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Abstract

Cooperation in multiagent systems is still a challenge. Agents are designed to behave rationally
which often means selfish, as different agents may have different preferences over environment
states and/or actions. In particular, this is the case if different parties with contrary goals design
the agents of a multiagent system. In such systems, the agents cannot rely on receiving coopera-
tion, if cooperation is needed to archive a specific goal. Additionally, malfunctioning agents are
a problem, as they may try to exploit cooperative agents to increase their own performance. Es-
pecially if cooperation is not for free, agents may tend to behave uncooperatively. This problem
often occurs in peer-to-peer file-sharing systems. A file-sharer will not receive any benefit from
sharing a file but has to pay some costs for sharing in the form of used bandwidth. However,
in human groups cooperation is omnipresent, although it may produce costs, as this may lead
to beneficial situations for the whole group. Social scientists have investigated that cooperative
behavior likely occurs between similar persons with respect to ideology, look or shared opinions.

In this thesis, a new local adaptation-based mechanism is presented that favors emergence of
cooperation. We will consider a multiagent system where agents have to fulfill jobs constructed
of smaller tasks, which require specific skills. As each agent is only equipped with a subset of
all possible skills, cooperation is often needed to fulfill the jobs that are allocated to the agents.
Agents will compare themselves based on rating-vectors. If the similarity is sufficient from the
individual agent’s view, an agent will provide its help to a requesting agent. Agents are evaluated
with the help of the job/task allocation scenario. If the agent does not belong to a local set of
best performing agents, i.e. compared to its neighbors in a social network graph, the agent
is unsatisfied and adapts itself to a set of ideal agents from its neighborhood. The adaptation
is a movement of its current rating-vector into the direction of the rating-vectors of some role
model agents. We show that this novel local adaptation-based learning algorithm produces high
rates of cooperation. We formally analyze the proposed approach to show basic properties of
the algorithm and present a rigorous experimental analysis where we examine the influence
of different system parameters. Furthermore, we consider different network structures and the
influence of capacity constraints. Additionally, we will consider so-called rewiring strategies,
that are used by the agents to change their neighborhood by exchanging old with new links.





Zusammenfassung

Kooperation in Multiagentensystemen ist noch immer eine Herausforderung. Agenten werden
erstellt um rational zu handeln, was oft Eigennützigkeit bedeutet, da Agenten unterschiedliche
Präferenzen über Umgebungszustände und/oder Aktionen haben können. Dies kann insbeson-
dere der Fall sein, wenn Agenten von unterschiedlichen Herstellern mit unterschiedlichen Zielen
erstellt wurden. In einem solchen Fall kann ein Agent sich nicht mehr darauf verlassen, Koop-
eration von anderen Agenten zu bekommen, wenn diese nötig wird. Ein anderes Problem sind
fehlerhaft agierende Agenten, die versuchen, das kooperative Verhalten anderer auszunutzen um
den eigenen Profit zu steigern. Insbesondere, wenn Kooperation Kosten für den Helfer verur-
sacht, kann es sein, dass die Agenten sich unkooperativ verhaltenden. Dieses Problem tritt
häufig in Tauschbörsen auf. Ein Anbieter von Dateien bekommt keinen Gewinn dadurch, dass
er Dateien anbieten, muss allerdings einen Preis in Form von weniger zur Verfügung stehender
Bandbreite dafür bezahlen. Dennoch gibt es in der menschlichen Gesellschaft allgegenwärtige
Kooperation, da dies zu besseren Lebensumständen für alle führen kann und zu einem Gewinn
für die gesamte Gesellschaft. Sozialwissenschaftler haben herausgefunden, dass kooperatives
Verhalten besonders zwischen sich ähnelnden Personen auftritt bezüglich ihrer Ideologie, ihrem
äußeren Erscheinungsbild oder gleichen Meinungen.

In dieser Arbeit werden wir ein Multiagentensystem vorstellen, in dem die Agenten Auf-
gaben zu erledigen haben, die aus kleineren Unteraufgaben bestehen, die wiederum bestimmte
Fähigkeiten verlangen. Da jeder Agent nur mit einer Teilmenge der möglichen Fähigkeiten
ausgestattet ist, sind die Agenten oft auf Kooperation angewiesen um die ihnen zugewiesenen
Aufgaben zu erledigen. Die betrachteten Agenten vergleichen sich untereinander auf der Basis
von abstrakten Bewertungsvektoren. Bei hinreichender, lokaler Ähnlichkeit wird ein Agent mit
einem um Hilfe fragenden Agenten kooperieren. Mit Hilfe des Aufgabenverteilungsszenarios
werden die Agenten evaluiert. Wenn ein Agent nicht zu der lokal besten Gruppe an Agenten
gehört — das bedeutet, die beste Gruppe unter den Nachbarn in einem Agentennetzwerk —
dann ist der Agent unzufrieden und passt sich an eine Menge an Vorbildern aus seiner Nach-
barschaft an. Diese Adaptation wird durch eine Verschiebung des aktuellen Bewertungsvektors
in Richtung der Bewertungsvektoren der Vorbilder realisiert. Wir werden zeigen, dass dieses
neue, lokale, adaptionsbasierte Lernverfahren zu hohen Kooperationsraten führt. Wir werden
das vorgestellte Verfahren formal analysieren, um Eigenschaften des Systems zu zeigen und zu-
dem in einer großen experimentellen Analyse den Einfluss unterschiedlicher Systemparameter
untersuchen. Des Weiteren werden wir unterschiedliche Netzwerkstrukturen und den Einfluss
von Kapazitätsbeschränkungen betrachten sowie Verfahren für die Netzwerkanpassung durch
die Agenten vorstellen.
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1 Introduction

The study of multiagent systems is a field in computer science that emerged in about 1980
(Wooldridge, 2009). Multiagent systems are often used to model so-called artificial social sys-
tems or systems composed of multiple entities like the Internet (Wooldridge, 2009). One key
aspect of multiagent systems is the cooperation between these autonomous entities.

Cooperation can be found in everyday life for instance in groups of humans or in companies
that are organized in a network structure. In most scenarios, cooperation leads to higher benefit
for the whole group and to higher benefit for the individuals. Mostly, the group members have
a common goal but different motivations to join the group (Pennington, 2002) or to stay in
it (Buchanan and Huczynski, 1997). Companies build networks like supply chains to achieve
their goals (Peitz, 2002). The resulting supply chains are helpful for the companies to produce
qualitative products (Schmidt, 1997). Reciprocal behavior is one of the characteristics of such
networks (Sydow, 1992). Another aspect is altruism, which is on the one hand helping others
without being paid for (Berkowitz and Macaulay, 1970) but which can produce costs on the
other hand (Krebs, 1982; Wispe, 1978). The decision to cooperate is often based on different
criteria like kin selection or social cues.

We model such systems of collaborative groups with a multiagent system. In the considered
scenario, agents should complete some jobs that consist of a number of tasks. Each task needs
a specific skill and as the agents are not equipped with all possible skills, they mostly need
cooperation partners to complete their jobs. However, completing a job leads to a reward solely
for the agent to which the job was assigned. The reward is not transferable and the agents are not
allowed to pay others to help them. Moreover, the cooperative behavior produces costs reflecting
the use of CPU time or simply speaking some arbitrary resources of the cooperative agent. Such
situations often occur in peer-to-peer file sharing systems where a file sharer has no profit for
sharing its files and even has to pay some costs in form of used bandwidth (Adar and Huberman,
2000).

We model the process of determining cooperation partners with the help of propositions. The
agents rate these propositions and based on the distances of their ratings they determine the
agents they are willing to cooperate with. Each proposition leads to a criterion that has to be
fulfilled. If all criteria are fulfilled, the agent cooperates with an agent asking for help. The
intention behind this step is that humans more likely cooperate with others if the other person is
similar to them in form of cultural background, social standing or other subjective criteria (Hinde
and Groebel, 1991). The ratings of the propositions may also influence the agent’s behavior: a
proposition with the meaning “the road is clear” can make a driving agent drive faster if it gives
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a high rating to this proposition. A proposition can be simple atomic information as the term is
known from logics or it can be an idea, belief, or some preference. We only concentrate on the
ratings of these propositions and the propagation through a network of agents.

1.1 Research Contributions

We consider cooperation in multiagent systems based on real-life cooperation mechanisms. We
present a system where cooperation is not encoded in the entities, as this may be exploited
by agents that do not behave in the desired cooperative way. Thus, we want to construct a
multiagent system with emergent cooperation where the decisions to cooperate are based on
agent similarities and where the agents are not able to exploit cooperation of other agents. The
investigated approach has the following properties:

Local view The agents will not be able to gain a global view on the system in order to promote
scalability.

Similarity-based cooperation decisions As in real-life, the decision to cooperate is based
on the similarity of agents, which is a phenomenon that is known from social science
(Hinde and Groebel, 1991). Therefore, there will be a mechanism that first measures the
similarity between agents and second helps to support the decision to cooperate or not.

Minimal knowledge The properties of the agents will mostly be unobservable to other agents.
This helps to construct algorithms that do not require much knowledge. With minimal
knowledge, we aim to get simpler approaches and simpler entities of the agent system.

Adaptability Agents are able to adapt to others in order to improve their performance and
profit.

Simplicity The mechanisms need as less information as possible to receive their design goal,
i.e. an increase of cooperative behavior.

Directed cooperation We consider single-sided or directed cooperation decisions. For co-
operation decisions that take into account both ways of cooperation other powerful mech-
anism exist, e.g. negotiations (Wooldridge, 2009).

Dynamic network As inspired by real-life, we allow the agents to rewire their connections
in order to get higher profits. Agents that seem to be useless can be exchanged by other
agents. This should also model the aspect of new acquaintances.

Emergent cooperation The system will be able to show emergent cooperation in contrast
to hard-coded cooperative behavior. This benefits the reliability of cooperation as in the
case of hard-coded cooperation, agents have on the one hand no other possibility as to
cooperate—thus, they lose their autonomy—and on the other hand it is not possible to
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cheat for the agents as emergent cooperation is unpredictable.

1.2 Overview of the Thesis

The thesis on hand is structured as follows:

Chapter 2 defines terms used in this thesis and gives an overview on existing work in the field
of cooperation in agent systems and agent networks.

Chapter 3 provides the formal definition of the proposed system that has all the desired sys-
tem properties mentioned before. Besides this, the considered benchmark-scenario will also be
described.

Chapter 4 formally analyzes the probability of having all relevant skills in the agent’s vicinity.
Additionally, we will analyze the propagation of the introduced value-vectors and show under
which conditions convergence to mutually cooperative agents can be guaranteed. Furthermore,
we investigate the computational complexity of our approach.

Chapter 5 provides an exhaustive experimental analysis of the proposed system and identifies
best values for the most important parameters of the system.

Chapter 6 considers the influence of different network structures under static and dynamic con-
ditions.

Chapter 7 introduces capacity constraints and shows that the system can successively handle the
requirements of the benchmark scenario.

Chapter 8 considers different strategies for rewiring of connections in the agent network, which
we call social networking strategies.

Chapter 9 concludes the thesis and provides an outlook to future work.

The structure of the thesis is illustrated in Figure 1.1. There are several possible reading paths
through the thesis. The main path goes along Chapter 1, Chapter 3, Chapter 4, Chapter 5 and
finally Chapter 9. Chapter 2 may support the understanding for the formal model and scenario
description in Chapter 3. Chapters 6–8 consider additional extensions of the proposed model
and evaluate these extensions in an experimental analysis. These three chapters can be read
additionally to the main path of the thesis.
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Figure 1.1: Possible reading paths through the thesis.



2 Foundations and Related Work

In this chapter, we present the foundations of this thesis. We introduce the reader to agents
and multiagent systems in the first section and then name and define specific terminology in the
second section. The last three sections will present related work from three research perspec-
tives, namely artificial societies, the task allocation problem, and imitation-based learning and
memetics.

2.1 Agents and Multiagent Systems

Multiagent systems are a discipline in computer science which is classified in the ACM Com-
puting Classification System (Association for Computing Machinery, 1998) to be part of the
area I.2.11 Distributed Artificial Intelligence. In the area I.2.11 also the areas coherence and
coordination, intelligent agents and languages and structures are classified on the same level as
multiagent systems. Figure 2.1 shows the part where this thesis would be classified according to
the ACM Classification System.

I. Computing Methodologies

I.2. Artificial Intelligence

I.2.11 Distributed Artificial Intelligence

Figure 2.1: Part of interest of the classification system of the ACM (Association for Computing
Machinery, 1998).

In literature, many definitions and descriptions on agents and multiagent systems coexist. In
the following, we will briefly discuss common properties of agents and after that we will present
the definition of multiagent system.
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Agent and Environment

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 2
Figure 2.2: The relation between an agents and its environment (Wooldridge, 2009).

2.1.1 Intelligent Agents

One of the most frequently cited definitions on intelligent agents is the following:

Definition 2.1 (Agent (Wooldridge and Jennings, 1995)): An agent is a computer system that
is situated in some environment, and that is capable of autonomous action in this environment
in order to meet its delegated objectives.

Although this definition is very vague, it covers the most important facts on agents and agent
systems. “An agent [...] is situated in some environment” captures the fact that an agent cannot
exist without some kind of environment. This is often called the duality of agents and the
environment (Ferber, 1999). Taking this definition as it is, one can identify several agents we are
used to. There are web-crawler agents of search engines, which search the Internet and index the
websites (Sherman, 2005; Vise and Malseed, 2008), robots cleaning rooms, or humans which
can also be view as an agent—though it is hard to decide what the delegated objectives are.

Wooldridge and Jennings have suggested three main capabilities that are needed to call an
agent intelligent (Wooldridge and Jennings, 1995):

Reactivity Intelligent agents are able to perceive their environment, and respond in a timely
fashion to changes that occur in it in order to satisfy their design objectives.

Proactivity Intelligent agents are able to exhibit goal-directed behavior by taking the initiative
in order to satisfy their design objectives.

Social ability Intelligent agents are capable of interacting with other agents (and possibly hu-
mans) in order to satisfy their design objectives.

The relation between an agent and its environment is visualized in Figure 2.2. An agent senses
the environment state through its sensors. Then, the agent selects an action to be executed in
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Learning

Autonomous

Cooperate

Collaboration 

learning 

agents

Collaboration 

agents

Interface 

agents

Smart 

agents

Figure 2.3: Classification of agents proposed by Nwana (Nwana, 1996).

the environment. The action’s execution is done through its actuators. The result is another
environment state which the agent again receives through its sensors.

Russell and Norvig have specified properties for classification of the agent’s environment
(Russell and Norvig, 2010):

Fully observable vs. partially observable In a fully observable environment the agent is
able to obtain correct and up-to-date information about the environment. Especially, the
agent has access to the complete state of the environment at each point of time. In partially
observable environments this is not the case.

Single agent vs. multiagent An environment can be characterized by the number of agents
that are situated in the environment. If there is only one agent we call the environment a
single agent environment and a multiagent environment if two or more agents are consid-
ered.

Deterministic vs. stochastic Consider an agent that faces the same situation again and se-
lects both times the same action. If the result is identical in both situations we call the
environment deterministic. Otherwise the environment is said to be stochastic.

Episodic vs. sequential If the agent’s experience can be divided into atomic episodes, we
call an environment episodic. One key aspect is then that the next episode does not depend
on the actions taken in previous episodes. If short-term actions have long-term conse-
quences then we call the environment sequential. Like in the episodic case, the agent does
not need to think ahead. Sequential environments are much more complex than episodic
ones.
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Static vs. dynamic In a static environment the only changes of the environment state occur
as results of the agent’s actions. In dynamic environments there can be other processes that
may effect the environmental state. If other agents are situated in the same environment, it
may seem to be dynamic to one specific agent because environmental state changes occur
as a result of the other agents’ actions.

Discrete vs. continuous We call an environment discrete if there is a finite number of ac-
tions and perceptions in it. Otherwise we call it continuous. Most real-world examples of
agent systems are continuous.

Known vs. unknown In a known environment the outcomes of all actions are given. Strictly
speaking, this distinction does not refer to the environment itself but to the agent’s (or
designer’s) state of knowledge. In an unknown environment the outcomes cannot be pre-
dicted.

Another classification is proposed in (Nwana, 1996). There, the agents are classified based on
the three properties learning, cooperate and autonomous. Figure 2.3 visualizes this classifica-
tion. The most interesting agents are those who combine all three properties. Nwana calls these
agents smart agents.

As we have briefly presented the properties of a single agent and an agent’s environment we
will continue with the description of multiagent systems in the next section.

2.1.2 Multiagent Systems

Whenever an agent system consists of more than one agent, it is called a multiagent system
(MAS). For so-called single agent systems, the most important research questions deal with the
perception of and acting in the environment and all aspects of cognition like thinking, planning,
creativity, orientation, imagination and learning abilities etc. of the agent (Thagard, 2010). Jen-
nings presented a canonical view on multiagent systems as it is commonly accepted in the MAS
community (Jennings, 2000). An illustration of this view is given in Figure 2.4: Agents build
groups and the influence and visibility areas of the agents are shown. The dotted arrows show
the dependencies between the groups of agents.

The most important properties of agent systems can also be seen in the figure. Although
hierarchies of agents may exist, there is no central instance in a multiagent system. Thus, the
distributed character is one of the main characteristics. Another important property is the locality
of the view of agents and / or their area of influence area.

Many research on MAS focuses on the following parts:

• Communication
• Cooperation
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Figure 2.4: Canonical view on a multiagent system (Jennings, 2000).

• Coordination
• Organization
• Interaction

When communication is considered, the communication between the agents is meant. There
exist several approaches for agent languages and communication protocols like the Knowledge
Query and Manipulation Language (KQML) presented in (Finin et al., 1994a,b), the Knowl-
edge Interchange Format (KIF) described in (Genereseth and Fikes, 1992) or the FIPA agent
communication language (FIPA-ACL) developed by the FIPA (FIPA: Foundation for Intelligent
Physical Agents, 2002).

Multiagent systems research deals with societies or sets of self-interested agents. Thus, the
agents may not have a common global goal although a system-wide global goal may exist. Here,
cooperation mechanism have to be used as it cannot be assumed that each agent acts towards the
same common goal, as the agents may have been constructed by different parties (Wooldridge,
2009). Thus, the multiagent system community focuses on questions of how and why agents
cooperate (Wooldridge and Jennings, 1994), how agents can recognize and resolve conflicts
(Adler et al., 1989; Galliers, 1988; Lander et al., 1991) or how agents can negotiate or search for
compromises (Ephrati and Rosenschein, 1993; Rosenschein and Zlotkin, 1994).

In contrast to cooperation, coordination deals with how agents can act without endanger the
goals of other agents (Wooldridge, 2009). Thus, the research on coordination mechanisms deals
with the inter-dependencies between the agents’ actions and activities. Coordination can be
achieved through partial global planning (Durfee, 1988, 1996; Durfee and Lesser, 1987) or
through joint intentions based on conventions (Jennings, 1993). Another possibility is mutual
modeling, i.e. agents model the behavior of others and reason about it like it is done in the
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MACE system where acquaintance models are used (Gasser et al., 1987) or through norms and
social laws. In the latter case we can distinguish between the offline design of norms (Conte
and Castelfranchi, 1993; Goldman and Rosenschein, 1994; Shoham and Tennenholtz, 1992b)
and norms emerging in the system (Kittock, 1993; Shoham and Tennenholtz, 1992a; Walker
and Wooldridge, 1995). All mechanisms are related as they manage the positive and negative
relationships between actions (von Martial, 1990). Positive relationships are those where one
action enables the execution of another action. In negative relationships, one action prevents the
execution of another action.

When considering the organizational part of multiagent system’s research we face several
facets. On the one hand there is the concept of how parts of an agent are organized (cf. agents
formed of smaller agents, i.e. Holonic Agents (Schillo and Fischer, 2003)). On the other hand
agents may form coalitions (Shehory and Kraus, 1998) or agree to contracts for specific tasks
(Dur and Roelfsema, 2010), hierarchies of agents can be formed (Deng and Papadimitriou, 1999;
Jung and Lake, 2008) or agents may form collaborative networks (Boloni and Marinescu, 2000).

Finally, in the interaction part the inter-agent interaction is considered. If agents have prefer-
ences about actions or environment states, they tend to select high rated actions or actions that
may lead to high rated environment states. Thus, they are assumed to behave individual rational,
which means they try to optimize their own performance, or they try to maximize their received
profit, if some monetary units are used to distinguish between successful and unsuccessful be-
havior. In this field of interest, mostly game theory is used to predict the agents’ strategies.
There, we distinguish between non-cooperative game theory (Nisan et al., 2007)—where we
may try to calculate Nash equilibria (Nash, 1950)—and cooperative game theory (Peleg and
Sudhölter, 2007)—where the core (Gillies, 1959) or the Shapley value (Shapley, 1953) are so-
lution concepts.

2.2 Specific Terminology

In this section, we discuss the terms learning, emergence, altruistic and egoistic behavior.

2.2.1 Learning

The Encyclopædia Britannica defines the term learning as “the alteration of behavior as a result
of individual experience. When an organism can perceive and change its behaviour, it is said to
learn” (Encyclopædia Britannica, 2010). The Columbia Encyclopedia (International Encyclope-
dia of the Social Sciences, 1968) says:

[. . . ] learning in psychology, the process by which a relatively lasting change
in potential behavior occurs as a result of practice or experience. Learning is dis-
tinguished from behavioral changes arising from such processes as maturation and
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illness, but does apply to motor skills, such as driving a car, to intellectual skills,
such as reading, and to attitudes and values, such as prejudice. There is evidence
that neurotic symptoms and patterns of mental illness are also learned behavior.
Learning occurs throughout life in animals, and learned behavior accounts for a
large proportion of all behavior in the higher animals, especially in humans.

In artificial intelligence (AI), the most common definition of learning is the process of behavior
change based on previous experiences (Barr and Feigenbaum, 1982). Mitchell defines learning
as the improvement with experience at some task with respect to some performance measure
(Mitchell, 1997). Thus, the community agrees that learning has always something to do with the
self-improvement of future behavior based on experiences (Sen and Weiss, 1999).

Several properties characterize a learning process. One distinction is based on the learning
feedback, i.e. the performance signal for the agent. Gerhard Weiss gives the following distinc-
tion (Weiss, 1996):

• Supervised learning: The feedback specifies the desired activity of the learner and the
objective of learning is to match this desired action as closely as possible.

• Reinforcement learning: The feedback only specifies the utility of the current activity of
the learner and the objective is to maximize this utility.

• Unsupervised learning: No explicit feedback is provided and the objective is to find out
useful and desired activities on the basis of trial-and-error or self-organization processes.

Another important property of the learning method is if the agent learns in an isolated form,
i.e. in a single-agent system, or if the agent learns in the presence of other agents (Sen and Weiss,
1999). If the agent has to learn in the presence of other agents, the changes of the environment
states are also influenced by the actions of other agents. Thus, the learning process gets harder
as the received learning feedback is given for the joint action that may not be observable by the
agent. There are two cases that makes it hard for the agent to realize if a selected action was
good. It can be the case that the actions of the others favored the execution of the agent’s action
and, thus, a positive reward was generated. The other case can be that the other agents’ actions
had negative influence, which results in a lower or even negative reward.

2.2.2 Emergence

One aspect of complex systems composed of several individual entities like agents is the analysis
of emergent behavior. Emergence describes the process of how such global behavior arises from
the sum of individual behaviors (Bonabeau et al., 1999). One famous example of emergence
is present in the well known “Game of Life” described in (Gardner, 1970). There, some rules
are defined that activate or deactivate cells of a cellular automaton based on the activeness state
of neighboring cells. One can observe different patterns that emerge because of the rules. The
interesting thing about it is that none of the rules directly specifies these patterns. However,
some stable or moving patterns can be seen as the result of the rules’ execution. This behavior
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of the system is called emergent.

For multiagent systems, emergent behavior can be both, positive and negative. Negative be-
havior is not intended by the systems designer and may be caused by forgotten dependencies.
Positive behavior of course is mostly intended by the designer. Emergent behavior is especially
needed if the agents are designed by different parties. Then, one cannot rely on for example
cooperative behavior of the other agents due to their design. However, selfishness of the agents
may lead to emergent cooperative behavior, which is one form of positive emergence.

As lower-level individual behavior influences the global system’s performance one has to
search for emergence when analyzing a complex system at hand. Without knowledge about
emergent behavior of a system, one could face many problems if the system is running. Then, the
obtained results can be contrary to the expected results. If the dependencies of the components
are analyzes in a way that helps finding emergent behavior, it may help the developer to redesign
the system in order to prevent negative emergent behavior.

2.2.3 Altruistic and Egoistic Behavior

The terms altruism and egoism come from social science (Dawkins, 1982). Somebody who acts
egoistically would only do something if the person believes that this will result in a positive
reward, which increases the individual welfare. In contrast, altruistic behavior is shown if a
person would do something such that somebody else gets a favor. The extreme case of altruism
is giving the life for saving another one’s life (Wispe, 1978). In the study of social evolution,
altruism refers to behavior by an individual that increases the fitness of another individual while
decreasing the fitness of the actor (Bell, 2008).

Altruistic behavior can occur in different forms. There is the reciprocal altruism in which
agent a only helps agent b at a’s costs because agent a assumes to be in a similar situation once,
and believes agent b to help a (Trivers, 1971). This is no pure altruism as reciprocal altruism
arises from a selfish viewpoint. It is also very closely related to the strategy “tit-for-tat” known
from game theory (Axelrod, 1984).

Another form of altruism is the so-called kin selection where individuals tend to helping
behavior especially towards individuals that are closely related on the genetic level (Dawkins,
1982).

Prosocial behavior is also worth mentioning, here. Whenever an individual tends to an action
that benefits the whole population, this individual is called prosocially behaving (Montada and
Bierhoff, 1991). This is strongly connected to the principle of social rationality (Kalenka and
Jennings, 1999): if an agent has a choice of actions, it should choose the action that maximizes
the social welfare. Social welfare is defined as the sum of all agents utilities (Wooldridge,
2009). However, the social welfare of a whole group is a global property which is at least costly
to compute or can even be incomputable from an agent’s view.
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2.3 Related Work

We now present related work from three research perspectives. First, we introduce the notion
of artificial societies and describe related work from this area. Second, we focus on the task
allocation problem and identify work that is related to this thesis. Third, imitation-based learning
and memetics is considered. In all of the following sections we compare the related work to the
work presented here and discuss differences. Additionally, we also introduce the three research
perspectives briefly.

2.3.1 Artificial Societies

One kind of agent-based models are so called artificial societies. With the help of a multiagent
system, a society of agents is created and emergent properties within this society are studied
(Sawyer, 2003). In contrast to traditional simulation there is no pre-existing system that is
modeled and analyzed in artificial societies (Hales, 2001). Moreover, the work done in artificial
societies can be seen as form of theory construction in an abstract computational domain (Hales,
2001). Within this area, we can find evolutionary processes similar to those from evolutionary
computing or cultural evolution based on thoughts and memes (Fog, 2005). Agents or society
members may also die or reproduce like in real-world societies (Langdon, 2005). Models of
artificial societies address possible societies of agents, their general processes, dynamics, and
emergent properties within the society (Gilbert and Conte, 1995).

In (Castelfranchi et al., 1998), the role of normative reputation is analyzed. With the help of
norms, agents’ aggression is being controlled. Two sub-populations are considered in an artifi-
cial society where the first is controlled by norms and the second by an aggression strategy. The
benchmark scenario is a food-discovery experiment. The agents that are controlled strategically
attack only agents that are not stronger than themselves. Normative agents do not attack agents
that are currently eating. Additionally, a reputation mechanism is used to allow the normative
agents to identify those agents who do not follow the normative rules. Normative controlled
agents have been proven to work better than strategic ones if they can communicate their expe-
riences. The results show that the strength distribution in the normative sub-population is more
equally in comparison to the strategic sub-population.

In (Cecconi and Parisi, 1998), an artificial society is introduced where agents are situated in
an environment and need resources to survive. Two strategies are introduced and compared. The
first is the individual survival strategy (ISS) and the second is the social survival strategy (SSS).
The difference between both strategies is that agents who follow the SSS strategy contribute
parts of their resources to a central mechanism that can redistribute these resources to other
agents. It is shown that groups following the SSS strategy can survive even in less favorable
environments where groups following ISS die. These studies are meant to explain the emergence
and maintenance of the SSS strategy of human societies but this goal is not achieved properly as
the strategy is shown not to be robust against cheating agents or agents that may decide on their
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own which strategy they choose.

Zimmermann et al. (2001) consider the famous Prisoners’ Dilemma (PD) in multiagent sys-
tems. In PD agents can decide to cooperate or to defect. Mutual defection is punished and
mutual cooperation is rewarded. If an agent defects and the other agent cooperates, the defector
gains more reward than in the mutual cooperation case. Thus, a dilemma exists as the individual
best strategy is to defect in this one-shot game, but the global best strategy is mutual cooperation.
In the work of Zimmermann et al., agents are linked to other agents through a network structure,
and they play the game sticking to the same strategy with all neighbors. They repeatedly play
the game in form of rounds without knowing how many rounds will be played. After receiving
the payoff for a round, the agents reconsider their strategy. If an agent has the highest payoff
within its neighborhood, it sticks to the current strategy and otherwise it copies the strategy of
the neighbor with highest payoff. Additionally, if the agent does not have the highest payoff
and is playing the defect strategy it may change its neighborhood with some probability through
exchanging a defect-playing neighbor by a randomly chosen agent of the population. The results
show that with highly dynamic networks, i.e. high exchange probabilities, the system reaches
a stable state with almost all agents playing the cooperative strategy. The work presented here
also has a reward and punishment function that leads to an individually best strategy of non-
cooperation. However, in contrast to the work of Zimmermann et al., the agents in this thesis do
not want to be the locally best agent but they want to belong to one of the bests. Additionally,
the agents only change neighbors but do not consider, if the neighbor was cooperative.

Riolo et al. present experiments where the decision to cooperate is based on the similarity
of observable markers, so called “tags” (Riolo et al., 2001). Agents interact with randomly
chosen opponents and are not likely to meet again. If |τA − τB| ≤ TA is fulfilled, agent A
will cooperate with agent B, where τA is the observable marker of agent A and TA is agent A’s
tolerance value. Both values are drawn from the interval [0, 1]. Agents that cooperate have to
pay some cooperation costs and the recipient is rewarded with some payoff. After an interaction
phase, the agents adapt. Two randomly chosen agents compare their received payoff and the
worse agent copies the threshold and tag values of the better performing one. Riolo et al. show
that dominant tag groups take over the population and high cooperation rates are achieved. In
contrast to the model presented here, they only have a single inequation that has to be fulfilled for
cooperation. We concentrate on models that are more realistic and where this decision process
is based on a number of inequations. Secondly, we will see that perfect imitation does not lead
to the best results. The agents should only be allowed to move their values to a specific direction
but they should not able to copy the values. A third aspect is that the agents in our model are not
able to sense the others thresholds or even to modify their thresholds. They are randomly chosen
at the beginning and fixed over the simulation. Riolo et al. described under which conditions the
high cooperation rates can occur but they only used experimental results. We will examine the
cooperation probability in our model and show theoretically under which conditions cooperation
can emerge.

In (Hales, 2002a,b), experiments are presented where agents are equipped with one skill out
of a specific skill set. Agents are given resources that they could harvest only, if the required
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skill of the resource matches their own skill. Otherwise, the agent could pass the resource to
another agent. The agents also have a so-called tag τ ∈ [0, 1] and a threshold 0 ≤ T ≤ 1. A
donator agentD could only give a resource to a receiver agentR if |τD−τR| ≤ TD. Harvesting
resources is rewarded with a payoff of 1 and searching for another agent is rewarded with a
negative payoff where the height depends on the searching method. Hales’ approach uses an
evolutionary algorithm with a kind of tournament selection and slightly mutation. The results
show high donation rates for good searching methods. The mechanism of comparing tag value
differences to a specific threshold is extended by us in this thesis to model more flexible decision
making processes that are not based on a single condition.

In (Hales, 2005), Hales presents a protocol for a decentralized peer-to-peer system called
SLAC (”Selfish Link and Behavior Adaptation to produce Cooperation“). There, agents have
simple skills and are awarded jobs. Each job only requires a single skill. If an agent does not
provide the required skill, it asks an agent from its neighborhood to complete the job. A boolean
flag indicates whether an agent behaves altruistically. Altruists will cooperate, if another agent
asks for it. Completed jobs are rewarded with a benefit of 1 and cooperation produces costs of
0.25. Agents are allowed to exchange jobs within their neighborhoods, which are modeled as
a subset of the population. During the simulation, agents are pairwise compared and the agent
with lower utility value in a simulation round is changed. This means, that the neighborhood
is destroyed and the agent creates a link to the better performing agent and copies its strategy
(altruist or egoist). With some probabilities, the agent also mutates its skill, the altruism flag and
the neighborhood after this step. These drastic changes in the network structure lead to good
results concerning the job-completing rate. In contrast to the work of Hales, we will not consider
such drastic changes in the network. Although the neighborhoods may change over time, the
dynamics of the network are lower. From this aspect we expect more stable neighborhoods and
adaptation to neighboring agents.

In (Seredynski et al., 2010) a Cellular Automata (CA)-based multiagent system is considered
where the agents (cells) play the iterated Prisoner’s Dilemma game with the neighboring agents
for a number of times which is unknown to the agents. As the CA specifies the interaction pos-
sibilities and the game is played a number of times, it is called the spatio-temporal generalized
Prisoner’s Dilemma. Agents can choose one of the three strategies all C (always cooperate),
all D (always defect) and k-D, where the last means that the player chooses action C until more
than k of it neighbors use strategy D. In between the iterations, agents can change their strategy
by choosing the strategy of their best performing neighbor. Through this evolution, regions of
cooperative cells can emerge. The authors claim that the findings are very promising in the area
of cooperative enforcement in ad hoc networks.

2.3.2 Task Allocation Problem

A problem that arises in distributed computer systems is the so-called task allocation problem
(TAP). The TAP naturally occurs whenever a set of tasks should be allocated to a set of pro-
cessing units. There, each task execution produces costs. These costs can be different if the
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same task is executed on different machines. Additionally, tasks may produce communication
costs if they are executed on different processing units, which can be neglected, if the tasks are
executed by the same processing unit. The goal is to find an assignment of tasks to machines that
minimizes the overall costs. According to (Lewis et al., 2003), the TAP can formally defined as
follows:

Definition 2.2 (Task Allocation Problem): Given a set P = {P1, P2, . . . , Pm} of processing
units and a set of tasks T = {T1, T2, . . . , Tn} that should be processed. ct,t′ are communication
costs for tasks Tt and Tt′ if they are processed by different processing units. If tasks have to
communicate and are processed on the same processing unit the costs for communication are
negligible. qt,p are the execution costs if task Tt is executed by processing unit Pp. Let xt,p
be a boolean decision variable that is equal to 1 if task Tt is assigned to processor Pp and 0,
otherwise; 1− xt,p is denoted by xt,p.
The Task Allocation Problem (TAP) is to find a task-processor assignment that satisfies

min
n∑
t=1

m∑
p=1

qt,p · xt,p +
∑

t,t′ with t<t′

m∑
p=1

ct,t′ · xt,p · xt′,p

and

∀t ∈ [1, n] :

m∑
p=1

xt,p = 1

∀t ∈ [1, n] ∀p ∈ [1,m] : xt,p ∈ {0, 1}

The TAP is known to be efficiently solvable by a polynomial-time algorithm if only a two-
processor system is considered (Stone, 1977). However, for an arbitrary number of processors,
the problem has been shown to be NP-complete (Lo, 1988).

Dahl et al. (2003) consider task allocations in homogeneous robots, i.e. the robots do not
differ. They propose an algorithm based on vacancy chains, typically known from human and
animal societies (Chase et al., 1988). In a vacancy chain, a new resource unit coming into a
population is taken by a first individual who leaves his/her old unit behind, this old unit is taken
by a second individual leaving his/her old unit behind, and so forth (Chase, 1991). The proposed
algorithm uses local task selection, reinforcement learning for estimation of task utilities, and a
reward structure that is based on the vacancy chain framework. The allocation of tasks to robots
is shown to be sensitive to the dynamics of the group while being completely distributed and
communication-free. In contrast to their work, we will consider heterogeneous agent systems
where the agents differ in their abilities.

Shehory and Kraus use coalition formation to calculate task allocations among agents (She-
hory and Kraus, 1995). They use a variant of TAP where multiple agents can work on the same
task in order to provide all resources that are needed for the task’s execution. Although the TAP
has been proven to be computationally exponential, the authors present a polynomial complexity
algorithm that yields results which are close to the optimal results and prove that the solution
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quality is bounded by a logarithmic ratio bound. The presented algorithm is a distributed one
as each agent mostly performs those calculations that are required for its own actions during the
process. They distinguish between disjoint coalitions, i.e. each agent can only belong to at most
one group at one time step, and overlapping coalitions, i.e. each agent may belong to several
groups simultaneously Shehory and Kraus (1996). Note, that in their work the agents only con-
sider the overall system’s performance in contrast to their personal payoff (Shehory and Kraus,
1998). The agents in the thesis at hand are not able to calculate the coalitions as for coalition
formation all the tasks have to be known a priori in order to calculate an optimal or near-optimal
solution. We consider dynamic task allocations and, thus, coalition formation is not applicable,
here.

Kraus et al. (2003) present another approach for task allocation through coalition formation.
They assume that agents are truthful, i.e. they never lie about individually available resources.
The authors use a manager agent as a central instance that distributes the tasks to the agents
based on their resources and execution costs for performing the tasks. They propose an efficient
algorithm that solves the TAP based on that global view. In contrast to their work, we will only
consider local decision making without the need of global knowledge.

In (Manisterski et al., 2006), uncooperative agents are considered. The agents’ resources are
again known to all agents but their task’s execution costs are private knowledge. Thus, the agents
are able to lie about the costs. Additionally, they can decide on their own to join a group for a
specific task or not. They show that in this general case of the problem no protocol achieving the
efficient solution can exist that is individual rational and budged balanced. We will not consider
agents, which know the available resources of their neighbors. Although, they can sense the
skills of their neighbors, they are not able to detect how many units are available, when capacity
constrained agents are considered in this thesis.

Upadhyaya and Lata (2008) consider task allocation in distributed database systems and com-
pare this problem to the standard task allocation in distributed systems. They claim that this
is much more complex as data and tasks are distributed in contrast to the standard TAP where
only the tasks are distributed. Several additional problems arise such as data fragmentation, data
replication or reallocation of data.

Another related problem domain is the Request for Proposal (RFP) proposed by Chan and
Leung (2009). There, task managers need to recruit service provider agents to handle complex
tasks composed of multiple sub-tasks. The objectives are to assign each sub-task to a capable
agent while keeping the costs as low a possible. Chan and Leung propose an efficient multi-
auction based approach that can calculate near-optimal solutions. The basic idea is to have a
series of reverse English auctions, one for each sub-task. Participating agents are allowed to
submit bids for one sub-task at a time. After bids have arrived at the auctioneer, it verifies
that two properties hold. First, the sub-task being bid for must be in the capability set of the
bidder agent. Second, the bidding amount must be lower than the current outstanding bid and
the reservation price for the sub-task. The reservation price is predefined by the auctioneer. It
is an upper bound to the allowed payment for task execution. With the help of this additional
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verification step, the authors show that their proposed mechanism can reach near-optimal task
allocations in private environments, where task execution costs constitute private knowledge.

Other approaches exist for the TAP, e.g. the work presented in (Gupta and Greenwood, 1996).
The authors use an (µ, λ) evolutionary strategy (Eiben and Smith, 2003; Fogel, 2006) to compute
task allocations that minimizes the overall scheduling time.

2.3.2.1 Dynamic Task Allocation

The dynamic formulation of the Task Allocation Problem is an essential requirement for multi-
robot systems operating in unknown dynamic environments (Lerman et al., 2006). It allows
robots to change their behavior in response to environment changes or actions of other robots
in order to improve overall system performance (Lerman et al., 2006). The main difference to
the TAP is that the task allocation is a dynamic process that has to be adjusted continuously in
response to changes on the task environment or group performance. The purpose of dynamic
task allocation is to increase the system throughput in a dynamic environment, which can be
realized by balancing the utilization of computing resources and minimizing communication
between processors during run time (Chang and Oldham, 1995). If the agents have different
processing times for different tasks’ requirements, the problem is said to be heterogeneous and
homogeneous otherwise.

Ghizzioli et al. (2004) study algorithms for the homogeneous and heterogeneous case and
present an ant-based algorithm that solves the problem. The so-called ATA algorithm is inspired
by the division of labor of social insects and based on the work of Cicirello and Smith (Cicirello
and Smith, 2001). ATA introduces four specific rules for the agents in order to speed up the
adaptation process for particularly unpredictable instances of the dynamic task allocation prob-
lem. They considered as a benchmark problem a big factory with painting agents that color
trucks on demand. This problem is one of the often-used benchmark scenarios for dynamic task
allocation.

Lerman et al. (2006) propose a mathematical model of a general dynamic task allocation
mechanism. There, agents have to choose between two types of tasks without communication
and global knowledge. The agents estimate the state of the environment through repeated local
observations. The authors show that the mathematical model can help the designer of a system
to properly choose agent properties in a multi-foraging task scenario.

In (Dai et al., 2009) an approach is presented where tasks arrive dynamically at a contractor
who starts a second-price auction on the requested tasks’ requirements. Bidding agents submit
prices, they want to achieve for accepting a task. The agent with the lowest bid wins but is
rewarded with the second-lowest price. This type of auction is also known as Vickrey auction
(Shoham and Leyton-Brown, 2009). If a busy agent wins a new task, it has to decommit from its
current task and has to pay a decommitment fee. Dai et al.’s main contribution is a mathematical
formulation of the problem based on Partially Observable Markov Decision Process (POMDP)



2.3 Related Work 19

(Kaelbling et al., 1998). They show that with the help of this mathematical model a system’s
designer can be helped in revealing benefits of a system under consideration. Especially the used
strategy of decommitment is shown to be very useful in this context in order to benefit on the
global performance level.

Chapman et al. use a Markov game formulation for a decentralized dynamic task allocation
problem (Chapman et al., 2009, 2010). They analyze the approach with tasks having varying
hard deadlines and processing requirements in the RoboCup Rescue scenario1. They approx-
imate these games with series of static potential games and then construct a decentralized so-
lution method for the approximated games using the Distributed Stochastic Algorithm. Within
the benchmark scenario of RoboCup Rescue, they show that their approach is comparable to a
centralized task scheduler and that it is robust to restrictions on the agents’ communication and
observation range, which is not the case for the centralized scheduler.

2.3.2.2 Task Allocation in Social Networks

de Weerdt et al. (2007) calculate task allocations with a distributed algorithm in a social network.
A social network is a graph of agents as nodes and links between them describing possible inter-
actions. The tasks are assigned to agents with limited resource amounts. In this paper the term
social task allocation problem (STAP) is introduced. They show that the problem of finding an
efficient task allocation, i.e. which maximizes the social welfare, is NP-complete. They do not
model cooperation costs, which is different to the work presented here. The agents also know
about all tasks before the decision process is started, thus they do not deal with a dynamic envi-
ronment. In (de Weerdt and Zhang, 2008), they analyze the problem from a mechanisms design
perspective and give very good theoretical insights. They show that it is similar to combinatorial
auctions (de Vries and Vohra, 2003). There, the agents report their resources and are allowed to
strategize over them. They propose a Vickrey-Clarke-Groves (VCG) payment method (Clarke,
1971; Groves, 1973; Vickrey, 1961) to prevent under-reporting.

Kok et al. deal with coordination graphs in RoboCup Soccer Simulation (Kok et al., 2003;
Vlassis et al., 2004). Coordination graphs represent the coordination requirements of a system
(Guestrin et al., 2002). They assign roles to the agents in order to abstract from a continuous
state space to a discrete state space, which allows them to apply existing techniques for discrete-
state coordination graphs. They show the successful application of this approach to the RoboCup
Soccer scenario.

Abdallah and Lesser define the coalition formation problem (CFP) in a formal way (Abdallah
and Lesser, 2004). They work with hierarchical organization structures. Their main contribution
is an organization-based distributed algorithm for approximately solving the CFP. They use re-
inforcement learning to optimize the local allocation decisions made by agents in the underlying
organization.

1http://www.robocuprescue.org

http://www.robocuprescue.org
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Gaston’s and de Jardins’ research is about dynamic environments where agents have to fulfill
tasks. In (Gaston and desJardins, 2005a), agent-organized networks (AON) are firstly defined.
There, agents have local perception of the global performance. The agents are equipped with
a skill σi out of the set {1, 2, . . . , σ}. The paper mainly focuses on different network-rewiring
strategies (i.e. structure-based and performance-based). The overall goal is to access the feasi-
bility of designing realistic and efficient strategies for distributed network adaption. In (Gaston
and desJardins, 2005b), the focus is on providing a framework for bottom-up AONs to improve
the feasibility of applying AONs to improve the performance of an organization of economically
motivated agents. They give a formal model of production and exchange. Agents are situated in
a social network and are only allowed to trade and negotiate with direct neighbors. They show
that the network structure has great influence on the results (Gaston and desJardins, 2008). In
the latter work, they give graph theoretical foundations and shows three characteristics which
influence the results, namely blocking (topologically and skill), carrying capacities of different
graphs and diversity support of the networks. Scale-free networks perform best in this paper, but
have the problem of single points-of-failure as they have a structure build of hubs.

Distributed team formation in a networked multiagent system is considered in (Bulka et al.,
2007). Agents are situated in a social network and dynamically build teams in order to complete
introduced tasks. The social network structure explicitly restricts the set of agents that can form
teams. This is done through sensing states of neighbors. The states can be uncommitted in
the case of an idle agent, committed if an agent has decided to join a team for a task but the
current team does not provide enough skill capacities or active if the agent is currently working
on a task within a team. The agents learn team joining and team initiating strategies based on
their previous experiences. For this, the agents estimate probabilities for different actions. The
results show that this approach outperforms a random selection strategy in most of the considered
network structures.

2.3.3 Imitation-based Learning and Memetics

Imitation-based learning is one specific form of learning where agent a tries to replicate the be-
havior of another person b without knowing the intentions behind this imitated behavior. This
learning procedure can also be identified in animals, for example in apes like Rhesus Macaques
(Subiaul et al., 2004). Learning by imitation is strongly connected to learning by example
(Mitchell, 1997). Whenever an imitator wants to imitate some behavior it has to select an ideal
actor or a role model of whom the behavior should be imitated. One key aspect of imitation-
based learning is that this process of learning is very error-prone as the imitator may not be
able to perceive all relevant information about the observed behavior like the intention or if the
observation was correct. Besides others, robotics is a typical application area of imitation-based
learning (Billard and Matari, 2001).

In (Priesterjahn, 2008), an imitation-based learning algorithm is proposed. We present a vari-
ant in Algorithm 2.1. After initializing a population A of n agents a repetition-loop is started
until some stopping criterion is reached. Within the loop two parts are important. First, the
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Algorithm 2.1 Local imitation-based learning algorithm.
Input: number of agents n

1: procedure IMITATION(n)
2: initialize population A of n agents
3: repeat
4: evaluate A
5: for all agents a ∈ A do
6: determine the set of locally best agents Ea ⊆ Na ∪ {a} of the so-called closed

neighborhood /* LOCAL ELITE SELECTION */
7: if a /∈ Ea then
8: select set of ideal agents Ia ⊂ Na /* ROLE MODEL SELECTION */
9: agent a adapts to Ia /* IMITATION */

10: end if
11: end for
12: until end condition reached
13: end procedure

population A is evaluated with some mechanism. Then, the local part starts which is executed
by each agent. An agent a determines the set of so-called elite agents which are those agents
that performed best in the evaluation and which belong to the closed neighborhood of agent a.
The closed neighborhood is defined as it is known from graph theory (Harris et al., 2008), i.e. all
neighbors Na of the agent a and the agent itself belong to the closed neighborhood. If the agent
does not belong to the set of elite agents it selects a set of ideal agents which are considered as
role models. This selection process can be done in an arbitrary way although selection from the
elite set would be reasonable. However, as the set of ideal agents can be greater than the elite set
in the local algorithm the ideal agents are selected from the neighborhood in general. Finally,
the agents adapts in some way to the set of ideal agents.

Richard Dawkins firstly introduced the term meme in his book “The Selfish Gene” (Dawkins,
1976), which deals with cultural evolution. Since then many articles concerning learning with
different kinds of memes and similar approaches have been published. A meme is a particular
thought or idea, which transfers itself from individual to individual. During this process, a
meme could be changed or mutated through imitation. Therefore, Dawkins used the term meme
as an analogy to gene. Thus, meme-based approaches are related to the area of evolutionary
computation (Eiben and Smith, 2003).

In (Gabora, 1996) Liane Gabora speaks of a “second form of evolution”. She points out dif-
ferences between biological and cultural evolution such as different solution finding strategies.
In her opinion, the biological evolution is more like a breadth-first search, because variations are
generated randomly. As variants in cultural evolution are generated strategically, she points out
that it is similar to depth-first search.
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By trying to define “memes ” Blackmore (1998) states:

“We may treat the spread of memes as comparable with the spread of infectious or
contagious diseases and use models derived from epidemiology.”

She describes the differences between individual learning such as classical conditioning or op-
erant conditioning and memetic learning. With her definitions, she wants to help to distinguish
between what is and what is not a meme.

Hodgson and Knudson also deal with memetics but from the viewpoint of firms as one ap-
plication domain (Hodgson and Knudsen, 2004). They state, that a replication is a relationship
between a copy and some source exhibiting the four characteristics causation, similarity, in-
formation transfer, and duplication. Instead of using the term meme, they refer to habits and
routines. The firm is an actor in their view. Hodgson and Knudson again deal with replicators
in (Hodgson and Knudsen, 2008). They describe a von Neumann’s view of self-reproducing
automata as systems that build systems and increase the complexity or the functions of the sys-
tems. This is an inspiration for their generative replicator definition. They state that a generative
replicator must meet four attributes: causal implication, similarity, information transfer, and
conditional generative mechanisms.

Kuperman et. al (Kuperman et al., 2006) analyze disease propagation. They say, that the study
of diffusion in different media (where transitions are not necessarily limited to local sites, but
may include jumps to distant sites), is highly applicable to certain social phenomena, among
other applications within computational complexity, neurobiology, and economic exchange.
They start with fully connected clusters with mutation probabilities on the links, which lead
to networks that exhibit the same properties as small-world networks (Watts, 1999) (i.e. high
cluster coefficient and small average path length). To start with fully connected clusters eases
the analysis of the diffusion process.

Haggith et al. (2003) give an overview of the theories about diffusion of ideas. They deal
with spatial neighborhoods, which is similar to Axelrod’s model of cultural diffusion (Axelrod,
1997). They analyze seven different kinds of social relationships such as arbitrary neighbors
in a social network, networks with agent nodes having exactly two neighbors or ten neighbors
or hierarchies. Additionally, they point out the difference between copy-the-idea and copy-the-
carrier. The mechanism of copy-the-idea tries to copy the specific parts of an individual where
the copy-the-carrier mechanism tries to copy the person who has an interesting idea as such.

Henrich et al. (2008) describe five misunderstandings about cultural evolution and give coun-
terexamples to verify their opinions. They state that cumulative adaptive evolution does not
depend on replication, fidelity, or longevity. For example, they say that the representation of a
meme needs not to be already there when cultural evolution occurs. Another important misun-
derstanding in their view is that the “cultural fitness” of a mental representation can be inferred
from its successful transmission through the population. Memes often have nothing to do with
the status of the people who are the carriers. They also say, that a meme‘s mimetic fitness will
depend jointly on how attractive its content is to human brains and how it affects an individual‘s
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likelihood of being selected as a cultural model by other individuals. This is different to the
definition of genetic fitness.

In (Rocha et al., 2005), there is a nice introduction into the topic of memetics. They formally
define “learning by imitation” and give mathematical models for it. They also claim, that the
development of mathematical tools to deal with the dynamics of meme transmission would be
subject of future investigations, related to the meme-gene coevolution of mathematical meme-
plexes, which are groups of memes.

Richert considered the question how a group of robots can learn to achieve a shared goal and
how they can imitate each other in order to increase the performance and the speed of learning
(Richert, 2009). A dedicated robot architecture is presented build-up with three layers. In the
motivation layer, the overall goal is specified. Feedback on executed actions is provided to the
robot, which is used in the strategy layer. Based on the feedback, the current policy of the robot
is updated. For each symbolic action of the strategy layer, there exist a low-level representation
in the skill layer. A robot is able to learn individually and to switch into some observation
state to observe the behavior of others. Based on the observation, a robot extracts information
and integrates it into its knowledge base. This imitation step helps the robots to speed up the
learning process. Besides this, the robots calculate differences to other robots in the population
in order to select the best role model, which is the robot with less difference. With the help of
this technique, it is shown that the approach works also in heterogeneous robot system where
the robots differ in their capabilities.

Nguyen et al. (2008) deal with memetic algorithms. Memetic algorithms are not algorithms
that imitate cultural evolution but use memetics in another way. A memetic algorithm (MA) is a
genetic algorithm (GA) with an additional local search to optimize individuals in a non-genetic
way. Nguyen et. al name those algorithms 1st generation MAs which do not have an embed-
ded meme transmission. 2nd generation MAs are also named “multi-meme GA” (Nguyen et al.,
2008). Here, the memes compete with each other in a pool and simple inheritance mechanisms
are embedded into the algorithm. When an algorithm exhibits co-evolution and self-generation
of memes they are called 3rd generation MAs. Besides this classification, they introduce a
Diffusion-MA (DMA) which bases on the structure of a cellular genetic algorithm.

Azevedo and Gordon (2009) describe a new class of MAs: Terrain-Based MAs (TBMA).
They describe vector quantization and present the K-means algorithm. In K-means, the distor-
tion decreases monotonically, since the codebook is updated to satisfy the nearest neighbor rule
and the centroid condition. Thus, K-means may be regarded as a hill-climbing technique. After
this, they present an accelerated K-means algorithm. Their proposed TBMA is based on the
von Neumann-neighborhood, which is called Deme-4 neighborhood in their paper.



24 Foundations and Related Work

2.4 Conclusion

In this chapter we introduces the reader to definitions of agents and their main properties. We
also discussed terminology that is used in this thesis. Finally, we presented related work from
three research perspectives. We pointed out which related work influenced this thesis and we
have presented differences to the existing approaches.

If we consider the presented related work, we can observe that none of the presented ap-
proaches satisfies all the properties specified in Section 1.1. One unsatisfied property is one of
our main properties, i.e. local view. For example the work on coalition formation requires that
the agents can calculate coalition values from a global perspective. For scalability purposes,
global knowledge should always be avoided in multiagent system that have a large number of
agents. Additionally, the property of minimal knowledge is violated, if a global view is available
to the agents.

In the next chapter, we will present our local adaptation approach, that satisfies the desired
properties known from the introduction of this thesis.



3 Formal Model and Scenario Description

As we have seen, there exists a number of models for multiagent systems in literature. We are
interested in multiagent systems where the agents only have a local view, which means they are
not able to know every other agent or the number of agents in the system. Additionally, we are
interested in cooperation decisions based on multiple criteria, as it is the case in everyday life
between humans or animals. It is well documented that people tend to cooperate with others,
who are similar to them (Tajfel et al., 1971). In literature, there are many psychological studies
which claim that individuals within groups are highly oriented towards their own group and that
they are actively trying to harmonize their beliefs (Kramer and Brewer, 1984; Leyens et al., 1994;
Oakes et al., 1994). We present a mechanism that is based on similarities between agents and
where agents tend to cooperate, if the difference is not too large in a subjective, agent-oriented
view. Furthermore, we consider a scenario where the agents have to fulfill jobs composed of
several smaller tasks as a benchmark scenario.

The main results of this chapter are the following:

• We formally define the considered multiagent system.
• The cooperation willingness is based on similarities of agents in this system.
• We propose a new adaptation-based learning mechanism in Section 3.1 to promote the

cooperation decisions that meets the objectives presented in Section 1.1.
• Cooperation decisions are one-sided but lead to emergent mutual cooperation.
• We introduce a job/task model as a benchmark scenario for this thesis.

In the following, we give the formal definition of the proposed multiagent system and the
algorithms and describe the considered job/task scenario which is used as a proof-of-concept
model. The proposed model and benchmark scenario have previously been published in (Eber-
ling, 2009) and used in (Eberling and Kleine Büning, 2010a,b, 2011).

3.1 Agents and Multiagent System

In this thesis, we deal with agent networks that can be viewed as graphs. We use this anal-
ogy to define local neighborhoods in our system. We do not consider multiagent systems that
are situated in two- or three-dimensional environments, as it can be found in other approaches
(Priesterjahn, 2008). The reason for this decision is that in such systems the spatial distribution
has to be considered in order to describe the neighborhood of an agent as it is done for example
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with the k-nearest neighborhood in (Goebels, 2007). Since we concentrate on the adaptation
mechanism, we use neighborhoods based on a network structure for the considered multiagent
system. This concept of neighborhoods prevents the agents of having global knowledge, e.g. the
whole population of agents. The systems we deal with have thousands of agents, which means
that it is not applicable to allow the agents to interact or communicate with all other agents.
Therefore, we define a special agent network called interaction network.

Definition 3.1 (Interaction Network): An interaction network IN is a graph IN = (A,N )
where

• A is a finite set of agents
• N are links between the agents

The links between the agents are modeled as undirected edges. An interaction network is called
dynamic if the network can change between successive simulation steps by adding and removing
links.

With the help of the interaction Network IN we are able to formally define our understanding
of a neighborhood of an agent. Note also that due to the interaction network the agents’ view
on the system is local. The agents are not allowed to sense or interact with agents they are not
directly connected to. However, with the help of communication patterns agents can get aware
of their neighbors’ neighbors if this mechanism promises advantages for the agents.

In our system, the agents have to fulfill different jobs consisting of smaller tasks. This allows
us to model different granularities of jobs. In literature, one often finds multiagent systems,
where only atomic tasks are considered, see for example (Hales, 2001, 2002b). With the dis-
tinction between jobs and tasks we want to model complex cooperation patterns where multiple
agents have to work on a single job but on different tasks. With the help of different granulated
jobs, we are able to consider more sophisticated job models. Each task requires a specific skill
out of a system-wide skill set S. Formally:

Definition 3.2 (Tasks, Jobs): A task t is a pair t = (st, qt) where

• st ∈ S is the skill that is required to fulfill task t
• qt ∈ [qmin, qmax] ⊂ R+

0 is the non-negative payoff for task fulfillment

T is the finite set of all possible tasks. J ⊆ Pow(T ) is the set of all jobs. A job j ∈ J is a
set of tasks j = {t1, . . . , tn} where tmin ≤ n ≤ tmax with tmin, tmax ∈ N are the minimum and
maximum number of tasks a job consists of. A job is only fulfilled if all its tasks are fulfilled. The
payoff for a job is the sum of the tasks’ payoffs if it is fulfilled and zero otherwise. Formally,

payoff(j) :=

{∑
t∈j qt if job j is fulfilled

0 otherwise

A task can only be processed by an agent, if the agent provides the required skill.
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In the formal model, we only consider tasks that can be processed without time constraints.
Additionally, we do not consider any capacity constraints of the agents. At any given time step
an agent can work on an arbitrary number of tasks and the agent will finish with all tasks in the
same time step. There is no delay due to processing times.

The agents that are considered in this chapter have to search for cooperation partners that
help them completing their jobs. As this cooperation process is based on many criteria in real
life domains we also consider this determination with whom to cooperate on a set of criteria.
The agents share a set of propositions that is part of the environment. These propositions can
be opinions about the overall world state or the evolution of the environment. As we do not
concentrate on the modeling of such propositions, we only take them as an abstract mean to
model multidimensional decision making. A proposition p can represent anything like “The
road is clear” in the context of a taxi-driving agent or “The color blue is prettier than black”. For
our purposes it is enough to know that there are propositions that influence the behavior of the
agents and that these proposition form a common knowledge as all agents know about them.

Now we are able to define the environment in Definition 3.3 and to give a formal definition
of the considered agents in Definition 3.4. To favor readability, we omitted a simulation step
variable at the functions and sets used in the definitions. For the environment, the interaction
network may change and the job set is different in every simulation step. Additionally, every-
thing of the agents but the skill set and threshold vectors are changed over time and, thus, would
need an index for the current simulation step.

Definition 3.3 (Environment): An environment E that contains the agents from A, that are
linked in an interaction network IN following some construction mechanism, is a quadruple
E = (S,P, IN,J ) where

• S is a finite, non-empty set of skills
• P = {p1, . . . , pm} is a set of propositions
• IN = (A,N ) is an interaction network
• J is a set of jobs

Definition 3.4 (Agent): An agent a ∈ A is a tuple a = (Sa,Na, Ca,Va,Θa) with

• Sa ⊆ S: the set of skills agent a is equipped with
• Na ⊆ A: agent a’s set of neighbors
• Ca ⊆ Na: set of neighbors, agent a is willing to cooperate with
• Va ∈ [0, vmax]m ⊂ Rm: proposition rating vector
• Θa ∈ (0,Θmax]m ⊂ Rm: threshold vector

The set of neighbors Na of agent a is defined through the interaction network, i.e. there has to
be a link e = {a, b} ∈ N for every b ∈ Na. Furthermore, only the skill set Sa and the rating
vector Va are modeled as observable properties of agent a.

As we defined in Definition 3.4, the agents give values to the system-wide set of propositions.
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These values influence the behavior of the agents. If there is a high-valued proposition “The
road is clear” in the taxi-driving example, the agent will drive faster than it would do if the
proposition has a low rating. Another common interpretation of the agent’s proposition-values
is confidence with the opinion the proposition stands for. To keep notations simple, we use V(p)
to denote the corresponding vector position that belongs to proposition p. With the help of this
concept we want to model similarities between the agents.

Social science analyzes the behavior of animals and humans since many years. One aspect
of this research is, that individuals that seem to have common ideas or common interests be-
have more cooperative than they would if they would not have these similarities (Hinde and
Groebel, 1991; Kramer and Brewer, 1984). This aspect is captured in the determination process
of cooperation partners in the system. The next definition describes this process formally:

Definition 3.5 (Cooperation Partners): The set of cooperation partners Ca of agent a is defined
as

Ca = {b ∈ Na | ∀p ∈ P : |Va(p)− Vb(p)| ≤ Θa(p)}. (3.1)

This formula means, that every agent b from the neighborhood of agent a has to have proposition
ratings such that for every proposition the distance is less than the allowed distance for that
proposition, which is defined by the threshold vector.

We also define a cooperation relation C ⊆ A×A based on the sets of cooperation partners:

b ∈ Ca ⇔ (a, b) ∈ C

According to Definition 3.5, it is easy to see that the relation C in general is not symmetric.
Suppose there are two agents a and b and there is only one proposition p in the system. Let
the values be Va(p) = 20, Vb(p) = 50 and the thresholds Θa(p) = 40, Θb(p) = 20. As the
difference between the values is 30 it holds that (a, b) ∈ C and (b, a) /∈ C. This means that agent
a is willing to cooperate with agent b but not vice versa.

To summarize, we can see that there are different properties our model reflects. First of all,
we do not have a homogeneous set of agents as they are equipped with different sets of skills.
This means that an agent is not able to fulfill every job that is assigned to it, because the job
may require skills that are not provided by the agent. The second aspect is the local view of the
agents on the system. They are only aware of themselves and those they are directly connected
to. This is an important property as this allows high scalability of the system.

3.2 Scenario Description

We deal with a job/task allocation domain to test our approaches. Therefore, the environment
contains a set of jobs (cf. Definition 3.3). These jobs are generated dynamically during simula-
tion. Algorithm 3.1 describes the job generation and the allocation to randomly chosen agents.
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Algorithm 3.1 Job Generation and Processing
Input: set of agents A

skill set S
job factor k
the minimum/maximum number of tasks a job consists of tmin and tmax

the minimum/maximum payoff per task qmin and qmax

1: procedure JOBGENERATIONANDPROCESSING(A, S , k, tmin, tmax, qmin, qmax)
2: for k′ = 1 to k · |A| do
3: n← U [tmin, tmax] /* UNIFORMLY AT RANDOM */
4: j ← ∅ /* INITIALIZE EMPTY JOB */
5: for i = 1 to n do /* GENERATE THE TASKS OF THE JOB */
6: st ← U [1, |S|] /* UNIFORMLY AT RANDOM */
7: qt ← U [qmin, qmax] /* UNIFORMLY AT RANDOM */
8: t← (st, qt) /* INITIALIZE THE TASK */
9: j ← j ∪ {t} /* ADD THE TASK TO THE JOB */

10: end for
11: select random agent a with uniform distribution
12: if JOBPROCESSING(j,a) then /* SEE ALGORITHM 3.2 */
13: profit(a)← profit(a) + profit(j)
14: charge all helpers /* COST-PRODUCING COOPERATION */
15: end if
16: end for
17: end procedure

In our scenario, in each step k · |A| jobs are generated and assigned to randomly chosen agents
with uniform distribution. The parameter k is called job factor. It is an exogenous parameter
of the system. This leads to an assignment of on average k jobs per agent, which specifies
the number of generated jobs and, thus, determines the number of interactions between agents.
The jobs are dynamically generated and separately assigned to the agents and processed by the
agents. This leads to one fundamental property of our system. The agents are not able to reason
about the whole job set and to select the most beneficial one. We decided to do this because we
concentrate on the cooperation aspect and not on the aspect of most efficient task allocations as
it is done in similar models (de Weerdt and Zhang, 2008; de Weerdt et al., 2007).

If an agent is not able to fulfill all tasks of a job, it searches for cooperation partners (see
Algorithm 3.2). This process is illustrated in Figure 3.1. Here, a job consisting of three tasks is
assigned to agent a1 (see Figure 3.1a). The skills s1, s2 and s3 are required for fulfilling tasks
t1, t2, and t3. Besides the shown skills in the figure, the colors also represent the specific skills.
As agent a1 only offers skill s1, the agent allocates two tasks of the job to its neighbors a2 and
a3, which both have accepted to help agent a1 for the fulfillment of jobs (see Figure 3.1b). If
a2 or a3 has declined the request or if the job contains a task with an unprovided skill in the
vicinity of agent a1, then no task would have been allocated at all and the job would have been
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(a) Job is assigned to agent a1. (b) a1 has found cooperative neighbors
and has allocated the tasks.

Figure 3.1: Some small example illustrating the concerned scenario.

discarded. The whole process of processing a job is described in Algorithm 3.2.

To model that cooperating agents spend their resources for fulfilling jobs they are not respon-
sible for, we charge them for their cooperation. Therefore, we have the exogenous parameter
c ∈ R− which is a cost factor. Whenever agent a cooperates with agent b by performing a task
t of a job j assigned to b, a’s profit is reduced by adding c · qt to its profit. qt is the payoff for
fulfilling task t. The profit function is formally defined in the following definition:

Definition 3.6 (Profit Function): Let JC(a) be the set of completed jobs that have been al-
located to agent a. Let TH(a) be the set of tasks that agent a has processed which belong
to completed jobs that have been allocated to agent a’s neighbors. Then, the profit function
profit : A → R is defined as:

profit(a) :=
∑

j∈JC(a)

payoff(j) +
∑

t∈TH(a)

c · qt

The charging of the helping agents is done in line 14 of Algorithm 3.1. In our approach, it
is possible that one agent helps a second agent by processing more than one task of the foreign
job. The agent then is charged more than once as it also uses more of its resources. The whole
algorithm that also contains the proposed adaptation part is given in Algorithm 3.3.

After all jobs are generated and processed by the agents, the adaptation starts. Each agent a
calculates the so-called elite set Ea of the ε ∈ N best performing agents of its neighborhood.
Note, that the parameter ε has to be chosen carefully with respect to the neighborhood size.
Suppose we have ε ≤ |Na|, then agent a will always be part of the elite set and, thus, will
not perform the adaptation step. Performance is measured as the profit achieved during one
simulation step, which is one execution of the algorithm JOBGENERATIONANDPROCESSING.

If the agent is not in set of the ε best performing agents and has neighbors that are not willing
to cooperate with it, the agent is said to be unsatisfied and adapts itself. Note that the threshold



3.2 Scenario Description 31

Algorithm 3.2 Job Processing
Input: job j

agent a
Output: true if job can be processed, false otherwise

1: procedure JOBPROCESSING(j, a)
2: for all t = (st, pt) ∈ j do
3: if st ∈ Sa then
4: processor(t)← a
5: else
6: Na(st)← {b ∈ Na | st ∈ Sb}
7: if Na(st) = ∅ then
8: mark j as uncompleted
9: return false

10: end if
11: H ← {b ∈ Na(st) | b is willing to cooperate with a}
12: ifH = ∅ then
13: mark j as uncompleted
14: return false
15: end if
16: h← randomly select an agent out ofH
17: processor(t)← h
18: end if
19: end for
20: for all t = (st, pt) ∈ j do
21: allocate t at agent processor(t)
22: end for
23: return true
24: end procedure

values of the neighbors are properties that are not observable. Therefore, the agents cannot
compute the set of agents that will not cooperate with them. However, an agent can record
the agents that have declined its helping requests and it can approximate the set of agents that
are unwilling to cooperate with it. The adaptation step consists of three parts: ideal selection,
adaptation to the selected ideals and social networking. These three parts are described in more
detail in the remainder of this section.

3.2.1 Selection Strategies for the Ideal Set

Each agent a that is unsatisfied selects a local set of ideal agents Ia ⊂ Na from its neighborhood
to adapt to their values. The cardinality |Ia| is an exogenous parameter which has to be chosen
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Algorithm 3.3 Simulation

Input: number of agents |A|
number of skills smax

job factor k
minimum/maximum number of tasks a job consists of tmin and tmax

minimum/maximum payoff per task qmin and qmax

number of elite agents ε
selection strategy for ideal set
adaptation strategy
probability PrN of executing social networking

1: procedure SIMULATION

2: Initialize |A| agents and neighborhoods randomly
3: loop
4: JOBGENERATIONANDPROCESSING(A, S, k, tmin, tmax, qmin, qmax)
5: for all agents a ∈ A do
6: Ea ← ε best agents of Na ∪ {a}
7: if a /∈ Ea ∧ ∃b ∈ Na : (b, a) /∈ C then
8: Select Ia ⊆ Na /* IDEAL SELECTION */
9: Adapt to Ia /* ADAPTATION */

10: with probability PrN : replace r uncooperative neighbors by r randomly
chosen agents /* SOCIAL NETWORKING */

11: end if
12: end for
13: end loop
14: end procedure

carefully as the size of the neighborhoods has to be taken into account. However, the selection
can be done using different strategies. We will focus on the following strategies:

best-selection Select the best performing agents of the neighborhood, such that every neigh-
bor that does not belong to the ideal set has a profit that is less or equals to the neighbors
of the ideal set. Formally:

∀a∗ ∈ Ia ∀b ∈ Na\Ia : profit(a∗) ≥ profit(b)

The idea behind this selection strategy is, that agents are believed to gain much profit
because of very good ratings for the propositions. Agents that have quite high profit are
those agents that gain much cooperation as many jobs can be fulfilled that are assigned
to those agents. Another reason for the high profit may be, that they probably did not
received much negative reward as a punishment for cooperation. Therefore, these are
selected as role models as the agents want to imitate them to achieve more profit in future
time steps.
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worst-selection Select the worst performing neighbors, such that all neighbors that are not in
the ideal set have greater or equal profit. Formally:

∀a∗ ∈ Ia ∀b ∈ Na\Ia : profit(a∗) ≤ profit(b)

This strategy is meant as follows. By imitating the worst performing agents, the agent
believes that it raises the probability of receiving help from these agents. The agents with
low profit are those that gain less cooperation but are willing to cooperate with others.
Therefore, they have been punished by the system and their profit is very low or even neg-
ative. If the differences between the agent and the worst performing neighbors decreases,
then the probability of receiving their help will probably increase.

random-selection Randomly select some neighbors as ideals. In contrast to the other two
strategies, this strategy does not require any knowledge about the performance of the
neighboring agents.

The number of ideals |I| is an exogenous parameter for the simulation and different settings
for this parameter will be examined in Chapter 5. Note that this parameter is equal for all agents.
As we have proposed the main strategies of selecting the ideal agents, we now want to describe
the adaptation step and the adaptation strength strategies.

3.2.2 Adaptation Strategies

In the adaptation step the agent a adapts its proposition values Va to the ratings of its ideal sets
Ia. The rule for this adaptation is the following:

Va ← Va + η · 1

|Ia|
(

Σa∗∈Ia(Va∗ − Va)
)

(3.2)

This formula contains an important, exogenous parameter η ∈ [0, 1] ⊂ R, which specifies the
adaptation strength. The idea behind this step is, that the ideal agents are believed to be more
successful due to better values for the propositions. Therefore, the agent wants to change its
values to be more like its ideals. One aspect of this parameter is the value. The value specifies
the strength of the adaptation where 0 means no adaptation at all and 1 pure copying. The best
setting for this parameter is analyzed in Chapter 5 where experimental results are presented.
To illustrate the idea behind moving the value-vector let us consider the following example in
Figure 3.2.

In both figures, the agents are represented in the hypercube defined by the dimensions of
the value vectors, i.e. the number of propositions. To ease the illustration we only consider
two propositions in this example. The center of the circles represents the exact position of the
value-vectors and the dashed rectangles show the tolerance area defined by the threshold vectors.
Figure 3.2a visualizes the given situation where agent a1 wants to adapt its values to the values
of a2. Figure 3.2b shows the result of the adaptation. Now, agent a2 will cooperate with agent
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(a) Situation before a1 adapts its values to agent
a2.

(b) Situation after the adaptation step.

Figure 3.2: Small example illustrating the idea of the adaptation step.

a1 because the center of a1 is within the tolerance area of a2. This is exactly what agent a1

intended to achieve by moving the vector and, thus, imitating the values of a2. Note, however,
that the tolerance area is invisible to agent a1.

One can think of several strategies for the adaptation part. The adaptation is highly influenced
by the adaptation strength η and, thus, the selection of this parameter can be done in several
ways. It can be initially set and changed by simulated annealing (Kirkpatrick, 1984) in every step
by the agents. Another possibility would be to mutate the parameter with some probabilities, as it
is done in evolutionary computing (Eiben and Smith, 2003). As several strategies for adaptation
exist, we will now describe three strategies that will be examined in Chapter 5. These strategies
are:

1. Fixed η = 0.5 for all agents

2. Randomly choose η for every agent in the initialization phase, then fixed

3. Randomly choose η for every agent in every simulation step

The first strategy is very simple as for all agents the adaptation strength is equal. The other
two strategies are more interesting. Both deal with randomized setting of the parameter with
uniform distribution. The difference is that strategy 2 gives every agent a different value but
after the initialization phase, the parameter stays constant. The third strategy also resets the
value after one simulation step.

3.2.3 Social Networking

The last part of the considered approach is the social networking which is executed with prob-
ability PrN . The agent chooses r agents from its neighborhood, that have not cooperated with
it, and replaces them by r randomly chosen agents from the population. If there are less than
r agents, which have been uncooperative, all of them are replaced. Note, that the whole pop-
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ulation is invisible for the agent but there are approaches that deal with this problem. In an
anonymous Peer-to-Peer System nodes can randomly choose another node out of the whole set
without knowing every other node (Vishnumurthy and Paul, 2006, 2007). Therefore, we concen-
trate on the effects of the process of social networking and ignore techniques how the new agents
can be selected if not the whole population is known to the agents. By replacing the agents the
situation could not worsen but only improve for the agent. This is due to the fact that all agents,
which are uncooperative are replaced by randomly chosen agents, with a non-zero probability of
selecting potentially cooperative agents. As stated above, only those agents will help this agent,
if their values for the propositions and the thresholds fit together.

If the social networking is executed with a non-zero probability, the neighborhoods change
over time. On the one hand, this means that agents lose neighbors because they are exchanged
and on the other hand, the neighborhoods of newly selected neighbors can grow. This is due to
the fact that agents are not allowed to reject neighborhood requests. Therefore, we introduce a
fixed maximum number of neighbors allowed per agent (Nmax). If this number is reached, then
a link to a randomly chosen neighbor is deleted from the neighborhood. In our experiments, we
always set a maximum number of allowed links per agent to prevent agents from being connected
to nearly every other agent. This would give the agents the possibility to get knowledge about
nearly every agent in the system, which would be some kind of global knowledge.

3.2.4 Overview on System’s Parameter

The following table briefly recalls the parameters of the system:

3.3 Conclusion

In this chapter, we formally presented the considered approach as well as the benchmark sce-
nario of job/task allocation. With the help of the neighborhood definition based on a network
structure we achieved the goal of having only a local view on the system. Each agent can only
sense and interact with agents that are directly connected to it. The property of having cooper-
ation decisions that are based on a similarity measure between agents is modeled with the help
of rating vectors for a system-wide set of propositions. Adaptivity is also given as the agents
can adapt to a set of neighbors with the intension of improving their performance. The proposed
approach is very simple as the mechanism only needs the values of the other agent to decide,
if an agent will cooperate with this agent. Also the adaptation part does not need any further
information. As the cooperation relation which specifies which agent will cooperate with an-
other agent is in general not symmetric, the proposed multiagent system works with directed
cooperation decisions. Through the social networking step—exchange of neighbors with some
probability if the agent is unsatisfied with the current situation—the network is changed and,
thus, the presented system has a dynamic network. The last property that was identified in Sec-
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Table 3.1: Parameters of the System.

Parameter Meaning

|A| population size

|S| number of skills in the system

|Sa| number of skills per agent

Nmax maximum number of neighbors allowed per agent

m number of propositions

vmax maximum rating for a proposition

Θmax maximum tolerance of an agent

qmin, qmax minimum / maximum payoff for task fulfillment

tmin, tmax minimum/maximum number of tasks a job consists of

k job factor, that determines the number of interactions

c cost-factor for charging helpers

η adaptation strength

ε number of elite agents

|I| number of ideal agents

PrN probability of executing social networking

r number of replaced agents in social networking

tion 1.1 is emergent cooperation. Considering only the formal model, one cannot decide if the
proposed approach has this property. However, there are no hard-coded cooperation rules. If
high level of cooperation are reached, then the system shows emergent cooperation. This is one
aspect that is analyzed in the next two chapters.
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In this chapter, we formally analyze the considered approach. First, we discuss the probability
of having all skills in the vicinity of an agent with the restriction that an agent only has a single
skill. Second, we analyze the convergence behavior of the value propagation in small networks.
And third, an analysis of the computational complexity is presented.

The main results of this chapter are as follows:

• We show that the probability of having all skills in the vicinity of an agent can be computed
with the help of Stirling numbers of the second kind if each agent is equipped with a single
skill only.

• It is shown show that the probability is strongly connected to the number of skills in the
system and to the neighborhood size.

• We show that for a large number of skills in the system an unrealistic large average number
of neighbors is needed to get a high probability of having all skills in the agents’ vicinity.

• We prove the convergence to mutual cooperative behavior for the two-agent case.
• An example is presented where mutual cooperation will not be able to emerge for the

three-agent case and which strategies may prevent this behavior.
• We show that the proposed approach has quadratic complexity in the number of agents in

the worst case and linear complexity in the average case from the simulative point of view
(global view).

• It is shown that the proposed approach has linear complexity in the number of neighbors
from the agents’ viewpoint (local view).

4.1 Skills in the Agents’ Vicinity

In this section, we analyze the probability of having all skills in the vicinity of an agent given
the number of neighbors |Na| and the number of possible skills in the system |S|. First, we give
some notations and then we will start the analysis.

For the analysis, we need to define the set of agents under consideration and the number of
skills in the system. Therefore, we use the following notation in this section:

• the set of agents in agent a’s vicinity is denoted by Aa, where

Aa := Na ∪ {a}, with n := |Aa| (4.1)
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• the set of skills in the system
S, with smax := |S| (4.2)

Let us assume that every agent only has a single skill, i.e. |Sa| = 1 for every agent a ∈ A, and
that the number of possible skills smax is not greater than the number of agents in a’s vicinity,
i.e. |S| = smax ≤ |Aa|. Then, we can define a function skills that maps the set of agents under
consideration to the set of all possible skills:

skills : Aa → S (4.3)

It is easy to see that this function by definition is total as no agent may have none of the skills.
There exist |S||Aa| many (total) functions with the given signature, if |S| ≤ |Aa|. Nevertheless,
we want to know the number of surjections as the following property should hold:⋃

b∈Aa

skills(b) = S (4.4)

So, we are searching for the number of surjective mappings from a set with n elements to a set
with smax elements with smax ≤ n. This question is closely related to the question of how many
ways exist to partition a set of n elements into m non-empty subsets with m ≤ n. The answer
is provided by the Stirling numbers of the second kind. The connection between the Stirling
numbers of the second kind and surjections has been investigated in literature (see, e.g. (Brualdi
and Bogart, 1977; Lloyd and Ledermann, 1985; Tucker, 2007)). We will use these results in this
section.

Lemma 4.1 (Stirling Number of the Second Kind (Abramowitz and Stegun, 1972)): The
number of ways of partitioning a set of n elements into m non-empty subsets with m ≤ n is
given by

S(n,m) :=
1

m!
·
m∑
i=0

(−1)i ·
(
m

i

)
· (m− i)n (4.5)

The sequence of numbers S(n,m) is known as the Stirling numbers of the second kind.

The problem of partitioning a set of n elements into m non-empty subsets does not consider
the different permutations of the subsets. However, in the context of functions we should con-
sider the permutations. This leads us to the following lemma.

Lemma 4.2: The number of surjective, total functions mapping from a set of n elements to a set
of m elements is

Sur(n,m) :=

m∑
i=0

(−1)i ·
(
m

i

)
· (m− i)n. (4.6)

Proof: Note, that the following holds:

Sur(n,m) = m! · S(n,m) (4.7)
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The number of surjections can be computed with the help of the Stirling numbers of the second
kind. However, if we count the ways of partitioning a set of n elements into m non-empty
subsets we can call these subsets equivalence classes. For partitioning, the order of equivalence
classes does not count. In the context of surjections the order is relevant which leads to the factor
m! as there are m! permutations of equivalence classes. �

Thus, the probability of having all skills in the vicinity of agent a having n− 1 neighbors is

Pr
( ⋃
x∈Aa

skills(x) = S
)

=
Sur(n, smax)

smax
n

(4.8)

as Sur(n, smax) many surjections exist under all smax
n functions mapping from the agents under

consideration to the skill sets with smax ≤ n.

For specific numbers of skills |S| ∈ {3, 5, 7, 10, 12, 15} and specific neighborhood sizes
|Na| ∈ {0, 1, 2, . . . , 35} we have calculated the probability of having all skills in the vicin-
ity of a specific agent a. Note that a neighborhood size of 5 results in |Aa| = 6. Figure 4.1
illustrates the results.
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Figure 4.1: Comparison of probabilities of having all skills in the vicinity of agent a given its
neighborhood size and the number of skills in the system |Na|.

As expected, the probability of having all skills in agent a’s vicinity gets lower if the number of
skills in the system gets greater with constant neighborhood size. With 20 neighbors—leading



40 Formal Analysis

Table 4.1: Number of required neighbors for specific skill set sizes to get a probability of 99%
of having all skills in an agent’s vicinity (left-hand side). The right-hand side table
shows the required number of neighbors for a relaxed probability of 95%.

|S| |Na|needed
3 14

5 27

7 42

10 65

12 81

15 105

20 148

30 236

|S| |Na|needed
3 11

5 20

7 32

10 50

12 62

15 82

20 116

30 187

to 21 agents in vicinity—and five skills in the system the probability is about 95% but only
about 25% if there are ten skills in the system. The question arises, how many neighbors are
needed such that (nearly) all skills are in the vicinity of a specific agent. That is, when does the
probability gets close to 100%? This question is hard to answer if the number of skills in the
system is arbitrary. Nevertheless, it can be answered if we know the number of skills that are
possible. Let us assume that close to one means greater than 99%. Then we can compute the
required number of neighbors if every agent is endowed with a single skill and |S| skills are in
the system. The left-hand side of Table 4.1 gives the number of neighbors |Na|needed for skill
set sizes |S| ∈ {3, 5, 7, 10, 12, 15, 20, 30}. As can be seen, the number of required neighbors
is quite high if we want to have a probability of 99%. If we relax the requirement to have a
probability of 95% the number of neighbors decreases significantly, which is presented on the
right-hand side of Table 4.1.

In the experimental analysis provided in Chapter 5, we will see that this high numbers of
neighbors are not needed due to the network adaptation process, i.e. the social networking.
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4.2 Value Propagation in Small Networks

In this section, we analyze the convergence behavior of our adaptation mechanism. We want
to get insights into the mechanism of adaptation and want to take a closer look on very special
scenarios. To ease the analysis only static interaction networks are considered here. Therefore,
the influences of the dynamics of the network can be neglected. We only deal with very small
agent sets in order to be able to analyze the propagation of the values through the network. We
claim that these small scenarios can be found in greater networks in the form of sub-networks.
Therefore, the results from this section can also be transferred to large networks composed of
thousands of agents.

It is shown that for systems composed of only two agents a convergence to mutually coopera-
tive behavior can be expected. However, we present a system of three agents where convergence
to cooperative behavior cannot be observed. We also present strategies to avoid this behavior.
Parts of this section have been previously published in (Eberling and Kleine Büning, 2010a,
2011).

4.2.1 The Simplest Scenario

Let us start with a very simple scenario consisting of two agents. The system is illustrated in
Figure 4.2. Here the agents have different skills as the colors suggest. We assume that the
combination of both skills is sufficient for all jobs, i.e. there is no other skill required to fulfill
the job. If there would be jobs, which require a skill that these two agents cannot provide, then
these jobs will not have any influence on this small system’s behavior concerning the adaptation,
as these jobs will never be fulfilled. Thus, the payoff of these jobs will not influence the agents’
profit and that is why they do not influence the adaptation step. Therefore, we neglect such jobs.

a b

Figure 4.2: Simple MAS composed of two agents.

We denote with profit(a) the profit that an agent a earned in one simulation step as it is defined
in Definition 3.6. In the scenario with two agents, the job phase can produce the following three
different profit scenarios:

1. profit(a) = profit(b)

2. profit(a) > profit(b)

3. profit(a) < profit(b)

Case 1 is very simple since no adaptation takes place, if both agents have the same profit. As
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case 2 and 3 are symmetric, we concentrate on case 2 in the remainder of this section. In case 2
agent b always adapts its values to agent a. For the value adaptation we take a slightly different
version of the adaptation rule provided in Equation 3.2 as we only have one ideal agent and not
a whole ideal set. Therefore, Equation 4.9 gives the new value-vector in step t + 1 of agent b
after it adapts its vector to agent a in simulation step t.

Vt+1
b = Vtb · (1− η) + η · Vta (4.9)

Since profit(a) > profit(b), agent a never adapts and, thus, its value vector never changes.
Therefore, it always has the vector it received in the initialization. This is reflected in the fol-
lowing equation, which holds for the considered case:

∀t : Vta = V0
a (4.10)

As we are interested in the value propagation, we have to take a look at the value-vectors in
every simulation step. For agent a this is trivial as it does not change its value vector at all. For
agent b we now want to compute the changes in every simulation step and provide a formula to
calculate the value vector for agent b for an arbitrary simulation step. This leads to the following
development:

V1
b = V0

b · (1− η) + η · V0
a

V2
b = V1

b · (1− η) + η · V0
a

= V0
b · (1− η)2 + η(1− η) · V0

a + η · V0
a

V3
b = V2

b · (1− η) + η · V0
a

= V0
b · (1− η)3 + η(1− η)2 · V0

a + η(1− η) · V0
a + η · V0

a

...

Vt+1
b = V0

b · (1− η)t+1 + η · V0
a ·

t∑
i=0

(1− η)i

Using the last equation, we now can compute the values of b for every simulation step. To
show that the system composed of two agents converges to mutual cooperation we need to show
that the distance between the value vectors never increases as this would result in the contrary
case. This is stated in the following lemma:

Lemma 4.3: Let dist(a, b, t) be the distance of the value vectors of two agents a and b in step t
with:

dist(a, b, t) =
∣∣Vta − Vtb∣∣

In a scenario with just two agents, the distance never increases, i.e.

∀t : dist(a, b, t+ 1) ≤ dist(a, b, t)
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Proof: To ease the proof let us consider a single proposition, only. The proof can easily be
extended to m propositions in general. For better readability V denotes the value for this single
proposition instead of a one-dimensional vector. By definition the distance between the values
for the proposition is

dist(a, b, t+ 1) =
∣∣Vt+1
a − Vt+1

b

∣∣
As stated above we have to consider the three cases for the profit distribution.

Case 1: In the current simulation step the agents gained the same profit, i.e.: profit(a) =
profit(b). As no agent has a higher profit, both are satisfied and no adaptation takes place.
Therefore, it holds that

dist(a, b, t+ 1) ≤ dist(a, b, t).

Case 2: Agent a gained more profit in the current simulation step, i.e.: profit(a) > profit(b).
Then agent a is satisfied and agent b is unsatisfied. Therefore, we have Vt+1

a = Vta as
agent a does not adapt its values and Vt+1

b = Vtb + η(Vta − Vtb) as agent b adapts to agent
a. Therefore, we have

dist(a, b, t+ 1) =
∣∣Vta − Vtb − η(Vta − Vtb)

∣∣ .
We have to distinguish the cases for the current proposition values for both agents. There-
fore, we have the following two cases:

Case 2.a: Vta ≥ Vtb:
dist(a, b, t+ 1) =

∣∣Vta − Vtb − η(Vta − Vtb)
∣∣

= Vta − Vtb − η(Vta − Vtb)
=

∣∣Vta − Vtb∣∣− η · ∣∣Vta − Vtb∣∣
= dist(a, b, t)− η · dist(a, b, t)

Case 2.b: Vta < Vtb:
dist(a, b, t+ 1) =

∣∣Vta − Vtb − η(Vta − Vtb)
∣∣

= −Vta + Vtb + η(Vta − Vtb)
=

∣∣Vta − Vtb∣∣− η · ∣∣Vta − Vtb∣∣
= dist(a, b, t)− η · dist(a, b, t)

The values for the propositions are always greater or equal to zero. The same holds for
the adaptation strength η. Therefore, from both cases it follows that dist(a, b, t + 1) ≤
dist(a, b, t).

Case 3: profit(a) < profit(b). This case is symmetric to case 2 which means that it also leads
to the result that dist(a, b, t+ 1) ≤ dist(a, b, t).
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From all three cases it follows that dist(a, b, t+ 1) ≤ dist(a, b, t) which proves the lemma. �

Up to now we know that the distances between both value vectors can never increase in this
scenario. In this system, we have three different profit scenarios in each simulation step. As the
payoff for the jobs is uniformly distributed, we claim that all profit sscenarios are also uniformly
distributed and, therefore, the probability for each situation is exactly 1

3 . Therefore, in every
third simulation step on average we have no adaptation, as case 1 will take place.

We now want to know how many steps are needed until both agents are willing to cooperate
with each other, i.e. a ∈ Cb and b ∈ Ca. Therefore, we need a sufficient number of adaptation
steps. Let us assume that case 3 never occurs which means that we have two situations where
agent b adapts to agent a and one simulation step without adaptation because of case 1. We
can make this assumption, as case 2 and 3 are symmetric and do not influence the speed of
convergence. To realize such an adaptation setting, we can assume that agent a is less tolerant,
i.e. Θa < Θb. This means that agent a determines the number of steps needed, since a ∈ Cb will
follow first. From the proof of Lemma 4.3 we know:

dist(a, b, t) = dist(a, b, t− 1)− η · dist(a, b, t− 1)

= (1− η) · dist(a, b, t− 1)

We can now conclude that:

dist(a, b, t) = (1− η) · dist(a, b, t− 1)

= (1− η)2 · dist(a, b, t− 2)
...

= (1− η)t · dist(a, b, 0)

Thus, we are searching for the earliest simulation step t that satisfies (1−η)t ·dist(a, b, 0) ≤ Θa.
Under the assumption that dist(a, b, 0) 6= 0, we obtain:

(1− η)t · dist(a, b, 0) ≤ Θa

⇔ (1− η)t ≤ Θa
dist(a,b,0)

⇔ t · ln(1− η) ≤ ln
(

Θa
dist(a,b,0)

)
⇔ t

η∈(0,1)

≥
ln
(

Θa
dist(a,b,0)

)
ln(1−η)

This means that in step
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t′ =

⌈
ln(Θa)− ln(dist(a, b, 0))

ln(1− η)

⌉
(4.11)

it will hold that a ∈ Cb and b ∈ Ca. Note that we have assumed, that the adaptation strength η
is taken from the open interval (0, 1). η = 0 would result in no adaptation, but this is what we
want to examine. Thus, this value is omitted. Additionally, η = 1.0 is omitted, as this would
mean that after a single step both agents would cooperate in the following as both will have the
same value-vectors after the adaptation. This easy case is neglected here.

Equation 4.11 only considers that in every simulation step we have case 2. As case 3 is
symmetric to case 2 it would lead to similar time demands but from the other agent’s perspective.
Again, case 1 can also occur and it will be the case in every third simulation step on average.
Therefore, a more precise formulation for the expected time demands in this setting would be

3

2
·max

{⌈
ln(Θa)− ln(dist(a, b, 0))

ln(1− η)

⌉
,

⌈
ln(Θb)− ln(dist(a, b, 0))

ln(1− η)

⌉}
(4.12)

Equation 4.12 considers all three situations that can occur for the profit distribution and takes
into account the assumed uniform distribution of the jobs’ payoff and jobs’ requirements. Note
that case 1 slows down the development as no adaptation takes place, if both agents reach the
same profit. However, eventually it will hold that case 2 or 3 will again occur and the process is
continued.

Although we have seen good results in previous work (cp. (Eberling, 2009; Eberling and
Kleine Büning, 2010b)), we cannot ensure convergence in every setting as stated in Lemma 4.4:

Lemma 4.4: The adaptation cannot ensure convergence. There are settings in which the system
will fail.

Proof: Section 4.2.2 gives an example where the adaptation does not converge. �

4.2.2 A Simple Scenario Without Convergence

In this section, we present a system where convergence cannot take place. In this system we
have three agents. For the agents and the interaction network we consider the following formal
specification, which is explained in detail in the following.

• set of agents A = {a, b, c}
• IN = ({a, b, c}, {{a, b}, {b, c}})
• S = {1, 2, 3, 4, 5}
• tmin = tmax = 3 and qt = 1 for all tasks t
• Sa = {1}, Sb = {3}, Sc = {5}
• P = {p1}
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• Va = 0, Vb = 50, Vc = 100
• Θa = 2, Θb = 100, Θc = 2

Again, we only consider a single proposition and interpret the values V as rational numbers
instead of one-dimensional vectors. Figure 4.3 illustrates the structure of the interaction network.

a b c

Figure 4.3: Simple MAS composed of three agents.

The system contains a skill set with five elements where the agents provide three of them.
Each job contains exactly tree skills and every task leads to a payoff of 1 utility unit. The
cooperation costs are therefore −0.25 utility units. Agent b is connected to the agents a and c
where those agents are not linked together. Therefore, cooperation can only take place between
the pairs a, b and b, c. When we look at the proposition values and thresholds one should notice
that agent b is very tolerant whereas the other two agents are very intolerant. Equation 3.2 gives
the adaptation rule:

Vt+1
a = Vta + η · (Vta∗ − Vta) (4.13)

Equation 4.13 means, that agent a adapts its values by adding the weighted distance between
the value of a’s best performing neighbor a∗ and its own value. This moves the value into the
direction of the best performing agent. Clearly, V0

a is the initial value given in our specification.
Now, consider the following profit scenario:

profit(a) > profit(c) > profit(b), for odd t (4.14)

profit(c) > profit(a) > profit(b), for even t (4.15)

This profit scenario can be the result of the relative intolerant agents a and c (i.e. Θa = Θc =
2) and the very tolerant agent b. This can lead to an alternating adaptation of agent b to agent a
in odd simulation steps and to agent c in even simulation steps. As the agents a and c only have
a single neighbor, agent b, and this agent is always the worst performing one, they never adapt.
Therefore, the length of the value-interval remains constant.

If we set η = 0.5 and let agent b adapt in the alternating way as described above, we obtain
the values for the proposition as shown in Table 4.2. The value of agent b changes in every
step and it can be observed that it does not converge to a single value but it oscillates between
the values 331

3 and 662
3 . For both directions it holds that in every simulation step the minimal

distance is one third of the interval length, i.e. 331
3 . Therefore, agent b never receives help

from the other two agents. The only possibility for agent b to gain profit is the fulfillment of a
job containing three times skill 3. However, this situation is very rare, if we consider the job
generation mechanism as it is described in Algorithm 3.1. In our setting we have |S| = 5 and
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Table 4.2: Change of values during adaptation for 14 simulation steps.

t Vt
a Vt

b Vt
c

0 0 50 100

1 0 25 100

2 0 65.5 100

3 0 31.25 100

4 0 65.625 100

5 0 32.8125 100

6 0 66.4063 100

7 0 33.2031 100

8 0 66.6016 100

9 0 33.3009 100

10 0 66.6504 100

11 0 33.3252 100

12 0 66.6626 100

13 0 33.3313 100

14 0 66.6656 100

each agent has a single skill. Each job consists of three tasks. Therefore, we have a probability
of 0.8% to generate a job that requires three times the same skill. However, as agent b is very
tolerant it always helps the other two agents if they ask for help. That is why agent b is punished
very often in contrast to the other two agents which never receive negative payoff.

Although this scenario leads to no convergence, the sequence of the Vtb of agent b consists of
two subsequences, each converging to a fixed value. We can identify these values for every η.
Table 4.3 gives the approximated bounds for some η.

However, this construction is very unrealistic. In scenarios that have been considered in pre-
vious work (Eberling, 2009; Eberling and Kleine Büning, 2010b) this problem does not occur or
at least it does not lead to significant performance losses. There, we dealt with 1000 agents and
neighborhood sizes of 15 to 20 agents in a random network. Because of the results in (Eberling,
2009; Eberling and Kleine Büning, 2010b), we assume that in random networks the probability
of having situations without convergence gets very close to zero.
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Table 4.3: Convergence points for the subsequences for Vtb .

η odd t even t

0.0 50 50

0.1 47.303 52.572

0.2 44.442 55.554

0.3 41.176 58.824

0.4 37.5 62.5

0.5 33.333 66.666

0.6 28.571 71.429

0.7 23.077 76.923

0.8 16.666 83.333

0.9 9.091 90.909

1.0 0 100

A very strong assumption we made in this subsection is, that agent b adapts to its neighbors
in an alternating way. If the agent adapts to one neighbor only, we get a similar convergence
behavior as in the scenario considered in Section 4.2.1. Assume, that only the case occurs in
which agent a is the overall best agent. Then, we can apply Equation 4.11 to calculate the time
steps t′ needed until agent a and b will mutually cooperate, if the adaptation strength is set to
η = 0.5:

t′ =

⌈
ln(2)− ln(50)

ln(0.5)

⌉
= 5

This means that after five adaptation steps if holds that (a, b) ∈ C and (b, a) ∈ C. Especially it
holds that dist(a, b, t) ≤ Θa for all t ≥ 5 which means that bwill receive cooperation from agent
a and this lets agent b perform better than agent c, after the fifth simulation step. Consequently,
c will adapt to b and the interval between the values of agent a and agent c will diminish. If this
happens then we eventually have a situation in which the agents will mutually cooperate as the
distances between their values fall under their threshold values.

The question remains how this non-converging behavior may be detected and avoided. The
core problem is that agent b in our example is oscillating between two ratings for the proposi-
tion. For each end-point of the oscillation the agent adapts its value to a specific other agent.
Therefore, it is possible to learn from the history of adaptation steps. The agent needs to record
which ideal agent was selected, what the value has been before and after the adaptation step.
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If this information is available to the agent it may reason about the history of adaptation steps
and if the presented situation appears, it can change its strategy and select one of the previously
selected ideal agents and mark the agent as non-ideal. Thus, the agent will not adapt to that
agent any longer and will get close enough with its rating to the only agent it adapts to. This will
eventually result in a situation where mutual cooperation will emerge between these two agents
and the ratings interval will eventually diminish.

4.3 Computational Complexity

In this section, we analyze the computational complexity of the proposed approach. As we have
presented in Section 3.2, the approach basically consists of three algorithms. The core builds
SIMULATION which calls JOBGENERATIONANDPROCESSING. JOBGENERATIONANDPRO-
CESSING itself calls JOBPROCESSING. Thus, we will start with the analysis of JOBPROCESS-
ING followed by JOBGENERATIONANDPROCESSING until we give the complete computational
complexity of SIMULATION.

Most steps of Algorithm 3.2 have complexity of O(1) and, thus, we will only concentrate
on those parts that have a different complexity. Line 6 has a complexity of O(|Na|) as each
neighbor has to be considered in order to calculate the set of agents that offer the requested skill.
The same holds for the set of potential helpers that is constructed in line 11. Thus, the overall
complexity of Algorithm 3.2 JOBPROCESSING is

O(|j| · |Na|) (4.16)

where |j| is the size of the job, i.e. the number of tasks.

Algorithm 3.1 (JOBGENERATIONANDPROCESSING) contains one outer for-loop which is
executed exactly k · |A| times as this is the number of jobs generated in each simulation round.
The inner for-loop is executed n times where n is the number of tasks the constructed job should
consist of. Since, we always have tmin ≤ n ≤ tmax, we can neglect the execution of the inner
for-loop in our considerations. All other steps in the algorithm have constant complexity besides
the call of JOBPROCESSING. Thus, the complexity of Algorithm 3.1 is:

O(k · |A| · |j| · |Na|) (4.17)

To complete the analysis we now have to consider Algorithm 3.3 (SIMULATION). We neglect
the initialization phase as this strongly depends on the network type. However, we can say
that the initialization is at most polynomial in the number of agents. The call of algorithm
JOBGENERATIONANDPROCESSING has complexity O(k · |A| · |j| · |Na|) as presented before.
The determination of the set of elite agents and the test if the agent itself is part of the set
can be done in O(|Na|) as only the agent itself has to be compared to the neighbors and we
have to count the number of neighbors which have a greater profit than the agent itself. The
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determination of having an agent which does not cooperate with the agent can obviously also
be done in O(|Na|). The same holds for building the set of ideal agents. The change of the
proposition value-vectors has complexity of O(|P|) as each component has to be moved. The
social networking step has complexity of O(r) as r agents have to be changed plus costs for
finding new agents from the global set |A| which is neglected, here. Thus, the for-loop has
complexity of O((3 · |Na| + |P| + r) · |A|). Finally, we have for the complexity of Algorithm
SIMULATION:

O((3 · |Na|+ |P|+ r) · |A|+ k · |A| · |j| · |Na|) (4.18)

As the neighborhoods cannot be greater than the whole population and under the assumptions
that |P| � |A|, |j| � |A|, and k � |A|, we have a worst case complexity of

O(|A|2) (4.19)

For most realistic scenarios, the neighborhoods are much more smaller. Thus, in the normal
case of |Na| � |A| we have a complexity of approximately Θ(|A|) as the average case.

This analysis is from the simulative viewpoint, which is a global view. As the approach is
designed to run distributed on the agents, we will now consider the computational complexity
for a single agent in a single run of the simulation loop. Therefore, we only consider the job
processing and the adaptation step. For the adaptation step we again get a complexity of O(3 ·
|Na|+ |P|+ r) as we had from the global viewpoint. For the analysis of the job processing we
have O(|j| · |Na|) for each job that is allocated to the agent. As on average k jobs are allocated
to an agent we obtain for the computational complexity of a single agent in one simulation step:

O(k · |j| · |Na|+ 3 · |Na|+ |P|+ r) (4.20)

which, again, can be simplified to
O(|Na|) (4.21)

under the same assumptions as before. Therefore, the proposed approach is linear in the num-
ber of neighbors when considering the computational complexity for a single agent in a single
simulation step.

4.4 Conclusion

In this chapter, we gave a formal analysis of two important parts of our system. A formula
was presented to predict the probability of having all possible skills in the vicinity of the agent.
We proved that this formula corresponds to the number of surjections between two finite sets.
We claimed that the number of required neighbors for greater skill set sizes is unrealistically
large if the probability of having all skills in the vicinity of the agents should be very high, i.e.
99%. Therefore, the agents have to deal with the problem that not every possible skill is in their
vicinity.
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In the second part of the chapter, we presented convergence analyses for proposition value
propagation. We proved for the two-agent case that the adaptation eventually results in mutual
cooperation. For the three-agent case, we presented an example where no mutual cooperation
can emerge. We also presented an approach to detect and prevent such settings. Nevertheless,
for this the agent would have to have much knowledge about earlier adaptation steps. We claim
that the property of having agents with low knowledge capabilities is violated if the agents would
be able to record all important information about previous adaptation steps. We will see in the
experimental analysis that in most settings these information are practically not needed, as high
level of completed jobs can be achieved without this knowledge.

Finally, in the third part, we have shown that the proposed approach has quadratic complexity
in the number of agents in the worst case but linear complexity in the number of agents in
the average case. As this measure needs a global view, we have additionally shown that the
distributed approach has linear complexity in the number of neighbors from the local agents’
view.





5 Experimental Results

In this chapter, we provide experimental results concerning the influence of the most important
simulation parameters. Before this, we will give an overview on the simulation setup and the
base setting for the parameters. In each section, we then describe the variation of the examined
parameter and analyze the influence.

In this chapter we will present that

• cooperation can emerge even if cooperation is not for free.
• the system can deal with many propositions although the number of propositions has great

influence on the cooperation willingness.
• even for maximum tolerance values of half the rating space (i.e. Θa ∈ (0, 50]) high levels

of cooperation can be reached.
• the fixed adaptation strategy (i.e. η = 0.5 for all agents) strategy works best.
• adapting to the best neighbor works best.
• if the profit of other agents is unobservable then adapting to two randomly selected neigh-

bors is an alternative.
• the average neighborhood size in combination with the total number of skills in the sys-

tem has great influence on the system’s performance and, thus, both should be selected
carefully.

• a minimum number of interactions per simulation step is required in order to achieve a
development to a high job completion rate.

• the algorithm is scalable and robust against different population sizes.

Parts of this chapter have been previously published in (Eberling, 2009) and (Eberling and
Kleine Büning, 2010b).

5.1 Basic Experimental Setup

In the following, we present the basic parameter settings for all experiments. The experiments
ran for 200 simulation steps. We have chosen this number of simulation steps as we want the
system to develop quite fast and, thus, do not grand the system more time to develop. Each
parameter setting was repeated 30 times and we will present the average values over these repe-
titions. In previous experiments (Eberling, 2009; Eberling and Kleine Büning, 2010b) we have
seen that the outcomes do not significantly change with additional numbers of repetitions and,
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thus, we identified that 30 repetitions are sufficient to obtain reliable outcomes of the system.
The population size is set to |A| = 1000 since we want to consider large agent sets. The interac-
tion network IN is an Erdõs-Rényi random network following the definition provided in (Erdõs
and Rényi, 1959). Erdõs-Rényi random networks are constructed as follows. For each pair of
nodes add the edge between the nodes with some probability. Here, we use a connection proba-
bility of Prcon = 0.015. This leads to a medium dense network with an average neighborhood
size of 15 for every agent, which—from our point of view—seems to be a good size for the ex-
perimental analysis. Due to the social networking phase the neighborhoods could grow but we
only allow a maximum neighborhood size of Nmax = 30. If this limit is reached the agent has
to cut a link to a randomly chosen agent each time a new link should be established. The growth
of neighborhoods is due to the fact that a chosen agent is not allowed to reject new interaction
links. This is the result of one of our requirements of having one-sided cooperation decisions
(cf. Chapter 3).

In the system, there are five skills available and agents are equipped with one skill, only.
The agents rate m = 5 propositions with values from the interval [0, 100] and tolerance values
from (0, 100]. Each job consists of exactly three tasks (i.e. we set tmin = tmax = 3) and
the responsible agent is rewarded for the job fulfillment with a payoff of 3 (i.e. we set qmin =
qmax = 1). Consider an agent having a single skill out of a set of five skills. In addition, consider
a job which is generated by Algorithm 3.1 on page 29 and contains exactly three skills. Then,
it is easy to see that the probability of completing a job without the help of other agents is only
0.8%. For the cooperation cost we set the cost factor to c = −0.25.

Concerning the analysis of having all skills in the vicinity of an agent we can identify the
following. Each agent is equipped with one skill out of a set of five skills and each agent has
on average 15 neighbors. This leads to a probability of 86% that every agent has access to each
possible skill. However, this will not result in high cooperation rates in the very beginning as the
value-vectors have to be taken into account. We just give the system the possibility of reaching
high levels based on these parameter settings. If more than 86% for the job completion rate is
reached, we can assume that the social networking caused the increase.

During the adaptation phase the agents adapt to the single best performing neighbor (i.e.
|I| = 1). We also fixed the adaptation strength strategy to the first strategy, i.e. one fixed value
for all agents (η = 0.5). To decide, if an agent is satisfied, an agent compares itself to the
four best performing agents (ε = 4). Last but not least the social networking is performed with
probability PrN = 0.01 and one agent is replaced in this step (r = 1). Table 5.1 summarizes
this basic configuration. If not stated otherwise, all parameters are set as described above. We
will only concentrate on different parameter values that are used for the examination of the
parameter’s influence.

We will analyze three outcomes of the system. The first measurement is the percentage of
completed jobs over simulation time. The second is the so-called local cooperation willingness,
which gives a percentage of how many neighbors will receive cooperate from a specific agent.
The last measurement is the global cooperation willingness, which is calculated by comparing
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all of the agents. Formally, we have for the local cooperation willingness LCW:

LCW :=

∑
a∈A

|{b ∈ Na | ∀p ∈ P : |Va(p)− Vb(p)| ≤ Θa(p)}|
|Na|
|A| (5.1)

and for the global cooperation willingness GCW:

GCW :=

∑
a∈A

|{b ∈ A \ {a} | ∀p ∈ P : |Va(p)− Vb(p)| ≤ Θa(p)}|
|A| − 1

|A| (5.2)

Table 5.1: Base Configuration.

Parameter Meaning Value

|A| population size 1000

|S| number of skills in the system 5

|Sa| number of skills per agent 1

Nmax maximum number of neighbors allowed per agent 30

m number of propositions 5

vmax maximum rating for a proposition 100

Θmax maximum tolerance of an agent 100

qmin minimum payoff for task fulfillment 1

qmax maximum payoff for task fulfillment 1

tmin minimum number of tasks a job consists of 3

tmax maximum number of tasks a job consists of 3

k job factor 10

c cost-factor for charging helpers -0.25

η adaptation strength 0.5

ε number of elite agents 4

|I| number of ideal agents 1

PrN probability of executing social networking 0.01

r number of replaced agents in social networking 1
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Figure 5.1: Percentages of completed jobs for the base configuration.

Figures 5.1–5.3 show the results for the base configuration. We present the averaged value
over 30 individual repetitions. The bars present the standard deviations. As can be observed, the
proposed mechanism leads to good results for the base configuration. Through the adaptation
mechanism a high level of completed jobs is reached quickly.

For the local cooperation willingness given in Figure 5.2, we observe that nearly every agent
will cooperate with its neighbors in the later simulation steps. Different from this behaves the
global cooperation willingness as presented in Figure 5.3. The agents do not reach a state, where
each agent would cooperate with all others from a global view. Nevertheless, the reached level
of global cooperation willingness is high.

In the following sections, we will present the influence of different parameters on the system’s
behavior. Many details will be discussed in this experimental analysis. By the modular structure
of this chapter, the reader can decide itself which parts to read in detail based on the results
presented in the beginning and in the conclusion provided at the end of this chapter.
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Figure 5.2: Local cooperation willingness for the base configuration.
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Figure 5.3: Global cooperation willingness for the base configuration.
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5.2 Cooperation Cost-Factor

In this section, we examine the influence of cooperation cost factor c chosen from

{0.0,−0.25,−0.5,−0.75,−1.0}
for the cooperation, where the underlined value is the given by the basic setup. In our model,
agents have to pay if they help another agent to fulfill a job. Therefore, we use the cost factor,
which determines how much an agent has to pay. The amount of negative payoff is calculated
as the product of the task’s payoff and the cost factor. Figures 5.4–5.6 give the results for these
experiments.
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Figure 5.4: Percentages of completed jobs for variations of c.

As we can see in Figure 5.4, for all parameter values the same percentage of completed jobs
can be reached although the simulation for c = −1.0 converges slightly earlier. There are
only small differences in the early steps of the simulation, i.e. in the first 100 simulation steps.
Here, we can see that the simulation without any cooperation costs reaches slightly better values.
This is not surprising, as cooperating agents are not punished for their behavior. The standard
value with c = −0.25 only performs marginally worse. The other simulations perform worse
proportionally with the increase of cooperation costs and are more distinguishable.

With increasing cooperation costs the motivation for cooperation decreases. Agents, who did
not help other agents but receive much help, have very high utility values and become very at-
tractive as role models for adaptation. Therefore, the proposition value-value vectors of agents
with lower utility values are moved into their direction, which leads to the observed develop-
ment of lower cooperation, and, thus, in lower percentage of completed jobs. This can also be
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observed in Figure 5.5, where the local cooperation willingness is presented. The local coopera-
tion willingness is the percentage of neighbors with whom an agent would cooperate. For larger
cooperation costs the number of interactions where a job cannot be fulfilled gets greater, too.
This is because at least one task cannot be processed due to a missing cooperative neighbor in
the local neighborhood.

In contrast to the local cooperation willingness, the global cooperation willingness is the per-
centage of all agents in the agent set A that an agent is willing to cooperate with. We took this
as a global measurement for showing the global influence of the adaptation mechanism on the
values in the whole population. Figure 5.6 presents the global cooperation willingness. If both
the local and global measurements are compared, it can be seen that the global cooperation will-
ingness converges at about 95%, although the local cooperation willingness reaches 100% for
values c ≥ −0.5 within the 200 simulation steps. This shows that the ratings locally converged
to similar values but they differ slightly in the global perspective.

We have seen that the influence of the cooperation costs is not that strong on the system’s per-
formance. Although cost-free cooperation is slightly better we claim that cost-free cooperation
is not a necessity for achieving high levels of cooperation. Therefore, we identify our standard
value of c = −0.25 as the best choice for this parameter since it results in the best system’s
performance if cost-free cooperation is prohibited. Only the cost-free cooperation leads to better
results, but this is just a comparison to show how much is lost if cooperation produces costs.
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Figure 5.5: Local cooperation willingness for variations of c.
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Figure 5.6: Global cooperation willingness for variations of c.

5.3 Strength of Adaptation

In this section, we examine the influence of the adaptation factor

η ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}

where the underlined value comes from the basic setup. A main idea of our model is the adap-
tation step described in Section 3.2.2. The strength of this adaptation depends on the adaptation
strength η. As standard value for the adaptation strength we have chosen η = 0.5 since this
is not purely copying and yield to good results in early experiments. The results for different
values of this parameter are shown in Figure 5.7. As can be seen, all experiments with η 6= 0.0
reach the same level of completed jobs. Only the speed of achieving this goal slightly differs.
But we can see almost the same behavior for totally different values and, therefore, we can build
small sets of parameter values that lead to very close results. The best results can be achieved for
η ∈ {0.3, 0.5, 0.7}. The second best results can be achieved for η ∈ {0.1, 0.9, 1.0} which leads
to a slightly slower development in reaching the high level of completed jobs of about 90%. The
worst results are achieved for η = 0.0 where less than 20% of the jobs can be completed due to
no adaptation and the resulting differences between the proposition ratings.

The local and global cooperation willingness are shown in Figure 5.8 and Figure 5.9, respec-
tively. Here, we can see that for all settings with η 6= 1.0 the global cooperation willingness does
not reach 100%. This is due to the fact that no copying of values takes place but only adaptation.
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Figure 5.7: Percentages of completed jobs for variations of η.

On the other hand we reach 100% of local cooperation willingness for all simulations in which
adaptation takes place. Like for the percentage of completed jobs, we only see a difference in the
speed of reaching this high level. As can be seen, the global cooperation willingness is slightly
higher for η ∈ {0.7, 0.9} than for η = 0.5. However, η = 0.5 leads to the desired high levels of
local cooperation willingness requiring the lowest number of iterations. It is also observable that
the convergence is slower for higher or lower values of the adaptation strength. This is obvious,
as for low values the value-vectors are moved very slowly. Therefore, the tolerance threshold
for the components’ differences is not reached in such a fast way. Interestingly, we also get a
slower development if the adaptation strength is too high. We belief that this is due to the fact
that the agents in a neighborhood do not all have the same ideal they adapt to. Therefore, almost
copying the values of their ideal leads perhaps to cooperation with this agent but on the other
hand the distance to other agents gets greater.

To sum up, we identified that half-step adaptation (η = 0.5) leads to the best results. We claim
that this is due to the fact that we have the best balance between pure copying and no adaptation
at all. The agents change their values but not too rigorously. Therefore, they do not depart too
much from other agents as pure copying does, which leads to the observed behavior.



62 Experimental Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200

Lo
ca

l C
oo

pe
ra

tio
n 

W
ill

in
gn

es
s

Simulation Step

η=0.5
η=0.0
η=0.1
η=0.3
η=0.7
η=0.9
η=1.0

Figure 5.8: Local cooperation willingness for variations of η.
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Figure 5.9: Global cooperation willingness for variations of η.
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5.4 Size of Elite Set

The size of the elite set has large influence on the overall system’s behavior. The size determines
how many agents will be satisfied by definition and how many would possibly tend to adapt. If
the size of the elite set is near the number of neighbors, nearly all agents will be satisfied as the
probability of belonging to the elite set is very large. Since the size of the neighborhoods is 15
on average, an agent can measure the performance of 16 agents. The ε best agents are called the
elite set. If the agent is not in this elite set and has at least one agent in its neighborhood which
did not cooperate in the current simulation step the agent is called unsatisfied and will adapt its
proposition-values and perform a social networking step with probability PrN . The larger the
elite set, the lower is the probability for performing adaptations. Therefore, we have chosen the
values for this examination as follows: ε = 2 is a very small set leading to many unsatisfied
agents. ε = 8 is a very big set containing approximately half of all agents that a single agent
knows about. ε = 4 and ε = 6 lead to sets somewhere in between these extremes, where ε = 4
is our base value for this parameter.
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Figure 5.10: Percentages of completed jobs for variations of ε.

The results of the variation of the elite set size ε are shown in Figures 5.10–5.12. As can be
seen for ε 6= 8 we get very similar results with only small differences. All simulations reach the
same level of completed jobs but only differ in the speed of development. We observe the fastest
convergence for ε = 2 and the slowest convergence for ε = 6. As stated above the pressure
on the agents is very large for small elite sets, which leads to the observed behavior. For all
2 ≤ ε ≤ 6 we also observe that the local cooperation willingness is very close to 100%. As
expected the performance is not satisfying for a large elite set containing eight agents. Here,
the pressure on the agents is very small which leads to less adaptation and less cooperation
willingness locally and globally. Therefore, fewer jobs can be processed. As a conclusion,
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we identify ε = 4 as the best value for further experiments. It is small enough to have high
adaptation pressure but does not introduce too much pressure, as e.g. ε = 2. However, for
comparison reasons we presented the results for ε = 2.
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Figure 5.11: Local cooperation willingness for variations of ε.
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Figure 5.12: Global cooperation willingness for variations of ε.
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5.5 Number of Propositions

In this section, we examine the influence of the number of propositions. Clearly, the larger the
number of propositions the lower the probability of fulfilling all criteria as their number grows
by each proposition.

Figure 5.13 presents the percentage of completed jobs for different numbers of propositions
over the simulation steps. The number of propositions for the different runs was set to m ∈
{5, 10, 15, 20}, where m = 5 is the base value. As we can see, the number of propositions has
strong influence on the performance. For small and medium numbers of propositions (m = 5
andm = 10) we have very similar developments for the percentage of completed jobs. In all four
scenarios we reach the same high level of cooperation. The only difference is the convergence
speed. Here, the development speed decreases with an increasing number of propositions.

As the values for the propositions could be used to influence the behavior of the agents, a
larger number of propositions leads to the possibility of having more detailed descriptions of
the agents’ behavior mechanism. Since all parameter values lead to high cooperation rates, we
select m = 10 for the next experiments. On the one hand we have a reasonable high number
of constraints and on the other hand we have a quite fast development to mutually cooperative
agents. This is also reflected when we look at the local and global cooperation willingness (cf.
Figure 5.14 and Figure 5.15). All in all the results show that the approach is able to produce
good results even if high numbers of propositions are considered.
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Figure 5.13: Percentages of completed jobs for different numbers of propositions.
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Figure 5.14: Local cooperation willingness for different numbers of propositions.
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Figure 5.15: Global cooperation willingness for different numbers of propositions.



5.6 Influence of the Tolerance 67

5.6 Influence of the Tolerance

Using the following experiments, we analyze the influence of the tolerance space on the percent-
age of completed jobs. We selected the maximum threshold value Θmax from {100, 75, 50, 25}
where Θmax = 100 was the base value for this parameter. The threshold is initialized within
the interval (0,Θmax] using a uniform distribution. This leads to an expected value of Θmax

2 on
average for the threshold values.

It is obvious, that agents which have a value of 100 for a specific proposition are extremely
tolerant as the maximum difference of two values for a specific proposition is 100, which is
the maximum rating. Lower tolerance values lead to more intolerant agents in the population.
Figures 5.16–5.18 present the results of these experiments. As can be observed, the parameter
Θmax has large influence on the performance of the system. We cannot identify any development
of the percentage of completed jobs, when Θmax is set to 25. This is due to the fact that nearly
no cooperation can take place in such a system. Therefore, agents solely gain profit from jobs
that they can process on their own. This leads to the situation that all agents nearly have the same
profit in each simulation step and, therefore, each agent is within its own elite set. This results
in agents that are always satisfied and which do not adapt at all. There is no way to escape from
this situation and that is why we get the observed behavior. For higher tolerance values very
high cooperation rates can be reached. The only difference can be found in the development
speed, similar to the results for the number of propositions.
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Figure 5.16: Percentages of completed jobs for different tolerance values.

As a conclusion, we assume that Θmax = 50 is a reasonable medium tolerance value, since
it leads to high levels of cooperation and is low enough to model different degrees of tolerance
if this is intended in a specific application. Surely, in such scenarios the pressure on the agents
is very high but we showed with these experiments that cooperation could emerge even if the
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agents are relatively intolerant.
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Figure 5.17: Local cooperation willingness for different tolerance values.
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Figure 5.18: Global cooperation willingness for different tolerance values.
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5.7 Adaptation Strength Strategies

In Section 5.3, we showed that the adaptation strength has large influence on the cooperation
rate. We now investigate the influence of different strategies for the adaptation strength. As
mentioned in Section 3.2.2, we investigated three different strategies. Figures 5.19–5.21 present
the results for these experiments.

As can be observed, the random selection strategies show different system’s performance. If
each agent selects a randomly chosen adaptation strength η ∈ [0, 1] in the initialization phase, the
percentage of completed jobs increases much faster in the beginning but does not reach the same
level as the fixed-η strategy. After simulation step 125, the job completion rate of the fixed-
η strategy performs best. The random initialization of η only outperforms the fixed η = 0.5
strategy at the beginning of the simulation. The “random selection in every step” strategy is
worse than the two other strategies. Only at the very end of the simulations this strategy results
in more completed jobs than the second strategy and gets very close to the performance of the
fixed-η strategy.

From these experiments we can conclude that the fixed η = 0.5 strategy value for all agents
in all simulation steps is the best strategy as it is simple to understand for a deep analysis of the
system and leads to sufficiently high levels of cooperation in a fast way.
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Figure 5.19: Percentages of completed jobs for different types of η.
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Figure 5.20: Local cooperation willingness for different types of η.
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Figure 5.21: Global cooperation for different types of η.
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5.8 Ideal Selection Strategies

The adaptation of the agents is strongly influenced by the selected ideals. We analyze the in-
fluence of different strategies as described in Section 3.2.1. As stated in that section, there are
mainly three different strategies to select the set of ideals. The first is to select the best perform-
ing agents from the neighborhood, the second is a random selection of neighbors without respect
to their performance and the third is to select the worst performing neighbors. Another aspect
that is analyzed in this section is the size of the ideal set. In all earlier experiments, the agents
adapt to the single best performing neighbor. Now, we will also analyze ideal sets with two and
three agents.

We start with the examination of the three different strategies if the ideal set consists of a single
agent. Figures 5.22–5.24 present the results for these experiments. As Figure 5.22 shows, there
is a significant difference in the system’s performance in the first 120 simulation steps. There,
the best results can be observed, if the best neighbor is selected as the ideal agent. The other
two strategies can also be distinguished, as the selection of the worst agent in the neighborhood
leads to better results than selecting a random neighbor. This is also reflected by the local and
global cooperation willingness (see Figure 5.23 and Figure 5.24). Although selecting the worst
performing agents leads to better results in this settings compared to the random selection, one
can notice that the mean value for the local and global cooperation willingness is higher for the
random selection strategy in the last 30 simulation steps.
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Figure 5.22: Percentages of completed jobs for selecting one ideal.
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Figure 5.23: Local cooperation willingness for selecting one ideal.
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Figure 5.24: Global cooperation willingness for selecting one ideal.
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Figures 5.25–5.27 present the results if the set of ideal agents contains two agents. Here
we see different results. However, the strategy of selecting the best neighbors as ideals again
leads to the best results. Noticeably, the strategy of selecting random ideals performs better
now. The mean performance over all runs is better than the worst selection strategy, which is
different to the simulations with only one ideal agent. It also reaches the same level as the best
selection strategy. However, the worst selection strategy is not able to reach this high level within
the given time window of 200 simulation steps. The local and global cooperation willingness
(cf. Figure 5.26 and Figure 5.27) show the same behavior. This leads to the conclusion that
if the ideal set consists of two agents and we have an application where the profit of other
agents belongs to private knowledge, the best and worst selection strategy are not applicable as
both cannot be computed. If this is the case the random selection strategy seems to be a good
alternative. It is able to reach the same level of cooperation as these strategies, although the
convergence speed is slower.
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Figure 5.25: Percentages of completed jobs for selecting two ideals.
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Figure 5.26: Local cooperation willingness for selecting two ideal.
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Figure 5.27: Global cooperation willingness for selecting two ideal.
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Figures 5.28–5.30 show the results for ideal sets with cardinality three. Compared to the
behavior seen before, the convergence gets faster. Here, we can see again that “the best selection
strategy” performs best and that the random selection strategy performs slightly worse. Again,
both reach the same level of cooperation but with slightly different time requirements. All in all,
the same behavior as for ideal sets containing two agents can be seen.

To sum up the influence of the ideal selection strategies, we claim that the strategy “select
the single best neighbor” leads to the best results. As the agents only need to adapt to a single
agent the amount of computational power is low in this strategy. This strategy can only be
improved if more than one agent constitutes the ideal set. If the application at hand does not
allow sensing the profit of the neighbors then the best choice is to adapt to a randomly selected
set of neighbors. Here, it is important to have at least two agents in the ideal set and, therefore,
to adapt to two agents in one step. This leads to the same high levels of completed jobs as the
best selection strategy does. This strategy has the disadvantage of requiring more computation
as the adaptation is based on more than one other value vector. Nevertheless, it has the great
advantage that it does not need any knowledge about the performance of the neighboring agents.

As our model allows the agents to measure their neighbors’ performances, we will select the
“single best selection strategy” in the remaining experiments.
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Figure 5.28: Percentages of completed jobs for selecting three ideals.
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Figure 5.29: Local cooperation willingness for selecting three ideal.
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Figure 5.30: Global cooperation willingness for selecting three ideal.
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5.9 Size of the Neighborhoods

In this section, we examine the influence of different neighborhood sizes. Obviously, the neigh-
borhood size has big impact on the system’s performance as the probability for finding coopera-
tive neighbors, which provide a required skill, increases with the number of possible interaction
partners. We set the initial number of neighbors to |Na|init ∈ {5, 10, 15, 20, 25, 30} where 15
is the value of our basic configuration. Note that due to the social networking part the neigh-
borhood of an agent may grow. In these experiments we fixed the number of allowed neighbors
to the number of initially assigned neighbors. Again, we used an Erdõs-Rényi random network
with connection probabilities that lead to the intended mean degree of the initial neighborhood
sizes.

Figures 5.31–5.33 present the results of these experiments. With increasing number of neigh-
bors the percentage of completed jobs grows (cf. Figure 5.31). This is caused by the larger
possibility of having a neighbor that provides a specific skill and that is willing to cooperate.
For |Na|init ≥ 15 it can be observed that high percentages of completed jobs are achieved. For
|Na|init = 5 or |Na|init = 10 no job that needs cooperation is completed. Only a small fraction
of the jobs that can be completed without the help of others is processed. We expected this be-
havior, as for |Na|init = 5 the possibility of having all required skills in the neighborhood is very
low. In these experiments the total number of skills in the system was set to 5 as it is provided
by the basic configuration. Although the possibility is larger if each agent has 10 neighbors
the percentage of completed jobs is nearly zero as no small groups mutually cooperate in the
system. This is also reflected by Figure 5.32 and Figure 5.33 which give the local and global
cooperation willingness respectively. As no mutual cooperation takes place, no small group can
locally perform good enough to make others adapt to them. Because the size of the elite set is 4
in the basic configuration, it is obvious that in very small neighborhoods the number of satisfied
agents is very high which again leads to very low percentages of adapting agents.

Interestingly, it can be observed that increasing the neighborhood size to 15 on average leads
to a good performing system. We reach high levels of completed jobs and the cooperation
willingness increases. In an additional experiment we analyzed another set of initial neigh-
borhood sizes, i.e. |Na|init ∈ {11, 12, 13, 14} and compared them to the results gained from
|Na|init = 10 and |Na|init = 15 (cf. Figure 5.34). We wanted to get insights in what the
minimum number of neighbors is to reach high levels of completed jobs. To favor readability
of the figure we did not plot the standard deviation for these experiments. It can be observed
that 12 neighbors are needed to reach higher percentages of completed jobs within 200 simula-
tion steps. There is a small improvement also for 11 neighbors but only slightly better than for
smaller neighborhoods. To reach more than 80% of completed jobs, 13 neighbors are needed
and larger neighborhoods just improve the reachable amount of completed jobs and speed up
the development as it can be seen in Figure 5.34. This underlines the theoretical results of our
formal analysis on neighborhood sizes (cf. Section 4.1).
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Figure 5.31: Percentages of completed jobs for different neighborhood sizes.
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Figure 5.32: Local cooperation willingness for different neighborhood sizes.
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Figure 5.33: Global cooperation willingness for different neighborhood sizes.
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Figure 5.34: Percentages of completed jobs for small neighborhood sizes.



80 Experimental Results

5.10 Complexity of Jobs

In this section, we analyze the influence of the jobs’ complexity, i.e. the influence of tmin and
tmax. We define the complexity of a job as the number of tasks that have to be fulfilled. The
complexity of each single job j is tmin ≤ |j| ≤ tmax. To analyze the influence we decided to ex-
periment with |j| ∈ {1, 2, 3, 4, 5}, first. |j| = 3 is the parameter value of the base configuration.
We assume that if the complexity of a single job increases the job processing gets harder for an
agent because the agent needs more cooperative neighbors than it would need if the job would
be smaller. As each agent has a single skill out of a set of five possible skills the probability of
processing a job without help is

(
1
5

)|j|. Additionally, large numbers of propositions make it hard
to complete the jobs. To lower the pressure from the number of propositions we decided to have
|P| = 5 propositions in these experiments.
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Figure 5.35: Percentages of completed jobs for different job complexities.

Figures 5.35–5.37 show the results for the five different job complexities. As the job com-
plexity increases, the percentage of completed jobs decreases (cf. Figure 5.35). In addition,
the speed of convergence gets lower. As can be seen, the percentage of completed jobs dif-
fers significantly for all five settings. Different to this is the local cooperation willingness as
shown in Figure 5.36. In all settings the same high level of local cooperation willingness is
reached. Only the speed of development gets lower for greater job sizes. The same holds for
the global cooperation willingness. Although nearly 100% of the agents are willing to cooperate
with their neighbors, some agents are not willing to cooperate with arbitrary agents as shown in
Figure 5.37.

We also simulated random job sizes uniformly distributed between tmin = 1 and tmax = 5.
As expected, the development is nearly the same as if each job contains exactly three tasks (cf.
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Figure 5.38). To illustrate the influence of the number of propositions we have also simulated
the same settings with |P | = 10 propositions. As Figure 5.39 shows, only settings with job
complexities of |j| ≤ 3 reach high job completion rates. This is due to the fact that the pressure
from the propositions is too high and nearly no cooperation takes place leading to agents having
all very low utility values and, therefore, no agent adapts at all.

As a conclusion, we have seen that the agents are able to process jobs with high complexity
and reach high job completion rates. However, the job’s complexity has to be chosen carefully,
as the number of propositions also has large influence on this part. For large sets of propositions
only up to three tasks per job can be processed by the agents.
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Figure 5.36: Local cooperation willingness for different job complexities.
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Figure 5.37: Global cooperation willingness for different job complexities.
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Figure 5.38: Percentages of completed jobs with random number of tasks per job.
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Figure 5.39: Percentages of completed jobs for different job complexities and 10 propositions.
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5.11 Size of Skill Sets

The influence of different skill set sizes is examined in this section. In the system there are
two different skill sets. The first is part of the agents and models the agents abilities, i.e. Sa.
In previous experiments each agent was only able to perform tasks that require a single specific
skill. Now we select the number of skills per agent from |Sa| ∈ {1, 2, 3}. Obviously, this number
depends on the number of possible skills in the system. Because of this, we take the number
of possible skills—which is the second skill set in the system—from |S| ∈ {3, 5, 7, 10, 12, 15}.
Both, |Sa| = 1 and |S| = 5 are part of the base configuration.

To analyze the influence of the skill set sizes we concentrate on the percentage of completed
jobs. The results are presented in Figures 5.40–5.42. Figure 5.40 shows the results for agents
containing a single skill and different numbers of possible skills in the system. As can be ob-
served, the percentage of completed jobs is inversely proportional to the possible number of
skills. The best results are obtained if only a few skills are possible. For |S| = 3 the system
develops very fast and reaches around 98% of completed jobs. For moderate sized skill sets
(|S| = 5) the development is significantly slower and only about 90% of all jobs can be com-
pleted in late simulation steps. For larger skill sets nearly no job can be completed. Larger
system skill sets are only possible if the number of skills per agent is increased. For two skills
per agent it can be observed that only for |S| = 12 and |S| = 15 the system does not complete
any multi-skill job. Only if three skills per agent are allowed, we can obtain high job completion
rates for all simulated numbers of possible skills. This leads to the hypothesis that for high job
completion rates it has to hold that:

|Sa|
|S| ≥ 0.2 (5.3)

which means that the number of possible skills must not be larger than five times the number of
skills per agent.

To underline this hypothesis, we experimented with ten possible skills in the system and
growing numbers of skills per agent. The results are given in Figure 5.43. It can be observed
that for simulations where the number of possible skills is ten times the number of skills per
agent, i.e. |Sa| = 1 and |S| = 10, no job can be completed. If the agents have 20% or 33% of
the possible skills they are able to fulfill high numbers of jobs at the end of the simulation.

We conclude that the number of skills has significant influence on the system’s performance.
We claim that each agent should be endowed with 20% of the possible skills to reach high levels
of completed jobs. It remains open how the number of neighbors and the jobs sizes influence
this hypothesis. This will be analyzed in later sections.
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Figure 5.40: Percentages of completed jobs for different system skill set sizes and one skill per
agent.
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Figure 5.41: Percentages of completed jobs for different system skill set sizes and two skills per
agent.
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Figure 5.42: Percentages of completed jobs for different system skill set sizes and three skills
per agent.
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Figure 5.43: Percentages of completed jobs for different number of skills per agent and ten
possible skills.
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5.12 Influence of the Job Factor

The influence of the job factor is analyzed in this section. Therefore, we have chosen the job
factor k from

k ∈ {1, 3, 7, 10, 13, 15, 17, 20}
where k = 10 is the value of the base configuration.

The results are given in Figures 5.44–5.46. As expected, the job factor has large influence on
the system’s performance. The job factor determines the number of generated jobs and, there-
fore, determines the number of interactions between the agents. At the beginning the proposition
values and the threshold vectors are initialized uniformly at random. Cooperation in early sim-
ulation steps is very rare, as the values for the propositions do not match. Since the number of
interactions increases the agents may process jobs only by coincidence. That is why a number
of interactions is needed to have at least some cooperative and successful interactions. Only if
agents are able to process some of their jobs, they may be taken as an ideal agent. If none of the
jobs is processed, every agent is satisfied, as agents will have the same payoff as their neighbors.

Figure 5.44 shows the percentage of completed jobs. For all k ≥ 10 the system reaches the
same percentage of completed jobs within the considered 200 simulation steps. Only the speed
of development differs. As the number of jobs increases, high levels of completed jobs are
reached earlier. For all k < 10 there is no development at all. The same behavior can be seen
if we consider the local and global cooperation willingness which are given in Figure 5.45 and
Figure 5.46, respectively. This leads to the conclusion that for smaller k an insufficient number
of successful interactions take place. Therefore, all agents are satisfied and no agent adapts.

As there is large difference between k = 7, which leads to no development, and k = 10, which
results in high levels of cooperation, we performed additional experiments with k ∈ {7, 8, 9, 10}
to determine the minimal job factor for which the system shows cooperative behavior. The result
is shown in Figure 5.47. For k > 7 we see that the system reaches cooperative behavior. For
k = 9 the same high level of completed jobs is reached as in the case of k = 10 but, again, the
convergence speed is much slower. The speed gets even slower for k = 8 but we can see that it
will probably reach the same level as the curve is still growing.

We can conclude that the job factor has great influence on the system’s performance as it
determines the number of interactions between the agents. At least an average workload of 8
jobs per agent is needed to achieve cooperative behavior and even a workload of 9 jobs per agent
is needed to achieve high cooperative behavior within the time window of 200 simulation steps.
Therefore, we will always choose k = 10 in the other experiments as it was assumed in the base
configuration.
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Figure 5.44: Percentages of completed jobs for variations of k.
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5.13 Interdependencies between Selected Parameters

To analyze the interdependencies between some special parameters, we used a 2k factorial de-
sign experiment (Jain, 1991). In such an experiment one has to specify a low and a high value
for each parameter and then all combinations are considered in simulations. We investigated the
influence of the neighborhood sizes |Na|, the ratio between the number of skills per agent to the
number of skills in the system |Sa|

|S| , the job complexity |j| and the number of different proposi-
tions |P|. With the factorial design method we are able to identify on the one hand the single
influence of a factor and on the other hand we are able to quantify the influence of combinations
of these factors.

Table 5.2: Setting for the factorial design analysis.

low value high value

|Na| 5 35

r 1 7

|S| 2 20

|j| 1 5

|P| 1 20

Table 5.2 gives the setting for the 24-factorial design analysis for the four parameters under
consideration. We simulated the system with 1000 agents over 200 simulation steps with 30
independent runs and analyzed the average system’s performance in the last time step. For the
number of neighbors |Na| of each agent, we selected a low value of 5 and a high value of 35.
The interaction network was an Erdõs-Rényi random network with a connection probability
of 0.005 and 0.035 respectively. As we have dynamics in the model, each agent may change
r neighbors. To get rid of this influence without losing the dynamics, we fixed the value of
changeable neighbors to 20% of the neighbors. Therefore, we have different low and high values
for this parameter although we do not consider this parameter in the factorial design analysis.
Each agent in the system is endowed with a single skill. That is why, we only have to vary the
number of skills in the system to analyze different ratios between the number of skills per agent
and the possible number of skills in the system. For this experiment we have chosen 2 as the
low value and 20 as the high value for the number of skills |S|. Note, that a value of 2 leads to
a high value for the ratio whereas a value of 20 leads to a low value for the fraction. For the job
complexity we have chosen 1 as the low value and 5 as the high value. Finally, we have used
1 for the low value of the number of propositions and 20 as the high value. The result of this
experiment is shown in Table 5.3.

As can be seen in Table 5.3, the most influential factor is the ratio of the skill sets. It has an
effect of 40.82% on the system’s performance. The second most influential factor is the size of



90 Experimental Results

Table
5.3:R

esults
ofthe

factorialdesign.E
ach

value
is

approxim
ated

w
ith

an
accuracy

of
10
−

2.

|N
a |

|S
|

|j|
|P
|

E
xp

I
A

B
C

D
A
B

A
C

A
D

B
C

B
D

C
D

A
B
C

A
B
D

A
C
D

B
C
D

A
B
C
D

R
esult

1
+
1

−
1

−
1

−
1

−
1

+
1

+
1

+
1

+
1

+
1

+
1

−
1

−
1

−
1

−
1

+
1

0
.8
9

2
+
1

−
1

−
1

−
1

+
1

+
1

+
1

−
1

+
1

−
1

−
1

−
1

+
1

+
1

+
1

−
1

0
.7
2

3
+
1

−
1

−
1

+
1

−
1

+
1

−
1

+
1

−
1

+
1

−
1

+
1

−
1

+
1

+
1

−
1

0
.7
7

4
+
1

−
1

−
1

+
1

+
1

+
1

−
1

−
1

−
1

−
1

+
1

+
1

+
1

−
1

−
1

+
1

0
.1
3

5
+
1

−
1

+
1

−
1

−
1

−
1

+
1

1
−
1

−
1

+
1

+
1

+
1

−
1

+
1

−
1

0
.2
1

6
+
1

−
1

+
1

−
1

+
1

−
1

+
1

−
1

−
1

+
1

−
1

+
1

−
1

+
1

−
1

+
1

0
.0
5

7
+
1

−
1

+
1

+
1

−
1

−
1

−
1

+
1

+
1

−
1

−
1

−
1

+
1

+
1

−
1

+
1

0

8
+
1

−
1

+
1

+
1

+
1

−
1

−
1

−
1

+
1

+
1

+
1

−
1

−
1

−
1

+
1

−
1

0

9
+
1

+
1

−
1

−
1

−
1

−
1

−
1

−
1

+
1

+
1

+
1

+
1

+
1

+
1

−
1

−
1

1

10
+
1

+
1

−
1

−
1

+
1

−
1

−
1

+
1

+
1

−
1

−
1

+
1

−
1

−
1

+
1

+
1

1

11
+
1

+
1

−
1

+
1

−
1

−
1

+
1

−
1

−
1

+
1

−
1

−
1

+
1

−
1

+
1

+
1

1

12
+
1

+
1

−
1

+
1

+
1

−
1

+
1

+
1

−
1

−
1

+
1

−
1

−
1

+
1

−
1

−
1

1

13
+
1

+
1

+
1

−
1

−
1

+
1

−
1

−
1

−
1

−
1

+
1

−
1

−
1

+
1

+
1

+
1

0
.8
4

14
+
1

+
1

+
1

−
1

+
1

+
1

−
1

+
1

−
1

+
1

−
1

−
1

+
1

−
1

−
1

−
1

0
.8
3

15
+
1

+
1

+
1

+
1

−
1

+
1

+
1

−
1

+
1

−
1

−
1

+
1

−
1

−
1

−
1

−
1

0
.4
4

16
+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

+
1

0

8
.8
8

3
.3
4

−
4
.1
3

−
2
.2

−
1
.4

0
.3
5
−
0
.2
5

0
.5
2
−
0
.7
7

0
.2

−
0
.7
6
−
1
.6
7
−
1
.0
9
−
0
.1
2

0
.2

−
1
.0
8

Total

0
.5
6

0
.2
1

−
0
.2
6

−
0
.1
4
−
0
.0
9

0
.0
2
−
0
.0
2

0
.0
3
−
0
.0
5

0
.0
1
−
0
.0
5
−
0
.1
−
0
.0
7
−
0
.0
1

0
.0
1
−
0
.0
7

Total/16

S
q
.

0
.0
5

0
.0
7

0
.0
2

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
1

0
.0
1

0
.0

0
.0

0
.0

1
6
·
S
q
.

0
.7

1
.0
7

0
.3
0

0
.1
2

0
.0
1

0
.0

0
.0
2

0
.0
4

0
.0

0
.0
4

0
.1
7

0
.0
7

0
.0

0
.0

0
.0
7

∑
=

2
.6
2

effect
2
6
.6
%

4
0
.8
2
%

1
1
.5
2
%

4
.7
2
%

0
.2
8
%

0
.1
4
%

0
.6
4
%

1
.4
3
%

0
.0
9
%

1
.3
9
%

6
.6
5
%

2
.8
3
%

0
.0
3
%

0
.0
9
%

2
.7
8
%



5.14 Combined Influence of Neighborhoods and Skills 91

the neighborhoods. It has an effect of 26.6% on the system’s performance. If the number of skills
increases the system’s performance has to get lower under the assumption that the neighborhood
sizes are constant. Assume each agent having a neighborhood size of 15 and each agent is
equipped with a single skill. Then, at most 16 skills can be in the system because each agent
has at most 16 skills in its vicinity as the agent has one skill and 15 neighbors may help, which
each may have different skills. Of course the probability of having all 16 skills in the vicinity is
very low. It is obvious that if the neighborhoods grow, more skills may be in the system or in
other words the ratio between the skill set sizes may be lower. Interestingly, this is not reflected
in the interaction between these two factors as it can be seen in the AB column in Table 5.3.
Both factors—the neighborhood size |Na| and the number of skills in the system |S|—have an
influence of 0.28% on the systems performance, although the interaction between both factors
should be very high. To analyze this special interaction we did experiments with growing skill
sets and growing neighborhood sizes, which is presented in the next section.

5.14 Combined Influence of Neighborhoods and Skills

In this section, the combined influence of the neighborhood size and the skill set sizes is pre-
sented. The average number of neighbors per agent |Na| is selected from the set {15, 20, 25, 30,
35, 40, 45, 50} and for the number of skills in the system |S| a value from the set {5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15} is selected. We present the percentage of completed jobs in the 200th simu-
lation step to show which level of completed jobs is achievable with the given settings. Again,
the presented values are average values over 30 independent simulations. As the influence of the
number of propositions in the system |P| cannot be neglected we will present the results for a
small set of propositions with |P| = 5 and for a medium size set with |P| = 10. Figure 5.48
and Figure 5.49 illustrates the results for five and ten propositions, respectively.

It can be seen for small sets of propositions that for most settings quite high values of com-
pleted jobs can be achieved (cf. Figure 5.48). However, with increasing skill set sizes we can
observe that larger neighborhoods are required to compensate the pressure of more ambivalent
tasks. Note that we only need 50 neighbors if 15 skills are possible in the system in order to
achieve a completion rate larger than 90%. The theoretical probability of having all skills in the
vicinity of the agent if there are 15 skills in the system and the agent has 50 neighbors is ap-
proximately 62% (cf. Section 4.1). Thus, the mechanisms social networking and the adaptation
phase lead to a system that reaches higher percentages of completed jobs than in the theoretical
case. In systems with larger sets of propositions, we see a drastic decrease in the percentage of
completed jobs (cf. Figure 5.48). With |P| = 10 a much larger number of neighbors is needed.
This is due to the fact that the probability of having cooperative neighbors gets lower with a
larger number of constraints that have to be fulfilled. If the pressure on the agents is too high
because of missing cooperative partners nearly none of the agents get unsatisfied and, therefore,
no adaptation takes place. This results in the observed behavior.

We conclude that the number of neighbors per agent and the number of skills in the system
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depend on each other and need to be chosen carefully.
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Figure 5.48: Percentage of completed jobs for combined variations of the number of skills in
the system and the average number of neighbors per agent with 5 propositions.
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Figure 5.49: Percentage of completed jobs for combined variations of the number of skills in
the system and the average number of neighbors per agent with 10 propositions.
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5.15 Different Random Distributions

In this section, we analyze the influence of different random distributions on the system’s per-
formance. We will only concentrate on random distributions for agents’ skills and tasks’ skills.
For the agents’ skills we will assume that they are static and do not change over time. This is a
reasonable assumption in our scenario, as the agents do not learn the skills of their neighbors.
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Figure 5.50: Resulting occurrence of the skill types with the given random distributions of
100000 random values.

In previous experiments, we only considered a uniform distribution U(1, 5) for the agent skills
and the tasks skills. Now we want to investigate the impact of different distributions. First, we
will consider normal distributions with different expected values. Note that normal distributions
N (µ, σ) are continuous by nature but we need a discrete distribution for the skills. Therefore,
we decided to round the produced random value to the nearest natural number that represents a
skill. If the result is not within the boundaries 1 and 5—like in previous experiments we consider
a set of possible skills with cardinality five—we just take another random value until the rounded
value is within the boundaries. We decided to take for both random variables the uniform dis-
tribution U(1, 5) and the normal distributions N (3, 2), N (1, 2) and N (5, 2) and to consider all
combinations in the experiments in this section. To visualize the random distributions we have
generated 100000 random values for the skill value between 1 and 5. The resulting distributions
can be seen in Figure 5.50. Table 5.4 gives the overview on the experimental setup. The results
of the experiments are given in Figures 5.51–5.54.

Figure 5.51 gives the percentage of completed jobs where each agent has a randomly selected
skill with uniform distribution U(1, 5) and each task of a job gets a randomly selected skill
with different random distributions. The standard case of both distributions being uniformly
distributed is given by the solid black line. As can be seen we obtain the same results we
have observed in earlier experiments. If the skill distribution of the tasks is normally distributed
followingN (3; 2) the results become better as the high level of completed jobs is reached earlier.
The experiments with two extreme forms of the normal distribution, i.e. N (1; 2) and N (5; 2),
lead to a drastic speedup for the development. This can be interpreted as the result of easier
jobs. In the case of N (1; 2) roughly 85% of all skills are of the first three types and in the case
ofN (5; 2) the same number of generated skills is of the last three types. This results in jobs that
are easier to process in comparison to the uniformly distributed case.
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Figure 5.51: Percentage of completed jobs with uniformly distributed agent skills and varying
distributions of the tasks.
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Figure 5.52: Percentage of completed jobs with normal distributed agent skills following
N (3; 2) and varying distributions of the tasks.
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Table 5.4: Experimental setup for random distributions.

Distribution of agents’ skills Distribution of tasks’ skills

U(1, 5) U(1, 5)

U(1, 5) N (3; 2)

U(1, 5) N (1; 2)

U(1, 5) N (5; 2)

N (3; 2) U(1, 5)

N (3; 2) N (3; 2)

N (3; 2) N (1; 2)

N (3; 2) N (5; 2)

N (1; 2) U(1, 5)

N (1; 2) N (3; 2)

N (1; 2) N (1; 2)

N (1; 2) N (5; 2)

N (5; 2) U(1, 5)

N (5; 2) N (3; 2)

N (5; 2) N (1; 2)

N (5; 2) N (5; 2)

Figure 5.52 gives the percentage of completed jobs where each agent has a randomly selected
skill with normal distribution N (3; 2) and each task of a job gets a randomly selected skill with
different random distributions. As can be seen the results do not differ significantly from the
previously presented results where the agent skills were drawn uniformly at random. This is due
to the fact that the occurrences of skills followingN (3; 2) and U(1, 5) are quite similar (cf. Fig-
ure 5.50a and Figure 5.50b). Although the three skills 2, 3 and 4 are the mostly generated skills
the skills 1 and 5 each are still generated with probability 15%. Nevertheless, we can identify
an advantage if the task skills are also normally distributed with N (3; 2). The reason is that
the distributions match better than the normal distribution N (3; 2) and the uniform distribution
U(1, 5). Then the skills generated for the task fit better to the skills of the agents.

If the agent skills are randomly drawn with either N (1, 2) or N (5, 2) the results look very
similar. Only the roles of the extreme distributions for the tasks’ skills change (cf. Figure 5.53
and Figure 5.54). In both scenarios, it can be observed that the maximum job completion rate is
lower than in the experiments before. Only in the case where the two distributions are identical
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we can observe the high completion rate of earlier experiments.

As a conclusion we can say that if the overall occurrence of each skill—either for skills or for
tasks—is not lower than in the uniform case we do not observe a difference in the reachable level
of completed jobs. Only the convergence speed differs. However, if the normal distributions are
somehow converse to each other the system does not reach a high level of completed jobs.
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Figure 5.53: Percentage of completed jobs with normal distributed agent skills following
N (1; 2) and varying distributions of the tasks.
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5.16 Number of Agents

The scalability of the presented approach is experimentally analyzed in this section. As the av-
erage neighborhood size is determined through the number of agents and the connection prob-
ability, we have to chose the connection probability Prcon for the Erdõs-Rényi random network
with respect to the number of agents in the system |A|. Thus, we will experiment with the
experimental setup given in Table 5.5.

Table 5.5: Experimental setup for the scalability analysis.

Exp. |A| Prcon

1 100 0.15

2 500 0.03

3 1000 0.015

4 2000 0.0075

5 5000 0.003

6 10000 0.0015

Obviously, the average number of neighbors is 15 in all experiments and, thus, the compara-
bility is ensured. The results are presented in Figures 5.55–5.58.

As can be seen in Figure 5.55, for all numbers of agents the same high level of completed jobs
is reached. As the standard deviations are quite large—especially for the case with |A| = 100
agents—we also present the same results without the plotted standard deviations in Figure 5.56.
The only difference between the experiments is the development of the completion rate over
time. In the beginning the smaller populations start to complete more jobs faster but then the
experiments with greater populations outperform the smaller population experiments. Most sig-
nificantly, this is the case for the smallest population with |A| = 100. If we compare the
experiments with |A| = 500 and |A| = 1000 we can see that they start with completing more
jobs nearly in identical way but the development for |A| = 500 gets slower at the end. These
developments are also reflected in the local and global cooperation willingness (cf. Figure 5.57
and Figure 5.58 resp.).

To conclude, we claim that the proposed algorithm is scalable and robust against different
population sizes. Although the population size has slightly influence on the shape of the devel-
opment we cannot identify significantly differences in the reachable percentage of completed
jobs.
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Figure 5.55: Percentages of completed jobs for different numbers of agents.
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Figure 5.56: Percentages of completed jobs for different numbers of agents without standard
deviations.
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Figure 5.57: Local cooperation willingness for different numbers of agents.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200

G
lo

ba
l C

oo
pe

ra
tio

n 
W

ill
in

gn
es

s

Simulation Step

|A|=100
|A|=500

|A|=1000
|A|=2000
|A|=5000

|A|=10000
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5.17 Conclusion

Let us briefly recall the main conclusions of this chapter’s sections:

• Section 5.2: cooperation costs have no influence
• Section 5.3: adaptation strength is important and a trade-off between no-adaptation and

value copying has to be chosen
• Section 5.4: larger elite sets lead to slightly lower cooperation
• Section 5.5: large influence of the number of criteria for the cooperation decision con-

cerning speed of development
• Section 5.6: large influence of the agents tolerance
• Section 5.7: one fixed value for the adaptation strength performs best
• Section 5.8: selecting the single best neighbor as role model performs best but if it is not

computable, a set of two randomly chosen neighbors can compete with this strategy
• Section 5.9: large influence of the neighborhood sizes
• Section 5.10: job complexity has large influence on the achievable level of completed jobs

and the convergence speed
• Section 5.11: large influence of the skill set sizes
• Section 5.12: minimum number of interactions needed for development
• Section 5.13: underlined the influence of the neighborhood sizes and the skill set sizes

and identified the combination of both as very influential
• Section 5.14: the average neighborhood size and the sizes of the skill sets have to be

chosen carefully with respect to each other
• Section 5.15: different random distributions for agents’ skills and tasks’ skills have only

influence on the development speed
• Section 5.16: system is shown to be highly scalable in the number of agents

To sum up the conclusions of the rigorous experimental analysis, we can say that we gained
good insights from the experimental results about the influence of the system’s parameters. We
could see that the objectives identified in Section 1.1 have been met and that this new local
adaptation mechanism really favors the decision to cooperate. It is highly scalable as the number
of agents has no influence on the overall cooperation rate. The most influential parameters for the
approach are the adaptation strength, the number of criteria that have to be met and the tolerance
of the agents towards the difference to other agents. We could see that even for high numbers of
criteria the approach results in high cooperation rates. However, too intolerant agents that only
cooperate with almost identical agents could be one reason for failures of the approach.

According to our formal model, we implemented the proposed approach. It can be found
online with a description for the needed configuration file(s) and all used configuration files of
this and the following chapters under
http://homepages.uni-paderborn.de/mepb2002/diss/SimDissEberling.
zip.

http://homepages.uni-paderborn.de/mepb2002/diss/SimDissEberling.zip
http://homepages.uni-paderborn.de/mepb2002/diss/SimDissEberling.zip


6 Influence of Network Structures

We deal with multiagent systems where agents form a network. As stated before, this network
can be represented as a graph and, therefore, graph theory can be used for analyzing specific
properties of the agent network. We start with formal definitions required to specify the network
properties that are useful for our analysis and define afterwards specific network structures that
are important in this thesis.

In previous chapters, we only concentrated on random networks which follow the definition
of Erdõs and Rényi provided in (Erdõs and Rényi, 1959). To ease the analysis, this is a valid
assumption as those random networks are easy to construct and, additionally, they provide nice
properties like connectivity depending on the connection probability or a specific average node
degree. However, in real applications, networks are hardly random but follow other construction
laws (Albert and Barabási, 2002; Barabási and Albert, 1999; Newman, 2003). Therefore, we first
give the definitions of the mostly used network types and their properties and then examine the
influence of those network types on the system’s performance experimentally. Section 6.1 deals
with basic concepts of graph theory. Section 6.2 deals with the network structures for which the
influence on the proposed learning algorithm is analyzed in this thesis. Readers familiar with
these concepts and network properties can, therefore, skip these sections and continue reading
in Section 6.3.

We do not intent to analyze network structures as such. What we are interested in is the
influence on the cooperation that emerges between the agents due to specific network structures
that impact their neighborhoods. As stated before, we use networks to specify the neighborhoods
of agents and thus networks and their properties play a key role in the emerging cooperation in
the proposed multiagent system.

The main results of this chapter are the following:

• We show the influence of different network structures on the system’s performance.
• We show that the Erdõs-Rényi random networks show the best results in the case of static

networks.
• We show that networks tend to degenerate to randomly generated networks in the dynamic

case.
• For ring network structures we show that clusters of ratings emerge with high cooperation

inside and low cooperation between clusters.
• For Erdõs-Rényi networks we show that the rating vectors tend to group in a small area.
• We show that clusters or groups emerge in lattice networks with high cooperation inside
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and low cooperation between the groups.

6.1 Graph Theory and Important Network Measurements

This section deals with the most important definitions of graph theory and important measure-
ments (Harris et al., 2008; Wallis, 2007) that will be used in analyzing specific network struc-
tures. As a network is a graph, we start with the formal definition of a graph:

Definition 6.1 (Graph (Wallis, 2007)): A (un)directed Graph is a pair G = (V,E), where V
is a finite set of nodes and E ⊆ V × V is the set of edges for a directed graph. The set of
edges in undirected graphs is slightly different defined. There, the set of edges is defined as
E ⊆ {{u, v} | u, v ∈ V }. If the graph is directed we denote an edge e ∈ E between two nodes
i and j as a pair e = (i, j). In undirected graphs the representation of the edges are sets of two
nodes (i.e. e ∈ E with e = {i, j} for the edge between the two nodes i and j).

Since we concentrate on interaction networks as defined in Definition 3.1, we will only deal
with bidirectional graphs. Bidirectional graphs can also be viewed as undirected graphs. The
degree of a node specifies how many other nodes are directly connected to this node. In the
context of agent networks this means how many direct neighbors a single agent has. Therefore,
we will give a brief definition on different measurable degrees that are important for our analysis:

Definition 6.2 (Node degrees and Graph degree (Wallis, 2007)): In undirected graphs the
degree of a node v ∈ V is the number of adjacent edges of v:

deg(v) := |{e | e ∈ E ∧ v ∈ e}|

In directed graphs we distinguish between the indegree and the outdegree of a node v:

degin(v) := |{(i, v) | (i, v) ∈ E, i ∈ V }|

degout(v) := |{(v, i) | (v, i) ∈ E, i ∈ V }|
The degree of a node in a directed graph is the maximum of the in- and the outdegree:

deg(v) := max{degin(v), degout(v)}

The degree of a Graph G = (V,E) is the maximum node degree:

deg(G) := max
v∈V

deg(v)

The average degree of a graph is the average of all node degrees:

avgdeg(G) :=

∑
v∈V deg(v)

|V |
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For many measurements it is important to consider the neighbors of a node. In literature there
exist two different types of the neighborhood, namely the open and the closed neighborhood.
Definition 6.3 gives the formal description of both types.

Definition 6.3 (Neighborhood of Node (Harris et al., 2008)): Given an undirected GraphG =
(V,E) and a node v ∈ V . The open neighborhood OPN(v) of the node v is the set of all nodes
that are adjacent to v, formally

OPN(v) :=
{
u | {u, v} ∈ E

}
.

The closed neighborhood CLN(v) of the node v is defined as the set of all nodes that are adjacent
to v and node v itself, formally

CLN(v) :=
{
u | {u, v} ∈ E

}
∪ {v}.

When analyzing network structures the diameter is another important measurement. It is de-
fined as the longest shortest path between any pair of nodes. Definition 6.4 defines the diameter
in a formal way.

Definition 6.4 (Diameter (Harris et al., 2008)): Given a connected, undirected graph G =
(V,E). Let Lu,v denote the length of the shortest path between the nodes u and v. Then, the
diameter diam(G) of the graph is defined as

diam(G) := max
u,v∈V

Lu,v.

Two other interesting measurements are the characteristic path length and the cluster coef-
ficient. The characteristic path length is the average distance between two nodes, where the
average is taken over all possible pairs of distinct nodes. Definition 6.5 gives the formal specifi-
cation of the characteristic path length.

Definition 6.5 (Characteristic Path Length (Harris et al., 2008)): Let Lu,v be the length of
a shortest path between the nodes u and v of a connected, undirected graph G = (V,E) with
|V | = n. Then, the characteristic path length CPL is defined as

CPL :=
2

n · (n− 1)

∑
u,v∈V

Lu,v

In literature two different definitions can be found for the cluster coefficient. Both definitions
are important but express slightly different issues. The definition provided in (Harris et al.,
2008; Newman, 2003) gives a probability of nodes’ transitivity whereas the definition given
in (Albert and Barabási, 2002; Wallis, 2007; Watts and Strogatz, 1998) gives a probability of
nodes’ “cliquishness” (Barrat and Weigt, 2000). The later definition is what we will call the
cluster coefficient as our intention behind this measurement is best represented in this definition.
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The other definition is also provided here but under the term graph transitivity like it is done in
(Wasserman and Faust, 1994). The following two definitions give formal descriptions of both
terms. In both definitions we will denote the number of edges in an induced sub-graph by the
node set X as |X|E . All edges which have both endpoints within the node set X are counted
with this operator.

Definition 6.6 (Cluster Coefficient (Watts and Strogatz, 1998)): The cluster coefficient cc(v)
of a node v ∈ V is defined as

cc(v) :=
2 · |OPN(v)|E

deg(v) · (deg(v)− 1)
.

The cluster coefficient CC(G) of a graph G = (V,E) is the arithmetic mean of the cluster
coefficients of all its nodes:

CC(G) :=
1

|V |
∑
v∈V

cc(v).

Note that the cluster coefficient is not well defined for deg(v) = 0 and deg(v) = 1. Therefore,
we define cc(v) := 0 for deg(v) = 0 and deg(v) = 1, which is also done in literature (Wallis,
2007).

Definition 6.7 (Transitivity (Wasserman and Faust, 1994)): The transitivity trans(v) of a node
v ∈ V is defined as

trans(v) :=
2 · |CLN(v)|E

deg(v) · (deg(v) + 1)
.

The transitivity trans(G) of a graph G = (V,E) is the arithmetic mean of the transitivity of all
its nodes:

trans(G) :=
1

|V |
∑
v∈V

trans(v).

a b c

Figure 6.1: Three nodes forming a line in a graph G.

To illustrate the cluster coefficient and the transitivity let us consider the graph shown in
Figure 6.1. Table 6.1 gives the cluster coefficients and the transitivities for the graph. Note that
the cluster coefficient is zero for all nodes and that the transitivity is close to one. If we add one
additional edge {a, c} to the graph to the graph—represented as a dashed line in the figure—we
would get a ring structure. In the considered example, this has great influence on the cluster
coefficients, which are given with the transitivities in Table 6.2.
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Table 6.1: Cluster coefficient and transitivity for the graph in Figure 6.1.

v a b c G

cc(v) 0 0 0 0

trans(v) 1 2
3 1 8

9

Table 6.2: Cluster coefficient and transitivity for the graph in Figure 6.1 with an additional edge
{a, c} forming G′.

v a b c G′

cc(v) 1 1 1 1

trans(v) 1 1 1 1

Transitivity and cluster coefficient may also be set into relation. It is easy to see that

|CLN(v)|E = |OPN(v)|E + deg(v) (6.1)

holds. Let us use the following simplifications to analyze the relation between these two mea-
surements:

• n = |OPN(v)|E
• d = deg(v)
• Let X denote the difference between transitivity and the cluster coefficient of node v.

Then, the following holds:

X = trans(v)− cc(v)

⇒ X = 2·(n+d)
d·(d+1) − 2·n

d·(d−1)

⇔ X = 2·(n+d)·(d−1)−2·n(d+1)
(d−1)·d·(d+1)

which leads to

X =
2(d2 − d− 2n)

d3 − d . (6.2)

Of course, Equation 6.2 holds only for d > 1 like the definition of the cluster coefficient, i.e. if
and only if the node has at least two neighboring nodes.

Thus, we are able to write the relation between the cluster coefficient of a node and its transi-
tivity:

cc(v) +
2
(
deg(v)2 − deg(v)− 2 |OPN(v)|E

)
deg(v)3 − deg(v)

= trans(v) (6.3)
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Let us now examine how close the cluster coefficient and the transitivity can be, i.e. how large
the difference is in general. As it not only depends on the degree deg(v) of a node v but also on
the number of edges in its open neighborhood OPN(v) we will first consider lower and upper
bounds for the number of edges in the open neighborhood. Obviously, the lower bound for the
number of edges in the open neighborhood is

|OPN(v)|min
E = 0 (6.4)

The upper bound is reached if the open neighborhood forms a complete graph, i.e. every distinct
pair of nodes is directly connected with an edge. Therefore, the upper bound for the number of
edges in the open neighborhood is

|OPN(v)|max
E =

deg(v) · (deg(v)− 1)

2
(6.5)

It directly follows from Equations 6.3, 6.4 and 6.5 that ∀v ∈ V with deg(v) ≥ 2 the following
holds:

0 ≤ 2
(
deg(v)2 − deg(v)− 2 |OPN(v)|E

)
deg(v)3 − deg(v)

≤ 2

deg(v) + 1
(6.6)

Lemma 6.1: For any undirected, connected graph G = (V,E) and any node v ∈ V it holds
that

cc(v) ≤ trans(v).

Proof: The lemma directly follows from Equation 6.3 and 6.6. �

The density of a graph is another interesting property of a graph. It is defined as the quotient of
the existing edges and the possible edges of a graph. Definition 6.8 gives the formal specification
of density.

Definition 6.8: Given an undirected graph G = (V,E). Then, the density dens(G) of the graph
G is defined as

dens(G) :=
2 |E|

|V | · (|V | − 1)
.

Lemma 6.2: For any connected graph G = (V,E) it holds for the density dens(G) that

2

|V | ≤ dens(G) ≤ 1.

Proof: Any connected graph consists of at least |V | − 1 edges and at most |V |·(|V |−1)
2 edges.

Thus, the lemma follows directly from Definition 6.8. �

Another important property is, that it holds for any complete graph that the cluster coefficients
and the transitivities of all nodes are identical, which is stated in the next lemma.
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Lemma 6.3: For any complete graph G = (V,E) it holds that

∀v ∈ V : cc(v) = trans(v)

and thus
CC(G) = trans(G).

Proof: Consider any complete graph G = (V,E) with |V | = n. The open neighborhood of
node v is again a complete graph consisting of n− 1 nodes. Therefore, we have

cc(v) =
2 ·
(deg(v)·(deg(v)−1)

2

)
deg(v) · (deg(v)− 1)

= 1

for any node v ∈ V .

For any node v ∈ V the closed neighborhood is the whole graph G. Thus, we know

trans(v) =
2 ·
(deg(v)·(deg(v)+1)

2

)
deg(v) · (deg(v) + 1)

= 1

for any node v ∈ V .

Finally, it follows from Definitions 6.6 and 6.7:

CC(G) =
1

|V |
∑
v∈V

cc(v) =
|V |
|V | = 1 =

|V |
|V | =

1

|V |
∑
v∈V

trans(v) = trans(G)

�

As the cluster coefficients and transitivities are identical in complete graphs, we claim that in
dense graphs the distinction between both measurements is not important.

Proposition 6.1: For dense networks both measurements—the cluster coefficient cc(v) and the
transitivity trans(v)—have very close values and are interchangeable. If the network is medium
dense or sparse both measurements should be examined.

In the next section, we define special network structures that gained the interest in analyzing
networks. We also discuss the measurements we have presented in this section.

6.2 Network Types

In this section, we give definitions of special network structures that gained interest in literature
when analyzing firm networks, social networks or artificial societies. As we are interested in
modeling different types of interaction networks based on specific network structures we only
concentrate on undirected graph structures in this section.
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6.2.1 Random Networks

The simplest network which is often used as a benchmark network is a random network. We
follow Erdõs and Rényi’s definition of a random network (Erdõs and Rényi, 1959):

Definition 6.9 (Erdõs-Rényi Random Network): In the G(n,Prcon) model a graph with n
nodes is constructed by adding each (possible) edge with probability Prcon. This model is called
Erdõs-Rényi random network.

Given this definition we want to discuss the properties defined in Section 6.1.

We start with the number of edges. As the probability for the existence of a specific edge is
Prcon and the total number of possible edges in an undirected graph containing |V | = n nodes
is n·(n−1)

2 we get the expected number of edges in a random graph as:

E(|E|) = Prcon ·
n · (n− 1)

2
(6.7)

which gives us an average degree of

avgdeg(G(n,Prcon)) = 2 · Prcon · n·(n−1)
2

n
= Prcon · (n− 1) ' Prcon · n (6.8)

Algorithm 6.1 Generating an Erdõs-Rényi random network

Input: number of nodes n, connection probability Prcon
Output: An Erdõs-Rényi random network

1: procedure GENERATEERDOSRENYINETWORK(n, Prcon)
2: inititialize set of nodes V with n different nodes
3: E ← ∅
4: for i = 0 to n− 1 do
5: for j = i+ 1 to n− 1 do
6: with probability Prcon: E ← E ∪ {i, j}
7: end for
8: end for
9: return graph G(V,E)

10: end procedure

The simplification of the average node / graph degree, i.e. avgdeg(G) ' Prcon · n, holds for
n → ∞ which is a suitable assumption for large networks. Albert and Barabási have discussed
several properties of random graphs constructed via the method of Erdõs and Rényi (Albert and
Barabási, 2002). They found that the diameter of a random graph, which is the greatest distance
between any two nodes, is usually concentrated around

diam(G(n,Prcon)) =
ln(n)

ln(Prcon · n)
(6.9)
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As the cluster coefficient gives the probability that the neighbors of a node are also neighbors,
it follows that the cluster coefficient of a node v in an Erdõs-Rényi random networks is

∀v ∈ V : cc(v) = Prcon (6.10)

and, therefore, for the whole graph

CC(G(n,Prcon)) = Prcon. (6.11)

Additionally, Erdõs and Rényi have shown in (Erdõs and Rényi, 1960) that there is a critical
connection probability Pr?con which determines whether the resulting graph is connected or not.
This critical connection probability can be calculated as

Pr?con =
ln(n)

n
(6.12)

They have shown that for Prcon > Pr?con the graph is connected with high probability, and for
Prcon < Pr?con the graph is not connected with high probability (Erdõs and Rényi, 1960).

Algorithm 6.1 gives a simple version of generating an undirected random network based on
the definition of Erdõs and Rényi. It is easy to see that the algorithm will return a random net-
work that satisfies the discussed properties. Figure 6.2 visualizes a random network constructed
via the method of Erdõs and Rényi with 50 nodes and a connection probability of 0.14.

6.2.2 Regular Networks

We now want to discuss another type of often used networks, i.e. regular networks. Regular
networks are mostly characterized to be networks where each node has exactly the same degree
and the graph having a homogeneous connection pattern (Gaston, 2005). The class of regular
networks includes lattices, hypercubes and complete graphs.The following definition defines a
regular graph in a formal way.

Definition 6.10 (Regular Graph): A regular graphG = (V,E) is a graph where each node has
the same degree, i.e. it holds that

∀u, v ∈ V : deg(u) = deg(v).

In the next paragraphs we want to analyze three well-defined regular networks. Namely, these
are the K-ring network, the hypercube and the two-dimensional Lattice.
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Figure 6.2: Illustration of an Erdõs-Rényi random network generated by Algorithm 6.1 with
n = 50 nodes and a connection probability of Prcon = 0.14.

K-ring Graph The K-ring graph ring(K,n) is a special regular network. The graph consists
of n nodes which are arranged in a ring structure and each node is connected to its 2 ·K nearest
nodes (i.e. K to each side). This can be done through labeling the nodes with natural numbers
[0, n − 1] ⊂ N. If the difference between two labels is at most K then there is an edge in this
graph for these two nodes. The parameter K is often called the coordination number of such a
graph. Algorithm 6.2 presents a mechism to create such a ring(K,n) network.

Definition 6.11 (The ring(K,n) network): A ring(K,n) network is a graph consisting of n
nodes arranged in a ring structure, where each node is adjacent to the K nearest nodes in both
directions of the ring structure.

It is easy to see that the number of edges in a ring(K,n) network isK ·n. For the average node
degree we know that it is 2 ·K as each node has in each of the two directions of the ring an edge
to the K nearest neighbors. In such a network the diameter and the characteristic path length
are the same due to the regular connection pattern. For both it holds that diam(ring(K,n)) =
CPL(ring(K,n)) = n

2·K . Additionally, it follows that the cluster coefficient and the transitivity
are the same for every node due to the construction process and, therefore, it holds that cc(v) =
CC(ring(K,n)) and trans(v) = trans(ring(K,n)). To calculate the cluster coefficient and the
transitivity of a specific node v we need to know how many edges are in the open neighborhood
of v, i.e. we need |OPN(v)|E . This is provided in the following lemma:
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Figure 6.3: Example of a ring regular network with 12 nodes and K = 2, i.e. ring(2, 12).

Lemma 6.4: For any node v ∈ V of a ring ring(K,n) with coordination number K it holds that
the number of edges in the open neighborhood of the node v is

|OPN(v)|E =
3 ·K(K − 1)

2
.

Proof: Consider a ring(K,n) network with coordination number K and n nodes. Due to the
regular connection pattern it holds that

∀u, v ∈ V : |OPN(u)|E = |OPN(v)|E . (6.13)

0 1n-4 n-2 2 3 4n-1n-3

Figure 6.4: Illustration of the subgraph induced by OPN(0) of a ring(4, n). The thick edges are
adjacent to node i = 2 and the thick nodes are the nodes that are connected to node
i = 2 in the subgraph.

Let us consider the number of edges in the open neighborhood of node 0. The open neighbor-
hood of node 0 is

OPN(0) = {1, 2, . . . ,K, n−K, . . . , n− 1}. (6.14)

We know that |OPN(0)| = 2 ·K. Every node i with 0 < i ≤ K out of OPN(0) is connected
to the nodes {n −K + i, n −K + (i + 1), . . . , n − 1, 1, . . . , i − 1, i + 1, . . . ,K} ⊂ OPN(0)
which is a set containing 2 · K − 1 − i elements (cf. Figure 6.4 as an example). Therefore,
deg(i) = 2 ·K − 1− i. If we sum up the degrees of all nodes i with 0 < i ≤ K we get
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Algorithm 6.2 Generating a K-ring network
Input: coordination number K, number of nodes n
Output: A K-ring network

1: procedure GENERATERING(K, n)
2: initialize set V with n nodes
3: label the nodes consequently with natural numbers from [0, n− 1]
4: for all u ∈ V do
5: for all v ∈ V do
6: if difference between (label(u) and label(v)) mod n ≤ K then
7: if {u, v} /∈ E then
8: E ← E ∪ {u, v}
9: end if

10: end if
11: end for
12: end for
13: return graph G(V,E)
14: end procedure

K∑
i=1

(2 ·K − 1− i) = K(2 ·K − 1)−
K∑
i=1

i

= K(2 ·K − 1)− K(K+1)
2

=
3 ·K(K − 1)

2

It follows, that the sum of degrees of all nodes in the induced subgraph based on OPN(0) is
3 ·K(K − 1). As the number of edges is half the sum of degrees we obtain the result 1. �

As conclusions of Lemma 6.4 we get the formulas for the cluster coefficient

CC(ring(K,n)) =
3K(K − 1)

2K(2K − 1)
(6.15)

and for the transitivity

trans(ring(K,n)) =
4K + 3K(K − 1)

2K(2K + 1)
. (6.16)

Finally, Algorithm 6.2 gives a mechanism how to generate a ring(K,n) network and Fig-
ure 6.3 illustrates the ring(2, 12) network.

1This proof was influenced by a similar proof published in (Wallis, 2007, p. 221).
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Hypercube In geometry a hypercube is a dim-dimensional analogy of a square (dim = 2)
and a cube (dim = 3). For defining a hypercube, we first need to define the Hamming distance.
The Hamming distance of two bit strings is required, as the construction process of a hypercube
can easily be described using this mean.

Definition 6.12 (Hamming Distance): Given two bit strings s1 and s2, the Hamming distance
hd is the number of different bits for corresponding positions:

hd(s1, s2) =

|s1|∑
i=1

comp(s1[i], s2[i])

with

comp(x, y) =

{
1 x 6= y

0 x = y

The Hamming distance is only defined for strings of equal length. If the length of the strings dif-
fers one can add leading zeros to the shorter string in order to calculate the Hamming distance.

Given the Hamming distance we can now define the dim-dimensional hypercube:

Definition 6.13 (Hypercube): Given 2dim nodes with bit strings as identifiers. Connect two
nodes, if the Hamming distance of their identifiers is equal to 1. The resulting graph is a hyper-
cube Qdim.

(a) Hypercube Q2. (b) Hypercube Q3. (c) Hypercube Q4.

Figure 6.5: Hypercubes of dimension 2,3 and 4.

The next lemma deals with the diameter of a hypercube.

Lemma 6.5: For the hypercube Qdim it holds that the diameter is

diam(Qdim) = dim . (6.17)

Proof: Given a hypercube Qdim of dimension dim. Let v0 and vk be two arbitrary nodes of the
hypercube. Let the path between two nodes be v0, v1, . . . , vk. For any two nodes vi and vi+1
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Algorithm 6.3 Generating a hypercube of dimension dim.

Input: the dimension dim of the hypercube
Output: A hypercube of dimension dim

1: procedure GENERATEKHYPERCUBE(dim)
2: inititialize set V with 2dim nodes with binary labels
3: for all u ∈ V do
4: for all v ∈ V do
5: if hd(label(u), label(v)) = 1 then
6: if {u, v} /∈ E then
7: E ← E ∪ {u, v}
8: end if
9: end if

10: end for
11: end for
12: return graph G(V,E)
13: end procedure

on the path it holds that the hamming distance is one. Otherwise there would be no such edge
{vi, vi+1}. Counting the edges on the path gives the desired result.

In other words: As the distance between two nodes is the number of edges of the shortest path
and the edges follow the construction of Definition 6.13, the difference between two bit strings
of length dim is at most dim. �

Each node has exactly dim neighbors as for each bit in the bit string there exists a neighbor
where the complement bit string is the only difference in the representation of these two nodes.
Therefore, the average degree of the hypercube Qdim is

avgdeg(Qdim) = dim (6.18)

From this it follows for the number of edges of the hypercube:

|E| = 2dim · dim

2
= dim ·2dim−1 (6.19)

For the cluster coefficient it holds that it is zero for every node and therefore zero for the
hypercube. This follows from the construction of the hypercube. As two neighbors of a specific
node each differ in one bit, they differ in two bits, when we compare their bit string representa-
tions. Thus, two neighbors never have an edge between them which leads to the conclusion that
the cluster coefficients are zero for each node.

Therefore, the formula for the transitivity of a hypercube is:

trans(Qdim) =
2 dim

dim ·(dim +1)
(6.20)
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Lattice Graph Lattices in general are a generalization of the K-ring network structure.
There, we distinguish the dimension of a lattice. The K-ring network structure is a one-
dimensional lattice and a grid network is a two-dimensional lattice. In general a lattice of
dimension n is a n-dimensional grid where each two points are connected if and only if their
Manhattan distance is less or equal to the coordination number K.

Definition 6.14 (Manhattan Distance): The Manhattan distance between two points is the
sum of the absolute differences of their coordinates. Given two n-dimensional points p1 =
(p1

1, p
2
1, . . . , p

n
1 ) and p2 = (p1

2, p
2
2, . . . , p

n
2 ) the Manhattan distance manhattan(p1, p2) is de-

fined as

manhattan(p1, p2) :=
n∑
i=1

∣∣pi1 − pi2∣∣ .
Definition 6.15 (Lattice Graph): A lattice graph Ldim,K = (V,E) is an undirected graph
which has dim dimensions and where the nodes are placed on physical positions, given by
the dim dimensions. An edge between two nodes i and j exists, when the Manhattan distance
between the two nodes is less or equal to the coordination number K. More formally:

e = {i, j} ∈ E ↔ manhattan(i, j) ≤ K

Figure 6.6: Illustration of a two dimensional toroidal lattice with 12 x 5 nodes and K = 2.

Note that we will only consider lattice graphs where the borders are connected to each other.
When we think about an L1,2 lattice graph of dimension 1 with coordination number 2, we
obtain a line. When we connect the first and the last node, then we get a cycle which is the
ring(K,N). As we are only interested in lattice graphs that form regular networks we will only
consider those Ldim,K graphs where the boundary nodes are connected to each other which is
typically called a toroidal lattice. If this is not the case, the resulting network is not regular,
as some nodes will have lower degrees than the majority of nodes. Additionally we will only
focus on lattice graphs of dimension two as toroidal lattices of dimension dim have a dim +1
graphical representation.

Typically, one wants to specify a lattice not only in the form presented in Definition 6.15 but



116 Influence of Network Structures

with a particular number of nodes per dimension. Then, it is possible to define the lattice with a
vector dim instead of only the number of dimensions dim. For example the lattice Ldim,2 with
dim = (100, 20) is a two dimensional lattice with coordination number 2 and 100 nodes in the
first and 20 nodes in the second dimension.

The degree of a node in a lattice L2,K is given by the recursive definition

deg(v)K = deg(v)K−1 + 4 ·K (6.21)

with deg(v)0 = 0, as it is the empty graph. For the number of edges it follows that

|EK | =
n · (deg(v)K−1 + 4 ·K)

2
. (6.22)

The diameter of a two dimensional lattice is given by the largest Manhattan distance between
two nodes and, thus, we get

diam(L2,K) =

⌈
n1 − 1

2 ·K

⌉
+

⌈
n2 − 1

2 ·K

⌉
(6.23)

where n1 denotes the number of nodes in the first and n2 the number of nodes in the second
dimension.

Algorithm 6.4 specifies a mechanism that generates a K-lattice based on the vector dim.

Algorithm 6.4 Generating a K-lattice of dimension |dim|.
Input: coordination number K, array of number of nodes per dimension dim[]
Output: A K-lattice of dimension |dim|

1: procedure GENERATEKLATTICE(K, dim[])
2: n←∏|dim|

i=1 dim[i]
3: initialize set of n nodes V with positions in the |dim|-sphere
4: for all u ∈ V do
5: for all v ∈ V do
6: if manhattan(pos(u), pos(v)) ≤ K and u 6= v then
7: if {u, v} /∈ E then
8: E ← E ∪ {u, v}
9: end if

10: end if
11: end for
12: end for
13: return graph G(V,E)
14: end procedure
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6.2.3 Scale-free Networks

Different to the networks considered before, so called scale-free networks have no formal defini-
tion. A network is only defined to be scale-free through its properties. The previously discussed
models assume, that we start with a fixed number of nodes n and then connect them through spe-
cific mechanisms without changing the number of nodes. In contrast, most real world networks
describe open systems that grow like the WWW (Albert and Barabási, 2002). Two mecha-
nism seem to be responsible for the emergence of scale-free networks (Barabási and Albert,
1999). The first mechanism is growth of a network and the second is preferential attachment.
A new website will link to existing ones and the probability of linking to a well-known website
is greater that the probability of linking to another very new website. The same holds for the
graph representing research literature as new scientific article cite other established articles and
well-known technical literature (Albert and Barabási, 2002). Definition 6.16 gives an informal
definition for scale-free networks.

Definition 6.16 (Scale-free Network): A scale-free network SF is a network whose degree dis-
tribution follows a power law, at least asymptotically. Few nodes have high degree, many nodes
have a low degree.

Scale-free networks can be generated with the help of the mentioned mechanism growth and
preferential attachment (Albert and Barabási, 2002):

1. Growth: Starting with a small number m0 of nodes, at every timestep we add a new node
with m ≤ m0 edges that link the new node to m different nodes already present in the
system.

2. Preferential attachment: When choosing the nodes to which the new node connects, we
assume that the probability Pr that a new node u will be connected to node v depends on
the degree deg(v), such that

Pr({u, v} ∈ E) =
deg(v)∑

w∈V deg(w)
.

Algorithm 6.5 shown an approach for creating a scale-free network. The first step is to select
the m0 so called seed nodes to which one random node vrand is connected to. After the seed
nodes are connected to the newly introduced node each non-connected node will connect to
m nodes with preferential attachment according to the node degrees. Figure 6.7 illustrates a
scale-free network constructed with Algorithm 6.5 containing 100 nodes, 15 seed nodes and an
establishment of a single link for all unconnected nodes in the preferential attachment phase.

Let us now analyze how many edges are created in a scale-free network constructed via Al-
gorithm 6.5. After the seed generation (lines 3–7) m0 edges have been generated. At that point
n− (m0 + 1) many nodes are still unconnected and for each we create m new edges. Therefore,
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Algorithm 6.5 Generating a scale-free network.
Input: number of nodes n, number of seed nodes m0, number of connections per node m
during growing phase
Output: A scale-free network

1: procedure GENERATESCALEFREE(n, m0, m)
2: inititialize set of n nodes V
3: S ← set of m0 randomly selected nodes from V
4: vrand ← randomly selected node from V \ S
5: for all u ∈ S do
6: E ← E ∪ {u, vrand}
7: end for
8: for all u ∈ V with deg(u) = 0 do
9: C ← set of m nodes randomly selected with probabilities according to deg(c)∑

w∈V deg(w)

10: for all c ∈ C do
11: E ← E ∪ {u, c}
12: end for
13: end for
14: return graph G(V,E)
15: end procedure

we have for the number of edges in a scale-free network

|E| = m0 +m ·
(
n− (m0 + 1)

)
. (6.24)

For the average node degree we have

avgdeg(SF) =
2 ·
(
m0 +m ·

(
n− (m0 + 1)

))
n

(6.25)

and it was shown in (Albert and Barabási, 2002) that the degree distribution follows the power
law distribution

Pr(k) ∼ c · k−3 (6.26)

where Pr(k) gives the fraction of nodes in the networks which have degree k and c is some
constant.

6.2.4 Small-World Network

Small-World networks were firstly introduced by Watts and Strogatz in (Watts and Strogatz,
1998) and are also considered in (Watts, 1999, 2003). Many real-world networks have a small-
world character like random graphs. However, they have usually large cluster coefficients (Al-



6.2 Network Types 119

Figure 6.7: Illustration of a scale-free network following Algorithm 6.5 with n = 100,m0 = 15
and m = 1.

bert and Barabási, 2002). The idea behind those networks is the following. Consider two neigh-
bors in a street. They have many neighbors in common, which cannot be reproduced with
random networks. Such phenomena cannot only be found in social networks but also for exam-
ple in the connections of neural networks (Watts and Strogatz, 1998). Definition 6.17 provides
a definition of a small-world network following (Watts and Strogatz, 1998)

Definition 6.17 (Small-World Network): A graph with a small characteristic path length and
a large cluster coefficient is called a small-world network.

Watts and Strogatz have presented a mechanism to create such small-world networks (Watts
and Strogatz, 1998):

1. Start with order: create a ring(K,n) with n nodes where each node is connected to the
K nearest neighbors in both directions of the ring. They suggested to choose n � K

2 �
ln(n)� 1 in order to have a sparse but connected network at all times (Watts and Strogatz,
1998).

2. Randomize: Randomly rewire each edge with probability Prrew such that self-connections
and duplicate edges are excluded.

This process is called the WS-model for Small-Worlds due to the authors’ names. Another
variant of that model was introduced by Newman and Watts (Newman and Watts, 1999a,b).
There, the randomly introduced shortcuts do not replace existing edges. The WS-model will be
used in this thesis and is summarized in Algorithm 6.6. Figure 6.8 illustrates the influence of the
parameter Prrew on an exemplary network constructed via the method of Watts and Strogatz.
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(a) Prrew = 0.0. (b) Prrew = 0.05. (c) Prrew = 1.0.

Figure 6.8: Illustrations of small-world networks following the WS-Model for growing rewiring
probability Prrew.

Algorithm 6.6 Generating a small-world network.

Input: coordination number K, number of nodes n, rewiring probability Prrew
Output: A random network having small-world properties

1: procedure GENERATESMALLWORD(K, n, Prrew)
2: G(V,E)← GENERATERING(K,n)
3: E′ ← E
4: for all {u, v} ∈ E with probability Prrew do
5: vrand ← randomly chosen node from V \ (neighbors(v) ∪ {u, v})
6: E′ ← (E′ \ {{u, v}}) ∪ {{u, vrand}}
7: end for
8: return graph G(V,E′)
9: end procedure

Obviously, the number of edges in the WS-model SW(K,n,Prrew) constructed by Algo-
rithm 6.6 is the same as for the ring(K,n), i.e. |E| = K · n. Note that the second step removes
Prrew ·K ·n edges and introduces the same number of shortcuts to the network. The same holds
for the average node degree due to the rewiring mechanism, i.e. avgdeg(SW(K,n,Prrew)) =
2 ·K.

Barrat and Weigt (2000) have shown that the cluster coefficient of a Small-World network
generated with the WS-model is given by

CC(SW(K,n,Prrew)) = CC(ring(K,n)) · (1− Prrew)3. (6.27)

Due to the relatedness of cluster coefficients and transitivity, a similar conclusion holds for the
latter property:

trans(SW(K,n,Prrew)) = trans(ring(K,n)) · (1− Prrew)3. (6.28)
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6.3 Experimental Setup

In this section, we describe the setup for the experimental evaluation of the influence of different
network structures. The previous section dealt with the different types of networks that we
want to analyze. Now, we analyze the influence of different network structures on the emerging
cooperation in the remainder of this chapter. As the agents are only allowed to interact with their
direct neighbors specified by the networks, these networks have great influence on the interaction
possibilities and thus have great influence on the emergence of cooperation. Table 6.3 gives a
summary of the considered networks and their experimental setups.

Table 6.3: Considered networks and their parameter settings.

Network type Settings

Erdõs-Rényi random network n = 1000, Prcon = 0.014

Regular ring network n = 1000, K = 7

Two-dimensional toroidal lattice 100× 10 nodes, with K = 2

Scale-free network n = 1000, m0 = 40 and m = 7

Small-world network n = 1000, K = 7 and Prrew = 0.05

Table 6.4 gives the configuration for the experiments in this section. The parameter-values
are gained from the base configuration on page 55 or are adapted because of better results from
the experimental analysis of Chapter 5. We will consider an agent system of 1000 agents with
five skills in the system and one skill per agent, i.e. |S| = 5 and |Sa| = 1. The maximum
number of allowed neighbors is not equal for every agent but is fixed from the initialization.
This is due to the fact that especially scale-free networks have nodes with very high degrees
and those nodes should be allowed to have this high number throughout the simulations. The
number of propositions is set to m = 10 which can be rated in the interval [0, 100] and the
tolerance values for the agents are drawn from (0, 50], which leads to medium-tolerant agents
in the system. The jobs consist of exactly three tasks which lead to a payoff of one utility unit
and having a cost factor of −0.25 and in each simulation step 10,000 jobs should be handled
by the agents. We set the adaptation strength to η = 0.5, the number of ideals to one and the
elite set size to four. Finally, we will also take a look at the network dynamics and, therefore,
we will vary the probability of executing the social networking step. This will be one part in the
analysis. Nevertheless, if the social networking is performed only one neighbor may be changed
by the agents. Table 6.5 gives the theoretical main characteristics for the network types under
consideration.
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Table 6.4: Configuration setup for network analysis.

Parameter Meaning Value

|A| population size 1000

|S| number of skills in the system 5

|Sa| number of skills per agent 1

Nmax maximum number of neighbors allowed per agent as initial value

m number of propositions 10

vmax maximum rating for a proposition 100

Θmax maximum tolerance of an agent 50

qmin minimum payoff for task fulfillment 1

qmax maximum payoff for task fulfillment 1

tmin minimum number of tasks a job consists of 3

tmax maximum number of tasks a job consists of 3

k job factor 10

c cost-factor for charging helpers -0.25

η adaptation strength 0.5

ε number of elite agents 4

|I| number of ideal agents 1

PrN probability of executing social networking not fixed

r number of replaced agents in social networking 1

6.4 Static Networks

We first examine the influence of the different network structures if they are static. Therefore,
we set PrN = 0. The results are presented in Figures 6.9–6.11.

As can be seen, the networks can be divided into three different groups with same results.
There is the scale-free network SF(1000, 40, 7) which quickly leads to a high rate of completed
jobs. In none of the other networks, the agents are able to produce such high job completion rates
within early simulation steps. Then, the next group only contains the lattice structure L[100,10],2

which does not converge to high rates of completed jobs within the 200 simulation steps. Only
an average completion rate of approximately 25% is reached at the end. The third group of
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Table 6.5: Overview on networks’ properties given by the setting.

Network |E| avgdeg(v) CC(G)

ER(1000, 0.014) 6993 14 0.014

ring(1000, 7) 7000 14 ≈ 0.6923

L[100,10],2 6000 12 —

SF(1000, 40, 7) 6753 13.5 —

SW(1000, 7, 0.05) 7000 14 ≈ 0.5936

network structures contains the Erdõs-Rényi random network ER(1000, 0.014), the regular ring
network ring(1000, 7) and the small-world network SW(1000, 7, 0.05) which all lead to the
same high level of completed jobs of about 90% and have roughly similar developments over
the simulation steps. Indeed, in the end all three perform better compared to the scale-free
network (cf. Figure 6.9).

When considering the local cooperation willingness we observe that in all networks, except
for the lattice, we reach high levels of mutual cooperation. Compared to the global cooperation
willingness it is interesting to see that the ring produces high levels of local but low levels of
global cooperation willingness. Therefore, we assume that in the ring structure we do not get ar-
eas in the ratings-sphere, where nearly every agent is within the tolerance area of all other agents
but many small areas where mutual cooperation exists to directly connected agents but nearly
no cooperation is possible between unlinked agents. In all other kinds of networks, it converges
to more or less mutual cooperation on the global level (cf. Figure 6.10 and Figure 6.11).

To conclude the influence of the network structures in the static case, we state that all networks
but the lattice structure are able to achieve high levels of job completion rates. This is due to
mutual cooperation on the local level but may also be very different on the global level as it is the
case for the regular ring structure. In the next section, we consider the same network structures
under the influence of the network dynamics.

6.5 Dynamic Networks

In this section, we examine the influence of different dynamic network structures. To introduce
dynamics, we use the social networking step. Therefore, we use PrN = 0.04 for low dynamics
and PrN = 0.16 for high dynamics. We are also interested in the question whether the network
properties evolve to those obtained in random networks. To answer this question we will not
only take a look on the job completion rate but we will also consider the average degree of the
nodes, the cluster coefficient and the characteristic path length of the networks.
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Figure 6.9: Percentage of completed jobs for the considered network structures.

6.5.1 Networks with Low Dynamics

In this experiment, we consider networks with little dynamics by setting PrN = 0.04. The re-
sults are given in Figures 6.12–6.15. Compared to networks without dynamics from the previous
section, it is easy to see that the job completion rate is only slightly influenced by the dynamics
(cf. Figure 6.9 and Figure 6.12). The reached level of completed jobs is slightly lower than in
the static case.

If we consider the evolution of the networks due to the dynamics we observe that the scale-
free network falls apart into different connected components (cf. Figure 6.13). The same holds
for the Erdõs-Rényi random network but there the mean number of connected components does
not exceed 1.5. In all other networks, we hardly can observe this development.

Figure 6.14 shows the development of the cluster coefficients of the networks. As can be
seen for the Erdõs-Rényi network and the scale-free network there is no change in the cluster
coefficient throughout the simulation. But we can observe a decrease for all other types of
networks. Here, we see that the greater the cluster coefficient in the beginning is the greater is
the decrease of the cluster coefficient within the considered 200 simulation steps.

The development of the characteristic path length shows similar results (cf. Figure 6.15).
For the Erdõs-Rényi network, the small-world and the scale-free network we can observe that
the characteristic path length remains roughly constant throughout the simulation. The greatest
characteristic path length is given in the regular ring network in the very beginning. But the
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Figure 6.10: Local cooperation willingness for the considered network structures.

value of approximately 70 is decreased to less than 10 in simulation step 200. The second
highest characteristic path length can be observed for the lattice network. There, we have a
value of 29 in the beginning and 11 at the end of the simulation.

From these results we can conclude that the networks tend to lose their specific properties and
gain the properties of the Erdõs-Rényi random networks. This will also be highlighted in the
next section where the dynamics of the networks are very high.

6.5.2 Networks with High Dynamics

In highly dynamic networks with PrN = 0.16, we observe roughly the same developments as
for less dynamic networks with PrN = 0.04. Again, the job completion rate is only slightly
effected as can be seen in Figure 6.16. Like for the networks with low dynamics, the reachable
level of completed jobs is slightly lower than in the case without dynamics.

What we can observe is that the networks faster fall apart into different connected components
compared to networks with PrN = 0.04. In particular, this can be seen for the scale-free network
which falls apart in the approximately 25th simulation step in Figure 6.17. Also the cluster
coefficient and the characteristic path length decrease faster than in the low dynamical case (cf.
Figure 6.18 and Figure 6.19).

To conclude on the dynamics of networks we can observe that the networks tend to degen-
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Figure 6.11: Global cooperation willingness for the considered network structures.

erate to random networks. The small-world network loses its property of having a high cluster
coefficient. Besides the loss of high cluster coefficients, the regular ring and the lattice structure
do also lose their high characteristic path length. Although the fast development to high levels
of job completion rates is significant for scale-free networks, the scale-free networks have the
problem that they are not able to reach a higher level like the Erdõs-Rényi random networks, the
small-world network or the regular ring network. This is due to the fact that a quite high number
of agents has a very small number of neighboring agents and, therefore, it is hard to have all
skills available in the vicinity of the agents.

In the next sections, we look at cooperation in two specific regular networks. First, we ex-
amine the cooperation willingness in a static regular ring compared to an Erdõs-Rényi random
network. Second, we consider cooperation in a lattice network.
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Figure 6.12: Percentage of completed jobs for low dynamic networks.
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Figure 6.13: Development of the number of connected components for low dynamic networks.
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Figure 6.14: Development of the cluster coefficient for low dynamic networks.
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Figure 6.15: Development of the characteristic path length for low dynamic networks.
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Figure 6.16: Percentage of completed jobs for highly dynamic networks.
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Figure 6.17: Development of the number of connected components for highly dynamic net-
works.
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Figure 6.18: Development of the cluster coefficient for highly dynamic networks.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200

C
ha

ra
ct

er
is

tic
 P

at
h 

Le
ng

th

Simulation Step

Network Type
ER(1000,0.014)

ring(1000,7)
L[100,10],2

SF(1000,40,7)
SW(1000,7,0.05)

Figure 6.19: Development of the characteristic path length for high dynamical networks.
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6.6 Regular Ring and Ratings for Cooperation

As we have assumed in previous sections, the cooperation willingness in a regular ring structure
favors the local relationship between the agents and does produce groups of mutually cooperative
agents, which are not cooperative to non-group members. To show that this is true, we compare
the vector positions in the rating space in a typical run for a static regular ring and for an Erdõs-
Rényi random network.

We will use a regular ring ring(1000, 7) and an Erdõs-Rényi random network ER(1000, 0.014)
as we did in the experimental analysis of Section 6.4. For better visualization we will only con-
sider a small set of propositions, i.e. |P| = 2. This allows us to visualize the rating vectors as
points in a two dimensional Euclidean space. Figure 6.20 shows the visualization of the rating
vectors.

The initialization phase produces the same starting position of the agents’ value vectors, which
can be seen in Figure 6.20a and Figure 6.20b. This is due to the fact that the ratings are generated
in exactly the same way so that we can compare the two network structures properly.

After 50 simulation steps the positions of the rating vectors differ significantly. In the case
of the regular ring structure we observe the expected groupings and see that those groups tend
to cluster in different areas of the rating space (cf. Figure 6.20c). For the Erdõs-Rényi random
network we see that the vectors cluster more or less in the middle of the space (cf. Figure 6.20d).

As can be observed after additional 150 simulation steps the position of the ratings stay
roughly constant. We assume that this overall behavior is due to the fact that the diameters
of the networks differ that much. In the case of this specific Erdõs-Rényi random network we
have a diameter of 5 and a diameter of 72 for this specific regular ring structure. Also the cluster
coefficients differ a lot as we have CC ≈ 0.692 for the ring and CC ≈ 0.014 for the random
network. As a conclusion, we argue that high diameters and large cluster coefficients together
lead to high rates of clustering of the value vectors which we call polarization and we get glob-
alization if the diameter is quite low paired with low cluster coefficients.
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(a) Initialization regular ring. (b) Initialization Erdõs-Rényi network.

(c) Regular ring after 50 steps. (d) Erdõs-Rényi network after 50 steps.

(e) Regular ring after 200 steps. (f) Erdõs-Rényi network after 200 steps.

Figure 6.20: Illustrations of typical runs for a regular ring (left-hand side) and Erdõs-Rényi ran-
dom network (right-hand side). In all figures the rating vectors are shown in the
two dimensional rating-space.
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6.7 Cooperation in Lattice Structures

In this section, we investigate groupings in a two-dimensional lattice. We will consider a specific
lattice of 30×15 agents withK = 1. Different to the lattices considered in previous sections the
lattice here is not a torus. We decided to use a non-toroidal lattice for better visualization without
enabling the social networking step. Thus, the lattice is static. As each agent has only between
2 and 4 neighbors we will set the number of total skills in the system to three. The number of
rated propositions is set to |P| = 10 and the ratings were randomly chosen out of [0, 100] and the
threshold values out of (0, 25], both uniformly distributed. Thus, we have relatively intolerant
agents. Each agent wants to be at least the second best agent in its vicinity and thus will adapt to
the best neighbor if it is not satisfied with its achieved profit. Figure 6.21 shows a typical run for
this setting. The colors indicate the skill of the agent and the directed links show the cooperation
willingness where the end of the link is the agent that will receive cooperation from the start of
the link.

In the beginning after the initialization phase, there is no cooperation willingness in the sys-
tem. Due to a quite high number of propositions and a quite low tolerance range, none of the
agents is willing to cooperate with its neighbors. This is visualized in Figure 6.21a.

An intermediate state of the system is shown in Figure 6.21b. There, we see the beginning
of group formation after the 50th simulation step. Agents start forming cooperative subgroups
with mutual cooperation patterns but some nodes are still isolated in the graph formed by the
cooperation relation.

Figure 6.21c shows the final cooperation patterns after 200 simulation steps. Most of the
links are bidirectional, which means they visualize mutual cooperative agents. There, we can
distinguish between the inner-group cooperation which is at a quite high level and the non-
cooperative behavior between the groups. As shown, there are quite distinguishable borders
between the highly cooperative groups of agents.

This example with a fixed network structure with low clustering and very intolerant agents
results in highly cooperative groups. The agents group together and form mutually cooperative
subgraphs. To non-members of a group, the whole group does not have any cooperative links,
which shows that these subgroups are very cooperative inside but uncooperative from a global
perspective.



134 Influence of Network Structures

(a) Lattice after initialization.

(b) Lattice after 50 simulation steps.

(c) Lattice after 200 simulation steps.

Figure 6.21: Illustrations of a typical run for the considered lattice. One can see the emerging
groups with clear boundaries.
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6.8 Conclusion

In this chapter, we have investigated the influence of different network structures on the system’s
performance. First, we introduced the reader to basic definitions and terminology from graph
theory. Then, some relations between the properties considered in this thesis have been proven.
Secondly, we introduced the considered network structures and provided algorithms to construct
these networks.

In the experimental part of this chapter, it was shown how the structures influence the per-
formance of the system in the static and dynamic case. For the dynamic case, we have seen
that the network structures degenerate into random networks at least considering the properties
cluster coefficient and characteristic path length. We considered the ratings diffusion in regular
ring networks and compared it to the diffusion in Erdõs-Rényi random networks. As result, we
showed that the Erdõs-Rényi random networks tend to move all rating vectors in a small area of
the rating space whereas in regular ring structures smaller groups of rating vectors occur which
build clusters with high cooperation in them and no cooperation between the clusters. For coop-
eration in lattice structures, we showed that we can observe similar behavior. There, groups of
agents have formed, which had very clear boundaries to other groups or isolated agents.





7 Introducing Capacity Constraints

In this chapter, we introduce capacity constraints to the agents and to the tasks. Up to now every
agent may process as many tasks as it wants to since no task requires a specific amount of skill
units as resource requirements. As we have seen in previous chapters, a minimum number of
positive interactions is needed to reach emergent cooperative behavior. Positive interactions are
those, which lead to a job completion as only then payoff is given to the agents. We are interested
in the influence of capacity constraints as we assume that tight constraints lead to less positive
interactions and thus to lower cooperation rates between the agents. The structure of this chapter
is as follows. First, we expand the formal model presented in Chapter 3 to formally define the
capacity constraints. Then, we analyze the expanded model and show some properties. Finally,
we provide experimental results.

In this chapter we will present

• a formal definition of capacity constraints.
• a proof that the JOBPROCESSING algoritm of Chapter 3 always produces complete and

local task allocations.
• which part of the algorithm has to be changed to add correctness to the produced task

allocations.
• an experimental analysis that the constructed agent system can deal with capacity con-

straints.
• an experimental analysis that knowledge about the set of jobs and especially the efficiency

of jobs does not strongly increase the social welfare.

7.1 Extension of Formal Model

In many real world problems, the assumption that an agent can process an infinite number of
tasks is not suitable. There are usually constraints such as bounded bandwidth, bounded energy
support or bounded memory capacities that have to be considered. Therefore, we will now con-
sider agents that are not able to process an arbitrary number of tasks in one simulation step. The
formal model used up to now does not support the modeling of agents with capacity constraints.
This section provides an extension of the formal model introduced in Chapter 3 so that capacity
constraints and requirements can be modeled. First, we introduce a capacity function capa for
each agent, which is formally given in Definition 7.1.
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Definition 7.1 (Capacity Function): Let S be the set of skills. The capacity function capa of
agent a with the signature capa : S → N describes how many units of each skill are available.
The function can be split into two different functions useda and unuseda with

• useda : S → N describes how many units are used
• unuseda : S → N describes how many units are unused

such that the function capa is the sum of this two functions:

∀s ∈ S : capa(s) := useda(s) + unuseda(s)

The capacity function is fixed for every agent in each simulation step. Again we omit the
time index for better readability. During execution of one task, the functions useda and unuseda
change as some amounts of the provided skill are used for the execution. As each task only
requires a single skill we will model the requirements for tasks as a function req(t) mapping
tasks to natural numbers. The meaning is that the skill st specified in task t = (st, qt) is used
req(t) times. Definition 7.2 gives the formal description of the requirement function.

Definition 7.2 (Requirement Function): For a task t = (st, qt) the requirement function req(t)
is given as

req(t) : T → N
and specifies the amount of units of skill st that are needed for the task fulfillment. An agent a
can fulfill the task t if and only if st ∈ Sa and unuseda(st) ≥ req(t).

In the next section, we give analytical results of the resulting extented model.

7.2 Analytical Results

In the considered scenario, jobs are allocated to randomly chosen agents. These agents are then
responsible for the tasks’ execution and search for cooperative neighbors that are willing to
process the tasks. From that point of view, it is obvious that the agents compute a task allocation
starting from a random job allocation. The allocation of tasks to agents and vice versa as well as
the job allocation are formally defined in Definition 7.3 and Definition 7.4 respectively.

Definition 7.3 (Task Allocation): A task allocation ψ is a function ψ : T → A which defines to
which agent a task is allocated. ψ−1 : A → Pow(T ) is a function, which gives the set of tasks
allocated to an agent (i.e. t ∈ ψ−1(a)⇔ ψ(t) = a).

Definition 7.4 (Job Allocation): A job allocation φ is a function φ : J → A which defines to
which agent a job is allocated. The tasks that have been allocated through a task allocation ψ
have been processed. For the set of completed jobs JC ⊆ J the following holds:

∀j ∈ JC ∀t ∈ j ∃a ∈ A : ψ(t) = a
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Per definition, Job allocations are always valid allocations as they do not consider the jobs’
execution. But not every task allocation is a valid task allocation as task allocations always
represent the task processing. Therefore, the required skills have to be available at the agents
and also the number of available units at the agent has to be at least that great as the allocated
tasks require. Like in literature (de Weerdt and Zhang, 2008; de Weerdt et al., 2007), we will
define properties of a valid task allocation, i.e. correctness, completeness and locality:

Definition 7.5 (Valid Task Allocation): Given a set of allocation jobs J . Let JC ⊆ J be the
subset of jobs that have been completed based on the task allocation ψ. The task allocation ψ is
valid, if it satisfies three properties:

1. correctness: A task allocation is correct if the sum of all skill requirements of all tasks that
are located at an agent a is not greater than a’s capacities for the skills:

∀a ∈ A, ∀s ∈ Sa :

 ∑
t∈ψ−1(a)
st=s

req(t)

 ≤ capa(s)

2. completeness: A task allocation is complete if for all tasks of all completed jobs there
exists an agent to which the task is allocated:

∀j ∈ JC : ∀t ∈ j : ∃a ∈ A : ψ(t) = a

3. locality: A task allocation is local if the tasks of all completed jobs are allocated to the
agent to which the jobs are allocated or to its direct neighbors:

∀j ∈ JC : φ(j) = a⇒ ∀t ∈ j : ψ(t) ∈ Na ∪ {a}

Given Definition 7.5, one could ask if Algorithm 3.2 JOBPROCESSING presented on page 31
produces a complete and local task allocation. This is stated, in the following lemma:

Lemma 7.1: Algorithm 3.2 (JOBPROCESSING) is guaranteed to produces a complete and local
task allocation.

Proof: Assume the resulting task allocation is not complete. Then there has to be a job of which
some tasks are not allocated and others are. This is not possible as the real allocation is the last
step of the algorithm after for each task of the job a potential helper has been found.

Assume the resulting task allocation would not be local. Then there has to be at least one
agent b to which a task t is allocated which belongs to a job j allocated to agent a which is
not a direct neighbor of b, i.e. a /∈ Nb. However, this is not possible as the algorithm only
allocates tasks to other agents which are neighbors of agent a. Since the neighborhood relation
is symmetric this would be a contradiction. Thus, the lemma is proven. �
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We are able to produce a local and complete task allocation with the proposed algorithm of
Chapter 3 but up to now we are not able to produce a correct allocation as the capacities of the
agents are not taken into account. Thus, we have to adjust the algorithm to produce a correct
allocation. This slight change has only to be done in line six of Algorithm 3.2. The line has to
be changed to:

Na(st)← {b ∈ Na | st ∈ Sb ∧ capa(st) ≥ req(t)} (7.1)

It is easy to see that this will result in a valid task allocation.

There exist many metrics to analyze the performance of the proposed algorithm. In earlier
experiments we only concentrated on the percentage of completed jobs to show how good the
mechanisms work. de Weerdt et al. (2007) used another metric that is based on the efficiency
of the completed tasks. We will introduce this metric here and will, therefore, first define the
efficiency of a job in Definition 7.6 and then we will define an efficient job processing in Defi-
nition 7.7.

Definition 7.6 (Job’s Efficiency): The efficiency function e : J → R gives the efficiency for a
job. The efficiency e(j) of a job is defined as the quotient of the profit that can be achieved by
job fulfillment and the needed skill units to fulfill the job. Formally:

e(j) :=

∑
t∈j qt∑

t∈j req(t)

The efficiency of the set of completed jobs e(JC) is defined as the sum of the jobs’ efficiencies:

e(JC) :=
∑
j∈JC

e(j)

Definition 7.7 (Efficient Job Processing): The utility gain of a set of completed jobs JC is given
by

U(JC) :=
∑
a∈A

profit(a).

A job processing is efficient if it is the result of the completed jobs JC ⊆ J—which are given by
a valid task allocation—and for every set of completed jobs J ′C ⊆ J of a valid task allocation
holds that:

U(J ′C) ≤ U(JC)

A task allocation can be valid but not efficient if tasks have been processed that are not that
efficient and, therefore, the utility gain for the whole set of agents is not as high as it could be.
The utility gain is also called the social welfare (Weiss, 1999). To optimize the social welfare,
i.e. the sum of all profits of all agents, agents have to reason about the job-set to process. If the
jobs are generated and processed as it is done in our scenario, then the agents are not able to
reason about it as they are not aware of all jobs that are allocated to them.
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Let us now investigate the required skill amount per agent in an analytical way. We always
have 10 · |A| jobs per simulation step, which leads to an average allocation of 10 jobs per agent.
Each job consists of three tasks. Every task requires one of five skills and each agent is equipped
with a single skill. These values are given in the basic setup in most of our experiments. Let us
assume, that agent has 15 neighbors on average. Then, the tasks of 16 agents are in the agent’s
vicinity. This leads to the conclusion that on average

16 · 10 · 3 · 1

5
= 96 (7.2)

tasks are in the vicinity of agent a with the correct skill as on average every fifth task requests
the skill that this agent can provide. However, as 30,000 tasks are generated in each round and
if we consider a set of 1000 agents, then every agent should process 30 tasks on average. The
96 tasks that have been calculated in Equation 7.2 do not consider that there are other agents in
the job holder’s vicinity that also provide the requested skill. Therefore, processing 30 tasks per
agent is more realistic.

The next section provides experimental results concerning the introduced capacities.

7.3 Experimental Results

In the experimental analysis, we first consider the required skill amount per agent to fulfill a
sufficiently large number of jobs, i.e. more than 80%. The second part considers the reasoning
about the job-set if it is known to maximize the social welfare. The last part will deal with
reasoning about unknown job-sets based on the efficiency strategy introduced in this section.

7.3.1 Processing Jobs with Capacities

The setup of the experiments is basically the same as the basic configuration of Chapter 5.
Additionally, each task requires one skill unit and leads to a reward of one utility unit. Therefore,
each job processing is rewarded with a payoff of 3 and needs exactly three skill units, as each
job consists of exactly three tasks. Thus, the global skill requirements are 30,000 skills in each
simulation step. We will derive the available skill units per agent through taking approximated
ratios of required and supplied skills. As the provided capacities are natural numbers, we round
the value, if the ratio results in a rational number. For the ratios we use

ratio ∈ {2.0, 1.5, 1.0, 0.75, 0.5, 0.25} (7.3)

which leads to agents’ capacities of

∀a ∈ A : capa ∈ {60, 45, 30, 22, 15, 8} (7.4)



142 Introducing Capacity Constraints

Figures 7.1–7.3 present the results of these experiments. As can be seen, the percentage of
completed jobs grows with larger capacities of the agents (cf. Figure 7.1). For all capacities with
capa > 30 the results are nearly identical. For capa = 30 slightly worse results are achieved.
Thus, it follows that if the agents provide the same number of skill units as it is required for the
job-set, the agents are able to process a high number of jobs. If they have twice as many skill
units as needed, no improvement can be achieved. For all other capacities it is observable that
each experiment converged to a percentage that is comparable to the capacity difference.

This can also be seen in Figure 7.2 where the percentage of jobs that have not been processed
because of missing capacities is shown. All experiments with capa ≤ 30 show that the reason
for lower percentages of completed jobs is based on this fact. As a conclusion, we state that in
most cases the required skill as well as a cooperative neighbor was available, as we only count
the missing capacity case, if the other two cases would not cause a job to be uncompleted. We
also observe that about 7% of the jobs cannot be processed because of missing capacities if the
capacity is set to capa = 30. If we consider these agents, we see in Figure 7.3 that in the adaptive
case nearly the maximum possible number of jobs is processed with this ratio of skill units. The
horizontal line represents a system, where the agents always cooperate with each other. Thus,
the amount of jobs that is not processed is caused by the fact that not all skills are in the agents’
vicinity, besides missing capacities. The adaptive case is slightly worse. We assume that this
is the result of sub-optimal social networking steps as the social networking is not directed into
good neighbor selection.

As a conclusion we state that the mechanism can also deal with capacity constraints for the
agents and that this has large influence on the system’s performance if constraints have to be
fulfilled. In the next sections we consider more advanced agents that are able to reason about
the order of the jobs to be processes with the aim of achieving high social welfare.

7.3.2 Reasoning about Known Job-Sets

In this section, we examine reasoning about known job-sets. The jobs are generated and allo-
cated to the agents but the processing will not start until the generation of jobs is completed.
Then, the agents are able to sort their jobs based on the efficiency. To get different efficiencies
for the jobs we again consider jobs consisting of three tasks but for the payoff of a task we use

qt ∈ U [1, 20] (7.5)

and for the task’s capacity requirements we use

req(t) ∈ U [1, 10] (7.6)

Thus, it follows that the expected requirement for a task is 5.5. As we consider a system with
10000 jobs each consisting of 3 tasks, we have an expected total requirement of 165000 skill
units. Therefore, for the capacity of the agents we set capa = 165 to have a ratio of provided
and required skill units of 1.0 as we again consider a system with 1000 agents. Figures 7.4 and
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Figure 7.1: Percentage of completed jobs for different agent capacities.
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Figure 7.2: Percentage of jobs for which no capacity was left for different agent capacities.
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Figure 7.3: Comparison of agents having capacity of 30 for the adaptive and fully cooperative
case.

7.5 show the results of these experiments. As can be observed the percentage of completed jobs
is not influenced by the reasoning process. With about 82% at the end the same high level is
reached in both settings (cf. Figure 7.4). The main result of reasoning about the job-set can
be seen in Figure 7.4. If the agents consider the efficiencies of the jobs, the social welfare is
much higher than in the case where they do not reason about the efficiency. There is no large
improvement, but the difference is significant as the error-bars show.

As a conclusion, we claim that reasoning about the efficiencies increases the social welfare of
the system but has only marginal influence on the percentage of completed jobs. The point is that
the agent have to be enabled to reason about the jobs. They have to know about the jobs that are
allocated to them in the whole simulation step. In the case where the agents do not consider the
efficiency the jobs are generated and processed in one step. No knowledge is needed to process
such a high number of jobs. The achieved social welfare is only about 1% less than in the case
of knowing all jobs. So we claim that the effort that is needed to reason about the jobs does not
pay back.
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Figure 7.4: Percentage of completed jobs with and without reasoning about the job-set.
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7.4 Conclusion

In this chapter, we introduced capacity constraints to the considered multiagent system. We
showed how the formal model has to be extended and what properties the resulting formal model
has. The properties locality and completeness are fulfilled by the algorithms presented in Chap-
ter 3, which was proven in this chapter. We also proposed a slight change in the algorithm to
achieve correct task allocations.

In the experimental analysis we showed that the system can deal with capacity constraints
and that a ratio of 1.0—concerning the provided and required skills—is sufficient to produce
high levels of completed jobs. For the same ratio we showed that if the agents have much more
knowledge and know all jobs of a simulation step in advance they may reason about the jobs’
efficiencies in order to achieve a larger social welfare. For this case, we showed that there is no
great improvement compared to the costs of knowing the whole job set. Therefore, we claim
that the algorithm is able to produce high job completion rates and high levels of social welfare
without knowing the job set in advance.
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In this chapter, we deal with intelligent social networking strategies. In previous chapters, the
agents changed their neighborhood by randomly rewiring connections. The results showed that
one reason for non-processed jobs is that specific skills have been missing in the vicinity of
the agent. Thus, a new neighbor which provides this skill would be beneficial for the agent
instead of a randomly chosen agent. We are interested in investigating strategies that promote
the emergence of cooperation and that help the agents to fulfill high numbers of jobs.

The main results of this chapter are the following:

• Random selection strategy is outperformed by the skill-based and smart strategy.
• Skill-based and smart strategy reach higher levels of completed jobs.
• The convergence speed is much faster for the skill-based and smart strategy.
• Random selection and skill-based strategy need the set of all agents to be known to a

single agent (global knowledge).
• Only the smart strategy can be called local as no global knowledge is needed.

8.1 Advanced Strategies

The main reason for reaching a job completion rate below 100% in our approach is that for
most of the non-processed jobs the required skill was missing in the neighborhood of the agent.
Therefore, we propose some strategies for performing the social networking step.

Random Strategy The random strategy is the strategy used in previous chapters. It simply re-
places r randomly chosen uncooperative neighbors by r agents from the whole population.
If the number of uncooperative neighbors is less than r then all uncooperative neighbors
are replaced by the same number of randomly chosen agents from the population.

Skill-based Strategy In the skill-based strategy the agents replace neighbors with respect to
the skills in the agent’s vicinity. This means they use a history to record which skills have
been missing in the current simulation step. Then they choose agents as new neighbors
that provide these skills, or, if no skill was missing, that provide skills with minimal oc-
currence in their current neighborhood. As replaceable neighbors they choose those (un-
cooperative) neighbors that provide a skill that is very often present in the neighborhood.
This strategy is formalized in Algorithm 8.1, which is now described in detail.
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First, the agents calculate the set of missing skills MS that have not been provided by
their neighbors based on their history his. If this set is empty, i.e. all requests have never
been declined because of a missing skill, the agent selects the skill(s) with the minimal
occurrence in its neighborhood. Then, the agent calculates the set of skills MOS that have
maximal occurrence and the set of uncooperative neighbors UCMOS that have skills of
MOS. If the cardinality of this set is less then the number of neighbors r that should be
replaced then another set of agents is randomly selected from the agent’s neighborhood
with cardinality r−|UCMOS|. This set is called MISS. The agents that have to be replaced
are randomly selected from the set UCMOS or are all agents from UCMOS and MISS. The
set of agents ADD that should be added to agent a’s neighborhood are randomly selected
from the whole population but their skill sets have to contain at least one skill out of the
set MS. The last step is to replace all agents from REM by the set of agents from ADD.

Smart Replacement The smart strategy differs from the skill-based strategy in one aspect.
New neighbors are not arbitrary agents from the set of agents but they are neighbors of
the current neighbors. The idea is that they probably will cooperate with the agent as they
cooperated with an agent that is similar to itself, i.e. a current neighbor. The algorithm for
the smart strategy is given in Algorithm 8.2, which is described now in detail.
As can be seen the algorithm is similar to the former presented algorithm. The smart
strategy follows the skill-based strategy but there is another set of possible neighbors
POS created. This set contains all neighbors of neighbors, which provide at least one of
the skills of the set MS and that are no neighbors of agent a, yet. From this set the r new
neighbors are randomly selected.

Each of these strategies follows specific intentions. The random strategy is the easiest strat-
egy. The problem of that strategy is that no knowledge is used for selecting the neighbors that
are removed from the neighborhood or for the selection of the new neighbors. The agents need
access to the whole set of agents or have to use advanced selection strategies like gossig-based
peer sampling (Jelasity et al., 2004, 2007) to select randomly agents out of the partially observ-
able set of agents. The same holds for the skill-based strategy. However, this strategy considers
the requests that have been declined in the past because of missing skills. The intention is to
get new neighbors that have these skills and to remove (uncooperative) neighbors that are no
longer needed as their skills occur often in the agent’s neighborhood. The third strategy, the
smart replacement, does basically the same as the skill-based strategy but only takes the set of
neighbors of neighbors as possible new neighbors. Thus, this strategy is additionally intended
to care about the cooperation relationships as agents that are neighbors of that agent’s neighbors
will probably have ratings that lead to receiving help from them. This strategy follows a local
view as the set of all agents does not have to be known to the agents.

A commonality of all three strategies is that the agents do not care about having all possible
skills in their vicinities. For the random selection strategy this is obvious. For the other two
strategies the agents only care about those skills that have been requested by the tasks but which
could not be provided. Additionally, we slightly changed the condition of being satisfied for
the agents, which do not follow the random strategy. The previous condition for agent a being
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Algorithm 8.1 Skill-based replacement algorithm executed by agent a.
Input: the set of neighbors Na of agent a

number of neighbors to replace r
set of all agents A
history of missing skills his

1: procedure SKILLBASEDREPLACEMENT(Na, r, A, his)
2: MS← set of missing skills from the history his
3: if MS = ∅ then
4: MS← set of skills with min occurrence in neighborhood
5: end if
6: MOS← set of skills with max occurrence in neighborhood
7: UCMOS ← set of uncooperative neighbors b with skill set Sb ⊆ MOS
8: if |UCMOS| ≥ r then
9: REM← set of r randomly selected agents of UCMOS

10: else
11: MISS← set of r − |UCMOS| randomly selected agents of Na \ UCMOS

12: REM← UCMOS ∪MISS
13: end if
14: ADD← set of r randomly selected agents b of A \ Na with Sb ∩MS 6= ∅
15: Na ← (Na \ REM) ∪ ADD
16: end procedure

unsatisfied was
a /∈ Ea ∧ ∃b ∈ Na : (b, a) /∈ C (8.1)

which we changed to
a /∈ Ea ∧ ∃b ∈ Na : (b, a) /∈ C ∨ his 6= ∅. (8.2)

Both conditions make the agent a unsatisfied if it is not in its elite set Ea and if there is at least
one neighboring agent that would not cooperate with agent a. If the agent does not follow the
random strategy for the social networking step it is also unsatisfied if there is at least one request
which had to be declined in the current simulation step because of a missing skill. Thus, the
agent wants to get these skills into its vicinity. In the next section we will present experimental
results.

8.2 Experimental Results

The experiments were conducted with PrN = 0.01 as the probability for executing the social
networking step as we did in previous experiments and r = 1 agent is replaced in one social
networking step. The results are shown in Figures 8.1–8.3.
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Algorithm 8.2 Smart replacement algorithm executed by agent a.
Input: the set of neighbors Na of agent a

number of neighbors to replace r
history of missing skills his

1: procedure SMARTREPLACEMENT(Na,r,his)
2: MS← set of missing skills from his
3: if MS = ∅ then
4: MS← set of skills with min occurrence in neighborhood
5: end if
6: MOS← set of skills with max occurrence in neighborhood
7: UCMOS ← set of uncooperative neighbors b with skill set Sb ⊆ MOS
8: if |UCMOS| ≥ r then
9: REM← set of r randomly selected agents of UCMOS

10: else
11: MISS← set of r − |UCMOS| randomly selected agents of Na \ UCMOS

12: REM← UCMOS ∪MISS
13: end if
14: POS← {c ∈ Nb | b ∈ Na ∧ c /∈ Na ∧ Sc ∩MS 6= ∅}
15: ADD← set of r randomly selected agents of POS
16: Na ← (Na \ REM) ∪ ADD
17: end procedure

As can be seen, the percentage of completed jobs is drastically effected if the strategy for
social networking does not follow the random strategy (cf. Figure 8.1). In both cases—skill-
based strategy and smart strategy—we can observe, that the percentage of completed jobs grows
earlier and a bit faster than in the random case and the achievable level is significantly higher.
No significant difference is observable between the smart strategy and the skill-based strategy.

Figure 8.2 shows the percentage of jobs that had not been completed due to missing skills.
It can be seen that in all three setting the percentage grows. However, for the skill-based and
smart strategy we can observe that this percentage does not reach such a high level as if the
random selection strategy is used, which is about twice the high. This is due to the fact that
the agents reason about what skills the new neighbors should have. Nevertheless, it can happen
that an agent loses skills in its vicinity because that agent could cut the link by itself. There
is no negotiation about what links can be rewired. The percentage of uncompleted jobs due
to missing cooperative neighbors in Figure 8.3 shows that the agents following the skill-based
or smart strategy faster create cooperative groups. The reason is, that their satisfaction is also
effected by the skills in their vicinity and, thus, they tend to be unsatisfied as the agents following
the random strategy do not care about this fact.
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Figure 8.1: Percentage of completed jobs for different social networking strategies.
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Figure 8.2: Percentage of missing skills for different social networking strategies.
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Figure 8.3: Percentage of missing cooperative neighbors for different social networking strate-
gies.

8.3 Conclusion

We have presented different strategies for the social networking phase. Namely, the random
strategy, the skill-based strategy and the smart strategy. The skill-based and smart strategy con-
sider required skills in their vicinity in order to select new neighbors. The difference between
both strategies is that the smart strategy does not use any kind of global knowledge, whereas the
skill-based strategy needs to now which agents are in the system as the set of possible neighbors
is basically the whole population.

We have shown that the more advanced strategies—skill-based and smart strategy—lead to
nearly identical results. Both outperform the random strategy in speed and height of reachable
levels of completed jobs. However, the prize is the larger knowledge that is required to follow
these strategies. In both strategies, the required skills of tasks, that lead to rejected jobs because
of absence of that skill, have to be recorded. The smart strategy has the advantage that it can
be called a local strategy as only the neighbors of neighbors have to be known to the agents.
This can be achieved through message transfer and thus no global knowledge is used for this
strategy.
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9.1 Conclusion

In this thesis, we presented new local adaptation-based learning mechanisms that lead to high
levels of cooperation in an emergent way. No rules are encoded to the agents that they have to
cooperate in a certain way. The decisions to cooperate are solely based on similarities of agents
as it can be observed in human cooperative behavior.

We formally defined the considered multiagent system and a benchmark scenario that de-
scribes a job/task model in Chapter 3. The agents have to search for cooperative neighbors if
tasks of an assigned jobs require skills that are not provided by the agent. In the formal analysis
(Chapter 4) we considered the required neighborhood size in order to obtain a high probability
of having all required skills in the vicinity of the agents. Additionally, we analyzed the con-
vergence of the proposed learning algorithm concerning value propagation through the network.
We showed that the proposed algorithm has linear complexity in the number of neighbors from
the agents’ local view. In a rigorous experimental analysis in Chapter 5 we examined the influ-
ence of the mechanism’s parameters and showed that the approach is scalable and robust against
changes of the population size.

In Chapter 6, we considered different network structures and experimentally showed that
highly dynamical networks tend to degenerate to randomly generated networks. In order to have
a more realistic model, we extended the model in Chapter 7, where we introduced capacity con-
straints. We showed, that the approach can deal with restricted numbers of skills available to
each agent. The social networking, which is a core aspect of the proposed mechanism, was
examined in Chapter 8 where we presented different strategies to actively change the neighbor-
hood of agents. We presented that more advanced strategies which require more knowledge
than a random selection strategy perform best. However, the drawback of these strategies are the
knowledge requirements of a single agent.

To summarize, the main contributions of this thesis are:

• a new local adaptation-based learning approach
• approach inspired from social science based on agents’ similarities
• rigorous analysis—formally and experimentally—of the proposed mechanism
• insights into emergent cooperation based on local decisions
• simplicity, adaptivity and simple knowledge of the agents



154 Conclusion and Future Work

9.2 Future Work

For future work there are several directions that are worth to consider. The following extensions
seem to be most promising:

Computational Trust Mechanisms The decision to cooperate could be enriched with the
help of computational trust mechanisms. Besides the proposed mechanism based on
agents’ similarities, previous experiences with specific agents could be taken into account.
An agent could rate previous behavior of its neighbors and decline a request if this neigh-
bor had declined requests in the early past.

Reputation Mechanism For the selection of new neighbors a reputation mechanism seems
to be promising. If an agent selects another agent to replace an old neighbor the agent’s
reputation value could be taken into account. The agent could ask its neighbors if someone
has experiences with the other agent.

Mutual Networking Decisions In the proposed mechanism incoming connection requests
have to be answered positively. The agents are not allowed to decline a request. It would
be interesting if the agents would be able to decline based on some mechanisms, e.g.
trustworthiness or reputation. Negotiation about rewiring connections would also be an
interesting expansion of the approach.

Unreliable Agents As the proposition-values are a core aspect of the proposed algorithm one
could think about agents lying about their values. This could lead to agents exploiting the
mechanism to gain more cooperative neighbors. One possibility of exploitation would be
if an agent, that asks for help, transmits another value-vector in order to be sure to get
the other agent to cooperate. Another exploitation would be that an ideal agent—if it can
sense that another agents wants to adapt to it—could transmit a wrong value-vector in
order to not to have to cooperate with the adapting agent. It would be interesting to see if
the mechanism can deal with such additional aspects and what has to be changed to make
the approach to work with unreliable agents.

(Dynamic) Quality of Service In the proposed scenario each agent can handle tasks with the
same quality of service (QoS) and the QoS does not influence the achieved payoff for a
job. It would be possible to extent the model that QoS could differ on different dimensions.
One possibility would be that the quality of executing a task differs from agent to agent
but is constant for a specific agent over time. Then it would be the challenge of finding
good executers for the tasks. Another possibility would be to have changing QoS for a
single agent over time. The process of finding executers for the tasks would be enriched
by another challenge as the dynamics of quality-changes might not be predictable. Then it
would be interesting to find intelligent mechanisms that may help to receive a high average
value for the execution quality.

Node Failure One assumption of the considered approach is that tasks that have been allo-
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cated will never need a re-allocation as none of the nodes may become unreachable after
the allocation step. Thus, one could think of two different scenarios that may cause an exe-
cution to fail. A single node may be reachable but dead and, thus, could no longer execute
the tasks although the cooperation request was positively answered. The second aspect
could be that the network may change within the task allocation and processing step and
thus a node may no longer be locally reachable. Then, strategies have to be constructed
that help the system deal with such problems. One possibility would be that each agent
tries to prevent such cases by considering two different agents for the same task such that
the task could be send to the second agent if the first fails.

Additional Application Analysis In this thesis the proposed mechanism is solely tested in a
job/task allocation scenario. Additional applications could be studied in which the mech-
anism can be integrated. This would help to get more insights into the class of problems
to which the approach is applicable. Especially the properties of these problems would
be of great interest. Some other possible application scenarios would be peer-to-peer file
sharing system or the simulation of supply chain networks.
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