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Abstract

One of the important paradigms of vehicular networking applications is information

based services where the vehicles with communication capabilities interact with the

internet cloud servers. This is facilitated by cellular networks for uploading and

downloading the relevant data. In future, the number of such vehicles is expected

to increase. This is going to result in an increase in the usage of cellular bandwidth

(which is limitedly available). This may cause vehicles to suffer a higher end to

end communication latency. The solution to this problem is addressed by a newly

proposed architecture called Vehicular Micro Cloud architecture. In this architecture,

the connected vehicles are bundled together forming small clusters called Vehicular

Micro Clouds. The pool of computing, storage, sensing and communication resources

contributed by vehicles themselves can be used to aggregate and process the upstream

data and cache the downstream data. This minimizes the bandwidth consumption

in vehicular networks. In this thesis, the first prototype of the Vehicular Micro Cloud

architecture is implemented along with two Micro Cloud services - Data Collection

and Aggregation, and Task Distribution. The prototype implemented offers the

scope for real-world experimentation and serves as proof of concept. This has been

evaluated using the Manhattan grid scenario at different traffic densities and data

size transfers.
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Chapter 1

Introduction

In the near future, the number of vehicles on road with communication capabilities

such as the WLAN based IEEE 802.11p [1] and LTE/LTE-D2D [2] will increase.

Vehicles equipped with such capabilities can interact with other vehicles and with the

data centres in the backend using LTE. This vehicular networking aspect has created

an opportunity for the automotive developers to develop a wide range of vehicular

applications [3] related to road safety, traffic information systems, infotainment,

platooning, etc.

One such paradigm of applications is information-based services [4], where the

connected vehicles [5], [6] interact with internet cloud servers facilitated by cellular

networks, for uploading and downloading relevant data, e.g., in up-to-date HD

live maps, the data related to live traffic in an area is transferred to cloud servers,

where it is aggregated and processed to create a live map. This live map is sent

back to the requesting vehicles. In such a scenario, more vehicles in the future

would require more cellular bandwidth to upload and download the data, which is

available in limited capacity. This may cause vehicles to suffer a higher end-to-end

communication latency.

A similar problem in cellular mobile networks has been handled by introducing

a network architecture concept called Mobile Edge Computing (MEC) [7]. The

architecture suggests deploying the mobile edge servers at the edge of the networks.

These servers have computation and storage capabilities that help devices to not rely

on internet cloud servers for these services. This reduces communication latency.

In order to overcome the latency problem in vehicular networks, Hagenauer

et al. [8] introduced the Vehicular Micro Cloud architecture inspired by MEC. This

architecture proposes that the connected vehicles could be bundled together forming

small clusters, as shown in Figure 1.1 called Vehicular Micro Clouds acting as Virtual

Edge Servers at different geographical locations. As the number of connected vehicles

on road increases, the pool of computing, storage, sensing and communication

1



1 Introduction 2

resources from these vehicles also grows bigger. A pool of resources, called the

Virtual Edge Servers, can be used to aggregate and process the upstream data and

cache the downstream data. This minimizes the bandwidth consumption in vehicular

networks and enhances the scalability of the networks [8], [9].
The simulations conducted by Higuchi et al. [10] on feasibility of micro clouds

and by Hagenauer et al. [8] on efficient data collection, test and verifies the micro

cloud architecture and its services. A prototype, as emphasized by Kordon and Luqi

[11], however, plays a crucial role in the early evaluation of the final product.

In this thesis, we have focused on the implementation of the prototype of ve-

hicular micro cloud architecture [8] and its services. To visualize the clustering

status at runtime, a visualisation tool has been implemented. At the end, we have

evaluated the architecture and its services at different traffic densities and data sizes

in Manhattan grid scenario.

In the prototype implemented, a vehicle or Access Point (AP) (which can be a

base station or Roadside Unit (RSU)) is a multi-process entity implemented in C++

ZeroMQ communication

Host 1 Host 2

VM1 VM2 VM3

RSU

Base station

Vehicular micro clouds

Figure 1.1 – Cars bundled together forming small clusters called vehicular
micro clouds acting as virtual edge servers where upstream data is aggregated
and downstream data is cached. The cars and access points are multi-process
entities implemented in C++ programming language which can be run on
virtual machines.



1 Introduction 3

programming language. Each has multiple components such as sensor module, a

communication module, clustering module and other application service modules.

A Helper module has been implemented in order to provide vehicles with the latest

sensor information and help them communicate with each other and with AP. As

shown in Figure 1.1, vehicles and APs can be run on physical or virtual machines.

The primary objectives of the prototype are:

• Validation and evaluation of vehicular micro clouds formation.

• Validation and evaluation of vehicular micro cloud services.

• Evaluation of usage of system resources such as CPU and memory.

The rest of the thesis is structured into different chapters as follows. Chapter 2

explains the fundamentals - the tools used in the implementation and the related

work. Chapter 3 describes the design and the implementation of the prototype and

Chapter 4 covers the validations and evaluations. Finally, the thesis is concluded in

Chapter 5.



Chapter 2

Fundamentals

In this chapter, we explain the tools and libraries used in the implementation of the

prototype - ZeroMQ, Protocol buffers and Chilkat library methods. In addition, the

insights to the related work is given.

2.1 ZeroMQ - Messaging Library

The implemented prototype includes multiple processes and the communication

between them. This communication is enabled by ZeroMQ’s asynchronous messaging

library. The library provides the following features1:

• supports multiple languages across multiple platforms,

• multiple messaging patterns like Push-Pull, Request-Reply, Router-Dealer and

Publisher-Subscriber,

• easily scalable for distributed or concurrent applications from intra-application

to inter-application communication,

• zero or low latency, and

• open source library backed by an active open source community.

In order to fulfil the different messaging requirements in the prototype, the

following four message patterns2 have been used in four different types of use cases.

Push-Pull The messages from the push socket end are distributed to load

balance on all pull socket workers in Round-robin fashion.

1https://www.gridprotectionalliance.org/docs/WhyZeroMQ.pdf
2http://zguide.zeromq.org/php:chapter2

4



2.2 Protocol Buffers 5

Req-Rep Multiple clients are allowed to send requests/talk to one

server asynchronously supporting two-way communication.

Pub-Sub The publisher socket distributes the same message to all

subscriber sockets.

Simple Mad Box In Pub-Sub pattern, the subscriber is broken into a multi-

threaded design, wherein the one set of threads is busy in

reading messages and the other set is processing the incoming

messages.

The ZeroMQ library has been used in various industrial and experimental research

applications. Meng et al. [12] have used ZeroMQ to build a messaging mechanism

for industrial IoT applications that requires machine interaction. The cross-platform

nature, the flexibility to interact between the different software platforms and its

efficiency have made ZeroMQ’s messaging mechanism a promising tool for machine

communication and data sharing. Gougeaud et al. [13] have used ZeroMQ as

a solution to the synchronization problems occurring in a simulation tool called

"OGSSim" which is used to study the behaviour of large-scale data storage systems.

According to the results, ZeroMQ along with data communications have solved the

synchronization problems caused due to the parallelism in the tool. Laux et al. [14]
also use ZeroMQ for messaging in their Open Source experimental and prototyping

platform that provides vehicular networking solutions.

The prototype we have implemented is also an application based software where

several applications communicate with each other to transfer messages and data.

Mainly, the different messaging patterns and the flexibility of support for multiple

languages has been exploited in the implementation to communicate easily between

the C++ and Python methods.

2.2 Protocol Buffers

In the prototype implemented, ZeroMQ messaging uses data serialization. It has

mainly two uses - first when a message is transferred from source to destination, it

helps to recover the original structure of the message at the destination. Second,

it minimizes the data size, thereby reducing the bandwidth requirement. Protocol

buffers3 is one such method used to serialize and deserialize the structured data

using a simple "interface description language". Using this language, a structure

of the data is defined in a .proto file, and a program will generate source code of

this structured data which is later used to generate and parse the stream of bytes

representing the structured data.

3https://developers.google.com/protocol-buffers/docs/overview
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The following features of protocol buffers make it easier for programmers to

decide using protocol buffers over other serialization tools.

• Provides a code generator for many different languages such as C++, Java,

Python, Ruby, Javascript.

• Simpler - once data is structured, programmatically it is very easy to populate,

serialize and parse the data.

• Smaller - the serialized data consumes very less space compared to other

serialization tools like JSON and XML.

• Faster - many online resources4 5 claims that performance is far better than

JSON and other serialization tools.

• Available as an open source tool.

• Backward compatible.

However, Google uses protocol buffers as their common language for structured

data. They use it in almost all their projects6. It is not only used as a serialization

tool in their RPC systems and networking but also as persistent storage in various

storage systems like data analysis pipelines, mobile clients etc.

2.3 Chilkat API Library

Chilkat software7 provides API libraries for many different protocols and algorithms.

In the implementation, data is transferred in fragments which requires the huge files

to be split into multiple files or fragments at the sender side. These fragments have

to be re-assembled into the original file at the receiver side. One of the libraries

provided by Chilkat - CkFileAccess8 which is a no licence required tool, is used in

the implementation to split and re-assemble the huge files. The Chilkat API Library

provides the following features:

• supports multiple environments such as Windows, Linux, MAC OS X, iOS,

ARM Linux, Raspberry Pi,

• supports different programming languages such as C/C++, Python, C#, PHP,

VB.NET, and

• provides many no licence required API libraries like CkFileAccess.

4https://auth0.com/blog/beating-json-performance-with-protobuf/
5 https://dzone.com/articles/is-protobuf-5x-faster-than-json
6https://opensource.google.com/projects/protobuf
7https://www.chilkatsoft.com/
8https://www.chilkatsoft.com/refdoc/vcCkFileAccessRef.html
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2.4 Related Work

2.4.1 Mobile Edge Computing

The mobile devices such as Tablets, Smart Phones and Laptops have become a

platform for complex applications such as gaming, healthcare [15] and education

[16]. Although, nowadays, mobile devices are much powerful in terms of computing,

still not enough to compute huge load for complex applications. In order to address

this issue, many computation offloading techniques such as [17] have been proposed

where computation is leveraged to internet clouds. However, these techniques

implicate higher communication latency since data has to move to and fro between

the mobile devices and the internet clouds.

As a solution to such challenges, initially, Fog computing was introduced. It is a

concept of edge computing introduced by Cisco. It bridges the end devices and the

cloud servers by providing services such as computing and storage to the end devices

at the edge of the network [18]. However, as mentioned in [7], it lacks in providing

QoS as the computing is not integrated into the mobile network architecture.

To overcome this drawback, a concept of integrating the edge computing into

the mobile network architecture developed by industry specification group (ISG)

within European Telecommunications Standards Institute (ETSI) called Mobile Edge

Computing [7], [19] was introduced. MEC is an emerging technology that brings

high computation power and storage capacity in the vicinity of the mobile devices. In

MEC, the Mobile Edge Servers having higher computation and storage capabilities are

deployed at the edge of the networks. These edge servers enable mobile devices to

access the cloud capabilities in their proximity thereby reducing the communication

latency. Also, MEC is used to optimise the data before uploading to the internet

clouds [19].

2.4.2 Vehicular Clouds

In the initial days, the concept of vehicular clouds was introduced by Gerla [9],
Olariu, Hristov, and Yan [20], and Abuelela and Olariu [21]. According to Gerla

[9], nowadays, mobile devices in terms of both mobile phones and vehicles have

increased, which are used as both data servers and data consumers. Consider an

example when the data of interest for consumers is of local relevance e.g. restaurant

recommendations. This type of data should be processed and stored locally for

example in vehicular clouds, rather than internet data servers. Otherwise, for a user,

it would not be cost-effective in terms of both time and bandwidth to upload and

download this data from internet data servers. Thus, in [9], the necessity of the

vehicular clouds is very well outlined.
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Further, Gerla et al. [22] explains the importance of vehicular clouds in terms

of its requirements in autonomous vehicular applications. The authors emphasize

how vehicular clouds can be an asset for efficient communication between the

vehicles. Vehicular clouds also provide a computing environment that can enhance

the scope of vehicular applications. Eltoweissy, Olariu, and Younis [23] coined the

term "Autonomous Vehicular Clouds" that emphasizes the importance of vehicular

clouds in various sectors in traffic management and asset management scenarios.

Later, Gu, Zeng, and Guo [24] introduced an architecture for vehicular cloudifica-

tion. Here, authors quote smart vehicles as "Computer-on-wheels", as the automotive

developers, nowadays, have altered the purpose of vehicles from only transportation

to sensing the surroundings, and communicating, processing, and storing the data.

In supporting these technologies, a typical smart car contains a processor, a storage

device, GPS, and other various in-car sensors. The architecture which authors have

introduced underpins the possibilities of two types of clouds based on the mobility

of the vehicles, i.e. mobile and static. Mobile clouds offer data carrying service

whereas static clouds, that are the parked vehicles, offer temporary storage service.

Lee et al. [25] discuss a vehicular cloud architecture and its design principles -

how vehicular cloud model combined with information-centric networking could

be an efficient way of vehicular networking. The vehicular cloud model addresses

the problem of how content can be produced, maintained and consumed. Whereas,

information-centric networking focuses on how to direct the content to the consumers.

However, Ahmad et al. [26] go one step further and discusses the security aspects of

the vehicular clouds, the possible threats, and their impacts on the vehicular cloud

components.

Later, Hagenauer et al. [8] emphasized the importance of micro clouds (cluster

of cars) through their simulations using Veins LTE simulation framework [27] in a

small-scale. However, Higuchi et al. [10] use realistic vehicle probe dataset from

the city of Luxembourg [28] and a major intercity highway in Japan to study the

feasibility of micro clouds. Their results show the possibilities of forming both

static and on-demand mobile micro clouds in different locations in the city, and the

availability of micro cloud services to other vehicles which are not part of any cloud.

2.4.3 Vehicular Clustering

One of the challenges in vehicular cloudification would be the formation of clusters.

Cooper et al. [29] outlined the general steps for cluster formation and have discussed

the strategies for cluster head election, cluster membership and cluster maintenance.

The steps can be generalized as follows:

• Vehicular local info collection: In order to determine clusters, the local informa-

tion of vehicles needs to be exchanged, either between the cars if the clustering
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strategy is distributed (decision taken by cars) or, between the cars and AP

if the clustering strategy is centralized (decision taken by AP). This control

information could be the position, direction, speed, or any other parameters

describing the status of the cars.

• Cluster computation: AP or car, according to the clustering strategy used,

identifies Cluster Head (CH) and Cluster Members (CMs) either in a centralized

or a distributed fashion. The car elected as CH is responsible for the interaction

with other clusters and AP.

• Cluster info distribution: Once the cluster is computed, the information should

be sent to all other cars in the cluster through broadcast (and if required

through an appropriate routing strategy).

• Data collection and processing: Once the above steps are finished, CH will start

collecting the data from the cluster members, process the data, and if required,

the data is uploaded to AP or data server.

In general, any clustering algorithm’s responsibility is to determine the clusters

as per the set of rules defined by the algorithm. The applications built on top of

the clusters designate roles and responsibilities to CH and other cluster members.

However, different clustering algorithms or strategies [30]–[32] have been proposed

by different authors, where each of them is tailored to suit the specific application and

there exists no general solution. In order to make readers understand the different

vehicular clustering strategies available, Cooper et al. [29] have conducted a survey

and presented the three main aspects of the clustering strategies. They are:

• the applications of the clustering algorithms,

• creating and maintaining the clusters for example how the CH is elected,

how other vehicles are affiliated to this CH and how the interaction happens

between the CH and other clusters, and

• comparison of these algorithms based on performance evaluation.

Meanwhile, location of micro clouds also plays a crucial role in efficient vehic-

ular cloudification. In that perspective, Higuchi, Dressler, and Altintas [33] have

presented a design mechanism to position vehicular micro clouds in an intelligent

way. The authors propose to choose such locations where there is a consistency in

the availability of the vehicular resources for the provision of micro cloud services.

However, in this thesis, a clustering algorithm called map-based proposed by

Hagenauer et al. [8] has been implemented. This approach offers to consider the

geographical features and suggests a suitable position to locate CH. Accordingly, if



2.4 Related Work 10

the cluster head is positioned at an intersection, it will have a good line-of-sight in

multiple directions and can communicate better with the cluster members, as shown

in Figure 2.1.

Till date, all research experiments happened only through simulations whereas,

in this thesis, Vehicular Micro Cloud prototype will be implemented that could be

deployed in real-world experiments with minimal efforts.

Prototyping has been common in vehicular networks/clouds. A prototype imple-

mented by Kwak et al. [34] as a proof of concept exploits vehicular cloud concept

for route planning. Vehicles in cloud, capture traffic images using onboard cameras

and share them with each other. These images later get processed to produce a

user-friendly route summary. Another prototype implemented by Häberle et al. [35]
provides a platform for automotive application developers to prototype connected-

cars (virtual vehicles). The platform allows developed telematics services to be

tested, and thus favours a reduction in time-to-market for deployment.

Similarly, the prototype that we have implemented also allows developers to

further implement vehicular applications or services, and test them on the vehicular

micro cloud architecture.

Cluster

Cluster member

Cluster head

Figure 2.1 – Map-based clustering approach. In figure, red circled cluster
is centered at the intersection. The red colored car which is closest to the
intersection is the cluster head and other yellow cars within the cluster are
the cluster members.



Chapter 3

System Design and Implementation

The previous chapter covered the fundamentals and methods on the basis of which

the prototype has been implemented. In this chapter, we explain the overview of

the architecture, the design and the implementation of the prototype, and the visual

component.

3.1 Architecture Overview

The architecture shown in Figure 3.1 has mainly two types of nodes commonly

called VMC nodes. The two types are vehicle nodes and AP nodes. An AP node can

be a base station or a RSU. These VMC nodes run on multiple virtual machines (or

physical machines). In other words, each virtual machine can have many vehicles and

AP nodes running. The communication between the nodes is through the ZeroMQ

messaging library. It can be categorized into three different types. They are, the

communication

• between the concurrent applications within the vehicle node,

• between the vehicle nodes and between the vehicle and AP nodes, and

• between the vehicle node and the helper (details about helper given in Sec-

tion 3.4) and between the AP node and the helper.

3.2 Vehicular Micro Cloud Node

A VMC node as shown in Figure 3.2 represents a vehicle or a base station or a RSU.

A node has several modules such as communication, GPS, speed, etc. that help to

carry out different responsibilities. Each of these modules contributes to the overall

functionality of a node. The modules are independent and they are implemented

11
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ZeroMQ communication

Host 1 Host 2

VM1 VM2 VM3

RSU

Base station

Figure 3.1 – Architecture overview - the vehicular micro cloud nodes (vehicles
and AP) can be run on one or multiple machines.

as separate processes. All the modules corresponding to one VMC node are bound

to run on one virtual machine. Each module is explained in detail from both the

Vehicle and AP perspective.

3.2.1 Communication Module

The communication module in both Vehicle and AP nodes is used for sending and

receiving messages. It is an abstraction of the Network Interface Card. The nodes

Base station RSU Car

OR OR

Data collection
and aggregation Task distribution

Clustering service

Communication GPS Speed

VMC Node

ZeroMQ communication

VMC resource access

Figure 3.2 – VMC Node representing a vehicle or an AP. The communication
mechanism between the concurrent applications within a node uses ZeroMQ
library.
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communicate with each other using two types of messages, i.e. unicast and broadcast

messages. Whenever a node wants to send a message, the communication module

helps by adding the additional fields to the data, required to forward the message.

The additional fields include the source ID, the destination ID and the message type.

The unicast or broadcast message contains the following fields.

MType Message type indicating the message is a unicast or a broad-

cast message,

SRC_ID The ID of the sender node,

SRC_TYPE The source type indicates the sender node is a vehicle or base

station or RSU,

DEST_ID The destination ID is the ID of the node the message to be

sent to,

SUB_DEST_ID The ID of the application in the node to which the message

is intended to be delivered,

DATATYPE Datatype indicates the type of message. The type, for exam-

ple, could be the local info (GPS and Speed), the RSU beacon,

cluster info,

DATA The actual data to be transferred,

Whenever a new message arrives at a node, the communication module receives

this message and delivers it to the right application with the help of DEST_ID and

the SUB_DEST_ID. Thus, the communication module helps VMC node to interact

with the other VMC nodes in the network.

3.2.2 GPS And Speed Modules

Each vehicle has a GPS module and a speed module from which the applications

fetch the latest location and the speed information. These modules periodically

fetch the information from the in-car sensors (the in-car sensors details are given in

Section 3.4.2) and store the updated values.

These modules are two independent multi-threaded processes that enable them

to communicate with the in-car sensors and the applications individually and in

parallel. In the case of AP nodes, the GPS value has been set to constant and the

speed value set to zero.
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3.2.3 Clustering Service Module

The fundamentals of the clustering service are covered in chapter 2. Here we explain

the implementation details. Firstly, the details are explained from the vehicle’s

perspective.

3.2.3.1 Clustering Service In A Vehicle

Each vehicle has two types of cluster managers:

1. default_cluster_manager - an AP to which vehicle periodically updates its

GPS and speed information by default. This is normally a base station.

2. current_cluster_manager - an AP to which, currently, vehicle periodically

updates its GPS and speed information.

The clustering service in a vehicle node has mainly two responsibilities. They are:

• Update local information to AP - Each vehicle updates its local information

such as location and speed to its current_cluster_manager periodically.

This local information is periodically fetched from the node’s GPS and speed

modules.

• Cluster management - In a vehicle node, the cluster management’s role is to

store and maintain the current_cluster_manager to which the vehicle pe-

riodically sends its local information. Initially, it is set to default_cluster_-

manager of the vehicle which is by default a base station. If the vehicle enters

a region where there exists a RSU it starts receiving the RSU beacons which

indicate the RSU’s existence. Now the vehicle changes its current_cluster_-

manager to the RSU’s ID retrieved from the beacons. Then the vehicle will

continue sending its local information to its new cluster manager until it

misses out two consecutive RSU beacons in which case the vehicle will set its

current_cluster_manager back to default_cluster_manager.

Also, based on the cluster information received from the current_cluster_-

manager, the vehicles identify themselves in 3 states - INIT, CH and CM. If a

vehicle does not belong to any cluster it will be in INIT state, or if a vehicle

is a Cluster Head of some cluster, it will be in CH state or if it is a Cluster

Member of some cluster it will be in CM state until the next cluster information

is received.

3.2.3.2 Clustering Service In An AP

From an AP’s perspective, the clustering service module has two roles. They are:
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• Vehicle local info table maintenance - On receiving the local information from

cars, AP stores the information in the vehicle local info table. The table contains

details such as ID of the vehicle, geographical coordinates of the vehicle, speed

of the vehicle and system time at which the message was received.

Each entry in the table corresponds to each vehicle whose information is sent

to AP. This entry will be removed later from the table for a vehicle if AP does

not receive 2 consecutive such local information messages assuming either

vehicle has gone out of the communication range or exited from the network.

Normally a base station will be set as the default_cluster_manager for

all the vehicles. It builds the vehicle local info table on receiving the local

information from vehicles. In the case of RSU, if it is managing a micro cloud,

it keeps sending out beacons to advertise its existence. Whenever vehicles

come in the communication range of the RSU they send their local information

to RSU and RSU builds its vehicle local info table. A RSU beacon contains

RSU’s ID and its geographical coordinates.

• Cluster computation - As AP starts populating its vehicle local info table, pe-

riodically it computes clusters. The cluster computation is identifying the

vehicles that belong to different micro clouds and sending the cluster infor-

mation message to the vehicles which are part of the cluster. The message

contains details such as micro cloud’s ID, CH, CM list, total number of cluster

computation intervals elapsed.

In order to compute the clusters, a map-based algorithm [8] has been imple-

mented. The algorithm uses two tables - the vehicle local info table and the

micro cloud table. A micro cloud table holds the information about the micro

clouds that the AP is managing. Each micro cloud table entry contains details

such as micro cloud’s ID, geographical coordinates and radius.

The algorithm as shown in Algorithm 3.1 iterates through vehicle local info

table and micro cloud table to calculate the euclidian distance between the

geographical coordinates of the vehicles and the micro clouds. If the distance

is less than or equal to the micro cloud radius the vehicle is included in the

cluster members list and among them, the vehicle closest to the intersection is

elected as the CH.
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Input: Vehicle Local Info Table {vid,vx,vy} where vid is the vehicle ID, vx and vy are

position coordinates of vehicle vid, MicroCloud Table {mid,mr,mx, my} where mid

is micro cloud ID, mr is the micro cloud radius and mx and my are the position

coordinates of micro cloud mid

Output: Computes Clusters (C)

1: for all mid do

2: dmax← FLOAT_MAX

3: ch← EMPTY_STRING . Initially assuming no member in the micro cloud

4: for all vid do

5: d ← cal_euclid_dist(vx, vy, mx, my) . d is the euclidian distance between

the vehicle and intersection (or micro cloud coordinates)

6: if d ≤ mr then

7: cm← vid . populates cluster members

8: if d < dmax then

9: dmax← d

10: ch← vid . identifies cluster head

11: end if

12: end if

13: end for

14: if ch 6= EMPTY_STRING then

15: C[mid][ch]← cm . If there exists at least one member in the micro cloud put

the cluster info in the container

16: end if

17: end for

Algorithm 3.1 – Cluster computation

3.2.4 Data Collection and Aggregation

Data collection and aggregation is an application built on top of the clustering service.

As discussed in Chapter 2, one of the main advantages of micro clouds is that it

aggregates data before it uploads it to the data server. In the implementation, AP is

acting as the data server for collecting and storing the data from the micro cloud.

3.2.4.1 Data Collection

Each CM periodically generates data and sends it to CH. If the data size is greater

than the fragment size (1024 bytes), the data is sent in fragments. On the other side,

the CH collects this data and stores it. In the implementation, the cluster members

first generate data using simple C++ file-based operations and store it in a file.

This file data is then split into fragments using a Chilkat library method SplitFile()
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and are sent to CH through unicast messages. On receiving these fragments, CH

will reassemble the fragments into the original file using Chilkat library method

ReassembleFile().

3.2.4.2 Data Aggregation

The data aggregation is reducing the size of the data by removing the unwanted and

redundant data from it. In the implementation, the data aggregation is performed by

reducing the total data size to a specified aggregation percentage. Data aggregation

is performed by CH periodically before it uploads the collected data from the CMs

to AP. And, when the state of the vehicle changes from CH to CM or INIT, if it has

data collected from the CMs in the previous cluster computation interval and not

uploaded, it will aggregate and upload that data to AP.

3.2.5 Task Distribution

Task Distribution is another application built on top of the clustering service. When-

ever CH of a micro cloud wants to compute a task it may seek other vehicle nodes

which are the CMs of that micro cloud for the task completion assistance. In the

implementation, the CH of each micro cloud periodically creates a task (virtual task -

requires no real computation). The task is split into as many subtasks as the number

of current CMs in the micro cloud. These subtasks are sent to the CMs through

unicast messages. The message consists of details of the subtask and max_time - time

(in ms) before which the subtasks should be computed. Upon receiving a subtask

request, the CM sets a random timer between 1 to max_time (in ms). Once the timer

is elapsed, the CMs will send the results (virtual results) to CH.

At the other side, after assigning the subtasks, the CH waits for a specified

interval for the subtask results. Once the interval is expired, it combines the results

of subtasks to produce the result of the intended task. Meanwhile, there are chances

that within the specified interval CH may not receive some subtask results, but such

cases are ignored. Thus CH seeks computing assistance from its CMs.

3.3 Config Files

All the configurable parameters required in the implementation have been stored

and structured in the XML file format. The config files in our implementation have

been categorised into 6 different categories as given below:

1. AP - stores details of

• AP - ID and position,
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• cluster computation algorithm - cluster computation interval and vehicle

local info table entry expiry interval, and

• micro clouds - ID, the ID of the APs which is managing it, radius and

geographical locations.

2. car - stores details such as local info update to AP interval, default cluster

manager.

3. common - stores details required by both car and AP.

4. data collection and aggregation - stored details such as CM to CH data update

interval, CH to AP aggregated data update interval.

5. visuals - stores details required by the visual component.

6. logs - stores details required by the logging utility.

3.4 Parser, Vehicular Sensors and Unit Disk Model

In this section, we explain how two nodes are able to communicate through unicast

and broadcast messages. Also, how vehicles get their sensor information such as

GPS and speed. A helper module as shown in Figure 3.3 has been implemented in

order to achieve these functionalities. It consists of 3 components.

1. Parser

2. In-car sensors

3. Unit Disk Model

When the helper module is created, first it accumulates the details of all the

stationary modules such as AP nodes and micro clouds by parsing the XML config

files. By this, the helper module is aware of all the details about the AP nodes such as

their position, communication range, IP address, port address and the details about

the micro clouds such as their position and the radius. All these details are stored in

a hash like data structures and can be accessed by all the helper components.

3.4.1 Parser

Mobility Trace stores local information such as GPS and Speed of the vehicles at every

Timestep. In the implementation, Floating Car Data has been used as a Mobility

Trace, but in general, it could be replaced with SUMO traffic in runtime or any other

mobility trace. A parser has been implemented to parse this trace at every timestep

and retrieves the following information of the vehicles:
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Figure 3.3 – The Communication architecture showing how the different
ZeroMQ messages flow in the prototype.

• the IDs of the vehicles that are currently active in the network, and

• the local information of those vehicles.

At every timestep, these details of the vehicles keep changing. According to it,

the parser performs two action sequences at every timestep. First, it checks if a new

vehicle has joined the network. If yes, it initiates the creation of a new vehicle node

in a virtual machine. The virtual machines are selected in a Round-robin fashion

from the given pool of machines. Second, the parser checks if any vehicles have

exited the network. If yes, it sends termination messages to those vehicles and they

get terminated.

3.4.2 In-Car Sensors

The in-car sensors serve as the GPS and speed sensors for all the active vehicles.

The ZeroMQ server sockets enable in-car sensors to receive the requests from the

vehicles for their local information. On receiving the requests, the sensor module

first identifies the ID of the vehicle which has sent the request and checks if the

vehicle is active in the network. If yes, then checks whether the request has been

made for GPS or speed. Accordingly, it accesses the data of the vehicles stored by

the mobility trace and sends the appropriate updated response to the vehicles.
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3.4.3 Unit Disk Model

Unit Disk Model (or the decider) assists the VMC nodes to communicate with each

other. Whenever a vehicle or AP node wants to send a unicast message or a broadcast

message through their communication module, first the message is sent to the decider.

Then the decider will decide if the message should be forwarded to the destination

node or not. The communication module in the nodes uses push sockets to send

their messages to the decider and decider receive messages using the pull sockets.

On receiving a message, the decider performs the action sequence as mentioned in

the flowchart in Figure 3.4.

Decider uses the ZeroMQ publisher subscriber message pattern to forward mes-

sages. When the decider decides to forward a message to a node, it publishes the

Message arrives
at decider

Src node exists ?

Unicast or 
broadcast?

Calculate Euclidian 
distance between 

Src and Dest

Distance <
communication 

range?

Dest node
exists?

Unchecked 
vehicles in the 

list?

No

Unicast

YesNo Yes

No

Yes

Broadcast

Unicast

END

Drop message Publish msg

Yes

No

Broadcast

Figure 3.4 – The sequence of actions that the unit disk model performs when
a message is arrived for it to forward.
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message to the node through the publisher socket with a topic set to the ID of the

node or the ID of the module of the node. The node or the module of the node

which is subscribed to the decider’s publisher socket using its ID as the topic will

receive the message and it will further process it. This is how the decider forwards a

message to the correct destination.
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3.5 Visualization Component

The visualization tool is mainly designed to visualize the cluster status in runtime

particularly in Manhattan grid scenarios. The tool implemented has two components.

One can be used to visualize graphically the movements of vehicles and the other can

be used to visualize textual information. The graphical tool has been implemented

using OpenGL and text form tool is implemented using Qt.

3.5.1 OpenGL based - Graphical Visualization

OpenGL based tool at the first step reads the details required to draw the scenario from

the XML configuration file. In parallel, the tool starts listening to the information

published by the AP through ZeroMQ sockets. AP sends information about the

vehicles to OpenGL tool every second. On receiving the messages, the tool using

OpenGL methods draw the vehicles at their positions. Along with the positional

information of the vehicles, AP also publishes the status of each vehicle (INIT, CH or

CM). Accordingly, the OpenGL tool changes the colour of the vehicles to indicate

the different states of different vehicles.

In brief, the following features are supported in the OpenGL tool.

Scenario details The scenario details on a red banner as shown in Figure 3.5

Vehicle details The current details of a car on a red banner are displayed.

The details are ID, position, speed, direction, state and cluster

ID if it belongs to some micro cloud.

Cluster status The details of the micro cloud current status are displayed.

The details are ID, position, manager (AP which is managing

that micro cloud), current CH ID and CMs IDs.

3.5.2 Qt based- Textual Information

The Qt based tool along with the cluster status, in runtime, also shows the information

about micro cloud services running on top of the clustering service in the vehicle. In

brief, the following list shows the supported features in this tool.

List of nodes List of IDs of currently active nodes includes both vehicle and

AP nodes.

Total nodes Total count of all the cars currently active in the network.

Cluster status The details of the current status of the cluster.
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Figure 3.5 – OpenGL based tool - the scenario details are displayed.

Find node This is used to find the details of any active nodes in the

network. Takes ID as the input and displays the cluster and

application details of the node.

OpenGL OpenGL button used to open OpenGL window

Pause This button on the first click freezes the current status of the

window, on the second click resumes the latest status of the

window.

The values of the list of nodes and total nodes fields are refreshed every second

and micro cloud details are refreshed every 5 seconds. In order to display this

information the tool requires two ZeroMQ sockets. For the cluster status information,

the tool subscribes to AP and AP publishes this information every one second. For

the application information, the tool uses the pull socket, so that vehicles can push

their latest application details using their push sockets.

For a quick understanding of how the different messages flow between the nodes

or between the modules, one can refer to the sequence diagrams given in Appendix

A.
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Figure 3.6 – Qt based tool displays textual information about the cluster status
in runtime and the application details.

3.6 Software Reusability

In the implementation the following modules are used as abstraction modules:

• In-car sensors - used as an abstraction for vehicular sensors that senses the

vehicles local information such as GPS and speed.

• The Communication module - used as an abstraction for Network Interface

Card.

• Unit Disk Model (or the decider) - used as an abstraction for vehicular physical

layer.

Apart from these, the other modules in the implementation, can be used further

to integrate with real sensors and real physical layer functionalities to conduct field

tests.

The modules that can be re-used are:

• Clustering service module in vehicle.

• Cluster service module in AP.

• The micro cloud services - Data collection and aggregation, and Task distribu-

tion.
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Wherever there was a requirement for abstraction, the abstraction classes has

been implemented which can be easily overridden. For example, as shown in

Figure 3.7, Communication class used for sending unicast and broadcast messages is

an abstraction class of Base_communication which can be overridden to implement

new methods for sending unicast and broadcast messages.

+SendUnicastMsg(string,string) : void
+SendBroadcastMsg(string) : void
+ReceiveMsg() : void

-UDMIP : string
-UDMPort : string

Communication

+SendUnicastMsg(string,string) : void
+SendBroadcastMsg(string) : void
+ReceiveMsg() : void

Base_communication

(abstraction)

Figure 3.7 – Communication class is an abstraction class of Base_communica-
tion class which can be overridden.



Chapter 4

Evaluation

After the prototype implementation, we have validated and evaluated the functional-

ity and the performance of the prototype considering the important metrics that are

closely related to the clustering and micro cloud services. This Chapter covers the

details of metrics used in the validations and evaluations, the experimental setup,

validations and evaluations results.

4.1 Metrics

The metrics have been classified into two categories - the validation metrics and

evaluation metrics.

The following metrics have been used for the validation:

• Cluster Size - The total number of vehicles inside a cluster could be a validation

metric to validate cluster computation.

• Data Collection - Comparison between the total amount of data collected at

AP and the expected amount of data to be collected at AP helps in validating

the data collection service in the implementation.

The following metrics have been used for the evaluation:

• Dynamicity Of The Traffic - The distribution of the number of consecutive times

the cars elected as cluster head briefs the dynamicity of the traffic.

• Cluster Computation Time - The average of time taken by AP to compute clusters

in a run helps to evaluate the time complexity of the clustering approach

implemented in the prototype.

• Data collection - The total data collected at AP at different traffic densities.

26
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• Different aggregation percentage - The amount of data uploaded to AP by CHs

at different aggregation percentages used.

• CPU utilization - This is an important metric to measure system resource usage

- the CPU utilization at different traffic densities.

• Memory usage - Another metric helps to understand the system resource usage

- the memory consumption at different traffic densities.

4.2 Experimental Setup

For all the experiments, we have used virtual machines (except for system resource

usage measurement) to run vehicle nodes, AP nodes and Helper. As shown in

Figure 4.1 we ran Helper in one virtual machine, AP node(s) in one virtual machine

and all other vehicle nodes were distributed among the multiple virtual machines.

4.2.1 Manhattan Grid Scenario

We have conducted all our experiments under Manhattan grid scenario. The scenario

details in which most of the experiments conducted is given in Table 4.1. If the

values are changed for any experiment they are explained in the appropriate section.

The communication between the nodes is clear from any sort of noise or packet

drops since we do not consider the wireless channel properties.

4.2.2 Configuration Parameters

The configurable parameters as mentioned in Table 4.2 were set to constant values

(The values are chosen approximately closer to as specified in [8]) unless there is a

requirement for a change in an experiment which is explained.

4.2.3 System setup

In all the experiments conducted except in measuring CPU utilization and Memory

usage (where we have used 3 machines), 6 virtual machines have been used as

properties value

Area 490 m2

Grid size 3 × 3
Traffic densities 50, 100, 150 and 200 vehicles
Micro cloud position (170m,174m)

Table 4.1 – Manhattan grid scenario details used in the experiments.
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properties value

Vehicle to AP Local Info update interval 1s
Cluster computation interval 5s
CM to CH data transfer interval 2s
CH to AP aggregated data transfer Interval 4s
Data size 5kB
Data fragment size 1kB
Experiment duration 2000s

Table 4.2 – The configurable parameters that are set to constant values in the
experiments.

shown in Figure 4.1. 1 machine for the Helper, 1 for the AP node and 4 for the

vehicle nodes. The vehicle nodes are distributed in a Round-robin fashion from the

given pool of virtual machines as shown in Figure 4.2.

4.3 Validation

4.3.1 The Cluster Size

Cluster size - the number of vehicles in the cluster keeps varying with time because

at different point of time at different intersections the vehicle density keeps varying.

The experiment was conducted at a traffic density of 200 vehicles. In this experiment,

Decider (Unit
Disk Model)

In-car 
sensors

Mobility 
trace

AND/OR

CarsHelper AP

Virtual machines

Figure 4.1 – System setup - all experiments are conducted by running Helper
on 1 machine, AP node on 1 machine and vehicle nodes on multiple machines.
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i % V
i = i + 1

i = 0
V = Number of VMs available

Parser

New vehicle
joins network

i % 0 i % 1 i % 2 i % 3

Virtual machines

0 1 2 3

Figure 4.2 – Multiple vehicle nodes distributed on multiple virtual machines
in a Round-robin fashion.

we first calculated the number of vehicles in the cluster at every timestep directly

from the mobility trace with the time precision of one second. Then, we calculated

the number of vehicles in the cluster at every cluster computation interval during

the experiment with the time precision equal to one cluster computation interval

(5s). The AP node logs this information as it computes clusters.

The plot shown in Figure 4.3 showcase the number of vehicles in the cluster

in the y-axis and the time(s) over x-axis. The two lines in the plot are the values

calculated from the mobility trace and the experimental results. We can interpret

two things from the plot. First, the number of vehicles in the cluster varies over

time differently. Second, the two lines are almost overlapping meaning the cluster

computation at each cluster computation interval is correct.

In order to validate the multiple micro clouds at higher traffic density in one

scenario, we ran the same experiment by deploying 3 micro clouds managed by 3

RSUs positioned exactly as the micro clouds. For that we increased the scenario size

and the traffic density. The scenario size was increased to 1390 m2 (the road length

and width remained the same) and traffic density to 500 vehicles. The resulting

plots are shown in Figure 4.4. In all the 3 micro clouds the lines are observed to be

overlapping and hence validates cluster computation in 3 micro clouds scenario at a

higher traffic density.

When we first conducted this experiment, the implementation line in the plot

was lagging with some delay compared to the line corresponding to mobility trace.

The reason is explained here. Mobility trace has timesteps in the interval of 0.1s.
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Hence in the parser, after each timestep, a delay of 0.1s was specified. This caused

the experiments to run with some delay because the parser at each timestep also

spends some time on processing the vehicles details. In order to fix it, we specified

parser delay to be (0.1− St)s where St is the time in seconds that parser spends on

processing vehicle details at timestep t, and then we observed zero or negligible

delay in runs.

4.3.2 Expected Amount Of Data Collected

From the previous experiment, we get the statistics of the number of vehicles in a

cluster at every cluster interval. Based on this we can calculate the expected amount

of data to be collected at a micro cloud or AP in one run. We calculated the expected

amount of data using the equation

A=
n
∑

i=1

(Ni × DS × C)

where A is the expected total amount of data, n is the total number of cluster

computation intervals, Ni is the number of vehicles in a cluster at cluster computation

interval i, DS is the size of the data CM transfers to the AP and C is the number of

times the CM transfers the data to CH in one cluster interval. For easy theoretical

calculations in this experiment, the cluster interval was set to 6s (multiples of CM to

CH data transfer interval) and CM to CH data upload interval to 2s.
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Figure 4.3 – Plot showing the number of cars in cluster computed from mo-
bility trace (time precision = 1s) and experiment (time precision = cluster
interval(5s)) at traffic density 200 vehicle nodes. The lines almost overlapping
validates the cluster computation in the implementation.
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Figure 4.4 – Subfigures showing the number of cars in 3 different micro clouds
- Micro cloud 1, Micro cloud 2 and Micro cloud 3 managed by 3 RSUs in a
scenario, computed from mobility trace and from experiment vs time (traffic
density = 500 vehicle nodes). In all 3 subfigures, the lines almost overlapping
validates the cluster computation in multiple micro clouds scenario.
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Later, the amount of data collected at AP in experiments was determined by

running experiments with different traffic densities while AP was logging the amount

of total data collected. In the experiment, CH at each interval will upload all the

data it collected from the CMs to AP without aggregation.

Figure 4.5 shows the results plot from which we can observe that there is a slight

difference between the expected and the experimentally collected amount of data.

This is because within an interval there is always a possibility that CM or CH will

go out of communication range from each other. In that case, the Unit Disk Model

will drop CM’s unicast data packets which is not accounted while calculating the

expected amount of data.

We can also infer from the plot that, as the traffic density increases the difference

in the amount of data between expected and actually collected also increases. This is

because when the traffic density increases there are more chances of such incidents to

occur and packets gets dropped. The error bars in the plot shows the 95% confidence

interval calculated over 3 runs.
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Figure 4.5 – Graph showing the difference between the expected amount of
data collected and the actual amount of data collected at a micro cloud in an
experiment. The difference is because CM or CH may go out of communication
range within an interval and the decider drops the data packets in that case.
The error bars in the plot shows the 95% confidence interval calculated over 3
runs.
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4.4 Evaluations

4.4.1 Dynamicity of the traffic

In this experiment, we evaluated the dynamicity of the traffic by determining the

consecutive times a car is elected as CH at different traffic densities - 50, 100 and

200 vehicles. The required information was logged by AP node.

The plot shown in Figure 4.6 underlines that as the traffic density level increases

the consecutive times a vehicle elected as CH decreases. It can be observed that at

traffic density level 200, a vehicle has never elected as CH for 3 consecutive times and

at the traffic density level 100, a vehicle has never elected as CH for 4 consecutive

times. But, at the traffic density level 50, a vehicle for once has been elected as

CH for 6 consecutive times. The reason is that either the vehicle is waiting in a

signal and remained closest to the intersection for a long time or there were no other

vehicles inside cluster which were closer to the intersection at that point of time.

This shows the dynamicity of the traffic at different traffic density levels.
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Figure 4.6 – The distribution of the consecutive times the cars re-elected as
CH defines the dynamicity of the traffic.
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4.4.2 Cluster Computation Time

In order to evaluate the clustering approach, we conducted the experiments at

different traffic densities and logged the time taken for cluster computation at every

cluster computation interval and then calculated an average of all.

The resulting plot shown in Figure 4.7 showcase average time in the y-axis and

the traffic density levels in the x-axis. We can underline two results in the plot. First,

the time taken for cluster computation increases linearly with the linear increase

in the traffic density showing that the time complexity of the clustering approach

implemented is linear. Second, the time taken to compute the clusters is still in

microseconds even at the traffic density level of 200 vehicles. The error bars in the

plot shows the 95% confidence interval calculated over 400 samples.

4.4.3 Data Collection At Different Traffic Densities

We conducted an experiment to find out how the total amount of data collected at

micro clouds vary depending on the traffic densities and data sizes. In order to run

this experiment, we chose four linearly increasing traffic densities 50, 100, 150 and
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Figure 4.7 – The average cluster computation time increases linearly with the
linear increase in traffic density. The error bars in the plot shows the 95%
confidence interval calculated over 400 samples.
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200. CM transfers 5kB of data every 2s to CH and CH transfers the collected data to

AP without aggregation every 4s. The experiment was repeated with data size 10kB.

During the experiment, the total amount of data collected at the micro cloud

was logged for each traffic density at AP. The plot shown in Figure 4.8 shows that

the data collected at different traffic densities increases almost linearly with linear

increase in traffic densities in both 5kB and 10kB data size experiments. Also, we can

observe from the plot that, when the same mobility trace is used, the data collected

at AP with 10kB data size is approximately twice in comparison to 5kB data size.

The error bars in the plot shows the 95% confidence interval calculated over 3 runs.

This evaluates the functionality of the data collection micro cloud service.

4.4.4 Data Aggregation

We conducted an experiment to evaluate the functionality of data aggregation

at CH. For this, we chose a traffic density of 150 vehicle nodes in the scenario

and aggregation percentages 25, 50, 75 and 100. The aggregation percentage 25
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Figure 4.8 – The total amount of data collected at micro cloud increases in
linear with the linear increase in traffic densities in both 5kB and 10kB data size
experiments. Also, when the same mobility trace is used, the data collected at
AP with 10kB data size is approximately twice in comparison to 5kB data size.
The error bars in the plot shows the 95% confidence interval calculated over 3
runs.
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indicates that the 25 percent of the data collected at CH is uploaded to AP and

aggregation percentage 100 indicates that no aggregation has been performed at

CH, in other words, all the data collected at CH is uploaded to AP. The experiment

was conducted at two data sizes 5kB and 10kB.

The purpose of this experiment is to understand how the total amount of data

collected at AP varies as the aggregation percentage adapted at CH varies. The plot in

Figure 4.9 shows that when same mobility trace is used the amount of data collected

at AP with aggregation percentage 50 is approximately double the amount of data

collected with aggregation percentage 25 which was expected. The same pattern is

observed for aggregation percentages 50 and 100. Also, the bars pattern shows that

the amount of data collected increases proportionately with a proportionate increase

in the aggregation percentage. The error bars in the plot shows the 95% confidence

interval calculated over 3 runs. This evaluates the data aggregation service in the

implementation.
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Figure 4.9 – The total amount of data collected at AP increases proportionately
with the increase in the aggregation percentage (for example the aggregation
percentage 25 indicates that the 25 percent of the data collected at CH is
uploaded to AP). The error bars in the plot shows the 95% confidence interval
calculated over 3 runs.
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4.4.5 Task Distribution

We conducted an experiment to evaluate the task distribution application. The

experiment was conducted at different traffic densities 50, 100, 150 and 200 vehicles.

In this experiment, CH assigns subtasks to CMs periodically at an interval of 3s.

The plot in Figure 4.10 shows the total number of tasks completed by all cluster

heads in the micro cloud in the duration of 2000s. From the results, we can observe

that, the total number of tasks completed by CHs is decreasing as the traffic density

increases. This is expected because from the results in Section 4.4.1 we know that

the consecutive times the vehicles elected as CH decreases as the traffic density

increases.

Hence, if the vehicles do not elect as CH consecutively, at every interval only one

task will be completed by CH as by next interval a different vehicle is elected as CH.

For example - if the cluster computation interval is 5s, after two cluster computation

intervals, if the same vehicle was elected as CH at both the intervals it had chance

to complete 3 tasks (as CH assign subtasks to its CMs every 3s). But, if two different

vehicles were elected as CH, each CH had chance to complete only one subtask - in

total 2.

We also observe from the results that, at higher traffic densities, the difference in

the total number of tasks completed by CHs is negligible. This is because at higher

traffic densities, at every interval the CH changes. The error bars in the plot shows

the 95% confidence interval calculated over 3 runs.

4.4.6 System Resource Usage

We conducted an experiment, to measure the usage of system resources such as

memory and CPU. To do so, we chose to run all the vehicle nodes in 1 physical

machine with system configuration as shown in Table 4.3. The data size used

is 5kB. In this experiment the scenario size was increased to 1390 m2 (the road

length and width remained the same) for all the traffic densities - 100, 200 and 500

vehicle nodes. The scenario size was increased because the smaller scenario (used

for smaller traffic densities) seemed unrealistic for 500 vehicle nodes.

During the experiment, the CPU utilization and memory consumption were

captured using "top" command. The plot in Figure 4.11 shows the average CPU

utilization percentage for different traffic densities. Though there is a slight increase

in the CPU utilization percentage as the traffic density increases, we can observe

from the plot that there is more room for higher traffic densities in the same machine.

The error bars in the plot shows the 95% confidence interval calculated over 1300

samples (sampled at every second between 501s to 1800s).

Similarly, from the memory usage plot shown in Figure 4.12 we can observe that,

as the traffic density increases memory consumption also increases. Also, we can see
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Figure 4.10 – The total number of tasks completed by all CHs at different
traffic densities. As the traffic density increases the number of tasks completed
decreases because as the traffic density increases the consecutive times the
vehicles elected as CH decreases. The error bars in the plot shows the 95%
confidence interval calculated over 3 runs.

properties value

Architecture x86_64
CPU(s) 8
Model name Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
Main Memory 16GB
Swap Memory 0K

Table 4.3 – The details of the machine where the vehicle nodes were run to
conduct system resources usage measurement experiment.
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from the plot that the memory used by 100, 200, 500 vehicle nodes is approximately

700MB, 1400MB and 3490MB. This underlines that the memory usage increases

linearly with the linear increase in traffic density and one vehicle node consumes

approximately 7 MB. The error bars in the plot shows the 95% confidence interval

calculated over 1300 samples (sampled at every second between 501s to 1800s).

In this experiment, we tried to run 500 vehicle nodes in one machine. Initially,

with the system default settings, approximately 155 to 160 vehicle nodes were

able to run in one machine. This is because, by default, the system parameter

pids.max was set to 12288 in the file "/sys/fs/cgroup/pids/user.slice/user-

1067.slice/pids.max". That means, one user can only run 12288 tasks or threads

per machine. The implementation requires 67 threads per vehicle node. This includes

the threads defined for different tasks within a node and the threads spawned by all

ZeroMQ connections in a node. Each ZeroMQ connection spawns 2 threads in the

background. Thus, 160 vehicles occupy approximately 11000 threads (remaining

threads used and reserved by the system).

If more than the allowed number of threads were spawned, the system would

print error message "Resource temporarily unavailable" and threads failed to get

spawned. Later, when the parameter was increased to a sufficiently large num-
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Figure 4.11 – The CPU usage at different traffic densities run in one machine.
The error bars in the plot shows the 95% confidence interval calculated over
1300 samples (sampled at every second between 501s to 1800s).
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Figure 4.12 – The Memory usage at different traffic densities run in one
machine. Memory usage increases linearly with the linear increase in traffic
density. The error bars in the plot shows the 95% confidence interval calculated
over 1300 samples (sampled at every second between 501s to 1800s).

ber 128000, the number of vehicle nodes allowed increased to 435 but not 500.

This is because increase in the parameter pids.max (per user) was constrained

by the total number of pids allowed in the system. Then, the system parameter

"kernel.pids.max=128000" was added to file "/etc/sysctl.conf", after which

we could run 500 nodes successfully in the machine.

In the other side, the number of nodes in a machine is also constrained by the

number of ports available in the machine for use. Each vehicle node requires 5

distinct ports for ZeroMQ communications. The ports from 32768 to 61000 in the

system are used as ephemeral ports in Linux. Hence, these ports are unavailable for

ZeroMQ communications. In the experiments, we have used port numbers 15000

and above. In the implementation, once the vehicle exits from the network, there

is no mechanism of reusing the same ports used by that vehicle in the same run.

Hence, if we start our experiments with starting port 15000, theoretically we can

have 3500 new vehicle nodes in one run. We can increase this number if we run

our experiments with starting port number 10000 or less, but we observed in the

interval 10000 to 15000 some ports would be already used by the system.



Chapter 5

Conclusion

The necessity of the vehicular micro clouds arises from the fact that as the traffic

density increases, without the micro clouds the vehicles share the available cellular

bandwidth to communicate with the data server. This increases the communication

latency. In this thesis, we have implemented the vehicular micro cloud prototype and

evaluated the implementation in Manhattan grid scenario by conducting experiments

at different traffic densities and data sizes.

We validated the cluster computation in the implementation using cluster size as

a metric in one and three micro clouds scenarios. Then, we conducted an experiment

to evaluate average cluster formation time at different traffic densities. The results

showed that the cluster formation time increases linearly with the linear increase in

traffic density. Later, we verified the data collection and aggregation micro cloud

service by comparing the expected amount of data collected at micro cloud with the

amount of data collected at micro cloud from the experiment. The results showed

a slight difference between the expected and the experimental result which is due

to a possibility of CH or CM going out of communication range within an interval.

Further, we evaluated data collection and aggregation service at different traffic

densities and data sizes and presented the results. Additionally, we also evaluated

task distribution service at different traffic densities. At last, we evaluated the system

resources usage - the CPU and memory consumption by running all vehicle nodes

in one machine. The results showed that one virtual machine could accommodate

more than 500 vehicle nodes from the CPU and memory perspective.

As future work, the prototype can be improvised by incorporating a channel

modelling algorithm to study realistic results. The prototype could be integrated into

[14] for conducting experiments based on vehicular micro cloud field tests. Also,

there is a scope for improvement in terms of visualization for better user experience

if the support is extended to the Unity development environment.
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Appendix A

Sequence Diagrams

This chapter gives a brief idea about how the messages flow between the different

nodes or the modules using sequence diagrams.

A.1 Vehicle Local Info

The sequence diagram shown in Figure A.1 briefs about how vehicles fetch their

updated GPS and Speed information. This communication requires ZeroMQ REQ_-

REP socket pair. The vehicles periodically send the request through their REQ socket

for their local information. The In-car sensors have its REP socket always waiting for

the vehicle’s requests and reply them with the updated values whenever the request

comes. By default, vehicles send the request to in-car sensors every one second.

Vehicle In-car sensors

Periodic (Eg: 1s)

GPS and Speed Request

GPS and Speed Reply

Local Info

Figure A.1 – In-car sensors fetch GPS and Speed data from Mobility Trace.
The updated information is sent to vehicle on request.
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A.2 Clustering Info

The sequence diagram in Figure A.2 briefs about how the clustering service messages

exchange happens in the system. When a vehicle wants to send its local information

message to AP, it pushes message to Unit Disk Model (UDM) and UDM publishes the

message to AP. When AP wants to send computed cluster information message to a

vehicle, it pushes message to UDM and UDM publishes the message to the vehicle.

A.3 Data Application Info

The sequence diagram shown in the Figure A.4 briefs about how the data packets

flow in the system. Here we see two message sequences - one, periodically CM

pushes data message to UDM and UDM publishes it to CH and two, periodically CH

pushes aggregated data message to UDM and UDM publishes it to AP.

Clustering Info

Vehicle Unit Disk Model Accesspoint

Periodic (Eg: 1s)

LocalInfo Pkt

Header + LocalInfo Pkt

Periodic (Eg: 5s)

ClusterInfo Pkt

Header + ClusterInfo Pkt

Clustering Info

Figure A.2 – Each vehicle periodically sends local info (GPS and speed) to
AP. AP periodically computes clusters and send it to Cluster Head and Cluster
Member(s).
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Data App 

Cluster member Unit Disk Model Cluster Head Accesspoint

Periodic (Eg: 2s)

Data Pkt

Header + Data Pkt

Periodic (Eg: 4s)

Aggregated Data Pkt

Header + Aggregated Data Pkt

Data app info

Figure A.3 – Each CM periodically sends data to CH. CH periodically aggre-
gates the data and send it to AP.

A.4 Task Application Info

The sequence diagram shown in the ?? briefs about how the task distribution

application packets flow in the system. Here we see two message sequences - one,

periodically CH pushes subtask assignment message to UDM and UDM publishes it

to CM and two, CM pushes subtask result message to UDM and UDM publishes it to

CH.

A.5 Visual Component Info

The sequence diagram as shown in Figure A.5 briefs about the modules that provide

their information to the visual component module. Here two different modules send

messages to visual component - one, periodically AP publishes the cluster status

message to visual component and two, vehicles periodically pushes application info

message to visual component.
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Task App 

Cluster Head Unit Disk Model Cluster Member

Periodic (Eg: 3s)

Subtask Pkt

Header + Subtask Pkt

Compute Subtask Result

Subtask Result Pkt

Header + Subtask Result Pkt

Composite Final Results

Task app info

Figure A.4 – Each CH periodically sends data to CM. CH periodically aggre-
gates the data and send it to AP.

Visual Component 

Vehicle Visual Component Accesspoint

Periodic (1s)

Apps Info Pkt

Periodic (1s)

Cars Position and Cluster Status Info Pkt

Visual info

Figure A.5 – Each Car periodically sends application related information (Ex:
Total data sent to AP). AP sends Cars position and cluster status information
to visual component.
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