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1 Introduction

Once we accept the assumption that lobbyists can have an influence on policy, and if we

additionally assume that there are no sufficient counterforces from other interest groups,

this distortion is true almost by definition. The aim of this chapter is to show how this

lobbying distortion develops in a dynamic model of exhaustible resources.

The literature in the tradition of the Grossman & Helpman (1994) common-agency

interest-group model assumes that interest groups offer conditional bribes to the govern-

ment to induce political distortions in their preferred direction. While such a depiction may

be an acceptable caricature of lobbies’ political influence for static problems, the political

economy of exhaustible resources raises some specific questions due to its inherently dynamic

nature. Firstly, how do contribution payments develop over time? This question arises be-

cause it might be more convincing to think of a repeated bargaining process instead of a

one-shot take-it-or-leave-it offer in a dynamic model. Secondly, how does policy develop over

time? And combining the questions, how do contribution valuation and bargaining power

affect payments and distortions?

The current chapter characterizes resource extraction in an equilibrium influenced by

lobbying. We assume that the government can choose the extraction path, but we also

demonstrate how this extraction path can be implemented via resource taxes, while the

suppliers get the revenues. As usual in the literature, the government’s utility is a weighted

sum of a utilitarian welfare function and utility from contribution payments. To focus on

the relation between the government and the resource owners’ lobby, we do not consider

a common-agency setting with many competing lobbies, but assume that only one lobby

group exists. Most interest-group models assume that lobby groups are first movers and offer

contribution schedules that maximize their surplus given that the government is indifferent

about accepting them. In our model, we instead assume that the government has some

influence on the outcome as well, that is, there is a (Nash) bargaining, which determines

policy and contribution payments. If the government has this more active role in shaping

policy, the question arises how the threat of ending cooperation in the future shapes the

bargaining outcome. We assume that the parties cannot commit to cooperation. Instead,

they bargain in each period about the current values of their variables. We follow Petrosyan

(1997) in assuming that the parties leave the bargaining table forever if negotiations fail

once.

2



In our model, the government aims at maximizing the economy’s surplus net of environ-

mental externalities. By contrast, the lobby group’s sole objective is the firms’ intertemporal

profit, i.e., it takes the price elasticity of resource demand into account. It turns out that

whether extraction in the lobbying equilibrium occurs faster or slower than in the social op-

timum crucially depends on the magnitudes of these environmental damage and monopoly

effects. Because extraction costs are increasing in cumulative extraction and marginal utility

of resource consumption is finite, both welfare maximization and profit maximization lead

to well-defined convergence levels of cumulative extraction. Although the lobby may want

too fast or too slow extraction from the social planner’s point of view as long as cumulative

extraction is still small, the lobby’s preferred total extraction is too high compared to welfare

maximization due to, i.a., stock-pollution damages. We show how these considerations cause

the contribution payments to develop over time.

In particular, we explicitly derive and discuss the lobbying equilibrium with linear-

quadratic functions. Firstly, as long as total extraction has not exceeded the socially optimal

level, contribution payments decline if the damage effect outweighs the monopoly effect and

stay constant if these effects offset each other; if the government’s preferred speed of extrac-

tion is greater than that of the lobby, contribution payments increase temporarily. Secondly,

in the last case, contribution payments may turn negative for a while. Thirdly, one pe-

riod before the socially optimal level is reached, the lobby’s willingness to pay increases

sharply. Lastly, when the socially optimal extraction becomes zero, contribution payments

can increase temporarily, but converge to zero while extraction costs increase towards a

prohibitively high level.

Our model of the resource market is fairly general. Given that we assume that there

is no intertemporal behavior on the demand side, the resource might best be thought of as

a fuel like coal or oil. In the model there is flow pollution, like for example soot or dust,

and stock pollution, like for example carbon dioxide or permanent landscape changes. The

political model is a pure lobbying model without elections. Thus, the best application may be

smog and permanent landscape changes in developing or newly industrialized countries with

weak institutions. Alternatively, the “government” may be thought of as an environmental

regulation agency that has discretion over its policy field.

The main contributions of this chapter are as follows. Firstly, we analyze the distortive

influence of a resource owners’ lobby on resource extraction and demonstrate that this may

lead to too fast or too slow extraction, depending on how much has already been extracted in
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the past. This result can easily be transferred to the welfare effects of monopolistic extraction.

Secondly, we characterize the contribution payments’ development and show how they relate

to the conflict of interest between the government and the resource owners. Thirdly, we show

how a non-negativity constraint on a choice variable shapes the result of dynamic bargaining;

in the time period in which accumulated extraction becomes so high that the government

would switch to zero extraction if no agreement were reached, the bargaining positions –

and thus the contribution payments – change drastically. Moreover, there is no dynamic

smoothing effect preventing this drastic change.

This chapter proceeds as follows. In the next section, we discuss the chapter’s relation

to the literature. Section 3 introduces the basic resource-economic model and derives the

welfare-maximizing and the monopolistic profit-maximizing extraction path. Section 4 mod-

els lobbying over the extraction path and discusses the results and comparative dynamics.

In Section 5, we demonstrate how the bargained extraction path can be implemented via

resource taxes. Section 6 concludes.

2 Relation to the Literature

We apply the idea of distortive lobby influence to the extraction of exhaustible resources. This

relates this chapter to different strands of literature, namely lobbying, resource extraction,

and dynamic bargaining.

The idea how the interaction between the lobby and the government takes place and

shapes policy follows the tradition of the Grossman & Helpman (1994, 2001) common-agency

lobbying model in so far as the government in our model has a mixed motivation of welfare

maximization and contributions, and firms pay for a favorable policy. This literature usually

assumes that there are multiple lobby groups that offer competing contribution schedules to

the government. In our context, having many lobby groups would not add much insight, so

we focus on the influence of one lobby group – that of the resource owners. The bargaining

process is summarized by an asymmetric Nash bargaining solution that determines how the

surplus of the favorable policy is shared. This is suggested in Grossman & Helpman (2001,

Section 7.5), as a generalization of the surplus sharing and, as a shortcut to the results of

the usual lobbying-game structure, in Goldberg & Maggi (1999).

There are several applications of this framework to questions of environmental policy.

Our model is most closely related to those that also analyze dynamic problems. Damania
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& Fredriksson (2000) model a repeated game of collusion between lobbying firms. The first

resource-dynamics model we know of that is similar to ours is Barbier et al. (2005). Boyce

(2010) models lobbying in the context of renewable resources and common-pool resources.

Different from both papers, we explicitly take different price elasticities of demand for the

extracted resource into account. By contrast, Barbier et al. (2005) assume a small open

economy with an exogenous price, and Boyce (2010) assumes that harvesters have a loga-

rithmic utility function of their resource extraction. Additionally, we explicitly analyze the

effects of flow and stock pollution caused by resource extraction.

In modeling resource extraction, we assume that extraction is not limited by the physical

stock of the resource, but by the fact that extraction costs increase with cumulative past

extraction (cf. Levhari & Liviatan 1977), which is both convenient to model and realistic.

This implies that there are no Hotelling rents, but Ricardian rents due to increasing costs

(Hartwick 1982). On top of these, however, there are monopoly rents, and increasing them at

the expense of welfare is the objective of the lobby. There is a large literature analyzing how

the governments of resource-importing countries try to reap the rents of foreign resource

suppliers, either Hotelling rents (see, e.g., Bergstrom 1982, Keutiben 2014) or monopoly

rents or both (see, e.g., Wirl 1994, Wirl 1995, Rubio & Escriche 2001, Daubanes 2008). In

our model, resource suppliers are part of the same country as consumers so that a welfare-

maximizing government has no particular interest in distributing rents away from them.

However, monopoly rents distort the market outcome exactly because they are linked to

monopolistic supply behavior, and this is what the government would like to avoid.

In our model, we see the typical effect that a resource monopolist chooses a slower ex-

traction than competitive, unregulated suppliers in order to increase monopoly rents (cf.

Krautkraemer 1998).1 Compared to this benchmark, however, a welfare-maximizing govern-

ment would also prefer slower extraction due to the second distortion which is relevant in the

model context: environmental damage effects of resource extraction. It has long been known

that both a monopoly’s tendency to restrict supply and an unregulated industry’s ignorance

of environmental externalities have to be taken into account for welfare judgments so that

a monopoly may be a second-best solution (see, in the context of static Pigouvian taxation,

Buchanan 1969, Barnett 1980). Such a trade-off in the judgment of market power also exists

in the dynamic context; if a monopolist prefers to restrict supply, this benefits the environ-

1Situations where a monopolist chooses a faster extraction are possible, but less common. For an overview

of the literature on monopolistic resource supply, see the list of Fischer & Laxminarayan (2005).
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ment (see Sweeney 1977). Thus, governmental welfare maximization does not always mean

reducing the speed of extraction, even if there are environmental externalities. Nevertheless,

the accumulation of stock pollution implies that welfare maximization requires reducing total

extraction in the long run and thus a lower speed of extraction from some moment on (cf.

Muzondo 1993). In our model, in every moment of time the conflict of interest between the

government and the resource lobby is shaped by whether the welfare-maximizing extraction

is higher or lower than what a monopolist would choose.

The last relevant strand of literature is that of dynamic cooperative games. Modeling

the bargaining between the lobby and the government in an intertemporal context requires

an assumption about the bargaining parties’ outside options and commitment. We assume

that bargaining takes place every period to determine lobby payments and extraction. If no

agreement can be reached, the bargaining parties leave the table and choose uncooperative

strategies for the rest of infinity, which means that no payments are made any more and the

government enforces the welfare-maximizing amount of extraction. This modeling assump-

tion may represent situations where after a bargaining failure, trust is destroyed. Additional

to this interpretation, we opt for this assumption concept to ensure analytical solvability. It

follows Petrosyan (1997) and is used by, e.g., Kaitala & Pohjola (1990), Fanokoa et al. (2011)

and Jørgensen et al. (2005). For alternative approaches see Sorger (2006), or Boyce (2010),

who applies the truthful Markov perfect equilibrium of Bergemann & Välimäki (2003); these

solution concepts would in our model context require numerical solutions.

Before discussing the resulting equilibrium in detail, we introduce the economy with

benchmarks for the lobbying model in the following section.

3 The Economy

3.1 Basics

Our aim is to derive the policy determined by a bargaining process between the government

and a resource owners’ lobby group. In this section, we prepare this analysis by introduc-

ing the model setting and characterizing two benchmarks for the lobbying model: welfare

maximization and monopolistic profit maximization. These are the polar cases that span

the bargaining range of our later political model. First we use general functions to describe

the benchmarks, then we specify linear-quadratic functions to derive explicit solutions. Fi-

nally, we discuss the development of the conflict of interest between the welfare-maximizing
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government and the profit-maximizing monopolist.

We analyze the extraction of a non-renewable resource in a partial-equilibrium model.2

The supply side is a sector of resource owners, who optimize intertemporally. The demand

side is represented by a stationary demand function. Thus, the resource may best be thought

of as an energy resource like coal, which is directly burnt by its buyers so that there are no

demand-side stock effects, and whose share of the economy is small enough so that, for

example, the interest rate can be taken as exogenous.

Let q(t) denote resource extraction in period t and z(t) cumulative extraction of all

previous periods. Then the equation of motion of z is

z+(t) ≡ z(t+ 1) = z(t) + q(t). (1)

In the following, we drop t where no ambiguities arise. Gross consumer surplus in each

period is u ≡ u(q), and net consumer surplus is u− pq, where p is the market price of the

resource. Consumers take the price as given, which implies

p ≡ p(q) = ∂u(q)
∂q

(2)

in equilibrium. Extraction costs c ≡ c(q, z) are increasing and convex in each argument,

current and cumulative extraction. Cumulative extraction increases the marginal cost of

current extraction, ∂c(0,z)
∂z

= 0 and ∂2c(q,z)
∂q∂z

> 0. The economy’s instantaneous utilitarian

welfare w is gross consumer surplus minus extraction costs and environmental damages

x ≡ x(q, z), which is caused by current and cumulative resource consumption:

w ≡ w(q, z) = u(q)− c(q, z)− x(q, z). (3)

x(q, z) is assumed to be additively separable as well as increasing and convex in each argu-

ment, flow and stock pollution.

The agents in our model have an infinite planning horizon and a discount rate r, implying

a discount factor β ≡ 1/(1 + r). In t the present value of the discounted welfare stream, in

the following just called intertemporal welfare, thus is

W (t) =
∞∑
s=0

βs · w(q(t+ s), z(t+ s)), (4)

2Our model economy is a standard partial-equilibrium resource-economic setting with Ricardian (instead

of Hotelling) rents, as for example in Hartwick (1982).
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where s ∈ N is the summation index. Environmental damages x(q, z) are external to resource

owners, so that their flow profit π is

π ≡ π(p, q, z) = p · q − c(q, z) (5)

so that in t the present value of profits, in the following just called intertemporal profit, is

Π(t) =
∞∑
s=0

βs · π(p(t+ s), q(t+ s), z(t+ s)). (6)

3.2 Benchmark Solution

In the following, we derive the welfare-maximizing and the profit-maximizing extraction

paths and convergence levels of cumulative extraction. To do this, suppose that extraction

from some moment on is determined by a state-dependent extraction function q = q(z).

Taking the equation of motion (1) into account, we can then write intertemporal welfare (4)

as

W (z) = w(q(z), z) + β ·W (z + q(z)). (7)

A social planner chooses q so as to maximize (7). Thus, the optimal q(z) is given by the

following Bellman equation:

W ∗∗(z) = max
q

[
u(q)− c(q, z)− x(q, z) + β ·W ∗∗(z+)

]
, (8)

where the double-asterisk denotes the planner’s optimal solution. The first-order condition

is

∂u(q∗∗)
∂q
− ∂c(q∗∗,z)

∂q
− ∂x(q∗∗,z)

∂q
+ β · ∂W

∗∗(z∗∗+ )

∂z
= 0. (9)

Differentiating the Bellman equation yields the Envelope Condition:

∂W ∗∗(z)
∂z

= −∂c(q∗∗,z)
∂z

− ∂x(q∗∗,z)
∂z

+ β · ∂W
∗∗(z∗∗+ )

∂z

= −∂c(q∗∗,z)
∂z

− ∂x(q∗∗,z)
∂z

− ∂u(q∗∗)
∂q

+ ∂c(q∗∗,z)
∂q

+ ∂x(q∗∗,z)
∂q

. (10)

Shifting this in time and substituting into the first-order condition yields the planner’s Euler

equation, which is the Hotelling rule modified for stock-dependent cost effects as well as flow-

and stock-pollution damages:

∂u(q∗∗)
∂q
− ∂c(q∗∗,z)

∂q
− ∂x(q∗∗,z)

∂q
= β ·

[
∂c(q∗∗+ ,z∗∗+ )

∂z
+

∂x(q∗∗+ ,z∗∗+ )

∂z
+

∂u(q∗∗+ )

∂q
− ∂c(q∗∗+ ,z∗∗+ )

∂q
− ∂x(q∗∗+ ,z∗∗+ )

∂q

]
.

(11)
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Thus, the current welfare created by marginal resource extraction, which is its consumer

benefit net of extraction cost and flow externalities, has to equal the discounted welfare that

could be gained from the resource if it were extracted a period later, plus the additional

extraction cost and environmental damages due to the higher cumulative extraction.

Now suppose that a monopolist supplies the resource. Because the monopolist internalizes

the price reaction (2), (5) can be written as

π(q, z) = p(q) · q − c(q, z) (12)

and with a state-dependent extraction function q(z), we have, similar to (7):

Π(z) = π(q(z), z) + β · Π(z + q(z)). (13)

Letting a (single-)asterisk denote the monopolist’s optimal solution, the Bellman equation is

Π∗(z) = max
q

[
p(q) · q − c(q, z) + β · Π∗(z+)

]
. (14)

Following the same steps as in the welfare-maximizing case yields the following Euler equa-

tion:

p(q∗) + ∂p(q∗)
∂q

q∗ − ∂c(q∗,z)
∂q

= β ·
[
∂c(q∗+,z

∗
+)

∂z
+ p(q∗+) +

∂p(q∗+)

∂q
q∗+ −

∂c(q∗+,z
∗
+)

∂q

]
. (15)

The interpretation is similar to that of the planner’s Euler equation, except that the monop-

olist does not care for environmental damages, but for his influence on the price.

The welfare-maximizing extraction path (11) and the profit-maximizing extraction path

(15) coincide if along the whole path it holds that

−∂p(q∗∗)
∂q

q∗∗ − ∂x(q∗∗,z)
∂q

= β ·
[
∂x(q∗∗+ ,z+)

∂z
− ∂x(q∗∗+ ,z+)

∂q
− ∂p(q∗+)

∂q
q∗∗+

]
. (16)

This would be fulfilled if there were no stock pollution and the effects of flow pollution and

market power exactly canceled out.

Competitive, unregulated resource owners would neither internalize the environmental

damages nor their influence on the price. Thus, their Euler equation can be derived from

(15) by substituting the price derivatives by zero, or from (11) by dropping the environmental-

damage derivatives. In what follows, we neglect the competitive, unregulated case and derive

explicit solutions for the planner’s and the monopolist’s optimization problems only.

We assume that all functions are well-behaved in the sense that they result in extraction

paths q(t) that monotonically converge to q = 0 and a convergence level ẑ of cumulative
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extraction for t → ∞. For ẑ, z+ = z by q(ẑ) = 0. Substituting this into (11) and (15) and

rearranging, we see that the welfare-maximizing and profit-maximizing convergence levels of

cumulative extraction ẑw and ẑπ are defined by

∂w(0,ẑw)
∂q

= ∂u(0)
∂q
− ∂c(0,ẑw)

∂q
− ∂x(0,ẑw)

∂q
= ∂x(0,ẑw)

∂z

/
r , (17a)

∂π(0,ẑπ)
∂q

= p(0)− ∂c(0,ẑπ)
∂q

= 0. (17b)

Thus, extraction ceases when the net gain due to the first marginal extracted unit exactly

matches the present value of its future effects due to the added cumulative extraction. Be-

cause this is only about a marginal unit, market power is not relevant anymore. The wel-

fare effects include environmental damages so that the social planner’s convergence level is

definitely lower than that of the monopolist. For the monopolist’s convergence level, stock-

dependent cost effects are irrelevant because ∂c(0,z)
∂z

= 0. We assume ∂u(0)
∂q

to be finite so

that the convergence levels are well-defined; for instance, ∂u(0)
∂q

can be the price of a backstop

technology.

3.3 Benchmark Solution: Explicit Example

We now specify the functions to be linear-quadratic so that we can explicitly derive and

discuss the solution. The demand price is a linear function of the quantity q. Marginal

extraction costs in a given period are a linear function of cumulative extraction and of

extraction within that period. Marginal flow-pollution damage is a linear function of ex-

traction in the same period, and marginal stock-pollution damage is constant so that total

stock-pollution damage is proportional to cumulative extraction. The assumed explicit forms

of the functions are summarized in Table 1. Collecting terms, we have

w(q, z) = (bw − κzz) · q − aw
2
q2 +

(
q

r
− z
)
· χz, (18a)

π(q, z) = (bπ − κzz) · q − aπ
2
q2, (18b)

where

bw ≡ ρ1 − κ1 − χ1 −
χz
r
, (19a)

bπ ≡ ρ1 − κ1, (19b)

aw ≡ κ2 + ρ2 + χ2, (19c)

aπ ≡ κ2 + 2ρ2. (19d)
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Table 1: Explicit functions.

Functions Explicit forms

u(q) = ρ1q − ρ2
2
q2

p(q) = ∂u(q)
∂q

= ρ1 − ρ2q

c(q, z) =
(
κzz + κ1 + κ2

2
q
)
· q

∂c(q,z)
∂q

= κzz + κ1 + κ2q

∂c(q,z)
∂z

= κzq

x(q, z) = χzz + χ1q + χ2

2
q2

∂x(q,z)
∂q

= χ1 + χ2q

∂x(q,z)
∂z

= χz

The parameter index indicates the power of the variable that the parameter relates to.

If not stated otherwise, all coefficients and the summarized coefficients bw, bπ, aw, and aπ

are assumed to be positive in the following. Thus, we also assume bπ > bw and ignore the

case of bπ = bw.

From (18a), the present net welfare gain of the first (marginal) unit of extraction is

∂w(0, z)

∂q
= bw − κzz +

χz
r
. (20)

The direct welfare loss of that unit due to stock pollution from the next period on is χz(1 +

r)/r, which discounted to t is χz/r. Thus, the direct intertemporal welfare effect of the

first marginal unit of extraction is bw − κzz. Likewise, the direct intertemporal effect of the

first marginal unit of extraction on profit is bπ − κzz. The former is smaller than the latter

because the social planner takes present flow-pollution damage (χ1) and future discounted

stock-pollution damage (χz/r) from extracting the first unit into account. For brevity, we

refer to bw − κzz and bπ − κzz as first-unit welfare and first-unit profit in the following, or

first-unit gains if we mean both. For any z, it is worthwhile to extract at the margin if the

first-unit gains are positive, that is, if bw − κzz > 0 or bπ − κzz > 0, respectively. Stated the

other way round, extraction would cease for z = ẑw ≡ bw/κz or z = ẑπ ≡ bπ/κz, respectively.

If cumulative extraction is at this convergence level, the gains from extracting cannot be

high enough to cover the costs, which include the environmental damages in the planner’s

case.
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aw and aπ are the (absolute) slopes of the intratemporal marginal welfare function and

the intratemporal marginal profit function, respectively. If aw > aπ, then marginal welfare

within a period decreases faster than marginal profit so that a social planner would have a

stronger tendency to shift consumption into the future than a resource monopolist.

For stability of the resulting system of difference equations, we assume

ai > κz for i = w, π. (21)

Then we can derive the welfare-maximizing and the profit-maximizing extraction functions:

Proposition 3.1 (Explicit Example: Benchmark Extractions) The welfare-maximizing

and the profit-maximizing extraction functions are given by

q∗∗(z) =


ψw · (bw − κzz) if z ≤ ẑw,

0 if z > ẑw,

(22a)

q∗(z) =


ψπ · (bπ − κzz) if z ≤ ẑπ,

0 if z > ẑπ,

(22b)

where

ψi ≡
2

ai +
√
a2
i + 4

r
κz (ai − κz)

≤ 1

ai
for i = w, π. (23)

Proof. See Appendix A.1.

Moreover, we can determine how the state variable z develops:

Proposition 3.2 (Explicit Example: Benchmark Cumulative Extractions) Along

both the welfare-maximizing and the profit-maximizing extraction paths, cumulative extraction

develops as follows:

z∗∗(t+ s) =


ẑw − (1− ψwκz)s ·

[
ẑw − z(t)

]
if z(t) ≤ ẑw,

z(t) if z(t) > ẑw,

(24a)

z∗(t+ s) =


ẑπ − (1− ψπκz)s ·

[
ẑπ − z(t)

]
if z(t) ≤ ẑπ,

z(t) if z(t) > ẑπ,

(24b)

where 0 < 1− ψiκz ≤ 1 for i = w, π.
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Proof. See Appendix A.1.

Furthermore, we can state the maximized intertemporal welfare and profit:

Proposition 3.3 (Explicit Example: Benchmark Intertemporal Welfare and Profit)

The maximized intertemporal welfare and profit are given by

W ∗∗(z) = A∗∗w · q∗∗(z)2 − χzz

1− β
, (25a)

Π∗(z) = A∗π · q∗(z)2 ≥ 0, (25b)

where

A∗∗w ≡
1
ψw
− aw

2

1− β (1− ψwκz)2 > 0, (26a)

A∗π ≡
1
ψπ
− aπ

2

1− β (1− ψπκz)2 > 0. (26b)

Proof. See Appendix A.1.

Remark 3.1 We can determine the lower bounds of A∗∗w and A∗π as follows. By the definition

of ψw (23):

A∗∗w >
1
2
aw

1− β (1− ψwκz)2 =
1
2

(κ2 + ρ2 + χ2)

1− β (1− ψwκz)2 > 0. (27)

The equality follows from substituting (19). A∗π > 0 follows along the same lines.

The extraction paths are mainly described by two characteristics. The first is the level of

cumulative extraction that would cause extraction to cease. The second is the amount of

extraction given any level of cumulative extraction.

In Proposition 3.2, we can see that the convergence levels are only reached asymptoti-

cally, given that the planning horizon starts with a z below ẑw or ẑπ, respectively. Thus,

along an optimal extraction path from Proposition 3.1, the constraint never actually binds.

Because the first extracted unit has positive flow externalities, χ1 > 0, and because there

are stock externalities, χz > 0, we have bπ > bw, and the monopolist’s convergence level of

cumulative extraction is higher than that of the social planner: The resource owners still

find it worthwhile to extract if z = ẑw because they do not have to pay for the environmental

damages.

Now consider the amount of extraction when z is below the convergence level. In Propo-

sition 3.1, we can see that it is determined by, again, the first-unit gains, but also by the
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respective ψi. This term represents the decrease in marginal gains due to effects both within

the current period and in the future. With infinite discounting (r →∞), so that the problem

were static, we would have ψi = 1/ai: Extraction would be limited by increasing marginal

environmental damages and decreasing marginal consumer rents within the extraction pe-

riod. While the monopolist ignores environmental damages, he would be more sensible to

the consumer-rents effect because of the monopolistic price distortion. With a lower r, the

same effects are at work, but the effect of today’s extraction on tomorrow’s marginal gains

is also taken into account.

Due to the positive extraction, we always have z+ > z so that, by the functions in

Proposition 3.1, extraction decreases in time. A smaller aw, for instance, implies that ψw

is larger so that extraction is increased. But given that the convergence level ẑw is not

changed, we can say that ψw (only) represents the speed of convergence: A larger ψw implies

that extraction q∗∗(z) is higher for a given z, but as z then increases, q∗∗(z) also declines

faster.

3.4 Differences in Preferred Extraction: Four Cases

In the following, we characterize the conflict of interest between the welfare-maximizing

government and the profit-maximizing monopolist. To do this, suppose that from t on either

the welfare-maximizing or the profit-maximizing extraction path is chosen. Which would

lead to faster extraction? We have

∆q∗(z) ≡ q∗(z)− q∗∗(z) = (ψπ − ψw) (bπ − κzz) + ψw (bπ − bw) . (28)

For the discussion of this difference it is useful to keep the following relation in mind:

Remark 3.2 By (23) and (19), we see that

ψw R ψπ ⇔ aw Q aπ ⇔ χ2 Q ρ2. (29)

For example, if ρ2 is large, the demand price strongly reacts to extraction within any given

period. This decreases both aw and aπ and thus implies slower extraction. The effect on

aπ – and thus on the profit-maximizing extraction – is stronger due to the monopolistic

distortion associated with q∗(z): A monopolist has a suboptimally strong tendency to shift

extraction into the future to smooth out marginal revenues.3 In the welfare-maximization

3This is related to the standard result that a monopoly implies slower extraction (Solow 1974). However,

we are comparing a monopolist with a welfare-maximizer, not with competitive, unregulated firms.
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Table 2: Benchmark cases.

Case Relation ∆q∗(0) ∆′q∗(z)

1 ψw < ψπ > 0 < 0

2 ψw = ψπ > 0 = 0

3 ψπ
bπ
bw
> ψw > ψπ ≥ 0 > 0

4 ψw > ψπ
bπ
bw
> ψπ < 0 > 0

problem, however, the increasing marginal flow-pollution damage also calls for smoothing out

extraction: If χ2 were large, the social planner would like to postpone extraction because this

reduces the marginal flow-pollution damage. As seen in (29), this marginal flow-pollution

effect may or may not outweigh the market-power effect so that a monopolist may extract

too fast or too slow from the planner’s point of view. The relations between the parameters

lead to four distinguishable cases summarized in Table 2.

In Case 1, the marginal flow-pollution effect outweighs the market-power effect, χ2 > ρ2,

so that ψw < ψπ. Because bπ > bw, equation (28) is definitely positive: Due to all kinds of

pollution, the social planner would want slower extraction than a monopolist.

Case 2 is defined by χ2 = ρ2 so that ψw = ψπ. Then the marginal flow-pollution effect

and the market-power effect cancel out. We can see in (28) that the difference is completely

driven by bπ − bw. Because of this difference, the planner would still want slower extraction

and a lower convergence level due to flow- and stock-pollution damages that every unit of

extraction causes.

Now suppose that χ2 < ρ2 so that ψw > ψπ. Equation (28) then is ambiguous

∆q∗(z) = (ψπ − ψw)︸ ︷︷ ︸
<0

(bπ − κzz) + ψw (bπ − bw)︸ ︷︷ ︸
≥0

. (30)

We can definitely say, however, that the derivative of this difference with respect to z is

positive. Thus, if the difference is positive for z = 0, then it will remain so as z increases.

Substituting z = 0 and rearranging, we see that this holds for

ψπbπ − ψwbw ≥ 0. (31)

(31) thus defines Case 3. Even though the market-power effect is stronger than the marginal

flow-pollution effect, the additional pollution effects in bw compensate for this. Therefore,
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the social planner would still want less extraction than the monopolist for a given z. More-

over, the welfare-maximizing convergence level of cumulative extraction would be approached

faster than the profit-maximizing convergence level so that for any z the desired additional

extraction of the social planner shrinks faster than that of the monopolist.

Finally, in Case 4, we have χ2 < ρ2 so that ψw > ψπ, but (31) does not hold. Then the

difference is negative for small z, but positive for large z. Substituting ∆q∗(z) = 0 in (28)

and rearranging shows that there is a switching-level z = z̃, defined by

z̃ = ẑπ −
ψw

ψw − ψπ
(ẑπ − ẑw)

(
= ẑw −

ψπ
ψw − ψπ

(ẑπ − ẑw)

)
. (32)

Consequently, up to z̃ the social planner would extract faster than a monopolist, but once z̃

is reached, this relation turns around; the reason is that the welfare-maximizing convergence

level is still lower so that at some point the gains from extracting for the social planner

decrease faster in z. Put another way, in total the monopolist would want to extract more

than the social planner, but to smooth marginal revenue, the monopolist has a stronger

incentive to stretch extraction over time.

4 Lobbying and Policy Determination

4.1 Political Agents

We assume that policy is set by a government that interacts with a resource-owner lobby

group. More precisely, we assume that in each period the government and the lobby group

bargain the resource suppliers’ extraction quantity q and a contribution payment m that the

lobby pays to the government. The bargained quantity may, for example, be enforced among

the firms by announcing it as a maximum extraction for the period and implementing it via

an allowance trading system or by allocating extraction quotas. We assume the individual

resource suppliers to be so small that they individually neither internalize the environmental

nor the marginal-revenue effects of supply (see Section 3.2), and competition policy prevents

the lobby organization from serving as a cartel. Such competitive supply would lead to a

faster extraction than either profit maximization or welfare maximization; the limit would

thus be binding as long as it is somewhere between the two. Alternatively, we demonstrate

how the lobby outcome can be implemented via resource taxes in Section 5.

In each period, the government has the following utility function:

g(q,m, z) = w(q, z) + γm. (33)
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Thus, the government cares for welfare w, but it also derives utility γm from the lobby’s

payments. Let the present value of payments to the government discounted to period t, or

intertemporal payments, be denoted by

M(t) =
∞∑
s=0

βs ·m(t+ s). (34)

Intertemporal utility of the government is the discounted sum of the utility stream:

G(t) =
∞∑
s=0

βs · g(q(t+ s),m(t+ s), z(t+ s)) = W (t) + γM(t). (35)

The (collective) utility function of resource owners is

l(q,m, z) = π(q, z)− λm, (36)

consisting of the sector’s profits π and the lobby’s cost of paying contributions λm. In π,

the price reaction is taken into account – see (13). The marginal-cost parameter λ may, for

example, reflect the coordination problems within the group. Intertemporal utility of the

lobby group is

L(t) =
∞∑
s=0

βs · l(q(t+ s),m(t+ s), z(t+ s)) = Π(t)− λM(t). (37)

The assumptions that resource owners have overcome the collective action problem to form

a lobby group and that the government’s utility function (33) is additively separable be-

tween contribution utility and utilitarian welfare are usual in the interest-group literature

(cf. Grossman & Helpman 1994, Grossman & Helpman 2001). A more important feature,

which is also typical in the literature, is the assumption of constant marginal contribution

utility, which simplifies the derivation of the time paths in the following.4

In each period, the government and the lobby bargain about a vector consisting of con-

tribution payments and an extraction quantity for that period. To determine the bargaining

result, it is crucial to define the parties’ outside options. We assume that if no agreement is

reached, cooperation breaks down forever. Then a non-cooperative solution is implemented

for the rest of time: The government unilaterally decides the quantity and the lobby pays

no contributions. The utility in this non-cooperative solution determines how much of the

gains from cooperation each bargaining party can appropriate. The cooperative solution is

chosen as the outcome of a Nash bargaining.

4See Klein et al. (2008) for the complications that can arise when current choices affect future marginal

utility from the control variables in settings without commitment.
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Both bargaining parties always have to be better off with the bargained policy than

they would be with their outside options. Consequently, the bargained policy vector for

the current period and the anticipation that the same kind of cooperation will take place

in the future must always imply a higher intertemporal utility than the non-cooperative

alternative; otherwise they would not agree. Therefore, this solution is time-consistent and

does not require commitment (cf. Jørgensen & Zaccour 2001).

Commitment exists in one sense, however: The fact that the threat in the bargain is to

play uncooperatively forever may be seen as a commitment not to cooperate (Sorger 2006).

An alternative interpretation would be that the parties do not trust each other anymore.

Given that party contribution payments in exchange for a favor are hardly enforceable in

court, trust may be crucial.

Moreover, we assume that the government has an active role in the bargain, and its

strength is represented by the respective parameter in the asymmetric Nash bargaining

solution. A take-it-or-leave-it offer by the lobby, which is more typical in the literature, is a

special case in this solution.

4.2 Nash Bargaining Solution

In the following, we formally define the Nash bargaining solution. The bargaining outcome

is marked by ? and the threat outcome by #. We define the Nash bargaining solution as

follows:5

Definition 4.1 (Nash Bargaining Solution) The Nash bargaining solution of our lob-

bying game consists of two pairs of stationary Markovian strategies, (q?,m?) and (q#,m#),

and two pairs of value functions, (G?, L?) and (G#, L#), such that the following is true. For

all z it holds that

z?+ = z + q?(z), (38a)

z#
+ = z + q#(z), (38b)

5The form of the definition is borrowed from Sorger (2006); the assumption about the threat outcome,

however, follows Petrosyan (1997), as pointed out in Section 2.
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G?(z) = g(q?(z),m?(z), z) + β ·G?(z?+), (39a)

L?(z) = l(q?(z),m?(z), z) + β · L?(z?+), (39b)

G#(z) = g(q#(z),m#(z), z) + β ·G#(z#
+ ), (39c)

L#(z) = l(q#(z),m#(z), z) + β · L#(z#
+ ), (39d)

q#(z) ∈ arg max
q

[
g(q,m#(z), z) + β ·G#(z+)|q ≥ 0

]
, (40a)

m#(z) ∈ arg max
m

[
l(q#(z),m, z) + β · L#(z#

+ )|m ≥ 0
]
, (40b)

N(q,m, z) ≡ η · ln
[
g(q,m, z) + β ·G?(z+)−G#(z)

]
+ (1− η) · ln

[
l(q,m, z) + β · L?(z+)− L#(z)

]
, (41)(

q?(z),m?(z)
)
∈ arg max

q,m

[
N(q,m, z)|q ≥ 0,m ≥ 0

]
. (42)

(38a) and (38b) are just the definitions of the equation of motion (1) along the cooperative

and non-cooperative path, respectively. Accordingly, the present-value equations (35) and

(37) have a cooperative form, (39a) and (39b), and a non-cooperative form, (39c) and (39d).

For the non-cooperative form, (40a) and (40b) define the choice variables. The objective

function of the cooperative game is the (logarithm of the) Nash product (41), where η and

(1− η) measure the bargaining powers of the government and the lobby group, respectively.

The maximands are defined by (42). Thus, we assume that the Nash bargaining imple-

ments values of the choice variables so as to maximize the government’s and the lobby’s

intertemporal utility under the (rational) assumption that cooperation is continued. This

assumption is justified because the parties always have a higher intertemporal utility within

the cooperative equilibrium than without it.

We start deriving the solution by discussing the non-cooperative solution. The govern-

ment can enforce any desired quantity path if it wants to. If negotiations fail, the government

would be best off by choosing the welfare-maximizing path described by (11): q#(z) = q∗∗(z),

z#
+ = z∗∗+ . At the same time, the lobby would be best off paying no contributions, as these

are costly in the present and have no intertemporal effect. The government’s utility would

be the maximized intertemporal welfare as defined in (8), and the lobby’s utility would equal
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the intertemporal profit (12) for q = q∗∗(z):

G#(z) = W ∗∗(z), (43a)

L#(z) = Π∗∗(z) = π(q∗∗(z), z) + β · Π∗∗(z∗∗+ ). (43b)

Now consider the bargaining outcome. From (41) and (42), we have for q?(z) (after rear-

ranging):

∂w(q?(z),z)
∂q

+ β · ∂G
?(z?+)

∂z
+

1− η
η

∆G?(z)

∆L?(z)
·
[
∂π(q?(z),z)

∂q
+ β · ∂L

?(z?+)

∂z

]
= 0, (44)

where

∆G?(z) ≡ G?(z)−W ∗∗(z), (45a)

∆L?(z) ≡ L?(z)− Π∗∗(z) (45b)

are the gains from cooperating for the government and the lobby, respectively. Thus, q is

chosen so as to maximize a weighted sum of, on the one hand, current welfare and discounted

government utility, and, on the other hand, current profit and discounted lobby utility. The

weight depends on the bargaining power and the respective gains from cooperating. Likewise,

the first-order condition for the contribution payment m is equivalent to

∂g(q?(z),m?(z),z)
∂m

+
1− η
η

∆G?(z)

∆L?(z)
∂l(q?(z),m?(z),z)

∂m
= 0, (46)

which is simpler than the condition for the extraction quantity (44) because m has no stock

effect. By (33) and (36), utilities are linear in m so that the respective marginal utilities are

constant. Substituting them in (46) and rearranging yields:

1− η
η

∆G?(z)

∆L?(z)
= µ ≡ γ

λ
(47)

so that the lobby’s weight, which is denoted by µ in the following, is constant and defined

by the relative contribution valuation. Thus, due to the bargaining, q = q?(z) is chosen so

as to maximize the weighted sum:

V (t) = G(t) + µ · L(t) = W (t) + µ · Π(t) + (γ − µ · λ)︸ ︷︷ ︸
=0

·M(t) = W (t) + µ · Π(t). (48)

The q path is thus defined by the following Bellman equation:

V ?(z) = max
q

[
w(q, z) + µ · π(q, z) + β · V ?(z+)

]
, (49)
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which, along the lines of Section 3.2, yields the Euler equation:

p(q?)− ∂c(q?,z)
∂q

− ∂x(q?,z)
∂q

+ µ ·
[
p(q?) + ∂p(q?)

∂q
q? − ∂c(q?,z)

∂q

]
=β ·

{
∂c(q?+,z+)

∂z
+

∂x(q?+,z+)

∂z
+ p(q?+)− ∂c(q?+,z+)

∂q
− ∂x(q?+,z+)

∂q

+ µ ·
[
∂c(q?+,z+)

∂z
+ p(q?+) +

∂p(q?+)

∂q
q?+ −

∂c(q?+,z+)

∂q

]}
. (50)

The resource price p in the square brackets stems from the suppliers’ marginal returns, while

the price outside the square brackets just reflects the consumers’ marginal surplus. Thus,

(50) is a weighted sum of the planner’s (11) and the monopolist’s (15) Euler equation. The

higher the government values the contributions, the more the lobby determines the path

(and vice versa).

How do we obtain the contribution payment path? Take (47) and rearrange to get the

present value of payments that must hold in equilibrium:

M?(z) =
η

λ
·
[
Π?(z)− Π∗∗(z)

]
+

1− η
γ
·
[
W ∗∗(z)−W ?(z)

]
. (51)

Here, Π?(z) and W ?(z) are known from (49) and Π∗∗(z) and W ∗∗(z) are known from

the welfare-maximizing extraction path. M?(z) must be positive because the lobbying-

equilibrium policy maximizes a weighted average of both bargaining parties’ utility. The

present value of the anticipated payments at least exactly compensates the government for

the welfare losses and at most transfers all additional profits from the lobby to the gov-

ernment. The intertemporal relation (51) must hold every period, so the payments in any

period have to fulfill

m?(z) = M?(z)− β ·M?(z?+) (52)

and can thus easily be calculated.6 Moreover, substituting (51) and simplifying yields:

m?(z) =
η

λ
·
[
π?(z)− π∗∗(z)

]
+

1− η
γ
·
[
w∗∗(z)− w?(z)

]
+ β ·

{
η

λ
·
[
Π∗∗(z?+)− Π∗∗(z∗∗+ )

]
+

1− η
γ
·
[
W ∗∗(z∗∗+ )−W ∗∗(z?+)

]}
, (53)

where π?(z) ≡ π(q?(z), z), π∗∗(z) ≡ π(q∗∗(z), z), w?(z) ≡ w(q?(z), z), w∗∗(z) ≡ w(q∗∗(z), z).

If the bargaining problem were static, we would only have the first line, which would have

to be positive for the same reason that makes (51) positive.

6Note that in a full-commitment situation, the lobby could just as well pay M?(z(0)) at the beginning of

time, but without this commitment assumption, a payment that takes place every period is more plausible.
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The dynamic version (53), however, also takes into account how the outside options

change tomorrow due to cooperation today. These outside options are intertemporal welfare

and profit along the welfare-maximizing extraction path. The government’s part of (53)

is always positive because it reflects the welfare loss from deviating one period from the

welfare-maximizing extraction path. The lobby’s part, however, can temporarily be negative;

deviating one period from the government’s preferred extraction path to the bargained one

does not necessarily increase intertemporal profits. Nevertheless, the intertemporal payments

(51) are always positive even if they are only determined by the lobby’s willingness to pay

(η = 1). In Section 4.4, we discuss the payments and their development with linear-quadratic

functions in detail.

4.3 Nash Bargaining Solution: Explicit Example

For the explicit example, we build on the model from Section 3.3 and thus use the values

and functions from Table 1. Thereby, the planner’s explicit instantaneous welfare (18a) and

the monopolist’s explicit flow profit (18b) are complemented by utility from and cost of

contributions, respectively. We thus have

g(q, z) = (bw − κzz) · q − aw
2
q2 + γm+

(
q

r
− z
)
· χz, (54a)

l(q, z) = (bπ − κzz) · q − aπ
2
q2 − λm. (54b)

From the discussion in Section 4.2, we know that q#(z) = q∗∗(z) and m#(z) = 0. Then the

threat value functions are given as follows:

Proposition 4.1 (Explicit Example: Nash Bargaining Threat Values) In the non-

cooperative solution, the government’s intertemporal utility is defined by W#(z) = W ∗∗(z)

as given in Proposition 3.3. The lobby’s intertemporal utility is given by

L#(z) = Π∗∗(z) = A∗∗π · q∗∗(z)2 −B∗∗π · q∗∗(z) ≥ 0, (55)

where

A∗∗π ≡
1
ψw
− aπ

2

1− β (1− ψwκz)2 > 0, (56a)

B∗∗π ≡
bw − bπ

1− β (1− ψwκz)
< 0. (56b)

Proof. See Appendix A.2.
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Remark 4.1 The inequality in (56b) follows from bπ > bw. We can determine the lower

bound of A∗∗π along the lines of Remark 3.1. By the definition of ψw (23):

A∗∗π >
aw − 1

2
aπ

1− β (1− ψwκz)2 =
1
2
κ2 + χ2

1− β (1− ψwκz)2 > 0. (57)

The equality follows from substituting (19).

We define

a ≡ aw + µaπ
1 + µ

> κz, (58a)

b ≡ bw + µbπ
1 + µ

≥ bw (58b)

where a > κz follows from (21) and

ψ ≡ 2

a+
√
a2 + 4

r
κz (a− κz)

<
1

a
. (59)

Then the policy functions are given as follows:

Proposition 4.2 (Explicit Example: Nash Bargaining Policies) The equilibrium and

the threat extraction functions as well as the equilibrium and the threat contribution payment

functions are given by

q?(z) =


ψ · (b− κzz) if z ≤ ẑ,

0 if z > ẑ,

(60a)

q#(z) = q∗∗(z), (60b)

m?(z) =
η

λ
·
[
(bπ − κzz) ∆q?(z)− aπ

2
∆q?,2(z)

]
− 1− η

γ
·
[
(bw − κzz) ∆q?(z)− aw

2
∆q?,2(z)

]
+ β ·

{η
λ
·
[
A∗∗π ·∆+∗∗

q?,2(z)−B∗∗π ·∆+∗∗
q? (z)

]
− 1− η

γ
· A∗∗w ·∆+∗∗

q?,2(z)
}
, (60c)

m#(z) = 0, (60d)

where (60b) is given in Proposition 3.1 and where

∆q?(z) ≡ q?(z)− q∗∗(z), (61a)

∆q?,2(z) ≡ q?(z)2 − q∗∗(z)2, (61b)

∆+∗∗
q? (z) ≡ q∗∗(z?+)− q∗∗(z∗∗+ ), (61c)

∆+∗∗
q?,2(z) ≡ q∗∗(z?+)2 − q∗∗(z∗∗+ )2. (61d)

Proof. See Appendix A.2.
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The state variable z develops as described in the following proposition:

Proposition 4.3 (Explicit Example: Nash Bargaining Equilibrium Cumulative

Extraction) Along the equilibrium extraction path, cumulative extraction develops as fol-

lows:

z?(t+ s) =


ẑ − (1− ψκz)s

[
ẑ − z(t)

]
if z(t) ≤ ẑ,

z(t) if z(t) > ẑ,

(62)

where 0 < 1− ψκz ≤ 1.

Proof. See Appendix A.2.

Finally, the equilibrium value functions are given as follows:

Proposition 4.4 (Explicit Example: Nash Bargaining Equilibrium Values) In the

cooperative solution, intertemporal welfare and profit are given by

W ?(z) = A?w · q?(z)2 −B?
w · q?(z)− χzz

1− β
, (63a)

Π?(z) = A?π · q?(z)2 −B?
π · q?(z), (63b)

where

A?i ≡
1
ψ
− ai

2

1− β (1− ψκz)2 for i = w, π, (64a)

B?
i ≡

b− bi
1− β (1− ψκz)

for i = w, π. (64b)

Intertemporal payments are given by

M?(z) ≡ η

σ
·
{
A?π · q?(z)2 −B?

π · q?(z)−
[
A∗∗π · q∗∗(z)2 −B∗∗π · q∗∗(z)

]}
+

1− η
ζ
·
{
A∗∗w · q∗∗(z)2 −

[
A?w · q?(z)2 −B?

w · q?(z)
]}
. (65)

Intertemporal utility of the government and the lobby, G?(z) and L?(z), are then given by

the weighted sums (35) and (37).

Proof. See Appendix A.2.

Remark 4.2 Note that A?i and B?
i differ from A∗∗i and B∗∗i in Proposition 4.1 because the

former use the bargained ψ coefficient and the latter use the governmental ψw coefficient.
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B?
w > 0 and B?

π < 0 because bπ > b > bw. We can determine the lower bounds of A?w and A?π
along the lines of Remark 3.1. By the definition of ψ (59):

A?w >
a− 1

2
aw

1− β (1− ψκz)2 =

1
2

(κ2 + ρ2 + χ2) + µ
1+µ

(ρ2 − χ2)

1− β (1− ψκz)2 , (66a)

A?π >
a− 1

2
aπ

1− β (1− ψκz)2 =

1
2
κ2 + χ2 + µ

1+µ
(ρ2 − χ2)

1− β (1− ψκz)2 > 0. (66b)

The equalities follow from substituting (19) and (58a).

The form of the equilibrium extraction function (60a) is the same as that in the benchmark

cases, but its concrete value for any given level of cumulative extraction z shows a distortive

influence of the lobby because b and ψ are compromise values. By (59), a larger value of a

implies a lower ψ and thus, by (60a), a lower extraction for a given amount of cumulative

extraction z. a represents the weighted average of the decrease in marginal gains within a

period. As discussed in Section 3.3, the individual slopes are driven by marginal cost and

marginal consumer benefit, which has a stronger influence on aπ than on aw, and aw is also

higher if marginal flow-pollution damage is higher. With the weight µ, a is thus pulled

into the lobby’s direction, which may increase or decrease extraction given z, depending on

whether aw > aπ. Likewise, b − κzz is the weighted average of the direct intertemporal

benefits that the bargaining parties assign to the first marginal unit of extraction. A larger

value of b implies higher extraction given z and higher total extraction. b increases if either

bw or bπ increases; due to environmental damages, bw < bπ so that b also increases with µ.

Along the equilibrium extraction path, z converges to ẑ ≡ b/κz.

Let us now consider the government’s threat and the contribution payments. From

Section 4.2 we know that the contribution payments at least compensate the government

for two things: Firstly, for the instantaneous welfare loss and secondly, for the future welfare

loss on the welfare-maximizing path due to the present choice of q?(z) instead of q∗∗(z).

In both cases, the “loss” is defined in comparison to the non-cooperative solution, namely

welfare-maximizing extraction, so we can write (60b): q#(z) = q∗∗(z). However, comparing

the trajectories of cumulative extraction in Propositions 3.2 and 4.3, we see that due to the

lobbying distortion, z at some point of time exceeds the government’s convergence level,

z > ẑw = bw/κz. Afterwards, the government can only threaten to switch to zero extraction

forever.

This change must affect the equilibrium contribution payments. Firstly, as long as z <

ẑw ≡ ẑw − q?(z), the welfare-maximizing extraction path starting today and that starting
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tomorrow would involve consumption smoothing. Thus, the change of tomorrow’s extraction

path due to the equilibrium extraction today affects the firms’ and the government’s future

outside option. Secondly, for ẑw ≤ z < ẑw, switching to the welfare-maximizing path today

by choosing q∗∗(z) would still imply positive extraction forever, but choosing q?(z) today

means that this option will not be available anymore in the future; the government’s future

threat extraction will be zero. As this is relevant for at most one period, we do not analyze

how the equilibrium contribution payments develop between z = ẑw and z = ẑw, but how

this development changes around z = ẑw and z = ẑw in the following. Finally, for z ≥ ẑw,

the government can only change to zero extraction, which would imply zero profits. Thus,

the payments at least have to compensate the government for the welfare loss today and the

direct welfare loss due to additional stock-pollution damages in the future, but the impact of

q?(z) on the welfare-maximizing extraction path has become irrelevant. Taken together, there

are three distinguishable cases concerning q∗∗(z?) and q∗∗(z?+) in (60c): q∗∗(z?), q∗∗(z?+) > 0

for z < ẑw, q∗∗(z?) > 0 and q∗∗(z?+) = 0 for ẑw ≤ z < ẑw and q∗∗(z?), q∗∗(z?+) = 0 for z ≥ ẑw.7

As discussed in Section 4.2, the lobby’s threat is always paying no contributions at all,

so we can write (60d): m#(z) = 0.

In the following section, we illustrate the development of extraction quantities and con-

tribution payments over time. Thereby, we use specific parameter values that cover four

relevant cases similar to those discussed in Section 3.4.

4.4 Illustration of the Lobbying Equilibrium

For the benchmark solution, we discussed the conflict of interest between a welfare-maximizing

government and a monopolist and the development of this conflict in Section 3.4, and we

characterized them by the marginal flow-pollution effect χ2, the market-power effect ρ2,

and the respective first-unit gains bw and bπ; their relations constitute four cases. In the

following, we characterize the conflict of interest of the lobbying-equilibrium solution in a

similar manner, using the difference between the equilibrium extraction quantity q?(z) and

the extraction that would be chosen if the government changed to the welfare-maximizing

extraction path q#(z) = q∗∗(z) (see Proposition 4.2). From Proposition 4.2 and similar to

7For the intertemporal payments (65), there are just two distinguishable cases because q∗∗(z?+) does not

appear.
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Table 3: Lobbying-equilibrium cases.

z < ẑw z ≥ ẑw

Case Relation ∆q?(0) ∆′q?(z) ∆q?(z) ∆′q?(z) Implied by

I ψw < ψ > 0 < 0 > 0 < 0 Case 1

II ψw = ψ > 0 = 0 > 0 < 0 Case 2

III ψ b
bw
> ψw > ψ ≥ 0 > 0 > 0 < 0 Case 3 and µ large

IV ψw > ψ b
bw
> ψ < 0 > 0 > 0 < 0 Case 3 and µ small or Case 4

(28), we have

∆q?(z) ≡ q?(z)− q∗∗(z) =


(ψ − ψw) (b− κzz) + ψw (b− bw) if z ≤ ẑw,

ψ (b− κzz) if z > ẑw.

(67)

For the discussion of this difference, it is useful to keep an adapted version of Remark 3.2 in

mind:
Remark 4.3 By (23), (59), (19), and (58), we see that

ψw R ψ R ψπ ⇔ aw Q a Q aπ ⇔ χ2 Q ρ2. (68)

The second line of (67) is positive: For z > ẑw, the welfare-maximizing extraction is zero,

while the resource owners still want positive extraction. The first line leads to four distin-

guishable cases in which the equilibrium contribution payments develop in a qualitatively

different manner, namely χ2 > ρ2 ⇔ ψ > ψw (Case I), χ2 = ρ2 ⇔ ψ = ψw (Case II), and

for χ2 < ρ2 first ψwb/bw > ψw > ψ (Case III) and finally ψw > ψb/bw > ψ (Case IV).

These are similar to Cases 1–4 of the benchmark relations laid out in Section 3.4, but not

exactly equal. If we are in Case 1 or 2, then we are also in Case I or II, respectively, because

ψπ R ψw ⇔ ψ R ψw. For the other cases, this equivalence is not given. In all of them

ψπ < ψ < ψw; but while Case 4 always implies Case IV, Case 3 can also imply Case IV if

the lobby’s weight µ is small (see Lemma A.7 in Appendix A.3). The benchmark cases are

summarized in Table 2 (on page 15) and the lobbying-equilibrium cases and their relations

to the benchmark cases can be found in Table 3.

In the following, we describe the development of resource extraction and contribution

payments in Cases I-IV. For illustration, we use diagrams for specific parameter values for
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Figure 1: Extraction path and cumulative extraction path for χ2 > ρ2 (Case I).

the functions in Table 1 (on page 11). The parameters used in the figures are β = 15/16,

ρ1 = 100, κz = 1/10, κ1 = 0, κ2 = 0, χz = 2, and χ1 = 0 so that bπ = 100 and bw = 80.

At the beginning of time (t = 0), cumulative extraction is assumed to be zero, z = 0. We

assume λ = γ = 1, so that the lobby’s policy weight is µ = 1 and b = 90, and the bargaining

power is symmetric, η = 1/2. The relation of the remaining economic parameters, ρ2 and

χ2, constitutes the four cases.

Case I: χ2 > ρ2.

The first case is defined by χ2 > ρ2 and thus ψw < ψ < ψπ. This case is what most

would intuitively expect, so we treat it in some detail. As discussed for the benchmarks, the

first case implies that the marginal flow-pollution effect outweighs the market-power effect

(cf. Section 3.4). Figure 1 shows the extraction paths (left-hand side figure) and cumulative

extraction paths (right-hand side figure) for χ2 = 5, ρ2 = 2. The dashed gray curve is

the profit-maximizing path and the dotted gray curve is the welfare-maximizing path, each

starting from z(t = 0) = 0. As discussed in Section 3.4, a monopolist would prefer a higher

extraction than a welfare-maximizing planner for any given level of z and is also willing to

reach a higher level of cumulative extraction. Using Propositions 3.1 and 3.2, we can write

the q and z differences for the paths starting from z(t = 0) = 0:

z∗(t)− z∗∗(t) =
[
1− (1− ψπκz)t

]
· ẑπ −

[
1− (1− ψwκz)t

]
· ẑw, (69a)

q∗(t)− q∗∗(t) = (1− ψπκz)t ψπbπ − (1− ψwκz)t ψwbw. (69b)
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By ẑπ = bπ/κz > ẑw = bw/κz, we can see that cumulative extraction along the monopolist’s

extraction path, z∗(t), will always be higher than what a social planner would reach in the

same time, z∗∗(t); the monopolist’s extraction will at some point be below the extraction

of a social planner at the same time, exactly because of the higher accumulated extraction,

which increases costs.

The equilibrium extraction path is a compromise between these extremes, shown as the

black curve in Figure 1. Cumulative extraction converges towards ẑ = b/κz, which is a

weighted average between the welfare-maximizing and profit-maximizing convergence levels

ẑπ and ẑw.8

From the point of view of this lobbying equilibrium, q∗(t) and q∗∗(t) are only hypothetical

reference paths once that q?(z) has been chosen for a while. By contrast, the dash-dotted

black curve represents government’s threat extraction q#(z?) = q∗∗(z?) in the corresponding

period, given that z up to that period has been determined by the bargained policy. Each

point along that curve represents extraction in the first period of deviation from the lobby-

ing equilibrium to the welfare-maximizing path, so that each point is the beginning of an

extraction path converging to ẑw. Each term of equation (67) is positive, so that ∆q?(z) > 0;

the government would always switch to lower extraction. At the same time, the size of this

change declines in z, both in the periods in which the non-negativity constraint is binding for

the government and in those in which it is not; the derivative of equation (67) with respect

to z is negative. This relation can also be seen in Figure 1 as the vertical difference between

the solid black curve and the dash-dotted curve.

Figure 2 shows the contribution payment path in Case I. It is easiest to consider first

the development once that the constraint has become binding, z ≥ ẑw. By Proposition 4.2,

m?(z) then is

m?(z) =
η

λ
·
[
(bπ − κzz) q?(z)− aπ

2
q?(z)2

]
︸ ︷︷ ︸

>0

−1− η
γ
·
[
(bw − κzz) q?(z)− aw

2
q?(z)2

]
︸ ︷︷ ︸

<0

. (70)

In every period, the payments are at least as high as the welfare loss for that period due to

the choice of q?(z) instead of q∗∗(z) – including the additional stock-pollution damages which

are part of bw – and at most as high as the resource owners’ additional profit. Both terms

are positive so that payments are definitely positive. Effects on tomorrow’s outside options

8In the numerical example, µ = 1 implies that both have equal weight and the equilibrium convergence

level is halfway inbetween.
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Figure 2: Contribution payment path for χ2 > ρ2 (Case I).

as discussed in Section 4.2 are irrelevant because the government’s future threat extraction

will be zero, no matter how high z grows.

The development of payments can be understood by keeping in mind that z always

increases, so differentiating (70) helps to understand the qualitative behavior between one

period and another:

∂m?(z)
∂z

=
η

λ
·
[[
bπ − κzz − aπq?(z)

]︸ ︷︷ ︸
>0

∂q?(z)
∂z︸ ︷︷ ︸
<0

−κzq?(z)︸ ︷︷ ︸
<0

]
− 1− η

γ
·
[[
bw − κzz − awq?(z)

]︸ ︷︷ ︸
<0

∂q?(z)
∂z︸ ︷︷ ︸
<0

−κzq?(z)︸ ︷︷ ︸
<0

]
. (71)

Firstly, a higher z implies higher stock-dependent costs of extracting q?(z). This directly

changes the bargaining parties’ gain from implementing q?(z): It reduces the resource owners’

equilibrium profits, so that they are less willing to pay for getting q?(z) instead of q∗∗(z), and

it increases the welfare loss this would entail, so that the government would demand more.

The former effect speaks in favor of declining, the latter in favor of increasing payments

over time. Secondly, a higher z reduces the equilibrium extraction quantity, which reduces

both profits and the welfare loss from cooperation. This indirect effect of z speaks in favor

of declining payments. Thus, payments decline over time if the bargaining power of the

government is high enough so that profits determine the compensation.9 By contrast, if

the lobby gets all the gains of cooperation (η = 0) so that the welfare loss determines the

compensation, the effects work into opposing directions. In that case, payments are always

9We demonstrate in Proposition A.1 in Appendix A.3 that η (1 + µ) ≥ 1/2 is sufficient.
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declining if the indirect effect outweighs the direct one concerning the welfare loss.10 Else,

if the direct effect outweighs the indirect one and η is small, payments increase for ẑw and

z values not far above, but for some z reach a maximum and then converge towards zero

because the indirect effect vanishes with the equilibrium extraction quantities: Additional

marginal-cost increases are irrelevant if no extraction takes place. Finally, because a higher

η both implies higher payments and makes it less likely that payments increase for ẑw, we

can state that they can only increase in time if they are small in the first place.

Before the constraint starts binding, z < ẑw, the basic forces determining the payments

are similar, but more complicated. From Proposition 4.2, m?(z) then is

m?(z) =
η

λ
·
[
(bπ − κzz) ∆q?(z)− aπ

2
∆q?,2(z)

]
− 1− η

γ
·
[
(bw − κzz) ∆q?(z)− aw

2
∆q?,2(z)

]
+ β ·

{η
λ
·
[
A∗∗π ·∆+∗∗

q?,2(z)−B∗∗π ·∆+∗∗
q? (z)

]
− 1− η

γ
· A∗∗w ·∆+∗∗

q?,2(z)
}
. (72)

The first line contains the same effects as discussed before for the time when the constraint

is binding. Now, however, implementing the lobbying equilibrium means choosing q?(z)

instead of some positive q∗∗(z) so that the difference ∆q?(z) ≡ q?(z) − q∗∗(z) determines

the payments.11 The second line reflects the implied deterioration of the respective outside

option: If q?(z) is chosen today instead of q∗∗(z), how does the bargaining parties’ position

change tomorrow if welfare-maximizing policy is chosen from that period on? If only the

welfare reduction is relevant (η = 0), payments are always positive because the government

is compensated for the welfare loss that a deviation from the welfare-maximizing extraction

path implies. For a higher governmental bargaining power, the effect on profits is more

relevant so that things can be different. In Case I, q?(z) > q∗∗(z) ⇔ ∆q?(z) > 0 so that

choosing q?(z) implies higher z tomorrow, implying higher cost and reduced extraction: The

square-bracketed term in the second line is negative, reducing payments. Nonetheless, total

payments are always positive in Case I because the effect on current profit dominates (see

Proposition A.2 in Appendix A.3).

As in the time when the constraint is binding, the direct effect of higher stock-dependent

costs is ambiguous. To determine the indirect effect of a changing difference in preferred

extraction, consider (67):

∂∆q? (z)

∂z
= − (ψ − ψw)κz < 0. (73)

10We demonstrate in Proposition A.1 in Appendix A.3 that aw ≥ 1/ψ is necessary and sufficient.

11For the payments after the constraint we had ∆q?(z) = q?(z) by q∗∗(z) = 0.
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Figure 3: Extraction paths and cumulative extraction paths for χ2 = ρ2 (Case II).

Thus, when the non-negativity constraint on the government’s threat extraction is not yet

binding, the difference in desired extraction is already decreasing.12 This effect now also

influences tomorrow’s outside options. In Proposition A.2 in Appendix A.3, we demonstrate

that the forces that speak for declining payments prevail.

In Figure 2, we can see that the development of payments before and after the constraint

has been hit looks different and seems to be connected by a jump. This “jump”, however, is

constituted by two kink points of the contribution payment function or, equivalently, by two

jumps in its derivative. If η > 0, the derivative jumps up for z → ẑw and it jumps down for

z → ẑw; only if η = 0, there are no kink points (see Proposition A.4 in Appendix A.3). For

η = 0, the contribution payments and their development are only depending on the welfare

loss due to cooperation. The government’s outside option only changes marginally when the

constraint starts binding because extraction smoothing is hardly worth near the preferred

convergence level. Thus, the course of the contribution payments does not change. For η > 0,

the contribution payments and their development are also depending on the profit gain due

to cooperation. When the constraint starts binding, the lobby’s preferred extraction level

is not yet reached. Thus, its outside option deteriorates when the government’s threat does

not involve extraction smoothing anymore so that the lobby’s willingness to pay increases

sharply, explaining the changing course of the contribution payments.

12Though less so than afterwards when we have ∆′q?(z) = −ψκz.
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Figure 4: Contribution payment path for χ2 = ρ2 (Case II).

Case II: χ2 = ρ2.

The developments of extraction and cumulative extraction for the second case are depicted

in Figure 3. This case is a knife-edge case: χ2 = ρ2 (=2 in the figure) and thus ψw = ψ = ψπ.

The resulting conflict of interest is in line with that discussed for the benchmark relations

(cf. Section 3.4), namely that the marginal flow-pollution effect is equal to the market-

power effect. Thus, if there were no intertemporal effects, then a monopolist would choose

the welfare-maximizing extraction quantity anyway. Accordingly, the difference between

the welfare-maximizing extraction quantity and the bargained one is solely driven by the

difference in first-unit gains or, equivalently, between the convergence levels, as long as the

government and the resource owners want positive extraction. Each period, q?(z) and q∗∗(z)

decrease by the same amount. Only when the non-negativity constraint starts binding for

the government, this cannot go on; q∗∗(z) then is and remains zero, while q?(z) continues to

shrink. (67) simplifies to

∆q?(z) = q?(z)− q∗∗(z) =


ψ (b− bw) if z ≤ ẑw,

ψ (b− κzz) if z > ẑw.

(74)

Figure 4 shows the development of contribution payments. Payments remain at a positive,

constant level as long as q∗∗(z?+) > 0. When q∗∗(z?+) = 0, payments sharply increase as in Case

I. Once the non-negativity constraint starts binding for q∗∗(z?), it is possible that payments

decrease monotonously or first increase and then vanish in the long run (see discussion in

Appendix A.3).
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Figure 5: Extraction paths and cumulative extraction paths for χ2 < ρ2 and ψwbw < ψb

(Case III).

Cases III and IV: χ2 < ρ2.

Now suppose that the market-power effect outweighs the marginal flow-pollution effect,

χ2 < ρ2 and thus ψw > ψ > ψπ. For simplicity we focus in the discussion on cases where

either ψwbw < ψb and ψwbw < ψπbπ (Cases 3 and III) or ψwbw > ψb and ψwbw > ψπbπ (Cases

4 and IV).

In Case III, the welfare-maximizing path would again imply lower extraction than the

equilibrium extraction path, which in turn is below the profit-maximizing extraction. This

can be seen in the same way as in the previous cases in Figure 5 for χ2 = 2, ρ2 = 5. Comparing

the equilibrium extraction q?(z) with the welfare-maximizing threat extraction q∗∗(z), we see

an increasing divergence ∆q?(z): The growth in z always implies reduced extraction, but the

government wants to reduce extraction to a stronger extent than the resource owners. From

(67):

∂∆q? (z)

∂z
= − (ψ − ψw)κz > 0. (75)

Accordingly, and in contrast to Cases I and II, payments increase – see Figure 7a. Given that

the bargaining parties can anticipate high payments in the future, they can also be negative

and even declining for small values of z; in Appendix A.3, it is shown under which conditions

this is the case. Once q∗∗(z?+) = 0, the development of payments is similar to that in Cases

I and II.

If, on the other hand, ψwbw > ψb, we have Case IV. In order to demonstrate this case, we
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Figure 6: Extraction paths and cumulative extraction paths for χ2 < ρ2 and ψwbw > ψb

(Case IV).

set χ2 = 0. The government’s preferred extraction would exceed the bargained extraction for

small z, in particular for z = 0, but as time goes by, the increase in z has (again) a stronger

effect on the welfare-maximizing extraction than on the lobby’s preferred extraction. Thus, it

becomes lower than the bargained extraction for large z, in particular for z = ẑw. Therefore,

the conflict of interest – the absolute value of ∆q?(z) – first declines until the government’s

threat extraction is equal to the bargained extraction; afterwards, the two would diverge

again as ∆q?(z) increases, until the non-negativity constraint on the government’s threat

extraction becomes binding; see the left-hand side of Figure 6. Furthermore, on the gov-

ernment’s preferred extraction path, the cumulative extraction would initially exceed that

on the bargained extraction path, but fall short of it at some point after ∆q?(z) becomes

positive. Thus, the government would at first like to extract more than the resource owners,

but in the long run, as extraction declines along any extraction path, the first-unit gains

become more and more important. In the end, the lobby group’s preferred convergence level

is higher than that of the government; see right-hand side of Figure 6.

Figure 7b shows the development of contribution payments. The curve first slopes down-

wards. Payments are zero in the period when ∆q?(z) = 0 and afterwards, they turn negative

as ∆q?(z) becomes positive; this behavior is shown to be general for Case IV in Appendix

A.3. After reaching a minimum, the curve slopes upwards and the payments become positive

before q∗∗(z?) hits the constraint. For z close to ẑw, the payment could also remain negative

and even be declining. In Appendix A.3, it is shown under which conditions this is the case.
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(a) ψwbw < ψb (b) ψwbw > ψb

In Figure 7b, contribution payments are negative around t = 45.

Figure 7: Contribution payment paths for χ2 < ρ2 (Cases III and IV).

When q∗∗(z?+) = 0, payments again sharply increase and once the non-negativity constraint

starts binding for q∗∗(z?), the development of payments is similar to that of the other cases.

Discussion.

Comparing the four extraction paths, we can see that the government’s threat extrac-

tion is always below the bargained extraction in Cases I to III, while it initially exceeds

the bargained extraction in Case IV. The period when the non-negativity constraint on the

government’s threat extraction becomes binding is delayed if either the slope of the marginal

environmental damage function, χ2, or the (absolute) slope of the marginal consumer-surplus

function, ρ2, increase (cf. Figure 3 with Figure 1 and Figure 5). If the slope of the marginal

environmental damage function is increased, the government would prefer a lower extraction

for a given amount of cumulative extraction; if the slope of the marginal consumer-surplus

function increased, both bargaining parties would prefer a lower extraction for a given amount

of cumulative extraction (see Proposition 3.1). Thus, if one of the slopes increased, the com-

promise path between welfare maximization and profit maximization would lead to a lower

extraction for a given amount of cumulative extraction and the period when the constraint

becomes binding would be delayed.

After the constraint has been hit, payments are never negative and become zero in the
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limit. One period before the constraint starts binding for q∗∗(z?), the government’s future

threat extraction does not involve extraction smoothing anymore. Then the lobby’s future

outside option deteriorates so that payments increase more than before. In the time before

the non-negativity constraint starts binding for q∗∗(z?+), payments are positive and declining

if the government’s preferred speed of extraction ψw is smaller than that of the lobby ψπ.

Then the difference between the equilibrium and the threat extraction ∆q?(z) gradually

declines. If both prefer the same speed of extraction ψw = ψπ, payments are positive and

constant. In this case, ∆q?(z) does not change over time. Payments can temporarily be

negative when the government prefers a higher speed of extraction than the lobby ψw > ψπ.

But as long as the threat exceeds the equilibrium extraction ∆q?(z) < 0, payments will be

positive.

Finally, we concentrate on the two “political” parameter sets, namely the contribution

valuations and the bargaining powers. The government’s marginal-utility parameter γ and

the lobby’s marginal-cost parameter λ constitute the lobby’s policy weight µ ≡ γ/λ. If the

government cares more for contribution payments or the lobby has a lower marginal cost of

collecting them, the lobby has a higher weight in the equilibrium extraction choice. Then

the convergence level ẑ increases and the speed of extraction ψ shifts towards the lobby’s

preferred one. By contrast, we do not need the government’s bargaining power η to determine

the extraction path; it only influences the contribution payments. If the government has more

bargaining power, the payments in the periods m usually increase. Only if the contribution

payments turn negative for a while, which they possibly do in Case III and definitely in Case

IV, they temporarily decline with the government’s bargaining power. However, the present

value of payments M always increases with the government’s bargaining power.

5 Resource Taxes

The lobbying-equilibrium policy has been derived as a direct choice of extraction quantities.

To generalize, we now also show how to establish the extraction path via resource taxes.

Consider the behavior of resource suppliers that are so small that they take the price path

as given; only through their lobby organization’s influence on policy can they internalize the

effect of supply on the price. Then along the lines of (15) the Euler equation of a resource

supplier is

p(q◦)− τ − ∂c(q◦,z)
∂q

= β ·
[
∂c(q◦+,z

◦
+)

∂z
+ p(q◦+)− τ+ −

∂c(q◦+,z+)

∂q

]
, (76)
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where ◦ denotes optimal extraction of a price-taking supplier and τ is the resource tax of the

current period.

The tax path can be used to implement the extraction path bargained between the lobby

and the government, (50). Comparing the two Euler equations, it must hold that

τ ? − β · τ ?+ =
1

1 + µ
·
{
∂x(q?,z)

∂q
− µ · ∂p(q

?)
∂q

q? − β ·
[
∂x(q?+,z+)

∂z
− ∂x(q?+,z+)

∂q
+ µ · ∂p(q

?
+)

∂q
q?+

]}
.

(77)

Because the extraction path q?(t+ s) is known, it is straightforward to derive the tax path.

For the explicit example, the tax path is given as follows:

Proposition 5.1 (Explicit Example: Tax Path) The tax path τ ?(t+ s) that implements

the extraction of q?(t+ s) by price-taking resource suppliers is defined by

τ ?(t+ s) = bπ − b+
[
a− (aπ − ρ2)

]
(1− ψκz)s ψ

[
b− κzz(t)

]
. (78)

Equivalently, as a state-dependent policy rule we have

τ ?(z)bπ − b+
[
a− (aπ − ρ2)

]
q?(z). (79)

Proof. Using the explicit functions from Table 1 in (77) yields:

τ ? − β · τ ?+ =
1

1 + µ
·
{
χ1 + (χ2 + µρ2) q? − β ·

[
χz − χ1 − (χ2 + µρ2) q?+

]}
. (80)

We can substitute the bargaining-equilibrium extraction path from Propositions 4.2 and 4.3,

which yields a difference equation for τ(t). Solving it and choosing a start value τ(0) that

leads to a non-explosive path yields (78).

The tax path consists of two parts. The first part, bπ−b, corrects for the different convergence

levels due to the pollution effects. The resource taxes converge to this part in the long

run, where they must just keep firms from extracting once that the lobbying-equilibrium

convergence level of cumulative extraction, z = ẑ, has been reached. The second part is

proportional to

a− (aπ − ρ2) =
χ2 + µρ2

1 + µ
. (81)

If the lobby’s weight µ is very high, (81) goes to ρ2 so that the resource suppliers are made

to act like a monopolist. If µ goes to zero, (81) goes to χ2 and we get a purely Pigouvian

taxation.
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Finally, note that implementing the lobbying equilibrium by resource taxation requires

that the tax receipts are distributed to the resource suppliers as a lump-sum payment. While

the time at which this happens is irrelevant in principle, in line of our lobbying model we

would expect that in each period, the tax receipts of the respective period are paid back.

6 Conclusions

In this chapter, we derived resource extraction determined by the bargaining of a govern-

ment and a lobby group. Equilibrium extraction is a compromise path between welfare

maximization and profit maximization. The government would prefer the former and the

lobby would prefer the latter if contribution payments and extraction were independent.

Because marginal contribution utilities are constant, equilibrium extraction does not de-

pend on the Nash bargaining powers: The weight of the lobby’s influence on the equilibrium

path increases in the government’s preference for contribution payments and decreases in the

lobby’s cost of collecting them. Depending on flow-pollution damages and the price elasticity

of resource demand, this implies that extraction is either too fast or too slow, compared to

welfare maximization. Total extraction is too high due to first-unit flow-pollution damages

and stock-pollution damages.

Along all equilibrium paths, extraction converges to zero as marginal costs increase with

cumulative extraction. Thus, the conflict of interest between welfare maximization and profit

maximization vanishes in the long run and so do the contribution payments after the welfare-

maximizing convergence level is reached. Prior to that, contribution payments decline if

the flow-pollution damage dominates, stay constant if the effects offset each other, and at

least temporarily increase if the monopoly effect dominates. Partially, the development of

contribution payments coincides with the change in the difference of the preferred extraction

quantities. If the monopoly effect dominates, contribution payments may turn negative

for a while. Then the weighted intertemporal profit loss from cooperating one period is

higher than the corresponding welfare loss. In the period before the government’s preferred

convergence level is reached, the lobby’s willingness to pay increases sharply. This is because

the government’s future threat extraction does not involve extraction smoothing anymore so

that the lobby’s future outside option deteriorates.

Finally, we demonstrate how the bargained extraction path can be implemented via

resource taxes. These consist of a constant part, correcting for the difference in preferred
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convergence levels, and a part that is linear in equilibrium extraction quantities, correcting

for the flow-pollution damage and the monopoly effect.

We believe the political-economy analysis of resource extraction to be a promising field

of research, given that in this policy area many people seem to be convinced of the resource

owners’ distortive influence. In particular, an interesting research topic would be the political

determination of backstop technologies’ development, which would broaden the perspective

on political distortions from resource consumption to investment.

A Appendix

A.1 Derivation of the Benchmark Solution

One way to derive a solution for the optimal (welfare-maximizing or profit-maximizing)

extraction would be to use (18) in the Euler equations of Section 3.2. Together with the

equation of motion of cumulative extraction (1) this constitutes a solvable system of difference

equations. We instead guess the form of the extraction functions and verify it afterwards, as

this is easier for our linear-quadratic system.

We guess that there exist constants Yw,0, Yw,1, Yπ,0, Yπ,1 such that the following state-

dependent extraction functions exist

q∗∗(z) =


Yw,0 + Yw,1z if Yw,0 + Yw,1z ≥ 0,

0 if Yw,0 + Yw,1z < 0,

(A.1a)

q∗(z) =


Yπ,0 + Yπ,1z if Yπ,0 + Yπ,1z ≥ 0,

0 if Yπ,0 + Yπ,1z < 0.

(A.1b)

Thus, we expect the quadratic utility functions to lead to extraction functions that are linear

in the state z as long as positive extraction is optimal. To solve for these coefficients, we

first use them to state the value functions (8) and (14) in an explicit form.

Lemma A.1 (Benchmark Intertemporal Welfare and Profit) Assume that13

0 < 1 + Yi,1 ≤ 1 for i = w, π. (A.2)

13(A.2) is a stability condition; cf. Gandolfo (2009, Chapter 3).
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Then

W ∗∗(z) =
bw + Yw,0

Yw,1
κz

1− β
(
1 + Yw,1

)q∗∗(z)−
aw
2

+ 1
Yw,1

κz

1− β
(
1 + Yw,1

)2 q
∗∗(z)2 − χzz

1− β
, (A.3a)

Π∗(z) =
bπ + Yπ,0

Yπ,1
κz

1− β
(
1 + Yπ,1

)q∗(z)−
aπ
2

+ 1
Yπ,1

κz

1− β
(
1 + Yπ,1

)2 q
∗(z)2, (A.3b)

where q∗∗(z) and q∗(z) are defined in (A.1) and bw and bπ are defined in (19).

Proof. For the proof, we ignore the case of (A.1) in which q(z) is restricted to zero. The

first reason is that due to the stability conditions, the case will not turn out to be relevant

if z is not too high at the start. The second reason is that it can be easily seen that if the

constraint becomes binding, we have

W ∗∗(z) = − χzz

1− β
, (A.4a)

Π∗(z) = 0, (A.4b)

which is obviously correct: W ∗∗(z) is then the present value of stock-pollution damage and

Π∗(z) is zero because zero production implies zero profits. Thus, let us now turn to the

unconstrained case. Substituting (A.1a) into (1) yields:

z(t+ 1) = z(t) + Yw,0 + Yw,1z(t). (A.5)

Hence,

z(t+ s) = z(t) +
s−1∑
ν=0

q(t+ ν) = z(t) + sYw,0 + Yw,1

s−1∑
ν=0

z(t+ ν), (A.6)

where ν ∈ N is the summation index. After some substitutions and rearrangements, we get

z(t+ s) =
(
1 + Yw,1

)s
z(t) + Yw,0

s−1∑
ν=0

(
1 + Yw,1

)ν
=
(
1 + Yw,1

)s [Yw,0
Yw,1

+ z(t)

]
− Yw,0
Yw,1

, (A.7)

where we have to assume (A.2) for stability. Substituting into (A.1a) yields:

q∗∗(t+ s) =
(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]
. (A.8)

From (18a), we then have (after some rearrangements)

w(t+ s) =

(
bw +

Yw,0
Yw,1

κz

)(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]
−

(
aw
2

+
1

Yw,1
κz

)[(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]]2

+

Yw,0
Yw,1

+

(
β

1− β
− 1

Yw,1

)(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]χz. (A.9)
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Using this in (4) yields:

W ∗∗(t) =

(
bw +

Yw,0
Yw,1

κz

)
∞∑
s=0

βs
(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]
−

(
aw
2

+
1

Yw,1
κz

)
∞∑
s=0

βs
[(

1 + Yw,1
)s [

Yw,0 + Yw,1z(t)
]]2

+

Yw,0
Yw,1

∞∑
s=0

βs +

(
β

1− β
− 1

Yw,1

)
∞∑
s=0

βs
(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]χz.
(A.10)

Evaluating the infinite sums yields (A.3a). (A.3b) can be obtained in the same manner using

(A.1b) instead of (A.1a), (18b) instead of (18a), and substituting the results into (6).

Using these value functions, we can explicitly derive the respective coefficients:

Lemma A.2 (Benchmark Extractions) In the social planner’s extraction function (A.1a),

we have the following coefficients:

Yw,0 = ψw · bw, (A.11a)

Yw,1 = −ψw · κz, (A.11b)

implying q∗∗(z) = ψw · (bw − κzz) where ψw is defined as stated in (23). For the monopolist’s

extraction function (A.1b), w has to be replaced by π in (A.11) so that we get q∗(z) =

ψπ · (bπ − κzz).

Proof. q∗∗(z) must maximize (A.3a), which we can split into instantaneous welfare of the

current period and discounted welfare of all periods afterwards

W ∗∗(z) = (bw − κzz) q(z)− aw
2
q(z)2 +

[
q(z)

r
− z
]
χz + β

{
bw + Yw,0

Yw,1
κz

1− β
(
1 + Yw,1

) (Yw,0 + Yw,1z+

)
−

aw
2

+ 1
Yw,1

κz

1− β
(
1 + Yw,1

)2

(
Yw,0 + Yw,1z+

)2 − χzz+

1− β

}
. (A.12)

Substituting the equation of motion (1), differentiating with respect to q(z), and substituting

(A.1a), we get the following first-order condition:

bw − κzz − aw
(
Yw,0 + Yw,1z

)
+ β

{
Yw,1bw + Yw,0κz

1− β
(
1 + Yw,1

)
− Yw,1aw + 2κz

1− β
(
1 + Yw,1

)2

[
Yw,0 + Yw,1

[
Yw,0 +

(
1 + Yw,1

)
z
]]}

= 0. (A.13)
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We can state (A.13) for z+ = z + q∗∗(z) and again substitute (A.1a). This generates two

equations in two unknowns. These contain quadratic terms, but taking (A.2) into account,

we can select the solution (A.11). q∗(z) is derived in the same way.

Substituting the coefficients from Lemma A.2 into (A.7), we can derive (24a) and, in the

same way, (24b). Substituting them into (A.2) yields the inequalities in Proposition 3.2. We

can further explicate the parameter restrictions as follows:

Lemma A.3 (Parameter Restrictions) (A.2) implies

2κz < ai +

√
a2
i +

4

r
κz (ai − κz) for i = w, π, (A.14)

which can only be fulfilled if ai > κz holds, as stated in (21).

Proof. (A.2) and (A.11) imply two inequalities, 0 < 1−ψi ·κz and 1−ψi ·κz ≤ 1. Substituting

(23) into the first inequality yields (A.14), for which ai > κz is necessary. This implies that

ψi is positive; see (23). Then the second inequality also holds.

The inequality in (23) follows from Lemma A.3. Finally, we can replace the unknown coeffi-

cients in the value functions of Lemma A.1 and simplify, which yields the value functions in

Proposition 3.3.

A.2 Derivation of the Nash Bargaining Solution

From the discussion in Section 4.2, we know that the present value of contribution payments

can be derived with the threat value functions and the equilibrium values of intertemporal

welfare and profit. Thus, we first derive the threat and equilibrium extraction paths and

then determine the contribution payment path. From the discussion in Section 4.2, we also

know that the threat extraction function must be the same as in the welfare-maximizing

case. Furthermore, we guess that the equilibrium extraction function has the same linear

form as in the benchmark cases. Using the coefficients from Lemma A.2, we thus have

q?(z) = Xg,0 +Xg,1z, (A.15a)

q#(z) = q∗∗(z) =


ψw · (bw − κzz) if bw − κzz ≥ 0,

0 if bw − κzz < 0.

(A.15b)

Strictly speaking, we would need to explicate the non-negativity constraint for q?(z); but by

the same logic as in the benchmark cases, the convergence level is only reached asymptotically
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so that the constraint never becomes binding. This is different for the threat extraction

quantity, however. At some point, the lobbying extraction may lead to a total extraction

above the welfare-maximizing convergence level. Then the non-negativity constraints are

still irrelevant for the equilibrium path, but they bind for the government’s threat.

The government’s threat value function must be equal to the welfare-maximizing one from

Proposition 3.3. The lobby’s threat value function also results from the welfare-maximizing

extraction path; it has the same form as (A.3b), but the π coefficients have to be replaced by

the w ones. Using the coefficients from Lemma A.2, we thus have the present-value functions

of Proposition 4.1.

We can now determine the present values of welfare and profits in equilibrium.

Lemma A.4 (Equilibrium Intertemporal Welfare and Profit) Assume that

0 < 1 +Xg,1 ≤ 1. (A.16)

Then

W ?(z) =
bw + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

)q?(z)−
aw
2

+ 1
Xg,1

κz

1− β
(
1 +Xg,1

)2 q
?(z)2 − χzz

1− β
, (A.17a)

Π?(z) =
bπ + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

)q?(z)−
aπ
2

+ 1
Xg,1

κz

1− β
(
1 +Xg,1

)2 q
?(z)2, (A.17b)

where q?(z) is defined in (A.15a).

Proof. The proof follows along the lines of the proof of Lemma A.1.

The next step is to determine the equilibrium extraction path because we know by the

discussion in Section 4.2 that this path maximizes (48) (and is therefore relatively easily

characterizable):

Lemma A.5 (Equilibrium Extraction) In the equilibrium extraction function (A.15a),

we have the following coefficients:

Xg,0 = ψ · b, (A.18a)

Xg,1 = −ψ · κz (A.18b)

so that q?(z) = ψ · (b− κzz) where ψ and b are defined as stated in (59) and (58b), respec-

tively.
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Proof. From (49) and (18), q?(z) must maximize

V (z) = (bw − κzz) q(z)− aw
2
q(z)2 +

[
q(z)

r
− z
]
χz + µ

[
(bπ − κzz) q(z)− aπ

2
q(z)2

]
+ β

[
W ?(z+) + µΠ?(z+)

]
, (A.19)

where µ is defined by (47). By Lemma A.4:

W ?(z+) =
bw + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

) (Xg,0 +Xg,1z+

)
−

aw
2

+ 1
Xg,1

κz

1− β
(
1 +Xg,1

)2

(
Xg,0 +Xg,1z+

)2 − χzz+

1− β
,

(A.20a)

Π?(z+) =
bπ + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

) (Xg,0 +Xg,1z+

)
−

aπ
2

+ 1
Xg,1

κz

1− β
(
1 +Xg,1

)2

(
Xg,0 +Xg,1z+

)2
.

(A.20b)

The coefficients in (A.18) are then derived along the lines of the proof of Lemma A.2.

Substituting the coefficients from Lemma A.5 into (A.7), we can derive (62). Substituting

(A.18b) into (A.16) yields the inequality in Proposition 4.3. We can now also state the

contribution payments that will be paid along the equilibrium path:

Lemma A.6 (Equilibrium Contribution Payments) The equilibrium contribution pay-

ment function is as stated in equation (60c) of Proposition 4.2.

Proof. Substituting the coefficients from Lemma A.5 into the equilibrium intertemporal wel-

fare and profit (from Lemma A.4) and the threat value function (from Proposition 4.1) into

(51) yields the present value of contribution payments in equilibrium, which we can state

for z and z?+. Using the equilibrium equation of motion (38a) together with the extraction

functions from (60), we can plug the two equations into (52) and derive the equilibrium

contribution payments.

The inequality in (59) follows from Lemma A.3. Finally, we can simplify the equilibrium

intertemporal welfare and profit and the present value of contribution payments in equilib-

rium derived in the proof of Lemma A.6, which yields the equilibrium value functions in

Proposition 4.4.

A.3 Development of the Contribution Payments

For the benchmark cases, we distinguished four cases in Section 3.3, constituted by the

relation between ψw, ψπ, bw, and bπ (Cases 1 to 4). We have similar cases for the relation
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between ψw, ψ, bw, and b that we use for the discussion in Section 4.4 (Cases I to IV). In this

Appendix, we first show how the sets of cases relate. Afterwards, we formally characterize

the development of payments.

Lemma A.7 (Parameter Relations) The benchmark cases and the lobbying-equilibrium

cases are summarized in Table 2 (on page 15) and Table 3 (on page 27), respectively. In

Cases 1 and 2, we have ψw < ψπ and ψw = ψπ, respectively. Then, Cases I and II, ψw < ψ

and ψw = ψ, respectively, hold because ψπ R ψw ⇔ ψ R ψw. In Cases 3 and 4, we have

ψw > ψπ and in Cases III and IV, we have ψw > ψ. Case 3 is defined by ψw < ψπbπ/bw.

Then Case III, ψw < ψb/bw, holds if ψw < ψ̃πbπ/bw where

ψ̃π ≡
2

aπ + 1+µ
µ

√
a2 + 4

r
κz (a− κz)− 1

µ

√
a2
w + 4

r
κz (aw − κz)

< ψπ. (A.21)

Else, Case IV, ψw > ψb/bw, holds, which it also does if ψw > ψπbπ/bw (Case 4).

Proof. From (23), (58), and (59), we have

ψwbw R ψb ⇔ ψwbw R ψ̃πbπ. (A.22)

The derivative of ψ̃π with respect to µ is greater than or equal to zero:

∂ψ̃π
∂µ

=
1

2

(
ψ̃π
µ

)2
aaw + 4

r
κz
(
a+aw

2
− κz

)√
a2 + 4

r
κz (a− κz)

−
√
a2
w +

4

r
κz (aw − κz)

 ≥ 0. (A.23)

From (A.23) and 0 < µ <∞, we have

lim
µ→0

ψ̃π < ψ̃π < lim
µ→∞

ψ̃π ⇔ 2

aπ +
awaπ+ 4

r
κz(aw+aπ

2
−κz)√

a2w+ 4
r
κz(aw−κz)

< ψ̃π < ψπ. (A.24)

By ψb = ψ̃πbπ and ψπ > ψ̃π, ψw > ψπbπ/bw implies ψw > ψb/bw. By contrast, ψw < ψπbπ/bw

does not necessarily imply ψw < ψb/bw.

In Proposition 4.2, we have the formula for the contribution payments. Substituting from

Proposition 4.1, taking into account that the non-negativity constraint on the government’s

threat extraction constitutes three distinguishable cases (see discussion at the end of Section

4.3), and simplifying yields:

m?(z) =
1

γ
·


Θ1 · (b− bw)

[
q?(z)− q∗∗(z)

]
+ Θ2 ·

[
q?(z)− q∗∗(z)

]2 if z < ẑw,

(b− bw) q?(z) + Θ3 · q?(z)2 −Θ4 · (b− bw) q∗∗(z)−Θ5 · q∗∗(z)2 if ẑw ≤ z < ẑw,

(b− bw) q?(z) + Θ3 · q?(z)2 if z ≥ ẑw,

(A.25)
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where

Θ1 ≡ η (1 + µ)

 1− β
1− β (1− ψwκz)

+
ψ (a− aw)

2
(

1
ψ
− a

2

)
(ψ − ψw)

 R 0 ⇔ ψ R ψw,

(A.26a)

Θ2 ≡
1− β

1− β (1− ψwκz)2

[
1

ψw
− aw

2
+ η (1 + µ)

(
1

ψ
− a

2

)]
> 0, (A.26b)

Θ3 ≡
aw
2
− 1

ψ
+ η (1 + µ)

(
1

ψ
− a

2

)
> − 1

ψ
, (A.26c)

Θ4 ≡
η (1 + µ)

1− β (1− ψwκz)
> 0, (A.26d)

Θ5 ≡
1

1− β (1− ψwκz)2

[
aw
2
− 1

ψw
+ η (1 + µ)

(
1

ψw
− a

2

)]
> − 1

ψw
. (A.26e)

Even though these coefficients are not intuitively interpretable, they allow a comfortable

characterization of the development of payments. In the following, we discuss the payments

and their development for different parameter relations. We start with the time after ẑw has

been reached so that q∗∗(z) ≥ 0 and q∗∗(z?+) ≥ 0 are binding for the welfare-maximizing path

because it is clear from Section 4.4 that this is easiest to analyze.

Proposition A.1 (Contribution Payments for z ≥ ẑw) For ẑ > z ≥ ẑw, contribu-

tion payments are positive. For z → ẑ, they asymptotically converge towards zero. This

convergence is monotone if

η (1 + µ) ≥ 1

2

(
1−

aw − a
2

1
ψ
− a

2

)
. (A.27)

Else, they increase for small z and decline for large z, in particular for z ≥ (ẑ + ẑw) /2. The

relation (A.27) always holds if η(1 + µ) ≥ 1/2. Else, if η(1 + µ) < 1/2, the left-hand side of

the relation (A.27) must be the larger, the smaller aw (or the larger aπ) for the convergence

of the contribution payments to be monotone. Note that the relation (A.27) is independent

of bw and bπ.

Proof. Using Θ3 > −1/ψ:

m?(z) >
1

γ

[
(b− bw) q?(z)− 1

ψ
q?(z)2

]
=

1

γ
(κzz − bw)︸ ︷︷ ︸

>0

q?(z) > 0, (A.28)

except asymptotically where q?(z) = 0 so that m?(z) = 0. Furthermore,

∂m?(z)
∂z

<
1

γ

[
(b− bw)− 2

ψ
q?(z)

]
(−ψκz) =

1

γ
(2κzz − b− bw)︸ ︷︷ ︸
R0⇔ zR(ẑ+ẑw)/2

(−ψκz)︸ ︷︷ ︸
<0

(A.29)
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so that contribution payments at the latest decline when z ≥ (ẑ + ẑw) /2. They always

decline if they decline for small z, in particular for z = ẑw. Differentiating the first line of

(A.25), substituting z = ẑw and rearranging yields (A.27). Along the lines of the remark

after Proposition 4.1, the fraction in (A.27) is positive so that η(1 + µ) ≥ 1/2 is sufficient

for the (weak) inequality in (A.27) to hold. Furthermore, the fraction in (A.27) is increasing

in aw and declining in aπ.

We continue with the time before ẑw has been reached so that q∗∗(z) ≥ 0 and q∗∗(z?+) ≥ 0

are not binding for the welfare-maximizing path. Here, we have to distinguish between the

four lobbying-equilibrium cases. We start with Cases I and II in which ψw ≤ ψ.

Proposition A.2 (Contribution Payments for z < ẑw and ψ ≥ ψw) Suppose that

ψ > ψw (Case I) or ψ = ψw (Case II) and that 0 ≤ z < ẑw. Then contribution payments are

positive. They are declining in Case I and constant in Case II.

Proof. In both cases, q?(z) − q∗∗(z) > 0; see (67). Additionally, ψ > ψw implies Θ1 > 0 for

Case I and ψ = ψw implies Θ1 = 0 for Case II; see (A.26a). Thus, all (remaining) parts of

(A.25) are positive. For the development of payments, we have

∂m?(z)
∂z

=
1

γ

[
Θ1 · (b− bw) + Θ2 · 2∆q?(z)

]
(ψw − ψ)κz. (A.30)

For Case I, every part of the square-bracketed term is positive and the round-bracketed

difference with which it is multiplied is negative so that the whole derivative is negative and

contribution payments decline. For Case II, the round-bracketed difference is zero so that

contribution payments remain constant.

Now we discuss Cases III and IV in which ψw > ψ.

Proposition A.3 (Contribution Payments for z < ẑw and ψ < ψw) Define

z1 = ẑw − ψ
1− ψwκz
ψw − ψ

(
ẑ − ẑw

)
=

ψwbw − ψb
(ψw − ψ)κz

, (A.31a)

z̃1 = z1 −
Θ1

2Θ2

1− ψκz
ψw − ψ

(
ẑ − ẑw

)
= z1 −

Θ1

2Θ2

b− bw
(ψw − ψ)κz

, (A.31b)

z2 = z̃1 −
Θ1

2Θ2

1− ψκz
ψw − ψ

(
ẑ − ẑw

)
= z̃1 −

Θ1

2Θ2

b− bw
(ψw − ψ)κz

, (A.31c)

where z1 < z̃1 < z2 by Θ1 < 0. If z ≤ z1 or z ≥ z2, contribution payments are positive. If

z1 < z < z2, they are negative. If z < z̃1, contribution payments are declining. If z ≥ z̃1,

they are increasing.
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Suppose that ψwbw ≤ ψb (Case III) and that 0 ≤ z < ẑw. Then z1 ≤ 0. If z2 ≤ 0,

contribution payments are globally positive and increasing. If z2 > 0, they are negative for

0 ≤ z < z2 and positive for z ≥ z2, and if z2 ≥ ẑw, they are globally negative. Furthermore,

if z̃1 > 0, contribution payments are declining for 0 ≤ z < z̃1 and increasing for z ≥ z̃1, and

if z̃1 ≥ ẑw, they are globally declining.

Now suppose that ψwbw > ψb (Case IV) and that 0 ≤ z < ẑw. Then 0 < z1 < ẑw

and contribution payments are positive and declining for 0 ≤ z ≤ z1. If z2 < ẑw, they are

negative and declining for z1 < z < z̃1, negative and increasing for z̃1 ≤ z < z2, and positive

and increasing for z2 ≤ z < ẑw. If z2 ≥ ẑw, contribution payments remain negative for

z1 < z < ẑw and if z̃1 > ẑw, they remain declining for z1 < z < ẑw.

Proof. In both cases, ψ < ψw implies Θ1 < 0; see (A.26a). In Case III, ψwbw ≤ ψb so that

z1 ≤ 0 and in Case IV, ψwbw > ψb so that 0 < z1 < ẑw; see (A.31a). We can write m?(z)

and ∂m?(z)
∂z

as functions of z:

m?(z) =
1

γ
·Θ2 · (ψκz − ψwκz)2 · (z1 − z) · (z2 − z) , (A.32a)

∂m?(z)
∂z

=
1

γ
·Θ2 · (ψκz − ψwκz)2 · (z̃1 − z) · (−2) . (A.32b)

Those levels of cumulative extraction for which m?(z) and ∂m?(z)
∂z

change their signs directly

follow from (A.32).

Finally, we consider what happens in the period after ẑw (or before ẑw) has been reached. In

this period, the current threat extraction q∗∗(z) is positive but the future threat extraction

q∗∗(z?+) is zero and its non-negativity constraint is binding. As this is relevant for at most

one period, we do not analyze how the contribution payments develop between z = ẑw and

z = ẑw, but how this development changes around z = ẑw and z = ẑw.

Proposition A.4 (Contribution Payments for ẑw ≤ z < ẑw) Suppose that η = 0.

Then ∂m?(z)
∂z

is continuous for z → ẑw and z → ẑw. Now suppose that η > 0. Then ∂m?(z)
∂z

is

discontinuous for z → ẑw and z → ẑw. For z → ẑw, its right-hand limit is greater than its

left-hand limit and for z → ẑw, its right-hand limit is smaller than its left-hand limit.

Proof. Subtracting the derivative of the first line in (A.25) from the derivative of the second

line in (A.25) for z → ẑw yields:

lim
z→ẑw+

∂m?(z)
∂z
− lim

z→ẑw−
∂m?(z)
∂z

=
η (1 + µ)ψwκz (b− bw)

1− β (1− ψwκz)

· βψ2

2 (1− ψκz)

[
(a− 2κz)

√
a2 +

4

r
κz (a− κz) + κ2

z +

(
a− κz +

2

r
κz

)
(a− κz)

]
. (A.33)
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The square-bracketed term is positive if a ≥ 2κz. Else, if a < 2κz, the square-bracketed term

is also positive because then

κ2
z +

(
a− κz +

2

r
κz

)
(a− κz) > (2κz − a)

√
a2 +

4

r
κz (a− κz)

⇔

[
κ2
z +

(
a− κz +

2

r
κz

)
(a− κz)

]2

>

[
(2κz − a)

√
a2 +

4

r
κz (a− κz)

]2

⇔ 4κ2
z (a− κz)2

(1− β)2 > 0. (A.34)

Thus, (A.33) is greater than (equal to) zero if η is greater than (equal to) zero. Subtracting

the derivative of the second line in (A.25) from the derivative of the third line in (A.25) for

z → ẑw yields:

lim
z→ẑw+

∂m?(z)
∂z
− lim

z→ẑw−
∂m?(z)
∂z

= −η (1 + µ)ψwκz (b− bw)

1− β (1− ψwκz)
< 0. (A.35)

Thus, (A.35) is smaller than (equal to) zero if η is greater than (equal to) zero.
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