k = 1 Then f := 0.
9: Else If (Xk = ⊥∧X1−k 6= ⊥∧X1−k is corrupted) for k = 0∨ k = 1 Then f := b.
10: If f = 1 Then run RebLDB(sid , r0, r1).
11: Return f .

RebLDB: On internal input (sid , r, s)

1: Parse r as (pp, X0, Pj , prod , ppk ,m0, σ0, 1, lid0, oid0).
2: If s = ⊥ ∧X1 6= ⊥ Then
3: Set L := {`|` ∈ Ratings ∧ `[1] = pp ∧ `[2] = X0 ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] =

ppk ∧ `[8] = 1} and lid := min{`[9]|` ∈ L}.
4: For Each ` ∈ L do

Set `′ := `, `′[9] := lid , and Ratings.Rep(`, `′).

74 6 Reputation Systems in the Universal Composability Framework

5: If s 6= ⊥ Then
6: Parse s as (pp, X1, Pj , prod , ppk ,m1, σ1, 1, lid1, oid1)

7: If X0 = ⊥ ∧X1 6= ⊥ Then Set X :=X1.
8: Else Set X :=X0.
9: Set L := {`|` ∈ Ratings ∧ `[1] = pp ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] = ppk ∧ `[8] =

1 ∧ (`[9] = lid0 ∨ `[9] = lid1)} and lid := min{lid0, lid1}.
10: For Each ` ∈ L do Set `′ := `, `′[2] :=X, `′[9] := lid , and Ratings.Rep(`, `′).
11: Set P := {p|p ∈ Purch ∧ p[2] = Pj ∧ p[3] = prod ∧ p[4] = ppk}.
12: Set L := {`|` ∈ Ratings ∧ `[1] = pp ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] = ppk ∧ `[8] = 1}.
13: If PSM is corrupted, Pj is honest and |P| < |{`[9]|` ∈ L}| Then
14: For Each (`, `′) ∈ L2 do
15: Run LinkRtgs(sid , `[1], `[3], `[4], `[5], `[6], `[7], `′[6], `′[7]) ignoring the

output of LinkRtgs.
16: Set P := {p|p ∈ Purch ∧ p[2] = Pj ∧ p[3] = prod ∧ p[4] = ppk}.
17: Set L := {`|` ∈ Ratings∧ `[1] = pp ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] = ppk ∧ `[8] = 1}.
18: If Pj is honest and |P| < |{`[9]|` ∈ L}| Then Output error and halt.

Determine Raters Identity: On input (Open, sid , pp, Pj , prod , ppk ,m, σ) from PSM

1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: If (PSM, pp) /∈ Params Then ignore the request.
3: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
4: If f = 1 Then
5: Let r ∈ Ratings be r := (pp, X, Pj , prod , ppk ,m, σ, 1, lid ′, oid) for some lid ′.
6: If oid = ⊥ Then r′ :=r, r′[10]:=OIDC , Ratings.Rep(r, r′) and OIDC := OIDC +1.
7: Send (Open, sid , pp, Pj , prod , ppk ,m, σ,X) to PSM.
8: Else Send (Open, sid , pp, Pj , prod , ppk ,m, σ,⊥) to PSM.

Generate Opening Proofs: On input (OProof, sid , pp, Pj , prod , ppk ,m, σ, P) from PSM

1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: If (PSM, pp) /∈ Params Then ignore the request.
3: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
4: Send (OProof, sid , pp, Pj , prod , ppk ,m, σ, P) to S and receive (OProof, sid , pp, Pj ,

prod , ppk ,m, σ, P, τ) from S.
5: If f 6= 1 ∨X 6= P ∨ oid = ⊥ Then

Send (OProof, sid , pp, Pj , prod , ppk ,m, σ, P,⊥) to PSM.
6: Else
7: If τ = ⊥ ∨ (oid , τ, 0, P) ∈ Open Then output error and halt.
8: Open.Add(oid , τ, 1, P) and send (OProof, sid , pp, Pj , prod , ppk ,m, σ, P, τ) to PSM.

6.1 An Ideal Functionality for Reputation Systems 75

Verify Opening-Proof: On input (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ) from Pi (or
PSM)
1: Check that sid = (PSM, sid ′) for some sid ′. If not, ignore the request.
2: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
3: Send (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ) to S and receive (Judge, sid , pp, Pj , prod ,

ppk ,m, σ, P, τ, b) from S.
4: Set v := b.
5: If f = 0 ∨ P = ⊥ ∨ τ = ⊥ Then

Send (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, 0) to Pi (or PSM).
6: Else If X 6= ⊥ Then
7: Let r ∈ Ratings be r := (pp, X, Pj , prod , ppk ,m, σ, 1, lid ′, oid) for some lid ′.
8: Set r′ := r.
9: If X = P ∧ (oid , τ, 1, P) ∈ Open Then v := 1.
10: Else If X 6= P ∨ (oid , τ, 0, P) ∈ Open Then v := 0.
11: Else If PSM and P are honest and b = 1 Then output error and halt.
12: Else
13: Let r ∈ Ratings be r := (pp,⊥, Pj , prod , ppk ,m, σ, 1, lid ′, oid) for some lid ′.
14: Set r′ := r.
15: If (oid , τ, 0, P) ∈ Open Then v := 0.
16: Else If b = 1 ∧ P is honest Then output error and halt.
17: Else If b = 1 Then

Set v:=1, r′[2]:=P , Ratings.Rep(r, r′), r:=r′, and run RebLDB(sid , r′,⊥).
18: If oid = ⊥ Then

r′[10] := OIDC , Ratings.Rep(r, r′), Open.Add(OIDC , τ, v, P), OIDC := OIDC +1.
19: Else Open.Add(oid , τ, v, P).
20: Send (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, v) to Pi (or PSM).

Functionality 1: Reputation System

6.1.3 Security Properties

As many other ideal functionalities in the UC framework, we define FRS to work as a „registry
service“ to store parameters, ratings, and opening-proofs. Using the right parameters, every
party is able to check whether ratings and opening-proofs are stored by FRS. In all
activations, FRS lets the simulator S choose the values needed to respond to the activation.
The requirements on these values are defined as restrictions for each activation. In the
following, we discuss these restrictions and the implied security properties.

Registry Key Generation: Similar to the Signature Functionality FSIG [Can04] and
the Public-Key Encryption Functionality FPKE [Can01], we do not make any security
relevant requirements on the public parameters pp.

76 6 Reputation Systems in the Universal Composability Framework

User Registration: Being registered is a prerequisite to rate a product and covers the
first step to prevent Sybil attacks, whitewashing attacks, bad mouthing attacks, and
ballot stuffing attacks. The user registration models an interactive protocol between
PSM and some party Pi. In general, FRS lets the simulator S decide whether party
Pi successfully registered, with the following two restrictions: non-registered honest
parties communicating with an honest PSM using the right public parameters will
always be registered after the protocol execution (b = 1) and an honest PSM will
reject a party from registering when wrong parameters are used (b = 0).

Product Addition and VfyProd: The NewProduct-activation is used by party Pi to
publish a new product-public key ppk for a given product prod ∈ {0, 1}∗. The value
ppk is bound to the bitstring prod and to the party requesting it, such that every
party can validate the ownership of a product. Formally this means that a product-
public key is only valid for one specific pair (P, prod). This is a very important
requirement, because it models unforgeability of product-public keys. Without this
property any corrupted party Pj could „copy“ some ppk that was generated by an
honest party Pi and declare foreign ratings as own ratings. Then all valid ratings
for (Pi, prod , ppk) would also be valid for (Pj , prod ′, ppk ′). Since we want to have a
reliable, trustworthy and fair system such attacks must be prevented. We emphasize
that VfyProd is modeled as an internal subroutine within FRS and is implicitly used
in other activations.

Purchase: Another prerequisite to rate a product is to purchase it. This is necessary to
prevent value imbalance attacks. The purchasing protocol is an interactive protocol
between two parties: the seller Pj and the purchaser Pi. Naturally, before purchasing
a product its corresponding product-public key is verified. Only if this is valid
the protocol will be executed. For two honest parties the purchasing process will
successfully finish, whereas the simulator S determines the outcome of the protocol
execution in any other case.

Rating a Product: When party Pi wants to rate the product prod with public key
ppk owned by party Pj , Pi must be registered, must have purchased the specified
product, and must not have rated the product before. Being registered is necessary to
open ratings, whereas having purchased the product enables rating verifiers to detect
self-ratings, bad mouthing attacks and ballot stuffing attacks. In the case that PSM

is honest, FRS guarantees anonymity of raters: the simulator S is asked to output
a rating σ, that is valid for the specified product without knowing the rating party.
Hence, the output rating cannot depend on the rater’s identity. In the case that PSM

is corrupted, the simulator S obtains the identity of the rater, because in this case
anonymity cannot be achieved.

Rating Verification and Determining the Rater’s Identity: Given the right pa-
rameters, every rating can be verified. Note that ratings are only verified, if the
specified product is valid. A valid rating guarantees the following properties, even for
maliciously generated ratings:

• Non-Self-Rating: the rater is not the owner of the product.
• Linkability: the rater purchased the product (will be discussed later in detail).
• Traceability: the rater is registered and can be identified.

6.1 An Ideal Functionality for Reputation Systems 77

Every single property is crucial for trustworthy reputation. If self-ratings would not
be prevented, ballot stuffing attacks were possible. The same holds for linkability,
but this will be discussed later in detail. Being able to open ratings is also very
important in practical applications, because otherwise misbehaving parties can not
be identified and punished. Hence, it must be guaranteed that honest parties are
not blamed having rated some product, when they did not. This property is called
non-frameability and is discussed later in detail.

FRS not only asks the simulator S to validate a rating, but also to determine the
rater’s identity. This models the ability of PSM to open every rating, not only those
for which an Open-request occurs. Furthermore, it simplifies the definition of FRS

without weakening the security properties, because VfyRtg encapsulates all important
characteristics of a valid rating in a single and reusable procedure.

Linking Ratings and RebLDB: For every party using a reputation system it is important
to know whether two valid ratings for the same product are generated by the same
party. If this is true, the rater behaved dishonestly. We call this property linkability,
which prevents bad mouthing attacks and ballot stuffing attacks, and formally defines
an equivalence relation on ratings:

Reflexivity: Link(x, x) = 1

Symmetry: Link(x, y) = Link(y, x)

Transitivity: Link(x, y) = 1 ∧ Link(y, z) = 1⇒ Link(x, z) = 1.

The value lid stored by FRS for every rating represents the equivalence class the
rating belongs to. Initially, lid is set to the current value of a global counter LIDC .
The linking-class identifiers are updated by the RebLDB algorithm whenever a new
rating is added to the list Ratings (via Rate and Verify) or new linking information is
obtained (via Link and Judge). This algorithm is only for internal use and not callable
by any party. The RebLDB-algorithm merges two equivalence classes in the following
cases:

• Step 2 covers calls to the algorithm from Rate, Verify, and Judge (s = ⊥), where
PSM is not corrupted and/or X1 is an uncorrupted rater (X1 6= ⊥). In these
cases RebLDB selects all valid ratings for the specified product from the same
rater X1 (the set L) and sets the value lid (`[9] for ` ∈ L) for all ratings in L to
the minimal value within the selected ratings.

• Step 5 handles requests from Link where either the identity of the rater is not
known but the simulator S tells FRS that these ratings are linkable (Step 6 of
Link), or the identity of some corrupted party can be updated for some rating,
because it is linkable to another rating FRS already knows the identity of (Step 9
in Link). According to the transitivity of the linkability relation, RebLDB merges
the two equivalence classes into one class by selecting all ratings within the two
classes (Step 9) and setting lid to be the smaller of both values. Additionally, if
a party identity is given in X1 or X2 this value will be set for all ratings within
the equivalence class (Step 10).

78 6 Reputation Systems in the Universal Composability Framework

• In Steps 11–18 RebLDB verifies that there do not exist more equivalence classes
for an honestly generated product than the party owning the product sold. This
ensures that it is only possible to rate a product once (without being linkable)
after purchasing.

When PSM is corrupted, it is possible that no linking information is available to
FRS. In this case FRS asks the simulator S to link all ratings for the product in
question. Without this step a simple attack is possible:

– Z lets the real-world adversary A corrupt PSM and some party Pi, lets Pi
purchase some product from an honest party Pj , generates multiple valid
ratings for this product and verifies them.

– In this scenario FRS adds the ratings to Ratings during the Verify-protocol,
which in turn calls RebLDB. Since no linking information is available to
FRS, without Step 13 FRS outputs error, even when all ratings are linkable.
Hence, no protocol can realize FRS.

If after Step 13 there are still more equivalence classes than purchases, this
violates the security requirements of FRS.

Summarizing, the handling of equivalence classes is modeled by the RebLDB-algorithm
which uses linking information obtained from the algorithms Rate, Verify, Link, and
Judge.

Generating and Verifying Opening-Proofs: Opening-proofs are values that enable
every party to verify that a blamed party is really the author of a given rating. This
covers the property of non-frameability : no honest party can be accused being the
author of a given rating, when it is not. FRS asks the simulator S to output valid
opening-proofs and ignores the output of S, if the given rating is invalid, a wrong
identity is given or the rating has not been opened yet. Since there can be more
than one valid opening-proof, the value oid is used to connect a rating with its list of
opening-proofs. This mechanism ensures that an opening-proof cannot be used to
determine a raters identity for other ratings.

6.2 Realizing Reputation Systems

In this section we provide a protocol that UC-realizes FRS. To give some intuition to this
protocol we describe the used building blocks and how they are combined in Section 6.2.1.
Afterwards, we present the Protocol ΠRS in Section 6.2.2, that UC-realizes FRS in a hybrid
model. The proof of UC-security is presented in Section 8.2.

6.2.1 Building Blocks and Intuition

The basic idea for a protocol realizing FRS is as follows. At first, a user chooses a personal
secret key and registers it at a certification authority to bind the chosen key to his identity.
Then, the user runs the Register-protocol to interactively prove knowledge of his secret key
to the System Manager. When the System Manager accepts the interaction, he hands a

6.2 Realizing Reputation Systems 79

registration token to the user. A similar interactive proof is used in the Purchase-protocol,
but a user obtains a rating token from a product provider when the interaction is accepted.
To rate a purchased product a user can then non-interactively prove knowledge of a
registration token and a rating token. The used non-interactive proof must ensure that
ratings are linkable and can be opened by the System Manager. To enable the System
Manager to generate opening-proofs, every user has to provide an opening token during
the Register-protocol. By proving knowledge of this token non-interactively, the System
Manager can convince anybody that a rating was generated by a claimed author.

For our protocol ΠRS we combine Σ-protocols, trapdoor commitments, digital signatures,
public-key encryption, and the ideal functionalities FCRS for common reference strings, FCA

for a certification authority, and FRO for a random oracle to provide a protocol that realizes
FRS. The Σ-protocols are used as the basis for interactive and non-interactive proofs. To
apply Damgård’s technique, Lemma 2.1, which provides a transformation of Σ-protocols
into concurrent black-box zero-knowledge arguments of knowledge, we need a trapdoor
commitment scheme. Since universally composable commitment schemes do not exist in
the plain model, as shown by Canetti and Fischlin [CF01], we use a common reference
string provided by FCRS to realize the commitments. The functionality FRO is needed for
the Fiat-Shamir Transformation, Definition 2.25, that transforms Σ-protocols into non-
interactive arguments. Indeed, we use Signatures of Knowledge based on Σ-protocols. The
digital signature schemes we incorporate in our protocol are used to provide the registration
tokens and the rating tokens a user needs to rate a product. By integrating a public-key
encryption scheme users can securely transmit opening tokens to the System Manager.

Now let us describe how these building blocks are combined, starting with the formal
definition of the ideal functionality FCRS.

FCRS

FCRS operates on distribution D and controls the value crs, which is initialized to ⊥.

Retrieving the CRS: On input (sid) from P or S
1: If crs = ⊥ Then set crs ←D.
2: Send (sid , crs) to the activating party (P or S).

Functionality 2: Common Reference String

For our protocol the common reference string will consist of a group description GD of
Type-3 bilinear groups, the public key of the Trapdoor Pedersen Commitment scheme
and the description of three collision-resistant hash functions. The Trapdoor Pedersen
Commitment scheme is defined as follows.

Definition 6.1: Trapdoor Pedersen Commitments PD - [Ped92]
Let GD = (p,G1,G2,GT , e, g1, g2) be a bilinear group setting of Type-3, with generators
g1 ∈ G1 and g2 ∈ G2. The Trapdoor Pedersen Commitment Scheme for messages m ∈ Zp
is defined as follows:

KeyGen(GD)

Choose td ←u Zp, u←u G1, set v := utd , and output pk := (u, v).

80 6 Reputation Systems in the Universal Composability Framework

Commit(pk ,m)

Choose r←u Zp and output the commitment c :=um ·vr and the decommitment d :=(r,m).

Reveal(pk , c, d = (r,m))

If Commit(pk ,m; r) = c Then output m.
Else output ⊥

TCommit(pk , td)

Choose r∗,m∗←u Zp, compute the equivocal commitment ĉ := Commit(pk ,m∗; r∗) and
the equivocation key ek := (r∗,m∗, td), and output (ĉ, ek).

TReveal(pk , ĉ, ek = (r∗,m∗, td),m)

Compute r := (m∗ −m+ td · r∗) · td−1 and output the decommitment d := (r,m). 4

A peculiarity of the Trapdoor Pedersen Commitment is that equivocal commitments are
generated exactly as normal commitments without using the trapdoor. Hence, it is possible
to reveal arbitrary messages for any given commitment, as long as the trapdoor is known.

To ensure that users cannot register at the System Manager multiple times with different
identities we require every user Pi to choose a personal user secret key usk i and a corre-
sponding public key Mi, which must be registered at the ideal functionality for certification
FCA [Can04]. Once registered at FCA a value Mi cannot be modified.

FCA

Registering Values: On input (Register, sid , v) from Pi

1: Send (Register, sid) to S and receive (Register, sid , ok) from S.
2: If sid = Pi and this is the first request Then record (Pi, v).

Retrieving registered values: On input (Retrieve, sid) from Pj

1: Send (Retrieve, sid , Pj) to S and receive (Retrieve, sid , Pj , ok) from S.
2: If there is a tuple (sid , v) recorded Then send (Retrieve, sid , v) to Pj .
3: Else send (Retrieve, sid ,⊥) to Pj .

Functionality 3: Certification Authority

Before a user Pi can be registered by the System Manager, the public parameters pp have
to be set up by PSM. These parameters are the public keys of the Pointcheval-Sanders
Signature scheme and the Cramer-Shoup Encryption scheme.

Definition 6.2: Pointcheval-Sanders Signatures PS - [PS16]
Let GD = (p,G1,G2,GT , e, g1, g2) be a bilinear group setting of Type-3, with generators
g1 ∈ G1 and g2 ∈ G2. The Pointcheval-Sanders Signature Scheme for messages m ∈ Zp is
defined as follows:

6.2 Realizing Reputation Systems 81

KeyGen(GD)

1: Choose ξ1, ξ2←u Zp, and g̃←u G2.
2: Set (X̃, Ỹ) := (g̃ξ1 , g̃ξ2), sk := (ξ1, ξ2), pk := (g̃, X̃, Ỹ), and output (pk , sk).

Sign(sk ,m)

Choose s←u G1, set σ := (σ1, σ2) := (s, sξ1+ξ2·m) and output σ as signature on m.

Verify(pk ,m, σ)

If σ1 6= 1G1 ∧ e(σ1, X̃ · Ỹ m) = e(σ2, g̃) Then output 1

Else output 0. 4

To sign committed messages M = gm ∈ G1 a modified signing algorithm can be used:

Sign(sk ,M)

Choose α←u Zp, set σ = (σ1, σ2) :=
(
gα1 , (g

ξ1
1 ·M ξ2)α

)
, and output σ as signature on m.

Definition 6.3: Cramer-Shoup Encryption CS - [CS98]
Let GD = (p,G1,G2,GT , e, g1, g2) be a bilinear group setting of Type-3, with generators
g1 ∈ G1 and g2 ∈ G2, and let H : {0, 1}∗ → Zp be a collision resistant hash function. The
Cramer-Shoup Encryption Scheme for messages m ∈ G2 is defined as follows:

KeyGen(GD)

1: Choose h̃←u G2 and ζ1, ζ2, ζ3, ζ4, ζ5←u Zp.
2: Set b̃ :=gζ12 · h̃ζ2 , d̃ :=gζ32 · h̃ζ4 , f̃ :=gζ52 , sk :=(ζ1, ζ2, ζ3, ζ4, ζ5), and pk :=(g2, h̃, b̃, d̃, f̃ ,H).
3: Output the key pair (sk , pk).

Enc(pk ,m)

1: Choose β←u Zp
2: Set ct1 := gβ2 , ct2 := h̃β , ct3 :=m · f̃β , ω :=H(ct1, ct2, ct3), ct4 := (b̃ · d̃ω)β .
3: Output the cipher text ct := (ct1, ct2, ct3, ct4).

Dec(sk , ct)

If ct4 = ctζ11 · ctζ22 · (ctζ31 · ctζ42)ω, where ω :=H(ct1, ct2, ct3) Then output m := ct3 · ct−ζ51

Else output ⊥ 4

Using the common reference string provided by FCRS, the public parameters pp provided
by PSM, and the user’s secret and public key (usk i,Mi) a user Pi can register at the System
Manager by running a concurrent black-box zero-knowledge argument of knowledge to
prove that Pi knows a value usk i such that Mi is the public key corresponding to usk i.
When PSM is convinced, he computes a registration token σi, which is a Pointcheval-Sanders
Signature on the message usk i, that is computed as a signature on the committed message
Mi. During the registration the user Pi also has to provide a value Ŷi ∈ G2, the opening
token, that depends on usk i and will be used by the System Manager to open ratings.

82 6 Reputation Systems in the Universal Composability Framework

Hence, this value must be sent securely to PSM to preserve anonymity. For this purpose
the Cramer-Shoup Encryption scheme is used in G2.

To provide a rateable product prod a user Pi has to publish a product public-key ppk .
Therefor the user generates a new public key PS.pk i,prod of the Pointcheval-Sanders Signature
scheme, where the generator g̃ ∈ G2 is not chosen uniformly at random but determined by
the hash value H2(i, prod). Then, the user binds PS.pk i,prod to his identity with a Signature
of Knowledge. This Signature of Knowledge is a Σ-protocol that was transformed using
the Fiat-Shamir Transformation, Definition 2.25, hence they are only secure in the random
oracle model. The random oracle is provided by the ideal functionality FRO [HM04].

FRO

FRO operates on security parameter λ and manages the list LRO of pairs of bitstrings,
which is initially empty.

Retrieving values: On input (sid ,m) from P or S
1: If (m, v) ∈ LRO for some v ∈ {0, 1}λ Then set h := v

2: Else choose h←u {0, 1}λ and store (m,h) in LRO
3: Send (sid ,m, h) to the activating party (P or S).

Functionality 4: Random Oracle

A user Pi can purchase a product prod , managed by user Pj , by running the same zero-
knowledge protocol that is used for registration. After a successful protocol execution the
user Pi obtains a rating token, which is a Pointcheval-Sanders Signature on usk i, valid
under the public key PS.pk i,prod .

To rate a product a user Pi has to non-interactively prove knowledge of the registration
token σi, the rating token σi,j,prod , and its personal user secret key usk i, for which the tokens
were generated. Similar to the product public key, ratings are Signatures of Knowledge
obtained from Σ-protocols by applying the Fiat-Shamir Transformation.

To determine the rater’s identity, the System Manager can use the opening token that
was provided by the user Pi during registration. By proving non-interactively that an
opening token and a rating both depend on the same unknown user secret key usk i the
System Manager can create an opening-proof, which are again Signatures of Knowledge. It
is important not to publish the opening tokens, because they allow to open any rating.

6.2.2 The Protocol

In our construction the output of FCRS is (GD,PD.pk ,H,H1,H2), where GD is the output
of the bilinear group generator BiGrGen(1λ), PD.pk = (u, v) ∈ G2

1 is the public key of
the Trapdoor Pedersen Commitment scheme, and H : {0, 1}∗ → Zp, H1 : {0, 1}∗ → G1,
and H2 : {0, 1}∗ → G2 are collision-resistant hash functions. We assume that every party
obtains the common-reference string during its first activation.

We write y := FRO(x) to indicate a call to FRO on input (sid , x) and outputting y to the
calling party.

6.2 Realizing Reputation Systems 83

We assume to communicate via authenticated channels between two parties. This implies
that the identities of communicating parties are known to each other and that the adversary
cannot modify the message’s content.

ΠRS

All parties except PSM: On the first activation of Pi
1: Choose a value usk i←u Zp and compute Mi := gusk i1 , where g1 ∈ G1 is given by FCRS.
2: Send (Register, Pi,Mi) to FCA, and store the user-secret-key usk i.

Registry Key Generation: When PSM receives (KeyGen, sid) from Z
1: Run PS.KeyGen(GD) to obtain PS.pk := (g̃, X̃, Ỹ) and PS.sk := (ξ1, ξ2).
2: Run CS.Setup(GD) to obtain CS.pk := (g2, h̃, b̃, d̃, f̃ ,H) and CS.sk := (ζ1, ζ2, ζ3, ζ4, ζ5).
3: Set pp := (PS.pk ,CS.pk) and psk := (PS.sk ,CS.sk).
4: Set Params.Add(pp) and Paramss.Add(pp, psk).
5: Output (KeyGen, sid , pp).

User Registration: When Pi receives (Register, sid , pp′) from Z
Pi: 1: Choose α, r←u Zp, compute T := gα1 , R := uH(T) · vr and send (pp′, R) to PSM.
PSM: 2: Obtain Mi from FCA(Retrieve, Pi).

3: If FCA returned (Retrieve, Pi,⊥) ∨ pp′ /∈ Params ∨ (Pi, pp′,M ′, Y ′, σ′) ∈ Reg for
some M ′, Y ′, σ′ Then send abort to Pi and output (Register, sid , pp′, Pi, 0).

4: Else Choose ch←u Zp and send ch to Pi.
Pi: 5: If PSM sent abort Then output (Register, sid , pp′, Pi, 0).

6: Else Compute sα :=α+ch ·usk i, ct←CS.Enc(CS.pk , Ỹ usk i) and send (sα, T, r, ct)
to PSM.

PSM: 7: Compute Ỹi := CS.Dec(CS.sk , ct).
8: If decrypting ct failed ∨ M ch

i · T 6= gsα1 ∨ R 6= uH(T) · vr ∨ e(Mi, Ỹ) 6= e(g1, Ỹi)
Then send abort to Pi and output (Register, sid , pp′, Pi, 0).

9: Else compute σi← PS.Sign(PS.sk ,Mi), set Reg.Add(Pi, pp ′,Mi, Ỹi, σi), send σi
to Pi, and output (Register, sid , pp′, Pi, 1).

Pi: 10: If PSM sent abort Then output (Register, sid , pp′, Pi, 0).
11: Else If PS.Verify(pp′, usk i, σi) = 1 Then
12: store (pp′, usk i, σi) and output (Register, sid , pp′, Pi, 1).
13: Else output (Register, sid , pp′, Pi, 0).

Product Addition: When Pi receives (NewProduct, sid , prod) from Z
1: Compute g̃i,prod :=H2(i, prod) and run PS.KeyGen(GD) with g̃i,prod as generator of G2

to obtain PS.pk i,prod := (g̃i,prod , X̃i,prod , Ỹi,prod) and PS.sk i,prod := (ξ1i,prod , ξ2i,prod).
2: Compute Mi,prod :=H1(i, prod)usk i .
3: Choose r←u Zp and compute R1 :=H1(i, prod)r and R2 := gr1.
4: Set chi,prod := FRO(PS.pk i,prod ,Mi,Mi,prod , R1, R2) and si,prod := r + chi,prod · usk i.
5: Set ppk i,prod := (Mi,Mi,prod , chi,prod , si,prod ,PS.pk i,prod).

84 6 Reputation Systems in the Universal Composability Framework

6: Set Prodsi.Add(prod , ppk i,prod).
7: Output (NewProduct, sid , prod , ppk i,prod).

Purchase: When Pi receives (Purchase, sid , Pj , prod , ppk) from Z
Pi: 1: If VfyProd(Pj , prod , ppk) = 0 ∨ Pi = Pj Then ignore the request.

2: Else choose α, r←u Zp, compute T := gα1 , R := uH(T) · vr and send (prod , ppk , R) to
Pj .

Pj : 3: Obtain Mi from FCA(Retrieve, Pi).
4: If FCA returned (Retrieve, Pi,⊥) ∨ (prod , ppk) /∈ Prodsj Then
5: send abort to Pi and output (Purchase, sid , Pi, Pj , prod , ppk , 0).
6: Else choose ch←u Zp and send ch to Pi.

Pi: 7: If Pj sent abort Then output (Purchase, sid , Pi, Pj , prod , ppk , 0).
8: Else compute sα := α+ ch · usk i and send (sα, T, r) to Pj .

Pj : 9: If M ch
i · T 6= gsα1 ∨R 6= uH(T) · vr Then

10: send abort to Pi and output (Purchase, sid , Pi, Pj , prod , ppk , 0).
11: Else compute σi,j,prod ← PS.Sign(PS.sk i,prod ,Mi)

12: set Purchj .Add(Pi, prod , σi,j,prod).
13: Send σi,j,prod to Pi.

Pi: 14: If Pj sent abort Then output (Purchase, sid , Pi, Pj , prod , ppk , 0).
15: Else If PS.Verify(PS.pki,prod , usk i, σi,j,prod) = 1 Then
16: store σi,j,prod , and output (Purchase, sid , Pi, Pj , prod , ppk , 1).
17: Else output (Purchase, sid , Pi, Pj , prod , ppk , 0).

VfyProd: On local input (Pj , prod , ppk)

1: Obtain Mj from FCA(Retrieve, Pj)

2: If FCA returned (Retrieve, Pj ,⊥) Then return 0.
3: Else parse ppk as (M ′j ,Mj,prod , chj,prod , sj,prod ,PS.pk j,prod).

4: Set R1 :=H1(j, prod)sj,prod ·M−chj,prodj,prod and R2 := g
sj,prod
1 ·M−chj,prodj .

5: If Mj 6= M ′j ∨ chj,prod 6= FRO(PS.pk j,prod ,Mj ,Mj,prod , R1, R2) Then return 0.
6: Else return 1.

Rate Product: When Pi receives (Rate, sid , pp, Pj , prod , ppk ,m) from Z
1: If no tuple (pp, usk i, σi) is stored such that PS.Verify(pp, usk i, σi) = 1

∨ no σi,j,prod is stored such that PS.Verify(PS.pk i,prod , usk i, σi,j,prod) = 1
∨ a tuple (m′, σ) = (m′, T1, T2, T3, T4, T5, ch, s) is stored such that (Verify, sid , pp,
Pj , prod , ppk ,m′, σ) = 1 Then ignore the request.

2: Choose t1, t2, k←u Zp.
3: Compute T1 := σt1i,1, T2 := σt1i,2, T3 := σt2i,j,prod ,1, T4 := σt2i,j,prod ,2, T5 :=H1(j, prod)usk i .

4: Compute R1 := e(T1, Ỹ)k, R2 := e(T3, Ỹj,prod)k, R3 :=H1(j, prod)k.
5: Set ch := FRO(T1, T2, T3, T4, T5, R1, R2, R3, pp, prod , ppk ,m), and s := k + ch · usk i.
6: Set σ := (T1, T2, T3, T4, T5, ch, s) and store (m,σ).
7: Output (Rate, sid , pp, Pj , prod , ppk ,m, σ).

6.2 Realizing Reputation Systems 85

Verify Rating: When Pi receives (Verify, sid , pp, Pj , prod , ppk ,m, σ) from Z
1: If VfyProd(Pj , prod , ppk) = 0 Then ignore the request.
2: Parse σ as (T1, T2, T3, T4, T5, ch, s).
3: Set R′1 := e(T1, X̃)ch · e(T2, g̃)−ch · e(T1, Ỹ)s, R′3 := T−ch5 · H1(j, prod)s,
R′2 := e(T3, X̃j,prod)ch · e(T4, g̃j,prod)−ch · e(T3, Ỹj,prod)s.

4: Set f :=
[
T5 6= Mj,prod ∧ ch = FRO(T1, T2, T3, T4, T5, R

′
1, R

′
2, R

′
3, pp, prod , ppk ,m)

]
5: Output (Verify, sid , pp, Pj , prod , ppk ,m, σ, f).

Link Ratings: When Pi receives (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1) from Z
1: If (Verify, sid , pp, Pj , prod , ppk ,mk, σk) = 1, for k ∈ {0, 1} Then
2: Parse σ0 as (T1, T2, T3, T4, T5, ch, s), and σ1 as (T ′1, T

′
2, T

′
3, T

′
4, T

′
5, ch ′, s′).

3: Output (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1, (T5 = T ′5)).
4: Else Output (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1, 0).

Identify Raters: When PSM receives (Open, sid , pp, Pj , prod , ppk ,m, σ) from Z
1: If pp /∈ Params Then ignore the request.
2: Set f := (Verify, sid , pp, Pj , prod , ppk ,m, σ).
3: If f = 1 Then parse σ as (T1, T2, T3, T4, T5, ch, s) and iterate through Reg to find a

tuple (Pi, pp,Mi, Ỹi, σi) such that e(T5, Ỹ) = e(H1(j, prod), Ỹi).
4: If f = 0 ∨ no such tuple exists Then output (Open, sid , pp, Pj , prod , ppk ,m, σ,⊥).
5: Else Set Open.Add(pp, Pj , prod , ppk ,m, σ, Pi).
6: Output (Open, sid , pp, Pj , prod , ppk ,m, σ, Pi).

Generate Opening-Proof: When PSM receives (OProof, sid , pp, Pj , prod , ppk ,m, σ, P)
from Z
1: If pp /∈ Params Then ignore the request.
2: Set f := (Verify, sid , pp, Pj , prod , ppk ,m, σ).
3: If f = 0 ∨ (pp, Pj , prod , ppk ,m, σ, P) /∈ Open Then
4: output (OProof, sid , pp, Pj , prod , ppk ,m, σ, P,⊥).
5: Else Parse σ as (T1, T2, T3, T4, T5, ch, s).
6: Select the tuple (P, pp,Mi, Ỹi, σi) such that e(T5, Ỹ) = e(H1(j, prod), Ỹi).
7: Choose β←u Zp and compute ct := (ct1, ct2, ct3, ct4)← CS.Enc(CS.pk , Ỹi;β).
8: Choose r←u Zp and compute R1 := gr2, R2 := h̃r, R3 := e(H1(j, prod), f̃)r.
9: Compute ω :=H(ct1, ct2, ct3), R4 := (b̃ · d̃ω)r, R5 := e(g1, f̃)r.

10: Set ĉh :=FRO(ct , R1, R2, R3, R4, R5, σ, i,Mi), ŝ :=r+ ĉh ·β, and τ :=(Pi, ct , ĉh, ŝ).
11: Set Open.Add(pp, Pj , prod , ppk ,m, σ, P, τ).
12: Output (OProof, sid , pp, Pj , prod , ppk ,m, σ, P, τ).

Verify Opening-Proof: When Pi receives (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ) from Z
1: Set f := (Verify, sid , pp, Pj , prod , ppk ,m, σ).
2: Obtain M from FCA(Retrieve, P).
3: If FCA returned (Retrieve, P,⊥) ∨ f = 0 ∨ P = ⊥ ∨ τ = ⊥ Then

86 6 Reputation Systems in the Universal Composability Framework

4: output (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, 0).

5: Else Parse τ as (Pi, (ct1, ct2, ct3, ct4), ĉh, ŝ).

6: Compute R1 := ct−ĉh1 · gŝ2, R2 := ct−ĉh2 · h̃ŝ.
7: Compute R3 := e(H1(j, prod), ct3)−ĉh · e(T5, Ỹ)ĉh · e(H1(j, prod), f̃)ŝ

8: Compute ω :=H(ct1, ct2, ct3).

9: Compute R4 := ct−ĉh4 · (b̃ · d̃ω)ŝ, R5 := e(g1, ct3)−ĉh · e(M, Ỹ)ĉh · e(g1, f̃)ŝ.

10: Set f := (P = Pi ∧ ĉh = FRO(ct , R1, R2, R3, R4, R5, σ, i,M)).
11: Output (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, f)

Protocol 1: Protocol for FRS

The Protocol ΠRS is defined in the (FRO, FCRS, FCA)-hybrid model assuming authenticated
channels for communication. That means, for a proof of security we have to define a
simulator S that fully controls the ideal functionalities FRO, FCRS, and FCA. Hence, the
simulator determines the public key of the Trapdoor Pedersen Commitment scheme and
knows the corresponding trapdoor, which is needed to simulate the interactive proofs
during the Register and Purchase-protocols. Furthermore, FRO can be patched to generate
simulated Signatures of Knowledge. With these prerequisites we are able to prove the
following theorem.

Theorem 6.1:
If the SXDH Assumption and the Pointcheval-Sanders Assumption hold for bilinear group
generator BiGrGen, the hash functions H,H1, and H2 are collision-resistant, and the
communication channels between interacting parties are authenticated, Protocol ΠRS UC-
realizes FRS in the (FRO, FCRS, FCA)-hybrid model, in the presence of static adversaries. �

The full proof is given in Section 8.2.

Further Extensions and
Future Research 7

This chapter is based on our paper „Practical, Anonymous, and Publicly Linkable Universally-
Composable Reputation Systems“, presented at the Cryptographers’ Track of the RSA
Conference 2018 [BEJ18].

In this chapter we briefly discuss further extensions of the ideal functionality FRS and its
realizing protocol ΠRS and point out interesting aspects of anonymous reputation systems
that need further research.

7.1 Considering Adaptive Adversaries against FRS

Theorem 6.1 only claims security against static adversaries, because anonymity and linkabil-
ity are conflicting security properties, which impede the construction of UC-secure protocols
in the presence of adaptive adversaries. To illustrate that, consider the following corruption
with an adaptive adversary A:

• The System Manager is honest.

• After registering and purchasing some product an honest user Pi is asked to rate the
product.

• The user Pi is corrupted by A directly after outputting the rating.

• Now the adversary A generates a second rating for the same product.

According to the definition of FRS the two ratings must be linkable. In the real protocol
this is true because the user Pi used the same secret keys the adversary obtains during
corruption. But in the ideal protocol the simulator S does not obtain any identifying
information about Pi during a Rate-request and has to simulate a rating. Hence, the
simulator S has to guess which identity to use during the rating simulation. This means
that ratings are not linkable in the ideal protocol with high probability such that it is easy
to distinguish between the ideal and the real protocol. Therefore, it seems unlikely that
FRS is UC-realizable in the presence of adaptive adversaries. This problem needs further
investigation in future research.

88 7 Further Extensions and Future Research

7.2 Incorporating Revocation into FRS and ΠRS

Comparing the model for reputation systems from Chapter 4 with FRS it stands out that
revocation of users is not considered in FRS. The opening-proof mechanism FRS provides is
a revocation technique that rescinds anonymity of the author of a single rating. But more
extensive notions of revocation exist:

• Revoke a user completely such that the user cannot purchase products anymore, all
existing ratings become invalid, and all future ratings will be invalid.

• Revoke all or selected existing ratings of a user while preserving the ability to rate.
• Preserve existing ratings of a user but prohibit future ratings.

Which revocation technique to use depends on the higher-level application. Because of that,
we do not integrate revocation in the definition of FRS. Nevertheless, Protocol ΠRS can be
easily extended to support verifier-local revocation, which revokes a user completely. To
revoke the user Pi the System Manager PSM, or even Pi himself, publishes the opening
token Ỹi as the user’s revocation token rt i on a revocation-list RL. Then any verifier
can check whether the author of a given rating σ = (T1, T2, T3, T4, T5, ch, s) is revoked by
testing if the equation e(T5, Ỹ) = e(H1(j, prod), rt) holds for an entry rt ∈ RL. Since this
is the same check the System Manager performs when opening a rating, the anonymity of a
revoked user is also rescinded. Analogously, during Purchase-requests the product owner
can test whether e(Mi, Ỹ) = e(g1, rt) holds to detect a revoked user Pi.

In contrast to that, a simple way to revoke selected ratings is given by the public linkability.
To revoke a single rating its author can generate a second, and hence linkable, rating for the
same product. The higher-level application can then treat linkable ratings as revoked ones.
A drawback of this solution is that the only party with the ability to selectively revoke
ratings is the rating’s author, since he is the only party knowing the user secret key usk i.

7.3 Attribute-based Ratings

In the reputation systems defined in Chapter 4 and Chapter 6 ratings ensure that an
anonymous user is registered and purchased the rated product. But it also might be useful
to have ratings expressing different properties about the rater. To give an example this
could be „the author of this rating is at least 30 years old and is either a mathematician or
a magician“. Such statements can be expressed with attribute-based signatures.

Attribute-based signatures, introduced by Maji, Prabhakaran, and Rosulek [MPR11], extend
the functionality of group signatures. But instead of managing a single group of signers
based on their identity, in an attribute-based signature scheme signers obtain secret keys
based on their attributes. These keys allow to sign messages with respect to a given policy,
if and only if the encoded attributes satisfy the policy. The resulting signature hides the
used attributes and any identifying information about the signer. Therefore, it should be
possible to combine reputation systems with attribute-based signatures without affecting
anonymity. Indeed, it is known how to construct universally composable attribute-based
signatures [BEJ18a], so the only problem needing further investigation is how to make them
compatible with public linkability.

Security Proofs 8
The first section of this chapter is based on our paper „Anonymous and Publicly Linkable
Reputation Systems“, presented at the International Conference on Financial Cryptography
and Data Security 2015 [BJK15], whereas the second section of this chapter is based on our
paper „Practical, Anonymous, and Publicly Linkable Universally-Composable Reputation
Systems“, presented at the Cryptographers’ Track of the RSA Conference 2018 [BEJ18].

In this chapter we present the proofs of anonymity, public linkability, traceability and strong
exculpability for the reputation system from Section 4.2.2 and the proof that the protocol
ΠRS UC-realizes the ideal functionality FRS.

8.1 Experiment-based Security

In this section we give the proofs of security for the construction defined in Section 4.2.2. In
all proofs we model the hash functions H and H1 as random oracles and assume, without
loss of generality, that an adversary A never queries an oracle twice with the same input.
We further estimate the number of oracle queries from A, which is polynomially bounded
since A is a probabilistic polynomial-time algorithm.

For the proof of anonymity we need the following lemma.

Lemma 8.1:
Let G be a multiplicative group of prime order p and let G := (u, v, w, ua, vb, wc) ∈ G6

be an instance of the Decision Linear Problem in G. Then we can construct another
instance H := (r, s, t, rd, se, tf) ∈ G6 that is independent of G but has the same probability
distribution as G. �

Proof. Choose the values α, β, γ, δ, ε, ϕ←u Zp and set

r := uα s := vβ t := wγ rd := (ua)α·ϕ · uα·δ se := (vb)β·ϕ · vβ·ε tf := (wc)γ·ϕ · wγ·(δ+ε)

With α, β, γ, δ, ε←u Zp the first five components of H are distributed uniformly at random.
For the exponents d, e and f it holds

d = a · ϕ+ δ e = b · ϕ+ ε f = c · ϕ+ δ + ε,

90 8 Security Proofs

hence
f = d+ e ⇔ c · ϕ+ δ + ε = a · ϕ+ δ + b · ϕ+ ε ⇔ c · ϕ = (a+ b) · ϕ,

so H is distributed exactly as G.

The proofs of public linkability, traceability, and strong exculpability use the General
Forking Lemma, so we restate it here.

Lemma 2.2: General Forking Lemma - [BN06]
Fix q ∈ N and a set H of size h := |H| ≥ 2. Let IG be a probabilistic algorithm, called the
input generator, and let A be a probabilistic algorithm that on input (x, h1, . . . , hq) returns
a tuple (J, St), where x is the output of IG, h1, . . . , hq ∈ H, J ∈ {0, . . . , q} and St is some
state information. Further let

εA := Pr[x← IG, h1, . . . , hq←u H, (J, St)←A(x, h1, . . . , hq) : J ≥ 1]

and the forking algorithm FA associated to A be the probabilistic algorithm that takes x
as input and proceeds as follows:

FA(x)

1: Pick random bits ω for A

2: h1, . . . , hq←u H
3: (I, St)←A(x, h1, . . . , hq;ω)

4: If I = 0 Then return (0,⊥,⊥)

5: h′I , . . . , h
′
q←u H

6: (I ′, St′)←A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q;ω)

7: If I = I ′ ∧ hI 6= h′I Then return (1,St, St′)

8: Else return (0,⊥,⊥)

Define the success probability of FA as

εFA
:= Pr[x← IG, (b,St, St′)← FA(x) : b = 1].

Then it holds

εFA ≥ εA ·
(
εA
q
− 1

h

)
. �

8.1.1 Proof of Anonymity

As mentioned in Section 4.1.2 the anonymity experiment as defined in Figure 4.5 can be
relaxed to CPA-anonymity. We will prove security in this slightly weaker model.

Lemma 4.5:
If the Decision Linear Assumption holds for bilinear group generator BiGrGen, the reputation
system defined in Section 4.2.2 is CPA-anonymous. �

8.1 Experiment-based Security 91

Proof of Lemma 4.5. Algorithm B is given a group description of Type-2 bilinear groups
GD = (p,G1,G2,GT , e, φ, g1, g2) generated by a bilinear group generator BiGrGen on input
1λ, where |p| = λ, and an instance of the Decision Linear Problem (û, v̂, ŵ, ûâ, v̂b̂, ŵĉ) ∈ G6

2.
Algorithm B has to decide whether ĉ = â+ b̂ holds.

Suppose A is an adversary that wins the anonymity experiment with probability 1
2 + ε,

queries the random oracle H at most qH times, the random oracle H1 at most qH1 times,
and the oracle AddR at most qAddR times. Then algorithm B can interact with A to decide
the Decision Linear Problem with advantage ε ·

(
1

qAddR·qH1
− q2H

p

)
.

At first, B sets HR := ∅, CR := ∅, RL := ∅, ItemList :=∅, reg :=∅, RR := ∅, J IR := ∅,
QR := ∅, and computes a second, independent instance of the Decision Linear Problem
(ĥ, d̂, f̂ , ĥy

∗
, d̂µ

∗
, f̂ r

∗
) by applying Lemma 8.1. To compute the system manager’s public key

B sets smpk := (u := φ(û), v := φ(v̂), w := φ(ŵ), h := φ(ĥ), d := φ(d̂), d̂) and gives GD and
smpk to A.

Albeit A has to output two identities of honest raters in his anonymity challenge, it suffices
for B to guess one identity, namely the one that is used in the challenge rating. Identities
for honest raters are created using the AddR oracle, and there are at most qAddR queries to
this oracle. Hence, B chooses `1←u {1, . . . , qAddR} as his guess which identity will be used
for A’s challenge. Analogously, B has to guess for which item A wants to be challenged.
For every item the hash value H1(item) is needed to create a rating, and there are at most
qH1 (different) queries to H1. Hence, B chooses `2←u {1, . . . , qH1} as his guess that the
`2’th query to H1 is for the item that A wants to be challenged on.

Then A starts to interact with B via the oracles. Algorithm B responds to oracle queries
by running exactly the defined oracles from Figure 4.3 and Figure 4.4, except to queries to
AddR,RSK,RevR,GRate and the random oracles H and H1. These oracles are realized as
follows:

H(·): B chooses c←u Zp, gives c to A, and ensures to respond identically to repeated
queries.

H1(item): For the j’th query, j 6= `2, B chooses rj←u Zp, sets f ′ := ĥrj and gives f ′ to A.
To the `2’th query B responds by patching the oracle at item to match f̂ by setting
H1(item) := f̂ . Furthermore, B ensures to respond identically to repeated queries.

AddR(i): For the j’th query, j 6= `1, B follows the oracle definition of Figure 4.3. To the
`1’th query B responds by setting i∗ := i, rpk [i∗] := φ(ĥy

∗
) and returning rpk [i∗].

RSK(i): If i 6= i∗, B responds as defined in Figure 4.3. If i = i∗, B cannot respond as
rsk [i∗] = y∗ is not known. Hence, B declares failure and exits.

RevR(i): If i 6= i∗, B responds as defined in Figure 4.3. If i = i∗, B cannot respond as
rsk [i∗] = y∗ is not known and dy∗ can not be computed. Hence, B declares failure
and exits.

GRate(i, item,M): Algorithm B has to handle three different cases:

• If i 6= i∗, B responds as defined in Figure 4.4.

• If i = i∗ ∧H1(item) = f̂ , B declares failure and exits.

92 8 Security Proofs

• If i = i∗∧H1(item) 6= f̂ , B simulates the rating using the simulator of Lemma 4.3.
To do this, B checks that there exists a public key for the given item in the
ItemList . If not, B returns an empty string (as defined in the GRate oracle). If
rater i does not own a personal rating key rrsk [i, item] ∈ ILitem , B creates one
by running the join-issue protocol. Then, B chooses α, β, µ←u Zp and computes

T1 := uα T2 := vβ T3 :=Ai∗item · w
α+β T4 := dµ T5 := φ

(
(ĥy

∗
)rj · ĥrj ·µ

)
.

Then B chooses c, sα, sβ, sx, sy′ , sµ, sδ1 , sδ2←u Zp, computes R1, . . . , R7 according
to the simulator of Lemma 4.3, and patches the random oracle H by setting
H(M, item, smpk , ipk [item], T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7) := c. If
this causes a collision, B declares failure and exits. Finally, B hands the simulated
rating σ := (item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) to A.

Eventually, A outputs a tuple (i0, i1, item,M, St). If i0 or i1 are not honest raters or the
specified item does not exist in the ItemList , B declares failure and exits. If A never queried
H1(item), B sets H1(item) := f̂ and ignores `2 for future queries. Then B chooses a bit
b←u {0, 1}. If ib 6= i∗ or H1(item) 6= f̂ , B declares failure and exits. Otherwise, to compute
the challenge rating B sets

T1 := φ(ûâ) T2 := φ(v̂b̂) T3 :=Ai∗item · φ(ŵĉ) T4 := φ(d̂µ
∗
) T5 := φ(f̂ r

∗
)

and simulates the values (c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) as described in the GRate oracle. If
this causes a collision when patching the random oracle H to equal c, B declares failure
and exits. Otherwise, the challenge rating is given to A.

In the guess-phase B responds to A’s oracle queries as before. When A outputs its guess
b′ ∈ {0, 1}, B outputs 1 as his guess for his Decision Linear challenge, if and only if ib′ = i∗.

Algorithm B can compute responses to A’s oracle queries in probabilistic polynomial-time,
as required for an adversary against Decision Linear. Now we analyze the advantage of B
in deciding Decision Linear in G2.

Suppose the Decision Linear instance given to B is a real Decision Linear tuple, which
means that ĉ = â + b̂. In this case, all keys given to A and all responses to A’s queries
are properly distributed. Especially, by Lemma 8.1 it holds r∗ = y∗ + µ∗, so the challenge
rating is a properly distributed and valid rating of user ib. Hence, A guesses b correctly
with probability 1

2 + ε.

Suppose the Decision Linear instance given to B is a random instance, which means that
ĉ←u Zp. In this case, all keys given to A and all responses to A’s queries are properly
distributed. However, by Lemma 8.1 it holds r∗←u Zp, so the challenge rating is completely
independent of ib. Hence, A guesses b correctly with probability 1

2 .

If patching the random oracles never fails, B guesses the correct identity i∗ and the correct
item for the challenge rating, B will not abort. Patching the random oracles fails with a
probability of at most q2H

p10
, since H takes as input 10 uniformly at random chosen values

of G1 and Zp besides additional fixed values. Guessing the correct identity i∗ happens
with a probability of at least 1

qAddR
. Analogously, guessing the correct item happens with a

8.1 Experiment-based Security 93

probability of at least 1
qH1

. Hence, B outputs a guess for his Decision Linear challenge with

a probability of at least 1
qAddR·qH1

− q2H
p10

. Therefore, it holds∣∣∣∣∣∣ Pr
[
B(GD, û, v̂, ŵ, ûâ, v̂b̂, ŵâ+b̂) = 1

]
−Pr

[
B(GD, û, v̂, ŵ, ûâ, v̂b̂, ŵĉ) = 1

] ∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
(

1
qAddR·qH1

− q2H
p10

)
·
(

1
2 + ε

)
−
(

1
qAddR·qH1

− q2H
p10

)
· 1

2

∣∣∣∣∣∣
= ε ·

(
1

qAddR · qH1

−
q2
H
p10

)
.

Since we assume that the Decision Linear Assumption holds for bilinear group generator
BiGrGen, this advantage must be negligible, which implies that ε is negligible. Therefore
the reputation system is CPA-anonymous.

8.1.2 Proof of Public Linkability

Lemma 4.6:
If the Strong Diffie-Hellman Assumption holds for bilinear group generator BiGrGen, the
reputation system defined in Section 4.2.2 is publicly linkable. �

Proof of Lemma 4.6. At first, we will define the algorithm B that interacts with an adversary
A against the public linkability experiment defined in Figure 4.5. Then we show how the
forking algorithm FB associated to B is invoked to solve the Strong Diffie-Hellman Problem.

Algorithm B is given a group description GD = (p,G1,G2,GT , e, φ,G1, G2) of Type-2
bilinear groups generated by a bilinear group generator BiGrGen on input 1λ, where |p| = λ,
an instance of the SDH Problem

(
Gγ̂2 , G

(γ̂2)
2 , . . . , G

(γ̂q(λ))
2

)
, for some function q : Z→ Z, and

qH values h1, . . . , hqH ∈ Zp. Note that q(λ) is a constant for a fixed security parameter λ.

Suppose A is an adversary that wins the public linkability experiment with probability ε,
queries the random oracle H at most qH times, and the oracle AddItem at most qAddItem
times. Without loss of generality we assume that A creates exactly q(λ)− 1 raters via the
SndToSM oracle. Then algorithm B interacts with A as follows.

At first, B guesses the item for which A will output the solution to the public linkability
experiment. To do so, B selects `←u {1, . . . , qAddItem} and uses the item of the `’th query to
the AddItem oracle, denoted by item∗.

Then, B prepares the item-based public key ipk [item∗], by choosing α, xj , yj ←u Zp, for
j = 1, . . . , q(λ) − 1, k ←u {1, . . . , q(λ) − 1}, setting γ := γ̂ − xk, which is unknown, and
computing

g2 :=G
α·
q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 g1 := φ(g2) (8.1)

ĥ :=G

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2 h := φ(ĥ) (8.2)

94 8 Security Proofs

W :=

Gα·
q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2

γ̂−xk

(8.3)

Aj := φ

Gα·

q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 ·G
yj ·

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2

1

γ+xj

 .
All products in the exponents are polynomials of γ̂ of degree at most q(λ). By expanding
the products all the specified values can be computed using the given SDH instance. With
γ := γ̂ − xk, it holds W = gγ2 , while γ is unknown to B.

To generate the system manager’s public key, B selects w←u G1, ζ, ξ1, ξ2←u Zp and computes

u := w
1
ξ1 v := w

1
ξ2 d̂ := ĥ

1
ζ d := φ(d̂).

Now B sets HR := ∅, CR := ∅, RL := ∅, ItemList :=∅, reg :=∅, RR := ∅, J IR := ∅, QR := ∅
and smpk := (u, v, w, h, d, d̂), hands GD and smpk to A and starts to interact with A via
the oracles. A’s queries are answered as follows:

H(·): To the i’th query B responds with hi ∈ Zp, that was given as input to B, and
ensures to respond identically to repeated queries.

H1(item): B chooses f̂←u G2, gives f̂ to A and ensures to respond identically to repeated
queries.

AddItem(item): For the j’th query, j 6= `, B executes exactly the oracle defined in
Figure 4.4. To the `’th query B responds by setting item∗ := item and ipk [item∗] :=
(g1, g2,W), adding ipk [item∗] to the ItemList and returning ipk [item∗].

SndToSM(i,MSM): If the public and secret key of rater i are not set, B sets rsk [i] := yj
and rpk [i] := hyj for the j’th query. Then B executes the oracle defined in Figure 4.4.

SndToP(i, item, rpk [i],MP): B executes exactly the oracle defined in Figure 4.4. If
item = item∗, prior to the oracle execution B sets rrsk [i, item∗] := (Aj , xj), where Aj
and xj correspond to user i’s secret key rsk [i] = yj defined in the SndToSM oracle
for user i.

Eventually, A outputs an item and exactly q(λ) ratings ((m1, σ1), . . . , (mq(λ), σq(λ))). If
item 6= item∗, at least one rating is invalid, or there are at least two publicly linkable ratings,
B declares failure and exits. Otherwise, B computes the revocation tokens rrt [i] = dyi for
all q(λ)− 1 system members, adds them to the revocation list RL and runs the verification
algorithm for every rating (mi, σi), i = 1, . . . , q(λ). Since the ratings are not publicly
linkable, there must be at least one rating (mi∗ , σi∗) such that σi∗ is still a valid rating.
Hence, B outputs (J,St), where J is the index of the query to H needed to compute σi∗
and St:=

(
α, {Ai, xi, yi}q(λ)−1

i=1 , k, smpk , item∗, ipk [item∗], (mi∗ , σi∗)
)
. If A never queried the

random oracle for σi∗ , B sets J := 0 and St :=⊥.

Since B perfectly simulates the public linkability experiment, A succeeds with probability ε.
The probability that A guesses the hash value for σi∗ correctly is 1

p and the probability that

8.1 Experiment-based Security 95

B guesses the correct item for which A outputs its solution is 1
qAddItem

. Hence, B outputs
(J,St), where J ≥ 1, with a probability of at least ε

qAddItem
− 1

p .

The transformation of B’s SDH instance into q(λ) − 1 tuples (Aj , xj , yj) and an item-
based public key can be done in probabilistic polynomial-time. The same holds for the
computations needed to respond to A’s oracle queries and for the computation of (A, x) using
the extracted values (A∗, x∗, y∗). Hence, B is a probabilistic polynomial-time algorithm.

Now we apply the General Forking Lemma by executing FB. With probability εFB it
returns (1,St, St′), where St = (α, {Ai, xi, yi}q(λ)−1

i=1 , k, smpk , item∗, ipk [item∗], (mi∗ , σi∗))

and St′ = (α, {Ai, xi, yi}q(λ)−1
i=1 , k, smpk , item∗, ipk [item∗], (m′i∗ , σ

′
i∗)). Then we can exe-

cute the extractor of Lemma 4.4 on (GD, (mi∗ , σi∗), (m
′
i∗ , σ

′
i∗)) to obtain the eSDH tuple

(A∗, x∗, y∗), which can be transformed into a solution to the given SDH problem. Observe
that A∗ must be of the form

A∗ = φ

Gα·

q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 ·G
y∗·

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2

1

γ+x∗

= φ

Gα·

q−1∏
i=1

(γ̂−xk+xi)+(y∗−yk)·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2

1

γ̂−xk+x∗
 . (8.4)

Let f(X) :=
q−1∏
i=1

(X − xk + xi) and g(X) :=
q−1∏

i=1,i 6=k
(X − xk + xi). Then

f(γ̂) · 1

γ̂ − xk + x∗
= τ(γ̂) +

β

γ̂ − xk + x∗

and

g(γ̂) · 1

γ̂ − xk + x∗
= τ ′(γ̂) +

β′

γ̂ − xk + x∗

holds for some polynomials τ and τ ′ of degree at most q − 2, where β or β′ equals 0, if and
only if (γ̂ − xk + x∗) is a factor of f(γ̂) or g(γ̂). These cases will be discussed later. Using
this representation we obtain

A∗ = φ

[
G
α·
(
τ(γ̂)+ β

γ̂−xk+x∗

)
+(y∗−yk)·

(
τ ′(γ̂)+ β′

γ̂−xk+x∗

)
2

]
and we can define

A := φ

Gα·

(
τ(γ̂)+ β

γ̂−xk+x∗

)
+(y∗−yk)·

(
τ ′(γ̂)+ β′

γ̂−xk+x∗

)
2

G
α·τ(γ̂)+(y∗−yk)·τ ′(γ̂)
2

1

α·β+(y∗−yk)·β′

= φ

Gα·τ(γ̂)+α· β

γ̂−xk+x∗
+(y∗−yk)·τ ′(γ̂)+(y∗−yk)· β′

γ̂−xk+x∗

2

G
α·τ(γ̂)+(y∗−yk)·τ ′(γ̂)
2

1

α·β+(y∗−yk)·β′

96 8 Security Proofs

= φ

(Gα· β
γ̂−xk+x∗

+(y∗−yk)· β′
γ̂−xk+x∗

2

) 1
α·β+(y∗−yk)·β′

= φ

[(
G

1
γ̂−xk+x∗

·(α·β+(y∗−yk)·β′)
2

) 1
α·β+(y∗−yk)·β′

]

= φ

[
G

1
γ̂−xk+x∗

2

]
.

Hence, (A, x∗−xk) is a solution to the SDH problem instance that can be computed because
all necessary information is included in St and St′ from B.

Now we discuss the different cases that can occur during the described transformation.

Case 1: (A∗, x∗, y∗) ∈ {(Aj , xj , yj)}q−1
j=1 : Obviously, if (A∗, x∗, y∗) is one of the triples B

generated himself, no new information is obtained from (A∗, x∗, y∗). Hence, B cannot
compute A and has to abort.

Case 2: x∗ /∈ {xj}q−1
j=1 : In this case the values β and β′ are not equal to 0. Hence, the

value A can be computed as described above and (A, x∗ − xk) is a solution to B’s
SDH problem.

Case 3: x∗ ∈ {xj}q−1
j=1 : This case has to be divided into two different subcases:

a) x∗ 6= xk : Since x∗ is equal to xj for some j 6= k, (γ̂ − xk + xj) is a factor of both
polynomials f(γ̂) and g(γ̂). Hence, it holds β = β′ = 0, A cannot be computed
and B has to abort.

b) x∗ = xk : In this case (γ̂ − xk + x∗) = γ̂ is a factor of f(γ̂), but not one of g(γ̂).
Hence, β = 0 and β′ 6= 0 holds. Also y∗ 6= yk (because otherwise A∗ would be
equal to Ak) and (y∗ − yk) · β′ 6= 0 holds, so (A, 0) is a solution to B’s SDH
problem.

Because A was successful in generating unlinkable ratings it holds y∗ /∈ {yi}q−1
i=1 . Hence,

Case 1 does not occur. If Case 2 occurs, we can compute a solution to the SDH problem
with probability 1. For Case 3 it holds Pr[x∗ = xk] = 1

q(λ)−1 and either Case 2 or Case 3

occurs with a probability of at least 1
2 .

Putting all together, assuming the more pessimistic scenario of Case 3, we can compute a
solution to the SDH problem with a probability ε′ of at least

ε′ ≥ εFB ·
1

q(λ)− 1
· 1

2
≥

[(
ε

qAddItem
− 1

p

)
·

(
ε

qAddItem
− 1

p

qH
− 1

p

)]
· 1

q(λ)− 1
· 1

2
.

Since we assume that the Strong Diffie-Hellman Assumption holds for bilinear group
generator BiGrGen, the probability ε′ must be negligible which implies that εFB is negligible
and hence also ε. Therefore the reputation system is publicly linkable.

8.1 Experiment-based Security 97

8.1.3 Proof of Traceability

Lemma 4.7:
If the Strong Diffie-Hellman Assumption holds for bilinear group generator BiGrGen, the
reputation system defined in Section 4.2.2 is traceable. �

Proof of Lemma 4.7. Analogously to the proof of public linkability, we will apply the
General Forking Lemma to compute a solution to a given Strong Diffie-Hellman problem
instance. For this purpose we define an algorithm B, that interacts with an adversary A
against traceability, which will be executed by the forking algorithm FB to obtain two
related ratings.

Algorithm B is given a group description GD = (p,G1,G2,GT , e, φ,G1, G2) of Type-2
bilinear groups generated by a bilinear group generator BiGrGen on input 1λ, where |p| = λ,
an instance of the SDH Problem

(
Gγ̂2 , G

(γ̂2)
2 , . . . , G

(γ̂q(λ))
2

)
, for some function q : Z→ Z, and

qH values h1, . . . , hqH ∈ Zp. Note that q(λ) is a constant for a fixed security parameter λ.

Suppose A is an adversary that wins the traceability experiment with probability ε, queries
the random oracle H at most qH times, the oracle AddItem at most qAddItem times, and the
oracle AddR at most qAddR times. Without loss of generality we assume that A creates
exactly q(λ)− 1 raters via the AddR and SndToSM oracles. Then algorithm B can interact
with A as follows.

Analogously to [BBS04] we have to distinguish between two different forger types: the
Type-I forger outputs a valid rating (m,σ), for some item of his choice, such that the Open
algorithm outputs failure; the Type-II forger outputs a valid rating (m,σ), for some item
of his choice, that can be traced back to an honest rater. Hence, B guesses the forger type
by choosing b←u {I, II} and behaves slightly different in the two cases.

At first, B transforms the SDH problem instance into tuples (Aj , xj , yj), for j = 1, . . . , q(λ)−
1, and values (g1, g2, ĥ, h,W) using the same technique as in the proof of public linkability
(Lemma 4.6). Then B guesses an item∗ as the item for which A will output the rating as its
solution to the traceability experiment by choosing `←u {1, . . . , qAddItem} and handling the
`’th query to the AddItem oracle appropriately. In the case that b = II, B selects Aq←u G1

and yq←u Zp, sets xq := ? and guesses the honest user i∗ for which A will output the forged
rating σ by choosing `1←u {1, . . . , qAddR} and handling the `1’th query to the AddR oracle
appropriately.

To generate the system manager’s public key, B selects w←u G1, ζ, ξ1, ξ2←u Zp and computes

u := w
1
ξ1 v := w

1
ξ2 d̂ := ĥ

1
ζ d := φ(d̂).

Now B sets HR := ∅, CR := ∅, RL := ∅, ItemList :=∅, reg :=∅, RR := ∅, J IR := ∅, QR := ∅
and smpk := (u, v, w, h, d, d̂), hands the group description GD and the system manager’s
public key smpk to A and starts to interact with A via the oracles. The number of already
registered raters is counted using the variable ĵ, which is initially set to 0. A’s queries are
answered as follows:

H(·): To the i’th query B responds with hi ∈ Zp, that was given as input to B, and
ensures to respond identically to repeated queries.

98 8 Security Proofs

H1(item): B chooses f̂←u G2, gives f̂ to A and ensures to respond identically to repeated
queries.

AddItem(item): For the j′th query, j 6= `, B executes exactly the oracle as defined in
Figure 4.4. To the `’th query B responds by setting item∗ := item and ipk [item∗] :=
(g1, g2,W), adding ipk [item∗] to the ItemList and returning ipk [item∗].

AddR(i): If b = I, B sets ĵ := ĵ + 1 and executes the oracle defined in Figure 4.3, using
yĵ as the secret key of rater i. The same is done in case b = II, except for the `1’th
query, where B sets i∗ := i, rsk [i∗] :=yq, rpk [i∗] :=hyq , reg [i∗] := (i∗, rpk [i∗]) and returns
rpk [i∗].

SndToSM(i,MSM): B sets ĵ := ĵ+ 1 and executes the oracle defined in Figure 4.4, using
yĵ as the secret key of rater i.

RSK(i): If b = II ∧ i = i∗, B declares failure and exits. Otherwise, B responds by running
exactly the defined oracle from Figure 4.3.

RRSK(i, item): B responds by running exactly the defined oracle from Figure 4.3.

RevR(i): B responds by running exactly the defined oracle from Figure 4.3.

SndToP(i, item, rpk [i],MP): B responds by running the oracle defined in Figure 4.4.
In the case that item = item∗, B runs the oracle using rrsk [i, item∗] := (Aj , xj),
where Aj and xj correspond to rater i’s secret key rsk [i] = yj defined in the AddR or
SndToSM oracle for rater i (note that in case b = II for i = i∗ the tuple (Aq, xq = ?)
is used).

Open(item,m, σ): B responds by running the oracle defined in Figure 4.3.

GRate(i, item,m): B has to handle two different cases:

• If b = II ∧ i = i∗ ∧ item = item∗, B simulates the rating using the simulator of
Lemma 4.3: B chooses α, β, µ←u Zp and computes

T1 := uα T2 := vβ T3 :=Ai∗
item∗
· wα+β T4 := dµ T5 := φ(H1(item∗))µ+yi∗ .

Then B chooses c, sα, sβ, sx, sy, sµ, sδ1 , sδ2←u Zp, computes R1, . . . , R7 according
to the simulator of Lemma 4.3, and patches the random oracle H by setting
H(M, item∗, smpk , ipk [item∗], T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7) := c.
When this causes a collision, B declares failure and exits. Finally, B hands
the simulated rating σ := (item∗, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) to
A.

• In any other case B responds as defined in Figure 4.4. If for an honest rater i
the rating key rrsk [i, item] is not set, such a key can be generated before the
signature is created, as defined in the SndToP oracle. If item = item∗ the tuple
(Aj , xj , yj) corresponding to rsk [i] = yj is used as secret rating key.

Eventually, A outputs a triple (item,m, σ). If item 6= item∗ or the rating is invalid, verified
with an empty revocation list RL, B declares failure and exits. Otherwise, depending on
b ∈ {I, II}, B has to distinguish two different cases:

8.1 Experiment-based Security 99

• b = I: If σ opens to some A∗ ∈ {Aj}q(λ)−1
j=1 , B declares failure and exits. Otherwise,

A successfully forged a rating for a non-existing rater.

• b = II: If σ opens to some A∗ 6= Aq, B declares failure and exits. Otherwise, A
successfully forged a rating for rater i∗.

For a Type-I forger the environment is simulated perfectly, because B knows all secret and
public keys. Hence, B is always able to compute correct and properly distributed responses
to A’s queries and A outputs a valid forgery (item∗,m∗, σ∗), for the guessed item∗, with a
probability of at least ε

qAddItem
. With a probability of 1

p adversary A guesses the hash value
for σ∗ correctly. Hence, B is successful with a probability εB of at least ε

qAddItem
− 1

p .

For a Type-II forger the environment is simulated perfectly unless A queries the RSK
oracle for user i∗ or a collision occurs while simulating a rating. Hence, A outputs a valid
forgery (item∗,m∗, σ∗), for the guessed item∗, that traces to i∗ with a probability of at
least ε

qAddItem·qAddR −
q2H
p10
− 1

p .

For both forger types B outputs (J, St), where J is the index of the query to H needed
to compute σ∗ and St :=

(
α, {Ai, xi, yi}q(λ)−1

i=1 , k, smpk , item∗, ipk [item∗], (mi∗ , σi∗)
)
. If A

never queried the random oracle for σ∗, B sets J := 0 and St :=⊥.

As shown in Lemma 4.6, the transformation of B’s SDH instance and the computations
needed to respond to A’s oracle queries can be done in probabilistic polynomial-time. Hence,
B is a probabilistic polynomial-time algorithm.

Now we apply the General Forking Lemma to obtain a second solution to the traceability
experiment which can be used to solve SDH. The needed technique is exactly the same
as in the proof of public linkability in Lemma 4.6. That means, with εB = ε

qAddItem
− 1

p for

a Type-I forger and εB = ε
qAddItem·qAddR −

q2H
p10
− 1

p for a Type-II forger, we obtain an SDH
tuple (A∗, x∗, y∗) with probability εFB of at least εB ·

(
εB
qH
− 1

p

)
. This tuple is not one of

the tuples B created, because otherwise the forger A would not be successful. Hence, either
Case 2 or Case 3 described in Lemma 4.6 occurs with a probability of at least 1

2 . Moreover,
B guesses the correct forger type with a probability of at least 1

2 and we can compute a
solution (A, x) to the SDH problem with a probability ε′ of at least

ε′ ≥ εFB ·
1

q(λ)− 1
· 1

2
· 1

2
≥ εB ·

(
εB
qH
− 1

p

)
· 1

4 · q(λ)− 4

=

(ε

qAddItem · qAddR
−
q2
H
p10
− 1

p

)
·

 ε
qAddItem·qAddR −

q2H
p10
− 1

p

qH
− 1

p

 · 1

4 · q(λ)− 4

assuming the more pessimistic scenario of Case 3 and a Type-II forger.

Since we assume that the Strong Diffie-Hellman Assumption holds for bilinear group
generator BiGrGen, the probability ε′ must be negligible which implies that ε is negligible.
Therefore, the reputation system is traceable.

100 8 Security Proofs

8.1.4 Proof of Strong Exculpability

Lemma 4.8:
If the Discrete Logarithm Assumption holds for bilinear group generator BiGrGen, the
reputation system defined in Section 4.2.2 is strongly exculpable. �

Proof of Lemma 4.8. As in the proofs of public linkability and traceability, we will apply
the General Forking Lemma, but for strong exculpability we will compute a solution to the
Discrete Logarithm Problem. For this purpose we define an algorithm B, that interacts
with an adversary A against strong exculpability, which will be executed by the forking
algorithm FB to obtain two related ratings.

Algorithm B is given a group description GD = (p,G1,G2,GT , e, φ,G1, G2) of Type-2
bilinear groups generated by a bilinear group generator BiGrGen on input 1λ, where |p| = λ,
an instance of the Discrete Logarithm Problem (ĥ,D) ∈ G2, and qH values h1, . . . , hqH ∈ Zp.

Suppose A is an adversary that wins the strong exculpability experiment with probability
ε, queries the random oracle H at most qH times and the oracle AddR at most qAddR times.
Then algorithm B can interact with A as follows.

B sets HR := ∅, CR := ∅, RL := ∅, ItemList :=∅, reg :=∅, RR := ∅, J IR := ∅, QR := ∅ and
guesses the rater i∗ for which the adversary A will output a rating σ as its solution to the
strong exculpability experiment by choosing `←u {1, . . . , qAddR} and handling the `’th query
to the AddR oracle appropriately.

To generate the system manager’s public key, B selects w←u G1, ξ1, ξ2, ζ←u Zp and computes

u := w
1
ξ1 v := w

1
ξ2 h := φ(ĥ) d̂ := ĥ

1
ζ d := φ(d̂).

Now B sets smpk := (u, v, w, h, d, d̂) and smsk := (ξ1, ξ2, ζ) as the system manager’s public
and secret keys, hands the group description GD, and the system manager’s public key
smpk to A, and starts to interact with A via the oracles. Algorithm B responds to oracle
queries by running exactly the defined oracles from Figure 4.3 and Figure 4.4, except to
queries to AddR,RSK,RevR,GRate, and the random oracles H and H1. A’ queries are
answered as follows:

H(·): To the i’th query B responds with hi ∈ Zp, that was given as input to B, and
ensures to respond identically to repeated queries.

H1(item): B chooses ritem←u Zp, gives f̂ := ĥritem to A, and ensures to respond identically
to repeated queries.

AddR(i): For the j’th query, j 6= `, B chooses yi ←u Zp, sets rsk [i] := yi, rpk [i] := hyi ,
and hands rpk [i] to A. To the `’th query, B responds by setting i∗ := i, rsk [i∗] := ?,
indicating that rsk [i∗] is unknown, rpk [i∗] := φ(D), and returning rpk [i].

RSK(i): B executes the oracle defined in Figure 4.3, except when i = i∗. In that case B
declares failure and exits.

RevR(i): B executes the oracle defined in Figure 4.3, except when i = i∗. In that case B

sets rrt [i∗] := φ(D)
1
ζ and gives it to A.

8.2 UC-Security 101

GRate(i, item,m): B executes the oracle defined in Figure 4.4. Only if i = i∗ B has
to simulate a rating, since yi∗ is unknown. Therefore, B chooses α, β, µ←u Zp and
computes

T1 := uα T2 := vβ T3 :=Ai∗item · w
α+β T4 := dµ T5 := φ(ĥritem ·µ · Dritem).

The value T5 is correct, since

T5 = φ(ĥritem ·µ · Dritem) = φ(ĥritem ·µ · ĥyi∗ ·ritem) = φ(ĥritem)µ+yi∗ = φ(f̂)µ+yi∗ .

Now, B runs the simulator from Lemma 4.3 on input (T1, T2, T3, T4, T5) to obtain
a transcript (T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ2),
and patchesH by settingH(M, item, smpk , ipk [item], T1, T2, T3, T4, T5, R1, R2, R3, R4,
R5, R6, R7) := c. If this causes a collision, B declares failure and exits. Finally, B
hands the simulated rating σ := (item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ2) to
A.

Eventually, A outputs (item∗,m∗, σ∗). If the rating is invalid, cannot be opened or traces
to a corrupted rater, B declares failure and exits. Since the strong exculpability experiment
is simulated perfectly unless A queries queries RSK(i∗) or patching the random oracle fails,
B obtains a rating that traces to i∗ with a probability of at least ε

qAddR
− q2H

p10
− 1

p and B
can output (J, St), where J is the index of the query to H needed to compute σ∗ and
St :=

(
smpk , item∗, ipk [item∗], (mi∗ , σi∗)

)
. If A never queried the random oracle for σ∗, B

sets J := 0 and St :=⊥.

Now we apply the General Forking Lemma to obtain a second rating, which can be used
to compute the solution for the discrete logarithm problem. The technique is exactly the
same as in the proof of public linkability (Lemma 4.6), so we obtain two valid ratings that
trace to rater i∗ with probability εFB of at least

εFB ≥
(

ε

qAddR
−
q2
H
p10
− 1

p

)
·

 ε
qAddR

− q2H
p10
− 1

p

qH
− 1

p

Using the extractor from Lemma 4.4, we obtain a triple (A, x, y), where y is the secret
rating key corresponding to i∗’s public key rpk [i∗] = φ(D). Hence y = logh(φ(D)), and
y = logĥ(D), as required.

Since we assume that the Discrete Logarithm Assumption holds for bilinear group generator
BiGrGen, the probability εFB must be negligible which implies that ε is negligible. Therefore
the reputation system is strongly exculpable.

8.2 UC-Security

Theorem 6.1:
If the SXDH Assumption and the Pointcheval-Sanders Assumption hold for bilinear group
generator BiGrGen, the hash functions H,H1, and H2 are collision-resistant, and the
communication channels between interacting parties are authenticated, Protocol ΠRS UC-
realizes FRS in the (FRO, FCRS, FCA)-hybrid model, in the presence of static adversaries. �

102 8 Security Proofs

To prove Theorem 6.1 we have to show that for any probabilistic polynomial-time real-world
adversary A there exists a probabilistic polynomial-time ideal-world adversary S such that
for any probabilistic polynomial-time environment Z it holds:{

EXECFRS,SA,Z(λ, z)
}
λ∈N,z∈{0,1}∗

c≡
{

EXECFRO,FCRS,FCA
ΠRS,A,Z (λ, z)

}
λ∈N,z∈{0,1}∗

.

We divide the proof of this statement into three parts. In the first part we define the
simulator S that interacts with FRS and simulates the cryptographic computations. Note
that during Rate-requests S does not obtain any identifying information of the rater. Hence,
S uses the zero-knowledge simulator for the Signature of Knowledge that represents a rating.
Analogously, opening-proofs are represented by a Signature of Knowledge. Therefore, S
uses the corresponding zero-knowledge simulator to generate opening-proofs.

In the second part of the proof we define a hybrid game G and a corresponding simulator S1

for which we prove that no environment Z can distinguish whether it interacts with (FRS,S)
or (G,S1). In this game S1 obtains all identifying information during Rate-requests and
therefore can execute the computations as defined in Protocol ΠRS. Also opening-proofs
can be generated by S1 as in Protocol ΠRS. Hence, an environment Z is only able to
distinguish (FRS,S) and (G,S1), if it can distinguish between simulated and real ratings
and opening-proofs. Under the SXDH-Assumption this is not possible.

In the third part of the proof we show that S1 executes exactly the same computations as
Protocol ΠRS. This implies that any environment Z that distinguishes between (G,S1) and
(ΠRS,A) is able to let FRS output error, whereas the Protocol ΠRS outputs some value, or
FRS outputs 0, whereas Protocol ΠRS outputs 1 (or vice versa). Using different reductions
(provided in Section 8.2.4) to the Pointcheval-Sanders-Problem and to the CCA2-security of
the Cramer-Shoup encryption scheme we show that such environments cannot exist. Hence,
ΠRS UC-realizes FRS in the (FRO, FCRS, FCA)-hybrid model.

Formally, we prove the following: for every A and every Z{
EXECFRS,SA,Z(λ, z)

}
λ∈N,z∈{0,1}∗

c≡
{

EXECFRO,FCRS,FCA
ΠRS,A,Z (λ, z)

}
λ∈N,z∈{0,1}∗

by introducing a hybrid game G and proving the two relations{
EXECFRS,SA,Z(λ, z)

}
λ∈N,z∈{0,1}∗

c≡
{
GFRS,SA1 ,Z

(λ, z)
}
λ∈N,z∈{0,1}∗

and {
GFRS,SA1 ,Z

(λ, z)
}
λ∈N,z∈{0,1}∗

c≡
{

EXECFRO,FCRS,FCA
ΠRS,A,Z (λ, z)

}
λ∈N,z∈{0,1}∗

.

As abbreviations we set

IDEAL :=
{

EXECFRS,SA,Z(λ, z)
}
λ∈N,z∈{0,1}∗

and
HYBRID :=

{
EXECFRO,FCRS,FCA

ΠRS,A,Z (λ, z)
}
λ∈N,z∈{0,1}∗

.

8.2 UC-Security 103

8.2.1 Foundations

The protocols ΠRS.Register, ΠRS.NewProduct, ΠRS.Purchase, ΠRS.Rate, and ΠRS.OProof
are based on zero-knowledge proofs of knowledge. In this section we prove these properties
because they are used in the proof of Theorem 6.1. To formalize the statements to prove
we use the notation introduced by Camenisch and Stadler [CS97].

Lemma 8.2:
In the protocols ΠRS.Register and ΠRS.Purchase party Pi proves the statement ZKPK{(usk i) :
Mi = gusk i1 } to PSM and Pj , respectively. �

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verifica-
tion equations hold: M ch

i · T = (gusk i1)ch · gα1 = gα+ch·usk i
1 = gsα1 and R = uH(T) · vr.

• Interactive Simulator: In order to simulate transcripts of the protocol, the simulator
has to set up the Trapdoor Pedersen Commitment (Definition 6.1). By running
the KeyGen algorithm the simulator knows the trapdoor td . With this value the
simulation works as follows:

Choose α′, r′←u Zp, compute T ′ := gα
′

1 , R := uH(T ′) · vr′ and send the commitment R
to the verifier. On receiving a challenge ch ∈ Zp the simulator chooses sα←u Zp and
sets T := gsα1 ·M

−ch
i . Finally, by using the commitment trapdoor td the simulator

computes r := (H(T ′)−H(T) + td · r′) · td−1, according to the TReveal algorithm, and
outputs (sα, T, r) to the verifier. The resulting transcripts are identically distributed
as real transcripts.

• Extractor: Given two accepting transcripts (R, ch, sα, T, r) and (R, ch ′, s′α, T, r) the
extractor computes usk i := (sα − s′α)/(ch − ch ′), which is the discrete logarithm of
Mi to base g1: M ch

i · T = gsα1 ∧M ch ′
i · T = g

s′α
1 =⇒ M ch−ch ′

i = g
sα−s′α
1 =⇒ Mi =

g
(sα−s′α)/(ch−ch ′)
1 .

Lemma 8.3:
The value ppk i,prod output in Protocol ΠRS.NewProduct is a Signature of Knowledge
on message PS.pk i,prod proving the statement SoK{(usk i) : Mi = gusk i1 ∧ Mi,prod =

H1(i, prod)usk i}. �

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verifica-
tion equations hold:

H1(i, prod)si,prod ·M−chi,prodi,prod = H1(i, prod)r+chi,prod ·usk i · H1(i, prod)−usk i·chi,prod

= H1(i, prod)r = R1 (8.5)

g
si,prod
1 ·M−chi,prodi = g

r+chi,prod ·usk i
1 · g−usk i·chi,prod1 = gr1 = R2 (8.6)

104 8 Security Proofs

and hence

chi,prod = FRO(PS.pk i,prod ,Mi,Mi,prod , R1, R2). (8.7)

• Simulator: Given Mi,Mi,prod , and PS.pk i,prod as input and using the random oracle
FRO, transcripts can be simulated, as follows:

Choose chi,prod , si,prod ←u Zp, set R1 :=H1(i, prod)si,prod ·M−chi,prodi,prod and R2 := g
si,prod
1 ·

M
−chi,prod
i , and patch FRO(PS.pk i,prod ,Mi,Mi,prod , R1, R2) := ci,prod . The resulting

transcripts are identically distributed as real transcripts.

• Extractor: Given two accepting transcripts, as Signatures of Knowledge on message
PS.pk i,prod , (Mi,Mi,prod , chi,prod , si,prod) and (Mi,Mi,prod , ch ′i,prod , s

′
i,prod) the extrac-

tor computes usk i := (si,prod − s′i,prod)/(chi,prod − ch ′i,prod), which is the discrete

logarithm of Mi to base g1: M
chi,prod
i · R1 = g

si,prod
1 ∧M ch ′i,prod

i · R1 = g
s′i,prod
1 =⇒

M
chi,prod−ch ′i,prod
i = g

si,prod−s′i,prod
1 =⇒ Mi = g

(si,prod−s′i,prod)/(chi,prod−ch ′i,prod)

1 . Analo-
gously one can argue for the discrete logarithm of Mi,prod to base H1(i, prod).

Lemma 8.4:
The value σ output in Protocol ΠRS.Rate is a Signature of Knowledge on message m proving
the following statement:

SoK{(usk i, σi, σi,j,prod) : Verify(PS.pk , usk i, (T1, T2)) = 1

∧ Verify(PS.pk j,prod , usk i, (T3, T4)) = 1

∧ T5 = H1(j, prod)usk i}.

�

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verifica-
tion equations hold:

e(T1, X̃)ch ·x e(T2, g̃)−ch · e(T1, Ỹ)s

= e(T1, g̃
ξ1)ch · e(T2, g̃)−ch · e(T1, g̃

ξ2)k+ch·usk i

= e(T1, g̃
ξ1)ch · e(T1, g̃

ξ2·usk i)ch · e(T2, g̃)−ch · e(T1, g̃
ξ2)k

= e(T1, g̃
ξ1+ξ2·usk i)ch · e(T2, g̃)−ch · e(T1, g̃

ξ2)k

= e(T1, Ỹ)k = R1 (8.8)
⇐⇒ PS.Verify(PS.pk , usk i, (T1, T2)) = 1 (8.9)

e(T3,X̃j,prod)ch · e(T4, g̃j,prod)−ch · e(T3, Ỹj,prod)s

= e(T3, g̃
ξ1j,prod
j,prod)ch · e(T4, g̃j,prod)−ch · e(T3, g̃

ξ2j,prod
j,prod)k+ch·usk i

= e(T3, g̃
ξ1j,prod
j,prod)ch · e(T3, g̃

ξ2j,prod ·usk i
j,prod)ch · e(T4, g̃j,prod)−ch · e(T3, g̃

ξ2j,prod
j,prod)k

8.2 UC-Security 105

= e(T3, g̃
ξ1j,prod +ξ2j,prod ·usk i
j,prod)ch · e(T4, g̃j,prod)−ch · e(T3, g̃

ξ2j,prod
j,prod)k

= e(T3, Ỹj,prod)k = R2 (8.10)
⇐⇒ PS.Verify(PS.pk j,prod , usk i, (T3, T4)) = 1 (8.11)

T−ch5 · H1(j, prod)s = H1(j, prod)−usk i·ch · H1(j, prod)k+usk i·ch = H1(j, prod)k = R3

(8.12)

and hence

ch = FRO(T1, T2, T3, T4, T5, R1, R2, R3, pp, prod , ppk ,m). (8.13)

• Simulator: Given pp, j, prod , ppk and m as input and using the random oracle FRO,
transcripts can be simulated, as follows:

Choose ch, s←u Zp and T1, T2, T3, T4, T5←u G1, set R1:=e(T1, X̃)ch ·e(T2, g̃)−ch ·e(T1, Ỹ)s,
R2 := e(T3, X̃j,prod)ch · e(T4, g̃j,prod)−ch · e(T3, Ỹj,prod)s, R3 := T−ch5 · H1(j, prod)s, and
patch FRO(T1, T2, T3, T4, T5, R1, R2, R3, pp, prod , ppk ,m):=ch. Under the assumption
that the Decisional Diffie-Hellman Problem is hard in G1 the tuples (T1, T2), and
(T3, T4) are indistinguishable from real signatures on message usk i, under the respective
public keys PS.pk and PS.pk j,prod . Futhermore, the value T5 is chosen uniformly
at random. Hence, the tuple (g1,Mi,H1(j, prod), T5) is indistinguishable from real
transcripts (all values Mi are given by FCA and hence known to a verifier). The
remainder of the transcript is simulated perfectly.

• Extractor: Given two accepting transcripts (T1, T2, T3, T4, T5, ch, s) and (T1, T2, T3, T4,
T5, ch ′, s′) the extractor computes usk i := (s − s′)/(ch − ch ′), which is the discrete
logarithm of T5 to base H1(j, prod): T−ch5 ·H1(j, prod)s = R3∧T−ch

′

5 ·H1(j, prod)s
′

=

R3 =⇒ T ch−ch ′
5 = H1(j, prod)s−s

′
=⇒ T5 = H1(j, prod)(s−s′)/(ch−ch ′). The tuples

(T1, T2) and (T3, T4) are valid signatures on message usk i and do not need further
extraction.

Lemma 8.5:
The value τ output in Protocol ΠRS.OProof is a Signature of Knowledge on message (σ, i,Mi)
proving the following statement:

SoK{(β, Ỹi) : ct = CS.Enc(CS.pk , Ỹi;β) ∧ e(T5, Ỹ) = e(H1(j, prod), Ỹi).

�

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verifica-
tion equations hold:

ct−ĉh1 · gŝ2 = g−β·ĉh2 · gr+ĉh·β
2 = gr2 = R1 (8.14)

ct−ĉh2 · h̃ŝ = h̃−β·ĉh · h̃r+ĉh·β = h̃r = R2 (8.15)

106 8 Security Proofs

e(H1(j, prod), ct3)−ĉh · e(T5, Ỹ)ĉh · e(H1(j, prod), f̃)ŝ

= e(H1(j, prod), Ỹi · f̃β)−ĉh · e(H1(j, prod)usk i , Ỹ)ĉh · e(H1(j, prod), f̃)r+ĉh·β

= e(H1(j, prod), Ỹ −1
i · f̃−β)ĉh · e(H1(j, prod), Ỹ usk i)ĉh · e(H1(j, prod), f̃)r+ĉh·β

= e(H1(j, prod), Ỹ −1
i · f̃−β · Ỹ usk i)ĉh · e(H1(j, prod), f̃β)ĉh · e(H1(j, prod), f̃)r

= e(H1(j, prod), Ỹ −1
i · f̃−β · Ỹ usk i · f̃β)ĉh · e(H1(j, prod), f̃)r

= e(H1(j, prod), 1G2)ĉh · e(H1(j, prod), f̃)r = e(H1(j, prod), f̃)r = R3 (8.16)

ω :=H(ct1, ct2, ct3)

ct−ĉh4 · (b̃ · d̃ω)ŝ = (b̃ · d̃ω)−β·ĉh · (b̃ · d̃ω)r+ĉh·β = (b̃ · d̃ω)r = R4 (8.17)

e(g1, ct3)−ĉh · e(M, Ỹ)ĉh · e(g1, f̃)ŝ

= e(g1, Ỹi · f̃β)−ĉh · e(gusk i1 , Ỹ)ĉh · e(g1, f̃)r+ĉh·β

= e(g1, Ỹ
−1
i · f̃−β)ĉh · e(g1, Ỹ

usk i)ĉh · e(g1, f̃)r+ĉh·β

= e(g1, Ỹ
−1
i · f̃−β · Ỹ usk i)ĉh · e(g1, f̃)r+ĉh·β

= e(g1, Ỹ
−1
i · f̃−β · Ỹ usk i)ĉh · e(g1, f̃

β)ĉh · e(g1, f̃)r

= e(g1, Ỹ
−1
i · f̃−β · Ỹ usk i · f̃β)ĉh · e(g1, f̃)r

= e(g1, 1G2)ĉh · e(g1, f̃)r = e(g1, f̃)r = R5, (8.18)

where Equation 8.16 holds, if and only if dlogỸ (Ỹi) = dlogH1(j,prod)(T5) and Equation
8.18 holds, if and only if dlogg1(M) = dlogỸ (Ỹi).

• Simulator: Given j, prod , ppk , and a rating (m,σ) as input and using the random
oracle FRO, transcripts can be simulated, as follows:

Choose ĉh, ŝ←u Zp and ct1, ct2, ct3, ct4←u G2, compute R1 :=ct−ĉh1 ·gŝ2, R2 :=ct−ĉh2 · h̃ŝ,

R3 := e(H1(j, prod), ct3)−ĉh · e(T5, Ỹ)ĉh · e(H1(j, prod), f̃)ŝ, ω :=H(ct1, ct2, ct3),

R4 := ct−ĉh4 · (b̃ · d̃ω)ŝ, R5 := e(g1, c3)−ĉh · e(M, Ỹ)ĉh · e(g1, f̃)ŝ,

and patch FRO(ct1, ct2, ct3, ct4, R1, R2, R3, R4, R5, σ, i,M):= ĉh. The ciphertext ct =
(ct1, ct2, ct3, ct4) is indistinguishable from real ciphertexts, assuming the Decisional
Diffie-Hellman Problem is hard in G1 and the remainder of the transcript is simulated
perfectly.

• Extractor: Given two accepting transcripts (ct1, ct2, ct3, ct4, ĉh, ŝ) and (ct1, ct2, ct3,
ct4,

ˆch ′, ŝ′) the extractor computes β := (ŝ − ŝ′)/(ĉh − ˆch ′), which is the discrete
logarithm of ct1 to base g2: ct−ĉh1 ·gŝ2 = R1∧ct−

ˆch ′

1 ·gŝ′2 = R1 =⇒ gŝ−ŝ
′

2 = ct ĉh−
ˆch ′

1 =⇒
g

(ŝ−ŝ′)/(ĉh− ˆch ′)
2 = ct1. Analogously, one can argue for R2 and R4. Further, the

8.2 UC-Security 107

extractor computes Ỹi := ct−β3 , which is the encrypted value: dividing two instances
of Equation 8.18 gives

e(M, Ỹ)ĉh−
ˆch ′ · e(g1, f̃)ŝ−ŝ

′
= e(g1, ct3)ĉh−

ˆch ′

⇐⇒ e(M, Ỹ) · e(g1, f̃)(ŝ−ŝ′)/(ĉh− ˆch ′) = e(g1, ct3)

⇐⇒ e(M, Ỹ) · e(g1, f̃)β = e(g1, ct3)

⇐⇒ e(M, Ỹ) = e(g1, ct3) · e(g1, f̃)−β = e(g1, ct3 · f̃−β),

which means that ct3 encrypts an element Ỹ ′ ∈ G2 such that e(M, Ỹ) = e(g1, Ỹ
′).

The only element Ỹ ′ with this property is Ỹi = Ỹ usk i .

8.2.2 Definition of the Simulator

S manages the same lists as FRS, namely Params, Reg, Prods, Purch, Ratings, and Open
which are initially empty. Lists indexed with an „s“ additionally store secret key material.

Simulation of FRO: S manages the list LRO and answers to requests exactly the same
way as FRO. At some points during the simulation - while generating anonymous
ratings and opening-proofs - S will have to patch the list LRO because S simulates
Σ-protocols that were transformed into non-interactive zero-knowledge proofs using
the Fiat-Shamir heuristic. How S handles this cases is described later in detail.

Simulation of FCRS: S chooses (GD,PD.pk ,H,H1,H2) according to the definition of
FCRS and hands crs := (GD,PD.pk ,H,H1,H2) to every party requesting it.

Simulation of FCA: S manages the lists LCA and LsCA. Whenever an honest party
Pi is activated for the first time, S chooses usk i ←u Zp, computes Mi := gusk i1 and
sets LCA.Add(Pi,Mi) and LsCAAdd(Pi,Mi, usk i). When S receives (Register, Pi, v)
from some (corrupted) party Pi for the first time, the tuple (Pi, v) is added to the
list LCA. All later Register-requests from the same party are ignored. When S
receives (Retrieve, Pi) from some party P and a tuple (Pi, v) is stored in LCA, S sends
(Retrieve, Pi, v) to P . If no such tuple could be found in LCA, S sends (Retrieve, Pi,⊥)
to P .

Simulation of Registry Key Generation: When S receives (KeyGen, sid) from FRS, S
executes the protocol in behalf of PSM, sets Params.Add(pp), Paramss.Add(pp, psk)
and sends (KeyGen, sid , pp) to FRS.

Simulation of User Registration:

• PSM and Pi honest: When S receives (Register, sid , pp′, Pi) from FRS, S executes
the registration protocol in behalf of Pi and PSM. S can do this by using
(Pi,Mi, usk i) ∈ LsCA and (pp′, psk ′) ∈ Paramss.

• PSM honest and Pi corrupted: When S receives (pp′, R) from A as it intends to
send from Pi to PSM, S sends (Register, sid , pp′) in behalf of Pi to FRS, receives
(Register, sid , pp′, Pi) from FRS, and executes the protocol in behalf of PSM using
(pp′, psk ′) ∈ Paramss.

108 8 Security Proofs

When FRS outputs (Register, sid , pp′, Pi, f) to Pi, S does not deliver this message
because a corrupted Pi does not expect to receive this message from FRS.

• PSM corrupted and Pi honest: When S receives (Register, sid , pp′, Pi) from FRS,
S executes the protocol in behalf of Pi by using (Pi,Mi, usk i) ∈ LsCA. If S
receives a value σi from PSM and PS.Verify(pp′, usk i, σi) = 1, setReg.Add(Pi, pp′,
Mi, Ỹi, σi) and output (Register, sid , pp′, Pi, 1) to FRS.

When FRS outputs (Register, sid , pp′, Pi, f) to PSM, S does not deliver this
message because a corrupted PSM does not expect to receive this message from
FRS.

Simulation of Product Addition: When S receives (NewProduct, sid , Pi, prod) from
FRS, S executes the protocol in behalf of Pi using (Pi, Mi, usk i) ∈ LsCA. The
request to FRO does not require any special handling. After completing the protocol,
S sets Prods.Add(Pi, prod , ppk i,prod), Prodss.Add(Pi, prod , ppk i,prod ,PS.sk i,prod) and
outputs (NewProduct, sid , Pi, prod , ppk i,prod) to FRS.

Simulation of Purchasing a Product:

• Pi and Pj honest: When S receives (Purchase, sid , Pi, Pj , prod , ppk) from FRS,
S executes the purchasing protocol in behalf of Pi and Pj . S can do this by using
(Pi,Mi, usk i), (Pj ,Mj , usk j) ∈ LsCA and (Pj , prod , ppk j,prod , PS.sk j,prod) ∈
Prodss.

• Pi honest and Pj corrupted: When S receives (Purchase, sid , Pi, Pj , prod , ppk)
from FRS, S executes the purchasing protocol in behalf of Pi, including the
request to VfyProd. S can do this by using (Pi,Mi, usk i) ∈ LsCA.

When FRS outputs (Purchase, sid , Pi, Pj , prod , ppk , f) to Pj , S does not deliver
this message because a corrupted Pj does not expect to receive this message
from FRS.

• Pi corrupted and Pj honest: When S receives (prod , ppk , R) from A as it intends
to send from Pi to Pj , S sends (Purchase, sid , Pj , prod , ppk) in behalf of Pi to FRS,
receives (Purchase, sid , Pi, Pj , prod , ppk) from FRS, and executes the purchasing
protocol in behalf of Pj . S can do this by using (Pj , Mj , usk j) ∈ LsCA and (Pj ,
prod , ppk j,prod , PS.sk j,prod) ∈ Prodss.

When FRS outputs (Purchase, sid , Pi, Pj , prod , ppk , f) to Pi, S does not deliver
this message because a corrupted Pi does not expect to receive this message
from FRS.

Simulation of VfyProd: When S receives (VfyProd, sid , Pj , prod , ppk) from FRS, S ex-
ecutes VfyProd(Pj , prod , ppk) as a local algorithm and responds as defined in the
protocol. If (Pj ,Mj) /∈ LCA, S does not respond to this request, which means that
FRS waits infinitely for a response.

Remark: This product-verification is done whenever a rating is verified. It implies
that all subsequent requests based on the product-verification are ignored, whenever
this verification cannot be executed due to missing parameters (Pj ,Mj) /∈ LCA.

8.2 UC-Security 109

Simulation of Rating a Product:

• PSM is honest: In this case S cannot execute the protocol because the identity
of the rater is not known. Hence, S computes an accepting transcript of the
underlying Σ-protocol, as follows: When receiving (Rate, sid , pp, Pj , prod , ppk ,m)
from FRS, S uses the Zero-Knowledge simulator given in the proof of Lemma 8.4.
During the simulation, S tries to patch the random oracle. If there is some value v
such that

[
(T1, T2, T3, T4, T5, R1, R2, R3, prod , ppk ,m), v

]
∈ LRO then S outputs

error and halts. Otherwise, S sets LRO.Add
[
(T1, T2, T3, T4, T5, R1, R2, R3, prod ,

ppk ,m), ch
]
, σ := (T1, T2, T3, T4, T5, ch, s), Ratings.Add(pp,⊥, Pj , prod , ppk ,m,

σ) and outputs (Rate, sid , pp, Pj , prod , ppk ,m, σ) to FRS.

• PSM is corrupted: When receiving (Rate, sid , pp, Pi, Pj , prod , ppk ,m) from FRS,
S generates an accepting transcript of the underlying Σ-protocol as a rating using
(Pi,Mi, usk i) ∈ LsCA, (Pi, pp,Mi, Ỹi, σi) ∈ Reg, and (Pi, Pj , prod , ppk , σi,j,prod).
Finally, S sets Ratings.Add(pp, Pi, Pj , prod , ppk ,m, σ) and outputs (Rate, sid ,
pp, Pi, Pj , prod , ppk ,m, σ) to FRS.

Simulation of Rating Verification: When S receives (Verify, sid , pp, Pj , prod , ppk ,
m, σ) from FRS, S executes the verification protocol. Once the value f is obtained
from the protocol (which implies that VfyProd returned 1), S tries to determine the
author of the rating:

Parse σ as (T1, T2, T3, T4, T5, ch, s).
If f = 0 Then S outputs (Verify, sid , pp, Pj , prod , ppk ,m, σ, 0,⊥) to FRS. As

defined in FRS, invalid ratings will never be opened.
Else If (pp,⊥, Pj , prod , ppk ,m, σ) ∈ Ratings Then output (Verify, sid , pp, Pj ,

prod , ppk , m, σ, 1, ⊥) to FRS. In this case, PSM and the author of the
rating Pi are honest - FRS will include the correct identity for the rating.

Else If PSM is honest and there exists a tuple (Pk, pp,Mk, Ỹk, σk) ∈ Reg such that
e(T5, Ỹ) = e(H1(j, prod), Ỹk) Then Output (Verify, sid , pp, Pj , prod , ppk ,
m, σ, 1, Pk). This covers the case that a rating was created by a corrupted
party, while PSM is honest. Hence, S can use the registration information
to determine the raters identity.

Else Output (Verify, sid , pp, Pj , prod , ppk ,m, σ, 1,⊥) to FRS. In the case that PSM

is corrupted, S is not requested to output the correct identity.

Simulation of Linking Ratings: When S receives (Link, sid , pp, Pj , prod , ppk , m1,
σ1, m2, σ2) from FRS, S executes the linking protocol as defined in Protocol ΠRS.Link
and outputs (Link, sid , pp, Pj , prod , ppk ,m1, σ1,m2, σ2, b) to FRS, where b is the bit
computed during the protocol execution. This implies that VfyProd returned 1.

Simulation of Determining the Raters Identity: Since FRS already asked S for the
raters identity during verification, S is not involved in this step. Hence, S does not
need to simulate something.

Simulation of Generating Opening-Proofs: When S receives (OProof, sid , pp, Pj ,
prod , ppk , m, σ, P) from FRS, S computes f := (Verify, sid , pp, Pj , prod , ppk , m, σ).
If f = 0, S sends (OProof, sid , pp, Pj , prod , ppk , m, σ, P , ⊥) to FRS. Otherwise, it is

110 8 Security Proofs

possible that (pp,⊥, Pj , prod , ppk ,m, σ) ∈ Ratings - meaning S simulated this rating
for an honest but unknown party. In this case, S has to simulate an opening-proof
such that P is accepted as the author of the rating. To do so, S uses the tuple
(P,M) ∈ LCA, which has to exist because the rating is valid (f = 1), and executes the
Zero-Knowledge simulator given in the proof of Lemma 8.5. During the simulation,
S tries to patch the random oracle. If there is some value v such that

[
(ct1, ct2,

ct3, ct4, R1, R2, R3, R4, R5, σ, i, M), v
]
∈ LRO then S outputs error and halts.

Otherwise, S sets LRO.Add
[
(ct1, ct2, ct3, ct4, R1, R2, R3, R4, R5, σ, i, M), ĉh

]
and

τ := (P, ct1, ct2, ct3, ct4, ĉh, ŝ) and outputs (OProof, sid , pp, Pj , prod , ppk ,m, σ, P, τ)
to FRS.

In the case (pp,⊥, Pj , prod , ppk ,m, σ) /∈ Ratings S did not simulate the rating. Hence,
S executes the opening protocol according to ΠRS.OProof and outputs (OProof, sid ,
pp, Pj , prod , ppk , m, σ, P , τ) to FRS.

Note that S creates the proof for party P , even if the rating was not opened yet or P
was not the author of the rating. In both cases, FRS will ignore the proof and output
(OProof, sid , pp, Pj , prod , ppk ,m, σ, P,⊥), as expected.

Simulation of Opening-Proof Verification: When S receives (Judge, sid , pp, Pj ,
prod , ppk , m, σ, P , τ) from FRS, S executes the opening-proof verification protocol
as defined in Protocol ΠRS.Judge and outputs (Judge, sid , pp, Pj , prod , ppk , m, σ,
P , τ , f) to FRS, where f is the bit computed during the protocol execution.

8.2.3 Indistinguishability of the Ideal and Real Protocols

Hybrid game G

In this game the ideal functionality always gives S1 the identifying information during
rating requests, i.e. instead of sending (Rate, sid , pp, Pj , prod , ppk , m) when PSM is honest,
the ideal functionality sends (Rate, sid , pp, Pi, Pj , prod , ppk , m) to S1 both when PSM is
honest and corrupted. S1 works exactly as S except when simulating ratings for honest
parties and when simulating opening-proofs. To simulate ratings - both when PSM is honest
and corrupted - S1 executes the same protocol as S does for corrupted PSM, which is
possible because S1 knows the identity of the honest rater and can use its key material
to generate a rating. To simulate the opening-proof generation, S1 executes the same
protocol as S does for the case (pp,⊥, Pj , prod , ppk ,m, σ) /∈ Ratings. Even for ratings that
S1 created for honest parties correct opening-proofs can be generated, because S1 used the
correct identifying information for these ratings.

Indistinguishability of IDEAL and G

We need to show that ratings and opening-proofs generated by S and S1 are indistinguishable.
These are the only differences of the algorithms.

The rating protocol S executes for honest PSM uses the zero-knowledge simulator of the
Σ-protocol that underlies the signature of knowledge for rating products in Protocol ΠRS,

8.2 UC-Security 111

extended by patching FRO to generate valid ratings (see Lemma 8.4 for details). As-
suming DDH is hard in G1 the tuples (σi,1, σi,2, T1, T2), (σi,j,prod ,1, σi,j,prod ,2, T3, T4), and
(g1,Mi,H1(j, prod), T5) generated by S are random DDH-instances, whereas such tuples
generated by S1 are DDH-tuples. Given elements (T1, T2, T3, T4, T5) ∈ G5

1 the Σ-protocol
can be simulated perfectly and S outputs ratings that are indistinguishable from ratings S1

outputs, assuming patching FRO does not fail.

Analogously to the simulation of ratings, the protocol for generating opening-proofs executed
by S uses the zero-knowledge simulator for the Σ-protocol that underlies the signature
of knowledge for generating an opening-proof in Protocol ΠRS, extended by patching
FRO to generate valid proofs (see Lemma 8.5 for details). The Cramer-Shoup encryption
scheme is CCA2-secure under the DDH assumption, which means that no adversary can
distinguish a valid encryption ct = (ct1, ct2, ct3, ct4) from completely random tuples. Given
(ct1, ct2, ct3, ct4) ∈ G4

2 the Σ-protocol can be simulated perfectly and S outputs opening-
proofs that are indistinguishable from opening-proofs S1 outputs, assuming patching FRO

does not fail.

Patching FRO only fails with negligible probability, because the challenge-values ch, ĉh used
for the simulation of the Σ-protocols are chosen uniformly and independently at random.
Since LRO only contains polynomially many entries, choosing some values ch, ĉh that are
already stored in LRO as v only happens with negligible probability. Hence, IDEAL and G
are indistinguishable.

Indistinguishability of G and HYBRID

By definition, S1 executes exactly the same operations as honest parties do when running
Protocol ΠRS. Hence, the only way for Z to distinguish between G and HYBRID is to
force FRS to output values that differ significantly from the values output by ΠRS. This
only happens when FRS outputs error and halts, whereas the Protocol ΠRS outputs some
value, or FRS outputs 0, whereas Protocol ΠRS outputs 1 (or vice versa). We show that
every environment Z can do this only with negligible probability, which results in the
indistinguishability of G and HYBRID.

Registry Key Generation: FRS always outputs the values obtained from S1. Since S1

behaves exactly as Protocol ΠRS, the outputs of G and HYBRID are indistinguishable.

User Registration: FRS enforces the outcome of this protocol only in Steps 3 and 4.
For both conditions Protocol ΠRS generates exactly the same outputs as FRS.

Hence, G and HYBRID are indistinguishable.

Product Addition: In Step 3, FRS outputs error and halts, when S1 outputs some
ppk i,prod = (Mi,Mi,prod , chi,prod , si,prod , g̃i,prod , X̃i,prod , Ỹi,prod) that is already regis-
tered for some other party Pj or for another product prod ′. If this happens, it must
hold that H2(i, prod) = H2(j, prod) ∨ H2(i, prod) = H2(i, prod ′) ∨ H2(i, prod) =
H2(j, prod ′). In any case, this would be a collision in the collision-resistant hash
function H2. Analogously we can argue for H1. Furthermore, ppk i,prod includes a
proof of knowledge of the value usk i, which is chosen uniformly and independently
for honest parties. Hence, the probability that ppk i,prod is already registered for some

112 8 Security Proofs

other party or some other product is negligible, implying that G and HYBRID are
indistinguishable.

Purchase: The purchasing request will be ignored, according to Step 2 in FRS, when
Pi = Pj or when VfyProd returned 0. The same is done in Protocol ΠRS. If Pj
is corrupted and did not register (Pj ,Mj) to FCA, S1 is not able to execute the
VfyProd-algorithm and ignores the request. This means that FRS gets no response
from S1 and hence does not execute the purchasing protocol. That implies that G
and HYBRID are indistinguishable.

Only in Step 4 the outcome of the purchasing protocol is fixed by FRS. But in that
case S1 knows all information needed to execute the protocol in behalf of Pi and Pj as
defined in Protocol ΠRS and outputs 1. Hence, G and HYBRID are indistinguishable.

VfyProd: The product verification is only used as a subprotocol within the purchasing
protocol and all rating verifications - there is no direct activation from Z for this.
Whenever VfyProd returns 0 the calling protocol will ignore the request, both in FRS

and Protocol ΠRS. S1 exploits this behavior by ignoring the VfyProd-request, when a
corrupted party did not register at FCA. This will in turn ignore the request to the
calling protocol. Hence, G and HYBRID are indistinguishable in that case.

During the product verification FRS could differ in the output from Protocol ΠRS in
Steps 2, 3, and 4.

Step 2 ensures consistency. Since VfyProd is a deterministic algorithm in Protocol ΠRS,
consistency is guaranteed.

Step 3 covers the case that a maliciously generated ppk would be accepted as hon-
estly generated (by an honest party). We can prove that this happens only with
negligible probability, via a reduction to the PS1-Problem. This reduction is given in
Section 8.2.4.

In Step 4 FRS ensures that every ppk is only valid for exactly one party Pi and
one product prod . Analogously to Product Addition, if ppk would also be valid for
some party Pj and/or a product prod ′, this breaks the collision-resistance of the hash
functions H1 and H2. Hence, G and HYBRID are indistinguishable.

Rate a Product: To generate valid ratings FRS ensures in Step 2 that the party Pi is
registered, purchased the product to rate - which implies that the product is valid
- and did not rate the specified product yet. The same is checked in Protocol ΠRS.
Step 5 covers consistency: the tuple (pp, P ′, Pj , prod , ppk , m, σ, 0, lid , oid), for
some P ′, lid , oid , only exists in the list Ratings, if (pp, Pj , prod , ppk ,m, σ) is verified
by S1 as invalid and was verified before the rating request occurred. This is because
the only possibility to store σ as invalid is Step 4 during the verification of ratings in
FRS. During rating requests Protocol ΠRS, and hence the simulator S1, only generates
valid ratings, i.e. the deterministic verification algorithm will output 1. Hence, the
rating σ output by S1 cannot exist in Ratings or is verified as valid. In both cases the
tuple (pp, P ′, Pj , prod , ppk ,m, σ, 0, lid , oid) is not stored in Ratings. Hence, G and
HYBRID are indistinguishable.

8.2 UC-Security 113

As a remark, in Game G the Simulator S1 always gets the identity of a rater and can
generate ratings as defined in Protocol ΠRS.

Verifying a Rating: To verify ratings the VfyRtg-protocol is used. This subprotocol is
also an essential tool during the Link, Open, OProof, and Judge protocols, because
these protocols are only meaningful for valid ratings. During the VfyRtg-protocol the
specified product is verified by the VfyProd-protocol. Hence, whenever S1 does not
respond to a VfyProd request, also VfyRtg and its calling protocols will not proceed,
which exploits the request ignoring behavior.

Analogously to Step 5 of the Rate protocol, Step 3 covers consistency. Since the
verification algorithm in Protocol ΠRS is deterministic, two verification requests with
the same input will generate the same output, as required by FRS. The Steps 4–
7 can only occur for ratings that were not generated by honest parties using the
Rate-protocol.

Step 4 handles invalid ratings and self-ratings. The verification protocol in Proto-
col ΠRS covers the same cases: invalid ratings are recognized by the test ch = FRO(T1,
T2, T3, T4, T5, R1, R2, R3, prod , ppk , m) and self-ratings are recognized by
T5 6= Mj,prod .

Obviously, when PSM and Pj are corrupted, it is possible to generate arbitrary tuples
(usk ′j , σ

′
j , σj,j,prod) such that PS.Verify(PS.pk , usk ′j , σ

′
j) = 1 and PS.Verify(PS.pk j,prod ,

usk ′j , σj,j,prod) = 1, but H1(j, prod)usk
′
j 6= Mj,prod . With these values Pj can rate

his own product, such that the verification algorithm cannot detect it. But in this
case S1 is not requested to output the identity of the signer (P = ⊥). Hence, FRS

either outputs 0 because the rating is invalid (b = 0), or continues executing the
verification protocol. Since PSM and Pj are considered as corrupted in this case, the
Steps 5–7 do not occur. Hence, FRS will output 1 in Step 9, as it would also happen
in Protocol ΠRS. When PSM is honest and a corrupted Pj generates a valid rating
(T1, T2, T3, T4, T5, ch, s) for his own product, this means that he proved knowledge
of a value usk , such that (T1, T2) is a valid signature for message usk 6= usk j under
the public key PS.pk from PSM and that T5 6= Mj,prod . Since PSM is honest, S1 has
to output the identity of the rater. If usk = usk i for some honest party Pi, S1 will
find an entry in Reg that falsely identifies Pi as the rater. If PSM does not find an
identifying entry in Reg, S1 returns ⊥ to FRS. Both cases are discussed in Steps 6
and 7.

Step 5 ensures that rating a product of an honest party Pj is only possible after
purchasing it. Every rating includes a proof of knowledge of a valid signature for some
message usk under the public key PS.pk j,prod from party Pj . This signature is handed
to the rater during the Purchase-protocol, but in this case some corrupted party
proved knowledge of such a signature without executing the Purchase-protocol. That
means, the signature must be a forgery, which contradicts the EUF-CMA security
of the signature scheme in use. We will prove this in detail via a reduction to the
PS1-Problem. Hence, under the PS1-Problem G and HYBRID are indistinguishable
in that case.

114 8 Security Proofs

Step 6 ensures strong exculpability, meaning that it is not feasible to produce valid
ratings in behalf of honest parties. Impersonating an honest party requires to find
the parties’ secret key usk . Using a reduction to the PS1-Problem, provided in
Section 8.2.4, we can prove that this is only possible with negligible probability.

Step 7 ensures traceability, meaning that the identity of every rater can be determined
from valid ratings. Being able to create valid but untraceable ratings requires to forge
a signature of the EUF-CMA secure signature scheme used by PSM. Analogously to
Step 6, we can prove that such attacks are infeasible under the PS1-Problem.

Linking Ratings: Whenever S1 has to respond to a Link-request, we know that the
specified product is valid (VfyProd returned 1) and FRS stored the ratings to link in
the list Ratings. Both the simulator S1 and FRS return 0 to the Link request when
at least one of the ratings is invalid. Hence, for the analysis of Link we only consider
valid ratings that passed all verification-tests.

Now we analyze Link-requests.

Step 4 claims that ratings are unique. This is ensured by the Verify-request because
FRS adds a rating only if it is not present in the list Ratings.

In Step 5 FRS enforces consistency. If two ratings are linkable, RebLDB is used to store
this information and subsequent Link-requests for ratings of the same equivalence
class must be linkable, too. In Protocol ΠRS for every party and a given product the
element T5 of a rating σ = (T1, T2, T3, T4, T5, ch, s) is a fixed value. Hence, all ratings
for a fixed product with identical values T5 belong to the same equivalence class and
are linkable, as expected.

In Step 6 FRS has no information that could be used to link the given ratings. This can
only happen when PSM is corrupted and the ratings are also generated by corrupted
parties. So the value obtained from the simulator S1 is used as output. Hence,
Protocol ΠRS and FRS generate the same output.

Step 7 expresses that it must be infeasible to generate ratings that can be opened
to different parties but are linkable. Since every rating σ = (T1, T2, T3, T4, T5, ch,
s) in Protocol ΠRS includes a zero-knowledge proof of knowledge of some value usk
such that (T1, T2) and (T3, T4) are valid signatures for message usk and the discrete
logarithm of T5 to the base H1(j, prod) is the same value usk , this requirement holds.
Hence, in this case Protocol ΠRS and FRS generate the same output.

Step 8 covers the case that it must be infeasible to generate a valid rating in behalf
of an honest user. This is analogue to VfyRtg-Step 6 for an corrupted PSM and we
can also prove via a reduction to the PS1-Problem, given in Section 8.2.4, that this
event does not occur.

Step 9 is analogue to Step 6.

The RebLDB-Step 18 is analogue to VfyRtg-Step 5 for corrupted PSM. With a
reduction to the PS1-Problem we can prove that this event does not occur. The proof
is given in Section 8.2.4.

Summarizing the analysis of Link and RebLDB, G and HYBRID are indistinguishable.

8.2 UC-Security 115

Determine Raters Identity: S1 outputs the raters’ identity within the Verify-protocol.
Since S can correctly output the identity, also S1 can do this.

Generate Opening-Proofs: This activation is only of interest for honest PSM. FRS and
Protocol ΠRS only generate an opening-proof for valid ratings that were opened to
the given party. For invalid or unopened ratings and when the given rater identity
is incorrect both protocols output ⊥. Hence, for the analysis of OProof we only
consider valid ratings that passed all verification-tests. Step 7 covers consistency: an
opening-proof that was once invalid cannot be made valid. Since the Judge-protocol
is deterministic in Protocol ΠRS and OProof only generates valid proofs, this cannot
happen. Hence, G and HYBRID are indistinguishable.

Verifying Opening-Proofs: If the rating is invalid, no party identity or no opening-
proof is given, FRS and Protocol ΠRS both output 0. For the analysis of Judge we only
consider valid ratings that passed all verification-tests. Step 6 expresses that PSM is
honest, the rating was generated by an honest party, or Step 18 occurred previously
for this specific rating. The Steps 9 and 10 cover consistency, which is ensured by
Protocol ΠRS because the verification of opening-proofs is deterministic. Every valid
opening-proof for the correct identity will be verified as valid by Protocol ΠRS; invalid
proofs will detected as those. Opening-proofs to a wrong identity can be detected
by Protocol ΠRS because the real identity the proof was generated for is a part of τ .
Step 11 covers non-frameability. Maliciously generated but valid opening-proofs cause
FRS to output error and halt, when PSM and P are honest. Via a reduction to the
CCA2-security of the Cramer-Shoup encryption scheme, provided in Section 8.2.4, we
can prove that such opening-proofs cannot be generated. Step 12 expresses that PSM

is corrupted and the given rating was generated by a corrupted party. Otherwise,
FRS would know the identity of the rater. In Step 15 consistency is guaranteed, as
in Steps 9 and 10. In Step 16 an honest user is accepted as the author of the given
rating. Since FRS does not know the identity of that rating (X = ⊥) the rating must
be maliciously generated in behalf of an honest party. This is impossible as we will
prove via a reduction to PS1-Problem in Section 8.2.4.

In Step 17 the simulator accepts the opening-proof as valid for party P . Hence, the
identity P is stored to ensure consistency for future verification requests. The Steps
18 and 19 store the verified opening-proof for the given rating to ensure consistency
for future verification requests.

As discussed above, using reductions to the PS1-Problem and a reduction to the
CCA2-security of the Cramer-Shoup encryption scheme, we can conclude that no
environment Z can distinguish between G and HYBRID. The reductions complete
the proof and are given in the next section.

8.2.4 The Reductions used within the Security Proof

To complete the proof of Theorem 6.1 we have to show that no environment can use the
Steps VfyProd.3, VfyRtg.5/6/7, RebLDB.18, LinkRtgs.8 and Judge.11/16 to its advantage.
We prove this with several reductions using a proof of knowledge extractor which needs
rewinding. In UC the environment is treated as an interactive distinguisher, i.e. rewinding

116 8 Security Proofs

an interactive machine is not possible. This is not contradicting because we use rewinding
to prove the indistinguishability of hybrid games and not within the simulation. The same
technique was used within other UC-based proofs [Lin11; Bla+13; Gro04].

All proofs have the same structure: assuming there exists an environment Z that can
distinguish between G and HYBRID, and given either a PS1-instance or a CCA2-challenger
for the Cramer-Shoup encryption scheme, we define a simulator interacting with FRS in
game G we use to find a solution to the given problem instance. Since we assume the
PS1-Problem and the SXDH-Assumption hold, no such environment can exist.

Lemma 8.6:
If the PS1-Problem holds for bilinear group generator BiGrGen, then no environment
can distinguish between G and HYBRID at Steps VfyProd.3, VfyRtg.6, LinkRtgs.8, or
Judge.16. �

Proof. Assume that there exists an environment Z interacting with game G that is able to
let FRS output error and halt at the Steps VfyProd.3, VfyRtg.6, LinkRtgs.8, or Judge.16
with non-negligible probability.

We will use this environment to define a simulator S2 that we can use to compute a solution
to the Pointcheval-Sanders-Problem with non-negligible probability. The hash function H1

is treated as a random oracle.

We are given GD as the output of BiGrGen, (g, Y, g̃, X̃, Ỹ) and unlimited access to oracle O
from our challenger and have to output a tuple (m∗, s, sx+m∗·y) such that s 6= 1G1 and m∗

was not asked to O. In the first part of the proof, we will describe how S2 interacts with
FRS and handles the interaction with Z and the real-world adversary A. In the second part
we analyze S2.

Simulator S2 works as S1, except in the following cases:

Calls to FRO: S2’s answers are generated the same way as S1 does. We will point out
the situations in which S2 deviates from this policy.

Calls to FCRS: S2 runs PD.KeyGen(GD) to obtain PD.pk := (u, v) and PD.td := dlogu(v).
The common reference string is set to (GD, PD.pk , H, H1, H2) according to the
definition of FCRS in G.

Calls to H1: S2 manages the list LH1 to respond identically to repeated requests. When
some x is queried for the first time (H1(x) is called for some x ∈ {0, 1}∗), S2 chooses
αx←u Zp, computes ĝx := gαx1 , and stores (x, αx, ĝx) in LH1 . Finally, S2 hands ĝx to
the caller, as it is also done for repeated queries H1(x), i.e. (x, αx, ĝx) ∈ LH1 .

Calls to FCA: Whenever an honest party Pi is activated for the first time, S2 chooses
ui←u Zp, computesMi :=Y ui and sets LCA.Add(Pi,Mi). Note that the user-secret-key
usk i is implicitly set to be y · ui for an unknown y. Calls from corrupted parties are
handled as defined for S1.

Registry Key Generation: For an honest PSM S2 handles the KeyGen-requests as
defined for S1. A corrupted PSM is managed by adversary A.

8.2 UC-Security 117

User Registration: For honest PSM S2 works exactly as S1. S2 simulates the compu-
tations for an honest party Pi using the interactive simulator given in the proof of
Lemma 8.2.

Product Addition: For honest party Pi, S2 sets Mi,prod := Y ui·αi,prod and computes
g̃i,prod :=H2(i, prod), where αi,prod is set during the request H1(i, prod). Then, S2

runs the algorithm PS.KeyGen(GD) to obtain PS.pk i,prod := (g̃i,prod , X̃i,prod , Ỹi,prod)
and PS.sk i,prod := (ξ1i,prod , ξ2i,prod) and simulates the non-interactive zero-knowledge
proof of knowledge using the simulator given in the proof of Lemma 8.3. With these
values, S2 runs the remaining steps defined in Protocol ΠRS.

Purchase: In behalf of an honest seller Pj , S2 behaves as S1. For an honest purchaser
Pi, S2 uses the same simulator as during the Register-protocol (see Lemma 8.2).

VfyProd: S2 works exactly as S1.

Rate a Product: To simulate ratings for an honest party Pi (note that S2 obtains the
identity from FRS), S2 uses the values σi from the Register-protocol with PSM, σi,j,prod
from the Purchase-protocol with Pj , αj,prod chosen by H1, ui chosen by FCA, and Y
given by the PS1-instance: choose t1, t2, k←u Zp and compute T1 := σt1i,1, T2 := σt1i,2,
T3 := σt2i,j,prod ,1, T4 := σt2i,j,prod ,2, T5 := Y αj,prod ·ui . With these values S2 simulates the
zero-knowledge proof of knowledge as given in the proof of Lemma 8.4. Then S
patches FRO by setting LRO.Add(T1, T2, T3, T4, T5, R1, R2, R3, pp, prod , ppk ,m), ch),
sets σ := (T1, T2, T3, T4, T5, ch, s) and outputs σ as the rating.

For all remaining protocols (Verify, Link,Open,OProof, Judge) S2 works exactly as S1.

Now we show how S2 can be used to find a solution to the given PS1-instance.

When FRS outputs error in VfyProd.3, we know that the party Pj is honest, ppk fulfills the
verification equations defined in VfyProd, and Pj did not use the NewProduct-protocol
to generate ppk .

Especially, for ppk = (Mj , Mj,prod , chj,prod , sj,prod , g̃j,prod , X̃j,prod , Ỹj,prod) the non-
interactive zero-knowledge proof of knowledge (Mj , Mj,prod , chj,prod , sj,prod) is valid.

Now we rewind the game G up to the point where FRO outputs chj,prod for the first
time.

In the rewound game, S2 lets FRO output a new value ch ′j,prod 6= chj,prod .

Eventually, S2 obtains some ppk ′ for the same pair (j, prod) as in the first run of
the game, where the non-interactive zero-knowledge proof of knowledge (Mj , Mj,prod ,
ch ′j,prod , s′j,prod) is valid, too. Using the extractor of Lemma 8.3 we obtain usk i = y ·ui,
where ui is chosen by FCA.

Furthermore, we can compute y := u−1
i · usk i and use it to find a solution to the

PS1-Problem.

118 8 Security Proofs

When FRS outputs error in VfyRtg.6, LinkRtgs.8, or Judge.16, the given rating σ = (T1,
T2, T3, T4, T5, ch, s) is valid and must be maliciously generated in behalf of an honest
user P , as discussed previously.

We rewind the game G up to the point where FRO outputs c for the first time.

In the rewound game, S2 lets FRO output a new value ch ′ 6= ch.

Eventually, S2 obtains another valid rating σ′ = (T1, T2, T3, T4, T5, ch ′, s′) for the
same Pj , prod , ppk and m. Using the extractor of Lemma 8.4 we obtain usk = y · ui,
where ui is chosen by FCA.

Analogously to VfyProd.3, we can compute y := u−1
i · usk and use this value to find a

solution to the PS1-Problem.

To compute a solution to the PS1-Problem given the value y, we choose m←u Zp, query the
oracle O(m) and obtain a pair (H1, H2) := (h, hx+m·y) ∈ G1 for some unknown x ∈ Zp.

Then we set H3 := H2 · H−m·y1 = hx+m·y · h−m·y = hx, choose r,m∗ ←u Zp and output
(m∗,Hr1, Hr

3 · H
r·m∗·y
1).

All outputs from S2 are distributed identically to the outputs of S1, assuming patching
the random oracles does not fail. As argued previously, this only happens with negligible
probability.

Hence, when Z can distinguish between the game G and HYBRID at the Steps VfyProd.3,
VfyRtg.6, LinkRtgs.8, or Judge.16 we can solve the PS1-Problem with non-negligible proba-
bility.

Lemma 8.7:
If the SXDH-Assumption holds for bilinear group generator BiGrGen, and hence the Cramer-
Shoup encryption scheme is CCA2-secure in G2, then no environment can distinguish
between G and HYBRID at Step Judge.11. �

Proof. Assume that there exists an environment Z interacting with game G that is able to
let FRS output error at the Step Judge.11 with non-negligible probability.

We will use this environment to define a simulator S3 which we use to break the CCA2-
security of the Cramer-Shoup encryption scheme. We use the LR-formulation for CCA2-
security [BR07], which is equivalent to the standard CCA2-notion.

We are given GD as the output of BiGrGen, CS.pk = (g2, h̃, b̃, d̃, f̃ ,H), access to an
encryption-oracle LR and access to a decryption-oracle D from our challenger. We have
to output a bit b as a guess whether the left (b = 0) or the right (b = 1) message given to
oracle LR was encrypted, under the limitation not to query D to decrypt some ciphertext
produced by LR.

In the first part of the proof, we will describe how S3 interacts with FRS and handles the
interaction with Z and the real-world adversary A. In the second part we analyze S3. Note
that Step Judge.11 is only of interest for honest PSM. A corrupted PSM is always able to
generate opening-proofs, because it controls the encryption scheme. Hence, we assume A
does not corrupt PSM.

8.2 UC-Security 119

Simulator S3 works as S1, except in the following cases:

Registry Key Generation: S3 generates PS.pk and PS.sk as S1 does and sets the
public key of the Cramer-Shoup encryption to be CS.pk given from the challenger.

User Registration: When the honest PSM interacts with an corrupted party Pi, S3

works exactly as S1, except when decrypting the value ct = (ct1, ct2, ct3, ct4) obtained
from party Pi. Here, S3 queries its decryption oracle D(ct) to obtain the value Ỹi.
When PSM interacts with an honest party Pi, S3 queries the LR-oracle with 1G2 and
Ỹi = Ỹ usk i as LR(1G2 , Ỹi) to obtain the ciphertext ct = (ct1, ct2, ct3, ct4) and uses it
during the protocol execution.

For the protocols NewProduct, Purchase, VfyProd, Rate, Verify, Link, and Open S3 works
exactly as S1, because there is no encryption involved.

Generating Opening-Proofs: When PSM has to generate an opening-proof for a cor-
rupted party Pi, it executes exactly the same protocol as S1. When PSM has to
generate an opening-proof for an honest party Pi, S3 runs the same verification checks
as S1 does, queries LR(1G2 , Ỹi) to obtain the ciphertext ct = (ct1, ct2, ct3, ct4) and
simulates the opening-proof using the simulator of Lemma 8.5. Then S3 patches FRO,
sets τ := (Pi, ct1, ct2, ct3, ct4, ĉh, ŝ) and outputs τ .

Opening-Proof Verification: S3 works exactly as S1.

Now we show how S3 can be used to break the CCA2-security of the Cramer-Shoup
encryption scheme.

We are working with Type-3 pairings where no map from G1 to G2 exists. Therefore,
elements from G1 cannot be used to compute elements in G2 and we can concentrate
on the group G2 during the analysis.

When FRS outputs error in Step 11 of (Judge, sid , pp, Pj , prod , ppk ,m, σ, Pi, τ) we know
from the validity of the non-interactive zero-knowledge proofs of knowledge σ and τ
that

T5 = H1(j, prod)usk i (T5 is given by σ,)

ct3 = Z̃ · f̃β (ct3 is given by τ , β is unknown)

and

e(H1(j, prod)usk i , Ỹ) = e(H1(j, prod), Z̃), (since τ is valid)

which is only possible, when Z̃ = Ỹi. This in turn means that the opening-proof
contains the correct value Ỹi for party Pi.

The ciphertexts of Ỹi that were generated during the Register-protocol and for other
opening-proofs for the same party are the only values that depend on Ỹi. But these
ciphertexts contain Ỹi only if the LR-oracle encrypts the message on the right-hand
side of a call (b = 1). Hence, we output b′ = 1 as our guess to the CCA2-challenger.

120 8 Security Proofs

When FRS never outputs error, meaning that it was not possible to maliciously produce
an opening-proof, we output b′ = 0 as our guess to the CCA2-challenger, because we
assume that 1G2 was encrypted using LR. In this case all ciphertexts are independent
of Ỹi, which implies that computing Ỹi is not possible.

All outputs from S3 are distributed identically to the outputs of S1, assuming patching
the random oracle does not fail. As argued previously, this only happens with negligible
probability. Hence, when Z can distinguish between the game G and HYBRID at the Step
Judge.11 we can break the CCA2-security of the Cramer-Shoup encryption scheme with
non-negligible probability.

Lemma 8.8:
If the PS1-Problem holds for bilinear group generator BiGrGen, then no environment can
distinguish between G and HYBRID at Steps VfyRtg.5/7 and RebLDB.18. �

Proof. Assume that there exists an environment Z interacting with game G that is able to
let FRS output error at the Steps VfyRtg.5, VfyRtg.7 or RebLDB.18 with non-negligible
probability.

We will use this environment to define a simulator S4 that we can use to compute a solution
to the Pointcheval-Sanders-Problem with non-negligible probability. The hash function H2

is treated as a random oracle.

We are given GD as the output of BiGrGen, (g, Y, g̃, X̃, Ỹ) and unlimited access to oracle O
from our challenger and have to output a tuple (m∗, s, sx+m∗·y) such that s 6= 1G1 and m∗

was not asked to O. In the first part of the proof, we will describe how S4 interacts with
FRS and handles the interaction with Z and the real-world adversary A. In the second part
we analyze S4

Simulator S4 works as S1, except in the following cases:

Calls to FRO: S4’s answers are generated the same way as S1 does.

Calls to FCRS: S4 runs PD.KeyGen(GD) to obtain PD.pk := (u, v) and PD.td := dlogu(v).

The common reference string is set to (GD, PD.pk , H, H1, H2) according to the
definition of FCRS in G.

Calls to FCA: S4 works exactly as S1.

Calls to H2: S4 manages the list LH2 to respond identically to repeated requests. When
some x is queried for the first time (H2(x) is called for some x ∈ {0, 1}∗), S4 chooses
αx←u Zp, computes g̃x := g̃αx , and stores (x, αx, g̃x) in LH2 . Finally, S4 hands g̃x to
the caller, as it is also done for repeated queries H2(x), i.e. (x, αx, g̃x) ∈ LH1 . Note
that g̃ is used here, which is given by the PS1-Problem instance.

Registry Key Generation: For an honest PSM S4 sets PS.pk := (g̃, X̃, Ỹ), runs the
algorithm CS.KeyGen(GD) to obtain CS.pk and CS.sk , sets pp := (PS.pk ,CS.pk) and
outputs pp. A corrupted PSM is managed by adversary A.

8.2 UC-Security 121

User Registration: For an honest party Pi, S4 works exactly as S1.

For an honest PSM interacting with an honest party Pi, S4 executes the operations
defined in Protocol ΠRS, but instead of computing a signature (σ1, σ2) itself, S4

queries its oracle O(usk i), with usk i given by FCA, to obtain a valid signature for the
registering party.

For an honest PSM interacting with a corrupted party Pi, S4 executes Protocol ΠRS

up to the point where PSM has to generate a signature for Pi. Now we rewind the
adversary A up to the point where it sent its first message (pp′, R) in behalf of Pi
and respond with a new random challenge ch ′ 6= ch (the same technique is used in
[Bla+13]). Now, we extract usk i, query O(usk i) to obtain a valid signature for party
Pi, and finalize the interaction according to Protocol ΠRS.

Product Addition: For honest party Pi, S4 chooses βi,prod , γi,prod←u Zp and sets g̃i,prod :=
H2(i, prod) = g̃αi,prod , according to the random oracle H2, X̃i,prod := X̃αi,prod ·βi,prod ,
Ỹi,prod := Ỹ αi,prod ·βi,prod ·γi,prod , where g̃, X̃, Ỹ are given by the PS1-Problem instance.
Then, S4 generates the non-interactive zero-knowledge proof of knowledge and outputs
ppk i,prod as defined in Protocol ΠRS.

Purchase: For an honest party Pi, S4 works exactly as S1.

For an honest party Pj interacting with an honest party Pi, S4 executes the operations
defined in Protocol ΠRS, but instead of computing a signature σi,j,prod itself, S4 queries
its oracle O(γj,prod · usk i), with γj,prod chosen during NewProduct and usk i given by
FCA, to obtain a pair (σ′1, σ

′
2). Then S4 sets σi,j,prod := (σ′1, σ

′βj,prod
2) and finalizes

Protocol ΠRS.

For an honest party Pj interacting with a corrupted party Pi, S4 executes Protocol ΠRS

up to the point where Pj has to generate a signature for Pi. Now we rewind the
adversary A up to the point where it sent its first message (prod , ppk , R) in behalf of
Pi and respond with new random challenge ch ′ 6= ch (the same technique is used in
[Bla+13]). Now, we extract usk i, query O(γj,prod · usk i) to obtain a pair (σ′1, σ

′
2), set

σi,j,prod := (σ′1, σ
′βj,prod
2), and finalize the interaction according to Protocol ΠRS.

For all remaining protocols (VfyProd, Rate, Verify, Link, Open, OProof, Judge) S4 works
exactly as S1.

Now we show how S4 can be used to find a solution to the given PS1-instance.

When FRS outputs error in VfyRtg.5 some registered party Pi generated a valid rating
σ = (T1, T2, T3, T4, T5, ch, s) without purchasing the corresponding product. We now
rewind the whole game G up to the point where the random oracle FRO output ch
for the first time. In the rewound game, S4 lets FRO output a new value ch ′ 6= ch.
Eventually, S4 obtains a second valid rating σ′ = (T1, T2, T3, T4, T5, ch ′, s′) and we
can compute usk i using the extractor of Lemma 8.4. Furthermore, since σ and σ′

are valid, (T3, T4) must be a valid signature for message usk i under the public key
(g̃j,prod , X̃j,prod , Ỹj,prod):

e(T3, X̃j,prod · Ỹ usk i
j,prod) = e(T3, g̃

x·βj,prod
j,prod · g̃y·βj,prod ·γj,prod ·usk ij,prod) = e(T4, g̃j,prod)

122 8 Security Proofs

=⇒ T
x·βj,prod+y·βj,prod ·γj,prod ·usk i
3 = T4.

And we can compute

T
1/βj,prod
4 = T

x+y·γj,prod ·usk i
3 ,

which is a valid signature for message m = γj,prod · usk i. Since oracle O is only
queried for usk i during Register and was not called during Purchase, we can output
(m,T3, T

1/βj,prod
4) as a solution to the given PS1-Problem instance. The probability

that m was already queried is negligible, because all values γx are chosen uniformly
and independently at random.

When FRS outputs error in VfyRtg.7, a valid rating σ = (T1, T2, T3, T4, T5, ch, s) could
not be opened by the honest PSM, which means that the rating was generated in
behalf of an unregistered party. Furthermore, we know that T5 = H1(j, prod)usk

for some usk ∈ Zp and (T1, T2) is a valid signature for the message usk under the
public key PS.pk = (g̃, X̃, Ỹ), because σ is valid. As described above, we rewind the
whole game G to extract usk . S4 queries O only during the Register-protocol and the
Purchase-protocol. Since PSM cannot open the rating, O(usk) was not queried in the
Register-protocol. The probability that S4 queried O(usk) in the Purchase-protocol,
meaning usk = γx ·usk i for some γx and some usk i, is negligible, because all values γx
are chosen uniformly and independently at random. Hence, we can output (usk , T1, T2)
as the solution to the given PS1-Problem instance.

When FRS outputs error in RebLDB.18, then there exist to many valid, but non-linkable
ratings for the given product. Since two ratings σ′ = (T ′1, T ′2, T ′3, T ′4, T ′5, ch ′, s′),
σ′′ = (T ′′1 , T

′′
2 , T

′′
3 , T

′′
4 , T

′′
5 , ch ′′, s′′) are linkable, if and only if T ′5 = T ′′5 , there must

exist at least one rating σ = (T1, T2, T3, T4, T5, ch, s), where T5 = H1(j, prod)usk for
some usk that was not extracted during the Purchase-protocol. Rewinding the game
G and extracting usk , we can output (γj,prod · usk , T3, T

1/βj,prod
4) as the solution to the

PS1-Problem instance, as described above.

All outputs from S4 are distributed identically to the outputs of S1, assuming patching
the random oracles does not fail. As argued previously, this only happens with negligible
probability. Hence, when Z can distinguish between the game G and HYBRID at the Steps
VfyRtg.5/7 or RebLDB.18 we can solve the PS1-Problem with non-negligible probability.

Bibliography

[Abe+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. „Structure-Preserving Signatures and Commitments to Group
Elements“. In: Advances in Cryptology – CRYPTO 2010. Ed. by Tal Rabin.
Vol. 6223. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2010, pp. 209–236.

[And+08] Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, and Tal Malkin. „Repu-
tation Systems for Anonymous Networks“. In: Privacy Enhancing Technologies,
8th International Symposium, PETS 2008, Leuven, Belgium, July 23-25, 2008,
Proceedings. Ed. by Nikita Borisov and Ian Goldberg. Vol. 5134. Lecture Notes
in Computer Science. Springer, 2008, pp. 202–218. doi: 10.1007/978-3-540-
70630-4_13.

[Ate+00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. „A Practical
and Provably Secure Coalition-Resistant Group Signature Scheme“. In: Advances
in Cryptology – CRYPTO 2000. Ed. by Mihir Bellare. Vol. 1880. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2000, pp. 255–270.

[Ate+05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical Group Signatures without Random Oracles. Cryptology ePrint Archive,
Report 2005/385. http://eprint.iacr.org/2005/385. 2005.

[BB04] Dan Boneh and Xavier Boyen. „Short Signatures Without Random Oracles“.
In: Advances in Cryptology – EUROCRYPT 2004. Ed. by Christian Cachin
and Jan Camenisch. Vol. 3027. Lecture Notes in Computer Science. Interlaken,
Switzerland: Springer, Heidelberg, Germany, May 2004, pp. 56–73.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. „Short Group Signatures“. In:
Advances in Cryptology – CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2004, pp. 41–55.

[BEJ18] Johannes Blömer, Fabian Eidens, and Jakob Juhnke. „Practical, Anonymous,
and Publicly Linkable Universally-Composable Reputation Systems“. In: Topics
in Cryptology – CT-RSA 2018. Ed. by Nigel P. Smart. Vol. 10808. Lecture
Notes in Computer Science. San Francisco, CA, USA: Springer, Heidelberg,
Germany, Apr. 2018, pp. 470–490. doi: 10.1007/978-3-319-76953-0_25.
Full Version: Cryptology ePrint Archive, Report 2018/029. https://eprint.
iacr.org/2018/029. 2018.

https://doi.org/10.1007/978-3-540-70630-4_13
https://doi.org/10.1007/978-3-540-70630-4_13
http://eprint.iacr.org/2005/385
https://doi.org/10.1007/978-3-319-76953-0_25
https://eprint.iacr.org/2018/029
https://eprint.iacr.org/2018/029

124 Bibliography

[BEJ18a] Johannes Blömer, Fabian Eidens, and Jakob Juhnke. „Enhanced Security
of Attribute-Based Signatures“. In: Cryptology and Network Security - 17th
International Conference, CANS 2018, Naples, Italy, September 30 - October 3,
2018, Proceedings. Ed. by Jan Camenisch and Panos Papadimitratos. Vol. 11124.
Lecture Notes in Computer Science. Springer, 2018, pp. 235–255. doi: 10.1007/
978-3-030-00434-7_12.

[Bel+98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. „Relations
Among Notions of Security for Public-Key Encryption Schemes“. In: Advances
in Cryptology – CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 1998, pp. 26–45.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. „Non-Interactive Zero-Knowledge
and Its Applications (Extended Abstract)“. In: 20th Annual ACM Symposium
on Theory of Computing. Chicago, IL, USA: ACM Press, May 1988, pp. 103–
112.

[BG93] Mihir Bellare and Oded Goldreich. „On Defining Proofs of Knowledge“. In: Ad-
vances in Cryptology – CRYPTO’92. Ed. by Ernest F. Brickell. Vol. 740. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 1993, pp. 390–420.

[BJK15] Johannes Blömer, Jakob Juhnke, and Christina Kolb. „Anonymous and Publicly
Linkable Reputation Systems“. In: FC 2015: 19th International Conference
on Financial Cryptography and Data Security. Ed. by Rainer Böhme and
Tatsuaki Okamoto. Vol. 8975. Lecture Notes in Computer Science. San Juan,
Puerto Rico: Springer, Heidelberg, Germany, Jan. 2015, pp. 478–488. doi:
10.1007/978-3-662-47854-7_29. Full Version: Cryptology ePrint Archive,
Report 2014/546. http://eprint.iacr.org/2014/546. 2014.

[Bla+13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
„Analysis and Improvement of Lindell’s UC-Secure Commitment Schemes“. In:
ACNS 13: 11th International Conference on Applied Cryptography and Network
Security. Ed. by Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel,
and Reihaneh Safavi-Naini. Vol. 7954. Lecture Notes in Computer Science. Banff,
AB, Canada: Springer, Heidelberg, Germany, June 2013, pp. 534–551. doi:
10.1007/978-3-642-38980-1_34.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. „Short Signatures from the Weil
Pairing“. In: Journal of Cryptology 17.4 (Sept. 2004), pp. 297–319.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. „Foundations of
Group Signatures: Formal Definitions, Simplified Requirements, and a Con-
struction Based on General Assumptions“. In: Advances in Cryptology – EURO-
CRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture Notes in Computer Science.
Warsaw, Poland: Springer, Heidelberg, Germany, May 2003, pp. 614–629.

[BN06] Mihir Bellare and Gregory Neven. „Multi-signatures in the plain public-Key
model and a general forking lemma“. In: ACM CCS 06: 13th Conference on
Computer and Communications Security. Ed. by Ari Juels, Rebecca N. Wright,

https://doi.org/10.1007/978-3-030-00434-7_12
https://doi.org/10.1007/978-3-030-00434-7_12
https://doi.org/10.1007/978-3-662-47854-7_29
http://eprint.iacr.org/2014/546
https://doi.org/10.1007/978-3-642-38980-1_34

Bibliography 125

and Sabrina De Capitani di Vimercati. Alexandria, Virginia, USA: ACM Press,
Oct. 2006, pp. 390–399.

[Bon98] Dan Boneh. „The Decision Diffie-Hellman Problem“. In: Algorithmic Number
Theory, Third International Symposium, ANTS-III, Portland, Oregon, USA,
June 21-25, 1998, Proceedings. Ed. by Joe Buhler. Vol. 1423. Lecture Notes in
Computer Science. Springer, 1998, pp. 48–63. doi: 10.1007/BFb0054851.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. „How Not to Prove
Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios“. In:
Advances in Cryptology – ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue
Sako. Vol. 7658. Lecture Notes in Computer Science. Beijing, China: Springer,
Heidelberg, Germany, Dec. 2012, pp. 626–643. doi: 10.1007/978-3-642-
34961-4_38.

[BR07] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography,
Chapter 7 (course notes). Can be found at http://cseweb.ucsd.edu/~mihir/
cse207/w-asym.pdf. 2007.

[BR93] Mihir Bellare and Phillip Rogaway. „Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols“. In: ACM CCS 93: 1st Conference on Com-
puter and Communications Security. Ed. by V. Ashby. Fairfax, Virginia, USA:
ACM Press, Nov. 1993, pp. 62–73.

[BS04] Dan Boneh and Hovav Shacham. „Group Signatures With Verifier-Local Revo-
cation“. In: ACM CCS 04: 11th Conference on Computer and Communications
Security. Ed. by Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel.
Washington D.C., USA: ACM Press, Oct. 2004, pp. 168–177.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. „Foundations of Group Signatures:
The Case of Dynamic Groups“. In: Topics in Cryptology – CT-RSA 2005. Ed. by
Alfred Menezes. Vol. 3376. Lecture Notes in Computer Science. San Francisco,
CA, USA: Springer, Heidelberg, Germany, Feb. 2005, pp. 136–153.

[Can+07] Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vadhan,
and Hoeteck Wee. „Amplifying Collision Resistance: A Complexity-Theoretic
Treatment“. In: Advances in Cryptology – CRYPTO 2007. Ed. by Alfred Menezes.
Vol. 4622. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2007, pp. 264–283.

[Can01] Ran Canetti. „Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols“. In: 42nd Annual Symposium on Foundations of Computer
Science. Las Vegas, NV, USA: IEEE Computer Society Press, Oct. 2001,
pp. 136–145. Also consider the updated versions: Cryptology ePrint Archive,
Report 2000/067. http://eprint.iacr.org/2000/067. 2000.

[Can04] Ran Canetti. „Universally Composable Signature, Certification, and Authenti-
cation“. In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17
2004), 28-30 June 2004, Pacific Grove, CA, USA. IEEE Computer Society,
2004, p. 219. doi: 10.1109/CSFW.2004.24.

https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
http://cseweb.ucsd.edu/~mihir/cse207/w-asym.pdf
http://cseweb.ucsd.edu/~mihir/cse207/w-asym.pdf
http://eprint.iacr.org/2000/067
https://doi.org/10.1109/CSFW.2004.24

126 Bibliography

[CF01] Ran Canetti and Marc Fischlin. „Universally Composable Commitments“. In:
Advances in Cryptology – CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2001, pp. 19–40.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. „The random oracle method-
ology, revisited“. In: Journal of the ACM 51.4 (2004), pp. 557–594. doi:
10.1145/1008731.1008734.

[Che+10] Shenlong Chen, Yuqing Zhang, Peng Liu, and Jingyu Feng. „Coping with Traitor
Attacks in Reputation Models for Wireless Sensor Networks“. In: Proceedings
of the Global Communications Conference, 2010. GLOBECOM 2010, 6-10
December 2010, Miami, Florida, USA. IEEE, 2010, pp. 1–6. doi: 10.1109/
GLOCOM.2010.5684005.

[CL06] Melissa Chase and Anna Lysyanskaya. „On Signatures of Knowledge“. In: Ad-
vances in Cryptology – CRYPTO 2006. Ed. by Cynthia Dwork. Vol. 4117.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2006, pp. 78–96.

[CS97] Jan Camenisch and Markus Stadler. „Efficient Group Signature Schemes for
Large Groups (Extended Abstract)“. In: Advances in Cryptology – CRYPTO’97.
Ed. by Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1997, pp. 410–
424.

[CS98] Ronald Cramer and Victor Shoup. „A Practical Public Key Cryptosystem
Provably Secure Against Adaptive Chosen Ciphertext Attack“. In: Advances in
Cryptology – CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 1998, pp. 13–25.

[CSK13] Sebastian Clauß, Stefan Schiffner, and Florian Kerschbaum. „k-anonymous
reputation“. In: ASIACCS 13: 8th ACM Symposium on Information, Computer
and Communications Security. Ed. by Kefei Chen, Qi Xie, Weidong Qiu, Ninghui
Li, and Wen-Guey Tzeng. Hangzhou, China: ACM Press, May 2013, pp. 359–
368.

[Cv91] David Chaum and Eugène van Heyst. „Group Signatures“. In: Advances in
Cryptology – EUROCRYPT’91. Ed. by Donald W. Davies. Vol. 547. Lecture
Notes in Computer Science. Brighton, UK: Springer, Heidelberg, Germany,
Apr. 1991, pp. 257–265.

[Dam00] Ivan Damgård. „Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model“. In: Advances in Cryptology – EUROCRYPT 2000. Ed. by Bart Preneel.
Vol. 1807. Lecture Notes in Computer Science. Bruges, Belgium: Springer,
Heidelberg, Germany, May 2000, pp. 418–430.

[Dam02] Ivan Damgård. On σ-protocols. 2002. url: http://www.daimi.au.dk/~ivan/
Sigma.ps.

https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1109/GLOCOM.2010.5684005
https://doi.org/10.1109/GLOCOM.2010.5684005
http://www.daimi.au.dk/~ivan/Sigma.ps
http://www.daimi.au.dk/~ivan/Sigma.ps

Bibliography 127

[Dam88] Ivan Damgård. „Collision Free Hash Functions and Public Key Signature
Schemes“. In: Advances in Cryptology – EUROCRYPT’87. Ed. by David Chaum
and Wyn L. Price. Vol. 304. Lecture Notes in Computer Science. Amsterdam,
The Netherlands: Springer, Heidelberg, Germany, Apr. 1988, pp. 203–216.

[De +01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. „Robust Non-interactive Zero Knowledge“. In: Advances in
Cryptology – CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2001, pp. 566–598.

[Del00] Chrysanthos Dellarocas. „Immunizing online reputation reporting systems
against unfair ratings and discriminatory behavior“. In: Proceedings of the 2’nd
ACM Conference on Electronic Commerce. 2000, pp. 150–157. doi: 10.1145/
352871.352889.

[DG03] Ivan Damgård and Jens Groth. „Non-interactive and reusable non-malleable
commitment schemes“. In: 35th Annual ACM Symposium on Theory of Com-
puting. San Diego, CA, USA: ACM Press, June 2003, pp. 426–437.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. „Concurrent zero-knowledge“. In:
Journal of the ACM 51.6 (2004), pp. 851–898. doi: 10.1145/1039488.1039489.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. „Concurrent Zero-Knowledge“.
In: 30th Annual ACM Symposium on Theory of Computing. Dallas, TX, USA:
ACM Press, May 1998, pp. 409–418.

[Dou02] John R. Douceur. „The Sybil Attack“. In: Peer-to-Peer Systems, First Interna-
tional Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised
Papers. Ed. by Peter Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron.
Vol. 2429. Lecture Notes in Computer Science. Springer, 2002, pp. 251–260.
doi: 10.1007/3-540-45748-8_24.

[Eze38] Mordecai Ezekiel. „The Cobweb Theorem“. In: The Quarterly Journal of Eco-
nomics 52.2 (1938), pp. 255–280. issn: 00335533, 15314650. url: http://www.
jstor.org/stable/1881734.

[Fig+17] Núria Busom Figueres, Ronald Petrlic, Francesc Sebé, Christoph Sorge, and
Magda Valls. „A privacy-preserving reputation system with user rewards“. In:
Journal of Network and Computer Applications 80 (2017), pp. 58–66. doi:
10.1016/j.jnca.2016.12.023.

[Fis01] Marc Fischlin. „Trapdoor commitment schemes and their applications“. PhD
thesis. Goethe University Frankfurt, Frankfurt am Main, Germany, 2001. url:
http : / / zaurak . tm . informatik . uni - frankfurt . de / diss / data / src /
00000229/00000229.pdf.gz.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. „Multiple NonInteractive Zero
Knowledge Proofs Under General Assumptions“. In: SIAM Journal on Com-
puting 29.1 (1999), pp. 1–28. doi: 10.1137/S0097539792230010.

https://doi.org/10.1145/352871.352889
https://doi.org/10.1145/352871.352889
https://doi.org/10.1145/1039488.1039489
https://doi.org/10.1007/3-540-45748-8_24
http://www.jstor.org/stable/1881734
http://www.jstor.org/stable/1881734
https://doi.org/10.1016/j.jnca.2016.12.023
http://zaurak.tm.informatik.uni-frankfurt.de/diss/data/src/00000229/00000229.pdf.gz
http://zaurak.tm.informatik.uni-frankfurt.de/diss/data/src/00000229/00000229.pdf.gz
https://doi.org/10.1137/S0097539792230010

128 Bibliography

[FS07] Eiichiro Fujisaki and Koutarou Suzuki. „Traceable Ring Signature“. In: PKC 2007:
10th International Conference on Theory and Practice of Public Key Cryptogra-
phy. Ed. by Tatsuaki Okamoto and Xiaoyun Wang. Vol. 4450. Lecture Notes in
Computer Science. Beijing, China: Springer, Heidelberg, Germany, Apr. 2007,
pp. 181–200.

[FS87] Amos Fiat and Adi Shamir. „How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems“. In: Advances in Cryptology – CRYPTO’86.
Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1987, pp. 186–194.

[GK11] Michael T. Goodrich and Florian Kerschbaum. „Privacy-enhanced reputation-
feedback methods to reduce feedback extortion in online auctions“. In: First
ACM Conference on Data and Application Security and Privacy, CODASPY
2011, San Antonio, TX, USA, February 21-23, 2011, Proceedings. Ed. by Ravi S.
Sandhu and Elisa Bertino. ACM, 2011, pp. 273–282. doi: 10.1145/1943513.
1943550.

[GM17] Jens Groth and Mary Maller. „Snarky Signatures: Minimal Signatures of
Knowledge from Simulation-Extractable SNARKs“. In: Advances in Cryptol-
ogy – CRYPTO 2017, Part II. Ed. by Jonathan Katz and Hovav Shacham.
Vol. 10402. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2017, pp. 581–612.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. „A Digital Signature
Scheme Secure Against Adaptive Chosen-Message Attacks“. In: SIAM Journal
on Computing 17.2 (1988), pp. 281–308. doi: 10.1137/0217017.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. „The Knowledge Com-
plexity of Interactive Proof Systems“. In: SIAM Journal on Computing 18.1
(1989), pp. 186–208. doi: 10.1137/0218012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. „How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority“. In:
19th Annual ACM Symposium on Theory of Computing. Ed. by Alfred Aho.
New York City, NY, USA: ACM Press, May 1987, pp. 218–229.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. „Perfect Non-interactive Zero
Knowledge for NP“. In: Advances in Cryptology – EUROCRYPT 2006. Ed. by
Serge Vaudenay. Vol. 4004. Lecture Notes in Computer Science. St. Petersburg,
Russia: Springer, Heidelberg, Germany, May 2006, pp. 339–358.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. „Pairings for
cryptographers“. In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–
3121. doi: 10.1016/j.dam.2007.12.010.

[Gro04] Jens Groth. „Evaluating Security of Voting Schemes in the Universal Compos-
ability Framework“. In: ACNS 04: 2nd International Conference on Applied
Cryptography and Network Security. Ed. by Markus Jakobsson, Moti Yung, and
Jianying Zhou. Vol. 3089. Lecture Notes in Computer Science. Yellow Mountain,
China: Springer, Heidelberg, Germany, June 2004, pp. 46–60.

https://doi.org/10.1145/1943513.1943550
https://doi.org/10.1145/1943513.1943550
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0218012
https://doi.org/10.1016/j.dam.2007.12.010

Bibliography 129

[Gro06] Jens Groth. „Simulation-Sound NIZK Proofs for a Practical Language and Con-
stant Size Group Signatures“. In: Advances in Cryptology – ASIACRYPT 2006.
Ed. by Xuejia Lai and Kefei Chen. Vol. 4284. Lecture Notes in Computer
Science. Shanghai, China: Springer, Heidelberg, Germany, Dec. 2006, pp. 444–
459.

[Gro09] Jens Groth. Homomorphic Trapdoor Commitments to Group Elements. Cryp-
tology ePrint Archive, Report 2009/007. http://eprint.iacr.org/2009/007.
2009.

[GSW10] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. „Groth-Sahai Proofs Re-
visited“. In: PKC 2010: 13th International Conference on Theory and Practice
of Public Key Cryptography. Ed. by Phong Q. Nguyen and David Pointcheval.
Vol. 6056. Lecture Notes in Computer Science. Paris, France: Springer, Heidel-
berg, Germany, May 2010, pp. 177–192.

[Has+13] Omar Hasan, Lionel Brunie, Elisa Bertino, and Ning Shang. „A Decentralized
Privacy Preserving Reputation Protocol for the Malicious Adversarial Model“.
In: IEEE Transactions on Information Forensics and Security 8.6 (2013),
pp. 949–962. doi: 10.1109/TIFS.2013.2258914.

[HM04] Dennis Hofheinz and Jörn Müller-Quade. „Universally Composable Commit-
ments Using Random Oracles“. In: TCC 2004: 1st Theory of Cryptography
Conference. Ed. by Moni Naor. Vol. 2951. Lecture Notes in Computer Science.
Cambridge, MA, USA: Springer, Heidelberg, Germany, Feb. 2004, pp. 58–76.

[HM96] Shai Halevi and Silvio Micali. „Practical and Provably-Secure Commitment
Schemes from Collision-Free Hashing“. In: Advances in Cryptology – CRYPTO’96.
Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1996, pp. 201–215.

[HZN09] Kevin J. Hoffman, David Zage, and Cristina Nita-Rotaru. „A survey of attack
and defense techniques for reputation systems“. In: ACM Computing Surveys
42.1 (2009), 1:1–1:31. doi: 10.1145/1592451.1592452.

[IJ02] Roslan Ismail and Audun Jøsang. „The Beta Reputation System“. In: 15th Bled
eConference: eReality: Constructing the eEconomy, Bled, Slovenia, June 17-19,
2002. 2002, p. 41. url: http://aisel.aisnet.org/bled2002/41.

[JG09] Audun Jøsang and Jennifer Golbeck. „Challenges for robust trust and reputation
systems“. In: Proceedings of the 5th International Workshop on Security and
Trust Management (SMT 2009), Saint Malo, France. Citeseer. 2009, p. 52.

[Ker09] Florian Kerschbaum. „A verifiable, centralized, coercion-free reputation system“.
In: Proceedings of the 2009 ACM Workshop on Privacy in the Electronic Society,
WPES 2009, Chicago, Illinois, USA, November 9, 2009. Ed. by Ehab Al-Shaer
and Stefano Paraboschi. ACM, 2009, pp. 61–70. doi: 10.1145/1655188.
1655197.

[KK18] Ali El Kaafarani and Shuichi Katsumata. „Anonymous Reputation Systems
Achieving Full Dynamicity from Lattices“. In: To appear in the Proceedings
of the 22nd International Conference on Financial Cryptography and Data
Security (FC). 2018. url: https://fc18.ifca.ai/preproceedings/87.pdf.

http://eprint.iacr.org/2009/007
https://doi.org/10.1109/TIFS.2013.2258914
https://doi.org/10.1145/1592451.1592452
http://aisel.aisnet.org/bled2002/41
https://doi.org/10.1145/1655188.1655197
https://doi.org/10.1145/1655188.1655197
https://fc18.ifca.ai/preproceedings/87.pdf

130 Bibliography

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
Chapman and Hall/CRC Press, 2007. isbn: 978-1-58488-551-1.

[KT12] Eleni Koutrouli and Aphrodite Tsalgatidou. „Taxonomy of attacks and de-
fense mechanisms in P2P reputation systems - Lessons for reputation sys-
tem designers“. In: Computer Science Review 6.2-3 (2012), pp. 47–70. doi:
10.1016/j.cosrev.2012.01.002.

[KY04] Aggelos Kiayias and Moti Yung. Group Signatures: Provable Security, Effi-
cient Constructions and Anonymity from Trapdoor-Holders. Cryptology ePrint
Archive, Report 2004/076. http://eprint.iacr.org/2004/076. 2004.

[Lin11] Yehuda Lindell. „Highly-Efficient Universally-Composable Commitments Based
on the DDH Assumption“. In: Advances in Cryptology – EUROCRYPT 2011.
Ed. by Kenneth G. Paterson. Vol. 6632. Lecture Notes in Computer Science.
Tallinn, Estonia: Springer, Heidelberg, Germany, May 2011, pp. 446–466.

[Liu+11] Siyuan Liu, Jie Zhang, Chunyan Miao, Yin Leng Theng, and Alex C. Kot.
„iCLUB: an integrated clustering-based approach to improve the robustness
of reputation systems“. In: 10th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6,
2011, Volume 1-3. Ed. by Liz Sonenberg, Peter Stone, Kagan Tumer, and
Pinar Yolum. IFAAMAS, 2011, pp. 1151–1152. url: http://portal.acm.org/
citation.cfm?id=2034462%5C&CFID=69154334%5C&CFTOKEN=45298625.

[MAB09] Zaki Malik, Ihsan Akbar, and Athman Bouguettaya. „Web Services Reputation
Assessment Using a Hidden Markov Model“. In: Service-Oriented Computing, 7th
International Joint Conference, ICSOC-ServiceWave 2009, Stockholm, Sweden,
November 24-27, 2009. Proceedings. Ed. by Luciano Baresi, Chi-Hung Chi, and
Jun Suzuki. Vol. 5900. Lecture Notes in Computer Science. 2009, pp. 576–591.
doi: 10.1007/978-3-642-10383-4_42.

[MBD12] Stephen Marsh, Anirban Basu, and Natasha Dwyer. „Rendering unto Cæsar the
Things That Are Cæsar’s: Complex Trust Models and Human Understanding“.
In: Trust Management VI - 6th IFIP WG 11.11 International Conference,
IFIPTM 2012, Surat, India, May 21-25, 2012. Proceedings. Ed. by Theo Dimi-
trakos, Rajat Moona, Dhiren R. Patel, and D. Harrison McKnight. Vol. 374.
IFIP Advances in Information and Communication Technology. Springer, 2012,
pp. 191–200. doi: 10.1007/978-3-642-29852-3_13.

[MK14] Antonis Michalas and Nikos Komninos. „The lord of the sense: A privacy
preserving reputation system for participatory sensing applications“. In: IEEE
Symposium on Computers and Communications, ISCC 2014, Funchal, Madeira,
Portugal, June 23-26, 2014. IEEE Computer Society, 2014, pp. 1–6. doi:
10.1109/ISCC.2014.6912480.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. „Attribute-Based
Signatures“. In: Topics in Cryptology – CT-RSA 2011. Ed. by Aggelos Ki-
ayias. Vol. 6558. Lecture Notes in Computer Science. San Francisco, CA, USA:
Springer, Heidelberg, Germany, Feb. 2011, pp. 376–392.

https://doi.org/10.1016/j.cosrev.2012.01.002
http://eprint.iacr.org/2004/076
http://portal.acm.org/citation.cfm?id=2034462%5C&CFID=69154334%5C&CFTOKEN=45298625
http://portal.acm.org/citation.cfm?id=2034462%5C&CFID=69154334%5C&CFTOKEN=45298625
https://doi.org/10.1007/978-3-642-10383-4_42
https://doi.org/10.1007/978-3-642-29852-3_13
https://doi.org/10.1109/ISCC.2014.6912480

Bibliography 131

[MY08] Daniele Micciancio and Scott Yilek. „The Round-Complexity of Black-Box
Zero-Knowledge: A Combinatorial Characterization“. In: TCC 2008: 5th Theory
of Cryptography Conference. Ed. by Ran Canetti. Vol. 4948. Lecture Notes in
Computer Science. San Francisco, CA, USA: Springer, Heidelberg, Germany,
Mar. 2008, pp. 535–552.

[NF06] Toru Nakanishi and Nobuo Funabiki. „A Short Verifier-Local Revocation Group
Signature Scheme with Backward Unlinkability“. In: Advances in Information
and Computer Security, First International Workshop on Security, IWSEC
2006, Kyoto, Japan, October 23-24, 2006, Proceedings. Ed. by Hiroshi Yoshiura,
Kouichi Sakurai, Kai Rannenberg, Yuko Murayama, and Shin-ichi Kawamura.
Vol. 4266. Lecture Notes in Computer Science. Springer, 2006, pp. 17–32. doi:
10.1007/11908739_2.

[NY90] Moni Naor and Moti Yung. „Public-key Cryptosystems Provably Secure against
Chosen Ciphertext Attacks“. In: 22nd Annual ACM Symposium on Theory of
Computing. Baltimore, MD, USA: ACM Press, May 1990, pp. 427–437.

[Ped92] Torben P. Pedersen. „Non-Interactive and Information-Theoretic Secure Verifi-
able Secret Sharing“. In: Advances in Cryptology – CRYPTO’91. Ed. by Joan
Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 1992, pp. 129–140.

[PLS14] Ronald Petrlic, Sascha Lutters, and Christoph Sorge. „Privacy-preserving
reputation management“. In: Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea - March 24 - 28, 2014. Ed. by Yookun Cho, Sung
Y. Shin, Sang-Wook Kim, Chih-Cheng Hung, and Jiman Hong. ACM, 2014,
pp. 1712–1718. doi: 10.1145/2554850.2554881.

[PS00] David Pointcheval and Jacques Stern. „Security Arguments for Digital Signa-
tures and Blind Signatures“. In: Journal of Cryptology 13.3 (2000), pp. 361–
396.

[PS16] David Pointcheval and Olivier Sanders. „Short Randomizable Signatures“. In:
Topics in Cryptology – CT-RSA 2016. Ed. by Kazue Sako. Vol. 9610. Lecture
Notes in Computer Science. San Francisco, CA, USA: Springer, Heidelberg,
Germany, Feb. 2016, pp. 111–126. doi: 10.1007/978-3-319-29485-8_7.

[Ros06] Alon Rosen. Concurrent Zero-Knowledge - With Additional Background by
Oded Goldreich. Information Security and Cryptography. Springer, 2006. isbn:
978-3-540-32938-1. doi: 10.1007/3-540-32939-0.

[SL03] Aameek Singh and Ling Liu. „TrustMe: Anonymous Management of Trust
Relationships in Decentralized P2P Systems“. In: 3rd International Conference
on Peer-to-Peer Computing (P2P 2003), 1-3 September 2003, Linköping, Sweden.
Ed. by Nahid Shahmehri, Ross Lee Graham, and Germano Caronni. IEEE
Computer Society, 2003, pp. 142–149. doi: 10.1109/PTP.2003.1231514.

[SL12] Yan Sun and Yuhong Liu. „Security of Online Reputation Systems: The evolu-
tion of attacks and defenses“. In: IEEE Signal Processing Magazine 29.2 (2012),
pp. 87–97. doi: 10.1109/MSP.2011.942344.

https://doi.org/10.1007/11908739_2
https://doi.org/10.1145/2554850.2554881
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/3-540-32939-0
https://doi.org/10.1109/PTP.2003.1231514
https://doi.org/10.1109/MSP.2011.942344

132 Bibliography

[SP18] Johannes Sänger and Günther Pernul. „Interactive Reputation Systems - How
to Cope with Malicious Behavior in Feedback Mechanisms“. In: Business &
Information Systems Engineering 60.4 (2018), pp. 273–287. doi: 10.1007/
s12599-017-0493-1.

[Ste06] Sandra Steinbrecher. „Design Options for Privacy-Respecting Reputation Sys-
tems within Centralised Internet Communities“. In: Security and Privacy in
Dynamic Environments, Proceedings of the IFIP TC-11 21st International In-
formation Security Conference (SEC 2006), 22-24 May 2006, Karlstad, Sweden.
Ed. by Simone Fischer-Hübner, Kai Rannenberg, Louise Yngström, and Stefan
Lindskog. Vol. 201. IFIP. Springer, 2006, pp. 123–134. doi: 10.1007/0-387-
33406-8_11.

[Sun+06] Yan Lindsay Sun, Zhu Han, Wei Yu, and K. J. Ray Liu. „Attacks on Trust
Evaluation in Distributed Networks“. In: 40th Annual Conference on Infor-
mation Sciences and Systems. Mar. 2006, pp. 1461–1466. doi: 10.1109/CISS.
2006.286695.

[SXL05] Mudhakar Srivatsa, Li Xiong, and Ling Liu. „TrustGuard: countering vulner-
abilities in reputation management for decentralized overlay networks“. In:
Proceedings of the 14th international conference on World Wide Web, WWW
2005, Chiba, Japan, May 10-14, 2005. Ed. by Allan Ellis and Tatsuya Hagino.
ACM, 2005, pp. 422–431. doi: 10.1145/1060745.1060808.

[Tea+06] W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck.
„TRAVOS: Trust and Reputation in the Context of Inaccurate Information
Sources“. In: Autonomous Agents and Multi-Agent Systems 12.2 (2006), pp. 183–
198. doi: 10.1007/s10458-006-5952-x.

[YS02] Bin Yu and Munindar P. Singh. „An evidential model of distributed reputation
management“. In: The First International Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy,
Proceedings. ACM, 2002, pp. 294–301. doi: 10.1145/544741.544809.

[Zha+12] Lizi Zhang, Siwei Jiang, Jie Zhang, and Wee Keong Ng. „Robustness of Trust
Models and Combinations for Handling Unfair Ratings“. In: Trust Management
VI - 6th IFIP WG 11.11 International Conference, IFIPTM 2012, Surat, India,
May 21-25, 2012. Proceedings. Ed. by Theo Dimitrakos, Rajat Moona, Dhiren R.
Patel, and D. Harrison McKnight. Vol. 374. IFIP Advances in Information and
Communication Technology. Springer, 2012, pp. 36–51. doi: 10.1007/978-3-
642-29852-3_3.

[Zha+16] Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa Syta, Chao Teng, and
Bryan Ford. „AnonRep: Towards Tracking-Resistant Anonymous Reputation“.
In: 13th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016. Ed. by Katerina
J. Argyraki and Rebecca Isaacs. USENIX Association, 2016, pp. 583–596.
url: https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/zhai.

https://doi.org/10.1007/s12599-017-0493-1
https://doi.org/10.1007/s12599-017-0493-1
https://doi.org/10.1007/0-387-33406-8_11
https://doi.org/10.1007/0-387-33406-8_11
https://doi.org/10.1109/CISS.2006.286695
https://doi.org/10.1109/CISS.2006.286695
https://doi.org/10.1145/1060745.1060808
https://doi.org/10.1007/s10458-006-5952-x
https://doi.org/10.1145/544741.544809
https://doi.org/10.1007/978-3-642-29852-3_3
https://doi.org/10.1007/978-3-642-29852-3_3
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai

	Introduction
	Preliminaries
	Notation
	Cryptographic Primitives
	Hash Functions and Random Oracles
	Commitment Schemes
	Public-Key Encryption
	Digital Signatures
	Group Signatures
	Interactive Proofs
	Non-Interactive Proofs

	Group Generators and Bilinear Maps
	Cryptographic Hardness Assumptions
	Decisional Assumptions
	Computational Assumptions

	Reputation Systems and their Security
	Essential Functionality
	Attacks against Reputation Systems
	Unfair Feedback
	Inconsistent Behavior
	Identity-based Attacks

	Desired Properties and Cryptographic Considerations

	Models and Constructions for Secure Reputation Systems
	A Model for Reputation Systems
	Architecture and Algorithms
	Security Notions
	Discussion

	Construction of a Reputation System
	Building Blocks and Intuition
	The Reputation System

	Universal Composability
	Protocol Execution and Security
	Technical Details

	Reputation Systems in the Universal Composability Framework
	An Ideal Functionality for Reputation Systems
	Intuition
	The Formal Definition
	Security Properties

	Realizing Reputation Systems
	Building Blocks and Intuition
	The Protocol

	Further Extensions and Future Research
	Considering Adaptive Adversaries against FRS
	Incorporating Revocation into FRS and PRS
	Attribute-based Ratings

	Security Proofs
	Experiment-based Security
	Proof of Anonymity
	Proof of Public Linkability
	Proof of Traceability
	Proof of Strong Exculpability

	UC-Security
	Foundations
	Definition of the Simulator
	Indistinguishability of the Ideal and Real Protocols
	The Reductions used within the Security Proof

	Bibliography

