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Abstract

Static data-flow analysis reasons about behaviour of software without executing
it. A precise data-flow analysis transforms the program into context-sensitive,
flow-sensitive, and field-sensitive approximation of the software. It is challenging
to design an analysis of this precision efficiently. Context- and field-sensitive
data-flow analysis, if fully precise, is undecidable, and any model of such precision
cannot avoid an approximation.

This thesis presents a new data-flow approximation for context-, field- and flow-
sensitive data-flow analysis. The solution, called synchronized pushdown systems
(SPDS), solves precise distributive data-flow analysis problems by relying on two
pushdown systems, one system models field-sensitivity, the other one context-
sensitivity. The SPDS then only accepts results that are context- and field-
sensitive. SPDS approximates only in corner cases that are rare in practice: at
statements where both problems are satisfied but not along the same data-flow
path. Experiments comparing SPDS to the standard model for field-sensitivity,
k-limited access path, show that SPDS are almost as efficient as k-limiting with
k =1 although their precision equals to k = oo.

Static data-flow analysis needs to resolve pointer relations when data escapes
to the heap. Flows of pointers are difficult and costly to resolve because pointer
relations are non-distributive. Nevertheless, this thesis shows that pointer anal-
ysis can be solved by subdividing pointer relations into multiple distributive
computations, for each computation a SPDS can be consulted. Based on this de-
sign, the thesis presents the demand-driven pointer analysis BOOMERANG. Apart
from relying on efficiently coordinating multiple SPDS, BOOMERANG minimizes
it computational effort by only resolving the minimal part of pointer relations
necessary to answer a points-to query.

Another contribution of this thesis is IDE%, a generic and efficient framework
for data-flow analyses, e.g., typestate analysis or mining of application program-
ming interfaces (APIs). IDE¥ resolves pointer relations automatically and effi-
ciently by the help of BOOMERANG. This reduces the burden of implementing
pointer relations into an analysis. Further on, IDE# performs strong updates
which makes the analysis sound and precise.

Apart from the fundamental problem of finding the right balance between
precision and efficiency of a general static data-flow analysis, this thesis elaborates
on a concrete application of BOOMERANG and IDE# within a data-flow analysis
that detects complex security vulnerabilities. Applying this data-flow analysis
on large scale shows once more that synchronized pushdown systems enable a
promising compromise between efficiency and precision.






Zusammenfassung

Statische Datenflussanalysen analysieren das Verhalten von Software ohne die
Software dabei auszufiihren. Eine prézise Datenflussanalyse transformiert das
Programm in eine kontext-, fluss- und feld-sensitive Approximation der Software.
Eine Analyse dieser Prézision effizient zu gestalten und implementieren ist eine
Herausforderung. Die Ursache liegt darin, dass kontext- und feld-sensitive Daten-
flussanalyse, wenn sie vollstandig préazise sein soll, ein unentscheidbares Problem
darstellt. Daher miissen Approximierungen innerhalb des Modells auftreten und
die Analyse verliert an Prézision.

Diese Arbeit prasentiert eine neue Approximation fiir kontext-, fluss- und feld-
sensitive Datenflussanalysen. Die Losung, die wir mit synchronisierte Keller-
systeme (SPDS) bezeichnen, berechnet distributive Datenflussanalyse-Ergebnisse
préazise und effizient. SPDS stiitzt sich dazu auf zwei Kellersysteme. Ein System
modelliert Feld-Sensitivitat, das andere Kontext-Sensitivitdt. Das SPDS akzep-
tiert ein Ergebnis nur, wenn beide Systeme das Ergebnis akzeptieren. SPDS
verliert Prézision nur in Spezialfillen, die in der Praxis selten sind: in Féllen,
in denen beide Systeme das Ergebnis akzeptieren, aber nicht entlang des gle-
ichen Datenflusspfades. Experimente, die SPDS mit dem Standardmodell fiir
Feld-Sensitivitét (k-limited Access Path) vergleichen, zeigen, dass SPDS fast so
effizient sind wie k-limiting mit einem Wert von k = 1, obwohl SPDS so genau
sind wie k-limiting mit k£ = oo.

Eine statische Datenflussanalyse muss den Heap modellieren und Pointer-
Beziehungen auflésen. Pointer-Beziehungen sind nicht iiberall distributiv und
daher ineffizient zu berechnen. Diese Arbeit zeigt, dass Pointer-Beziehungen
in mehrere distributive Teilprobleme unterteilt werden koénnen. Jedes einzelne
Teilproblem kann effizient mit SPDS gelost werden. Basierend auf diesem De-
sign stellt diese Arbeit die bedarfsorientierte Pointer-Analyse BOOMERANG vor.
BOOMERANG minimiert den Rechenaufwand, indem es nur den minimalen Teil
der Pointer-Beziehungen berechnet.

Weiterhin présentiert diese Arbeit IDE, ein generisches und effizientes Rah-
menwerk fiir Datenflussanalysen, in dem Analysen fiir Typestate und das Ex-
trahieren der Benutzung von Programmierschnittstellen realisiert werden kann.
IDE“ 16st Pointer-Beziehungen automatisch und effizient mit BOOMERANG auf.
AuBerdem fithrt IDE* starke Updates durch, diese Updates fithren zu priizisen
und vollstdndige Analyseergebnissen.

Mit einer Datenflussanalyse zum automatischen Auffinden von Sicherheitss-
chwachstellen bringt diese Arbeit BOOMERANG und IDE% in die Anwendung. In
einem grof} angelegten Experiment wird gezeigt, dass synchronisierte Kellersys-
teme einen vielversprechenden Ansatz fiir Datenflussanalysen liefern.
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1 Introduction

Static program analysis reasons with the semantics of computer programs with-
out actually executing them and has a broad range of applications. Compil-
ers rely on static program analysis to find code transformations optimizing the
program’s performance. Bug finding frequently uses static analysis to discover
unintended behaviour, for instance, inconsistent program states originating from
data races [41},/104], program crashes due to unchecked null pointers derefer-
ences [69] or unhandled exceptions raised by misused application programming
interfaces (APIs) [27,[39]. Furthermore, it is also proficient in the detection of
security vulnerabilities where static analysis discloses privacy leaks [5}31], SQL
injections [59,62], and executions of untrusted code [52].

Static analysis takes the program’s code, either in source or in its compiled
form, abstracts the code into a model and checks the model against the property
of interest. For instance, a static data-flow analysis detecting privacy leaks traces
the flow of sensitive data, e.g., passwords or credit card data, through the model
and reports data-flows that are unintended, e.g., when the sensitive data is logged
to the console. As the static analysis only approximates the actual code, a finding
reported by the static analysis may not constitute a leak at runtime, i.e., the
analysis imprecisely reports a false positive. The closer the model of the static
data-flow analysis resembles the actual data-flow during program execution, the
less false positives an analysis reports.

There are various design dimensions of a static analysis fine-tuning its preci-
sion. A data-flow analysis can be intra- or interprocedural. In the former, effects
of a call site on a data-flow are over-approximated, while in the latter, effects
are precisely modelled by analyzing the called method(s). Additionally, an inter-
procedural data-flow analysis is precise if it is contexrt-sensitive, which means the
data-flow analysis correctly models the call stack and the data-flow returns to
the same call site it enters the method. A design dimension for object-oriented
languages is field-sensitivity. A field-sensitive analysis reasons precisely with a
data-flow that escapes to the heap when it is stored within a field of an object.

Apart from being precise, a static analysis is also expected to guarantee sound-
ness. For example, a compiler only applies a code optimization if the optimization
does not change the program’s behaviour under any given user input. An analysis
detecting unchecked null pointer dereferences better finds all critical dereferences
within the program, a single false negative, i.e., if the analysis misses reporting
an unchecked flow, it may lead to a program crash.

In practice, no static analysis can find all optimizations, all bugs, or all vul-
nerabilities within a program (no false negatives) and detect those with perfect
precision (no false positives). False positives and false negatives are the fun-
damental consequence of Rice’s theorem [79], which states that checking any

11



1 Introduction

semantic properties of a program is an undecidable problem. Consequently, any
model for static analysis is forced to over- or under-approximate the actual run-
time semantics of the program. Over-approximations add false positives to the
result and reduce the precision of the analysis, under-approximations introduce
false negatives and lower the analysis’ recall.

Apart from the effect on precision and recall, the approximation is also the in-
fluencing factor on the performance of a data-flow analysis. An interprocedural
data-flow is less efficient to compute in comparison to an intraprocedural analy-
sis. Adding context- or field-sensitivity to an interprocedural analysis introduces
additional complexity within the model and negatively affects the computational
effort. Therefore, balancing precision, recall, and performance of a static analysis
is a tedious task.

As a first contribution, this thesis proposes a new data-flow model that bal-
ances precision and performance while retaining the analysis’ recall. The solution,
called synchronized pushdown systems (SPDS), models a context-, field-, and
flow-sensitive data-flow analysis taking the form of two pushdown systems [21].
One system models context-sensitivity, and the other one models field-sensitivity.
Synchronizing the data-flow results from both systems provides the final results of
the data-flow analysis. A context- and field-sensitive analysis is undecidable 73]
and forces SPDS to over-approximate. SPDS, though, are specifically designed
to expose false positives only in corner cases for which we hypothesize (and con-
firm in our practical evaluation) that they are virtually non-existent in practice:
situations in which an improperly matched caller accesses relevant fields in the
same ways as the proper caller would.

Pushdown systems solve context-free language reachability and have been stud-
ied intensively [11,21,48,50,|76]. Therefore, SPDS are efficiently solvable by re-
lying on existing efficient algorithms. SPDS are a replacement for the k-limited
access-path model [18]. A k-limited access path abstracts how an object is deref-
erenced from the heap and consists of a local variable entailed by a sequence
of field accesses of which the length is at most k. The length of the sequence
is limited to k to prevent infinite chains, e.g., when analyzing recursive data-
structures. The access path model over-approximates when the field sequence
exceeds a length of k. k-limiting is the standard model for field-sensitive data-
flow analysis [42] and is widely used [5,6}(15,/17,/18,24}36100,101]. Analyses with
low values of k, e.g., k = 1,2,3, are efficient to compute but quickly introduce
imprecision into the results, higher values of k make the analysis precise but also
affect the analysis time exponentially. In our practical evaluation, we compare
k-limiting to SPDS and demonstrate that SPDS are almost as efficient as k =1
while being as precise as k = co.

The second contribution of this thesis tackles points-to analysis. Two distinct
variables may access or point to the same object (or memory location), in which
case, the two variables are aliased. A field-store statement that updates the con-
tent of a field of the object via one variable reflects on to the second aliased
variable as well. Updating the field of the aliased variable renders points-to anal-
ysis a non-distributive problem [74,90]. SPDS only solve the more restrictive
distributive problems and cannot compute pointer relations. Despite this fact,

12



with BOOMERANG, we present a demand-driven pointer analysis that coordi-
nates multiple SPDS and efficiently computes pointer relations by subdividing
pointer relations into their distributive and non-distributive parts. Whole pro-
gram points-to analysis computes points-to sets, i.e., the set of potential runtime
memory locations of a variable, for all pointer variables in the program. Unfortu-
nately, whole program points-to analysis, if precise, is difficult to scale. Therefore,
BOOMERANG computes information on-demand by queries (a pointer variable at
a program statement). Based on the query, BOOMERANG computes the minimal
data-flows necessary to construct the points-to set for the query variable. We
compare BOOMERANG to two existing demand-driven pointer analyses [93,/104]
and are able to show that BOOMERANG is more precise and efficient.

As a third contribution of this thesism we present IDE¥, a generic and effi-
cient pointer-tracking framework for data-flow analyses. Technically, IDE% relies
on BOOMERANG to compute pointer relations efficiently and extends the push-
down systems of SPDS using weights |75]. With different weights, IDE* can be
instantiated to solve different data-flow problems. We present weights for the
detection of misuses of an API, also called a typestate analysis, and weights for
an analysis to mine API usage patterns [109]. For efficiency, where possible,
IDE® propagates aliases in a distributive manner. IDE% performs sound strong
updates. A weight that is updated on a variable, e.g., an API call changes the
typestate of the underlying object, the weight update is also reflected to all other
aliased variables. We evaluate an IDE®-based typestate analysis in comparison
to a state-of-the-art one [27], where we could measure analysis speed-ups between
3.9x to 99x at the same precision.

Finally, we discuss an IDE* and BOOMERANG-based analysis for the detection
of security vulnerabilities that result from incorrect APT usages of the Java Cryp-
tographic Architecture (JCA), a common library for cryptography. We apply the
analysis on large scale and run it on 152,996 artifacts of the Maven Centra]ﬂ soft-
ware repository and conclude that the analysis computes results efficiently.

To summarize, the main contributions of this thesis are:

the concept of synchronized pushdown systems, a novel approximation to
context-, field-, and flow-sensitive data-flow analyses,

the precise on-demand pointer analysis BOOMERANG that computes points-
to set and all aliases,

the efficient and customizable data-flow framework IDE%, and

a thorough practical evaluation of the concepts, analysis and frameworks.

This thesis is structured as follows. Chapter [2] introduces to two common
data-flow analysis problems that motivate this work. The chapter describes
taint and typestate analysis for readers unfamiliar to common terms of static
analysis. Next, the chapter Background (Chapter |3) introduces common terms

"https://mvnrepository.com/repos/central
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1 Introduction

of static data-flow analysis and details on Interprocedural Distributive Environ-
ment (IDE) and Weighted Pushdown Systems (WPDS), two different but closely
related algorithms solving interprocedural data-flows. Chapter [4] presents syn-
chronized pushdown systems, discusses the challenge of undecidability, SPDS’
solution to it and elaborates on a worst-case complexity analysis. In Chapter
this thesis presents BOOMERANG and provides details on how the combination
of multiple forward and backward directed SPDS compute precise pointer in-
formation on-demand. Further on, the chapter contains a thorough practical
evaluation of BOOMERANG. The chapter concludes by discussing related work
on pointer analysis. Chapter |§| presents the data-flow framework IDE* as an ex-
tension to BOOMERANG using weights, and explains how IDE# performs strong
update. We present an instantiation of IDE* for a typestate analysis and an
instantiation of IDE* to mine API usage pattern. Further on, this work evalu-
ates and compares an IDE*-based typestate analysis. In Chapter |7 this thesis
discusses CryptoAnalysis that builds on BOOMERANG and IDE? and present
the experiment and evaluation on Maven Central. In Chapter 8, we compare
and correlate different metrics of data-flow analysis regarding their impact on
the analysis time. The focus of this chapter is a detailed practical comparison
of SPDS, access graphs, and access paths based on the analysis client discussed
within Chapter [5] and Chapter [6] The practical comparison completes the pure
theoretic view of SPDS in Chapter [, The thesis concludes in Chapter [9

14



2 Motivating Examples

In this chapter, we discuss a general motivation for static data-flow analyses.
We highlight two types of static data-flow: taint analysis and typestate analysis.
While taint analysis is primarily used to detect injection flaws and privacy leaks,
typestate analysis detects resource leaks and misuses of APIs. The research that
we present in this thesis is fundamental, but applies to both types of data-flow
analyses.

2.1 Taint Analysis

Injection flaws are the most predominant security vulnerabilities in modern soft-
ware. Injection flaws occur when untrusted data flows to a command or a query
that is interpreted and executed. In 2017, OWASPD lists Injections as the top
category of vulnerabilities with the highest risk of being exploited. A typical ex-
ample of an injection attack for a database-backed software system is a SQL in-
jection. If a software system contains a SQL-injection vulnerability, the database
can be compromised and manipulated, and the system is no longer trustworthy.
An attacker can read, add, and even remove data from the database.

A system is vulnerable to a SQL injection attack, if the system does not prop-
erly sanitize user input and uses the input to execute a dynamically constructed
SQL command. Figure[2.1]demonstrates a minimal back-end of a web-application
vulnerable to a SQL injection. The back-end maps each incoming request to a
call to doGet()E] within the application and hands over a HttpServletRequest
object that represents the request with its parameter. Method doGet () loads
the user-controllable parameter "data" from the request object in line and
stores the String as value into a TreeMap. The TreeMap is maintained as field
requestData of the Application object.

Assume the application to persist the map to the database at a later time of
execution by calling writeToDatabase. The method writeToDatabase dereferences
the field this.requestData to variable map in line [20] and iterates over all entries
of map. For each entry, it constructs and executes two SQL queries (calls in
line [26| and . The first query string only includes a key of the map, whereas
the second query contains both, the key and the value of each map’s entry. As
the value of the map contains untrusted data, the application is vulnerable to
a SQL injection attack in line which executes the query string contained in
variable keyValueQuery. With a correct sequence of characters, the attacker can

"https:/ /www.owasp.org/
2Throughout this thesis, a term ending in () indicates a method. If unambiguous, we omit
the parameters of the method.
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2 Motivating Examples

1 class Application{

2 Map<String,String> requestData = new TreeMap<>();

3  Connection conn = ...;

4

5

6 /#* Entry point to the web application.

7 * The HttpServletRequest object contains the payload
8 * of an incoming request.

9 x/

10 void doGet (HttpServletRequest req, ...){

11 String val = req.getParameter("data"); //Untrusted data
12 Map<String,String> map = this.requestData;

13 map.put("data", val);

14

15
16 /*% Egzecutes two SQL commands to store the content of
17 * the Map this.requestData to the database.

18 */

19  void writeToDatabase(){

20 Map<String,String> map = this.requestData;

21 Statement stmt = this.conn.createStatement();

22 for (Entry<String,String> entry : map.getEntries()){
23 String key = entry.getKey();

24 String value = entry.getValue();

25 String keyQuery = "INSERT INTO keys VALUES (" + key+ ");";
26 stmt . executeQuery (keyQuery); //No SQL injection

27 String keyValueQuery = "INSERT INTO " + key +

28 " VALUES (" + value + ");";

29 stmt . executeQuery (keyValueQuery); //SGUL injection
30 }

31}

32 }

Figure 2.1: A web application vulnerable to a SQL injection attack.

16



2.1 Taint Analysis

end the SQL insert command and execute any other arbitrary SQL command.
For example a command to delete the whole database.

Static data-flow analysis is an effective technique in preventing such injection
flaws. However, detecting the SQL injection flaw in the example by means of a
data-flow analysis is challenging to implement efficiently if the analysis is required
to be precise and sound at the same time (i.e., no false positive and no false
negatives). A precise and sound abstraction for the heap is required to model
the data-flow through the map.

Injection flaws are detected by a static taint analysis, a special form of data-
flow analysis. In the case of a taint analysis for SQL injections, a taint is any
user-controllable (and hence also attacker-controllable and thus untrusted) input
to the program. Starting from these inputs, a taint analysis models program exe-
cution and computes other aliased variables that are also tainted, i.e., transitively
contain the untrusted input. When a tainted variable reaches a SQL query, the
analysis reports a tainted flow. For the code example in Figure [2.1] variable val
in method doGet () is tainted initially. To correctly flag the code as vulnerable,
the static taint analysis must model variable value in line [24] to be aliased to val.

A data-flow analysis trivially detects the alias relationship when the analy-
sis uses an imprecise model. For instance, the field-insensitive model taints the
whole TreeMap object when the tainted variable val is added to the map in line [I3]
While field-insensitivity is trivial to model, the analysis results are highly impre-
cise. Not only are the values of the map tainted, but also any key and the
field-insensitive analysis imprecisely marks the constructed SQL query in line
as tainted. Therefore, a field-insensitive analysis reports a false positive, as it
marks line [26] to execute an unsanitized SQL query.

Field-sensitive data-flow analyses track data-flows through fields of objects
and are more precise than field-insensitive analyses. A field-sensitive analysis
only reports a single SQL injection for the example. However, the detection of
the alias relationship between the variables value and val is more than non-
trivial for a field-sensitive static analysis. The analysis must model the complete
data-flow through the map, which spans from the call to put () in line 13| to the
call in line and involves several accesses to the heap. For instance, at the
call to put () in line the value val escapes as second argument to the callee’s
implementation of the method put () of the class TreeMap.

Listing shows an excerpt of the callee’s code taken from the Java 8 im-
plementatiorﬂ of TreeMap. The class contains an inner class TreeMap.Entry that
lists three fields (parent, right, and left), each of type TreeMap.Entry. Method
put() creates a TreeMap.Entry that wraps the inserted element (value). The
TreeMap.Entry is then used to balance the tree (call to fixAfterInsertion() in
line . The method fixAfterInsertion() iterates over all parent entries and
calls rotateLeft () to shift around elements within the tree (line . The latter
method stores to and loads from the fields parent, right, and left of the class
TreeMap.Entry.

*http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/
java/util/TreeMap. java
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33 public V put(K key, V value) {

34  TreeMap.Entry<K,V> parent = //complexz computation done earlier
35 TreeMap.Entry<K,V> e = new TreeMap.Entry<>(key, value, parent);
36  fixAfterInsertion(e);

37 }

38 private void fixAfterInsertion(Entry<K,V> x) {

39 while (x != null && x != root && x.parent.color == RED) {

40 //removed many branches here...

41 x = parent0f(x);

42 rotateLeft (parentOf (parent0f (x)));
43}

44 }

45 private void rotatelLeft(TreeMap.Entry<K,V> p) {
46 if (p != null) {

47 TreeMap.Entry<K,V> r = p.right;

48 p.right = r.left;

49 if (1.right != null) l.right.parent = p;

50 //removed 8 lines with similar field accesses
51 r.left = p;

52 p.parent = r;

53}

54 }

Listing 2.1: Excerpt code example of TreeMap which is difficult to analyze
statically.

The field-sensitive static taint analysis tracks variable value, which is the
second parameter of method put(). To cope with heap-reachable data-flows,
field-sensitive analyses commonly propagate data-flow facts in the form of access
paths [5,[6}/15,(17,/18},241|36},100,|101]. An access path comprises a local variable
followed by a sequence of field accesses, and every field-store statement adds
an element to the sequence. The while-loop of fixAfterInsertion (line in
combination with the three field stores (lines and within the method
rotateLeft () represent a common code pattern’|that leads to the generation of
access paths of all combinations contained in the set T = {this. f1.fa.:. f.value |
fi € {right,left,parent},n € N}. The data-flow analysis reports the variable
value of method writeToDatabase() to alias to variable val of method doGet ()
only if the correct access path exists in the respective set T' of the statements
retrieving the value from the map (getEntries() in line and getValue() in
line .

The set of data-flow facts 1" is unbounded. Because most static data-flow
algorithms require a finite data-flow domain, they typically use k-limiting to limit

4Recursive data structures, for instance LinkedList and HashMap, generate such patterns.
Additionally, using inner classes provokes these patterns as the compiler automatically stores
the outer class instance within a field of the inner class.
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the field-sequence of the access paths to length &k [18]. When an access path of
length larger than k is generated, the analysis conservatively over-approximates
the (k +1)*" field. Therefore, not only will the field value of a TreeMap.Entry of
the map be tainted, but any other field will be tainted as well. For example, any
key inserted into the map imprecisely is tainted as TreeMap.Entry has a field key.
For this particular example, infinitely long field sequences are generated and for
any value of k, k-limiting imprecisely reports key to alias to value.

Access graphs represent one approach that avoids k-limiting [29,45]. They
model the “language” of field accesses using an automaton. Access graphs rep-
resent the set T finitely and precisely. However, just as access paths, also access
graphs suffer from the state-explosion we show in Listing In the illustrated
situation, the flow-sensitive analysis must store a set similar to 7' (not necessarily
the same) of data-flow facts, i.e., access graphs, at every statement, and poten-
tially every context where a variable pointing to the map exists. Given the large
size of T, computing the data-flow fixed-point for all these statements is highly
inefficient, and the use of access graphs does not improve it.

The solution of the synchronized pushdown systems that we present in this
theses does not suffer from the state explosion, because a pushdown system
efficiently represents millions and even infinitely many access paths in one concise
pushdown automaton holding data-flow results for all statements. We discuss
this in more detail in Chapter

2.2 Typestate Analysis

A typestate analysis is a static data-flow analysis used, for instance, to detect
misuses of APIs and is capable of detecting erroneous API uses at compile time,
i.e., before execution. Typestate analyses use an API specification, mostly given
in the form of a finite state machine (FSM) encoding the intended usage protocol
of the API. Based on the specification, the analysis verifies the usage of the API
within the code. For example, before an object is destructed, it must be in a
state marked as accepting state within the FSM.

The API of the type java.io.FileWriter shipped with the standard Java Run-
time is a textbook example[ﬂ of an API for which a typestate analysis is helpful in
preventing resource leaks. The API can be used to write data from the program
to a file on the disk.

To use the API, the developer must first construct a FileWriter by supplying
a File object that the FileWriter shall write to. Calling the method write on
the FileWriter object with the respective data as argument tells the FileWriter
which data shall be written into the File. Writing the content of a file to disk is
an expensive operation delegated to the operation system and the API delays the
respective system calls to the close() method of the FileWriter object. The API
assumes the close() method to be called exactly once prior to the destruction
of the object. If the user of the API does not call close(), the file remains open.

°In Java 7, try-with-resources blocks were introduced to automatically close and release
file handles. We assume the developer does not use these syntax elements.
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write

<init> //I\ write SWQ close @
Q==
close

Figure 2.2: The API usage pattern encoded as finite state machine for the class
java.io.FileWriter.

55 class Example{

56 FileWriter writer;

57  public void foo() throws IOException {
5

58 File file = new File("Data.txt");
59 this.writer = new FileWriter(file);
60 bar();

61 this.writer.close();

62 3}

63 }

Figure 2.3: Simple, but challenging program to analysis for a typestate analysis.

The file resource is blocked by the process, and other processes may not read
and write the same file and the program has a resource leak. Additionally, data
is never written to the file as the output is only flushed to the file upon calling
close().

Figure[2.2]shows the finite state machine that represents a correct usage pattern
for the API. The state labeled by I is the initial state. The transition into this
state is labeled by <init> and refers to the constructor of a FileWriter object.
The accepting states are the states I and C, the latter is the state in which the
FileWriter object is correctly closed. All transitions into the C state are labeled
by close. The state machine lists a third state (W) that the object switches into
after a write call. In this state, data has been written to the FileWriter object
but not yet persisted to the actual file on disk. Therefore, it is not an accepting
state.

The program in Figure shows a code snippet that uses the API. The code
constructs a FileWriter object and stores it into field writer of the Example
object. After method bar () is called, the field writer is loaded and the contained
FileWriter object is closed in line

One challenge of a typestate analysis is to perform strong updates when the
state of an object changes. At the close() call in line [61] it is not clear which
actual object is closed. If method bar() allocates a new FileWriter and over-
writes the field writer, the FileWriter allocated in line remains open and
the typestate analysis cannot strongly update the state of the latter object. If
the analysis detects only a single object to ever be pointed to by field writer
at statement a strong update can be made. However, the typestate analysis
suddenly requires precise points-to information, which is notoriously challenging
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2.2 Typestate Analysis

to obtain efficiently.

Points-to analysis computes points-to information. Despite much prior effort,
it is known that a precise points-to analysis does not scale for the whole pro-
gram [58]. Instead, the typestate analysis only requires points-to information for
a rather small subset of all pointer variables, namely the variables pointing to
objects that the FileWriter is stored within.

In Chapter [5| we present BOOMERANG, a demand-driven, and hence efficient,
points-to analysis that computes results for a query given in the form of a
pointer variable at a statement. BOOMERANG is precise (context-, flow-, and
field-sensitive). We also present the BOOMERANG-based data-flow framework
IDE* in Chapter @ a framework that is powerful enough to encode a typestate
analysis that performs strong updates.
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3 Background

In this chapter, we discuss the necessary background and terminology to un-
derstand this thesis. We define the semantics of the programs that we analyze
and provide a brief overview on data-flow frameworks (Section that describe
standard techniques and concepts in static analysis.

Our work is based on weighted pushdown systems (WPDS) [75]. Originally,
WPDS stem from the domain of model checking and not from the domain of data-
flow analysis. WPDS solves data-flow problems equivalent to Inter-procedural
Finite Distributive Subset (IFDS) problems [74] and Inter-procedural Distribu-
tive Environment (IDE) problems [80]. WPDS encodes the data-flow results in
the form of an automaton, whereas algorithms solving IFDS and IDE problems
construct a directed labelled graph, called the exploded supergraph. Within this
thesis, we switch between the automaton and graph representations where it
eases the presentation. Therefore, in this chapter, we also thoroughly explain
the correspondence between WPDS and IFDS and IDE.

3.1 Program Semantics

We start this section by providing a definition of the semantics for the program
that the static analysis operates on. We assume the code to be in three-address
format, which means every statement has at most three operands. Table lists
all statements whose semantics our static analysis models.

There are allocation sites, x < new. An allocation statement constructs a new
object and assigns it to a local variable. There are local assignment statements,
x < y. Local assignment statements copy the reference to the object stored in
local variable y to x.

A call site is a statement of the form y < m(p), where m is a called methodEI
and p is the argument to the method. The call site may store a return value
of the called method in the variable y. For a simpler formal representation, we
restrict any method call to be static and to have a single parameterE] A virtual
call that invokes a method on an object can be formally transformed in a static
method call where the object instance flows as parameter to the static method.

A method returns a value via a return site, a statement return z. It returns
the reference stored in variable x to the variable y of a call site.

The remaining statements involve fields. In the three-address format, every
statement contains at most one field reference. There are field store and field

Throughout this thesis, we assume to have access to a pre-computed call graph that is con-
sulted in the case of dynamic dispatch.
20ur implementation handles call sites with multiple arguments as well as non-static calls.
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Table 3.1: Three-address code that the analysis handles.

Statement Notation
Allocation site T < new
Local assignment T <y
Call site y < m(p)
Return statement return x
Static field store Af <y
Static field load x < A.f
Non-static field store r.f<y
Non-static field load x<y.f
Array store of index i z[i] <y
Array load of index i x < yli]

load statements, each of which exists in static and non-static form. Let F be
the set of all fields of the classes of a program. A static field store has the form
A.f < y and assigns the reference stored in variable y to the static field f of class
A. A static field load has the form x < A.f and loads from the static field f of
class A and stores the reference in local variable x.

Non-static field-store and load statements are fundamental for this thesis and
we explicitly highlight their definition.

Definition 1. A (non-static) field-store statement is a statement x.f =y € S.
The variable x € V is called the base variable of the store, y € V the stored
variable and f € F the stored field.

Correspondingly, a field-load statement is defined as follows.

Definition 2. A (non-static) field-load statement is a statement of the form
y = x.f € S. The variable x is called the base (of the load), variable y is the
loaded variable and field f the loaded field.

The work we present in this thesis is array-insensitive, i.e., we model array
store (x[i] < y) and load statements (z < y[i]) of some index i as non-static
field store and load statements to a synthetic field ARRAY e F. This model
disregards the index i of the access and all elements of the array are considered
the same.

3.2 Data-Flow Frameworks

Static data-flow analysis originates from the need for program optimization, op-
timizations that are nowadays performed by most compilers such as dead-branch
elimination or removal of unused variables. These program optimizations may
clearly not break or change the functionality of the optimized code. Due to this
assumption, an optimization may only be made, if it is a valid optimization for
all paths of the program.
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This motivated the design of a general data-flow framework that Kildall pro-
posed first in 1973 [46]. The framework requires the following inputs: (1) a
control-flow graph C representing the order of execution of the statements (S)
of a procedure, (2) a data-flow domain D consisting of data-flow facts (d € D)
that abstracts concrete runtime elements (e.g., integer values), (3) a data-flow
fact dg € D that represents the abstract state at the beginning of the procedure,
(4) flow functionsﬂ fs:D — D for each statement s € S of the procedure, and
(5) a meet operator M:D x D — D that combines two data-flow facts to one fact
when both meet at control-flow meet points. The goal of Kildall’s framework is
to compute the meet-over-all-path solution (MOP), which for a statement n of
the procedure is defined as:

MOP(n)= n fPem(dy) e D.
p(e,n)eC

Here, p(e,n) is a control-flow path between the entry statement to the pro-
cedure e and statement n. Say the path p(e,n) has the form (e, so,...,Sm,n),
then the function fP(¢™) is the composition of flow functions along the path, i.e.,
frlen) - feofsyo -0 fs,. 0 fn. Due to loops, a procedure may have infinitely many
control-flow paths and the M OP is in general uncomputable. Instead, Kildall
suggests an iterative and decidable algorithm to compute the mazimal fixed-point
solution (M FP):

MFP(e) = do
MFP(n) = onr fn(MFP(m)) ¢ D.

m,n

The initial maximal fixed-point for the entry point e is dy and for any control-flow
edge (m,n) € C, i.e., m is a predecessor statement of n, the iterative algorithm
applies the flow function f, to the fixed point of any predecessor M FP(m)
and merges the results. We say, the data-flow fact propagates from m to n.
For monotone flow functions, the M F P solution over-approximates the MOP
solution.

Kildall’s framework establishes a generic solution for intra-procedural data-flow
analysis. Intra-procedural analysis ignores calls to other procedures completely,
unless explicit models for the procedures are specified in the flow functions.

Inter-procedural analysis overcomes the effort of manually modeling the effects
of a call for a data-flow analysis. An inter-procedural analysis can be context-
sensitive or context-insensitive. When a data-flow fact enters a method via a call
site ¢ (the context), the resulting data-flow fact M F P(exit) at the exit statement
of the callee method must return to the same context c. If the M F P(exit) returns
to any other call site, the analysis is context-insensitive.

A context-insensitive analysis contains data-flow paths that cannot be executed
at runtime. These paths are knows as inter-procedurally unrealizable paths and
make an analysis imprecise as data-flows computed along such paths are false
positives. For programs written in object-oriented languages, data-flow analyses

3Originally called gen and kill functions.

25



3 Background

that are context-insensitive are too imprecise to report meaningful results [56,/64].
Two famous approaches to inter-procedural context-sensitive data-flow analysis
are the call-strings approach and the functional approach [84].

For an analysis that implements the call-strings approach, each data-flow fact
carries a (finite) sequence of contexts, the call string. The call string of the
data-flow fact resembles the execution stack frame. A data-flow fact that enters
a method via a call site ¢ pushes the call site (the context) to the string of the
respective fact. Hereby, the data-flow fact remembers the call site it returns
to, once the fact reaches the exit statement of a method. When the data-flow
fact flows back to the call site, it pops the call site from the call string. The
call string approach has two main drawbacks. First, methods are potentially
analysed multiple times, once for each individual context call string, no matter if
the same data-flow information has already been propagated (under a different
call string). Second, the call string must be finitely limited to handle recursion,
once the limit is hit, the analysis is context-insensitive. In practice, limits of
length 1 to 3 are standard to achieve scalable solutions [564/61].

The functional approach constructs functional method summaries. A summary
models the net transformation of a data-flow fact from the entry to the exit point
of a method. The summaries are call-site independent, i.e., the data-flow fact may
not contain caller specific information. This allows re-applying summaries at any
call site. Yet, the construction of functional summaries is difficult. A summary
outlines the transformation of a data-flow fact of some method m. Method m
may call another method n, and the summary must include the effect of calling n
within m. In general, the summary of any method called by m must be computed
prior to the computation of the summary for m. Therefore, most analyses that
use the functional approach are bottom-up [19,24,33]. A bottom-up analysis
starts at the leaf methods of the call graph and constructs generic summaries
based on abstract input parameters. This approach is opposed to top-down that
starts at entry points of the call graph (e.g., the main method). It is a challenge for
bottom-up analyses to keep the summaries as generic as possible while reducing
the amount of case splitting necessary when the summary is applied under a
concrete context.

The latter motivates hybrid approaches [70,|107] that perform top-down and
bottom-up analyses at the same time, with the goal to restrict the amount
and the complexity of the generated summaries. With the extensions made by
Naeem [68], IFDS [74] constructs summaries on-the-fly and can be considered a
hybrid functional approach.

3.3 The IFDS Algorithm

The algorithm for solving Inter-procedural Finite Distributive Subset (IFDS)
problems [74] is an efficient fixed-point algorithm that can be used to define a
flow- and context-sensitive data-flow analysis. Internally, IFDS transforms the
data-flow analysis into a reachability problem over a graph. IFDS requires a
supergraph and flow functions as input. A supergraph is the intra-procedural
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control-flow graph of the analyzed program (graph C' of Kildall’s framework)
enriched by inter-procedural control-flow edges between caller and callees. The
nodes of the supergraph are program statements (S), and edges between them
model the control-flow. The flow functions are data-flow problem dependent
and describe the effect of each statement on a data-flow fact. Formally, for a
statement s € S, a flow function has the form fs: D — £(D), i.e., a flow function
receives a data-flow fact that holds before s as input and outputs a set of data-
flow facts that hold after the statement. The format of the flow functions differ
from Kildall’s flow functions, because IFDS restricts the meet operator to be set
UNLON.

From the supergraph and the flow functions, IFDS generates the exploded su-
pergraph, referred to as ESG. Each node (d, s) of the ESG is a pair of a statement
of the program, s € S, and a data-flow fact d € D of the analysis problem-specific
data-flow domain ID which has to be finite for IFDS. The ESG contains a directed
edge from node (dj,s) to (da,t), if ¢ is a control-flow successor statement of s,
and if the result of the flow function application for statement s to d; contains
dg, i.e., dg € fs(dl)

IFDS is a worklist algorithm and constructs only the relevant part of the ESG.
Whenever a new node (d1, s) in the ESG is generated, the data-flow fact is prop-
agated to all control-flow successor statements ¢ of the statement s. Hereby, the
algorithm successively generates new ESG nodes for which the flow functions are
re-applied. This process is repeated until no more new ESG nodes are generated,
i.e., until a fixed-point of the nodes of the ESG is reached.

As an inter-procedural data-flow analysis, IFDS composes data flows across
method boundaries and distinguishes between four different types of flow func-
tions. There are two types of intra-procedural flow functions and two types of
inter-procedural flow functions.

The intra-procedural flow functions are the normal-flow functions and the call-
to-return-flow functions. The normal-flow functions specify the transformation
of data-flow facts at non-call statements. At call sites, the call-to-return-flow
functions propagate data-flow facts at the side of the caller.

IFDS uses two types of inter-procedural flow functions to propagate data-flow
facts along control-flow edges connecting caller and callee methods at call sites.
The call-flow functions map data-flow facts from the caller’s scope to those of the
potential callees. The return-flow functions map data-flow facts at exit points of
a callee to the successor statements of the original call site.

IFDS assumes the flow function to be distributive functions. Their distribu-
tivity in combination with set union as meet operator is key to the efficiency of
IFDS. A flow function f is distributive, if for any two data-flow sets A, B € D the
equation f(AuB) = f(A)uf(B) holds. Therefore, the result of the application of
a distributive function on a set is equal to the application of the function on each
individual element of the set and union the results. This property makes it sound
and precise to propagate facts d € D individually. Non-distributive frameworks
must instead always propagate entire flow sets A ¢ D.

IFDS is a functional approach to data-flow analysis and uses function sum-
maries. Distributivity allows IFDS to store and re-use point-wise, procedure sum-
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maries, i.e., one per data-flow fact. Internally, IFDS constructs intra-procedural
path edges. Path edges are directed edges between two ESG nodes that summa-
rize the effect of the composition of multiple flow functions. The edges summarize
intra-procedural data-flow edges within the ESG and are shortcuts in the graph.
Every path edges is anchored in an ESG nodes whose statement is the first state-
ment of a method. The flow functions iteratively extend the path edges. A path
edge that reaches a return statement of a method is promoted as a summary.
Hereby, IFDS constructs the summaries on-the-fly. The summary encodes how a
data-flow fact entering a method is transformed transitively within the method.
This encoding allows IFDS to reuse the summary at any call site as soon as the
matching individual fact is seen again, which yields context-sensitivity. Techni-
cally, IFDS stores the contexts in the incoming set [68]. The incoming set stores
a path edge reaching a call site in combination with the data-flow fact entering
the callee method. When a path edge reaches the exit statement of the callee
the propagation of the path edge stored within the incoming set is continued at
the call site.

3.4 The IDE Algorithm

Sagiv et al. [80] extended IFDS to Interprocedural Distributive Environments
(IDE) by additionally associating lattice values to each node of the ESG. A
lattice value is an element of a bounded-height semi-meet-lattice .. A meet-
lattice is a partially ordered set such that any two elements of the set have a
greatest lower bound with respect to the order. It is bounded in height, if the
lattice has one greatest element.

In addition to the output of IFDS, IDE generates an environment for each
statement s € S of the program. An environment is a function envg:D — L
and maps a data-flow fact at the statement s to its corresponding lattice value.
The environment is computed by environment transformers. Environment trans-
formers are functions ¢: Env(D,L) - Env(D,LL), where Env(D,L) is the set of
all environments, i.e., an environment transformer maps one environment to an-
other one. The environment transformers describe the effect of a statement on
the lattice value for a particular data-flow fact. IDE requires those environ-
ment transformers to be distributive: (t(m;envt))(d) = m;(t(env?))(d) for any
d € D,s € S and any infinite set of environments env’,env?,... € Env(D,L).
This property allows representing one environment transformer by multiple mi-
cro functions or edge functions [9]. The edge functions are additional input to
IDE and are similar to the flow functions. Each edge of the ESG is labeled by
one edge function. Each edge function has the form f:IL - L. IDE successively
composes the edge functions along the data-flow when a flow function extends a
path edge. Therefore, the composition of two functions f; o fo must be defined.
Additionally, the edge functions must have a meet (n) operation. The meet of
two edge functions define which edge function to propagate when the same path
edge is generated along different control-flow branches with different associated
edge functions.
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64 foo(){ u v ow 69 bar(int a){ a b c
65 int u = 1; 70 int b = a + 1; [Nl -l
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66 int v = u; N T 71 int ¢ = b+ 2; | [N42 N
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Figure 3.1: Linear-constant propagation modeled in IDE.

Similar to IFDS, IDE is a fixed-point algorithm. During the ESG construction,
the corresponding edge functions are composed, met, and propagated, once the
construction of the ESG is done, the resulting edge functions are evaluated to
yield the final lattice values associated with each node of the ESG, i.e., the
environment. The latter process is called Phase 2 [80] of IDE.

Example 1. Figure shows an example that uses IDE to perform linear-
constant propagation [80]. Linear-constant propagation propagates integer con-
stants through the program and computes which variables contain a constant
linear integer value. Next to the code, the figure depicts the ESG and some
path edges that IDE generates during its fixed-point iteration. For this example,
the data-flow domain D is the set of local variables V. Each data-flow fact d
(the local variable) is shown at the top of the column where the node is drawn.
Nodes are placed between two statements, because each node represents a fact
that holds after and before a statement. We use the notation uw@GH to refer to
the ESG node after line [65| with data-flow fact u.

Linear-constant propagation starts at assignments of constant integers to vari-
ables, here at line Therefore, IDE computes graph reachability starting from
the seed ESG node u@Hl Line [65] assigns the constant 1 to variable u. The
succeeding assignment v = u (line transfers the value of u to v. The flow
function of the assignment captures the data-flow; the constant flows to v and
variable u stays constant. Therefore, Figure draws the two straight edges
(u@GH] to v@GH and vw@GH to vw@GH) labeled flow functions. The data-flow fact
v@[G0 holds before the call to bar (line[67]). The variable v is used by the call site
and the call-flow functions are applied. The call-flow function maps the argu-
ment v to the formal parameter variable a. The analysis continues to constructs
the ESG within method bar. When we ignore the increase of the integer values,
parameter a flows to variable b which then flows to c. Hence, a flows transitively
to the return variable c. The transitive flow is captured within the path edges
of IDE (and IFDS). Figure highlights the path edges in bar as dashed edges
from a@G9 to b@7I] and a@GI to c@72 For the ease of presentation, we do not
draw all path edges.

Upon generation of the path edge a@G9 to c@T2 IDE stores the edge as sum-
mary. It summarizes the data-flow information that a flows to c¢. This summary
is then applied at the call site to bar. In Figure the application of the path
edge at the call site context is highlighted by the meandered edges labeled as
summarized flows. The summarized flows extend the path edges within foo,
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where IDE generates the path edge uv@GHl to w@QG7l The edges carry the seman-
tics that there exists a data-flow relation from u to w, and as u is constant, w is
constant too.

IFDS and IDE construct the ESG in the same way. Unlike IFDS, IDE addi-
tionally allows tracking the concrete integer values associated to each variable at
each statement. The integer values are propagated as edge functions of IDE.

For linear-constant propagation, a lattice value is a set of integers, i.e., the
environment associates to each ESG node a set of integers. In Figure the
edge functions for IDE problem are depict as labels to the edges of the ESG.
When there is no label to an edge, the edge function is the identity function
that does not change the integer value. To the flow at statement u = 1, IDE
assigns the constant edge function Av.1, here denoted just by 1. Within bar, the
flow from a to b at the statement b = a + 1 (line receives the edge function
Av.w + 1, denoted by +1. This edge function simply increases every incoming
lattice value by one. In the same way, the next statement in line [71]increases the
value by +2. Those two edge functions are composed when the path edge a@GJ
to c@T2is generated. The composition of +10+2 yields the edge function +3 that
is associated to the path edge. This path edge is promoted to a summary. The
summary states that the value of variable a flows to ¢ and additionally increases
the lattice value by three.

In Phase 2 of IDE, the final lattice values are computed. Phase 2 propagates
calling context-dependent information of the environments down to the callees.
Before Phase 2, IDE computes that b within bar is a increased by one, but IDE
does not propagate the actual value of a (nor b). The actual value of a is 1 but
only under the call site context in line For other call sites, the value may
differ and the summary should not be restricted to this value to be as reusable
as possible. Therefore, only Phase 2 propagates this value in a top-down manner
along the call-flow functions to the callees and computes the final lattice values.
In the example, Phase 2 computes that b is constant and equals to 2 and c is
equal to 4.

3.5 Pushdown Systems

Pushdown systems (PDS) were originally developed for model-checking |21} 28,
48|. A pushdown system consists of rules that correspond to the flow functions
of IFDS. The application of an algorithm called post* [11}[21}7582] solves
the pushdown system and computes the same graph reachability problem IFDS
computes. A pushdown system is leaner than IFDS in terms of data structures.
IFDS stores the ESG in terms of path edges and maintains the contexts for each
path edge within the incoming set [68]. Opposed to this, the algorithm post*
produces an automaton (or equivalently a finite state machine) that holds both
pieces of information, the path edges and their contexts.

Definition 3. A pushdown system is a triple P = (P,T',A), where P and T are
finite sets called the control locations and the stack alphabet, respectively. A
configuration is a pair {(p,w), where p € P and w € T'*, i.e., a control location
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3.5 Pushdown Systems

with a sequence of stack elements. The finite set A is composed of rules. A rule
has the form (p,v) — (p’,w)), where p,p’ € P, v €T and w e T"*.

The rules of a pushdown system define a transition relation = between con-
figurations of P: If {p,v) — (p',w)), then (p,yw’) = (p’,ww’) for all w’ e T*.

The length of w determines the type of the rule. A rule with |w| =1 is called a
normal rule, one with length 2 a push rule, and a rule of length 0 a pop rule. If
the length of w is larger than 2, the rule can be decomposed into multiple push
rules of length 2. A push rule pushes a stack element on the stack, a pop rule
pops the last element off the stack. The normal rules do not change the length
of the stack of the configuration.

When the PDS encodes an IFDS instance, the control locations are the data-
flow facts of I, the stack alphabet is S, the set of statements of the program.
The set of rules correspond to the edges of the ESG. A normal rule matches
the intra-procedural data-flows, i.e., the normal-flow and the call-to-return-flow
functions. The push rules resemble the call-flow functions, the pop rules are the
equivalent to the return-flow functions.

When the individual stack elements of a sequence of w € I'* are relevant in this
thesis, we write w = wg-wy - ... wy,. If unambiguous, we omit the - symbols and
write w = wows ... wy instead. A configuration (p,wg-wy - ... wy,) encodes an
ESG node (p,wg) with additional stack information. For a data-flow analysis,
the remaining stack sequence w; - ... w, tracks the calling context, in terms of
call sites, over which the data-flow occurred.

Example 2. Table lists all rules for the pushdown system that corresponds
to the linear-constant propagation example discussed in Example (1| for IDE. For
this example, we ignore the column Weight, as a PDS (analog to IFDS) cannot
model the actual value of an integer. For any edge in the ESG, the PDS has
a corresponding normal rule. Table also lists the push and pop rules for
the example. We discuss the push and pop rules in more detail. The push
rule {(v,60) — (a,6-G7) maps the argument v to the parameter a. This rule
corresponds to the respective call-flow function of IFDS/IDE. Additionally, the
rule replaces the top most element (the predecessor of the call site in line of
the stack by the first statement (line of the called method and pushes the
the call site (line to the stack. The pop rule (c,[[2) — (w,e€)) maps back the
returned value ¢ to variable w. The variable w is the assigned variable at the call
site in line In addition to that, the pop rule has an € as a stack element of the
target configuration. This setup means that when the rule is applied, the stack
element [72]is replaced by €. In other words, it removes [72] from the stack.

Taking the transitive closure of the transition relation = (denoted by =*) from
a starting configuration c rises a set of reachable configurations called post*(c) =
{c' | ¢ =* ¢’}. Speaking in terms of IFDS, post*(c) is the set of all transitively
reachable ESG nodes and their contexts starting from a given node c¢. The set
can potentially be infinite, however, the set of configurations is regularﬁ and it

4Despite the fact that pushdown systems solve context-free reachability problems, similar to
IFDS, a pushdown system only constructs inter-procedural realizable path.
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Table 3.2: Rules of the PDS for the example in Figure
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can be finitely represented by a finite automaton.

Definition 4. Given a pushdown system P = (P,I';A), a P-automaton is a
finite non-deterministic automaton A = (Q,T',—, P, F') where Q 2 P is a finite
set of states, S @ x I' x Q) is the set of transitions and F' € Q) are the final
states. The initial states are all control locations P of the pushdown system P.
A configuration (p,w)) is accepted by A, if the automaton contains a path from
state p to some final state q € QQ such that the word along the path is equal to w.
We write (p,w)) € A for an accepted configuration.

The P-automaton encodes the set post™(c). Algorithm post® computes the
set and requires as input a P-automaton which accepts the initial configuration
c. According to the rules of the pushdown system, the algorithm saturates the
automaton with transitions, i.e., new transitions are added to the automaton
until a fixed-point is reached. The saturation process is similar to IFDS’ and
IDE’s construction of path edges for the realizable paths. We demonstrate the
computation process for the P-automaton and show correspondence to IFDS and
IDE based on the linear-constant propagation example in Example

Example 3. Table lists the pushdown system for a linear-constant propa-
gation performed on the code in Figure Figure [3.2] presents the automaton
that post® computes based on this pushdown system. The figure depicts the sat-
uration process stepwise. The automaton drawn in Figure shows the initial
automaton that is input to post*.

Linear-constant propagation starts at any assign statement assigning a con-
stant value to a variable, for instance line which assigns u, and the initial
automaton accepts the configuration (u,[G3). This configuration is the start
configuration of the two normal rules (u,GA) - (u,G0) and (u,G3) — (v,G0).
Therefore, post* adds two transitions to the automaton. One transition from u

32



3.5 Pushdown Systems

:

(a) The initial automaton.

(b) Saturation of method foo.

O,

(=) Ogg@==0O

(3} 5

3 £
0] 67

o
- &

(¢) Applying the push rule. (d) Automaton before application of the
pop rule.

®

(e) The final automaton after satura-
tion.

Figure 3.2: The successive construction of the P-automaton for the pushdown
system for Figure
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to the final state with label [66] and a second one with the same label and target
but from v. Adding those rules means that (u,[G0) and (v,[G0l) are accepted con-
figurations. When all normal rules of method foo are applied, the automaton is
the automaton drawn in Figure [3.2b

At this state, the automaton accepts the start configuration of the push rule
(v,B0) - (a,09-67). Therefore, the configuration (a,[69-[7)) must be accepted,
which yields the automaton drawn in Figure [3.2¢ The application of the rule
adds the intermediate state agg to the automaton. From this intermediate state,
the transition to the final state with stack symbol as label is added. Addi-
tionally, a transition into agy from state a with label |09 is added. This renders
configuration ((a,[69- 1) accepted.

Figure shows the automaton when saturation is finished within method
bar. All normal rules are applied and the appropriate transitions are added. The
automaton encodes that variables a, b, and ¢ are data-flow reachable under stack
67}

At this point, post* applies the pop rule {c,[[2) — (w,€)). Figure shows
the final automaton when this rule is applied. There is a transition out of ¢ with
label and target state agg. Hence, the rule dictates adding the e transition
from state w to target agg. Due to the e-transition, the configuration (w,[G7]) is
accepted. In terms of the data-flow, the acceptance of the configuration proves
the data-flow connection between u@G4] and wQG7. The concrete constant value
that is propagated along with the data-flow is computed by adding weights to
the pushdown system, resulting in a weighted pushdown system. Therefore, the
unweighted pushdown system corresponds to IFDS, while adding weights to the
pushdown system corresponds to solving an IDE problem.

We highlight the correspondence between IFDS/IDE and post* on basis of the
automaton drawn in Figure For Example [1] we visualized the concept of
path edges in IFDS/IDE in Figure Figure lists two path edges in the form
of dashed edges belonging to bar. In the P-automaton in Figure those path
edges correspond to the two transitions out of state ¢ into state agg. In IFDS
the path edges are used as summaries. The algorithm post® can be summarized
similarly [49]. The sub-automaton rooted in agg can be re-used as a summary for
bar.

3.6 Weighted Pushdown Systems

Pushdown system subsequently have been extended by Schwoon et al. to weighted
pushdown systems (WPDS) where each rule receives an additional weight [83].
IDE problems can be encoded as WPDS where the weights correspond to the
edge functions of the IDE problem.

The weights for a pushdown system are elements of a weight domain. The
weight domain has to satisfy the following assumptions to guarantee termination
of algorithm post™:

Definition 5. A bounded idempotent semiring (or weight domain) is a tuple
(D,®,®,0,1), where D is a set whose elements are called weights, 0,1 ¢ D, and
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® (the combine operation) and ® (the extend operation) are binary operators on
D such that

1. (D,®) is a commutative monoid with 0 as its neutral element, and where
® is idempotent. (D,®) is a monoid with the neutral element 1.

2. ® distributes over @, i.e., for all a,b,c e D we have

a®(bdc)=(a®b)®(a®c) and (adb)®c=(a®c)d (b®c).

3. 0 is an annihilator with respect to ®, i.e., for alla€ D,a®0=0=0® a.

4. In the partial order © defined by Ya,be D,ac b iff a® b = a, there are no
infinite descending chains.

The terminology of weighted pushdown systems and IDE slightly differ, but
they have the same principal concepts. There is a one-to-one correspondence
between the two. IDE associates lattice values to each node of the ESG. The
lattice values originate from a bounded distributive meet-lattice. Any bounded
distributive lattice is also a weight domain. The meet operation of the lattice,
M, is the same operator as ®@. IDE takes the composition, in notation o, of the
edge function along valid data-flow paths, hereby it extends the functions. In the
terminology of weighted pushdown systems, the binary operator ® extends two
weights to a new one.

Linear-constant propagation is one application of IDE and can be encoded
equivalently in WPDS. Reps et al. |[76] discuss how linear-constant propagation
encodes as weight domain and provides a proof of the required properties to
comply as weight domain.

Example 4. We lift Example [3] to a weighted pushdown system. A weighted
PDS expects a mapping of each pushdown rule to a weight in the weight domain.
Table lists the pushdown system rules with their weights for a linear-constant
propagation performed on the code in Figure When the cell for the weight
in Table is empty, the weight corresponds to the identity element, i.e., 1. The
statement does not have any impact on the weight.

For example, the rule (u,[G3l) - (u,[G0]) carries weight 1 that encode that u in
line [65] is assigned the constant value 1. The rule (a,69) — (b,[[0) has weight
+1 associated. The rule indicates the integer value of a flows to variable b at
statement at the same time, its value is increased by one. A similar effect
holds for rule (b,[70)) - {c,[71]) that has the weight +2 associated.

For a pushdown system, the P-automaton encodes all reachable configurations,
i.e., all reachable ESG nodes of a data-flow problem given one start node. For a
weighted pushdown system, a weighted P-automaton is used. Each automaton’s
transition also carries a weight. The transitions of the automaton correspond to
the path edges of an IFDS solution. As IDE associates an edge function to each
path edge, in the terminology of weighted pushdown system, each P-automaton’s
transition receives a weight. During construction of the weighted automaton, the
weights are extended and combined.
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Figure 3.3: Partial post*-saturated weighted automaton for the WPDS of a
linear-constant propagation performed on the code from Figure

Example 5. Figure [3.3] shows a weighted pushdown automaton for the linear-
constant propagation. It is the same automaton as computed for Example
just enriched by weights. We only depict the part of the automaton relevant for
method bar () and relevant transitions with foo(). In the example, all transitions
between two states are labeled by the same weight and instead of drawing the
same weights multiple times, the weight’s labels are drawn only once.

We discuss some of the transitions of the automaton. For instance, the weighted
automaton contains transitions from u and v to the accepting state labeled by
statement 67| with weight 1. This encodes that the variables are constant with
value 1 at the statement. Furthermore, the weighted automaton has a transition
from state a to agg with label [72| and weight 1. The semantics of this transition
is that there is a data-flow between a@G9 and a@72 such that the weight remains
unchanged: Whatever integer values flow into bar(), at the end of the method,
variable a still holds the same integer value.

The automaton also has a transition b to agg with label [72| and weight +1. The
integer value from the parameter a flows to b, but the integer value is increased
by one.

The weighted automaton also contains a transition ¢ to agg with label [71] and
weight +3. This transition is the result of composing the two rules (a,GJ) —
(o,[70) with weight +1 and (b,[[0) - (c,[[1]) with weight +2. The two weights of
the rules are extended and yields +1 ® +2 = +3.

The weighted automaton does not explicitly maintain the concrete integer
values associated to the variables within bar(). For instance, the weights of the
automaton do not encode variable ¢ to hold the value 4 when called from call
site in line Still, the actual values within the callee can be computed by
extending the weights along the edges of the automaton created by push rules.
For instance, extending the weight 1 of the transition out of state agg into the
accepting state by the weight for the transition out of c yields the weight under
the respective calling context: 1 ® +3 = 4. This is equivalent to the computation
of Phase 2 of IDE.
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In Chapter [3] we familiarized the reader with pushdown systems and their ap-
plication to inter-procedural context- and flow-sensitive data-flow analysis. This
chapter presents the first main contribution of the thesis: Synchronized Push-
down Systems, a technique to incorporate field-sensitivity into a context- and
flow-sensitive data-flow analysis that hereby achieves more precise data-flow re-
sults efficiently.

First, this chapter motivates and discusses a pushdown system for a field- and
flow-sensitive data-flow analysis. We call this pushdown system the field-PDS.
The field-PDS is a replacement for the concept of access paths, a widely used
abstraction for field- and flow-sensitive analyses. Access paths require coarse
over-approximations that hinder precision and scalability of data-flow analyses.

Second, the chapter recaps the pushdown system for context- and flow-sensitive
data-flow problems. We call this system the call-PDS. Subsequent, the call-
PDS and the field-PDS are synchronized to yield synchronized pushdown systems
(SPDS). We show how appropriate synchronization of the two systems solves a
precise data-flow analysis whose results are context-, field-, and flow-sensitive.

In general, field-sensitive and context-sensitive analysis is undecidable [73],
which forces SPDS to over-approximate. Though, the over-approximation SPDS
introduce, are specifically crafted to expose false positives only in corner cases,
in situations, in which an improperly matched caller accesses relevant fields in
the same ways as the proper caller would. In this chapter, we hypothesize that
such cases are virtually non-existent in practice and confirm the hypothesis in
our detailed practical comparison of access paths and SPDS in Section

We published the work on SPDS at the 2019 Symposium on Principles of
Programming Languages (POPL) [89]. Verbatim parts of our POPL publication
are included in this chapter.

4.1 Imprecise and Inefficient Field Abstractions

In Section [2, we discussed a taint analysis based on a program which uses a
TreeMap to store and load tainted data. A static data-flow analysis can only
be sound and precise if data-flows through the map and its fields are correctly
abstracted at field store and load statements. There exists a variety of different
field abstractions [18,42] addressing this problem, however, we found that none of
the existing abstractions is precise and efficient at the same time. The field-PDS
is a replacement abstraction that is fully precise and at the same time efficient.

Field-based Domain The data-flow domain of a field-based analysis is the set
VuF, ie., a data-flow fact is either a local variable or a field name. At a field-
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Field-based Access Path
74 foo(u, v, w{ u v foam fr X u v.f w.g.f
75 v.f = u; I\“\—\\\ l\
76 x = w.f; I | é\‘\\\ﬁ 1 l
7 W.g = V; i l\ l i ] l\

78 }

— Data-Flow - -» Imprecise Data-Flow

Figure 4.1: Field-based abstraction compared to the access path data-flow model.

store statement z.f =y, the field-based abstraction generates two new data-flow
facts. It generates one data-flow fact for the base variable z, and one for the
stored field f.

In Figure [£.1], we provide an example of an exploded supergraph constructed
by a field-based analysis. Assume a (taint or typestate) analysis to track the
data-flow fact u at the beginning of foo. The first statement of foo in line [75]is
the field store v.f = u. The analysis generates two data-flow facts: the variable
v and the field fp. We use the subscript F to indicate that the data-flow fact is a
field. The subsequent line [76|is a field-load statement (x = w.f) that loads field
fr again. Due to the previously generated data-flow fact £y, the analysis assumes
the tracked data to flow to the loaded variable x. This data-flow is imprecise: If
variables v and w do not alias, variables x and u do not contain the same data.
In the figure, the imprecise data-flows are highlighted as dashed edges.

Access-Path Domain The access path-domain is a more precise abstraction
than the abstraction used in the field-based domain. An access path is an element
of VxF*. We write an access path as y.fo- f1 ... fn where y € V is a local
variable, the base, and fy- f1-...- f, is a finite sequence of fields, i.e., f; € F. In
Figure [4.7] aside from the propagations for the field-based abstraction, the same
data-flow problem is solved with an analysis based on an access path-domain.
The solution of this data-flow problem is more precise than an analysis using the
field-based abstraction. At the field store v.f = u in line the access path v.f
is generated. The subsequent statement x = w.f does not load this field, because
the base of the access path, v, differs from the base of the field-load statement
w and we assume the variables are not aliased. The length of the sequence of
fields of the access path grows with every encountered field-store statement. The
data-flow fact v.f reaches the field store statement (w.g = v) in line (77, and after
that statement, the tracked data is also accessible by de-referencing w.g.f.

The access-path domain has a problem that leads to undecidability: an access
path may grow infinitely long for programs that contain control-flow backward
edges, such as loop constructs and recursive methods. Figure[.2]shows a minimal
example program which generates infinitely long sequences of access paths as of
a simple while loop. Suppose the data-flow analysis propagates parameter a. At
the end of the loop in line the data is stored in the access paths b.f and a.f.
As the loop may be executed a second time, the control flow graph has a backward
edge from the last statement of the loop to the first one. Therefore, the data-flow
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79 foo(a){

80 while(...){

81 b = new B(Q);

82 b.f = a;

83 a = b; ‘b.f.f.f...
84 }

85 }

— Data Flow

Figure 4.2: Infinite number of propagations generated by an analysis using the
access-path model.
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(a) Access graph for access path a(. £)* gen- (b) Access
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x(.p.n)* and x(.p.n)*.p.

Figure 4.3: Cyclic access graphs that an analysis generates when analyzing cyclic
data structures.

algorithm re-injects the data-flow facts and propagates all facts a second time
through the loop. The additional iteration yields the access paths a.f.f and
b.f.f, which another time differ from the results of the previous iteration. The
static analysis cannot decide how often the loop is executed and assumes infinitely
many executions, which cause the access paths’ field sequences to grow infinitely
long. Consequently, the data-flow algorithm cannot reach a fixed point and does
not terminate. The approach k-limiting [1§] cuts the sequence at a length of k
and over-approximates the (k + 1)t" field by a * symbol that imprecisely allows
any field to be loaded from. A k-limited analysis with a larger value of k is more
precise, but also less efficient than an analysis with a smaller value. The larger
k, the more access paths the analysis potentially generates.

Access-Graph Domain Access graphs [29,45] are a more precise abstraction
than access paths. Instead of modeling the field accesses in the form of a sequence,
paths in a graph model the field sequences. The graph’s nodes are labeled by
fields, and each paths through the graph forms the sequence of fields of an access
path. The graph representation does not need to k-limit, because infinitely long
sequences simply correspond to cyclic paths in the graph.

Figure illustrates an access graph that an analysis generates for the code
in Figure 4.2 The figure represents all access paths a(.f)* as a single access
graph. The Kleene-star (x) denotes a regular-expression-like syntax, the access
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path can repeat field f infinitely often. Hence, a single access graph suffices to
represent the infinite number of access paths and k-limiting is not required. Still,
the access graph model is inefficient. Access graphs may slightly differ at every
statement in the program (and potentially under every context), which is why the
analysis must maintain the access graphs separately per statement and context.
In Figure we show two access graphs, the upper one represents all access
paths of form x(.p.n)*, the lower one all of form x(.p.n)*.p. Both graphs differ
in their accepting states (denoted as double circles). Efficient and distributive
analysis frameworks, e.g., IFDS, cannot merge both access graphs to a simpler
and more concise representation, because they only support the merge operator
set union which maintains both graphs individually. Such individual propagation
hinders scalability.

4.2 Field-Pushdown System

Field store and load statements can be modeled precisely as a pushdown system.
The pushdown system overcomes the imprecision of k-limiting and renders the
analysis more efficient. Instead of maintaining access graphs per statement, the
pushdown system generates a single graph that encodes all field accesses at all
statements. We first provide a formal definition of the system in the form of
the pushdown system’s rules before we demonstrate the pushdown system on
examples.

Definition 6. The field-PDS is the pushdown system Pp = (V xS,Fu{e}, Ap).
A control location of this system is a pair of a variable and a statement. We use
xQ@s for an element (x,s) € VxS. The notation emphasizes that fact x holds at
statement s. The pushdown system pushes and pops elements of F to and from
the stack. An empty stack is represented by the € field.

A configuration of the field-PDS is an element of V x § x F* and we write it
as (xQs, fo- f1-... fn). The configuration can be read as follows, at statement s
the data-flow resides in the access path x.fo- fi-... fa.

In the following, we construct the set of rules Ap as the disjoint union of the
sets of normal (AZ"™4) push (A§USh), and pop (AL™) rule sets.

4.2.1 Normal Rules

The field-PDS P pushes and pops fields to and from its stack. The statements
that push and pop the fields are the store and load statements. All other state-
ments maintain the field stack unchanged and constitute as normal rules to the
field-PDS.

We construct the normal rules by the help of the function normalFieldFlow.
The function maps from V x S to £(V). Table lists the normalFieldFlow
function. The first two columns describe the inputs, while the third column
contains the respective output set O €V of the function.
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Table 4.1: The function normalFieldFlow for Pr. Within the comment column ¢
refers to the input statement.

Variable Statement Out Type Comment
(V) (S) (V)
T T * () kill z at any assignment to =
Y T <y {z,y} y copied to = at ¢
Yy T.f<y {y} . info on y is retained at ¢
Y x<y.f {y} mera info on y is retained at ¢
Yy Af <y {y,t} generate static field A. f
A.f Af <y %) kill static field A.f
i m(p1,p2,---Pn) {4} p; copied to formal g;
i return {pi} inter  ¢; copied to actual p;
x return x {y} x copied to assigned value y
Assume Pp accepts a configuration {(x@s, gg-...-g, ) and let ¢ be an intraproce-

dural control-flow successor of s. Assume further that y € normalFieldFlow(z,t),
then Pr has a rule:

(zQ@s, go) > (yQF, go)) € AF™.

It is £ = ¢, unless ¢ is a call site or a return statement (cases for which Table
lists inter as type). If ¢ is a call site, £ is the first statement of the callee. For a
return statement ¢ of a method m, t is defined as any intra-procedural control-
flow successor of any call site calling m.

The start configuration and the target configuration of the rules have the
same field as the stack location. Therefore, none of these rules add or remove an
element from the stack.

For an assignment statement ¢:x < y, the field-PDS contains the normal rules
(yQs, go) — (yQt, go) and (yQ@s, go) — (xQt, go)). At the successor statement ¢
of s, the data is reachable via variables z and y. A field-store statement t:x.f < y
gives rise to only the normal rule {(y@s, go)) = (y@t, go)). The normal rules of Pg
do not handle the store to field f of variable z, which is instead taken care of by
a push rule.

The field-PDS models control-flow explicitly in the control locations of the
pushdown system. Pp is defined context-insensitively. At a return statement of
a method m, data-flow propagates to all call sites of m.

4.2.2 Push Rules

When a configuration (y@s, gg-...-gn) is accepted by Ap and some successor ¢
of s is a field-store statement, i.e., t:x.f < y, P lists the push rule

(y@s,go) > (2@, [ go) € A",
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Automaton Ap Access Path
Qo7
86 foo(u, v, w){ we u v.f w.g.f w.h.f

87  v.f = u; &3%; VAT \

88 x = w.f; u@Q[Ea]
vaET] gLyl

89 if ( PP ) { /g\ v@Ry f 1@k .
90 w.g = v; wa@j v@Rd -> u@B3 —(ouaRg
01} else { ~ 5 vaDn u@@y

va[gT] u@Q@T]
92 w.h = v; V@[] @] .
93 } vang u@o3 )
94 } " v

Wl — data flow

Figure 4.4: A post*-saturated Ap when initialized with the configuration
(uQ@ET €) and saturated with Pp listed in Table Next to it,
the same information represented as standard data-flow graph with
an access-path domain.

Due to the push rule, post* marks the configuration (zQt, f-go-g1-... - gn) as
accepting as well. Therefore, an access path y.go- g1 - ... g, reaching statement
t, generates the access path z.f-go-g1-...- g, to hold after statement ¢, i.e., the
field f is prepended to the access path.

A field-store statement indirectly updates the field of any variable that is must-
aliased. Py does not model the update of the must-alias. This makes the result-
ing SPDS deliberately unsound. Such indirect updates of aliased variables are
content of Chapter

4.2.3 Pop Rules

The pop rules correspond to the runtime semantics of a field-load statement. For
an accepting configuration (y@Qs, f-go-...-gn) where the successor statement ¢
of s is a load statement ¢: x < y.f, the field-PDS Pp lists a pop rule of form:

(yas, f) - (2@t ) e AF”

The accepting configuration (y@Qs, f-go- ... g,) induces the configuration
(xQt,go-...-gn). In other words, when the access path y.f-go-...-g, holds after
statement s, the analysis continues to propagate the access path z.gg - ... g, to
hold after statement t.

Example 6. Figure [£.4] shows an example program code with three field-store
and one field-load statements. Pp modeling the code’s data-flow is shown in
the form of the rule set Ap in Table Table lists normal, push, and
pop rules for the data-flows in method foo(). For example, the normal rule
(u@BA] * ) - (u@ET *) encodes that data flows from w@E0] to u@R7l The Kleene-
star (*) at the stack location of the rule is a wildcard that can be replaced by
any field g € F, i.e., the representation actually bundles multiple rules. The
semantics of the rule is that any data stored in any field dereferenced from u at
statement [30] is propagated to the successor statement [37], because statement
does not modify u.
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4.2 Field-Pushdown System

Table 4.2: The rule set Ay of Pr for the code shown in Figure

Normal Rules

(uGET, ) - (vGET, *) (vaES, +) ~ (vaET +) Push Rules
(wGET, +)) ~ (wOER, ) (vaED +) - (v@OT+) (uGED +) — (vOED £ - +)
(GRS *) ~ (wGEL «) (vQMI+) — (v@IE +)  (vGET +) — (WO g- +)
(wOET, +) > (O ) (vaET +) - (vGOI+) (vGII +) — (WG h- +)
(G, *) ~ (G, +)  (vaI) +) - (vaf, «)

(GET +) - (@D, +) (v, +) ~ (VG +) —
(G, +) ~ (@ «) (WG, +) - (waE3, «) P

(G, +) > (o@EF, +)  (waOD,+) ~ (waIE )  (vOET ) - (xCES €)
(v@ET, +)) ~ (vaER] +)

<
¥
<
¥

The rule set A contains three push rules, each of which matches a field-store
statement. For example the push rule (u@R0 +)) — (v@QET £ - *) encodes that
any data stored in u@B0] flows to v@&7 at the same time pushing f to the top of
the stack. We also use the Kleene-star notation, because the field f is pushed,
no matter which field is on the stack.

Each field-load statement matches a pop rule. The presented Py lists the pop
rule (w@RT7 £)) - (x@QB8 €)). When variable w reaches statement i.e., w7
is propagated, and the stack topmost element is the field £ (the tracked data
is stored at least below field £), the data-flow continues to x@QB8, and field £ is
popped from the stack.

Based on Pp, algorithm post® can answer reachability queries over the system
described in Table The resulting post*-saturated P-automaton, which we
refer to as the field automaton Ap, contains field-sensitive and flow-sensitive data-
flow result We assume Ap to initially contain the transition u@RE0] 5 OuaEG
We label the accepting state of the automaton by ouagg, because it refers to the
abstract object stored in variable u at the beginning of method foo().

The transition labels of Apr are elements of F, i.e., fields of the program. The
abstract object oyagg is stored inside field £ of variable v at the statement in
line [87 The code then branches and in line [00] variable v is stored inside field g
of some object pointed-to by w, line 92| stores variable v to field h of w. Therefore,
in line the abstract object oyagg is transitively accessible either via access
path w.g.f or via w.h.f. Ay encodes this information as it accepts the two
Wordsﬂ g-f-eand h-f-e starting from node w@03 It is also important to note
that the field automaton does not contain a state with variable x. Data from
u does only flow to v.f but cannot be loaded from w.fE| , and x never becomes
reachable.

Next to the P-automaton, Figure [£.4] also shows the same data-flow analysis

!For a simpler representation of the automaton, we merged states of transitions with the same
field label of the automaton.

2An accepted word w = wy - wy - -+ - wy, € F* of Ap is a path from a some node to the accepting
state such that the concatenated transition labels form w.

3Chapter [5| discusses the case that v and w are aliases.
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95 foo(a){ a@@n|
96 while(...){ f

97 b = new B(); O el

98 b.f = a; (a@QT ) — (bQOF] £ - *)) ba® f . ac@y] €
99 a = b; aa@d ‘acd
100 ¥} (2@ %) — (a@Oa] )

101 }

I+

Figure 4.5: An example illustrating the finite representation that Pr encodes for
an infinite set of access paths.

but encoded in a data-flow graph (exploded supergraph) for an access-path based
analysis. The example code does not contain a loop and only finitely many
access paths are generated. Therefore, both representations encode the same
information, and there is a unique transformation between the two. For instance,
Ap accepts configuration (w@03] g- f -€). This configuration corresponds to the
node with label w.g.f for statement in the access-path based representation
on the right.

However, Ar encodes the same information more concisely. The access-path
representation requires an explicit enumeration of the fields, w.g.f and w.h.f are
encoded individually. Opposed to that, Ap shares the information that prior to
the branch the data-flow is stored in field £. Ap only needs to store the two tran-
sitions labeled g and h out of w@J4l The outgoing transition of the target node
labeled by f encodes the remaining field of both access paths w.g.f and w.h.f.
The automaton Ay concisely merges the information sharable between multiple
data-flow paths. It follows that the more branched field-store statements the an-
alyzed code contains, the more efficient the automaton representation becomes.

Example [6] demonstrates that Ag encodes the same information as a data-flow
analysis based on access path. For this example code, a transformation from the
automaton representation into the exploded supergraph is possible. However,
Apr can also encode access paths of infinite length and a transformation into a
exploded supergraph (with finitely many nodes) is impossible.

Example 7. Figure shows a minimal code to generate an infinite amount of
access paths that requires k-limiting.

Figure lists a subset of the rules of P, and next to it, the relevant transi-
tions of Ap that post™ generates when tracing the abstract object oaemy. Initially,
Ap accepts the configuration (a@07] €)). Between the statements from line [95[ to
line variable a is not overwritten and configuration (a@07] €)) becomes ac-
cepting. Next, the push rule (a@O7] *)) - (b@03] £ - +)) is applied and yields the
accepting configuration (b@OF| f - €). Because statement [99| transfers data-flow
from b to a, the configuration (a@@OY] f - €)) turns accepting. This configuration
flows back to a@00] because the rule {(a@DJ] %)) - (a@Od] *)) encodes a control-
flow backward edge from the end of the loop to the entry. Line [96] and line
do not overwrite variable a and due to the push rule (a@07 %)) — (b@QOF] £ - *)),
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4.2 Field-Pushdown System

102 foo(u, v, w){ u v.f w.g.kx  x.% y.*
103 v.f = u; l\

104 w.g = v; | l\

105 X = W.g; | | l\.
vy A A
107 ¥

— Precise Data-Flow --> Imprecise Data-Flow

Figure 4.6: Imprecision of an k-limited access-path based analysis and k = 1.

post”® inserts the self-loop edge with label f for state a@Og]

Once post™ saturates Ap, it encodes all sequences of possible access paths.
When required, these can be extracted from Ap in the form of a regular ex-
pression. Assume we would like to know how a@05] is accessible in line [99] from
variable b, i.e., from the node b@QJl All path(s) from this node to the accepting
state are covered by the regular expression (£)+. The data may be stored in any
access path with base variable b and arbitrarily many field accesses f.

Example [7] discusses the clear benefit of Pp over the access-path model as Ap
easily represents an infinite number of access paths concisely. Apart from the
concise representation, Pr is also more precise than k-limiting which computes
imprecise results through over-approximation.

Example 8. Figure depicts a method foo() with two field-store and two
field-load statements. Assume we use a data-flow analysis with an access-path
based data-flow domain. The analysis uses k-limiting with a limit k =1, i.e., an
access path with only a single field is allowed. As soon as an access path with
more than one field is constructed, it is over-approximated. In the example, we
assume to track the data-flow stored in u at the beginning of method foo (), i.e.,
the abstract object oyermy. Object oyarmy is stored within field £ of v, and the
analysis generates the access path v.f at line The next statement stores v in
w.g. After execution of the statement, the data is accessible via w.g.f. However,
this access path is of length 2 and a k-limit of 1 requires an over-approximation
of this data-flow fact. Instead of maintaining the precise fact w.g.f, the access
path w.g.* is propagated. The latter access path is less precise as * symbolically
represents any field and not only £.

In line method foo() loads w.g and stores it in x. The analysis precisely
generates the access path x.*. The next statement in line loads field g of x.
The propagated access path x.* matches x.g, and the data-flow continues with
the access path y.*. In Figure [£.6] this data-flow is highlighted as imprecise,
because, at runtime, the traced abstract object stored in u is not transferred to
y, because the field load of g does not match the last store of field f.

As a consequence, an access-path based analysis with a k-limit of £ = 1 gen-
erates an imprecise data-flow on this example. While the wildcard is required
to transform the infinite sized domain of access paths into a finite domain, the
automaton representation Ar does not require such an approximation, because
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4 Synchronized Pushdown Systems

Apr encodes an infinite number of paths, each of which correspond to one access
path.

For the code of Figure 4.6 a limit of k = 2 suffices for a k-limited analysis to
be precise. However it is straightforward to change the code snippet such that
the limit of k& = 2 does not suffice either (e.g., by adding an additional field-store
statement u.h = w). Despite that such code looks synthetic, successive field load
and field-store statements are realistic when objects are stored and loaded via
getter and setter methods.

4.3 Call-Pushdown System

The rules of Pp are defined context-insensitively. At return statements, the rules
map data-flows to all call sites of the returning method and not just the call
site that the data-flow actually entered the method through. Opposed to Pp,
the pushdown system we discuss in this section, the call-PDS, models context-
sensitivity. We have already sketched the pushdown system within Example
For completeness, we provide a full definition within this section.

Definition 7. The call-PDS is the pushdown system Ps = (V,S,As). The push-
down systems control location are local variables of the program, and the stack
elements are the statements of the program. We call the P-automaton that post™*
saturates based on Ps the call automaton and denote the automaton as As.

We subdivide the rules set Ag into the normal (AZ"™!), push (AguSh), and
pop (AZS’OP ) rule sets and describe their construction based on the program se-
mantics.

4.3.1 Normal Rules

The normal rules encode the intra-procedural data-flow of the analysis. We
describe the normal rules of Ps in terms of their flow functions. A flow function
f takes as input variable z € V and a statement s € S, and returns a set D €V of
variables.

When the automaton Ag accepts a configuration (x,s)), and ¢ is an intrapro-
cedural control-flow successor s, the flow function f is applied with arguments x
and ¢t. For any element y of the result set, i.e., y € f(z,t), the Ps lists a rule of
the form (z,s) - (y,t).

Table describes the normal-flow functions for the relevant statements. The
first row describes statements that kill the respective data-flows. Any assign-
ment statement such that the destination of the assignment is a local variable
(allocation sites, call sites, local-assign statements, or field-load statements) kills
the local variable. The statement assigns a new value to the local variable and
the analysis flow functions strongly updates the variable. Such strong update is
possible only as the analysis models a flow-sensitive analysis.

The remaining rows of Table assume the source of the assign statement
matches the incoming data-flow abstraction. For example, the second row models
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4.3 Call-Pushdown System

Table 4.3: Normal-Flow Function for the call-PDS.
Statement In Out

(S) (V) (®(V)

T < * x %)
Ty vy Az,y}
z.f <y vy A{z,y}
r<y.f vy A{z,y}

the flow of the data-flow abstraction representing y at an assign statement of form
x < y. The analysis continues the data-flow with x and y. Therefore, the normal
flow function for a statement x < y, and input variable y produces the out set
{z,y}.

We want to highlight the semantics of Ps for the field-store and field-load
statements. Opposed to Pr, Ps ignores the fields of the field stores and field
loads, and data-flow continues to and from the base variable of the field store
and load. Assume a field store, z.f < y and a data-flow to y that holds before the
statement. The out set is {z,y}, the same set as for a normal assign statement
x < y, which means that the field f is not represented within the rules of Ps.
The same holds for a field-load statement, x < y.f, if the analysis encounters
a data-flow fact y prior to the statement, it continues with z, i.e., the out set
is also {z,y}. A check if the field load is actually feasible is ignored. In other
words, Ps is field-insensitive.

We want to pinpoint the reader to a difference between Ps and Pp. Both
systems are flow-sensitive but each system encodes flow-sensitivity in its own
way. Ps uses the stack symbols explicitly to encode control-flow. Opposed to
that, Pr makes control-flow explicit in the control locations and not in the stack.

4.3.2 Push Rules

The push rules of Ps model inter-procedural data-flows from a call site to the
callee’s start points. Assume the automaton Ag to accept a configuration (p, s)),
where a successor t of s is a call site m(p), i.e., with parameter p. Further let e
be the first statement of the callee m. Then, Ps has a push rule of the form

(p,s) = (g, e-c) e AR

where ¢ is the formal parameter of the callee. The push rule replaces the stack
element s by e and s (in this order) within the stack. After the push rule is
applied, the analysis first continues along any control-flow successor of e, because
the stack element e is the top element of the stack. When the return statement of
the callee m is reached, the top element of the stack is popped and the data-flow
continues at after the call site ¢ that has been pushed on the stack when the
data-flow enters the callee.
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4.3.3 Pop Rules

The pop rules of Ps are the inverse of the push rules and map data-flow infor-
mation from return statements of callees back to their corresponding call sites.
Assume we have a return statement 7 : return x of some callee method m with
formal parameter ¢ and a call site y < m(p) that invokes m. Then the following
two rules:

<

{(g,;r) = (p,€) € AG™

(@) > (y,e) € AZ?

are contained in the rule set of Ps. The first rule maps the formal parameter
back to the argument variable p at the call site, while the second rule maps the
returned value x to the variable y, the returned variable is assigned to at the call
site. The pop rules replace the current stack symbol r by an € and, when applied
by post*, removes the element r from the stack.

4.4 Synchronizing Call and Field-PDS

Section and Section discussed the two pushdown systems Ps and Pr indi-
vidually. However, while Ps is defined field-insensitively, Pr is context-insensitive
and each system retains a precision advantage over the other one.

In this section, we address the question of how to construct one analysis that
combines the precision benefits of both pushdown systems. Both analyses encode
their results in their respective field and call automata (A and As). The key idea
for a context-, flow-, and field-sensitive analysis is to synchronize these automata.
Intuitively, a configuration of the more precise analysis is accepted, only if the
field automaton and the call automaton accept the configuration.

Definition 8. For the call-PDS Ps = (V,S,As) and the field-PDS Pp = (V x
S,Fu{e}, Ar), the synchronized pushdown systems are the quintuple SPDS =
(V,S,Fu{e},Ar,Ag). A configuration of SPDS extends from the configuration
of each system: A synchronized configuration is a triple (v,s, f) € VxS* x F*,
which we denote as (v.fi-...- frm Qs """ ) where s = s9-51-...»sp and f = fi-... fm.
For synchronized pushdown systems we define the set of all reachable synchronized
configurations from a start configuration ¢ = (v.f1-...- fp@s)'" ") to be

postgg(c) = {{w.g@ty ") [(wato, g) € posti({vQso, f))
A (w,t) € posts({v, s))}- (4.1)
Hence, a synchronized configuration ¢ is accepted if (v,sg- ...  sp) € As and

(vQ@sg, f1-..." fm) € Ap and postgp(c) can be represented by the automaton pair
(As, Ar), which we refer to as AL.
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108 bar(u, v){

109  v.h = u; 114 foo(p){
110w = foo(v); 115 q.g =

111 X =W.g; 116 return q;
112y = x.£f; 117 }

113 }

foo

- DO
bar

Figure 4.7: A code snippet and a labeled graph representation of the code.

Example 9. Figure[4.7]shows a code snippet where data flows inter-procedurally
and is stored and loaded into a field of an object. Below the snippet, we depict
a graph representation of the code to help illustrate the data-flow throughout
the code. The nodes of the graph represent program variables; horizontal edges
between them correspond to field push and pop rules. The edges are labeled with
the names of the fields. A field label with a line on top, e.g., f, means the field
f is loaded (a pop rule). For field-stores, the field is not overlined (push rule).
The vertical edges resemble push and pop rules in Ps. We label these edges with
opening and closing parentheses. An opening parenthesis “(” matches a push
rule, the closing parenthesis “)” corresponds to a pop rule. The line number in
the subscript refers to the call site that is pushed to the stack.

Assume a context-, flow-, and field-sensitive data-flow analysis to track the
object pointed to by u@I08 We refer to this abstract object by oyarmg. Addi-
tionally, assume we want to infer whether oyqpg is accessible by y@IT21 The
actual data-flow is best understood within the graph representation which con-
tains a path from u to y. The labels along this path concatenate to form the
sequence (or word) h- (rrg-)rm-g- f- The parentheses (g and ) are properly
matched. This means the path is realizable in terms of context-sensitivity, i.e., a
valid execution path. However, the path is not feasible in terms of field accesses.
The field store g is properly matched against the load g, but the field store h
does not match the load of f. In other words, there is no data-flow connection
between uw@I08 and y@IT2 which means the latter does not point to oyammy.

In the following, we discuss that synchronized pushdown systems prove the
missing data-flow connection as they computes ((y.eQIT2F ) ¢ postgp ({u.cQIORF)).
For the data-flow analysis, we first construct Ag = (As, Ap) such that the au-
tomaton accepts the configuration (u.e@IUSF)). Therefore, (u,[[08) ¢ As and
(OIS, ¢) € Ay,

We then apply post™* to both automata and compute the set postgp({u.cQIUSF)).
The set is represented by the two automata depicted in Figure As accepts
the configuration (x,[[TTl) and Ap accepts (x@ITI] h-€). Therefore, the synchro-
nized configuration (x.h - €@ITIF) is accepted. Since A% is constructed based on
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Figure 4.8: The post* saturated As (left) and Ap (right) for the example in Fig-

ure @

the initial synchronized configuration (u.e@I08)), accessing field h of x (line
retrieves the same object as stored in variable u at statement In other words,
object oyaprrg is accessible via access path x.h after statement The next line,
statement loads the field £ of variable x. Due to the field-load statement,
Pr lists the pop rule (xQITT £) — (y@II2e). Ap does not contain a transi-
tion out of state x@ITI] with label £. Therefore, the pop rule cannot be applied,
consequently y@IT2 does not become a state of Ap.

Despite As accepting the configuration (y,I12), (y@QII2l €) is not an accepted
configuration for Ap. In turn, (y.cQIT2F) ¢ postgp({u.cQITR)).

4.4.1 Undecidability and Required Approximations

The “synchronized” combination of the two automata, as we present it above,
raises the question whether a tighter integration of both automata would not be
possible and beneficial. Unfortunately, as Reps shows, context-sensitive data-
dependence analysis is generally undecidable: it can be mapped to a reachability
problem on a graph with two interleaved context-free languages (CFL), which
means a word formed along one path in the graph must form a correct word in
both CFLs. In Example [9] we see that a context- and field-sensitive data-flow
analysis is equivalent to a reachability problem of two CFLs: one language (L)
for field stores and loads (e.g., f and f), and a second one (Lg) matching call
and return flows (e.g., (rm and )rm)-

Computing the set postgp for a synchronized pushdown system is decidable,
because the set is merely the conjunction of the sets posts and postg. The es-
sential difference is that a SPDS computes both sets along potentially different
control-flow paths. Interestingly, we find that this approximation leads to impre-
cision only under unusual circumstances, which makes SPDS precise in practice.
The following example demonstrates that potential precision loss.

Example 10. Figure extends the code snippet provided in Figure [£.7) with
two new methods. The method baz(), similar to bar(), calls foo() after storing
a field, and the method qux() that calls both methods baz() and bar() (lines
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118 qux(a, b, c){ 122 baz(r, s){

119 bar(a, b); 123 s.f =1
120 baz(a, c); 124 t = foo(s);
121 } 125 }

qux

Figure 4.9: Code snippet that extends Example |§| from Figure and the up-
dated graph representation.

and . The first parameter of both calls from qux() to baz() and bar() is
the same variable a. Below the code, we also show the complete and updated
graphical representation for the code of Figure The earlier representation is
extended with the variable nodes for baz() and qux() and the respective edges.

Assume we want to know if there is a data-flow path from a to y. The graph
contains two paths between the nodes. One path that contains node u generates
the word wy = (rrh - (g )rm- - f- The sequence of labels along the other
path forms wo = (T f - (xg)m- G- f- In combination, both paths introduce
imprecision into the analysis, because they make the analysis report a flowing to
y, despite it being impossible at runtime.

Along the path of the word w;, and since more opening parentheses are ac-
ceptable, the call parenthesis are properly matched, (m(rm)rm. However, the
field stores and loads are not properly matched, h-g-g- f. For the second path
with the word wo, the situation is the other way around. The field stores and
loads are properly matched, h-g-g-h, while the call parentheses of the word do

not match, (o (2 o

To conclude, the set postg contains all configurations m reachable from config-
uration n such that the word on a path p; between n and m forms a word in Lsg.
Opposed to this, posty contains all configurations m such that a path ps from n
to m forms a word in Lr. However, the path p; and ps may differ. As we showed,
it is possible to construct examples where synchronized pushdown systems do not
precisely solve the data-flow problem. Yet, our empirical evaluation reveals no
practical occurrence of this over-approximation (see Section [8.1.2)). Therefore,
we hypothesis that: An improperly matched call site does not induce a properly
matched field access (and vice versa).
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4.4.2 Worst-Case Complexity Analysis

We next discuss the worst-case complexity for the computation of postgp(c) for
SPDS, and compare it to a context-sensitive and flow-sensitive analysis that
uses a k-limited access-path representation. For the comparison, we also encode
the latter analysis as an analysis based on a single pushdown system. For a
pushdown system P = (P,T',A), algorithm post* constructs the P-automaton
A=(Q,T,6,P,F) with a complexity of O(|P| |A| (|Q] +|A]) + |P] |]) for both
time and space [21].

Synchronized Pushdown Systems A SPDS computes two independent post*
sets for Pr and Pg, hence the worst-case complexity is the maximum of any of the
two post® computations. The control locations of Pg are the program variables
involved in queried data flows, an upper bound of which is |P| = |V|. The out-set
of a data-flow at an assignment statement has at most twd| variables. For every
other statement, the out-set contains one or zero elements. There is a data-flow
for every edge (at most [S|?) in the inter-procedural control-flow graph, and the
number of rules can be approximated by |A| = 2|V|[S|?. Ag has one state per
variable and an intermediate state for each variable that flows at a call site to a
callee, hence the number of Ag states is |Q| = [V]|+|V||S| < 2|V||S|. Each transition
of Ag is labeled by a statement, and Ag has at most |6] = 4[V[}|S]® edges and
computing post® for Pg has a worst-case complexity of

O(IVPISP(IVIIS| + [VIISI*) + [VPISF) = O(IVPISI).

The control locations of Pr are pairs of variables and statements, and we
approximate the control locations by |P| = |V||S|. In practice, the variable of a
control location of Pr must be local to the method of the statement of the control
location, which greatly reduces the size of the set P. The number of rules of Pg
is bounded by |A| = 2|V||S|?|F|, because at an assignment statement the analysis
applies at most two rules for every field. In the worst case, for each variable at
each statement, a push rule creates an intermediate state which bounds the states
of Ap by |Q| = [V||S||F|. The size of the transitions set of A can be approximated
by 8] = 4|V|*[S]*[F|?, because, between each of the states, there can be a transition
labeled by a field. From these approximations, the complexity of the computation
of post* for Pr evaluates to O([V2[S|*|F|(|V|IS|[F| + |V||SP[F|) + |V|*|S]’[F|?) which
reduces to

O(IVIPSPIF® + [VIISIP[F[). (4.2)

This complexity dominates the complexity for Ps, therefore, the worst-case
complexity for SPDS is the same as of Pp.

1At a field-store statement z.f < y, we assume y to flow to = only but not to any alias of .
We discuss aliasing in Chapter
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Access Paths with k-limiting For comparison, we assume the k-limited access-
path based analysis (AP¥) to be encoded as a pushdown system similarly to Ps,
i.e., call sites correspond to push rules and return statements to pop rules of the
system. Instead of using variables (V) as control locations, the control locations
for the k-limited analysis are access paths, i.e., a local variable followed by a k-
limited sequence of fields. Hence, |P| = |V||F|¥. The size of the rule set is at most
|A| = 2|V||F|¥|S|? because, for every edge of the control flow graph, one access path
is mapped to at most two access pathsﬂ The pushdown system’s stack alphabet
is S, which limits the size of the state set of the P-automaton to |Q| = 2|V||F|¥[S|,
and the size of the transitions set to [6] = 4[V|?S]}|F|?*. For AP* it results
a worst-case complexity of O([V[?[S][F[?:(|V|IS|[F|* + [V|IS?|F|¥) + [V[3[S|?|F[3*)
which simplifies to

O(VPISIEP" + [VPISPIFP*). (4.3)

We now compare the analysis complexity of APF to the complexity of
SPDS . The complexities differ in two parts. First, AP* multiplies the
exponent of all [F| factors by the value k. Second, SPDS increases [S|* to [S|°.
The additional factor [S| is introduced by automaton Ap, as its states refer to
statements in addition to variables.

It is expected that for some k > 0, SPDS is more performant than AP* for data-
flows that are assigned to many fields and at the same time reach few statements.
Additionally, the complexity estimates show that the larger k, the more time and
space APF requires.

We perform practical experiments comparing SPDS to AP* in Chapter|8 The
experiments showcase that, in practice, SPDS are almost as efficient as AP* when
k =1, although SPDS delivers results as precise as APF with k = co.

4.5 Related Work

In collaboration with Lerch et al., we designed IFDS-APA [51}53] to solve the
same problem of having a context-, flow-, and field-sensitive analysis. This ear-
lier formulation does not rely on pushdown systems. Instead, it takes a CFL-
reachability approach to solve the problem. To become decidable, this formu-
lation requires either the language of field stores and loads or the language of
matching call and returns to be over-approximated by a regular language. This
additional (and imprecision-introducing) computation step is not necessary in
SPDS. Our implementation attempts to lift BOOMERANG [90] to IFDS-APA
failed due to this complex over-approximation step which makes the implemen-
tation hard to realize. These difficulties motivate the design of SPDS, which
thoroughly relies on existing well-established research.

Other than IFDS-APA, prior research on data-flow analyses that are context-,
flow-, and field-sensitive is rare. Andromeda [100] and FlowDroid [5] are two
precise taint analyses of these dimensions, and both use k-limiting. These analysis
can benefit from replacing their access path representation by SPDS.

®Similar to SPDS, we also ignore aliasing here.
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In recent work, Zhang et al. [106] introduce linear conjunctive language (LCL)
reachability and show how the interleaved matching-parentheses problem of field-
sensitive and context-sensitive data-flow analysis can be over-approximated by
a LCL. Their work presents a new algorithm to solve LCL-reachability and
base their work on trellis automata, instead, we show that we can formulate
the problem in two pushdown systems and rely on existing algorithms and im-
provements [21}50,77]. Zhang et al. also base their approach on the hypothesis
that we discuss in Section [£.4.1] and the two ideas are closely related, the main
difference is that both approach the problem from two different perspectives
(language-formulation and pushdown systems).

There are various approaches for encoding context-sensitive and field-sensitive
(but mostly flow-insensitive) alias or points-to analyses as two CFL-reachability
(or Dyck-reachabilty) problems [14,91,93./102,|105]. In Chapter |5, we provide a
detailed discussion of these approaches with respect to points-to analysis. How-
ever, all CFL-approaches share the same over-approximation. To guarantee de-
cidability, the approaches approximate either the CFL for field stores/loads or
the CFL for call/returns by a regular language.

One points-to analysis that we want to highlight here is the analysis by Li and
Ogawa [57]. Their analysis builds on weighted pushdown systems but models
both context- and field-sensitive in a single weighted pushdown system. As Reps
proved [73], this formulation is equal to an undecidable data-dependence analysis
and the authors require to explicitly address decidability.

In Section we discuss related work on access graphs [29,/45,90], which is
a similar representation to Ap of Pr. Access graphs allow a finite representa-
tion of the potentially infinite number of access paths. However, to be flow-
sensitive, such approaches maintain access graphs per statement. Similarly, also
alias graphs [43], a field abstraction proposed as an efficient data-flow model for
must-aliasing access paths, must store information statement-wise. Using SPDS,
the single automaton Ay is sufficient to encode all field accesses at all statements.
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5 Boomerang

Chapter {4 presented synchronized pushdown systems as a solution to efficient
and precise context-, field- and flow sensitive data-flow analysis. In this chapter
we show how multiple SPDS can be combined to solve pointer relations.

Points-to analysis computes memory locations for variables of reference type
or pointer variables. A points-to analysis is a static analysis that computes
potential objects a pointer variable may point to at runtime. During the program
execution, a pointer variable points to exactly one object, however the object
that is referenced may differ dependent on the program execution path. A static
points-to analysis reason about all program execution and over-approximates the
actual runtime object by a set of potential objects. The set is called the points-to
set and abstracts the objects in the form of the allocation site statements of the
object.

Information about potential allocations sites of a pointer variable is necessary
for many static analyses. Points-to information is helpful for program refactor-
ing [23] and program optimizations [16], to generate program call graphs [32.[55|
97] or during the propagation of taint [5,[100] or typestate information [26}88].

Despite the fact that points-to analysis is a decades-long researched topic, every
client (call graph construction, data race, taint or typestate analysis, etc.) has its
own requirements for the supporting points-to analysis and, unfortunately, there
is no one-fits-all-solution for pointer analysis [38]. While call-graph construction
algorithms require the types of the allocations sites, data-race clients intersect
two points-to sets to obtain alias information, and taint or typestate analyses
that uses a storeless heap model (access path, access graphs, or SPDS) require
all aliases to a given access path.

In this chapter, we instantiate multiple synchronized pushdown systems and
present the design of a demand-driven pointer analysis crafted for taint and
typestate analysis clients. We call this analysis BOOMERANG. To ease presen-
tation, we first formulate a whole-program context-, field-, and flow-sensitive
points-to analysis as a purely control-flow forward-directed analysis. Next, we
show how BOOMERANG intertwines a forward-directed analysis with an addi-
tional backward-directed analysis to compute points-to sets on-demand.

We published BOOMERANG at the 2016 European Conference on Object-Oriented
Programming (ECOOP) [90]. At the time, BOOMERANG used access graphs as
heap model which, in this thesis, we replace by SPDS.

5.1 Non-Distributivity of Pointer Information

The computation of points-to relations is non-trivial as the flow functions for
points-to analysis are non-distributive. For SPDS, the flow functions (i.e., push-
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Figure 5.1: Points-to analysis is non-distributive.

down rules) are distributive over the merge operator, which is also why the SPDS
as described in Chapter [4 models only direct data flows that do not take aliasing
into account.

Example 11. Figure [5.1] shows example code for which a SPDS is not able to
compute all points-to relations. SPDS is not able to reason that, at runtime,
variables x and y point-to the same object.

The program code contains two allocation sites in line and and the
figure depicts two SPDS, one for grop and grog. The data-flows for each objects are
drawn as exploded supergraphs depicted in a box labeled by the corresponding
object. Each data-flow is rooted at the allocation site of the object from which
the exploded supergraph is constructed. From the exploded supergraph, some
points-to relation can be extracted but not all. For example, the graph for object
arzg contains nodes u and v at the statement in line [[30] This means that the
variables at the respective statement point to the object g In other words,
each variable of the node of the exploded super graph for one object is aliased to
each other variable.

Yet, the extracted points-to and alias information is not complete when field
stores are involved in the data-flow. Consider the second data-flow of qrzm. The
data-flows of this SPDS lists the access paths x and u.f. But at runtime, object
orrq is also pointed to by v.f and y as u and v are aliased. SPDS do not compute
a node for variable y, and y has an empty points-to set.

The root cause that the flow functions for a points-to analysis are non-distributive
is field store statements. Consider the store statement u.f = x in line
The pushdown rules for Pp at this statement list the push rule (x@QI29] *) —
(w@I30, £ - *) and the normal rule (x,[29) — (u,I30) for Ps. None of the rules
capture the flow-to relation between x and v.f.

In practice, distributivity means that the result of applying the flow function
only depends on the statement (u.f = x) and the incoming data-flow fact (x
points-to the object grzg), but not on any other information. The information
that v and u are aliases it not derivable from within the flow function.

We now provide a formal view on the consequence of the distributive propa-
gation of SPDS. Let a be an allocation site statement in the program and let the
pair o, := (Ag, Af) represent the set postgp({v.€Qac)), where v is the variable
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allocated in a. Then it is Vx eV, feF*,teS and ceS*:

(x.fQt) € 0, = z.fQt points-to o, under calling context c. (5.1)

The rules for Ps and Pr model the direct data-flow for each statement and capture
the direct points-to relations. However, the reverse direction is not true:

x.fQt points-to o, under calling context ¢ = (x.fQt) € og. (5.2)

In Example for instance, the SPDS for grog contains the synchronized con-
figuration (u.f@I30F) which means, access path u.f after statement points
to the object qrg. However, (v.£@QI3Tf ) points-to the same object but the SPDS
for qrzg misses this configuration.

The missing alias relation is due to flow-sensitivity. The data-flow is not de-
tected if the alias relationship of the variables v and u is established prior to the
field store statement. If one rewrites the code such that statement 128 follows
statement the data-flow for grzg correctly lists the access paths v.f and y.

Most of the existing points-to analyses [1,[12,[37,|55L63],91},94,98,104] are flow-
insensitive and do not consider the order of the control-flow, which means that the
presented missing data-flow cannot occur. We say that a flow-sensitive data-flow
analysis is alias-sensitive when the following holds:

Definition 9. Assume a field store statement x.f = a and a control-flow-succeeding
field load statement b = y.f such that x and y at both statements point to the
same object, i.e., they alias with each other. Further on, this alias relationship is
established at a control-flow-preceding statement of the field store. Then, a flow-
sensitive and field-sensitive data-flow analysis is alias-sensitive, if the analysis
establishes a data-flow connection between the stored variable a of the field store
and the loaded variable b of the field load.

Every context-, field-, and flow-sensitive analysis that is also alias-sensitive is a
points-to analysis. As motivated in the example, a single SPDS does not produce
alias-sensitive results.

5.2 Forward-Directed Points of Aliasing

A single SPDS is not expressive enough to conduct points-to analysis, but points-
to analysis is expressible by combining multiple SPDS. For the ease of explana-
tion, we first discuss the idea based on a whole-program points-to analysis, which
means the analysis is forward-directed only.

A whole-program points-to analysis computes complete points-to sets for all
variables in the program. This requires forward propagation of data-flow from
any allocation statement. The points-to analysis based on SPDS maintains a
SPDS per allocation statement, i.e., per abstract object.

At particular statements in the program, the synchronized pushdown system
must interact and exchange information. The interaction is required at what
we call “points of aliasing”. Data-flow propagated along field-store statements
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Figure 5.2: Indirect flows at a store point of aliasing.

and call sites generates a points of aliasing. Apart from the statement the point
of aliasing is registered at, a point of aliasing lists two synchronized pushdown
automata o, = (A%, A%) and o, := (A%, A%). At a point of aliasing transitions
are copied over from Ag to Ag and from A to AIZ’F.

Once all information is copied over from one automaton to the other, post* is
applied again to re-saturate the automaton. In terms of the data-flow analysis,
this means new data-flow paths become reachable. These new paths may involve
new points of aliasing. The described iterative process is repeated until no new
point of aliasing is unveiled and all automata are fully post*-saturated.

5.2.1 Field-Store Point of Aliasing

A field-store point of aliasing is registered at a field store statement of the form
s:x.f =y. The whole program points-to analysis starts propagating a SPDS for
every allocation site a. Therefore, assume the SPDS for the abstract object o,
such that configuration {(y.g@Qs)) € o,. This means, the abstract object allocated
at statement a, is accessible via the access path y.¢g at statement s under some
context ¢ € S*. Then the points-to analysis registers a point of aliasing for the
field store statement s. At the field-store statement, the flow functions (see
Table and Table propagate (y.g@Qs) to (z.f.g@Qt¢)) for any successor t
of s. However, after statement s, object o, is also accessible indirectly via any
alias of = (see Example [11]).

Because the whole-program points-to analysis starts at any allocation sites, the
points-to analysis also constructs a SPDS for the object op such that z points-to
oy, i.e., (x.€@s?) € 0,. The field and call automaton for oy, encode aliasing access
paths other than x.e that also reference the object o, at statement s. From the
automata of oy, the analysis copies a subset of transitions (indirect flow edges)
to the automata for o, such that o, is also accessible via the indirect aliases.

Example 12. Figure[I2]depicts points of aliasing and the generation of indirect
flow edges. The code snippet, allocates two objects in line and line [137]
respectively. Aside of the program code, two exploded supergraphs for the re-
spective allocation sites are drawn.
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5.2 Forward-Directed Points of Aliasing

The object gz generates a field-store point of aliasing in line[I38|as highlighted
by the exploded super graph node marked as (8). The object is stored within field
f of a second object that is accessible via u.

The data-flow propagations for object qrzy generate a data-flow fact w@I38]
i.e., the analysis computes that u at the field-store statement points to orz.
Additionally, the exploded super graph also contains the two nodes v@I38 and
w@T38 All of the variables originate from grgg and the variables alias as they
point to the same object. The aliasing variables are passed over to the SPDS of
orzn as highlighted by the dotted blue arrow from the box of grzg to grg Based
on information that v and w are aliases of u, the point of aliasing derives that
object grag is indirectly accessible via v.£ and w.f after the field-store statement.
The indirect data-flow edges are added to the exploded supergraph, and the
analysis continues the re-saturation (or fixed point computation). Due to the
indirect flow edge, the data-flow for object qrzg generates the two nodes p@[I39
and q@T40, and the analysis correctly identifies variables p and q at the respective
statements as pointers to grzg.

In the example, the analysis adds indirect edges based on aliases that are plain
local variables (v and w), i.e., access paths with an empty sequence of fields. It is
also possible that the alias relationship is not based on local variables, but that
an alias is an access path with a non-empty sequence of fields.

Example 13. Figure [5.3| shows a code snippet where an object is nested within
fields of an other object with a depth of 2. At runtime, the variable q@I49] points
to the object allocated in line For a points-to analysis, the nesting in fields
is more difficult to analyze soundly.

After statement access path u.f and variable w are pointers to the same
object (qrrm). At statement object grmg, referenced by variable o, is stored
in w.g. Because w and u.f are aliased, also field g of u.f is updated. After the
field-store statement, u.f.g points to gqrzg.

The content of the access path u.f.g is loaded within the following two sub-
sequent field load statements. The first statement in line dereferences field
£ of u and stores the content to p. The subsequent field load then loads field g
of p and stores the field’s content into variable q. Therefore, q points-to at
runtime.

For the static points-to analysis to model the correct runtime behaviour of the
program, the field store point of aliasing in line does not only add indirect
flows for variables, but appends the stored field, g, to all aliasing access paths of
the base variable, e.g., g is appended to the alias u.f.

Technical View

The last two examples motivate that the analysis has to extract all aliasing access
paths at a statement from the results. We now want to provide a more technical
view on how the analysis extracts this information.
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Figure 5.3: Access path can point to the same object (here w and u.£). The point
of aliasing in line [[47 must indirectly generate the access path u.f.g
when data-flow is stored in w.g.

The responsibility of the points of aliasing is to add transitions to As and Ap
of the respective SPDS of an object such that the implication in equation ([5.2)
also holds.

Definition 10. The set of aliases of an object allocation a at statement s is the
set aliasesq(s) == {(v.fQs) e o, |v eV, feF* ceS*}. By definition, all access
paths v.f in the set point to allocation site a; any two access paths of the set are
aliased.

The latter set is a subset of the set postgy as defined in (4.1]) and representable
as sub-automata of the Ag and Ap.

Definition 11. A field-store point of aliasing is a triple (s,04,05) of a field
store statement s: x.f =y and two objects o, and oy. Additionally it holds, that
(y.9Qs) € 0, for some g € F* and (x.€Qs?) ¢ o, (for some arbitrary call stacks
c,deS*).

The term (z.€@s?) € 0, encodes the points-to relation of the base variable of
the field store. At the field store statement s, access path x.e points to allocation
site b (under call stack d).

At the point of aliasing the object o, flows to field f of 0,. At any control-flow
successor t of s, object a can be loaded via f not only from variable z, the direct
flow, but also from any access path that aliases to x.e. The latter access paths
are collected in the set aliasesy(s) and the analysis adds the indirect transitions
into the automaton of o, such that:

(v.f-gQt°) € 04, where (v.gQs) € aliasesy(s)

holds. The field f is concatenated to the sequence of fields g and yields f - g.
For accessing o4, f must be loaded first (and the fields remaining in the field
sequence g).
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Figure 5.4: Indirect flows at a store point of aliasing within the caller context.

5.2.2 Call-Site Point of Aliasing

At a field-store statement, a point of aliasing injects all aliasing access paths as
indirect flows into the analysis. By definition, the set aliases,(s) contains only
access paths for which the base variable is a local variable of the method of the
field-store statement s. As a consequence only all aliasing access paths within
the scope of the method are added at a field-store point of aliasing. When the
flow continues in a different analysis scope, i.e., it returns to a call site from a
callee method, aliases may be missing if the flow at the call site is not explicitly
handled. Call-site points of aliasing are similar to field-store point of aliasing
and handle necessary re-propagations of the missing aliases.

Example 14. Alias-sensitivity also requires alias handling at data-flows chang-
ing their method scope as demonstrate in the code in Figure At runtime, p
at statement [[50] holds a reference to object gz, i.e., variable o and p are aliased.

In line method setF stores the second parameter, variable b, within field
f of the first parameter, named a. This generates a field-store point of aliasing.
In the example, in the exploded supergraph for grgg, the point of aliasing is the
node a.f@JI59 marked as ). This point of aliasing does not generate any indirect
flows; at the statement in line variable a is the only visible reference to object
a2

The data-flow fact a.f has a local variable that is a parameter to setF() and
returns as u.f to the call site in method foo() (line . The control-flow
succeeding statement of the call site loads field £ of variable v which is aliased
to u. The analysis misses this data-flow, the access path v.f is never generated,
because the alias relationship between u and v is established before the call site
in line [[55] and at the field-store point of aliasing, variable u and v are out of
scope.

When a data-flow returns from a callee to a call site, and a field was written
within the callee, a call-site point of aliasing is registered at the call site to
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161 contextl(taint){ 166 context2(notaint){
162 X = new X; 167 u = new X;
163 y = new X; 168 v = u;
//taint, = and y do not alias 169 //mo taint, u and v are aliased
164  foo(x,y,taint); 170  foo(u,v,notaint);
165 171 }

172 foo(a, b, data){
173 a.f = data;

174 aliasData = b.f;
175  sink(aliasData);
176 }

Figure 5.5: A taint analysis example to demonstrate precise and demand-driven
pointer analysis.

model indirect flows. In Figure the call site point of aliasing is the exploded
supergraph node u.£@I57 that is highlighted as (©).

At the field-store point of aliasing (8), the analysis registered that object g
flows to some field of qmm. At the call site, for any access path that originates
from object gy and that bypasses the call site, an indirect flow edge is injected
into the analysis. Concretely, in the example, it means that from u.f also v.f is
generated: The variables u and v are aliases at the call site in line

5.3 Demand-Driven Points-To Analysis

Until now, we assumed a whole-program points-to analysis which starts propa-
gating at any allocation site within the program. Instead of trying to improve
scalability of a whole-program points-to analysis, we argue that whole-program
points-to information is frequently not necessary, in particular, for taint or type-
state analyses client. These client analyses of a points-to analysis mostly require
focused and local points-to information as taint or typestate flows span a re-
stricted, rather small code region.

In addition to focused points-to information, these clients require precise in-
formation. Imprecision within the points-to results propagate into the client’s
results, introduce false positives and hereby render the results less understand-
able [38]. Even worse, a less precise points-to analysis returns more (spurious)
variables to alias. In turn, the client analysis considers spurious variables acti-
vating more data-flow propagations, which results both in imprecise results and
longer runtime of the client analysis.

Example 15. Figure provides an example of a taint analysis that requires
points-to information. Assume the data-flow analysis to start in method context1
where variable taint is tainted. The methods then constructs two objects (gmmy
and grgg) that are accessible by variables x and y. At the call site in line
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these variables as well as variable taint flow as parameters to method foo(). This
method stores the taint that resides in the variable data to field £ of parameter
a (line . The variable a references the same object as variable x, i.e., object
amm- At the subsequent statement in line the field £ is loaded from the
object that is referenced by b. At this field load statement, variable b references
the object gy As the taint never flows to object grgg, field £ does not load
tainted information in line [[74]

The taint analysis only needs points-to information for the object oz, because
this object is the only one interacting with the tainted data. A whole-program
points-to analysis computes unnecessary points-to information for all of the three
allocated objects (g, amg, and qmgy)-

Additionally, a whole-program points-to analysis may also introduce false pos-
itives to the taint analysis client. At runtime, variable aliasData never holds
tainted information, and a precise taint analysis does not need to propagate vari-
able aliasData as tainted. In the case the taint analysis demands a (context-
insensitive) whole-program points-to analysis for aliases of variable a within
foo(), variable b is reported as alias. The context-insensitive analysis does not
distinguish between the two calling context of foo() in contextl and context2.
For the latter, variables a and b are aliased. With this imprecise points-to infor-
mation, variable b.f and transitively aliasData are propagated as tainted and a
false-positive tainted data-flow will be reported.

Apart from the negative effect of the over-approximation of the points-to analy-
sis on precision, the approximation also affects the taint analysis efficiency. A pre-
cise points-to analysis avoids the unnecessary propagation of variable aliasData.

The requirements of the taint and typestate analysis clients motivate the design
of demand-driven yet precise analysis. Instead of computing the points-to flows
for every variable at every statement in the program, it suffices to compute
the points-to set for a pointer query, i.e., a variable at a statement (optionally
enriched by a calling context encoded in Ag).

We present BOOMERANG, a highly precise (context-, field-, and flow-sensitive)
demand-driven pointer analysis that satisfies these requirements. For the com-
putation of a points-to query, BOOMERANG introduces a control-flow backward
directed analysis. The name BOOMERANG is chosen as the analysis alternates
between forward and backward analysis passes.

Standard demand-driven points-to analyses [91,[104] deliver points-to sets for
pointer variables. BOOMERANG’s instead computes rich results that ease the
integration with taint and typestate analyses. In addition to the relevant allo-
cation sites, the results contain all aliasing access paths at the query statement
that may also be used to access the same object.

5.3.1 Backward Analysis

The responsibility of the backward analysis is to compute the allocation sites,
after which the forward analysis computes all local variables (or access paths)
that point to these allocation sites.
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Figure 5.6: Indirect flows at a store point of aliasing.

Example 16. The example in Figure [5.6| presents the interaction of the forward
and backward analyses when a demand-driven pointer analysis is integrated into a
taint analysis. The example re-uses the code snippet from Example [15|and omits
method context?2, the second calling context of method foo(). Assume the taint
analysis to propagate the variable t, the first parameter to method context1. In
Figure the taint stored in variable t points-to some abstract (tainted) object.
We denote this abstract taint object as otaqrrg. The taint analysis forward-
propagates the variable as data-flow fact according to the assignment chain of
the variables. The tainted data escapes to foo() as variable d, where the data is
stored within a field of some other (yet) unknown object at the store statement in
line This statement is a field-store point of aliasing at which the backward
analysis is triggered.

The dotted blue arrow labeled 1. visualizes the following step the analysis
takes: At the field-store point of aliasing, a backward query for the base of the
field store, a@I82 is triggered. Starting from this variable at that particular
statement, backward flow is computed. The backward flow reaches the entry
statement of method foo() where the flow continues to the call site of foo() in
the method scope context1 (line H In this scope, the variable of interest is x
and the analysis discovers the variable’s allocation site in line The backward
analysis marks this allocation site as an allocation site for the forward analysis.
The arrow marked with 2. shows this analysis step.

From the allocation site, the forward analysis computes the data-flow as a reg-
ular whole-program points-to analysis based on SPDS. Any aliasing information
that reaches the field-store point of aliasing that originally triggered the back-
ward query will be used as indirect flow edge. In Figure this is highlighted
as the dotted blue arrow labeled 3. To keep the explanation simple, the example
is designed such that there are no indirect edges added at the point of aliasing

!The backward analysis may only propagate within methods the forward analysis visits which
means the backward analysis does not propagate within context2 (see Figure[5.5).
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187 foo(v,w){ Forward Rules Backward Rules
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Figure 5.7: Field push and pop rules of the backward pushdown system of fields
are swapped from the forward pushdown system of fields.

and the taint analysis precisely suppresses a taint warning at the sink statement.

There are various ways to perform a backward analysis. We chose to reverse
the control-flow graph [9]. The analysis interprets the control-flow successors
as control-flow predecessors, return statements, i.e., method exit points become
the method’s entry points. Accordingly, method entry statements are turned
into exit statements. All flow functions are reversed, which means the start and
target configurations of the (normal) rules are swapped and a push rule turns
into pop rule and pop a rule becomes a push rule. For instance, a field-load
statement generates a field-push rule for Pr of the backward analysis. A field-
store statement pops a field off the stack and corresponds to a pop rule in Pg.

Alternatively, a backward analysis could also be computed by algorithm pre* [22]
which is the reverse algorithm to post*. pre* takes a pushdown system and com-
putes a backward (opposed to a forward) reachability query. Implementation-
wise one would need a synchronized version of pre*, and we chose to reverse the
control-flow instead.

Example 17. In Figure we show an excerpt of the push and pop rules for
the backward and forward directed Pp. The statement in line is a field-
load statement accessing field g. For the backward analysis, the control-flow
successor of statement is statement A backward analysis that searches
the allocation of x at the end of foo(), i.e., statement propagates to w.g
at statement and the backward analysis’ rule set contains the push rule of
form (x@I80 *) - (wQIRY g- *). The push rule is the equivalent of the forward
analysis’ pop rule (w@ISY g) — (xQIET] €).

The (backward) succeeding statement of the field-load statement is a field-store
statement (line . For the backward analysis this means, field g is removed
from the stack and a field pop rule, (w@QI88 g)) — (v@IRT e)), is generated for
the backward analysis. The forward analysis generates the opposite rule: The
field-store statement corresponds to a field push rule.

5.3.2 Field-Load Point of Aliasing

Alias-sensitivity is not only a challenge for the forward analysis; the backward
analysis also misses allocation sites if alias-sensitivity is not encoded within
SPDS. Symmetric to the field-store point of aliasing, the backward analysis misses
aliases due to field-load statements.
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Figure 5.8: Symmetric to the forward analysis, the backward analysis requires a
point of aliasing for field-load statements.

Example 18. Figure depicts a code snippet that requires alias-sensitivity for
the backward analysis and visualizes its data-flow analysis solution. Assume an
analysis to query for points-to information of the variable p at the last statement
of method foo(). The demand-driven analysis backward-searches for allocations
of p. The last statement (line of method foo() is a field-load statement
and the backward analysis generates a push rule for the assignment of the load.
Instead of searching for p, the analysis propagates v.£f. However, the code never
assigns v.fE| The backward analysis cannot find any allocation and no forward
analysis is triggered. The static analysis would compute an empty points-to
set for the pointer query variable q. But at runtime, variable p points to the
object grgm, which means that the static analysis is unsound.

The problem is that variables v and u are aliased, which is why the backward
analysis must also search for allocations of u.f after the field-load statement in
line The concept is symmetric to the forward analysis: During the forward
analysis, during application of field push rules, field-store points of aliasing are
generated. For the backward analysis field-load statement generate field-push
rules and a point of aliasing is required for the backward analysis.

Figure [5.8| visualizes the process of the analysis. Boxes labeled by objects,
ie., match forward SPDS, boxes labeled by variable at statements, e.g.,
p@T96l group data-flows belonging to backward directed analyses. In Figure[5.8
we label field-load point of aliasing by @. The backward analyses for p@I90l
generates a field-load point of aliasing at statement p = v.f in line At the
point of aliasing a second backward subquery is triggered. The backward analysis
requires all-aliases to the base variable of the load (variable v). The backward
analysis of this subquery discovers the allocation site of v in line From this
allocation site on, all aliases are computed in the forward analysis of object qrgy.

Once the backward subquery is completed, the analysis has detected that v
and u are aliases. An indirect flow edge from v.f to u.f is added to the backward
analysis of p@QI906l The data-flow fact u.f continues to the field-store statement

2We assume constructors do not initialize any fields.
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Figure 5.9: An example illustrating return site point of aliasing.

u.f = o in line According to the statement, the backward analysis searches
for allocation sites to variable o. The latter data-flow fact unravels the expected
allocation site in line from which the forward analysis starts its propagation.

5.3.3 Return Site Point of Aliasing

As discussed in Section the forward analysis records call-site points of
aliasing. These add additional indirect data-flow edge when a data-flow fact
is mapped from a callee to a call site. The call-site point of aliasing collects
missing aliases that are established prior to a call site and generates indirect flow
edges. The backward analysis also misses aliases when a fact is mapped from
call site to the return statements of a respective callee. Within the new callee
scope, indirect aliases to the data-flow fact may exist and the allocation site the
backward analysis is searching for may be stored within a field of an indirect
alias. Return site point of aliasing of the backward analysis are the symmetric
concept to call site point of aliasing of the forward analysis.

Example 19. Figure [5.9 shows a code snippet for which the backward analysis
requires a return point of aliasing to find the right allocation site. Assume a
query to q in line At runtime, variable q contains the object qogg. The
backward analysis follows the assignment chain of q and generates the access
paths p.g and subsequently u.f.g in lines and The data-flow fact u.f.g
flows to method setG() where it is mapped to a.f.g. Within this scope, the
prefix access path a.f aliases to b. Method setG() updates field g of the aliasing
variable b in line to hold object oy

For the backward analysis to detect the allocation site upon entering
the scope of setG(), the analysis must search for b.g in addition to a.f.g. A
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return point of aliasing introduces indirect aliasing edges to cover the data-flows
of aliases of the entering access path.

Figure [5.9 also visualizes the construction of the data-flow for the pointer
query q@2041 The query starts a backward analysis, which generates the data-
flow contained in the box labeled by q@2041 The backward analysis generates
a field-load point of aliasing (@) at statement in line and the data-flow
further propagates into method setG() where a return site point of aliasing (®))
is generated at statement in line The field-load point of aliasing triggers
the backward query p@203] which flows to the allocation site ((@)) in line
From this allocation site the forward analysis of ooy propagates its data-flow
through foo() and setG(). Within setG(), the analysis records b to be an alias
to a.f at the statement of ®) (line . The return point of aliasing processes
the aliases and replaces the prefix a.f of a.f.g by b and adds an indirect flow
edge to propagate b.g. Due to the generation of b.g, the backward analysis of
q@207] reports the allocation site in line

5.4 Unbalanced Returns of Allocation Sites

A points-to analysis that distinguishing objects only by their allocation site state-
ment is not sufficient when the analysis is context-sensitive. A simple method
that creates an object and returns the object, instantiates one object per method
call. For instance, the factory pattern typically induces such cases. A factory
method creates an object and returns the instance to the call site. It follows that
each call site of the factory method allocates its own instance.

The created objects escape the factory method. In terms of a data-flow analy-
sis, this means the flow is an unbalanced return [52], i.e., the data-flow is rooted
in some callee and returns to its callers without actually matching any call site
when returning. In cases of unbalanced returns, BOOMERANG distinguishes ob-
jects not only by their allocation sites but also by their call sites that return the
object.

Example 20. Figure [5.10| presents a data-flow and BOOMERANG’s model of un-
balanced returns. Method foo () of Figure[5.10|calls method create() in lines[215]
and to create tW0E| individual objects allocated at the same allocation site
(line 212)). Within method foo(), a context-sensitive data-flow analysis can dis-
tinguish both instances.

BOOMERANG separates the two objects within method foo() and maintains
its context-sensitivity. Right of the code, Figure [5.10] depicts the automaton Ag
for the data-flow of object ggr. Within method create (), BOOMERANG does not
distinguish the two objects and the automaton only contains the transitions from
u to opry with labels and When the data-flow returns unbalanced to
method foo(), BOOMERANG creates two new (synthetic) accepting states within
As. The new states are uniquely identified by the name of the object (ggry) and
the unbalanced call sites that returns the object and .

3SBOOMERANG is not path-sensitive and does not argue that only a single object exists at
runtime.
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211 create(){
212 u = new;
213 return u;

214 }

215

216 foo(){

217 if (... {

218 b = create();
219 } else {

220 b = create();
221}

222 ¢ = b;

223  bar(c);

224 }

225

226 bar(x){

27y = x;

228 }

Figure 5.10: An example illustrating wunbalanced context modeling in
BOOMERANG.

The automaton contains transitions from variables b and ¢ of foo() to these
newly created states. Therefore, BOOMERANG is able to reason that b@22]]
(respectively c¢) may point to any of the two returned objects.

The automaton explodes the states of allocation sites for each unbalanced call
sites within foo(). This increases the cost of the computation of the data-flow
within foo(). For instance, post® computes two transitions from b labeled by
that differ only in their target states.

Despite distinguishing the data-flows within foo() which increases the com-
putational effort, the data-flow of both objects continue to bar (). Within bar ()
BOOMERANG does not require to separate the two data-flows anymore, instead
the automaton contains the intermediate state xpzg and computes that x and y
point to this state. The latter intermediate state is the source state of transitions
that reflect the argument variable x of bar() to point to either of the two objects
within foo(). Therefore, within bar() and any transitive caller, computational
effort is saved as the data-flow for the two objects is not explicitly separated.

5.5 Evaluation

In this section, we evaluate an implementation of the demand-driven points-to
analysis BOOMERANG and compare it to existing demand-driven pointer analyses.
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5.5.1 Implementation

We have implemented BOOMERANG based on the static analysis framework SOOTE]
Our implementation is publicly availableﬂ We originally presented BOOMERANG
at ECOOP 2016 [90]. At the time, the implementation used access graphs.
In 2017, we implemented post® and SPDS and replaced the heap model in
BOOMERANG by SPDS which led to re-implementing BOOMERANG. For the
re-implementation, we use the Observer Pattern in most places. This pattern is
helpful to implement BOOMERANG’s points of aliasing that depend on the two
automata Ap and Ag that encode the set aliases,(s). Points of aliasing con-
stantly add transitions to the two automata. This triggers the re-computation of
post® which in turn affects other points of aliasing. The observer pattern eases
the implementation and avoids uses of Worklistsﬁ as each observer processes each
request synchronously. In the BOOMERANG implementation from 2016, we no-
ticed that these worklist easily introduce non-determinism if they are not updated
correctly. Our implementation is rigorously tested with more than 300 test cases
that cover the common features a pointer analysis should handle (field stores
and loads, interprocedural flows, static fields, array etc.). Apart from small test
cases that test certain features explicitly, BOOMERANG also ships with test cases
computing complex data-flows through methods of the Java Runtime Library.
For instance, test cases storing and loading elements in a java.util.Collection,
e.g., HashSet, LinkedList, ArrayList, TreeSet and others.

Based on our implementation, we evaluate the precision and the performance
of BOOMERANG through answering the following research questions:

e RQ1 How precise is the pointer information delivered by BOOMERANG
compared to other existing pointer analyses?

¢ RQ2 How does the use of BOOMERANG affect the performance and preci-
sion of a taint analysis?

¢ RQ3 How does BOOMERANG perform in comparison to other pointer anal-
yses when using data-race analysis as a client?

The long interest in the area of points-to analysis led to a large variety of
implementations of different flavours of pointer analysis. For this comparison,
we focus on two pointer analysis implementations that are feature-similar to
BOOMERANG. Both analyses are designed for program analysis of Java, are
implemented on top of the analysis framework SOOT, are demand-driven, and
feature field- and context-sensitivity. The major contrast to BOOMERANG lies
in their flow-insensitivity and their weaker output format: neither of the two
analyses returns all aliasing access paths at a query statement.

*https://github.com/sable/soot

Shttps://github.com/CROSSINGTUD/WPDS

5An observer for Ay or As may not register itself recursively to guarantee termination. All ob-
servers of an automaton are maintained in a set and must define hashCode () and equals ()
methods.
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Refinement-Based Context-Sensitive Points-To Analysis for Java (2006) by
Sridharan and Bodik [91] (hereafter denoted SB) is an analysis that refines pre-
computed points-to analysis results. The implementation relies on the context-
insensitive points-to analysis shipped within SPARK [55] and refines the results
of a pointer query by traversing SPARK’s pointer-assignment graph. For difficult
points-to queries that require traversal of many nodes, the time for the refinement
phase takes several minutes. As a fallback, SB specifies an analysis budget.
Once exceeded, SPARK’s context-insensitive points-to results are returned. A
drawback of SB is that it requires the pre-computation of the points-to based
call graph by SPARK. In our experiment on Maven Central (Section , we
observed that the construction of context-insensitive call graphs does not scale
and SB cannot be applied.

Demand-Driven Context-Sensitive Alias Analysis for Java (2011) by Yan et
al. [104] (hereafter denoted DA) is an analysis crafted for a limited set of client
analyses such as a data-race analysis. In comparison to a points-to analysis
that returns a points-to set of allocation sites for one particular variable, an
alias analysis takes two variables as input and returns true in the case both
variables alias, i.e., their points-to sets share at least one allocation site. An alias
does not need to compute the complete points-to sets for both variables but can
terminate quickly as soon as one shared allocation site is found. Therefore, an
alias analysis can be more efficient. DA pre-computes intra-procedural method-
wise alias relationships for variables on-the-fly and combines the information for
every new query.

5.5.2 Precision and Recall on PointerBench

Evaluating any static analysis with respect to precision and recall requires knowl-
edge of a ground truth which marks the correct, expected output for an analysis.
Precision and recall values for the static analysis are computable based on devi-
ations from the ground truth. For a static points-to analysis, the ground truth
comprises the points-to sets for a variable. For an alias analysis, the ground truth
comprises pairs of aliased variables. Deriving the ground truth for a pointer or
alias analysis on real-world software is difficult and requires error-prone manual
effort. A points-to analysis computes a solution across all execution paths and
correctly labelling and specifying the complete points-to sets for all variables for
all paths is not viable.

Instead of labelling real-world software, we propose POINTERBENCH as a
micro-benchmark suite for pointer analysis with a labeled ground truth. The
benchmark’s test programs are designed to test for analysis design dimensions
(e.g., context or field-sensitivity) separately. Hence, true positives, false posi-
tive and false negative highlight strength and weaknesses of the pointer analysis
under test.

The POINTERBENCH Micro-Benchmark. POINTERBENCH contains 36 specially
crafted small programs that depict common pointer analysis issues for Java (e.g.,
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Alias pairs Allocation sites

Tests BOOMERANG DA SB BOOMERANG SB
SimpleAlias v v v v v
Interprocedural vV vV VY vV vV

- ReturnValue VY YVVYVe WYYV VS VY

‘% Parameter vV vV vV vV v

M Loops VN VN VY e s
Recursion VYV N4 VvV v v
Branching v v v vV vV

% ContextSensitivity v v vV VNN VY VNNV VNNV

=  ObjectSensitivity vV~ vV vV vV vV

§ FieldSensitivity VY VNN VY vV vV

& FlowSensitivity N v v

8 StrongUpdate vV v v vV vV

% OuterClass Nava v v v v

g SuperClasses v v v v v

~ StaticVariables v v Ve v v

& Null a4 NaY4 vV

S Exception v v NE4 e Ve
Interface v v v v v

g List N4 N4 a4 vV vV

£ Map v e Ve v )

£ Set a's Ve v )

8 Array Ve Ve v v v
Recall 1.0 0.98 0.98 1.0 0.95
Precision 0.89 0.81 0.81 0.88 0.86

Table 5.1: The precision and recall of BOOMERANG, SB, and DA with respect to
alias pairs and allocation sites on POINTERBENCH. ©= false negatives,
= false positives, v'= true positives. For the test cases Set and Map,

SB times out after 10 minutes.

handling collections, field-sensitivity, context-sensitivity). Each program con-
tains special API-calls that describe points-to and alias queries. The points-to
sets of the queries are allocation sites whose type implement a certain interface.
A static pre-analysis extracts and parses the required statements and provides
may information about all aliases, non-aliases, and allocation sites of a particular
variable in the program. Using POINTERBENCH, alias, points-to, or any kind of
pointer analysis can be compared against one another based on the same ground
truth. POINTERBENCH is open sourceﬂ and we encourage contributions.

Experimental Setup. For each program and each analysis (BOOMERANG, SB,
and DA), the specified points-to and alias queries on POINTERBENCH is extracted
and triggered. A query (m,v) to SB comprises a local variable v and the method
m the variable belongs to. The query result is a points-to set of the given variable
with each allocation site enriched by a calling context. A query for DA consists
of two local variables and the methods they belong to: (m1,v1,ma,v2). The
result is a boolean value stating whether the two variables v; and vs in the given

TAvailable  for download at https://github.com/secure-software-engineering/
PointerBench
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methods my and me may alias or not. Although this interface is convenient for
some client analyses (e.g., data-race analysis), points-to sets cannot be derived
from alias information. For BOOMERANG, a pointer query is a local variable v
and a statement s (BOOMERANG is flow-sensitive). BOOMERANG returns results
in the form of a map. The map’s keys are allocation sites o,. Each associated
value is the set aliases,(s) that encodes all access paths aliasing to v.

Due to the difference in analysis types, returned information and query for-
mat, we compare the precision of SB, DA, and BOOMERANG on their common
basis: alias information. We use DA’s query format as this information can be
derived by all three analyses. For SB, an alias query is mapped to two points-to
queries, one for each variable of the alias query. If the intersection of the two
points-to sets is non-empty, the two variables may alias. BOOMERANG returns
all aliases of an object a as set aliases,(s) directly and a single points-to query
for one variable suffices. In addition to the evaluation of alias information, we
additionally compare BOOMERANG’s points-to sets to SB’s points-to sets.

Results for Alias Pairs. In Table[5.1] we report the true positives, false positives,
and false negatives for each pair of aliasing/non-aliasing variables. Across all
the programs in POINTERBENCH, BOOMERANG achieves 100% recall and 89%
precision, DA achieves 98% recall and 81% precision, and SB achieves 98% recall
and 81% precision with respect to alias pairs.

DA reports a false negative for the test case ReturnValue. This test case
creates an object and passes it to a static method that returns its parameter
(i.e., it is an identity function). In the caller of that function, the argument to
the call and the return value should alias. DA incorrectly models static methods,
which leads to this false negative.

In the group Collections, the test cases contain operations on TreeSet and
HashMap (e.g., inserting and retrieving elements). These collections store elements
in arrays, but all three analyses are array-insensitive. Therefore, assignments to
array elements are treated as assignments to a synthetic field ARRAY modeling
all of the array’s content, disregarding the index. Additionally, all analyses are
path-insensitive: an object added to a set aliases with all other objects contained
in that set (unless they cannot alias by their type). This imprecision constitutes
to the precision loss for all three analyses in Collections.

For the test case FlowSensitivity, DA and SB report a false positive. The
test case triggers a query for b before a statement b = a which updates b to alias
with a. Prior the statement, the alias relationship between the two variables does
not hold, the two flow-insensitive pointer analyses DA and SB cannot detect it.

Results for Allocation Sites. We now compare the two analyses BOOMERANG
and SB. DA delivers only alias results and hence cannot compute allocation
sites. For each program in POINTERBENCH, the last two columns of Table
show false negatives, false positives and true positives in terms of allocation sites
reported by BOOMERANG and SB.

Across all test cases in POINTERBENCH, BOOMERANG achieves 100% recall,
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and SB 95%. The lower recall value for SB is due to the analysis timeouts
on the test cases Map and Set. For these test cases, SB’s analysis runs into a
timeout after 10 minutes and the analysis is not able to compute points-to sets.
We consider these timeouts as empty points-to sets which constitutes to two
false negatives for SB. With respect to precision, BOOMERANG and SB achieve
88% and 86%, respectively. The main reason for SB’s drop in precision are
the test cases FlowSensitivity, OuterClass and SuperClasses. The analysis
SB is not flow-sensitive and the test case FlowSensitivity strongly updates a
variable. A strong update requires flow-sensitivity. The test cases OuterClass
and SuperClasses store and load an object from fields of respective classes. In
both target programs, a field store strongly updates the content of a field. The
strong update requires a flow-sensitive analysis. Therefore, BOOMERANG is more
precise for these target programs.

Summary. In summary, on the micro-benchmark suite POINTERBENCH, all
three analyses are highly precise when used for alias information. BOOMERANG
achieves slightly higher precision than DA and SB. Also when used to query
points-to information, BOOMERANG is slightly more precise than SB as BOOMERANG
is flow-sensitive and can perform strong updates.

5.5.3 Integration with a Taint Analysis for Android

The usefulness of a demand-driven pointer analysis is best evaluated in combi-
nation with a concrete client analysis. FLOWDROID is a context-, field-, and
flow-sensitive taint analysis for Android [5]. In this experiment, we compare the
performance of different pointer analyses (BOOMERANG, SB, DA and FLow-
DRroID’s default alias analysis) when integrated into the taint analysis FLow-
DROID on real-world applications from the Google Play Store.

Experimental Setup. Like many taint or typestate analyses, FLOWDROID re-
quires alias information at points of aliasing, i.e., at field-store statements and
at call sites. For a taint analysis, the logic is the same as for a points-to analysis
and at these statements, points of aliasing are required such that FLOWDROID
indirectly taints other data-flow facts (FLOWDROID access paths). At those
statements, FLOWDROID needs to obtain all aliases of the tainted access path.
FLowDROID then taints those aliases and continues the taint propagation.

The interface for SB delivers pairwise alias information of variables, SB delivers
points-to sets in the form of allocation sites. Neither of the two interfaces returns
all aliases directly in the form of access paths. Therefore, integrating DA or SB
into FLOWDROID needs additional post-processing for the computation of all-
alias sets.

The post-processing is as follows. When a given FLOWDROID access path
a.f.g is tainted at a field-store statement (a.f = taint) or returns from a call
site to a new scope (taint(a)), the following operation must be performed. For
every local variable d of the method containing the field-store or the call site,
the analysis checks if the variable d aliases with a. In such case, the access path
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d.f.g is added to A, the set of all aliasing access paths. Similarly, for every
field-load statement ¢ = d.f, where the field matches the first field of the access
path a.f.g, the analysis checks whether d and a alias. If so, the access path c.g
is also added to A. For every field-write statement d.h = t, the analysis checks
for aliasing between t and a. If they alias, the access path d.h.f.g is added
to the set A. FEach alias within set A is injected into FLOWDROID’s data-flow
propagation.

In contrast, when using BOOMERANG, FLOWDROID requires only one query
per field store or call site. BOOMERANG directly returns a set containing all
aliases.

In his thesis [3], Arzt evaluates FLOWDROID on a set of 25 realistic real-world
applications. For this experiment, we use the same set of applications and ran
FLowDROID with the three different pointer analysis integration. As a base-
line for comparison, we also run FLOWDROID in its default conﬁguratiorﬁ that
includes its own intertwined alias strategy [5]. The experiment was conducted
on an Intel Xeon E5-2680, 2.40 GHz machine with 16 processors and 128 GB of
memory using JDK version 1.8.0-171. We limit the overall analysis time for each
application to 60 minutes.

Results. Table[5.2]lists the analysis times and the number of reported taint flows
for FLOWDROID configured to use the different pointer analyses. FLOWDROID
supported by BOOMERANG successfully analyzed 23 of the 25 applications within
the allocated time budget of 1 hour. FLOWDROID supported by DA terminated
its analysis on 11 of all applications. With the integration of SB in FLOWDROID,
the taint analysis successfully terminates on only 2 out of all 25 applications.
FLOWDROID in its default configuration terminates on 21 applications. This
clearly shows that the rich query format BOOMERANG offers significantly impacts
the analysis time of a client analysis.

Table also lists the analysis times of FLOWDROID in the case the analysis
terminated. These times are the average of 5 independent runs. In 22 of all
applications the integration of BOOMERANG into FLOWDROID outperforms the
default configuration of FLOWDROID. Averaged across the terminated runs,
BOOMERANG improves the performance of FLOWDROID by a factor of 2.3x. We
argue that the main reason for this performance improvement are the SPDS of
BOOMERANG. FLOWDROID models access paths explicitly. We compare these
two heap models more carefully in Section [8.1

Table shows that the choice of the alias analysis also affects the number
of taint flows reported by FLOWDROID. We checked our implementation of the
integration of BOOMERANG into FLOWDROID by relying on the large set of test
cases available for heap flows in FLOWDROID’s implementation. We found some
test cases for which the integration with BOOMERANG in FLOWDROID delivers
more precise results than the default configuration of FLOWDROID. In particular,
these cases include programs where a data-flow is propagated via an access path

8Except that we only use a single thread. The implementations of DA, SB and BOOMERANG
are not multi-threaded.
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Table 5.2: Analysis times and reported taint flows of FLOWDROID with different
alias strategies. Timeouts are marked by X.
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and the base variable of the access path is known to be null. For these case, the
program does not leak any data as it crashes earlier in a NullPointerException.
Another test case shows an over-approximation due to the activation statement
that FLOWDROID’s original implementation requires [3]. Each of FLOWDROID’s
data-flow facts is enriched by an activation statements, a taint propagated back-
ward is deactivated and only activated once it bypasses the activation statement
during the forward propagation. With the integration of BOOMERANG the acti-
vation statement is not necessary.

We assume these cases to also occur on the real-world applications and affect
the number of reported taint flows. Unfortunately, we do not have a ground
truth for the taint flows within these applications and we cannot argue which
integration misses findings or introduces new spurious ones.

Summary. The analysis time of FLOWDROID reduces significantly when switch-
ing from DA or SB analyses to BOOMERANG’s alias integration. The taint
analysis client FLOWDROID makes full use of the rich query results returned
by BOOMERANG. The integration of BOOMERANG into FLOWDROID reduces the
analysis time by a factor of 0.44x in comparison to the default FLOWDROID taint
analysis.

5.5.4 Data-Race Client on DaCapo

In this experiment we compare the three demand-driven points-to analyses on a
second data-flow client for pointer analysis, a data-race client.

2006 DaCapo Benchmark Suite. The DaCapo 2006 benchmark suite |7] con-
tains a collection of 11 different realistic, general purpose and freely available
Java programs. The programs have between 2,795 and 12,450 (geometric mean:
5,768) declared methods. The benchmark suite is widely accepted and heavily
used for testing and benchmarking of dynamic analyses, but also used in bench-
marking of static analyses.

Data Race. A data race is a programming error that causes the execution of
concurrent programs to be non-deterministic. In Java, a data race occurs when
two threads access the same field of the same object and at least one access
is writing to the field. When both field accesses are not properly locked in
synchronized blocks, the field accesses execute in arbitrary order and can render
the program execution non-deterministic. The non-determinism makes the error
difficult to reproduce, and hence to debug and fix. A static analysis can suggest
which pairs of field accesses may potentially race.

Experimental Setup. A static data-race analysis detects potential data races
within a program. For any pair of statements, hereafter called data-race pair,
that access the same field, say f, a data-race analysis checks whether the base
variables of both accesses are aliased to each other. Say one of the two statements
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Table 5.3: Precision and performance results for the datarace analysis with the
demand-driven pointer analysis DA, SB, and BOOMERANG.
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stores x.f and the other statement loads y.f, then a data race may occur when
x and y are aliased. The program may behave differently depending on which
statement executes first. For a data race, at least one of the two statements must
write the field and change its value. The data-race client is a worst-case client for
a demand-driven alias analysis as it triggers queries for any pair of statements
accessing the same field. Hereby, it easily triggers queries throughout the entire
program.

We run the data-race analysis on all 11 benchmarks of DaCapo. We pre-
compute a SPARK-based context-insensitive call graph and compute all call-
graph reachable data-race pairs for which SPARK’s points-to analysis reports the
base variables to alias. We then hand over the data-race pairs (in total 393,471) to
the more precise pointer analyses (SB, DA, and BOOMERANG). A data race is a
client for a pointer analysis with little requirements. Pairwise alias information,
similar to what DA delivers, suffices and each data-race pair maps to exactly
one alias query. For the two demand-driven points-to analyses (BOOMERANG
and SB), queries to compute the points-to sets are triggered and the points-to
sets are intersected to check if the two base variables of the field accesses alias.
A non-empty intersection means the variables alias and the pair of statements
is a potential data race. This analysis undermines the power of the points-to
analysis, because the points-to sets are not further used. To limit the overall
execution time for the many data-race pairs to check against, each data-race pair
was granted 1 second to return its points-to result. If the pointer-analysis query
times out, the data-race pair is conservatively reported as a potential data-race
pair.

Precision Results. The precision results for this experiment are listed in Ta-
ble In the row Checked Pairs, the table shows the total number of datarace
pairs that were checked for. This number excludes the pairs SPARK points-to
analysis labels as non-aliasing. The row Pruned Pairs shows the number of pairs
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for which the analysis proves that a datarace does not exist, ergo the higher this
number, the more precise the analysis. In addition to the pruned pairs, Table
lists the Precision Gain computed as

Pruned Pairs

Checked Pairs

The results show that, across all benchmarks, the precision gain is higher for the
pointer analysis BOOMERANG than for DA and SB. A datarace client based on
BOOMERANG reports fewer candidates as datarace pairs to the user.

Precision Gain =

Performance Results. We discuss the performance of the datarace client in the
form of the number of datarace pairs for which the computation takes more than
one second, the time budget we allocated for each query. Apart from the number
of pruned pairs, Table lists the number of Timeouts which is the number
of datarace pairs for which the respective pointer analysis analysis exceeds the
time budget. Therefore, the higher the number of timeouts, the less efficient an
analysis is.

The number of timeouts for the alias analysis DA is significantly smaller across
all DaCapo benchmark programs. On geometric average, the analysis DA times
out on 2.4% of all queries. Opposed to this, the pointer analysis SB times
out for 27.3% and BOOMERANG even for 42.0% of all queries. Despite the fact
that BOOMERANG performs worst, BOOMERANG also computes the most precise
information. The efficiency results also indicate that the datarace client is a mal-
suited client for points-to analysis and performs better with an alias analysis.
The overhead to compute full points-to sets is unnecessary for a datarace client
and avoided by the alias analysis DA. We further elaborate on the high fraction
of timeouts and their origins in Chapter [§

Summary. BOOMERANG is mal-suited for a datarace client. The datarace client
is the perfect client for an alias analysis such as DA, because it leaves computed
points-to sets unutilised. Moreover one must question whether it’s not a client
for which one should rather conduct a whole-program analysis in the first place.

5.6 Related Work

The intense amount of research has lead to pointer analyses with numerous kinds
of approximations, each of which balances precision and scalability in a different
manner and targets different clients. We split the large body of work into whole-
program and demand-driven pointer analysis. Whole-program pointer analyses
compute points-to sets for every pointer variable in the program and are mostly
applied during call graph construction, for the detection of casts that may fail
or for data-race clients. Demand-driven approaches are designed for clients such
as just-in-time compilers, interactive development environments, taint or types-
tate analysis. These clients typically require targeted pointer information about
limited parts of the code, thus raising pointer queries.
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5.6.1 Whole-Program Pointer Analyses

Despite the fact that BOOMERANG is a demand-driven pointer analysis, we found
flow-sensitivity to be a second major difference to many existing whole-program
pointer analyses. Further on, we thus group the research into flow-sensitive and
flow-insensitive approaches.

Flow-Insensitive Analyses

There are Andersen- [1] and Steensgard- |94] style whole-program points-to anal-
yses. Both compute flow-insensitive points-to sets. Andersen-style analyses are
subset-based; after an assignment statement y < x it holds pts(y) 2 pts(x).
Steensgard-style analyses are equality-based which means forcing the points-to
sets to be equal after an assign statement, i.e., pts(y) = pts(x). Steensgard-style
analyses are more efficient to compute than Andersen- style, but produce less
precise results.

The large amount of existing pointer analyses motivates the design of frame-
works for pointer analysis such as SPARK [55] and DOOP [12]. SPARK is a
pointer analysis framework that ships as part of the static analysis framework
Sootf] SPARK implements an Andersen-style context-insensitive and flow-
insensitive pointer analysis and allows to compare implementation details and
their impact on the analysis: Points-to sets can be implemented as HashSets
or BitVectors, but also any hybrid version of the two. SPARK’s context and
flow-insensitive pointer analysis is the standard points-to based call graph con-
struction algorithm in SooT.

In DOOP [12], points-to analysis algorithms are specified in the declarative pro-
gramming language Datalog. The relational formulation of Datalog is a perfect
fit for Andersen-style points-to analysis and enables Datalog-specific automatic
memory and runtime optimizations. For instance, the authors of DOOP report a
significant performance boost by porting the Datalog rules to a different Datalog
solver [2].

DOOP performs a top-down points-to analysis and as Andersen-style analysis
uses the store-based heap abstraction [42]. For context-sensitivity, the store-
based heap abstraction models object allocations with additional k-limited con-
texts string. The definition of a context can be arbitrarily modeled in the form of
object allocations (object-sensitivity) or call sites (call-site context-sensitivity).
The analysis merges contexts when the context length exceeds k. Various DOOP-
based research exists trying to find the right balance between precision and scal-
ability in different configurations of context-sensitivity |44} 86,87].

Recently, Tan et al. [98] propose the design of a precise and efficient points-to
analysis for type-based data-flow clients. Call-graph construction algorithms, de-
virtualization, or may-fail casting clients do not require precise information about
actual allocation sites of variables, instead the actual runtime types of the object
suffice. From a fast but imprecise points-to pre-analysis a field points-to graph
is extracted. The graph is used to pre-compute type-consistent objects. Two

“https://github.com/Sable/soot
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objects are type-consistent if for all of their fields the object stored in the fields
are of the same type. For two type-consistent objects, their points-to sets can be
merged during the more precise points-to analysis without sacrificing precision
for type-based data-flow clients. While the idea is similar to a simple variable
type analysis (VTA), their analysis requires a complete points-to graph along
which the type-consistent checks are performed. We cannot apply a similar idea
to BOOMERANG, because the clients we address require more precise information
than purely the types of the allocation sites.

Flow-Sensitive Analyses

In contrast to a flow-insensitive analysis that stores points-to set per variable and
method of the analyzed program, a flow-sensitive analysis requires one to main-
tain points-to sets per variable and statement of the program. Storing points-to
set statement-wise not only drastically increases the memory consumption of the
analysis, but also prolongs the computation time for the fixpoint of the data-flow
propagation. Therefore, some of these analyses chose to be context-insensitive
instead.

In the pointer analysis for C presented in [35], the challenges of flow-sensitive
analysis are addressed by a sparse analysis. Instead of propagation points-to
sets from statement to statement, the sets are sparsely propagated along the
def-use chain of variables. The def-use chain contains the definition statement
of the variable and statement that uses the variable. A points-to analysis itself
computes such def-use chains. Therefore, Hardekopf and Lin propose a staged
analysis where an earlier and cheaper pointer analysis is consulted for the def-use
chains. The downside of this approach is that spurious edges introduced during
the cheaper pointer analysis imprecisely conflate results of the later stage. Shi et
al. [85] call this problem the “pointer trap”. In their work they also present PIN-
POINT, a flow-sensitive and demand-driven value analysis which partially over-
comes the trap when resolving pointer relations. We discuss PINPOINT in more
detail in Section [£.6.21

Statement-wise points-to sets are more precise than flow-insensitive points-to
sets because of strong updates. At field-store statements points-to information
can be strongly updated when a points-to set of the base variable must point to
a single runtime object. Lhotédk and Chung present an analysis for C [54] that
computes flow-sensitive points-to results for variables that must point to a single
allocation site. Hereby, strong updates are still performed. The analysis switches
to flow-insensitive results as soon as a the size of the points-to set is larger than
one. They report their analysis to be almost as efficient as a flow-insensitive
analysis while still performing 98% of the strong updates a full flow-sensitive
analysis would perform. Opposed to BOOMERANG, this analysis is also context-
insensitive.

De and D’Souza |17] present a context-sensitive alias analysis for Java that also
performs strong updates. The authors claim a scalable analysis that is achieved
by the storeless access path-based model with k-limiting. Their experiments are
run with a k-limit with & = 2 and k£ = 3. For context-sensitivity, call strings of
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length 1 are used. Additional efficiency and precision may be gained by replacing
their model with the synchronized pushdown system suggested in this work. As
an alias analysis their analyses fits the needs of a data-race client, but as points-to
sets are not computed other points-to clients cannot use their results.

Feng et al. [24] propose a bottom-up context-sensitive points-to analysis. The
analysis starts analyzing methods without callees, generates generic summaries,
and traverses the call graph in a bottom-up manner to apply the summary at
call sites. Bottom-up points-to analyses need to analyse methods only once, but
are challenging to implement. The actual type of an object for instance, may
depend on a caller. Therefore, at a virtual call site, the actual callee method
depends on the caller and a summary has to encode all possible execution but
should be refined when applied. For refining the applications at application time,
the authors present constraint-based summaries based on a storeless heap model
that is similar to access paths. The constraints depend on the actual type and
alias relationships within callers. Their experiments show a significant improve-
ment in the running time over top-down object-sensitive points-to analysis. The
pushdown systems (as used by BOOMERANG) can also use summaries [49]. Ex-
tending the pushdown systems summaries by the constraints Feng et al. present
is an interesting approach and could yield additional precision and efficiency for
BOOMERANG.

5.6.2 Demand-Driven Pointer Analyses

Demand-driven pointer analyses compute answers to pointer queries for data-flow
analyses clients. The queries can be triggered for pointer variables (at arbitrary
statements) within the program. As for the whole-program points-to analyses,
we subdivide this section into flow-insensitive and flow-sensitive analyses.

Flow-Insensitive Analyses

Sridharan et al. [93] present a demand-driven context-insensitive points-to anal-
ysis for Java. They introduce the CFL-reachability formulation for pointer anal-
ysis in Java: From the analyzed program a pointer assignment graph (PAG) is
extracted. The graph’s nodes are either variables or allocation sites, the edges
between the nodes have labels. For a field-store statement z.f < y, the graph
contains an edge from y to x with a label f. Also for a field load = < y.f the
graph lists an edge from y to x but labeled by f. The graph is similar to the
graph in Figure To determine points-to relations, flowsTo-paths are com-
puted within the graph. A flowsTo-path is valid and a points-to relation holds,
if field stores and loads are properly balanced along the path. Checking for CFL-
reachability is expensive and the authors further show how an over-approximation
of the context-free language to a regular language computes faster points-to re-
sults. BOOMERANG is more precise, because the results are also context and
flow-sensitive.

A follow-up work of Sridharan et al. [91] discusses a refinement-based context-
sensitive points-to analysis. Existing points-to information is successively refined

82



5.6 Related Work

until an analysis budget is depleted. In this work, the authors also formulate call-
site context-sensitivity as a CFL-reachability problem. This formulation roughly
corresponds to Ps. The combination context- and field-sensitivity yields to an
undecidable analysis [73] (see also Chapter [4.4). Sridharan et al. address un-
decidability by over-approximating strongly-connected components in the call
graph for recursive parts of the program. For the recursive components, the CFL
is transformed into a regular language resulting in context-insensitive computa-
tions. In our evaluation, we compare BOOMERANG to this analysis and are able
to measure performance and precision improvements.

Yan et al. [104] present a demand-driven alias analysis for Java. As it solely
computes information whether two pointer variable alias or not, computation of
whole points-to sets is not necessary and saves computation time. The analysis
pre-computes intra-procedural symbolic pointer graphs and combines them inter-
procedurally to compute alias information of a query. The authors further show
how to summarize alias information. Alias information is sufficient for data-race
clients, however, for most other clients, pure alias information is ill-suited, e.g.,
for call-graph construction. We evaluate BOOMERANG in comparison to this
analysis and report performance and precision improvements for a taint analysis
client. When applied to a data-race client, the additional precision comes at the
cost of efficiency, because BOOMERANG computes information not needed for the
data-race client.

Demand-driven pointer analyses also exist for C programs. Heintze and Tardieu [37]
present an Andersen-style context-insensitive pointer-to analysis. Their evalua-
tion shows that demand-driven pointer analysis heavily varies in its computation
costs. The authors report 10x speedups on some benchmarks, while for other
benchmarks, the demand-driven approach is considerably slower. In particular,
on some benchmarks and for some pointer queries, it is necessary to compute
the complete points-to graph. This makes the computation as costly as a whole-
program analysis. When analyzing programs written in Java with BOOMERANG,
we observed similar results (see Chapter : the computation time of a single
demand-driven query may vary heavily.

A demand-driven alias analysis for C is presented by Zheng and Rugina in |108§].
Similar to Sridharan et al. [93], a CFL-formulation for the alias problem in C is
described. The authors report their analysis to be 30x faster for the computation
of alias information when compared to a demand-driven points-to analysis.

Flow-Sensitive Analyses

Flow-sensitivity allows performing strong updates and can thus greatly support
clients such as typestate analysis [26,27,95]. Despite many applications for these
clients, limited research have been published in the area of demand-driven and
flow-sensitive pointer analyses.

Sui and Xue [96] propose a flow-sensitive demand-driven pointer analysis for
C that is capable of strong updates. The analysis is designed in stages. It pre-
computes def-use chains and performs a sparse analysis based on these. Also
Shi et al. [85] present a sparse value flow analysis for C which resolves pointer
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relations on-demand. There analysis is called PINPOINT and is path-sensitive,
flow-sensitive and context-sensitive. The idea of sparse analysis can be lifted to
Java and BOOMERANG as well. A sparse analysis reduces the number of rules for
the pushdown systems Ps and Pr and most certainly reduces the analysis time.
An interesting open question is, whether a sparse analysis on Java has a similar
benefit as on C. We plan to elaborate on sparsity in future work.

Although they do not propose a demand-driven pointer analysis, Guyer and
Lin [34] present a framework for client-driven pointer analysis for C programs.
The key idea is to monitor the points-to analysis and keep track of imprecision-
introducing statements such as control-flow merge points, field-store statements
and polymorphic call sites. Once the results are computed, the client decides if
the results are precise enough or asks for more precise information on-demand,
e.g., for flow- or context-sensitivity. Internally, the analysis then revises the data-
flow facts at statements that introduce the imprecision. A similar approach is
possible with BOOMERANG, where an imprecise points-to analysis is triggered
first.
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Context-sensitivity, flow-sensitivity, and field-sensitivity are useful precision di-
mensions for data-flow analyses such as data race and taint analysis. However,
there is a broader range of analyses that profit from these dimensions. For
instance, while a typestate analysis or an analysis to mine A PI uses require flow-
sensitivity, having context-sensitivity and field-sensitivity add additional preci-
sion.

In this chapter, we propose a general, efficient pointer-tracking data-flow frame-
work called IDE#, which encodes a context-sensitive, flow-sensitive, and field-
sensitive data-flow analysis that automatically reasons about aliasing. This chap-
ter focuses on instantiating IDE% for a typestate analysis, however, it can also
be instantiated for mining of API uses, linear constant propagation, and many
more data-flow analyses.

A typestate analysis expects as input a finite state machine specifying the
correct usage pattern for objects of some type. The static analysis then starts
from any allocation site that allocates an object of the type. From the allocation
site, IDE* follows the data-flow of the object including its aliases. A sound
typestate analysis requires following the data-flow of all pointers and the analysis
ought to consider field stores and call sites, because they introduce flows to
aliases (see Example and Example . For these statements, IDE resorts
to demand-driven BOOMERANG queries.

For typestate analysis |26}[27], it is common to propagate all aliasing access
paths as sets within the data-flow fact. This setup enables strong updates, which
means to simultaneously update typestate information of all aliased pointers
when an update occurs on a single pointer of the set. However, this setup results
in an inefficient powerset abstraction [66]. For instance, the IFDS framework has
a worst-case complexity of O(ED?), where E is the size of the inter-procedural
control flow graph and D the size of the data-flow domain. An analysis that
propagates k-limited aliasing access paths as sets results in the worst-case com-
plexity (’)(E(2W‘X|]F‘k)3)7 because a data-flow fact can be any subset of the set
of all access path V x F¥. Using IDE®, we present a way to avoid this state
explosion by propagating aliasing access paths individually while still performing
strong updates.

IDE* extends the pushdown system Ps of BOOMERANG by weights, i.e., it
lifts the pushdown system to a weighted pushdown system (WPDS). In the case
of a typestate analysis, the weights encode the typestates of the pointer. IDE¥
resorts to BOOMERANG to compute strong updates of typestates for all aliasing
access paths.

We originally presented IDE at the ACM SIGPLAN International Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOP-
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SLA) in 2017 [88]. That original version of IDE* was based on the traditional
IDE framework [80] and relied on access graphs. The name IDE¥ reflects that
it is based on IDE and automatically resolves aliasing. The version we present
in this thesis relies on weighted pushdown systems and SPDS instead of IDE.
Verbatim parts of our OOPSLA publication are included in this chapter.

6.1 Typestate Weight Domain

A typestate analysis in IDE is specified in the form of a finite state machine
that encodes the usage pattern of the reference-type of interest. The data-flow
analysis starts at every allocation site of the type of interests and associates a set
of transitions of the finite state machine with each access path at each statement
that can point to the allocated object. The transitions are encoded in weights and
each rule of Ps is labeled by a weight. IDE* allows custom weights for different
forms of analyses, e.g., typestate or mining APT uses. We focus on typestate and
formally define the weights for this analysis.

A finite state machine (FSM) that encodes the usage pattern for an object of
type X has the form (X, S, sg,d, F). ¥ is the set of methods that may be invoked
on an object of type X changing the state of the object, S is the set of all possible
states, sg is the initial state, § is the transition function 6:Sx ¥ - S, and Fc S
is the set of accepting states of the finite state machine.

Example 21. Figure[6.1]lists an excerpt of the API of the class java.util.Vector.
Before accessing the last element, lastElement () checks the existence of the el-
ement. If the vector is empty, lastElement () throws a NoSuchElementException
in line The API implicitly assumes the vector to be filled by calling add ()
or insertElementAt() before lastElement() is invoked.

The FSM drawn in Figure [6.1] shows a pattern for the usage of the API. The
FSM encodes that a newly allocated Vector object resides in the empty state
(referred to by E) encoding the vector to be empty. The out transition of this
state carries the semantic that the first call on the object should be add(). The
state of the object switches to a state in which the vector is not empty (N). An
object in this state accepts calls to add(), lastElement(), or clear(). The two
methods add() and lastElement() do not remove elements from the vector, i.e.,
calling either method cannot transfer the object into the empty state (E) which
is encoded as the self-loop edges for state N. However, clear () changes the state
of the object into E as the call removes all elements of the vector.

Definition 12. Given a finite state machine T encoding a usage pattern and
given S s the set of states of T, then the typestate weight domain is the tu-
ple (Dr,®71,®7,07,17) where each weight w € Dy := 25%5 has the form w =
{(s1,t1),.--, (Snstn) | Sisti € S}, d.e., a weight is a set of (transitive) transitions
of T and we thus also write s — t. The binary operator &7 is set union. The
extend-operator @7 is defined as follows:

w1 @rwyi={s—u|s—tewy,tucws}.
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229 public synchronized X lastElement() {
230 if (this.elementCount == 0) {

231 throw new NoSuchElementException();
232}

233 return elementData(this.elementCount - 1);
234 }

235

236 //Adds the specific element and increases this.elementCount
237 public synchronized boolean add(X e) {...}

238

239 //Removes all elements, this.elementCount is set to O.

240 public void clear() {...}

new
clear E
clear ad

lastElement add

lastElement

ERR

d

Figure 6.1: An extract of the API for java.util.Vector and a state machine
encoding the correct usage patterns of the API.
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Figure 6.2: An example of a typestate violation for an object of type
java.util.Vector.

The weight Or is defined as the empty set @ € Dp. Weight 11 is the element
{s—s|VseS}.

The weights for the typestate analysis associate transitions of the FSM to
each rule of Ps. Using only sets of states is not sufficient for the purpose of
summarization. A method can transform the typestate of an object into two
different target states, dependent on the state the object is in at the call site
(Details in Example [23)). The extend-operator (®7) for two weights is an one-
step transitive closure over the transitions, i.e., if the target state ¢ of a transition
s ~ t of the weight of the left operand (w;) matches the first state of the transition
of the right operand (i.e., t = u € wy), the resulting weight w; ® 7wy contains the
transition s — wu.

Example 22. Figure shows a code snippet to be checked for the correct
usage pattern of class java.util.Vector. Method foo() executes along two dif-
ferent control-flow paths. The concrete execution path depends on the runtime
evaluation of the branch condition of the if statement. Both paths use the vec-
tor object that is allocated in line When the branch condition evaluates to
true, the methods add() and lastElement () are invoked in this order. When the
condition is false, the program tries to access the vector’s last element without
ever adding any element to it, which throws a NoSuchElementException.

The typestate analysis encoded with IDE¥ starts to track the pointer v point-
ing to the vector object allocated in line Because the control flow branches,
data-flow by-passes all statements within the if block. For this data-flow, the
ESG in Figuredepicts the bended edge belonging to the normal rule (v,222]) —
(v, 3.

The pushdown system has the three normal rules that affect the typestate of
the object. These three rulesﬂ are listed in Figure The rules are the only
rules changing the typestate of the object stored in v and all other rules receive

!The rules would actually be inter-procedural push rules (v flows as this local variable into
the methods). We model it as intra-procedural flow to simplify the presentation.
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Figure 6.3: Summaries in Ag require an IDE*-based typestate analysis to prop-
agate transitions as weights.

the identity weight 17. The weights that the three non-identity rules receive are
given in Figure [6.2 and match transitions in the FSM of Figure

In Figure[6.2} the final weights from the post*-saturated weighted P-automaton
(see Section are shown next to the corresponding ESG nodes. The weights
are already extended along the path. If a node does not have a weight, it means
it has the same weight as the next predecessor node with a weight.

For instance, algorithm post* computes the weight {I — N} for variable v at
the statement in line At this statement, the object is in state N, at the
data-flow propagation start (the new call in line the object is in state I.

In the code, the control-flow branches and is joined again (line . The
weight inside the if block for v differs from the weight bypassing the branch
block. The two weights are combined (é&7) at the control-flow join statement in
line for which post* computes the weights wy = {I —» E, I » N} which is the
result of {I —» E} @p {I » N}.

The rule associated with the call to lastElement in line carries the weight
we = {F— ERR,N ~ N}. Either the object is non-empty and remains non-
empty, or the Vector is empty and accessing an element fails. The weight reaching
line is wy, when extended by ws it is w; ®pwg = {I —» ERR,I » N} and the
Vector object may reside in the error typestate after the call to lastElement.

In the next example we detail why a typestate weight is a set of transitions
and not a set of states.

Example 23. The code in Figure [6.3] depicts a program that first instanti-
ates a Vector object (line and adds an element to it (line 251)). The
next statement in line passes the vector object as argument to the method
accessLastElement (). Method accessLastElement() uses the vector object and
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calls the typestate changing method lastElement () on the object in line Af-
ter returning from method accessLastElement () the control-flow of the program
continues in line This statement removes all objects from the vector object.
Method accessLastElement () is called with the same vector argument a second
time in line The second time the method is called, the program throws an
exception in line as the vector is empty.

Aside of the code, Figure depicts the weighted P-automaton As by which
we demonstrate how the pushdown system Ps uses summaries and does not
require to compute data-flow within method accessLastElement() twice. We
switch from the ESG representation of IDE* to the automaton representation
as it eases the explanation. The upper three states of the automaton represent
the data-flow of v within method foo(). The lower two states encode the data-
flow within accessLastElement(). To unclutter the figure, we draw transitions
between the same states as separate edges if the transition’s weight differ. For
instance in foo(), for all five statements there are transitions from state v to
state gozm. Three different weights are associated to the five transitions and the
automaton lists three edges. For instance, for lines and the weight is
{I » E} indicating that the vector is empty after these statements.

We want to highlight the reuse of summaries within accessLastElement () which
requires typestate weights to carry transitions instead of states. When the data-
flow of the vector object gurg reaches the call site in line post™ creates a new
state within the automaton (ugzg) and post™ creates a transition from the newly
created state into the state gggg. At this call site, the vector is not empty and
the transition carries the weight {I — N}. This weight is call site dependent in-
formation and is not propagated from caller to callee. Therefore, within method
accessLastElement (), the vector object (stored in u) receives the weight 17 in
line This weight 17 explicitly does not encode the state at the call site. The
data-flow propagation continues within method accessLastElement() and asso-
ciates the weight {N — N, E — ERR} for the transition from u into uyggy labeled
by statement (the call to lastElement()). The transition with its weight
encodes that a vector object entering method accessLastElement () as first argu-
ment (u) transforms the object into the following typestate after statement [258
The object remains in typestate N if in state N at the entry to the method, or
the vector object transforms into state ERR if the vector is empty (state E).

In the code example, the vector enters method accessLastElement() in type-
state N when called under the context of call site and in typestate £ via
call site [254] The weighted pushdown automaton does not recompute data-
flow within accessLastElement() and instead reuses existing information for
the second call site in line The pushdown system Pg lists a pop rule
(u,259) — (v, €) that post* applies for both calling contexts. When post* applies
the pop rule, the weight returning from the callee is composed with the weight
at the call site. One transition that the application of the pop rule constructs is
the transition from v to gggg labeled by and weight {I » ERR}. The weight
is the composition {I + E} ®7 {N ~ N, E ~ ERR}. Therefore, IDE* computes
the vector object ggzq to reside in an incorrect state after statement

The change to the incorrect typestate occurs already at statement when
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called under from statement The automaton also encodes the incorrect
typestate statement but one needs to explicitly propagate and compose the
weights along the (reverse) paths from the accepting state ggzg to the node u.

The example shows, that modeling the weights as transitions allows reuse of
the automaton Ag and enables summarization.

A weight domain is required to be a bounded idempotent semiring and it
is important to prove the four properties from Definition [5| of Section If
the properties are not satisfied, the termination of the data-flow analysis is not
guaranteed.

Property 1. This property requires (Dr, ®7) to be a commutative monoid with
07 as its neutral element, and the operation @7 must be idempotent. Because
@7 is set union, (Dr,®r) directly defines a lattice (also a monoid) with meet
operator set union. Commutativity of the lattice is given, because set union
commutates. The weight Or is the empty set and is neutral with respect to
union. The lattice also requires the operator @7 to be idempotent, which is
given, because w &7 w = w for any w € Dp. With respect to the extend-operator
®7, (Dr,®7) is a monoid where the neutral element is 17, because it holds that
17®rw =w = w®r 1y = for any w € Dp. It follows that Property 1 of Deﬁnition
is satisfied.

Property 2. A bounded idempotent semiring requires ® to distribute over &.
Therefore, let a, b, c € Dy be arbitrary and it is:

a®r (bédrc)=a®r ({t~»u|t—uecbuc})
={sru|s—tea,truebuc}
={spu|s—tea,trueblu{sulsteat—»ucc}
=(a®rb)@r (a®rc)

The second equation of Property 2 of Definition [5| follows equivalently.

Property 3. The weight 07 must be an annihilator with respect to ®7, which
means every element extended by Op turns into the empty set. Because O is the
empty set, w®7 07 = 07 = 07 ®7w for any w € Dy, which makes O7 an annihilator
and Property 3 of Definition [5| is shown.

Property 4. The partial order defined by @7 is the partial order of set inclusion.
A finite state machine has a finite set of states. Therefore, the maximal element
is the weight T := {(s,t) | Vs,t € S}. For any weight w € Dp, T®r w = T.
Therefore, there cannot be an infinite descending chain, which proves Property 4
of Definition [Bl

All four properties are satisfied and (D7, ®7,®7,07,17) is a weight domain
for typestates, which means the weight domain can be used in IDE®.
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261 foo(){ l v W i
262 v = new Vector<Object>(); | i |
263 W = V; 3 {1~ L} l\ |
264 o = new Object(); ! l l |
265 v.add(o); ! i l |
266 w.clear(); | {IHN}l ¢ |
267 p = v.lastElement(); 3 {1~ N} i l {I~E} 3

268 }
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— Direct Flow = ~— Flow with Non-Identity Weights {I — E} Typestate Weights

Figure 6.4: An example illustrating the challenge that a non set-based data-flow
domain encounters with aliasing: Typestate updates on aliasing vari-
ables are not reflected.

6.2 Strong Updates and Points of Aliasing

To achieve efficiency, IDE¥ propagates access paths that point to the same ob-
jects individually. Each data-flow fact does mot hold a set of aliasing pointers,
instead, each data-flow fact is a single access graph (encoded as SPDS). This in-
dividual propagation is the same as for BOOMERANG, and IDE% also requires the
points of aliasing of BOOMERANG (Chapter . The points of aliasing transfer
updates on weight to aliasing data-flow facts and enable strong updates.

Example 24. A typestate change on one pointer can be strongly updated on
a second pointer if the two pointers are must-aliases. Performing strong up-
dates when pointers are propagated individually is non-trivial as illustrated in
Figure [6.4]

The execution of the code in Figure accesses an empty vector and termi-
nates in an exception. The code does not satisfy the typestate usage pattern
of Vector. The program allocates a Vector object in line Starting from
line there are two aliased variables that point to the object. While variable
v is used to add (line and access the elements (line 267)), between the two
calls all vector’s elements are removed by the call to clear () in line However,
clear() is invoked on the alias wE|

The call to clear() on variable w must strongly update the typestate of pointer
variable v. IDE* handles these updates, but a typestate analysis that does not
strongly update the typestate computes unsound results. We demonstrate a
typestate analysis without strong updates on the data-flow graph in Figure
Variables v and w are propagated individually, and at the call to lastElement in
line[260} the analysis assumes variable v holds a non-empty vector, because the re-
sulting weight for variable v is I — N. Consequently, at the call to lastElement (),

2This example is contrived. However, in actual code, a similar pattern occurs when an object
is stored and loaded from a field; the stored and loaded variables may alias.
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} 270 i
269 foo){ | V W 1
270 v = new Vector<Object>();; |
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272 o = new Object(); | | !
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276 }

— Direct Flow  ~— Flow with Non-Identity Weights {I — E} Typestate Weights
--> Indirect Flow o Non-Identity Point of Aliasing

Figure 6.5: Indirect flows at non-identity weights updates reconnect data-flow
when a typestate change occurred.

the analysis wrongly assumes the vector to be non-empty, and the analysis in-
correctly misses to report a typestate error.

Why does the analysis not detect the error? The call to clear() in line
is invoked on pointer variable w, and the analysis does not update the typestate
for the aliasing variable v at this statement. The data-flow graph shows that the
propagation paths of v and w are not connected and typestate changes on w are
not reflected to v, though both variables alias.

The discussed problem is a drawback of the individual, distributive propagation
of aliasing access path. Existing solutions [26}27./66] that keep track of all aliasing
variables in a set (powerset abstraction) can strongly update all aliasing pointers
carried within the data-flow fact, however, they also cause a state explosion of
the data-flow domain. To avoid the state explosion of the data-flow domain, we
propose a solution that maintains the efficiency of distributive propagation but
can perform strong updates at the same time.

In Chapter |5, we discussed the concept of points of aliasing. For instance,
at field-store statements, indirect flow edges are introduced to model data-flow
to fields of aliases. The aliases are computed for the base variable of the store
statement. This concept can similarly be applied to perform strong updates
of typestates. At any statement that performs a typestate update on a pointer
variable, indirect flow edges to aliases of the variable that receives the update are
computed and added. Weights on the indirect flow edges transport the updated
typestate information to the aliases.

Apart from the call-site and field-store points of aliasing, IDE* generates a
point of aliasing whenever a weight of a rule of Ps is a non-identity weight (a
weight other than 1). These rules change the propagated weight and the weight
update must be updated on aliases. We refer to these points of aliasing as non-
identity point of aliasing. In the case of the typestate weights, rules associated
with a statement updating the typestate of an object are labeled by a non-identity
weight.
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INIT f]\\//;\\@

\_/ OPEN CLOSE

Figure 6.6: A finite state machine that encodes the correct usage of a File API.
Any file object must be in a state marked with a double circle before
it is destructed.

Example 25. Figure shows how non-identity points-of-aliasing enhance the
analysis to soundly report the typestate error. In the figure, rules of Ps with
non-identity weights are highlighted as meandered edges. The data-flow analysis
generates three nodes that are non-identity points of aliasing: vQ273] wQ274] and
v@27H

FEach non-identity point of aliasing triggers a points-to query. The point of
aliasing v@27T3 for instance, triggers a pointer query to BOOMERANG to find
all aliases of variable v at statement in line 273l BOOMERANG returns that the
pointer variable is allocated in line and all aliasing access paths are the plain
variables v and w. For each alias, an indirect flow is added. The indirect flow
edges are highlighted as dashed red edges in Figure [6.5

The additional indirect edges receive identity weights (17), which means that
the analysis propagates the weights reaching the point of aliasing to all the aliases.
Hence, a node of an alias may have multiple incoming data-flow edges and their
weights are combined (@) as it is done for control-flow merge statements. For
instance, node v@277] has the weight {I —» E,I —» N}. The indirect flow edge
propagates the additional transition I — E to the node. Because of the additional
transition, the typestate analysis reports the usage of the Vector to violate the
typestate usage pattern and the analysis reasons that lastElement is invoked on
an empty vector.

While the analysis soundly reports the typestate violation, it also introduces
an imprecision. The weight for node v@Q274] contains the transition I — N which
means the Vector object stored in v may not be empty. The vector is empty
along all execution paths of the program as the vector reference is cleared at the
instruction before. The problem is that, so far, the analysis does not strongly
update the typestates of the object and thus computes typestate information
that is imprecise.

In the example, the imprecision does not generate a false warning, because
the analysis only reports when an object is in the ERR state. However, as we
show next, for other typestate properties, this imprecision may introduce a false
positive.

Example 26. Assume a File API with two methods open() and close(). To
avoid resource leaks [99], any opened file must be closed. Figure shows
the FSM encoding the typestate problem. The FSM has two accepting states
(highlighted with double circles). The accepting states mark states that the
object is expected to be at destruction time, i.e., before the JVM garbage collector
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Figure 6.7: A typestate analysis without strong update delivers imprecise results
(left), the object stored in a remains opened. IDE#, which performs
strong updates (right) deliver precise results. To simplify the figure,
we omit the start states of all transitions (/) in the weights.

reclaims the reference. Along any execution path, the object is either closed, or
it had never been opened.

Figure depicts a minimal example for an analysis not performing strong
updates reports imprecise results. First, consider the left box plotting the data-
flow for gorg which is labeled as No Strong Updates. The code snippet allocates
a File object at line within method foo(). The object never escapes foo(),
because it is not stored on the heap, not returned from foo(), and not used at
a call site. The object’s lifetime is bound to foo(), and after execution of the
method, the garbage collector destroys the reference. The program correctly uses
the file object, because it is eventually closed.

Similar to the Vector example, the methods open() (line and close()
(line are invoked on two aliased variables a and b. The distributive propa-
gation and re-connection via the indirect flows yields the weight {I — O, — C'}
for variable a at the end of method foo(). The typestate analysis incorrectly
outputs that the object is in the non-accepting state O, and the analysis reports
a false positive.

The imprecision is caused by the weight I — O that bypasses the close()
invocation on pointer variable b in line The weight bypasses the call due to
the direct flow edge a@280 to a@G2SIl The edge is labeled by 17, and the weight
{I » O} propagates to the target node a@28I] At the target node, the weight
{I » O} is combined with the weight {I — C'} that flows along the indirect flow
edge bQ2RT] to a@2&T]

The analysis misses to strongly update the typestate. In Figure |6.5, next to
the example without strong updates, the data-flow for IDE including its strong
updates mechanism is drawn. The basic idea of IDE¥ to perform the strong
update is to remove spurious data-flow rules (rules for edge b@Q280 to a@28T] and
edge a@28T] to a@287)).
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Technical View

We now elaborate on how and which spurious pushdown rules IDE* removes.
The data-flow analysis of IDE? (weighted post*) is a monotonic and chaotic
fixed-point iteration, i.e., transitions are successively added until the weighted
P—-automaton is saturated and the computation thus reaches a fixed-point. The
propagation is monotone, i.e., information can only be added but not removed,
because post® requires monotonicity to guarantee termination. The fixed-point
iteration is chaotic, because the order of the insertion of the edges is irrelevant.
However, deterministic results are guaranteed.

During the computation of the fixed-point, removing transitions from the au-
tomaton (or respective rules from the PDS) either yields non-deterministic results
or even prevents termination. Therefore, IDE* executes in two phases: Phase I
computes the fixed-point and does not remove any pushdown rules. During this
phase, a set of removable rules is computed. Phase II re-computes the fixed-
point but omits the rules marked removable. Because the rules are not added,
the weights cannot flow along the removable rules in Phase II and the fixed-point
in Phase II differs from the one of Phase I.

The set of removable rules depends on the non-identity points of aliasing and
the computed aliases. A point of aliasing is generated for each (normal, push, or
pop) rule (v, s) - (w,t)) of Ps with a non-identity weight. The point of aliasing
triggers a BOOMERANG pointer query for the data-flow fact w at statement t,
because (1) statement s changes the weight for pointer w and (2) the weight
change is valid for any alias of w. The BOOMERANG query’s result is a map of
allocation sites of variable w. For each allocation site a BOOMERANG returns the
set aliases,(t) that encodes all aliasing access paths of w at statement ¢. Based
on the latter set, IDE% generates indirect-flow edges to the aliases. For any alias
W € aliasesq(t), with w # @, Ps receives the rule (w,t) - (@,t). The additional
rule models the indirect flows (in Figure depicted as red, dashed edges).

The set of removable rules depends on the size of the points-to set of the
BOOMERANG query. Only if BOOMERANG returns a single allocation site, the
rules (@, s) — (@,t) are removable rules during Phase II.

Example 27. IDE¥ performs a strong update only when the the points-to set
for the pointer query at the point of aliasing reports a single allocation site.
Performing a strong update when the points-to set is larger would be unsound,
as the example in Figure shows. The code snippet allocates two File objects,
one in line the other in Assume an analysis that follows the object gugg.
The typestate depends on the branch condition in line The File object gpzy
is either in the opened state (O), or in the closed state (C).

Next to the code, Figure depicts the data-flow graph that IDE® computes.
The graph that belongs to marks the edge belonging to the normal rule
(a,289) - (a,2900) as weak update. If IDE% would strongly update the typestate
and remove the edge. it would incorrectly compute that the object must be in
a closed state. However, when the program executes and the code within the
if block is not executed, the variables a and b do not aliased and the object
pointed-to by a remains open.
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Figure 6.8: A typestate update on a variable that has two allocation sites cannot
be strongly updated for aliasing variables. To simplify the figure, we
omit the start states of all transitions () in the weights.

In this example, IDE* does not perform a strong update. This is because the
BOOMERANG-query for the point of aliasing triggered in line 290] returns that
variable b may point to two objects, and ogzn, depending on which path is
executed. When b points to the object gpgg, the call to close() is not made on
object but on object gugg. Therefore, the typestate for guzg when a bypasses
the call to close in [290] cannot be strongly updated. The data-flow graph for the
backward analysis of the BOOMERANG query is also shown in Figure [6.8] The
data-flow graph shows that b may point to two different allocated objects.

Loops, Recursion and Arrays

There are several cases in which IDE* cannot perform strong updates because
IDE* would compute unsound results otherwise. An object that is propagated
within a loop or a recursive part of the program cannot receive a strong update
as the same variable may point to an object of an earlier iteration of the repeated
execution.

Example 28. Figure depicts a minimal code example of a program for which
a strong update of typestate information is not possible in line [300]

Method foo () first creates a new File object in line by calling the factory
method createFile(). The newly created file object is stored within variable b.
The program then executes a while loop which, per iteration, creates another
File object by calling the factory method again (line . The instantiated
object is stored in variable a. On variable a method open() is invoked in line
Dependent on the branch condition of statement statement re-assign
variable b to point-to the object of a. Eventually, the loop closes the object
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202 foo(){
203 b = createFile()
294 while(...){

295 a = createFile(); 302 createFile(){

296 a.open(); 303 x = new File();
297 if (..o 304 return x;

298 b = a; 305 }

299 }

300 b.close();

301 }

Figure 6.9: Typestate of object residing in loops cannot be strongly updated.

stored in variable b in line When the code within the if block is not
executed during runtime, the File object stored in variable a will remain open
and a typestate analysis is expected to produce a warning.

IDE* produces a warning as the analysis does not perform a strong update
and the file may remain open. At the call to close() in line IDE* computes
the allocation sites of b and BOOMERANG finds the allocation site in line 303l
The allocation site returns unbalanced to the call sites of the factory method in
lines and within method foo(). In the context of foo() BOOMERANG
computes two allocation sites to be reachable, one via each call site of the factory
(see Section . Therefore, the size of the points-to set is larger than 1 and the
analysis does not perform a strong update. IDE* correctly approximates that
the File object stored in variable a may remain open.

Similarly, a strong update can also not be performed, when the object data-
flow propagates through an array. BOOMERANG and IDE# are array-insensitive
and merge all objects that flow into an array. Array stores and loads are modeled
as flows through the synthetic field ARRAY. Before IDE* performs a strong
update it checks if the data-flow was propagated through this specific field.

6.3 Weight Domain for APl Usage Pattern Mining

Typestate analysis is an instance of the weights that IDE¥ can be instantiated
with. The general concept of IDE¥, the indirect flows and the respective strong
updates, also apply to any other feasible weight domain in the literature. For
instance, earlier work discussed the weight domain for linear-constant propaga-
tion and a domain for the shortest witness path of a data-flow connection |76].
IDE can instantiate data-flow problems with these weight domains and track
data-flows through the heap automatically.

Another example weight domain for IDE# is the weight domain for API usage
pattern mining. To the best of our knowledge, we are the first to present this
weight domain. Mining the specification of an API is helpful to automatically
detect bugs [71]. The specification is also helpful to support developers unfamiliar
with an APT [109] or to derive the FSM for a typestate analysis.
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Therefore, we present the design of a weight domain for usage pattern mining in
this section. Starting from the allocation statements, the usage pattern analysis
traces the object along all potential execution paths and collects the method
call sequence for each object. The call sequence is the sequence of calls that an

object receives. Technically, a method call sequence is a sequence myq,...,my
with m; € M, where M is the set of declared methods invocable on the tracked
object.

Statically, loops and recursive program structures generate an execution path
of infinite length and infinitely long call sequences may be inferred by the anal-
ysis. As a finite representation is required to guarantee termination of the anal-
ysis, when a method invocation occurs within a loop, the static analysis over-
approximates the number of times the method is invoked, by switching from call
sequences to call sets. A call set is a subset S ¢ M and over-approximates a call
sequence. A call set does not preserve the order in which the invocations occur
along the control-flow. The set-based representation also ignores the multiplicity
of each method call, i.e., it does not track the times each invocation occurred
along an execution path.

In the following, we use the notation s;y to refer to a call set, an individual
element is denoted as sg; € M. A call sequence is marked by the subscript s,
to refer to an individual element we use s[;) € M accordingly.

Definition 13. Assume M to be the set of all declared methods for some object.
The pattern inference weight domain is the tuple (Dy, &7, ®7,07,1;). Each weight
w = {xh, .. ,xﬁ,y%}, e ,yg} € Dy is a set of call sequences 2l and call sets yj .
The binary operator &1 is set union. The extend operator ®; is defined as follows:

Lot &€ apd | ot J
w1 ®r wa = {w] ®F wy | wi € wi, W) € wa}

where
(T]s - T[] Y[1]s - - -5 Ym]) if x,y call sequences and Y1i,j :
S ORaH)
T Ty = oy, ot v{yngs - Yyt i T,y call sequences and 3i,j :
L = Yl4]
{z1,.. ., 20} U{y1, .. - YUm} otherwise

The weight 0; is defined as the empty set @ € Dy. Weight 1; is the empty call
sequence €, a sequence of length 0.

Example 29. Figure [6.10] outlines the weight domain on an example. The code
snippet instantiates a Vector object (ggmp) in line and invokes the methods
add(), clear(), and get() on the object in line line and line re-
spectively. The code contains two control-flow branching statements. The if
statement in line and the loop construct in line 3T3]

Figure [6.10] illustrates the analysis results of API usage pattern mining based
on IDE%. For instance, the weight at the control-flow join statement in line
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306 foo(){

307 v = new Vector<Object>();
308 o = new Object();

309 v.add(o);

moe\,w—w—. <

310 if(...){ {(a)}

311 v.clear();

312} {(a,c)}

313 for(i < ...){ l {(a),(a,c)}

314 v.get(i); J

315} 7

316 } : {(a),(a,c),(a,g),(a,c,g),{a,c,g}}

— Direct Flow  ~— Flow with Non-Identity Weights  {...} Typestate Weights
o Point of Aliasing

Figure 6.10: Hlustrating the pattern inference domain.

for variable v is {(add), (add, glear)}lﬂ The weight consists of two call sequences.
The first call sequence lists the method add(). The second call sequence lists the
methods add() and clear(). Semantically, the weight summarizes the methods
that are invoked from the allocation site until the respective statement. The
object ogmg flows along two paths to statement Along one path, the only
method invoked on gggp is add(), along the second path, the call to add() is
followed by a call to clear().

At the statement in line the weight additionally consists of the elements
{...,(a,g),(a,c,g),{a,c,g}}. All elements of the weight end in a method call to
get.

The call sequence (a, c, g) results from the execution path such that the branch
condition at statement [310]evaluates to true, and the for loop is executed exactly
once.

The call set {a,c,g} is the result of the loop construct between lines and
Due to the loop, the control-flow graph contains a backward edge from
statement [314]to[313] The backward edge is also generated in the data-flow graph
for oggp and the graph contains a cycle. Within this cycle, the object receives
a call to get() and the call sequence that the data-flow algorithm constructs
for one iteration of the loop (a,c,g) is propagated a second time to the loop
start. The call sequence is extended (®7) by the call sequence (g). Because
both call sequences contain the method invocation of g, the call sequence is
over-approximated by the call set {a,c,g}.

In the following, we prove the properties for a weight domain given in Defini-
tion Bl

3To keep the weights in Figure readable, the called methods listed in the weights are
abbreviated by their first letters.

100



6.4 Evaluation

Property 1. The operator &7 is set union and &; inherits commutativity. The
operator @y is also idempotent as w &y w = w for any w € Dy. It follows that the
pair (D, ®;) defines a commutative monoid with neutral element 0;. The pair
(Dy,®;) is also a monoid with neutral element 1; asitis I;@;w=w=w®; 1] =
for any w € Dy.

Property 2. Let a,b,ce Dy be arbitrary, then

a®r(bodrc)=a®r({y|lyebucy})
={z®ry|lrea,yebuc}=(a®;b)d; (a®c)

because ®; is defined element-wise (see Definition [L3)). Similarly, (a ®;b) ®; ¢ =
(CL 1 b) X7 (a X7 C).

Property 3. For every element w € Dy, w®; 0; = 07 = 07 ®7 w and 07 is an
annihilator.

Property 4. Every program has a finite amount of statements, any call sequence
may only be as long as the longest acyclic path in the program. Therefore, the
call sequences cannot introduce infinite descending chains. The size of each call
set is limited, because the set representation lists each invocation at most once.
Therefore, the weight domain does fulfill the infinite descending chain property.

All four properties are satisfied, and the API usage pattern mining weights
form a weight domain.

6.4 Evaluation

We extended the implementation of BOOMERANG (Section to support non-
identity points of aliasing and strong updates, and call this extension IDE%. The
extension is also publicly availableﬁ as part of the implementation of BOOMERANG.
In this evaluation, we assess IDE* based on this implementation. We instantiate
IDE% based on a typestate analysis problem and compare the analysis (TS ) to
an existing typestate analysis with a similar feature set.

Fink et al. [27] present a typestate analysis (TS/) that verifies typestate prop-
erties including aliasing. TS/ runs in multiple stages. The early stages are less
precise and prune out impossible data-flows such that analysis time is saved in
later, less efficient stages. All stages of the analysis TS/ are based on the IFDS
framework. The last stage of TS/ is expected to have comparable precision to
TS®. An important difference between TS/ and TS is their heap model. To
group aliased pointers and track their shared typestate, TS/ uses a powerset ab-
straction within their data-flow domain. IDE% is designed to propagate aliasing
pointers individually and avoids the powerset abstraction.

4https ://github. com/CROSSINGTUD/WPDS
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Table 6.1: Typestate properties used for this evaluation.

Name Description

Vector Never try to retrieve an element from an empty Vector.
Iterator  Always call hasNext () before next() on an Iterator.

URL Never set options on an already connected URLConnection.
10 Do not read from or write to a closed Stream or Writer.

KeyStore  Always initialize a KeyStore before using it.
Signature Always follow the phases of initialization of a Signature.

The analysis TS/ is publicly availabl and is based on the program analysis
framework WALA@ The default configuration of TS/ performs three analysis
stages. During our initial experiments, we discovered that the first stage does
not report any typestate violation, preventing any computation of subsequent
stages. We consulted with the authors of TSf who confirmed this behaviour and
were unable to fix the problem. Instead of using the staged solver, we compare
to the second and third stages directly.

Both typestate analyses, TSf and TS¥, take finite state machines as input to
check for typestate violations. Table list all typestate properties we used for
this evaluation.

Based on the typestate analysis, we assess IDE* and ask the following research
questions:

e RQ1: What is the effect of the difference in the heap models TS and TS/
on a micro-benchmark?

e RQ2: How does TS perform on large programs when compared to TS/
in terms of computation time?

e RQ3: How precise are the analysis results reported by TS? and TS*?

e RQ4: What impact do aliasing and strong updates have on TS#?

6.4.1 Heap Model Performance on a Micro-Benchmark

In this section, we compare the two analyses TS and TS/. Both analyses
are field-sensitive and model flows through the heap, i.e., precisely model field-
store and field-load statements. Yet, both analyses model the heap flows entirely
differently. We compare the models in terms of their precision and recall, but also
in terms of their efficiency, i.e., how many data-flow propagations are required.

The heap model of TS is encoded as the field automaton Ar computed based
on the pushdown system Pp. The automaton concisely represents all access
paths at each statement. The access path encodes how the data-flow object is
referenced.

Shttps://github.com/tech-srl/safe
http://wala.sourceforge.net/
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The analysis TS’ uses a different heap model in each stage. The second
stage APUnique of TS/, hereafter referred to by ng , computes objects that
are uniquely allocated, i.e., the allocation site does not reside within a loop or
a recursive invocation and during execution the program allocates a unique ob-
ject at this site. For these allocations, any typestate update is always strongly
updated [27].

The third stage APFocus, hereafter referred to by TS§ [27], is more precise
than TS%C and uses the following data-flow abstraction to model the heap: Each
data-flow element consists of (1) the allocation site of the tracked instance, (2) a
set of must-aliased pointers (k—limited access paths) to that allocation site, (3) a
completeness flag indicating whether the set of must-aliased pointers is complete,
and (4) the state that the object is currently in. The set of must-aliased pointers
enables performing strong updates, because all aliasing pointers are kept in one
data-flow element. If one of the pointers typestate is updated, it reflects to
all other pointers. The data-flow domain used by ng is a powerset abstraction,
because each data-flow fact contains a set of access paths. Therefore, the number
of created data-flow facts grows exponentially. In IDE, aliases are propagated
individually, however, strong updates for IDE* require additional BOOMERANG
queries.

Experimental Setup. To inspect the differences between the heap models of
TS/ and TS, we ran both analyses (for TS/ both stages ng and ng) on a
set of micro-benchmarks that consists of 72 sample programs. These programs
ship with the implementation of TS/. The micro-benchmarks contain typestate
violations with aliasing and strong update scenarios that challenge typestate
analysis. Hence, it is a good baseline for comparison. We have applied both
TS’ and TS to check for the typestate properties in Table in these micro-
benchmark programs. We evaluate the heap models efficiency and count how
many methods are wvisited by the data-flow analyses. A method is visited, if at
least one data-flow fact is generated within the method. We consider an analysis
to be more efficient if less methods are visited. TS’ and TS* are based on
different static analysis frameworks, WALA and SooT, and also rely on different
data-flow frameworks, IFDS and synchronized pushdown systems. Hence, we
find that a one-to-one comparison based on the visited methods of the data-flows
is the most objective metric. We also carefully configured SOoT and WALA to
enable a fair comparison for both analyses, including using call graphs of similar
precision.

In this experiment, we also compare the precision and recall of all analyses.
The micro-benchmark contains labels indicating the ground truth for the checked
typestate properties on the programs. For each program, the number of typestate
violations are specified explicitly. Based on this specification, we evaluate the
analyses precision and recall.

Performance Results. Table summarizes our findings. In the table, the
columns for Visited Methods gather the number of methods the underlying solvers
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Table 6.2: Comparing the efficiency of TSS , TSg , and TS in terms of the number
of visited methods.

Visited Methods

Typestate # Programs ng TS§ TS
KeyStore 3 461 345 3
Iterator 17 44 38 6
URL 2 587 514 2
Vector 30 98 63 15
10 14 333 155 12
Signature 6 2,901 2,817 8

have propagations in. The numbers are geometric means taken over all input
programs (column # Programs) of the micro-benchmark. Table shows the
statistics for TS/ according to the two analysis stages ng and TS;.

Since ng is the most precise stage in TS, we only compare TS to this stage
in the following discussion. The numbers and arguments for TS£ are similar. The
analysis stage TS:],: has a noticeable difference in the amount of visited methods.
Across all micro-benchmark programs, TS%: requires visiting a geometric mean
of 38.1x more methods compared to TS®.

The typestate properties Signature and URL show the most significant difference
in the number of visited methods. TS;’; visits 2,817 methods for Signature, and
514 methods for URL. In contrast to that, TS requires only to visit 8 and 2
methods for the same typestate properties, respectively. The extreme difference
is explained through the following. For URL, TS starts from the call sites to
the method connect () of any URLConnection object and reports an error once a
method that sets an option on the object is invoked. In contrast, TS:{ starts
earlier at the allocation site of the URLConnection itself. TS§ records aliases only
during forward propagation, while TS gets the automatic support from IDE%
to detect aliases before the seeds by issuing the appropriate alias queries to
BoOOMERANG. IDE® evaluates those queries on demand, which requires visiting
fewer methods in the forward propagation. The same reasoning applies to the
typestate property Signature.

For the remaining typestate properties, both analyses, TS/ and TS start at
the same allocation sites and one could expect them to visit the same number
of methods. However, we noticed that the underlying heap models constitute to
a drastic difference. For TS, each data-flow propagation is bound to a local
variable. With synchronized pushdown systems, each data-flow fact consists of
a local variable plus a field automaton that represents the field accesses that the
tracked object resides in. A local variable is restricted to the method that it is
declared in and any data-flow associated with that local variable must only be
propagated within that particular method. The data-flow abstraction used by
TS’ cannot make use of this additional information.
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317 fo0 )1 TS} TS

318 A a = new AQ); i _____ C_B’;@ﬂ_ ____i
319 b = a; | |
320 B ¢ = new B(); 320 {c}, true) 3 c a.fb.f i
321 a.f = c; B0 {c,a. £}, false) 3 I\®,u i
522 B d=b.g; @20 {c,a.£}, false) N
323 bar(d); B20, {c,a.f}, false) i l l l i
324 } | |

Figure 6.11: An example illustrating the differences between TSQ{ and TS with
respect to the structure of data-flow facts.

We illustrate this behaviour through the example in Figure We ignore
the propagated typestate property to simplify the example. Assume both TS
and TS%C to track the object that is created at line m After line TS?;
propagates the abstraction (820 {c,a.f}, false). The completeness flag is set to
false, because after the field-store statement, the tracked object is also accessible
via the pointer b.f, which is not in the set of must-aliased pointers {c,a.f}.
The representation does not explicitly store b.f, and TS§ has to assume that
the tracked object could also be accessed in method bar (called at line ,
although no appropriate pointer ever escapes to the method. Therefore, TS§
propagates the data-flow fact (320 {c,a.f}, false) into bar, needlessly increasing
the number of propagations. On the other hand, TS® does not propagate any
data-flow facts into bar (), because the object of interest cannot be accessed from
variable d, the only variable that escapes to bar (). The graph drawn for TS in
Figure shows that no node for variable d is ever created. TS completely
skips the analysis of bar(). For the example, TS* visits only method foo(),
whereas ng visits at least two methods (foo(), bar(), and any other method
transitively reachable within the call graph).

Precision and Soundness Results. We have shown that TS* analyzes fewer
methods in comparison to TS/, It directly follows the question whether it changes
the precision or soundness values of the analyses. Table[6.3|lists the true positives,
false positives, and false negatives for all three typestate analysis configuration:
TSé, TS?,: , and TS®. The numbers are listed per typestate property.

A first important observation is that the configuration T Sg is less precise than
the other two configurations. The precision of TSé is significantly lower: 0.61
compared to 0.84 for TS§ and 0.92 for TS®. For the Vector typestate property,
for example, ng lists 10 false positives, whereas the others only have 2 and 1
false positives, respectively. A false positive that TS£ has, but none of the other
analysis configuration produces, occurs on a test case that requires flow-sensitive

105



6 IDE?! - Weighted Pushdown Systems

Table 6.3: Comparing precision and recall in terms of true positives (TP,v"), false
positive (FP,©) and false negatives (FN,0) between the stages TS% and
TS§ to the IDE*-based typestate analysis TS®.

TS] TS/ TS®
Typestate TP FP FN TP FP FN TP FP FN
KeyStore v v v
Iterator TV 4x 6xv” e 6%V e
URL v v v
Vector 24xv"  10x o 22xv" 066  24xV o
10 4xy 4x 6x© 4%V 6xoe  10xv’
Signature 4xv" 8x dxv' 4x 4x v
Precision 0.61 0.84 0.90
Recall 0.85 0.79 0.96

alias information. The stage TSg does not track flow-sensitive alias information
and outputs a false warning.

The false negative for TS for the typestate property Vector is because IDE®
does not model exceptional flows. On the test program, a vector object flows
via an exception to a catch block. The vector object is stored as a field of the
exception and unwrapped within the catch block. Within the catch block, the
program erroneously accesses the first element of the empty vector. Both stages
TSg and TS:]; also experience these false negatives.

Summary. On the micro-benchmark, TS requires fewer propagations than TS§
due to the individual propagations of aliases. At the same time, TS is slightly
more precise than TS?; .

6.4.2 Typestate Analysis on DaCapo

In a second experiment, we evaluate the typestate analysis based on real-world
programs from the DaCapo benchmark suite. In this section, we concentrate on
the actual performance, measured in actual analysis time of TS/ and TS and
not in the metric of visited methods. Additionally, we provide precision results
for the discovered typestate violations.

Experimental Setup. For this experiment, we executed the typestate analyses
TS/ and TS on all programs of the DaCapo 2006 benchmark suite [7]. During
the experiments on the micro-benchmark, we observed that the stage TS§ has a
precision comparable to TS. Hence, for this experiments we only compare to
stage ng of TSY. For the micro-benchmark, it is easy to control the object allo-
cations, i.e., seeds, that the analysis is triggered at. On the DaCapo benchmark,
we noticed that both analyses do not compute the same seeds to start off the
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Table 6.4: Analysis time for running TS and TSg on the DaCapo benchmark
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typestate analysis, a symptom of relying on different analysis frameworks (SOOT
and WALA) which do not produce identical call graphs. The seeds are computed
based on the call graph reachable methods. For an objective comparison of the
analysis times, we take the intersection of the seeds which are call graph reach-
able given both call graphs and we report all results based on the set of seeds
that are consistent in both analyses.

For all programs, we use a 0-1-CFA call graph (ZeroOneCFA for WALA and
the standard Spark call graph in SooT). This call graph is context-insensitive
and distinguishes objects by their allocation sites. We do not include times for
the call graph construction in our evaluation, because call graph construction
is an orthogonal problem and the construction times vary due to the different
analysis frameworks and implementations. Further on, we report the analysis
times individually per object instead of reporting the accumulated analysis times
of all seeds. This allows limiting the execution time of an analysis of one object,
which for this experiment is 30 seconds. We analyze the complete program as well
as all dependencies, including the complete the Java Runtime Environment. As a
consequence, data-flows through complex-to-analyse code patterns occurred, for
example, HashMaps, TreeSets, or general visitor patterns. For these data-flows,
a larger analysis budget is required, and we constitute another experiment in
Section [§] particular to these complex data-flows.

We run typestate analysis for all properties listed in Table In Subsec-
tion|6.4.1] we report that it actually suffices to start at call sites such as connect ()
for the typestate properties URL and Signature. To avoid introducing any bias
to the performance numbers, we configure TS for these typestate properties to
start at allocation sites of objects instead.

Performance Results. Table[6.4]reports the summary of the performance result
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of this experiment. We cannot report any results for the properties URL, KeyStore,
and Signature, because the DaCapo benchmark has no uses of KeyStore, occur-
rences of Signature, or seeds to URL. The table shows the total number of seeds
per benchmark program per typestate property. The table contains bar plots,
above its bars, we depict the geometric means over the analysis times per seed.
Below the bars, we report the number of seeds that timed out within the time
budget of 30 second. A seed that timed out is not excluded from the average and
penalizes with the timeout budget.

The analysis times in Table show that TS outperforms the analysis TS:,’:
by an order of magnitude. For the typestate property I0, we measured a perfor-
mance improvement of a factor of 21.3x in comparison to TS{; . For the typestate
property Vector, we measured a speed-up of 3.9x. For the typestate property
Iterator, we noted a speed-up of 99x. The results for I0 and Iterator are a
similar order of magnitude to the result of the micro-benchmark experiment,
where we observed that TS requires to visit 38.1x fewer methods than TSg .
Vector objects have a longer lifetime and are reachable in more methods on av-
erage, which reduces the impact of the difference in heap model (details in Sec-
tion . The analysis time of TS also includes the execution times for the
additional BOOMERANG queries that IDE% triggers to compute strong updates
and alias information on-demand. Opposed to that, the analysis TS§ inquires a
pre-computed whole-program points-to analysis for alias information. The com-
putation time for this whole-program points-to analysis is part of the call graph
construction and not included in the measured analysis time of TS§ .

Precision Results. For an evaluation of the precision on the DaCapo bench-
mark suite we manually inspected the reported errors from the analyses. We
restricted our inspection to the seeds for which TS reported errors, but also
to those that finished within the given time budget of 30 seconds. In total, 24
typestate violations are reported for the typestate property Vector. Further in-
vestigation shows that all of the identified and tracked objects may be in an
error state, i.e., an element of the Vector may be accessed before any element
was added to the Vector. However, our manual inspection unveiled that the
accesses to the elements are guarded by appropriate size checks (e.g., branching
based on isEmpty()) on the Vector. This means, at runtime, a typestate violation
cannot occur. This shortcoming is due to the weakness of the expressiveness of
the typestate pattern: the size checks cannot be modeled within the typestate
machine, and is not an artifact of the over-approximations of IDE* nor its data-
flow domains. In other words, there are potentially valid data-flow connections
that lead to those reports, but they are overcome by additional information that
the analysis is not designed to track. Therefore, we classify the reported errors
as true positives (with respect to the tracked typestate pattern).

Summary. TS% outperforms TS?; on the DaCapo benchmark suite where TS
reduces the analysis times by a factors ranging from 3.9x to 99x, even though
IDE®’s analysis times include the time for demand-driven points-to queries to

108



6.4 Evaluation

Table 6.5: Comparison of the typestate results on the micro-benchmark for TS,
when strong updates are disabled (TS™Y) and aliasing is disabled

(TS,
Configuration True Positives False Positives False Negatives Precision Recall
TS 46xv 5x e 0.9 0.96
TSV 45xv 6% LS 0.88 0.94
TS 41xv 6% 7x6 0.87 0.85

BOOMERANG. A manual inspection of the findings shows that the analysis is
highly precise.

6.4.3 The Impact of Aliasing and Strong Updates

In the last two subsections, we compared the two analyses TS! and TS®. In this
subsection, we focus on IDE% and discuss the impact of handling aliasing and
strong updates for the typestate client analysis TS.

Experimental Setup. Based on the same setup used for the experiments on
the micro-benchmark programs and the DaCapo benchmark suite, we run TS
in two additional configurations. For one run, we ignore the strong updates,
every typestate update is performed weakly. This configuration is denoted by
TS™5Y. In the other configuration, aliasing information is completely ignored.
The latter configuration cannot perform strong updates, because strong updates
also require aliasing information. This configuration is denoted by TS™%. Both
configurations allow us to compare the effect of aliasing and strong updates on
TS,

Results. Table depicts the analysis when run in the standard configuration,
TS and in the two configurations TS™ and TS™5Y. For each configuration,
the table lists the columns true positives, false positives, and false negatives used
for the computation of Precision and Recall. The precision and recall values are
smaller in the configurations disabling strong updates and aliasing than for the
standard configuration of IDE®.

For TS™Y, an additional false positive is reported on one of the Vector pro-
grams. The program allocates a Vector object, adds an element to it, stores the
vector object to some field and loads the same vector object from that field. Next,
the program performs an operation that is illegal for a non-empty vector. Due to
the field store and load statement, there are two local variables pointing to the
same object. For the typestate analysis, one of the two local variables holds a
vector in an empty state, due to a missing strong update. As a consequence, the
analysis reports a false positive. The additional false negatives for TS™Y occurs
on a program with a typestate violation. The program stores and loads a vector
object to a static field. A missing strong update of typestate information leads
to a missing true warning.
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In the configuration TS™, the typestate analysis reports an additional false
positive and five more false negatives. The false positive and one of the five false
negatives are the same as for TS™Y. The remaining four false negatives occur on
programs in which the tracked object is stored and loaded from a field of another
(parent) object. This code pattern requires computation of aliasing information
for the parent object.

We run the TS in the three configurations on DaCapo and the results of this
experiment on DaCapo differ slightly. When we disable aliasing for TS, more
than 50% of the errors are not reported anymore. For all of those cases, the
tracked objects are stored inside fields of other objects and are accessed indi-
rectly within other methods through the fields. Such data-flows require aliasing
information about the parent object, information that is missing when aliasing
is disabled. On the other hand, disabling strong updates on DaCapo programs
does not report any false positives on the inspected seeds.

Summary. While strong updates marginally improve precision and recall on the
micro-benchmarks, when aliasing is disabled, the precision and recall values drop
more significantly. We observed the same on the DaCapo programs, handling
aliases has a higher influence and is required to obtain sound results.

6.5 Related Work

In this section, we discuss existing data-flow frameworks, most of which expose
the problem of aliasing to the client analysis, as well as solutions to aliasing that
client analyses may apply. For a more extensive discussion of the state-of-the-art
alias analyses for object-oriented programs, we refer the reader to this survey [92].

6.5.1 Data-flow Analysis Frameworks

Apart from IFDS [74] and IDE [80], there exists a wide range of data-flow frame-
works that simplify the implementation of interprocedural static data-flow anal-
yses. For example, TVLA [81] uses abstract predicates that evaluate to a three-
valued logic. In addition to 0 (false) and 1 (true), three-valued logic maintains a
third value (1/2) that represents unknown or maybe evaluations. Using predicates
enables TVLA to infer aliasing automatically. TVLA has been extended later to
support interprocedural analysis [30,40]. While TVLA propagates sets of alias-
ing pointers, IDE* propagates aliasing pointers independently, which drastically
reduces the size of the analysis domain.

Separation logic defines another technique for data-flow analysis [78]. In sep-
aration logic the heap is modeled explicitly. Each instruction directly operates
on the model of the heap, analog to an actual execution. Separation logic ex-
tends standard Hoare logic by adding a separating conjunction. The conjunction
splits the heap into disjunct regions. At a call site, for instance, the heap can be
divided into the region accessed within the callee and the region’s complement.
With an extension called bi-abduction, Calcagno et al. |13] managed to design a
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scalable shape analysis based on separation logic. IDE* uses a storeless model
of the heap which does not require a splitting of the heap as abstract pointers
instead of concrete allocation sites are propagated. Calcagno et al. [13] achieve
scalability by performing a compositional analysis. Similar benefits are expected
for IDE* by pre-computing summaries, as described by Arzt and Bodden [4].

Blackshear et al. [8] propose a goal-directed approach, called Hopper, to an-
alyze programs that are based on event-driven systems, such as Android. The
novelty lies in jumping along control-flow feasible paths, once a data-flow flows
into system code, e.g., Android. Instead of analyzing the system’s code, the flow
directly jumps to the respective point in the non-system part of the program.
Hopper relies on separation logic, i.e., explicitly models the heap in a store-based
abstraction. The authors report a significant performance boost through jump-
ing. In future work, we want to investigate how IDE? can make use of a similar
functionality.

Ferrara [25] proposes an abstract-interpretation-based generic framework to
value-flow analysis that includes heap-reasoning. The authors formally prove that
heap and value analyses can be combined into one analysis, similar to IDE®’s
Phase I and Phase II. Two types of analyses that can be instantiated within
their framework are numerical and shape analysis. Opposed to their work, IDE#
computes context-sensitive results. This, however, comes by the cost of restrict-
ing the value domain from a infinite to a finite height lattice, as IDE* does not
support a widening operator.

Madsen and Mgller [60] describe a sparse data-flow analysis framework for
JavaScript code. A sparse data-flow analysis operates on def-use chains that
it constructs from the control-flow graph of a given program. This approach
differs from a traditional data-flow analysis that processes every statement in
the program. Sparse data-flow analyses leverage the fact that def-use chains are
typically more sparse than the control-flow graph, thus the analysis requires fewer
propagations of data-flow facts. The pushdown systems of IDE* are not sparse,
they generate identity rules for statements that do not use variables. Encoding
Ps and Py sparsely could further improvement the efficiency of IDE¥.

6.5.2 Solutions to Aliasing

We have already compared to the typestate analysis by Fink et al. [27] in detail
and skip its discussion here.

Yahav and Ramalingam [103| propose a typestate analysis on top of TVLA,
but the authors report later that TVLA does not scale well to large programs [26].
An interesting contribution of their work, however, is separation, as they report
a huge benefit in separating the typestate analysis into sub-problems. We use a
simple version of separation by invoking IDE® per tracked object.

Naeem and Lhoték [66] show how to perform a typestate analysis (TS"™), using
property specifications called tracematches [10]. Tracematches are a language
extension to AspectJ ﬂ and allow the analysis to select program points using

"https://eclipse.org/aspectj/
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declarative patterns called pointcuts. TS™ uses a coarse-grained field-insensitive
abstraction for the objects that are allocated on the heap. In contrast to TSS
and TS, TS™ can check for patterns that detect buggy interactions of multiple
objects (e.g., updating a list while an iterator iterates over it). TS™ implements
this by tracking all objects that are allocated in the input program, which is
a significant limitation to efficiency. Naeem and Lhotak [67] later overcome
this limitation by generating flow-insensitive callee and caller summaries. The
summaries are constructed by pre-analyzing the methods where pointcuts have
no matches. TS™ then plugs in those summaries at the appropriate call sites. We
plan to extend IDE to use a similar approach to synchronize information about
multiple interacting objects.

Tripp et al. [100] propose Andromeda, an IFDS-based taint analysis that han-
dles aliasing by propagating access paths individually. Similar to IDE*, An-
dromeda resolves aliases in a context-sensitive and flow-sensitive fashion through
an on-demand backward analysis. Unlike IDE¥, due to propagating aliases indi-
vidually, Andromeda does not support strong updates. Once tainted, Andromeda
does not remove the taint if an alias is sanitized. FLOWDROID [5] takes a similar
approach to alias resolution.
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Almost any software system processes, stores, or interacts with sensitive data.
Such data typically includes user credentials in the form of e-mail addresses and
passwords, as well as company data such as the company’s income, employee’s
health, and medical data. Cryptography is the field of computer science that de-
velops solutions to protect the privacy of data and to avoid malicious tampering.

Software developers should have a basic understanding of key concepts in cryp-
tography to build secure software systems. Prior studies [20,65] have shown that
software developers commonly struggle to do so and as a result fail to implement
cryptographi(ﬂ tasks securely. While cryptography is a complex and difficult to
understand area, it also evolves quickly and software developers must contin-
uously remain informed about broken and out-dated cryptographic algorithms
and configurations.

But it is not only the lack of education on the developer’s side, common crypto
APIs are also difficult to use correctly and securely. For instance, implementing a
data encryption with the Java Cryptographic Architecturdﬂ (JCA), the standard
crypto API in Java, requires the developer to combine multiple low-level crypto
tasks such as secure key generation, choosing between symmetric or asymmet-
ric crypto algorithms in combination with matching block schemes and padding
modes. While the JCA design is flexible to accommodate any potential combi-

nation, it yields to developers implementing crypto tasks insecurely by misusing
the API.

Example 30. Figure demonstrates an example code that incorrectly uses
some of the JCA’s classes for encryption. At instantiation time of an Encrypter
object, the constructor generates a SecretKey for algorithm "Blowfish" (param-
eter to the call to getInstance() in line [330]) of size 448 (parameter to call in
line . In line the key is stored to field key of the constructed Encrypter
instance. The Encrypter object’s public API offers a method encrypt (), which,
when called, creates a Cipher object in line The Cipher object is configured
to encrypt data using the "AES" algorithm (parameter to the call to getInstance()
in line [336). The developer commented out line that (1) initializes the al-
gorithm’s mode and (2) passes the SecretKey stored in field key to the Cipher
object. The call to doFinal() in line performs the encryption operation and
encrypts the content of the plainText and stores it in the byte array encText.

'Hereafter, used interchangeably with crypto.
Zhttps://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/
CryptoSpec.html
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325 public class Encrypter{
326 private SecretKey key;
327 private int keyLength = 448;

328

329 public Encrypter(O{

330 KeyGenerator keygen = KeyGenerator.getInstance("Blowfish");
331 keygen.init (this.keyLength);

332 this.key = keygen.generateKey() ;

333 %

334

335  public byte[] encrypt(String plainText){

336 Cipher cipher = Cipher.getInstance("AES");

337 //cipher.init (Cipher. ENCRYPT_MODE, this.key);

338 byte[] encText = cipher.doFinal(plainText.getBytes());
339 return encText;

340 3}

341 }

Figure 7.1: An example of a misuse of a cryptographic API.

There are four API misuses in this code example. First, the developer commented-

out a required call in line Second, if the developer includes the line in the
comment, the generated key ("Blowfish") and the encryption cipher ("AES") do
not match. Third, and related, the key length of 448 is not suitable for the al-
gorithm AES that expects a size of 128, 192, or 256. Fourth, depending on the
crypto provider, AES is used with electronic codebook mode (ECB). Using ECB
results in low entropy within the bytes of encText. The first three API misuses
throw exceptions at runtime that, using static analysis, could already be detected
at compile time. Using ECB, however, does not throw an exception and silently
leads to insecure code.

Such examples are found in real-world software artifacts and motivate the
research that we have conducted [47]. Our work presents (1) a domain-specific
language (DSL), called CrySL, for the specification of API usage rules and (2)
CryptoAnalysis, a tool that compiles the rules into an automated static code
analysis. Stefan Kriiger (my collaborator) designed CrySL and wrote rules that
specify the API of the JCA.

This chapter summarizes our work and sketches the design of the static analysis
CryptoAnalysis that combines results of several IDE%-based typestate analyses,
connects interaction between API objects and triggers BOOMERANG queries to
detect String and Integer constants. Using CryptoAnalysis we present a large
scale study of CryptoAnalysis on artifacts from Maven Centralﬂ

7.1 The CrySL language

To detect such API misuses, Kriiger et al. [47] designed CrySL, a domain-specific
language that allows the specification of crypto API uses. CrySL defines a

%https://mvnrepository.com/repos/central
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whitelist approach that specifies correct uses of an API, and CryptoAnalysis
reports code that deviates from the specification. We briefly introduce the
main semantics of the language in this section and discuss the basic design of
CryptoAnalysis. The language definition and the carefully written CrySL spec-
ificationdd for the JCA are not a contribution of this thesis.

With the CrySL specifications for the JCA, CryptoAnalysis is able to detect
all four crypto related issues showcased in Example[30] We discuss the important
syntax elements of CrySL based on a minimal CrySL specification covering the
misuses in Example We refer to the original work [47] for the definition of
all syntax elements of CrySL.

A CrySL specification is composed of multiple CrySL rules. Each CrySL rule
starts with SPEC clause specifying the type of the class that the CrySL rule is de-
fined for. Figure[7.2)depicts two CrySL rules for the classes javax.crypto.Cipher
and javax.crypto.KeyGenerator. The SPEC clause is followed by an 0BJECTS block
that defines a set of rule members. The values of the rule members are then con-
straint on within the CONSTRAINTS block. For instance, the CONSTRAINTS for the
rule to KeyGenerator restricts the rule member keySize in line to the values
128, 192, or 256. When using a KeyGenerator, the integer value for keySize must
be one of the listed values.

The EVENTS block defines labels (e.g., Get in line and Inits in line [349),
each label is a set of events. An event is an invocation of a method and is defined
via the method signature. For example, label Inits is defined as the event of
calling the method with signature init(int keySize) (line . The parameter
name (keySize) matches the name of a rule member, and when the program
calls the event’s method, the value of the parameter of the call is bound to the
rule member keySize, which means that the parameter must satisfy the given
constraint.

The labels defined within the EVENTS block are used in the ORDER block. The
ORDER clause lists a regular expression (inducing a finite state machine) over the
labels and defines the usage pattern (i.e., typestate property) of the specified
type. Each object of the specification is required to follow the defined usage
pattern. For instance, the specification for KeyGenerator expects each object of
its type to call any method of the label GetInstance prior to any of the Inits call
followed by a GenerateKey call. The ORDER specification for Cipher uses a + for
the label doFinal, indicating that the method doFinal() must be called at least
once and arbitrary additional calls of the method can follow.

The remaining two blocks are the REQUIRES and ENSURES block of a rule. Each
line of these blocks lists a predicate. A predicate is defined by a name followed by
a list of parameters. CrySL predicates cover the specification of the interaction
of multiple objects of different types. The KeyGenerator rule lists a predicate
generatedKey with two parameters key and algorithm in the ENSURES block in
line When an object of type KeyGenerator is used according to the specifi-
cation in the CONSTRAINTS, ORDER, and REQUIRES block, the predicate listed in the
ENSURES block is generated for the object. Other CrySL rules that interact with

“https://github.com/CROSSINGTUD/Crypto-API-Rules
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342 SPEC javax.crypto.KeyGenerator

343 OBJECTS

344 int keySize;

345  javax.crypto.SecretKey key;

346  java.lang.String algorithm;

347 EVENTS

348  Get: getInstance(algorithm);

349  Inits: init(keySize);

350  GenerateKey: key = generateKey();
351 ORDER

352 Gets, Inits, GenerateKey

353 CONSTRAINTS

354 algorithm in {"AES", "Blowfish", ...};
355 keySize in {128, 192, 256};

356 ENSURES

357 generatedKey[key, algorithm];

(a) CrySL rule for javax.crypto.KeyGenerator.

358 SPEC javax.crypto.Cipher

359 OBJECTS

360 java.lang.String trans;

361  byte[] plainText;

362  java.security.Key key;

363  bytel[] cipherText;

364 EVENTS

365 Get: getlInstance (trans);

366 Init: init(encmode, key);

367 doFinal: cipherText = doFinal(plainText);

368 ORDER

369 Get, Init, (doFinal)+

370 CONSTRAINTS

371 encmode in {1,2,3,4};

372 part(0, "/", trans) in {"AES", "Blowfish", "DESede", ..., "RSA"};
373  part(0, "/", trans) in {"AES"} => part(l, "/", tramns) in {"CBC"};
374 REQUIRES

375  generatedKey[key, part(0, "/", trans)];

376 ENSURES

377  encrypted[cipherText, plainText];

(b) CrySL rule for javax.crypto.Cipher.

Figure 7.2: Two simplified CrySL rules for the JCA.
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KeyGenerator objects can list the predicate in their REQUIRES block. For instance,

the CrySL rule Cipher lists the predicate generatedKey as a required predicate in
line

7.2 Compiling CrySL to a Static Analysis

CryptoAnalysis is a static analysis compiler that transforms CrySL rules into
a static analysis. Internally, CryptoAnalysis is composed of three static sub-
analyses: (1) an IDE%-based typestate analysis, (2) a BOOMERANG instance with
extensions to extract String and int parameters on-the-fly and (3) an IDE%-
based taint analysis (i.e., all weights are identity). The three static analyses
deliver input to a constraint solver that warns if any part of the CrySL specifi-
cation is violated.

Example 31. We discuss a walk-through of CryptoAnalysis based on the CrySL
specification defined in Figure and the code snippet provided in Figure
CryptoAnalysis first constructs a call graph (CHA, VTA, or SPARK) and com-
putes call-graph reachable allocation sites for in CrySL specified types. Factory
methods can also serve as allocation sites. For example, the factory methods
getInstance() of Cipher and KeyGenerator internally create objects of the re-
spective type and CryptoAnalysis considers these calls as allocations sites. In
the code example in Figure the allocations sites are the objects qzzg and gz

Starting at the allocation sites, CryptoAnalysis conducts a context-sensitive,
flow-sensitive, and field-sensitive typestate analysis (TS) and checks if the ob-
ject satisfies the ORDER clause of the rule. The call sequence on the KeyGenerator
object gg satisfies the required typestate automaton defined as regular expres-
sion in the ORDER block. Opposed to that, the Cipher object ggig does not satisfy
the ORDER clause, because the developer commented out line[337] CryptoAnalysis
warns the developer about the violation of this clause (line .

Apart from the analysis TS%, CryptoAnalysis also extracts String and int pa-
rameters of events (statement that change the typestate) to bind the actual values
to the rule members of a CrySL rule. For instance, the getInstance("Blowfish")
call in line binds the value "Blowfish" to the rule member algorithm of
the CrySL rule for KeyGenerator. In this example, the String value is easy to
extract statically, but it might also be defined elsewhere in the program. For
example, the value binding for the rule member keySize is the actual int value
flowing to the init call in line as a parameter. The actual value is loaded
from the heap, because it is the value of the instance field keyLength of the
Encrypter object. Therefore, CryptoAnalysis triggers a BOOMERANG query for
this.keyLength@33]] to find the actual int value of the field. It is straight-
forward to extend BOOMERANG to also trace primitive types throughout the
program. Since BOOMERANG uses a storeless heap model, one simply defines
assignment statements that assign primitive values (e.g., int x = 1) as “alloca-
tion sites”. With this extended notion of allocation sites, the forward analysis of
BOOMERANG propagates the data-flow of x through the program.
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To conclude, CryptoAnalysis infers that object ggam tries to generate a SecretKey
for the algorithm "Blowfish" with a key length of 448 in line[332] The KeyGenerator
rule disallows the chosen key length (CONSTRAINTS in line, and CryptoAnalysis
warns the developer to choose an appropriate keySize.

Assume the developer to change the code to use an appropriate value for
keySize, and the KeyGenerator is used in compliance to its CrySL specification,
then CryptoAnalysis generates the predicate generatedKey for the SecretKey
object stored to field key of the Encrypter instance as expected.

If additionally, the developer includes the init call on the cipher object in
line 337, (1) the ORDER clause of the CrySL rule for Cipher is satisfied and (2) the
generatedKey predicate flows via the field this.key to the Cipher object ggag. As
the Cipher rule REQUIRES the predicate (line , the ORDER and REQUIRES blocks
for the object are satisfied.

However, the CONSTRAINTS for object ggzg are still not satisfied. CryptoAnalysis
reports that (1) the key is generated for algorithm "Blowfish", and this selection
does not fit the algorithm chosen for Cipher ("AES") and (2) when using algorithm
"AES", one should use it in "CBC" mode (CONSTRAINTS in line . When the de-
veloper fixes these two mistakes, CryptoAnalysis reports the code to correctly
use the JCA with respect to the CrySL rule.

7.3 Evaluation on Maven Central

The CrySL specifications for the JCA cover a total of 23 interfaces and classes.
In general, the CrySL rules cover different standard crypto tasks such as hashing
and signing of data, asymmetric as well as symmetric encryption, and decryp-
tion tasks. For the evaluation of CryptoAnalysis, we use the Maven Central
Repositoryﬂ and consider it an appropriate source of software artifacts. Maven
Central is a popular software repository where developers can publish their soft-
ware artifacts. Publishing allows other developers to easily access and include
the software into their own projects. At the time of writing, over 2.7 million
software artifacts are published at Maven Central.

We decided to evaluate CryptoAnalysis on software artifacts from Maven Cen-
tral mostly as we consider the data set to be representative. Additionally, it is
difficult to find good benchmark suites of Java programs for crypto uses, for in-
stance only few programs of the DaCapo 2006 benchmark suite use crypto. The
large number of artifacts on Maven Central guarantees a variety of uses of crypto
and is representative for real-world software at the same time.

Experimental Setup. The Maven Central repository maintains different ver-
sions of software artifacts. We restrict our analysis to the latest version of each
software artifact as of July 2018. A total of 152,996 artifacts remain that we
run CryptoAnalysis on. These experiments are run on an Intel Xeon E5-2680,
2.40 GHz machine with 16 processors and 128 GB of memory.

Shttps://mvnrepository.com/repos/central

118


https://mvnrepository.com/repos/central

7.3 Evaluation on Maven Central

The implementation of CryptoAnalysis is single-threaded and we concurrently
analyse 10 artifacts at a time, each in its own Java virtual machine. We granted
each virtual machine a maximum of 12 GB of heap memory and limited the
analysis of each artifact to 1 hour.

Most artifacts on Maven Central are libraries. Opposed to standalone applica-
tions, libraries frequently do not contain a main() method. Efficient computation
of a sound and precise call graph for a library is challenging [72]. One has to make
assumptions about the use of the library classes within an unknown application.
A library frequently does not allocate its own library objects and the standard
points-to based call graph algorithms fail to compute a sound call graph, be-
cause many edges ares missing. SPARK has a mode (option 1ibraryE|) particular
crafted for the library-analysis case. In this mode, dummy allocation sites for
all public classes of the library are instantiated and lead to non-empty points-to
sets for variables within the library. After first experiments with this call graph
mode on Maven Central, we observed that even call graph construction failed to
terminate within the budget of 1 hour for most artifacts. Eventually, we thus
chose CHA, which is highly imprecise but reasonably efficient to compute.

Performance. During the analysis, we record several performance metrics such
as the time to setup SOOT and construct the CHA call graph, which we simply
refer to as setup time. Additionally, we record the number of call-graph reachable
methods and the number of CrySL objects that these methods allocate. We also
measure the analysis time for CryptoAnalysis. This time includes the compu-
tation of the object-allocation statements (iterating over all reachable methods
in the call graph) as well as the actual data-flow analysis times for these objects.

For each of the 152,996 artifacts, the analysis constructs a call graph to com-
pute the reachable object allocations. In a total of 8,193 artifacts (5.3% of all
artifacts), CryptoAnalysis found at least one use of some class of the JCA. For
these 8,193 artifacts, the data-flow analyses (IDE* and BOOMERANG) are exe-
cuted based on the CrySL specifications. For 7,287 artifacts, the analysis finishes
in under an hour each. For this experiment, we set a query budget for IDE¥
and BOOMERANG of 5 seconds and we encountered 16.0% of timeouts, which
lead to partially unsound results. We discuss factors for these query timeouts
in Chapter [8] The query timeouts also cause the timeouts of the remaining 906
artifacts, and we exclude reporting any statistics across the timed-out artifacts
in the following discussion.

Figure shows the measured performance metrics for the 7,287 successfully
analyzed artifacts. Figure plots the analysis times of the artifacts in minutes
in ascending order. The order of artifacts is the same for Figure [7.3b] Figure[7.3d]
and Figure On average, across all artifacts, the analysis time is 88 seconds
per artifact. The distribution of the times vary highly, and the plots show that
for more than 85.7% of the crypto-using artifacts (7,023 of 8,193), the analysis
time remains under 10 minutes. For the artifacts that take more than 10 minutes

®https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/
soot-develop/options/soot_options.htm
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Table 7.1: Correlation coefficient between analysis time of CryptoAnalysis and
the setup time, the call graph reachable methods and analyzed objects.

Correlation Coefficient with Analysis Time

Setup Time 0.06
Reachable Methods 0.13
Analyzed Objects 0.45

to analyze, the growth of the analysis time is drastic. For 264 artifacts (3.2%),
the analysis time ranges between 10 minutes and 60 minutes. For the remaining
906 crypto-using artifacts (11.1%), the analysis does not finish within the 1 hour
time limit.

Given that CryptoAnalysis performs a highly precise and sophisticated static
analysis (flow-sensitive, field-sensitive, and context-sensitive), these results are
promising, and for many artifacts, the analysis terminates in a reasonable time.
To provide more insights and discuss factors that can be used as predictors of
the analysis times, we correlate the times to metrics that are pre-computable,
i.e., computed ahead of any data-flow computations. We find the setup time,
the number of call graph reachable methods, and the number of analyzed CrySL-
objects are reasonable pre-computable metrics.

We compute the correlation coefficients between the analysis times and the
setup time, reachable methods, and analyzed objects. Each correlation coefficient
is a numeric value between —1 and 1 and measures how two data sets correlate.
The closer the value to 1, the higher the correlation between the two sets. A
value of 0 indicates no correlation between the data sets. Table [T.1] shows that
the coefficient is smaller for the two metrics Setup Time (0.06) and Reachable
Methods (0.13), whereas it is higher for the analyzed objects (0.45). Therefore,
the number of analyzed objects is the best of the three metrics to predict the
analysis time of CryptoAnalysis.

Findings. Of the 7,287 artifacts, only 2,308 artifacts (31.7%) use the JCA ac-
cording to the CrySL specification and can be considered secure. The remaining
68.3% of all artifacts contain at least misuse the JCA.

For the evaluation of the reported findings of CryptoAnalysis, we report which
of the CrySL blocks (CONSTRAINTS, REQUIRES, ORDER) is violated and which class
the error relates to. Table provides an overview of all findings. The table lists
the CrySL specified classes and the number of violations for each block. All of the
7,287 artifacts contain a total of 45,917 instances of the 23 CrySL-specified JCA
types, i.e., each artifact instantiates an average of 6 objects of the JCA. For all
CrySL rules and all artifacts, CryptoAnalysis finds a total of 22,664 violations.

The violations are distributed roughly equally between CONSTRAINTS, ORDER,
and REQUIRES violations. There are 7,030 CONSTRAINTS errors, 8,860 ORDER errors,
and 6,774 missing REQUIRES predicates.

The class with the most violations of the CrySL specifications is the class
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Table 7.2: CrySL violations of the JCA on all Maven Central Artifacts.

CrySL Violations

Specified Type CONSTRAINTS ORDER REQUIRES Total
AlgorithmParameters 32 - 6 38
Cipher 1,301 2,193 2,142 5,636
DHGenParameterSpec - - - -
DHParameterSpec - - - -
DSAGenParameterSpec - - - -
DSAParameterSpec - - - -
GCMParameterSpec - - 95 55
HMACParameterSpec - - - -
IvParameterSpec - - 774 774
KeyGenerator 43 48 67 158
KeyPair - 1 - 1
KeyPairGenerator 94 112 - 206
KeyStore 388 588 - 976
Mac 34 534 3 571
MessageDigest 4,462 4,491 - 8,953
PBEKeySpec 249 422 169 840
PBEParameterSpec 81 - 85 166
RSAKeyGenParameterSpec - - - -
SecretKey - - - -
SecretKeyFactory - 41 - 41
SecretKeySpec - - 2,788 2,788
SecureRandom 8 99 - 107
Signature 338 331 685 1,354
Total 7,030 8,860 6,774 22,664
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MessageDigest followed by the Cipher class. Many software artifacts still use
the outdated MessageDigests algorithms "MD5" and "SHA1". The CrySL spec-
ification for MessageDigest does not allow these as hashing algorithms, and
CryptoAnalysis reports CONSTRAINTS violations. MessageDigest also has a rather
strict usage pattern: when a hash is computed by a digest call, the interface
expects a call to reset before using the object for the computation of a second
hash. This pattern is frequently misused, and CryptoAnalysis reports 4,491
ORDER errors of this type.

For the Cipher class, CryptoAnalysis reports violations for all three blocks
(CONSTRAINTS, ORDER, and REQUIRES). The CONSTRAINTS errors are related to mis-
configuration of the encryption algorithm. For instance, we found 154 artifacts
that use the insecure "DES" algorithm and 513 artifacts that use the algorithm
"AES" with the insecure block mode "ECB". The ORDER errors are reported along
data-flow paths of Cipher objects that are not in an accepting state when the
objects are destroyed. The CrySL rule expects the last invocation on any Cipher
object to be an invocation of doFinal() to encrypt/decrypt the actual data.
Without calling doFinal (), no data is actually processed. For 2,142 of all Cipher
objects, a predicate listed in the REQUIRES blocks is missing. The Cipher rule
expects two predicates in the REQUIRES block. The keys for encryption must be
securely generated (by using SecretKeyFactory or KeyGenerator according to its
CrySL rule) or the class AlgorithmParameters must be correctly used.

Example 32. We want to elaborate on one finding more closely, because it shows
the capability of our analysis. Listing shows a code excerpt of an artifact that
uses a KeyStore object. A KeyStore stores certificates and is protected with a
password. A KeyStore object has a method load() whose second parameter is a
password. The API expects the password to be handed over as a char[] array.
The KeyStore API explicitly uses the primitive type instead of a String, because
Strings are immutable and cannot be clearedm However, many implementations
convert the password from a String and hereby introduce a security vulnerabil-
ity; when not yet garbage collected, the actual password can be extracted from
memory, e.g., via a memory dump.

The code in Listing[7.1] contains two security vulnerabilities that CryptoAnalysis
detects. First, the password is converted from a String object via a call to
toCharArray() to the actual array (line , i.e., during the execution of the
code the password is maintained in memory as String. Second, under some con-
ditions (lines [380} 1384} [391}, [393| and [102{ must evaluate to true), the password is
hard-coded.

CryptoAnalysis reports a CONSTRAINTS error on this example, because the
String pass (highlighted by the green box) in line may contain the String
"changeit" as it is defined in line (also highlighted). The data flow corre-
sponding to the finding is non-trivial to detect manually, however, CryptoAnalysis
is able to do so by support of BOOMERANG. CryptoAnalysis triggers a BOOMERANG
query for the second parameter of the load() call in line and finds the

"https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/
CryptoSpec.html#PBEEx
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7 Detection of Cryptographic API Misuses on a Large Scale

toCharArray () call. From that call the analysis traces the variable pass in method
getStore() and finds it to be a parameter of getStore(), and the data-flow
propagation continues at invocations of the method. The method getStore() is
called in line where BOOMERANG data-flow propagation follows the variable
truststorePassword. This variable is assigned the return value of the call site in
line The backward data-flow analysis continues in line and finds the vari-
able to be assigned from the return value of the method call in line Within
the callee getKeyStorePassword(), BOOMERANG traces the variable keystorePass
and eventually finds the allocation site "changeit" in the highlighted line with
the line number Eventually, CryptoAnalysis reports that variable pass is
of type String and that it may contain the hard-coded password "changeit".

Summary. CryptoAnalysis is an efficient and precise static data-flow analysis
tool that is fully based on IDE* and BOOMERANG. For over 85.7% of all crypto-
using Maven artifacts, the analysis terminates in under 10 minutes. The tool
reports 68.7% of all crypto-using Maven artifacts to contain at least one misuse.
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378 protected String getKeystorePassword(){

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

String keyPass = (String)this.attributes.get("keypass");
if (keyPass == null) {
keyPass = "changeit";
}
String keystorePass = (String)this.attributes.get("keystorePass");
if (keystorePass == null) {
keystorePass = keyPass;
}
return keystorePass;

}

protected String getTruststorePassword(){

String truststorePassword = (String)this.attributes.get("...");
if (truststorePassword == null){
truststorePassword = System.getProperty("...");
if (truststorePassword == null) {
truststorePassword = getKeystorePassword();
3
¥
return truststorePassword;
}
protected KeyStore getTrustStore(){

String truststorePassword = getTruststorePassword();
if ((truststore != null) && (truststorePassword != null)) {
ts = getStore(truststoreType, truststore, truststorePassword);
¥
return ts;
3
private KeyStore getStore(String type, String path, String pass){
KeyStore ks = null;
InputStream istream = null;
ks = KeyStore.getInstance(type);
if ((!"PKCS11".equalsIgnoreCase(type)) && ...){
File keyStoreFile = new File(path);
if ('keyStoreFile.isAbsolute()) {
keyStoreFile = new File(System.getProperty("..."), path);
}
istream = new FileInputStream(keyStoreFile);
}

ks.load(istream, pass .toCharArray());

return ks;

}
Listing 7.1: Code example with a hard-coded password.
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8 Influencing Factors on Analysis
Performance

In this chapter, we further investigate the factors influencing the efficiency of
the queries to IDE* and BOOMERANG. First, we elaborate on the impact on
the analysis times when exchanging the two (almost) equally precise heap mod-
els: access paths and synchronized pushdown systems. Second, we relate other
algorithm-specific factors to the analysis times to motivate further paths for ex-
ploration.

8.1 Access Paths and Synchronized Pushdown Systems

In Chapter 4l we discuss synchronized pushdown systems (SPDS) and the theo-
retical difference compared to the access path model. Based on IDE# (Chapter @
and BOOMERANG (Chapter , this section complements the theoretical worst-
case complexity analysis by empirical performance results.

The results of the worst-case complexity analysis of SPDS indicate that SPDS
is more efficient than k-limited access path (AP¥) for data-flows spanning only
few statements and storing the data to many fields. Based on experiments with
BOOMERANG and IDE¥ | we elaborate on how the two heap models compare in
practice. Additionally, we show that the hypothesis SPDS are build on is valid
and that SPDS do not introduce false positives in comparison to access paths.
Therefore, we reason that an improperly matching of call sites does not induces
a properly matching of fields.

Before we designed and implemented BOOMERANG and IDE* based on SPDS,
we used access paths and access graphs to represent field accesses in both anal-
yses [88,90]. We observed these heap models as one factor hindering efficient
data-flow analysis. In the following experiments, we confirm this observation
and compare the prior implementations of both analyses to the implementations
based on SPDS. To distinguish the access-path based analyses from ones using
SPDS, hereafter, we refer to the access-path based implementations as IDE%P
and BOOMERANG 4p. The implementations for IDE%P and BOOMERANG 4p are
also publicly availableﬂ

Based on these two different implementations, we address the following re-
search questions:

e RQ1: How does the number of field accesses on the data-flow paths of a
BOOMERANG query relate to the time taken to compute the query’s results?

'IDE%p: https://github.com/secure-software-engineering/ideal| and BOOMERANG 4p:
https://github.com/secure-software-engineering/boomerang
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421 stateExplosion() {
422  Node x = new Node();
423  Node p = new Node();
424  Node t = new Node();
425  while(...){

426 if (..o

427 x.al = p;
428 }

429 P = X5

430 %}

431 if (..o

432 t = x.al;
433 %}

434 queryFor( t );
435 ¥

Figure 8.1: The example code EXPL; that provokes state explosions for access-
path based domains. This code contains a single field-store and a
single field-load of the field al.

e RQ2: How does a typestate analysis based on IDE% compare to the same

analysis based on IDE%P?

e RQ3: How does the number of methods and field-stores, i.e., push-rule
applications, along a data-flow path influence the typestate analysis time
for an abstract object?

8.1.1 Micro-Experiment: Controlled Field Explosion

In this micro-experiment, we compare access path, access graphs, and SPDS
based BOOMERANG queries in a controlled lab environment. BOOMERANG 4p
can be configured to use either k-limiting or access graphs as its field abstrac-
tion. We designed a target analysis program for which we can control the number
of field accesses along a data-flow path for a pointer query. We run the same
BOOMERANG query configured with different heap models on a target program
which is parametrizable in number of field accesses. Dependent on the param-
eter, the amount of field accesses in the target program increases. Hereby, we
demonstrate the differences between the field abstractions without changing the
other dimensions (e.g., number of visited methods). To complement the worst-
case complexity analysis of Section [4.4.2] we measure how an increase in the
number of field accesses affects the query’s analysis time in practice.
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8.1 Access Paths and Synchronized Pushdown Systems

Experimental Setup. In Chapter[2] we show an example using java.util.TreeMap,
in which a data-flow analysis generates all combination of access paths

T = {this.fy.fa..-. fn.value | f; € {right,left,parent},n € N}.

Based on the TreeMap implementation, we extracted a minimal code example that
provokes a similar state explosion and generates a similar sized set of access paths.
We also made the number of field accesses along the data-flow parametrizable
and arrived at the code shown in Figure The code is designed to provoke a
state explosion for the static data-flow analysis when points-to information for
variable t is queried at the call to queryFor() in line M (variable highlighted
green). The backward analysis computes the three allocations in lines
and as allocation sites for t. From there, BOOMERANG’s forward analysis
requires generating all access paths in the set {x.f1.fo...f;m | fi € {21}, m e N} at
each statement. This result is due to the fact that the while-loop assigns x to p
but also stores p in a field of x.

The code snippet allows one to parametrize the number of field accesses. By
duplicating both if blocks (lines and lines [431H433)) and replacing the
field a1 of the field-store and load by another field, for example a2, the com-
plexity of the data-flow increases as data flows to all access paths within the
set {x.f1.fo.fm | fi € {al,...,an},m € N}. We call the program with n field
accesses EXPL,,.

For this performance experiment, we stepwise scale the number of fields ac-
cesses n in the program EXPL, and trigger points-to queries to BOOMERANG as
well as to BOOMERANG 4p. For BOOMERANG 4p we run queries configured using
access graphs and k-limited access paths with values k=1,...,5. For each query
and each program EXPL,,, we measure the analysis time which we report on.

Results. Figure[8.2 plots the number of fields n of EXPL,, on the x-axis against
the query’s analysis time on the y-axis. The chart depicts 7 line plots, one for
BOOMERANG, one for BOOMERANG 4p using access graphs, and 5 lines for APF
with k=1,...,5.

A first observation is that the analysis times of access graphs increase expo-
nentially when more than 5 fields occur along the data-flow. With n = 5, the
access-graph-based analysis already takes 17 seconds to terminate. For values
larger n = 6, the queries hit the budget of 50 seconds.

We next compare access-path-based BOOMERANG 4p to SPDS. AP*<! is more
efficient than SPDS but also expected to be much less precise. SPDS is slightly
less efficient compared to AP*=!, but the latter is imprecise as soon as the data-
flow path involves more than a single field store. Lastly, BOOMERANG 4p queries
in the configuration AP*=3 are roughly as performant as the query configured to
use access graphs. However, an increase of k to 4 and 5 yields to analyses with
worse performance.

Although the heap models are equally precise, BOOMERANG based on SPDS
clearly outperforms the access-graph based version of BOOMERANG in this exper-
iment. The line for SPDS shows a quadratic growth when using SPDS, and, even
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50
e SPDS
—m— Access Graph
. 40 APk=1
Z k=2
g 30 AP ]
= — APk
% 2 oA
= —  APFP
=
< 10
0
0 5 10 15

Number of Fields along Data-Flow

Figure 8.2: The number of relevant field accesses for a data-flow analysis and its
effect on the analysis time.

on EXPLjg, which nests the query object into 18 different fields, the data-flow
query finishes in 43 seconds.

This experiment shows the benefit of using SPDS opposed to access graphs or
k-limiting when data flows through a sequence of field-stores. This experiment
showcases that the explosion of the size of the data-flow domain directly relates
to the analysis time.

Summary. When data flows through five or more nested field-stores, BOOMERANG
based on SPDS is more efficient than BOOMERANG 4p using access paths or ac-
cess graphs. SPDS show a performance close to k-limited access paths with k£ =1
although their precision corresponds to k = co.

8.1.2 Precision and Performance of a Typestate Analysis

In this experiment, we evaluate the precision and performance of SPDS in com-
parison to the access graph heap model on real-world programs. We re-use the
IDE®-based typestate analysis discussed in Section and run the same analysis
implemented in IDE“AZP.

Experimental Setup. We use the typestate specifications detailed in Table
and applied both versions IDE* and IDE%P to each of the 11 programs of the Da-
Capo benchmark suite. At first, the analyses pre-compute a context-insensitive
SPARK-based call graph [55], determine all abstract objects, for instance, alloca-
tion sites of type Vector or Iterator, and execute a static analysis per abstract
object.
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8.1 Access Paths and Synchronized Pushdown Systems

Table 8.1: Statistics of a typestate analysis performed in IDE* () and IDE¥ (m)
on the DaCapo 2006 benchmark programs. A row containing a dash
in column Objects means no object (allocation site) was found in the
program and no statistics are collected. Note: the analysis includes
all libraries.
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We ran this experiment on a 2.3 GHz Intel Core i7 machine, and we granted
12 GB of heap memory to the JVM. During the computation, we record two
statistics of IDE® about the data-flow of each abstract object. First, the number
of Visited Methods, which counts the methods that IDE* propagates data-flow
facts within. Second, we compute the Nesting Depth of an object which is the
length of the longest acyclic path contained in any of the analysis’ automata
Agp. In the case all paths are acyclic, the nesting depths reflects the minimal
value for k-limiting to avoid approximation. For EXPL,,, this value is equal to
n. To limit the total analysis time to an acceptable time budget for programs
using many abstract objects, we limit the computation of the data-flow for each
abstract object to 10 minutes.

Precision Results SPDS is based on the hypothesis that an improperly matched
call site does not induce a properly matched field access and vice versa. SPDS
over-approximates when the target program contains two distinct paths d; and
dy such that d; properly matches one language (Lr or Lg) but does match in
the second language and conversely for path dy (see Section . For the
typestate analysis IDE, this over-approximation would lead to an additionally
reported finding (false positive) in comparison to IDE%P, because it would cause
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the analysis to construct an invalid data-flow path. Yet, for all objects for which
IDE% and IDE“AIP terminate (464 out of 819 objects), both analyses report the
same results. This evidence shows that our hypothesis is true in practice.

Performance Results. Table[8.1]lists the results of the typestate analysis grouped
by the three typestate properties (10, Vector, and Iterator) on the DaCapo
benchmark suite. Each row of the table corresponds to one program. For each
property, column Objects lists how many Vector, Iterator, or I0 allocation sites
the program contains in the pre-computed call—graphE] Column Visited Methods
shows the average number of methods visited when computing the data-flows for
all objects. The column Nesting Depth represents the average nesting depth of
all objects. The last three columns reflect the analysis time: The column Total
Time lists the accumulated analysis time of all objects on the benchmark (ex-
cluding call-graph construction time). The column Timeouts shows the number
of objects for which the data-flow analysis exceeded the budget of 10 minutes, the
last column, Rel. Timeouts shows the fraction of those objects over all analyzed
ones. The last three columns, Total Time, Timeouts, and Rel. Timeouts are
split horizontally into two rows per program. For each program, the upper row
contains data for the access-graph based implementation IDE%P, and the lower
row contains data for IDE®.

For example, the program ANTLR allocates a total of 17 objects related to
10, e.g., of type FileInputStream or FileOutputStream. Across these 17 objects,
on average, the data-flow path visits 12 methods and stores the object within 4
unique fields, indicating that an access path of length at least 4 is required for
a precise analysis. For 5 of the 17 analyzed objects, IDE%P times out, whereas
IDE® does not time out on any object. The analysis time for IDE%P totals to
4,023 seconds, whereas IDE%P computes the same data-flows in only 15 seconds.

The results show that IDE* outperforms IDE%P for the typestate properties
10 and Iterator on all DaCapo benchmarks in terms of the total analysis time
and the number of timeouts. On geometric average IDE is 83x more efficient
than IDE%D for the property Iterator. For the I0 property, IDE¥ is 64x more
efficient. For the typestate property Vector, IDE* outperforms IDE%P only by
a factor of 1.8x.

The timeouts dominate the overall analysis time. Switching from IDE%P to
IDE®, i.e., from access graphs to SPDS, reduces the timeouts from 160 to 28
for all 298 10 objects, and from 57 to 25 for the 125 Vector objects. For the
396 Iterator object data-flows, the difference is most significant: with IDE%P, a
total of 137 data-flows time out, while only 3 time out with IDE®.

Table also lists the maximal nesting depth for each analysis. The values
indicate the minimal k-limit for a precise analysis using k-limited access paths.
The values range up to k£ = 13 and indicate that the program EXPLjs of the
micro-experiment that uses 13 different fields along a data-flow is not an unreal-

2The allocation sites, i.e., the number of analyzed objects in this experiments differs from the
results reported in Table In Table restricts the objects to the objects that are call
graph reachable in both SOOoT and WALA.
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istic scenario of a target program for a typestate analysis.

Summary. On most of the DaCapo benchmark programs, the typestate analysis
IDE* outperforms the access-graph-based analysis IDE%P in terms of analysis
time. While IDE* times out on only 6.8% (56 out of 819) object data-flows,
IDE%P times out on 252 data-flows, i.e., on 37% of the objects.

8.1.3 Visited Methods and Nesting Depth

We further seek to relate the theoretic worst-case complexity results of Sec-
tion to the practical performance results we obtained. For access-path and
access-graph-based analyses, the more deeply a traced object is nested in another
object, the longer access path are constructed and the higher the expected anal-
ysis time for the object is. While the time also increases for SPDS,; due to the
concise representation of Ay, it is expected that the time is affected less heavily.
On the other hand, for data-flows that reach more statements, i.e., have a high
number of visited methods, SPDS is expected to have a higher complexity.

Experimental Setup For the two typestate analysis based on IDE* and IDE%P,
we measured the nesting depth, the visited methods, and the analysis time per
object data-flow. These statistics give a detailed view on the analysis.

Results First, we explain the variance in the performance reported in Table
across the typestate properties by relating the values in the Timeout column to
the values of Visited Methods and Nesting Depth.

IDE® times out for only 3 of the 396 Iterator objects, and, in total, times out
in only 52 of all 819 objects. This is a significant reduction, which we explain
as follows. For all benchmarks, the number of visited methods for the typestate
Iterator is relatively low. On average, an Iterator object is alive across 5H—
23 methods. These methods include the factory calls where the Iterator is
allocated, as well as their constructors. Ignoring loops, Iterator objects are
nested in other object’s fields in a depth between 1 and 10. The access paths
required for Iterator are also cyclic. For example, for the benchmark program
EcLipsE, the following access path is required to be tracked

config.this$0.ig.nodes.map.tail.parent.next.prev.right

where the part tail.parent.next.prev.right can occur in any arbitrary order.
IDE%P, which uses access graphs, must store these access graphs for each state-
ment individually, because they might slightly vary. On the other hand, in the
case of IDE¥, the automaton A represents all access paths at every statement
concisely in a single automaton.

The Vector typestate property is the other extreme. The performance gains
in IDEY through SPDS are negligible. As data containers, Vector objects are
expected to have a longer lifetime than Iterator objects. In Table the
number of visited methods for Vector objects ranges from 17 to 659. The longer
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Figure 8.3: Relating analysis times to the number of visited methods and the
nesting depth along objects data-flow for IDE% and IDE%P.

lifetime of the objects reduces the benefit of SPDS which is designed to improve
scalability in the dimension of the nesting depth.

The number of visited methods of a data-flow as a metric for the lifetime of
an object motivates our second representation of the data set. In Figure [8.3] we
group all objects, regardless of their type, into buckets, depending on the nesting
depth and the number of visited methods along their data flows. The visited
methods are plotted along the y-axis, and the number of fields along the x-axis.
We subdivide both axes into five equally long ranges which generates a total of
25 buckets. For each bucket, we report two statistics in Figure |8.3] The first is
the number of objects contained in the bucket, indicated by the value below the
meandered line in the diagram. The second statistic is the average analysis time
of the objects within this bucket, which is indicated by the number above the
meandered line. Timeouts are included in the average with their 10 minutes. We
also visualize these statistics as circles associated to the bucket. The diameter of
the circle corresponds to the number of objects contained in a bucket. The more
opaque a circle is, the more time the analysis took on average across the objects.
Figure shows a diagram for IDE* on the left and for IDE%P on the right.

The diagram shows two important characteristics. First, for the vast majority
of objects, IDE# significantly reduces the analysis times compared to IDE%P.
Second, the more methods a data-flow visits, the larger the analysis time. While
the latter holds for IDE%P and IDE, the number of field-stores along the data-
flow paths does influence the analysis times more heavily for IDE%P.

IDE* shows the largest speedups for the bottom part of Figure In other
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words, switching from access graphs to SPDS benefits data-flows which visits few
methods, no matter how deeply the object is nested. IDE® effectively reduces
the analysis time for all buckets whose visited method range is [1-340]. Figure
shows that the majority of data-flows fall into this range, which contains 743 out
of all 819 objects and require only a fraction of all call-graph reachable methods
for the analysis. Additionally, Figure shows that IDE¥ times out slightly
more often when the number of visited methods increases. This observation
aligns with the worst-case complexity analysis.

Summary. The number of visited methods and the number of fields participat-
ing in the data-flow are two influencing factors for the analysis times of IDE%.
However, the number of visited methods has a higher impact and SPDS is most
advantageous in situations where the data-flow spans few methods but flows
through many fields.

8.2 Factors on Maven Central

While BOOMERANG and IDE® compute results efficiently in many analysis sce-
narios, across all our evaluations we also face analysis timeouts. Those hinder
the computation of results, because only partial information is returned. For the
typestate analysis on the DaCapo benchmark suite (Section , we observed
12.5% timeouts with a query budget of 30 seconds which reduces to 6.8% (Sec-
tion when a timeout of 10 minutes is selected. For the datarace client
(Section and a tight budget of 1 second, we report 96.6% of timeouts on
the same benchmarks. For the analysis of CryptoAnalysis on the artifacts of
Maven Central (Chapter [7)) and a time budget of 5 seconds, 16.0% of all IDE%
and BOOMERANG queries time out. For a better understanding of the occurrence
of timeouts, we discuss influencing factors and their correlation to the analysis
time of BOOMERANG and IDE%.

Experimental Setup. The discussion is based on data recorded during the large
scale experiment of CryptoAnalysis on Maven Central (Chapter . The static
analysis for CryptoAnalysis composes of multiple BOOMERANG and IDE*-based
sub-queries. The IDE%-based queries perform a typestate analysis and start
forward propagating at allocation sites of object of interest. The BOOMERANG
queries start backward propagating and search for variables at selected call sites.
For each query, we limited the analysis time to a maximum of 5 seconds.

A BOOMERANG and IDE? query constructs multiple forward and backward-
directed SPDS, each consisting of two PDS (Ps and Pr) and two P-automata (As
and Ap). The backward-directed SPDS searches for allocation sites of a query
variable (at a statement), while the forward-directed SPDS start propagation
in these allocation sites. During the data-flow computation for each query, we
record the field transitions and call transitions, which represents the number of
(unique) transitions of all automata Ap, As respectively. The number of all
(unique) call rules and field rules is the count of all rules of all Ps and Pr. The
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Figure 8.4: Query times for the BOOMERANG and IDE® queries in
CryptoAnalysis.

number of forward nodes is the size of the union of the sets postgy across all
forward-directed SPDS. This metric corresponds to the number of nodes of the
ESG of IFDS/IDE. Likewise, the number of backward nodes is the count for all
backward-directed SPDS. We also record how many data-flows escape to static
fields or to arrays.

Result. Across all artifacts, CryptoAnalysis triggers a total of 182,825 queries
to BOOMERANG and IDE®. Of these queries, 165,521 (90.5%) terminate within
the time budget of 5 seconds. Figure [8.4] shows the distribution of the analysis
times of all terminated queries. The queries are sorted with respect to their anal-
ysis time. For 97.8% of the terminating queries (162,144 of 165,521), the query
time remains below a second, then the analysis time grows exponentially. This
trend is similar to the trend of the complete analysis time of CryptoAnalysis
of all artifacts (Figure [7.3a). The observed exponential growth makes it diffi-
cult to predict the analysis times, and we agree with recent work that found
context-sensitive points-to analysis (as BOOMERANG) to have unpredictable per-
formance [5887].

Table[8.2] provides further details on main factors influencing the analysis times.
We compute the correlation coefficient between the query time and other factors,
e.g., number of forward nodes. The closer to 1 the correlation coefficient is for two
data rows, the higher their correlation. Table is ordered by the coefficient,
and it shows that the number of call transitions correlates most (0.67) to the
query time. The more call transitions the automata As contain, the longer the
query times. The same holds for the number of field transitions for which the
correlation coefficient has a value of 0.63. The field rules and the call rules
influence the amount of transitions within the respective automata, hence it is
not surprising that the sizes of the rule sets correlate to the query time.
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Table 8.2: Correlation coefficient related to the query time.

Correlation coefficient ordered by significance

Call Transitions 0.67
Call Rules 0.66
Field Rules 0.64
Field Transitions 0.63
Forward Nodes 0.53
Backward Nodes 0.49
Visited Methods 0.47
Array Flows 0.12
Static-Field Flows 0.04

The metric of visited methods correlates with value 0.47 to the query times.
While the correlation is not as high as for call transitions or field transitions,
the data-flow visited methods have an influence on the query times. Opposed to
this, the metrics array flows and static-field flows do not correlate (coefficient of
0.04 and 0.12) to the query time. We assumed these two metrics to be relevant
because static field and array flows are difficult to control: A static field can be
accessed anywhere in the code and a static field propagates almost through the
whole program. CryptoAnalysis is array-insensitive and all elements stored to
an array alias. Our hypothesis that propagation of static fields as well as arrays
easily prevent an analysis from being efficient is inconclusive.

Summary. The distribution of the query times is exponential and hence difficult
to predict. The query times correlates most to the shapes of the two pushdown
systems Ps and Py that reflect to the call and field transitions of the automaton
Ar and As. However, flows to arrays and across static fields are not likely to
impact the query time significantly.

8.3 Future Work

Based on the results of this chapter, we see a few possibilities of future work to
improve the analysis times and reduce the timeouts.

e Pushdown systems enable a range of optimizations, for example summa-
rization [49] where sub-automata of Ag (or Ap) are shared across multi-
ple post*-computations across different object data-flows. Sharing results
between multiple Ag is certainly possible by means of Lal’s proposed tech-
niques. For automaton Ag, it is more difficult: at points of aliasing, the
field automata are explicitly manipulated, which might become difficult to
coordinate when parts of the automata are shared.

e The pushdown systems contain many rules that propagate the same infor-
mation from statement to statement (identity rules), we see a potential to
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make the pushdown system sparse and save on rules and, in turn, tran-
sitions. A reduction of the rules of Ps and Py is expected to reduce the
memory consumption and the analysis time as less rules need to be stored
and applied.

Orthogonal to the optimizations on the pushdown systems themselves, one
can (and we currently are) investigating demand-driven call-graph refine-
ment [91] and its impact on the query time. In particular, for analyses that
use an imprecise call graph, e.g., CryptoAnalysis that uses CHA for the
experiments in Chapter [7] a reduction in the number of callees at call sites
can be expected. This in turn, may lower the analysis time.



9 Conclusion

Finding an acceptable balance between precision, recall, and performance of a
static analysis is a tedious task when designing and implementing a static analy-
sis. Efficient but imprecise analyses frequently produce an unacceptable amount
of false positives, conversely, precise analyses need to encode a drastically larger
- even infinite - data-flow domain that leads to analyses that are difficult to scale.

Synchronized pushdown systems (SPDS), the first contribution of this thesis
(Chapter {4)) presents a precise and efficient solution to a known to be undecid-
able problem [73]. SPDS compute a field- and context-sensitive data-flow analy-
sis and reduce the over-approximations to corner cases that are non-existent in
practice, corner cases for which an improperly matched call site does not induce
a properly matched field access and vice versa. SPDS synchronizes the results
of two pushdown systems, one that models field-sensitivity and a second that
models context-sensitivity. The experiments performed within this thesis show
that SPDS are an efficient replacement for the standard storeless k-limited access
path model. In our evaluation of precision of SPDS compared to access paths,
we could not identify any of the above mentioned corner case to occur meaning
that SPDS, in our experiments, incur no false positives. In summary, SPDS are
as precise as k = oo while being as efficient as k = 1.

The demand-driven pointer analysis BOOMERANG, presented in Chapter
addresses a fundamental problem in data-flow analysis. BOOMERANG computes
the objects (or memory locations) a pointer variable may point to at runtime.
BOOMERANG coordinates multiple SPDS. On its own, each of the SPDS effi-
ciently solves the distributive part of the pointer relations and hands over the
non-distributive part to the points of aliasing of BOOMERANG. The data-flow
framework IDE* that we present in Chapter @ extends the ideas of the distribu-
tive propagations of BOOMERANG and additionally propagates weights along the
data-flow. The weights allow data-flow analysis such as a typestate analysis or an
analysis for API usage pattern mining. The experiments performed with IDE#,
in which we compare an IDE-based typestate analysis to a state-of-the-art type-
state analysis, advocate that distributive propagation pays-off as a whole.

In Chapter 7] we also specifically apply our data-flow frameworks within an
analysis that detects security vulnerabilities and weaknesses. Through an execu-
tion of the analysis on a large software repository for Java libraries, we confirm
once again the efficiency of synchronized pushdown systems.

We hope that the presented algorithms, frameworks, and their implementations
help static analysis designers in the future to lower their burden of finding the
right approximation and the correct aliases for their analysis problem at hand.
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Publications and Contributions

Over the course of this thesis I authored and co-authored multiple publications.
The list below states these publications and describes my contributions.

e Johannes Lerch, Johannes Spdth, Eric Bodden, and Mira Mezini. Access-
Path Abstraction: Scaling Field-Sensitive Data-Flow Analysis with Un-
bounded Access Paths. In International Conference on Automated Software
Engineering (ASE), 2015. 53]

Johannes Lerch came up with the initial concept and an implementation,
furthermore he evaluated the approach by himself. I contributed to con-
ceptual and technical discussions, and helped Johannes Lerch to sharpen
the formalism. I also supported the technical writing of the publication.
The concept inspired my work on SPDS as presented in Chapter

e Johannes Spdth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden.
Boomerang: Demand-Driven Flow- and Context-Sensitive Pointer Anal-
ysis for Java. In European Conference on Object-Oriented Programming

(ECOOP), 2016. [90]

Parts of this publication are reused in Chapter I am the main author
of this publication. The concept of BOOMERANG was inspired by other
publications [5,/100]. I implemented the analysis and performed the eval-
uation myself. The benchmark suite POINTERBENCH was co-authored by
Lisa Nguyen Quang Go. Eric Bodden and Karim Ali joined technical dis-
cussions and co-authored the publication.

e Johannes Spdith, Karim Ali, and Eric Bodden. IDE™: Efficient and
Precise Alias-Aware Dataflow Analysis. In Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), 2017. [8§]

Parts of this publication are reused in Chapter [6] I am the main author of
this publication. The concept for IDE* was developed in technical discus-
sion with Karim Ali and Eric Bodden. I implemented the framework and
conducted the evaluation myself. The co-authors helped with designing the
experiments and writing the publication.

o Stefan Kriger, Johannes Spdth, Karim Ali, Eric Bodden, and Mira
Mezini. CrySL: An FExtensible Approach to Validating the Correct Us-

age of Cryptographic APIs. In FEuropean Conference on Object-Oriented
Programming (ECOOP), 2018. [47)

This publication presents parts of the work discussed in Chapter [7] I am
a co-author of the publication and contributed to designing and writing a

141



9 Conclusion

142

compiler that transforms CrySL into its static analysis. I developed and
implemented large parts of the compiler. I formalised CrySL’s Formal
Semantics (Section 5). In collaboration with Stefan Kriiger, I setup and
conducted the evaluation, furthermore I contributed to the technical writing
of the publication.

Johannes Spdth, Karim Ali, and Eric Bodden. Context-, Flow- and
Field- Sensitive Data-Flow Analysis using Synchronized Pushdown Sys-

tems. In Symposium on Principles of Programming Languages (POPL),
2019. [89]

The contents of this publication are reused in Chapter [ I am the main
author of this publication. I developed the concept of SPDS myself. 1
designed, setup and performed the evaluation which incorporated feedback
from my co-authors. Karim Ali and Eric Bodden helped me writing the
publication and sharpened the presentation.
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