
Manuel Peuster

Enhancing Development and Deployment of Soft-
warised Network Services

Dissertation

submitted to the

Faculty of Electrical Engineering,
Computer Science, and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

Paderborn, October 2019

Referees:
Prof. Dr. Holger Karl, Paderborn University, Germany
Prof. Dr. Antonio Capone, Politecnico di Milano, Italy

Additional committee members:
Prof. Dr. Christian Plessl, Paderborn University, Germany
Jun.-Prof. Dr.-Ing. Christoph Sommer, Paderborn University, Germany
Prof. Dr. Heike Wehrheim, Paderborn University, Germany

Submission: October 2019

Examination: 16.01.2020

Abstract

Future communication networks, like the upcoming 5th generation of mobile
networks (5G), require a new level of flexibility, agility, and manageability
that cannot be achieved by legacy network designs. One reason for this is
that legacy networks rely on hardware-based, manually configured packet
processing elements, the so called network functions. A solution for this is
transforming those hardware elements into software components, which can
be quickly developed and deployed, flexibly scaled on-demand, and auto-
matically managed. This transformation is called network softwarisation and
changes classical network planning, design, and operation tasks into software
development processes, creating new challenges for network operators.

This thesis explores those challenges and introduces concepts and solutions to
simplify the development and deployment of softwarised network functions
and services. Following a typical network function development cycle, I first
investigate the problem of developing stateful network functions that must
maintain and share their state during dynamic network reconfigurations, e.g.,
scaling. To do so, I introduce a distributed state management framework for
softwarised network functions and a seamless handover mechanism for traffic
control in dynamic network deployments. In the second part, I answer the
question of how to quickly prototype and test single network functions as well
as complex network services in multi-site network topologies. I introduce a
rapid prototyping framework for softwarised networks which cannot only be
used for function and service prototyping but also to test orchestration systems
in large-scale scenarios. In the third part, I explore the use of performance
benchmarking solutions to collect performance characteristics of virtualised
network functions and services to support automated resource dimensioning
decisions during deployment. Besides the introduction of a fully-automated,
end-to-end benchmarking solution, different approaches to model the per-
formance behaviour of the benchmarked functions and services as well as to
optimise the benchmarking process as such are investigated.

iii

Zusammenfassung

Zukünftige Kommunikationsnetze, wie z.B. die fünfte Generation der Mo-
bilfunknetze (5G), erfordern ein hohes Maß an Flexibilität, Agilität und Ver-
waltbarkeit, welches mit existierenden Netzwerkkonzepten und Netzwerkim-
plementierungen nicht erreicht werden kann. Ein Grund hierfür ist, dass
existierende Netzwerke auf Netzwerkelementen, den sogenannten Netzw-
erkfunktionen, basieren, welche durch Hardware implementiert sind und
meist manuell konfiguriert werden müssen. Ein Lösungsansatz, um diese Ein-
schränkungen zu beseitigen ist diese Netzwerkfunktionen statt in Hardware in
Software zu implementieren. Dies erlaubt es, die Netzwerkfunktionen schnell
zu entwickeln und bereitzustellen, mehrere Netzwerkfunktionen einfach zu
komplexeren Netzwerkdiensten zu verbinden sowie diese nach Bedarf zu
skalieren und voll-automatisiert zu konfigurieren. Diese Transformation wird
auch als ”Network Softwarisation“ bezeichnet und ersetzt die klassischen
Abläufe für die Netzplanung, den Netzentwurf und den Netzbetrieb durch
Softwareentwicklungsprozesse. Hierdurch ergeben sich viele neue Heraus-
forderungen für die Netzbetreiber.

Diese Dissertation untersucht diese Herausforderungen und präsentiert sowohl
Konzepte, als auch konkrete Lösungen, um die Entwicklung und Bereitstel-
lung von softwarebasierten Netzwerkfunktionen und Netzwerkdiensten zu
vereinfachen. Dabei folgt der Aufbau dieser Arbeit dem typischen Entwick-
lungszyklus einer Netzwerkfunktion bzw. eines Netzwerkdienstes. Zunächst
untersuche ich die Probleme die beim Entwickeln von statusbehafteten Net-
zwerkfunktionen, welche ihren Zustand während und nach dynamischen
Konfigurationsänderungen beibehalten und teilen müssen, auftreten. Dazu
präsentiere ich zum einen ein verteiltes System zum Exportieren, Übertragen
und Importieren von Statusinformationen und zum anderen einen Mechanis-
mus zum Umleiten von Datenströmen in dynamischen Netzumgebungen. Im
zweiten Teil der Arbeit beantworte ich die Frage, wie man einzelne Netzwerk-
funktionen und komplexe Netzwerkdienste mit wenig Aufwand prototypisch
umsetzen und in realistischen Szenarien mit mehreren Standorten testen kann.
Hierzu präsentiere ich eine Plattform zur Prototypenentwicklung von Netzw-
erkfunktionen und -diensten. Diese Plattform kann außerdem zum Testen von
Orchestrierung Systemen in großen Netzwerkszenarien eingesetzt werden. Im
dritten Teil der Arbeit untersuche ich Benchmarking-Ansätze zum Sammeln
von Vergleichsinformationen, um die Leistungsfähigkeit von Netzwerkfunktio-
nen und -diensten zu charakterisieren. Mit Hilfe dieser Informationen kann

v

dann der Entscheidungsprozess zum Ressourcenbedarf bei der Bereitstellung
der Funktion oder des Dienstes vollautomatisiert unterstützt werden. Neben
einer Ende-zu-Ende-Lösung zum automatisierten Sammeln der genannten
Vergleichsinformationen untersuche ich verschiedene Ansätze zum Model-
lieren und Repräsentieren der erhobenen Daten sowie zur Optimierung des
Benchmarking-Prozesses als solchen.

vi

Acknowledgements

I would like to thank Prof. Dr. Holger Karl for his advice and support over
the course of my research. I learned a lot from our motivating discussions
and from your valuable feedback while writing this thesis. I also want to
thank Prof. Dr. Antonio Capone for agreeing to act as external reviewer for
this thesis. It was always fun to work in the Computer Networks group and
I am very thankful for the interesting discussions and close collaborations
with my colleagues. In particular, I want to thank Sevil, Hadi, and Stefan
for the good times we had during our numerous trips to project meetings
and conferences. I am grateful that I had the opportunity to work on various
international research and innovation projects. Especially the intense work
within the SONATA and 5GTANGO projects was a lot of fun and I am thankful
that I had the possibility to meet and work with so many bright colleagues.

All this would not have been possible without the constant support of my
family and friends. Thank you! I want to, in particular, thank Tanja for always
supporting me with her love, her patience, and her understanding for long
workdays and short vacations. I would like to especially thank my parents,
Angelika and Karl-Heinz, for always believing in me and backing all decisions
I made in my life. Finally, I want to thank my sister, Jana, for always—in the
best sense of the word—competing with me and for supporting me with your
opinions.

vii

Contents

Abstract iii

1. Introduction 1
1.1. Chances and challenges in network softwarisation 2

1.2. Publications . 5

1.3. Structure of the thesis . 8

2. Background 11
2.1. Software defined networking . 11

2.1.1. Interfaces . 12

2.1.2. Open-source SDN controllers 12

2.2. Network function virtualisation 13

2.2.1. An NFV scenario . 15

2.2.2. The NFV reference architecture 16

2.2.3. Service description and packaging approaches 18

2.2.4. Management and orchestration 20

2.2.5. NFV infrastructure . 23

I. Development and operation support 25

3. Developing stateful VNFs 27
3.1. Introduction . 27

3.2. Related work . 28

3.3. A distributed state management framework 30

3.3.1. State management with global view 30

3.3.2. Programming model and APIs 33

3.4. Prototype implementation . 34

3.5. Evaluation . 35

3.6. Conclusion . 38

4. Operation support for stateful VNFs 41
4.1. Introduction . 41

4.2. Related work . 42

4.3. Seamless handover protocol (SHarP) 44

4.3.1. Handover scenario . 44

4.3.2. Transparency towards VNF and state management . . . 45

ix

Contents

4.3.3. Handover procedure . 47

4.3.4. Removing buffer load from the controller 51

4.4. Evaluation . 52

4.4.1. Handover characteristics 53

4.4.2. Multi-handover performance 58

4.5. Conclusion . 58

II. Rapid prototyping 61

5. Rapid prototyping of NFV functions and services 63
5.1. Introduction . 64

5.2. Related work . 66

5.3. Container-based network emulations 68

5.4. Emulating multi-PoP NFV scenarios 70

5.4.1. Workflow . 71

5.4.2. System architecture . 72

5.4.3. Topology definition . 73

5.4.4. Flexible endpoint API . 74

5.4.5. Chain management and forwarding paths 75

5.4.6. Evaluation . 76

5.5. Emulating PoP resource limits 78

5.5.1. Models . 79

5.5.2. Implementation . 84

5.5.3. Evaluation . 85

5.6. Conclusion . 87

6. Adding NSH-enabled SFC prototyping capabilities 89
6.1. Introduction . 89

6.2. Related work . 90

6.3. Requirements . 91

6.4. Adding NSH support to the emulation platform 92

6.4.1. SFC controller . 93

6.4.2. SFC API . 95

6.4.3. Simplified prototyping using pre-packaged SFC compo-
nents . 95

6.5. Case study . 97

6.6. Conclusion . 100

7. Supporting the evolution of MANO systems using emulation-based
smoke testing 101
7.1. Introduction . 101

7.2. Background . 102

7.2.1. Management and orchestration in NFV 102

7.2.2. Smoke testing . 104

x

Contents

7.3. Related work . 105

7.4. Emulation-based smoke testing 106

7.4.1. Approach . 106

7.4.2. Prototype . 109

7.5. Results . 113

7.5.1. Emulation platform scalability 113

7.5.2. Case study: OSM rel. THREE vs. OSM rel. FOUR 116

7.6. Discussion . 120

7.7. Conclusions . 121

III. Performance benchmarking 123

8. Automated benchmarking for NFV 125
8.1. Introduction . 125

8.1.1. Benchmarking as part of the NFV DevOps cycle 127

8.1.2. Challenges and research questions 129

8.2. Related work . 130

8.3. Automated performance benchmarking of NFV functions and
services . 132

8.3.1. Benchmarking platform design and workflow 133

8.3.2. Describing benchmarking experiments 135

8.3.3. Packaging benchmarking results 138

8.4. Case study: Chain-based benchmarking 139

8.4.1. Scenarios and approach 139

8.4.2. Throughput: Isolated function vs. service chain 140

8.4.3. Response time: Isolated function vs. service chain 145

8.5. Conclusion . 147

9. Benchmarking under time constraints 149
9.1. Introduction . 149

9.2. Problem formulation . 150

9.3. Related work . 152

9.4. Designing a T-CB system . 154

9.4.1. Building blocks and workflow 154

9.4.2. Selection component . 155

9.4.3. Prediction component . 156

9.5. Evaluation . 157

9.6. Conclusion . 161

10.Collecting, analysing, and publishing benchmarking data sets 163
10.1. Introduction . 163

10.2. Related work . 164

10.3. Methodology & workflow . 165

xi

Contents

10.4. Collecting, analysing, and publishing the first data sets 165

10.4.1. Experiment setup . 166

10.4.2. Data collection . 169

10.4.3. Resulting data sets . 169

10.4.4. Using the data sets . 172

10.4.5. Publishing the data sets 177

10.5. Conclusion . 177

11.Final thoughts 179
11.1. Summary . 179

11.2. Conclusions . 181

11.3. Future research . 182

List of Acronyms 187

List of Figures 191

List of Tables 195

List of Listings 197

Bibliography 199

xii

1. Introduction

Modern communication networks are not only built out of cables, fibres, wire-
less links, or simple packet-forwarding elements. They also contain a variety
of different packet processing elements, so-called network functions or middle-
boxes, which process, forward, manipulate, or drop packets. Those network
functions have been usually realised as dedicated, proprietary hardware boxes
that provide a predictable performance and are manually set up, configured,
and integrated into our networks. Typical examples are firewalls, intrusion
detection systems (IDSs), traffic shapers, or caches that are deployed on the
network path between the end users and the accessed end services. Those
functions are deployed and managed by network operators and are often
combined to more complex network services (NSs). A packet entering such
an NS traverses the involved functions one after the other before it leaves the
NS on its way to, e.g., the end user. This is called chaining and it requires
manual rewiring whenever a new function should be added to the service or
the service’s configuration should be changed.

A key problem of these hardware-based legacy NS is that they are inflexible
and cannot be deployed on-demand [Chi+12]. They are, for example, tied to
their physical location and provide a fixed amount of resources making them
difficult to use for the upcoming generations of networks, which promise more
agility, e.g., reduced time-to-market, more flexibility, e.g., on-demand scal-
ing of NS resources, and better manageability, e.g., fully-automated network
management [Chi+12; 5GP18].

Besides those technical challenges, network operators are currently over-
whelmed by the rise of more and more over-the-top (OTT) providers, such
as Google, Facebook, and Amazon, who are serving and, more importantly,
monetising most of today’s online content. One of the reasons for the success
of these OTTs is the high level of agility with which they operate and adapt
to new markets. In addition to this, new services, like WhatsApp, Skype, and
FaceTime are cannibalising classical communication services, like telephony
or short message service (SMS). As a result, network operators are seeking
new business opportunities and revenue streams as well as ways to improve
their operational flexibility to not become simple “bit-pipe” providers [Bes10].
Moreover, more and more industries depend on excellent network connectivity
and often come with very specific—sometimes contradicting—demands, such
as ultra-low latency or ultra-high data rate [IEE17]. Legacy, general-purpose

1

1. Introduction

networks, as they are currently run by the network operators, offer limited
support for those “vertical use cases”, such as remote surgery, smart man-
ufacturing (industry 4.0), connected vehicles, Internet of Things (IoT), and
public protection and disaster relief [IEE17]. Hence, network operators need
new solutions to offer vertical-specific networking solutions and services. To
address those challenges, the networking community started to introduce a
new concept, called “network softwarisation”, which turns network elements
either into programmable entities or transforms them entirely into software
components. Those components can then be executed on commodity hardware
using different virtualisation technologies. They can also be moved to cloud
infrastructures to make them available on-demand, simplify their management,
and improve their scalability.

The two most prominent concepts in the field of network softwarisation are
software defined networking (SDN) and network function virtualisation (NFV).
The goal of SDN is to make network elements, like switches, programmable
to improve the flexibility of networks. The instruction sets and programming
models used in SDN are, however, limited and the network elements are still
realised as hardware elements with a fixed location in the network. A usual
SDN scenario relies on a (logically) centralised control entity that has a global
view on all managed network elements and can thus optimise decisions and
control tasks. The NFV concept, in contrast, aims to entirely implement the
network elements as software components which can then be deployed and
executed using virtualisation technologies, like lightweight containers, uniker-
nels, or full-fledged virtual machines (VMs). This decouples the functionalities
of the network elements from the underlying hardware and turns them into
so-called virtual network functions (VNFs). In such a setup, cloud computing
concepts can be applied and the VNFs can be quickly instantiated at different
locations in the network and their resources can be scaled on-demand. At the
same time, the capital and operational expenses are reduced because VNFs
can be executed on of-the-shelf commodity servers.

Chapter 2 describes the technical background of both concepts in more detail
and provides an overview of the applied standards, involved protocols, and
widely used software projects.

1.1. Chances and challenges in network softwarisation

One of the most important benefits of network softwarisation is the possibility
to quickly develop and deploy new functionalities. Those can either be new
features, added to a single VNF or to a complex NS, but also completely new
NSs that are rolled out in an operator’s network for the first time. In any
case, changes on software components can be applied much quicker than on
legacy hardware components and should require much less manual effort.

2

1.1. Chances and challenges in network softwarisation

The remaining management effort can be reduced even further by automating
most parts of the deployment and operation tasks of software networks. But
the concept of network softwarisation enables even more: It allows us to apply
development and operation (DevOps) methodologies [BWZ15], widely used in
modern software development processes, to the networking domain. DevOps
not only promises to bring the network development and the operation tasks
closer together and to further reduce time-to-market, it also establishes a
direct feedback loop from operational systems to the developers. This allows
them to to quickly detect problems, e.g., performance issues, and react ac-
cordingly [Kar+16]. In such scenarios, new code is automatically deployed to
production within minutes, which allows to release new features several times
per day [BWZ15].

The use of softwarisation and DevOps concepts is, however, new to the telecom-
munication industry and requires organisational, technical, and operational
changes if they should be widely adopted [BWZ15; Kim+15]. Besides several
benefits, the use of SDN and NFV together with DevOps also introduces sev-
eral challenges and requires new processes, paradigms, and tools to support
VNF and NS developers as well as operators. Those supporting technologies
are the main focus of this thesis. More specifically, I focus on the following
three challenges.

First, if network functions are deployed as VNFs on top of virtualised infras-
tructure, their number might be (automatically) adapted to the traffic demand
by adding additional replicas of the VNFs or by removing existing ones—a
process called “horizontal scaling”. Those scaling operations work seamlessly
as long as the involved VNFs do not maintain state, i.e., they are stateless net-
work functions. If this is not the case and stateful VNFs are involved, solutions
are needed to distribute the state when new VNFs are added and maintain the
state when existing VNFs are removed (terminated). Such solutions concern
the development phase, e.g., implementing interfaces to import and export
VNF-specific state, as well as the operation phase of a VNF, e.g., traffic control
and flow rerouting during scaling operations. To address this, I present solu-
tions to support development and operation of stateful VNFs in Part I of this
thesis.

Second, developers as well as operators want to test VNFs and NSs before they
are deployed to production. One option is to use lab-scale testbed installations
that provide some network function virtualisation infrastructure (NFVI) on
which VNFs and NSs can be deployed and tested. However, such testbeds
come with several downsides. First, the installation and maintenance of such
testbeds requires a lot of effort. Second, it is complicated to reset such testbeds
to ensure a clean environment for upcoming tests, especially if the testbed is
shared with other developers. Third, most NFV scenarios consider distributed
infrastructures in which many spatially distributed and interconnected NFVIs,
the so-called points of presence (PoPs), are used. This is hard to replicate with

3

1. Introduction

testbed installations that typically provide only a basic NFVI installation repre-
senting a single PoP, or a small number of PoPs connected to a fixed topology.
To solve this, I present a rapid prototyping solution for NFV functions and
services that allows to emulate arbitrary topologies of multiple NFVIs in a lab-
scale testbed or even on a developer’s laptop. After that, I present an extension
to this prototyping platform that adds support to prototype advanced service
function chaining (SFC) scenarios. The presented platform cannot only be used
for prototyping VNFs and NSs but also to test NFV orchestration solutions in
massively distributed environments with hundreds of NFVI PoPs, which is
not possible with legacy testbed setups and development environments. To
this end, I utilise a software testing concept called “smoke testing” that aims
to quickly check if the basic functionalities of a complex system work correctly,
without testing all details of the system. I extend this concept and introduce the
concept of “emulation-based smoke testing for NFV orchestrators” together
with my lightweight prototyping platform in Part II of this thesis.

The third challenge results from the fact that software-based network functions,
running on cloud infrastructure and sharing physical resources with other
functions, show a completely different performance than legacy functions
deployed as dedicated hardware appliances [Mor17]. Where the vendors of
hardware functions provide fixed specifications about the achievable perfor-
mance, e.g., minimum throughput or maximum latency, the performance of
VNFs heavily depends on the execution environment as well as their configu-
ration. This makes it hard for operators to deploy software-based functions
without violating any quality of service (QoS) agreements. This becomes even
more important if the network operation is fully automated and controlled
by orchestration solutions. Those orchestrators need to have some knowledge
about the relationship between resource assignments, configurations, and
achievable performance of the managed VNFs to optimise deployment deci-
sions. One option is to use monitoring solutions to collect performance metrics
at runtime, but operators are also interested in those insights before VNFs and
NSs are deployed to production. To this end, I use software benchmarking
concepts and apply them to the NFV domain in Part III of this thesis. The
resulting solution, called “NFV benchmarking”, provides the workflows and
tools to automatically learn about the performance of VNFs and NSs and
produce so-called NFV performance profiles (NFV-PPs). Such an NFV-PP is
an offline model of the performance of a VNF or a complete NS and can
be distributed and shared as additional metadata together with the VNFs
and NSs it describes. It can finally be used by NFV orchestration systems to
optimise the deployment and operation of those VNFs and NS.

4

1.2. Publications

1.2. Publications

The content presented in this thesis was developed in the time between January
2015 and October 2019. During this period, I authored 4 journal papers and 12

peer-reviewed conference papers. The following chapters are directly based
on these papers and contain verbatim parts of them. The copies from my own
publications are not explicitly marked as such, to ease the flow of reading, yet
all sources are mentioned at the beginning of each chapter. Even though I am
the main author of all of these papers, I will use “we” for the reminder of
this thesis to indicate that the presented results are based on joint work. The
following list gives an overview of the used papers categorised by topics. In
addition to these papers, I contributed as co-author to 24 additional journal
and conference publications which are not listed here. Paper [Peu+17] was
awarded the 2017 IEEE NetSoft Best Demo Award, paper [PKK18b] the 2018
IEEE NetSoft Best Student Paper Award, and paper [PSK19b] the 2019 IFIP/IEEE
CNSM Best Poster Award.

VNF state management and flow control

[PK16a] Manuel Peuster and Holger Karl. ‘E-State: Distributed state management
in elastic network function deployments’. In: 2016 2nd IEEE Conference on
Network Softwarization and Workshops (NetSoft). IEEE. Seoul, South Korea,
June 2016, pp. 6–10. doi: 10.1109/NETSOFT.2016.7502432

[PKK18b] Manuel Peuster, Hannes Küttner, and Holger Karl. ‘Let the state fol-
low its flows: An SDN-based flow handover protocol to support state
migration’. In: 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). IEEE. Montreal, QC, Canada, June 2018, pp. 97–104.
doi: 10.1109/NETSOFT.2018.8460007

[PKK19] Manuel Peuster, Hannes Küttner, and Holger Karl. ‘A flow handover
protocol to support state migration in softwarized networks’. In: In-
ternational Journal of Network Management 29.4 (Apr. 2019), e2067. doi:
10.1002/nem.2067

Rapid prototyping platforms for NFV

[PKV16] Manuel Peuster, Holger Karl, and Steven Van Rossem. ‘MeDICINE:
Rapid prototyping of production-ready network services in multi-PoP
environments’. In: 2016 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). IEEE. Palo Alto, CA, USA,
Nov. 2016, pp. 148–153. doi: 10.1109/NFV-SDN.2016.7919490

[Peu+17] Manuel Peuster et al. ‘A flexible multi-pop infrastructure emulator for
carrier-grade MANO systems’. In: 2017 3rd IEEE Conference on Network

5

https://doi.org/10.1109/NETSOFT.2016.7502432
https://doi.org/10.1109/NETSOFT.2018.8460007
https://doi.org/10.1002/nem.2067
https://doi.org/10.1109/NFV-SDN.2016.7919490

1. Introduction

Softwarization and Workshops (NetSoft). IEEE. Bologna, Italy, July 2017,
pp. 1–3. doi: 10.1109/NETSOFT.2017.8004250

[Peu+18a] Manuel Peuster et al. ‘A Prototyping Platform to Validate and Verify
Network Service Header-based Service Chains’. In: 2018 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE. Verona, Italy, Italy, Nov. 2018, pp. 1–5. doi: 10.1109/NFV-
SDN.2018.8725614

[PKK18a] Manuel Peuster, Johannes Kampmeyer, and Holger Karl. ‘Containernet
2.0: A Rapid Prototyping Platform for Hybrid Service Function Chains’.
In: 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). IEEE. Montreal, QC, Canada, June 2018, pp. 335–337. doi:
10.1109/NETSOFT.2018.8459905

[Peu+19d] Manuel Peuster et al. ‘Prototyping and Demonstrating 5G Verticals:
The Smart Manufacturing Case’. In: 2019 IEEE Conference on Network
Softwarization (NetSoft). IEEE. Paris, France, June 2019, pp. 236–238. doi:
10.1109/NETSOFT.2019.8806685

Emulation-based testing of NFV orchestrators

[Peu+18b] Manuel Peuster et al. ‘Emulation-based Smoke Testing of NFV Orchestra-
tors in Large Multi-PoP Environments’. In: 2018 European Conference on
Networks and Communications (EuCNC). IEEE. Ljubljana, Slovenia, Slove-
nia, June 2018, pp. 1–9. doi: 10.1109/EuCNC.2018.8442701

[Peu+19a] Manuel Peuster et al. ‘Automated testing of NFV orchestrators against
carrier-grade multi-PoP scenarios using emulation-based smoke testing’.
In: EURASIP Journal on Wireless Communications and Networking 2019.1
(June 2019), p. 172. issn: 1687-1499. doi: 10.1186/s13638-019-1493-2

Performance benchmarking and testing of NFV functions and services

[PK16b] Manuel Peuster and Holger Karl. ‘Understand Your Chains: Towards
Performance Profile-Based Network Service Management’. In: 2016 Fifth
European Workshop on Software-Defined Networks (EWSDN). IEEE. The
Hague, Netherlands, Oct. 2016, pp. 7–12. doi: 10.1109/EWSDN.2016.9

[PK17] Manuel Peuster and Holger Karl. ‘Profile your chains, not functions:
Automated network service profiling in DevOps environments’. In: 2017
IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE. Berlin, Germany, Nov. 2017, pp. 1–6. doi:
10.1109/NFV-SDN.2017.8169826

[PK18] Manuel Peuster and Holger Karl. ‘Understand Your Chains and Keep
Your Deadlines: Introducing Time-constrained Profiling for NFV’. In:
2018 IEEE/IFIP 14th International Conference on Network and Service Man-
agement (CNSM). IEEE. Rome, Italy, Nov. 2018, pp. 240–246

6

https://doi.org/10.1109/NETSOFT.2017.8004250
https://doi.org/10.1109/NFV-SDN.2018.8725614
https://doi.org/10.1109/NFV-SDN.2018.8725614
https://doi.org/10.1109/NETSOFT.2018.8459905
https://doi.org/10.1109/NETSOFT.2019.8806685
https://doi.org/10.1109/EuCNC.2018.8442701
https://doi.org/10.1186/s13638-019-1493-2
https://doi.org/10.1109/EWSDN.2016.9
https://doi.org/10.1109/NFV-SDN.2017.8169826

1.2. Publications

[Peu+19c] Manuel Peuster et al. ‘Joint testing and profiling of microservice-based
network services using TTCN-3’. In: ICT Express 5.2 (June 2019), pp. 150–
153. issn: 2405-9595. doi: https://doi.org/10.1016/j.icte.2019.02.
001

[Peu+19b] Manuel Peuster et al. ‘Introducing Automated Verification and Validation
for Virtualized Network Functions and Services’. In: IEEE Communications
Magazine 57.5 (May 2019), pp. 96–102. issn: 0163-6804. doi: 10.1109/
MCOM.2019.1800873

[PSK19b] Manuel Peuster, Stefan Schneider, and Holger Karl. ‘The Softwarised
Network Data Zoo’. In: 2019 IEEE/IFIP 15th International Conference on
Network and Service Management (CNSM). IEEE. Halifax, Canada, Oct.
2019

Besides those scientific publications, my research also lead to several open-
source projects, some of which are actively used by the networking community.
I received the Outstanding Technical Contributor Award for the OpenSource
MANO (OSM) release THREE cycle from the European Communications Stan-
dards Institute (ETSI) for contributing the vim-emu project to OSM. Table 1.1
gives an overview of those projects and pointers to their online resources. Some
of them have been developed as part of the SONATA-NFV [SON15b] and
5GTANGO [5GT17a] H2020 5GPPP projects, in which I was heavily involved
between 2015 and 2019.

Table 1.1.: Open-source projects that have been created as part of my research activities

Project Part of License Reference

Containernet Mininet License [Peu16]
vim-emu OSM [ETS16c] Apache 2.0 [Peu17]

tng-pkg 5GTANGO SDK Apache 2.0 [5GT17a]
tng-bench 5GTANGO SDK Apache 2.0 [5GT17a]

SNDZoo CC-BY-SA 4.0 [PSK19a]

Finally, my research directly contributed to a standardisation activity within
the Internet Engineering Task Force (IETF)’s benchmarking methodology
working group (BMWG) [Ros+18]. In this work, we define and specify models
and methodologies to describe and automate VNF benchmarking tasks:

[Ros+18] Raphael Vicente Rosa et al. Methodology for VNF Benchmarking Automation.
Internet-Draft. IETF, July 2018. url: https://datatracker.ietf.org/
doc/draft-rosa-bmwg-vnfbench/ (visited on 08/19/2019)

7

https://doi.org/https://doi.org/10.1016/j.icte.2019.02.001
https://doi.org/https://doi.org/10.1016/j.icte.2019.02.001
https://doi.org/10.1109/MCOM.2019.1800873
https://doi.org/10.1109/MCOM.2019.1800873
https://datatracker.ietf.org/doc/draft-rosa-bmwg-vnfbench/
https://datatracker.ietf.org/doc/draft-rosa-bmwg-vnfbench/

1. Introduction

1.3. Structure of the thesis

The structure of this thesis follows the typical development and deployment
cycle of a VNF or NS. More specifically, the content of this thesis is divided into
three main parts, after presenting generic technical background in Chapter 2.
The following list presents these three parts and the chapters contained in each
of them as well as references to publications and supervised student thesis on
which those chapters are based. Further details about the used material are
given in the introduction of each chapter.

Part I: Development and operation support

Chapter 3: Developing stateful VNFs
One challenge VNF developers face during the development phase of stateful
VNFs is how to implement functionalities for the migration of the VNF’s
internal state, especially during dynamic lifecycle operations, such as scaling,
replication, or update. In Chapter 3, I introduce a state management solution
for elastic VNF scenarios that helps to transfer state from one VNF to another
when it is needed. This chapter is based on [PK16a].

Chapter 4: Operation support for stateful VNFs
If a set of stateful VNFs is able to properly migrate and share the internal
state, it still needs support from the NFV platform to reroute traffic upon, e.g.,
scaling operations, which must cooperate with the used state management so-
lution. This chapter introduces a flow handover protocol that allows seamless,
order-preserving, and loss-free flow handovers between VNFs. It is based on
two papers [PKK18b; PKK19], which both rely on concepts and prototypes de-
veloped during an outstanding Bachelor thesis done by Hannes Küttner under
my supervision [Küt17]. Mr. Küttner implemented a well-designed prototype
of the initial handover concept; the initial concept was defined by me. He was
also able to identify and solve several technical issues in the protocol design
and performed parts of the experiments used in the evaluation.

Part II: Rapid Prototyping

Chapter 5: Rapid prototyping of NFV functions and services
Once a VNF implementation is ready, it needs to be tested and integrated
with other VNF implementations to build larger and more complex NSs.
To support developers with this task, I present Containernet and vim-emu.
Together they build a rapid prototyping platform for VNFs as well as NSs
which is able to emulate user-defined multi-PoP NFV scenarios. This chapter
is based on [PKV16].

8

1.3. Structure of the thesis

Chapter 6: Adding NSH-enabled SFC prototyping capabilities
A key concept in NFV is SFC, which allows to interconnect arbitrary network
functions and reroute traffic through different forwarding paths, e.g., based on
the traffic type. Chapter 6 discusses an extension of my prototyping platform
with an network service header (NSH)-based SFC approach. This chapter is
based on [Peu+18a] and uses a reference implementation and experiment data
provided by Frédéric Tobias Christ as part of his Bachelor thesis [Chr18].

Chapter 7: Supporting the evolution of MANO systems using emulation-
based smoke testing
Besides new VNFs and NSs, new orchestration concepts need to be prototyped
and tested as well. To this end, I introduce the concept of “emulation-based
smoke testing”. The presented solution makes use of the emulation platform
introduced in Chapter 5 and extends it to automatically test state-of-the-
art management and orchestration (MANO) systems in large-scale multi-PoP
scenarios. This section is based on two papers [Peu+18b; Peu+19a]. The chapter
also presents a scalability analysis of my emulation platform.

Part III: Performance Benchmarking

Chapter 8: Automated benchmarking for NFV
Initial deployments of new (versions of) NSs are challenging because they
require expert knowledge for resource dimensioning decisions. This limits the
degree of automation of deployment processes or might lead to inefficient
resource usage due to over-dimensioning of assigned resources. To change
this, I introduce a benchmarking concept for VNFs and NSs which has initially
been presented in [PK16b]. As part of this work, I present an end-to-end
automation concept for NFV benchmarking experiments based on [PK17],
allowing to automatically collect performance data of VNFs and NSs under
different configurations.

Chapter 9: Benchmarking under time constraints
One challenge for automated NFV benchmarking comes from the fact that the
potential configuration space of an NS, which needs to be explored during
benchmarking, becomes very large. To this end, I present solutions to only
benchmark a subset of configurations and predict the performance values for
the missing configurations, as presented in [PK18].

Chapter 10: Collecting, analysing, and publishing benchmarking data sets
Using the concepts and tools presented in the previous chapters, I collect a
series of data sets from real-world NFV scenarios and make them available for

9

1. Introduction

use by other researchers. To do so, I define the methodology and workflows to
collect the data sets and introduce the softwarised network data zoo (SNDZoo)
project, which is a large collection of open NFV data sets, as initially presented
in [PSK19b]. This chapter also presents an approach to turn the raw data
into NFV-PPs that are compatible to commonly used scaling and placement
optimisation approaches, based on integer linear programs (ILPs).

Chapter 11: Final thoughts
I summarise and draw conclusions on the results presented in this thesis in
Chapter 11. Finally, I give an outlook on further research directions and future
work in the field of NFV development, deployment, and operation support.

10

2. Background

This chapter introduces the basic concepts and technologies on which the
remainder of this thesis is based. In particular, I introduce the two main
enablers of network softwarisation: SDN and NFV.

2.1. Software defined networking

The general idea behind SDN is to decouple network control tasks from
packet-forwarding tasks. This allows to centralise the control functionality of
a network into a so-called “SDN controller” while leaving the actual packet-
forwarding functionality at the network elements. The SDN controller can
then utilise its global view of large parts of the network to optimise forward-
ing decisions executed by the network elements. Implementation-wise, this
is typically realised by replacing legacy switches and routers with so-called
“SDN switches” offering programmable data planes. Those switches are then
connected to the (logically) centralised SDN controller executed on commercial
off-the-shelf (COTS) hardware or in virtualised environments, e.g., on cloud
infrastructure. The decoupled design abstracts the underlying network infras-
tructure and turns it into a single virtualised entity that can be used and shared
by different NSs or business applications as shown in Figure 2.1 [Ope12].

Enabling network programmability by offering a single abstract view to the
complete network, instead of single network devices, allows applications to
optimise the underlying network to their needs. It allows to dynamically
steer and route flows through the network when needed, e.g., sending traffic
to intermediate network functions, such as an IDS. Thus, new services can
be integrated into existing networks on-demand without requiring manual
reconfigurations. This is an important feature for the concept of NFV as
described in Section 2.2. In this thesis, SDN is used as part of the presented
NFV scenarios and solutions. It is in particular used in Chapter 4 in which an
SDN-based handover protocol for flow migration in elastic NFV deployments
is presented.

11

2. Background

APPLICATION LAYER

CONTROL LAYER

INFRASTRUCTURE LAYER

Business Applications

SDN
Control
Software

Network ServicesNetwork ServicesNetwork Services

Network Device Network Device Network Device

Network Device Network Device

API API API

Control Data Plane Interface
(e.g. OpenFlow)

Figure 2.1.: Software defined network architecture as described by the ONF (taken
from [Ope12])

2.1.1. Interfaces

One of the most important parts of an SDN deployment is the control data plane
interface between the control layer and the infrastructure layer with its network-
ing devices, such as switches. This unified interface, shown in Figure 2.1, aims
to simplify the way how network elements are configured. Instead of heaving
different, vendor-specific, and manually applied configuration schemes, a
single interface to all devices can be used. The networking community has,
however, not agreed to a single protocol that is used on this interface and a va-
riety of options are available. The most prominent protocol is the open-source
protocol OpenFlow [McK+08], which promises unified control of heterogenous
networks composed of network devices from different vendors. Another open
protocol is NetConf [Enn06], which is a more generic management and config-
uration protocol for a wide range of network devices. But there is also a variety
of vendor-specific, proprietary solutions such as Juniper Contrail [Jun12] or
Cisco Application Centric Infrastructure (ACI) [Cis19].

2.1.2. Open-source SDN controllers

When it comes to SDN controllers, even more options are available, many of
which are implemented as open-source projects. Without going into too much
detail, I provide a short overview of the most prominent SDN controllers in
Table 2.1. All of them offer a different set of features and target different deploy-
ment scenarios. For example, OpenDaylight [The13] and ONOS [Lin14b] are
built to be used in large production environments such as OpenStack [Ope10b]
cloud deployments. POX [The15b] and Ryu [Ryu17], in contrast, focus more on

12

2.2. Network function virtualisation

easy programmability and are better suited to prototype novel control concepts
and new SDN applications. In this thesis, most of the presented prototypes rely
on the Ryu controller, e.g., the flow handover protocol presented in Chapter 4

and the NFV prototyping platform presented in Chapter 5.

Table 2.1.: List of open-source SDN controllers (non exhaustive)

Project Language License Reference

NOX C++ GPL [The15b]
POX Python Apache 2.0 [The15b]
Beacon Java GPL [Eri13]
Floodlight Java Apache 2.0 [Pro11]
Ryu Controller Python Apache 2.0 [Ryu17]
OpenDaylight Java EPL 1.0 [The13]
ONOS Java Apache 2.0 [Lin14b]

2.2. Network function virtualisation

The term of NFV was introduced in 2012 in a white paper authored by a
series of network operators and officially published by ETSI [Chi+12]. The
white paper highlights the increasing problems that operators face within their
networks, which are built of a high number of hardware-based appliances com-
posing different services. Those special-purpose appliances require increasing
capital investments, are often inflexible when it comes to reconfigurations,
and quickly reach their end of life. Finally, the management of networks
consisting of a wide variety of different hardware appliances becomes increas-
ingly complex and barely feasible [Chi+12]. This motivates the main idea
behind the NFV concept which aims to transform network functions, which
have previously been implemented and deployed as hardware appliances,
into software components. These components can then be executed on top of
general-purpose information technology (IT) servers and can be isolated and
managed by virtualisation technologies.

The NFV concept plays well with the SDN ideas presented in the last section.
Both technologies can be considered to be highly complementary and are
usually used in combination. SDN is mostly used to control the data plane,
e.g., make packet-forwarding decisions. NFV, in contrast, is typically used
to implement more complex and compute-intensive network functionalities,
e.g., deep packet inspection (DPI) functionality. An example for the combined
deployment is a complex NS consisting of multiple VNFs, which are deployed
using NFV technologies. In this scenario, SDN can be used to steer the traffic
through the involved VNFs, a concept called SFC.

13

2. Background

NFV potentially offers a couple of benefits compared to legacy networks, as
described in [Chi+12]. First, NFV can reduce both capital expenses (CAPEX)
and operational expenses (OPEX). CAPEX can be reduced because network
functions can run on of-the-shelf IT servers, which are much cheaper than
specialised hardware. Further, development costs for software components are
often lower, especially when it comes to updating or replacing old generations
of network functions. OPEX can be reduced because of simplified maintenance
tasks, e.g., bug fixes. In addition, VNFs can be scaled and provisioned on-
demand reducing the used resources and thus costs.

Second, NFV encourages innovation of new network functionalities and ser-
vices because building software-based network functions can be done faster
than building their hardware-based counterparts. This reduces the time-to-
market by allowing to apply modern software development methods, such as
automated testing, continuous integration (CI), and continuous delivery (CD).
Also lab-scale testing becomes much easier because new ideas can be easily
validated on existing testbeds, without the need to purchase specific hard-
ware.

Third, NFV enables a new level of deployment flexibility, opening the door for
automatic, on-demand network optimisation. An example for this is placement
and scaling of VNFs and NSs. VNFs can, in contrast to hardware boxes, be
deployed, moved, or replicated to any compute infrastructure in an operator’s
network. As a result, VNFs can be dynamically moved to optimise, e.g., the
distance to the end user (latency) or the carbon dioxide footprint (by moving
to an energy-efficient data centre). Those optimisations can be automatically
controlled by software, a so-called orchestrator, and be performed on-demand,
e.g., based on monitored or predicted user demands.

Fourth, NFV has the potential to establish open markets in the information
and communication technology (ICT) industry by allowing functions and
services of different vendors to run on the same unified infrastructure. This
also reduces the operator’s risk of vendor lock-ins and might allow them to
compose NSs using VNFs from different vendors. It might also strengthen the
role of open source and open standards in the ICT domain [Nau+16]. This
fourth point, however, heavily depends on the mindsets and preferences of
the operators. Technologies like NFV can only act as enablers.

In this thesis, I mostly focus on benefits two and three and introduce concepts
and solutions to simplify the development and deployment of NFV functions
and services. In the remainder of this section, I introduce more details and
concepts about NFV, starting with a description of a typical scenario before
focusing on the architecture, function and service description, as well as
composition approaches, orchestration solutions, and finally on the underlying
infrastructure.

14

2.2. Network function virtualisation

End-to-end network service (NS)
with forwarding graph (VNF-FG) Scaled/Replicated VNF

End
Point

End
Point

VNF1
VNF3

VNF�

2

VNF�

2

VNF�

2

NFVI
PoP�

NFVI
PoP�

NFVI
PoP�

NFVI
PoP�

Virtualisation Layer

So
ftw

ar
e

D
at

a
Pl

an
e

H
ar

dw
ar

e

Physical link
Logical link

Virtualization

Management and Orchestration (MANO)
Control
Plane

Traffic

Figure 2.2.: A typical NFV scenario with multiple physical PoPs and a complex NS composed
of multiple VNFs managed and controlled by a MANO system (based on [ETS14b]).

2.2.1. An NFV scenario

This section briefly describes a typical NFV scenario as I consider it in this
thesis, if not stated otherwise. The presented scenario is aligned with the
scenarios considered by ETSI [ETS17a], 3rd Generation Partnership Project
(3GPP) [3GP15], and by IETF [QN15; HP15]. Aligning this thesis with the
relevant real-world NFV scenarios supports the applicability of the developed
concepts and solutions.

Figure 2.2 shows an end-to-end NS, which is composed of multiple VNFs. It is
placed between the end users and the end services and the traffic traverses the
involved VNFs. The VNFs are deployed on top of multiple physical infrastruc-
tures. Some VNFs are scaled and/or replicated by running multiple instances
of them. The physical infrastructure locations can be larger data centres, small
infrastructure in a central office, infrastructure co-located with a mobile base
station, or even edge devices offering virtualised resources for the execution
of VNFs. Each of them is a so-called NFVI as further detailed in Section 2.2.5.
Since all these infrastructure installations are spatially distributed, they are also
called PoP or NFVI-PoP. All these NFVIs are under the control of a (logically)
centralised orchestration system, the so-called MANO system, which manages
the deployment of NSs and is further described in Section 2.2.4.

15

2. Background

NFV Management and Orchestration

Virtualised
Infrastructure
Manager(s)

OSS/BSS

EM 1 EM 2 EM n

VNF 1 VNF 2 VNF n

NFVI

VNFMVNFMVNF
Manager(s)

NFV
Orchestrator

 V
e-

Vn
fm

N

f-V
i

 O
s-

M
a

Virtual
Computing

Virtual
Computing

Virtual
Computing

Computing
Hardware

Storage
Hardware

Network
Hardware

Virtualisation Layer

Vn-Nf

Vl-Ha

Service, VNF, and
Infrastructure
Description

Or-Vnfm

Vi-Vnfm

Or-Vi

Execution reference points Other reference points x
 Main NFV reference points

...

...

Figure 2.3.: ETSI’s NFV reference architectural framework as it is presented in [ETS14b]

2.2.2. The NFV reference architecture

ETSI’s NFV industry specification group (ISG) leads the standardisation activ-
ities in the NFV domain and released the specification document “Network
Functions Virtualisation (NFV); Architectural Framework” [ETS14b] in 2014. In
this document, a reference architecture for NFV is presented, which is widely
agreed and adopted in the ICT industry and other standards developing or-
ganisations (SDOs). This architecture defines and unifies the building blocks
used in NFV scenarios as well as the reference points between them, without
fixing implementation details of the building blocks or interfaces. Figure 2.3
shows this reference architecture and its building blocks which I describe in
the following.

1. Virtual network function (VNF): VNFs are software implementations
of a network function which are packaged and executed inside a vir-
tualisation container, like a VM or Docker container. Multiple VNFs
can be interconnected to form complex NSs. A single VNF can also be
decomposed into smaller execution entities, e.g., multiple VMs, which
are then called virtual deployment units (VDUs) and are out of scope of
the reference architecture in Figure 2.3. VNFs are executed on top of the
NFVI.

2. Element manager (EM): The EM is responsible for the functional man-

16

2.2. Network function virtualisation

agement of one or multiple VNFs. The main purpose of having EMs
is to have a translation components which can translate management
requests from the NFV MANO components to (proprietary) manage-
ment interfaces of specific VNF implementations. Depending on the used
MANO solution, different realisations of the EM concept can be found,
as described in Section 2.2.4.

3. NFV infrastructure (NFVI): NFVI is the environment on which VNFs
are executed and builds the abstraction layer between hardware resources
and virtual resources. An NFVI does not only offer virtual compute
resources but also virtual storage and networking resources, e.g., virtual
subnets. It provides all means to run complex VNFs and NSs on it.
ETSI published a series of specifications that describe the NFVI and
its performance requirements [ETS15; ETS18j]. More details about this
important building block are given in Section 2.2.5.

4. NFV orchestrator (NFVO): The NFVO is one of the three building blocks
of the NFV management and orchestration (MANO) part shown in
the reference architecture. The NFVO is responsible for the end-to-end
management and orchestration of NSs composed of multiple VNFs. This
includes automated management tasks, like scaling, placing, and healing
of VNFs. ETSI further specifies the MANO components in [ETS16a]. The
NFVO is described in more detail in Section 2.2.4.

5. VNF manager (VNFM): In contrast to the NFVO, the VNFM component
focuses on VNF lifecycle management, e.g., instantiation, configuration,
updating, scaling, and termination. ETSI foresees the possibility that
multiple VNFMs are deployed, each managing only a subset of the
deployed VNFs. This improves scalability and allows to build VNF-
specific orchestration solutions. The VNFMs closely collaborate with the
EMs.

6. Virtual infrastructure manager (VIM): VIMs are the third main building
block of the MANO part. They are responsible to manage the virtualised
resources provided by the NFVI as further described in Section 2.2.5.
Typically, NFVOs and VNFMs are able to connect to multiple VIMs from
different vendors using internal abstraction models, often called VIM
drivers.

7. Service, VNF, and infrastructure description: To be able to deploy an
NS or VNF, the MANO systems needs to have a description of those
artefacts. There are multiple standardised description approaches for
this, as further described in Section 2.2.3.

8. Operation/business support system (OSS/BSS): Finally, an NFV envi-
ronment needs to integrate with existing OSSs and BSSs of an operator.

Besides the building blocks, Figure 2.3 also shows three types of reference
points. First, the execution reference points which indicate that one building
block is executed by another one, e.g., VNF is executed by NFVI. Second,

17

2. Background

the main NFV reference points are shown which describe interfaces between
the involved building blocks. ETSI further specifies those reference points
and outlines their data models in a series of interfaces and architecture (IFA)
documents, such as [ETS18a; ETS18b]. However, those documents are still high-
level and do not provide concrete application programming interface (API)
specifications.

In all architecture discussions in this thesis, I build upon this reference archi-
tecture and map the developed artefacts and concepts against it, if not stated
otherwise. The goal is to align my work with the current developments in
industry and standardisation, easing adoption.

2.2.3. Service description and packaging approaches

The programming model mainly used in the NFV domain is based on so-called
descriptors which allow developers to specify how VNFs should be deployed
and how NSs are composed [Gar+16]. Those descriptors explicitly do not
contain the actual software implementation of the VNFs as such but specify
how existing VNF components, e.g., given as VM or container images, have to
be deployed, configured, and interconnected. As a result, the standardised and
practically used descriptor solutions are based on markup languages, such as
XML, JSON, or YAML.

Independently of the concrete description model, there is a common agreement
to have different kinds of descriptors to define different artefacts of an NFV
deployment. First, there is the so-called virtual network function descriptor
(VNFD) which defines a single VNF which may or may not consist of multiple
VDUs. The main task of this descriptor is to define which virtual resource
to assign to the corresponding VM or container, how to configure the VNF
software, which connection the VNF offers, and how to mange the VNF’s
lifecycle. Depending on the actual standard or implementation, there might
be slight variations of this descriptor, e.g., to define cloud-native (container-
based) VNFs, also called cloud-native network functionss (CNFs) [5GP18].
Nevertheless, conceptually they all follow the same goals and principles.

Second, there is the so-called network service descriptor (NSD) that speci-
fies how a set of given VNFs is bundled and interconnected (or chained) to
compose a large, more complex NS. An NSD typically contains a list of refer-
ences to the VNFDs of the VNFs to be used as well as additional connection
information, like entry points. In addition, most NSDs contain information
about the so-called VNF forwarding graphs (VNF-FGs) and/or VNF forward-
ing paths (VNF-FPs) that describe how packets should traverse the different
VNFs when they are sent through the NS. These features are typically used to
implement SFC.

18

2.2. Network function virtualisation

Third, some standards and implementations offer further descriptors, e.g., to
specify the deployment of so-called network slices [Par+18]. However, these
additional descriptors are not relevant for this thesis.

Multiple SDOs work on and publish NFV descriptor specifications. The most
relevant ones are the “TOSCA Simple Profile for Network Functions Virtualiza-
tion (NFV) Version 1.0” [Oas16] developed as open standard based on topology
and orchestration specification for cloud applications (TOSCA). As well as
the descriptor and data models developed by ETSI. The TOSCA description
models are based on specifications initially developed for the cloud-computing
domain and the ETSI description models are developed from scratch and
are based on ETSI’s IFA specifications [ETS18c; ETS18d; ETS18e]. However,
recently both description approaches started to converge and ETSI published
first specifications that describe how to express the ETSI data models using
TOSCA [ETS18f].

Implementation-wise, many NFV-related projects, especially the ones focusing
on orchestration, come with their own description formats. Even though many
of them claim to be either aligned or compliant to the existing TOSCA and
ETSI standards, they usually differ in many details, like the exact naming of
fields. Orchestration solutions like 5GTANGO [5GT17a] or OSM [ETS16c] base
their descriptor models on the ETSI specifications whereas the open network
automation platform (ONAP) [Lin18a] relies on TOSCA. A more detailed
overview about these relationships is given in Table 2.2 in Section 2.2.4.

To exchange descriptors and to bundle them with additional artefacts, like
VM images, the concept of VNF and NS packages is used. Those packages
can be exchanged and shared between different roles, components, platforms,
and environments. Standardisation-wise, TOSCA specifies the cloud service
archive (CSAR) format [Oas13] which is a generic format to package all kinds
of cloud applications, including VNFs and NSs. However, the CSAR format is
too unspecific for many NFV use cases which is the reason that ETSI specifies
an extended package format for VNFs [ETS18h]. A package format for NSs is
currently under development. On top of that, the 5GTANGO project specifies
an extended version of ETSI’s package format to not only include VNFs and
NSs in a single package, but to also be able to bundle them with a set of test
scenarios that can be used by their automated verification and validation (V&V)
platform [5GT17b; 5GT18a]. The 5GTANGO package specification was mainly
developed by me during my work in the 5GTANGO project.

In this thesis, I either use the description format defined by 5GTANGO [5GT18b]
or the one defined by OSM [ETS18l], which are both aligned to ETSI’s descrip-
tor models. Most of the solutions and tools, developed in this thesis, can be
applied and used with both description formats, if not stated otherwise.

19

2. Background

2.2.4. Management and orchestration

A MANO solution can be considered as the “brain” of every NFV deployment.
It is responsible to control, manage, and monitor the entire lifecycle of NSs and
VNFs, a process called lifecycle management (LCM). The following sections
present the main workflows, typical architectures, and a selection of open-
source MANO solutions relevant for this thesis.

2.2.4.1. Workflows

Once an NS and its VNFs are defined and packaged, using the description
approaches presented in Section 2.2.3, they are, together with other artefacts
like VM images, uploaded to a MANO system to be deployed. This process
of uploading NS- and VNF-related artefacts is also called “on-boarding” and
usually considered the first step in the LCM of an NS or VNF under control
of a MANO system. After on-boarding, the NS can be instantiated on top
of one or multiple NFVIs connected to the MANO system and managed by
one or multiple VIMs, as shown in Figure 2.3. The decision on which of the
connected NFVIs the NS and thus its VNFs should be deployed can either be
made manually as part of the instantiation request sent to the MANO system
or be fully automated and based on optimisation algorithms [MKK14]. To
perform the instantiation, the MANO system uploads the used artefacts to
the destination NFVIs and triggers their instantiation, e.g., start of the VMs
or containers. During this process, initial configurations, also called “day-0
configurations”, like the injection of secure shell (SSH) keys, is performed.
Finally, the network is configured to setup the SFC between the involved VNFs,
including the creation of one or multiple VNF-FGs and VNF-FPs. After that,
the instantiation is done and the NS if fully operational.

The operational NS is continuously monitored and can be reconfigured at
any point in time. These reconfiguration actions, also called “day-1 and day-2
configurations”, can either be triggered manually or be triggered automati-
cally, e.g., updating a VNF using an automated CI/CD pipeline. To perform
these actions, the MANO system relies on its VNFM and EMs, which offer
standardised configuration interfaces towards the, potentially proprietary,
VNFs. In real-world implementations, these configuration mechanisms are
usually realised by programmable plugins that are served together with the
NSs and VNFs and are executed within the MANO system. Examples are
the function-specific managers (FSMs) and service-specific managers (SSMs)
used by the SONATA service platform (SP) [Drä+17] or the Juju Charm-based
approach [Can12] used by OSM [ETS16c].

A special case of these reconfiguration tasks is manual or automated scaling of
single VNFs or entire NSs. Scaling can either be done by adding or removing

20

2.2. Network function virtualisation

resources to/from VMs or containers, called “vertical scaling”, or it can be
done by adding or removing complete instances of a VM or container, called
“horizontal scaling”. Both types of scaling are considered to be key functionali-
ties of NFV solutions because they allow the on-demand adaption of an NS’s
resources to its load. A special challenge in this process is to automatically pick
the right amount of resource to be assigned to NSs and VNFs, especially if not
much historical monitoring data is available. This is called “resource dimen-
sioning” and requires insights into the behaviour of VNFs and NSs, which can,
for example, be obtained using benchmarking approaches. Such benchmarking
approaches are further investigated in this thesis (Part III). Finally, a MANO
system is also responsible to terminate NSs and VNFs once they have reached
the end of their lifetime and are not needed anymore. During NS and VNF
termination, all previously allocated resources are freed to be available for
new deployments.

2.2.4.2. Architectures

ETSI’s reference architecture, as shown in Figure 2.3, already provides a
high-level architecture for MANO systems, splitting them in two main compo-
nents, the NFVO and VNFM. An additional ETSI specification [ETS16a] refines
this and adds additional components, like catalogues and repositories to the
MANO system. The former are used to store static information, like descriptors
and artefacts that are on-boarded to the MANO system, and the latter store dy-
namic information, like runtime records, e.g., internet protocol (IP) addresses
of instantiated NSs and VNFs. Even though those high-level components are
more or less visible in the architectures of all real-world MANO systems, most
of them split those components into smaller functional blocks, often following
a micro service-based design pattern. As an example, OSM rel. FIVE splits
the VNFM into a resource orchestrator (RO) and VNF configuration and ab-
straction (VCA) component and the NFVO is represented by a module called
LCM. Monitoring functionality is implemented in a standalone component,
called MON, and is able to talk to all other components of the system. On
top of all this, OSM offers a unified northbound interface implemented in a
component called NBI. All those small components are interconnected through
a message broker offering publish/subscribe communication semantics, an
approach initially used by the SONATA SP [SON15a].

More important than the alignment with the architecture specifications pub-
lished by ETSI is the alignment to interface standards to enable interoperability
between MANO components and to allow reuse of artefacts, e.g., NS packages.
ETSI specifies those on two levels. First, a high-level specification is done
in the so-called IFA documents, e.g., [ETS18a; ETS18b], based on which the
ETSI solution (SOL) specifications are created. The latter provide concrete
implementation details for APIs and data models. The most prominent ones

21

2. Background

are SOL002 (RESTful VNF configuration), SOL004 (VNF package format),
and SOL005 (RESTful MANO northbound) [ETS18g; ETS18h; ETS18i], but
more specifications are under development and can be found on the ETSI
website [ETS19].

2.2.4.3. Open-source MANO solutions

Table 2.2 gives a brief overview over available open-source MANO solutions.
Besides orchestration solutions that have been developed within different
research projects, like T-NOVA TeNOR [Rie+16], UNIFY ESCAPE [Son+15],
or SONATA SP [Drä+17]; some smaller projects, like OpenBaton [Fra15],
also exist. Further, there are a couple of projects developed by companies
that offer open-source versions of their products with reduced functionality,
e.g., Cloudify [Clo18]. Finally, there are two big players that are supported
by many operators, SDOs, and vendors: The first is OSM [ETS16c] and the
second is ONAP [Lin18a]. Both are backed by their own, growing open-source
communities.

Table 2.2.: List of open-source MANO solutions (non exhaustive)

MANO Project License Model Reference

TeNOR T-NOVA Apache 2.0 ETSI [Rie+16]
Unify UNIFY Apache 2.0 custom [Son+15]
SONATA SP SONATA-NFV Apache 2.0 ETSI [Drä+17]
OpenBaton Frauenhofer FOKUS Apache 2.0 ETSI [Fra15]

Cloudify Cloudify Inc. Apache 2.0 TOSCA [Clo18]
RIFT.ware RIFT.io multiple ETSI [RIF16]

OSM ETSI OSM Apache 2.0 ETSI [ETS16c]
ONAP Linux Foundation multiple TOSCA [Lin18a]

In this thesis I use OSM as MANO solution for the presented prototype
implementations. OSM which was chosen because it is, at the time of writing,
the NFV MANO platform offering the most features and highest degree of
production readiness. Parts of my research presented in Chapter 5 even got
adopted and are now officially part of the OSM project [ETS16c]. However,
concepts presented in this thesis can be equally implemented using other
platforms, such as SONATA-NFV or ONAP, by investing sufficient engineering
effort.

22

2.2. Network function virtualisation

2.2.5. NFV infrastructure

The infrastructure used to deploy and execute VNFs and NSs is, besides the
high-level management parts, the most important layer of the NFV stack. At
the end, the achieved performance of all VNFs and NSs directly depends on
the infrastructure on which they are executed. Further, the used infrastructure
does directly influence the OPEX and needs to operate as efficiently as possible.
In this section, I give a brief overview of state-of-the-art NFVI concepts and
solutions, not only considering the actual infrastructure (NFVI) but also the
often tightly coupled VIMs.

Today, the de-facto infrastructure standard in production NFV environments is
based on infrastructure as a service (IaaS) cloud concepts and reuses manage-
ment systems and infrastructure solutions from the cloud community, such as
OpenStack [Ope10b]. Based on this, integration projects, like OPNFV [Lin16],
have evolved, which create bundles of infrastructure solutions that are specif-
ically tailored for NFV scenarios, e.g., by combining OpenStack with SDN
controllers like OpenDaylight [The13] or ONOS [Lin14b]. But also commer-
cial providers and vendors, such as Amazon EC2 [Ama15] and VMware
vSphere [VMw13], offer different IaaS solutions specifically tailored for NFV
scenarios.

IaaS solutions from the cloud computing community are, however, usually
not optimised for fast packet processing, which results in bad performance
of VNFs executed on them. One reason for this are the high number of
context switches needed when network packets are transferred between the
physical interface of a cloud node and the virtual interfaces of the VNFs.
To solve this, IaaS platforms are usually extended with additional features
and acceleration technologies for fast packet processing. Examples are Intel’s
data plane development kit (DPDK) [Lin17] and single-root input/output
virtualisation (SR-IOV).

2.2.5.1. Container-based NFV

Besides full-fledged VMs, container-based solutions have gained a lot of atten-
tion in recent years. Container solutions, such as Docker [Doc13], are by design
much more lightweight than VMs and allow much denser deployments on
the same physical resources, due to less overheads introduced by, e.g., guest
kernels. It also leads to faster startup and configuration times, facilitating use
cases like on-demand scaling. However, the isolation offered by most container
solutions cannot keep up with normal VMs. Still, the NFV community pre-
dicts containers to be the future of NFV, especially if scenarios with compute
resources at the edge of the network are considered, e.g., multi-access edge
computing (MEC) [ETS14a].

23

2. Background

Container-based VNFs, so-called CNFs, can be either deployed on bare-metal
container platforms, e.g., a bare-metal Kubernetes [Lin14a] installation, or
within existing cloud infrastructure using solutions like the OpenStack Mag-
num project [Ope17]. Magnum allows to easily deploy and mange Kuber-
netes [Lin14a] clusters on top of OpenStack. Kubernetes itself is an orches-
trator to run and manage huge amounts of containers in cluster setups and
it can be used as VIM to manage CNFs. MANO solutions like SONATA SP,
OSM, and ONAP are working towards the support of Kubernetes as VIM
and its seamless integration with other VIM and NFVI solutions. I present a
container-based NFV platform for experimentation and rapid prototyping in
Chapter 5 of this thesis.

24

Part I.

Development and operation
support

25

3. Developing stateful VNFs

One of the key benefits of NFV is the possibility to automatically scale VNFs
and NSs on-demand. As discussed above, one option for this is adding VNF
instances to the NS or removing them when needed—horizontal scaling. Hor-
izontal scaling, however, becomes challenging when the scaled VNFs are
stateful, since their state must be migrated between instances when new in-
stances are added to or old instances are removed from the deployment. In this
chapter, I present a state management framework that supports VNF devel-
opers to implement stateful VNFs that can automatically share their internal
state in such elastic, on-demand environments. This chapter is based on my
paper [PK16a] and contains figures and verbatim copies of the paper’s text.
After reviewing existing work about VNF state management in Section 3.2,
the chapter presents the concepts and system design of “E-State”, a state man-
agement solution that does not require a central controller to exchange VNF
state in Section 3.3. After that, a prototype implementation is presented and
compared to three other approaches in Section 3.4 and Section 3.5. Section 3.6
concludes this chapter.

3.1. Introduction

One of the main problems in creating elastic VNF deployments, in which VNF
instances can be added and removed on-demand, is the fact that many VNFs
are stateful. Typical examples for such stateful VNFs are network address
translation (NAT) boxes that store mappings between ports and hosts or IDSs
that keep track of pattern matchings to detect attacks. Typical VNF application
state can be divided into two classes [Raj+13]. The first class contains global
state accessed independently of the processed traffic. The second class contains
partitioned state that consists of chunks of state directly related to one or
multiple network flows or sessions processed by the VNF. These flow- and
session-specific state chunks can be identified by the same information used
to identify single flows or sessions [Raj+13]. For IP-based traffic, this is usually
done by 5-tuples consisting of source IP, target IP, source port, target port,
and transport protocol. In typical VNFs, most parts of the application state are
represented by the second class that can easily be distributed across multiple
VNF instances [Raj+13; Gem+12].

27

3. Developing stateful VNFs

A problem appears when an elastic VNF deployment is changed and VNF
instances are dynamically added to (scale-out) or removed from (scale-in)
the system. In such cases, the flow or session assignments are changed to
rebalance the traffic among the available instances, which can lead to lost state
information.

One obvious solution to handle this in the scale-out case is assigning only
new connections to recently added instances and keep existing connections on
old instances that already contain the corresponding state. Even though this
solution is easy to implement, it will lead to imbalanced load situations because
connections cannot be moved away from overloaded instances, limiting the
benefits of horizontal scaling. For the scale-in case, the obvious solution is
to keep instances in the system as long as there are ongoing connections
assigned to them. But this comes with the downside that scale-in operations,
more specifically the termination of VNF instances, may be blocked for an
unpredictable amount of time by long-living connections. This will, depending
on the pricing model of the used infrastructure, lead to non-optimal resource
consumption and thus increased OPEX. These problems create the need of
a state management system which is able to automatically share and move
application state between VNF instances.

This chapter introduces the “E-State framework”. This framework provides
an approach to share application state between elastically deployed VNF
instances by using logically distributed state memory that is accessed by each
VNF instance. With this solution, no central control application is needed and
the system becomes more fault-tolerant and scalable. We introduce a proof-
of-concept implementation of our approach and compare it to three other
approaches: A system without state management, a system with centralised
state memory, and a system that uses a generic distributed memory solution
not optimised for VNF state management.

3.2. Related work

There exist several solutions for VNF state management [OR12; Raj+13; Gem+14].
In the first approach, Olteanu et al. [OR12] propose a mechanism that is in-
spired by virtual machine migrations. It moves VNF state from one VNF
instance to another in three steps. In the first step, the complete state is copied
to the target instance so that this instance is ready to process new flows. In
the second step, all new flows are forwarded from the source instance to the
target instance, which processes them and allocates new state. The third step
freezes the processing of the remaining old flows on the source instance and
moves their flow-related state to the target instance. At the end, old flows are
redirected to the target instance by changing forwarding rules on an SDN
switch.

28

3.2. Related work

The second solution is called Split/Merge [Raj+13]. It is implemented as a
shared library that acts as a memory allocator for VNFs. It exposes an API that
allows allocating flow-related and globally-shared state. A central controller
decides which state should be moved between the instances. The approach
implements a mechanism to merge state by using custom combiner functions
defined by the VNF developer.

The third framework is called OpenNF [Gem+14]. It provides coordinated
control of VNF state and network forwarding rules. This framework uses a
central management application to move state and flows from one instance to
another. To integrate a VNF into the system, it has to implement a set of API
functions to pull and push state information. When the central management
application decides to move a flow from one instance to another, it pulls the
state from the source instance and pushes it to the target instance. During
this process, arriving packets are buffered at the controller until the state is
transferred to the target. Then the buffered packets are forwarded to the target
instance. By using these mechanisms, OpenNF is able to perform loss-free and
order-preserving flow moves. Two extensions of this approach [GA15; KDS15]
add solutions for direct state transfers between VNFs to protect the controller
from becoming the bottleneck when incoming packets are buffered. However,
the system management remains centralised in both extensions.

All these approaches utilise a centralised control component to decide which
parts of state are moved between VNF instances. Our framework is unique in
not relying on such a centralised state management controller; rather, it utilises
logically distributed state memory to receive state information from other
instances when they are needed. Olteanu et al. [OR12] do provide a simple
migration mechanism for VNF state. They do not provide solutions to share
global state between VNF instances and each state item is always only visible
on exactly one instance. Split/Merge [Raj+13] provides custom combiner
functions to merge state from different instances, which is also possible with
our solution. But Split/Merge’s combiner functions are only executed when
flows are consolidated on one VNF instance and are not used to provide a
global view on the entire state space when needed. OpenNF [Gem+14] uses
central applications to control the state management. This requires knowledge
about the VNFs running in the system to decide which parts of the state should
be moved. In contrast, our system reacts to flows moving in the underlying
network and does not depend on state management decisions taken outside
of the VNF instances.

Further state management solutions for VNFs are called CoGS [SGZ17] and
SliM [Nob+17]. CoGS also provides a global view on the state of multiple
VNFs, but uses a centralised coordinator to host this state. SliM aims to reduce
overheads introduced by duplicated packet processing during state migration
and proposes an interface to only share those packet information between the
VNFs that are relevant for state changes. CoGS and SliM focus on specific

29

3. Developing stateful VNFs

subproblems and especially SliM is complementary to our solution. Both
papers reference our original work on E-State [PK16a] and were presented one
year after our solution.

Solutions like OpenState [Cas+15], on the one hand, focus on enabling state-
ful functions on programmable switches inside the data plane and thus are
complementary to E-State which targets software-based VNFs running on
commodity servers. FlowBlaze [Pon+19], on the other hand, focuses on im-
plementing stateful network functions in hardware to target, e.g., SmartNICs.
This is out of scope of E-State.

Other more generic solutions to share common information between VNF
instances are distributed memory systems, like a REDIS Cluster [Red15] or
Apache Cassandra [The15a]. These approaches provide good scaleability but
have no notion about the structure of the managed state. Our solution, in con-
trast, explicitly exploits the state structure and keeps flow related information
on the VNF instance that needs it.

3.3. A distributed state management framework

We introduce the “E-State framework”, a flexible and scaleable state manage-
ment solution that enables elasticity for stateful VNFs. E-State is built as a
software library used to access and share state information. In our design,
every VNF instance becomes one node of the distributed state memory and
thus the system automatically scales with the number of VNF instances.

3.3.1. State management with global view

A VNF can use E-State to store arbitrary chunks of state data, e.g., a serialised
data structure representing a runtime object. We call these chunks state items.
A simple solution to share state items between VNF instances would be to
allocate them in a distributed data structure and write all updates directly to
this structure. The obvious problem of this approach is the additional delay
that is introduced when one VNF instance frequently reads or writes items
stored on another instance, similar to, e.g., page trashing in distributed shared
memory.

A better solution is to exploit the fact that most state items are directly related
to processed flows or sessions. All accesses to these state items are performed
by a single VNF instance and accesses to other VNF instances are only needed
when the traffic assignment changes. As a result, E-State provides an access
pattern offering fast reads and writes to flow-related state items of the local

30

3.3. A distributed state management framework

VNF instance and the possibility to read state items on other instances when
needed.

3.3.1.1. General Design

In the E-State framework each VNF instance stores all its state items in its
own local state memory that is never written by other VNF instances. This
results in small access delays and ensures that each VNF instance has a strictly
consistent view of its own state items.

Even though this simple design would ensure that the internal VNF state is
visible to our system, it does not yet provide a solution to exchange state items
between VNF instances. To overcome this, the system offers a special read
operation that allows a VNF to request state items from all VNF instances in
the elastic deployment. Using this, a VNF is always able to request global state
information about the entire elastic system. An example for this is receiving
the match counter value from each VNF instance of an elastic IDS system. The
only thing the VNF developer has to take into account when global reads are
used is that they provide an eventual consistency model instead of the strict
consistency model provided by local operations. However, our framework
offers the flexibility to implement stricter consistency models so that it can also
be used as an experimental platform for different state sharing approaches.

3.3.1.2. Reduce operation

A global read operation receives a list that contains up to n state items where
n is the number of VNF instances in an elastic deployment. Such a list does
not provide a consolidated view on the system and needs some processing to
compute a global view of the requested state items. To do so, VNF developers
can specify a reduce function that maps a list of state items to a single, consoli-
dated state item representation. A typical example is a reduce function that is
passed a list of counter values and returns their sum or mean. This concept
is comparable to custom merge functions presented in [Raj+13] but provides
more flexibility since a global read can be applied whenever a VNF needs it.

Figure 3.1 demonstrates the E-State concept. It shows three instances of a
VNF (e.g., three VM instances or containers) all using the E-State library
interconnected through a network, e.g., the management network used to
control the VNFs within the NFV platform. Each instance allocates different
state items in its local state memory depending on the flows they process
(State.A - State.E). Some state items appear on multiple instances since a local
version of the contained state is allocated by each VNF instance. The figure
shows how these replicated state items can be fetched by other instances with

31

3. Developing stateful VNFs

Figure 3.1.: State management with local and global view

the get global operation and how a consolidate state item that reflects the global
view on the system is computed on-the-fly by reduce functions.

Such reduce functions cannot only be used to combine state items but also to
select a particular item out of the collection of state items stored on different
instances. The most common use case for this is finding the state item that
was updated most recently. To do so, a reduce function needs a happened-
before relationship between state item updates which can, e.g., be based on
real-time timestamps with the risk to produce wrong relationships caused
by clock drifts. A better solution for this is using a vector clock mechanism
that provides happened-before relationships between state items on different
instances [Lam78]. Another solution for this is selecting the latest updated
replica based in its values. One candidate for this are state items which are
known to contain monotonically increasing values, e.g., sequence numbers of
the processed packets. A reduce function could simply return the item with
the highest sequence number. Nevertheless, this approach depends on the kind
of managed state and does obviously not work when packets are reordered.
Our system can implement all these solutions and the developer can decide
which one is needed.

3.3.1.3. Flow reassignments

The main use case of our state management system are scenarios in which
VNF instances are added or removed and the flow assignment is changed. In
such cases, redirected flows appear on their target VNF instance, which needs
to fetch the corresponding flow-related state items from the source instance.
This is done with the global read operation and does not require an explicit
fetch or move functionality used by other approaches [Raj+13; Gem+14]. The
entity that is responsible to reroute the traffic, e.g., an SDN controller, can
optionally support this process by marking packets of moved flows, e.g., by

32

3.3. A distributed state management framework

setting virtual LAN (VLAN) tags. Using this, the target VNF instance can
easily distinguish new flows from redirected flows and does only need to
perform global reads when a redirected flow is detected. Such a system is
presented in Chapter 4.

3.3.2. Programming model and APIs

The E-State API is inspired by a key-value store and provides three basic
functions: set, get, and delete. Further, it provides a get global function. They are
defined as follows:

• set(key, state item): Creates or updates state items stored locally in
the shared library.
• get(key):state item: Returns the value of a state item stored in the

local library. This gives a local view to the system.
• del(key): Removes the specified state item from the local state store.
• get global(key, *red func):state item: Returns the result of the spec-

ified reduce function that is applied to all state items stored on all con-
nected VNF instances matching the given key. This function has no side
effects on any VNF instance and does not change state items.

The global view is requested with the get global API call; it is passed a
reduce function pointer as second parameter. Such a reduce function has to
have the following signature:

• red func(list<state item>):state item

The function is passed a list of state items and returns a combined repre-
sentation of them. This allows VNF developers to specify how the mapping
from multiple state items to a consolidated global view should be done. It is
recommended that the given reduce function is commutative since the order of
passed state items is not fixed and may change between calls. Reduce functions
should also be idempotent and associative to avoid unexpected results from
global read operations.

Our system uses arbitrary strings as keys to identify different state items.
We do not fix the used key structure and leave it to the VNF developers to
specify their own schemes (e.g., 5-tuples to identify flows). These keys are
checked for equality when a specific state item is requested. In addition to
this, the get global function allows to use wildcard symbols in its keys based
on regular expressions that are matched against existing keys. This allows to
request a set of different state items that are then used as input for the reduce
function.

33

3. Developing stateful VNFs

libestate

Local State StoreSt
at

e
M

an
ag

er

Communication Manager
N

et
w

or
k

Fu
nc

tio
n

Request Subscriber

PUBLISH
RESPONSE
SUBSCRIBE
REPLY

API

Figure 3.2.: Design of the shared library including a communication manager that interacts
with other E-State instances

3.4. Prototype implementation

This section describes the prototype implementation of our E-State framework
which is available online [Peu15]. The main component of our system is a
shared library, called “libestate”, that is implemented in C++ and offers a
standard C interface against which VNF applications can link. This allows
our shared library to be used with almost all programming languages able to
link against C interfaces. The interface offers all functions described earlier,
including a get global function that expects a pointer to a custom reduce
function or the name of a predefined reduce function as one of its arguments.

Figure 3.2 shows the main modules of our library. The state manager is re-
sponsible for providing the interface to the VNF and to control all internal
procedures. It interfaces with the local state store, which is a key-value store
responsible for holding state items registered by a VNF. These two components
alone already enable local state management with the set and get methods.
To allow our library to receive state items form other instances and thus to
obtain a global view of the entire state space, we introduce a third module
called “communication manager”. This module uses the distributed messag-
ing system ZeroMQ [iMa15] as communication backend. It contains a request
subscriber module which runs in an independent thread and replies to state
requests from other instances. The use of ZeroMQ allows our library to not
only communicate over transmission control protocol (TCP) connections but
also to transparently use direct inter-process communication (IPC) if multiple
VNF instances run as different operating system processes on a single host.

E-State uses a publish/subscribe communication pattern together with Ze-
roMQ’s push/pull pattern to do global state requests. To do so, each VNF
instance is always subscribed to all other instances of the same elastic deploy-
ment. Each instance is then able to publish get global requests and the other
instances reply to it. A limitation of this approach is the quadratic number of
interconnections needed, which is caused by the broker-less design of ZeroMQ,
and can be solved by building clusters with a limited number of VNFs sharing

34

3.5. Evaluation

management network

target

NF1

NF2

NFn

s1 s2

eth0

eth0

eth0

eth0

eth1

eth1

eth1

eth0

mgm0

mgm0

mgm0

source

Figure 3.3.: Mininet topology used for prototype evaluation

the same global state or by changing the underlying communication library.
We leave those optimisations for future work (Chapter 11.3).

3.5. Evaluation

We test our “libestate” prototype in a Mininet [LHM10] environment running
on a machine with Intel(R) Core(TM) i5-4690 central processing unit (CPU)
at 3.50GHz and 16GB memory. Figure 3.3 shows the topology used for our
experiments. It consists of a source host that sends multiple iperf-generated
TCP flows to a target host over an elastic cluster of VNF instances that forward
and monitor the traffic. These VNF instances are Mininet hosts with two
ethernet interfaces configured as ethernet bridges. All VNF hosts are also
connected to a management network for communication between libestate
instances. The two SDN switches between source and target are controlled by
a custom SDN application running on top of a POX [The15b] controller that
proactively installs forwarding rules on the two switches to control the traffic
distribution and to reroute the flows between available VNF instances.

Each network link in our topology has a maximum bandwidth of 1 Gbit/s
and no artificial delay. We use Mininet’s CPU sharing limitation feature for
each Mininet host to emulate a realistic scenario in which an additional VNF
instance corresponds to additional computation resources. Without this, a
higher number of VNF hosts in the system would not result in performance
improvements because the CPU time available for each single Mininet host
would decrease. We limited the hosts as follows: Source and target host are
limited to 20 % CPU each and every VNF instance is assigned to 2.5 % of
the overall CPU time summing up to 40 % CPU usage when the maximum
of 16 VNFs is active. The remanning 20 % are used for other components,
like the SDN controller or the centralised state memory used in some of our
experiments. We use a custom VNF implementation that runs in each VNF
host and performs pattern matching on the processed flows, like an IDS.

35

3. Developing stateful VNFs

Our first experiment demonstrates how an IDS can benefit from our state
management system when it is scaled at runtime. For the scale-out case, the
experiment starts with a single VNF instance (NF.1) over which all TCP flows
are forwarded. After about 55 seconds, the scale-out procedure is initiated
and half of the flows are rerouted to a new VNF instance (NF.2) by installing
additional rules on the two SDN switches. Figure 3.4 (top) shows the scale-out
scenario. The vertical dashed line marks the point in time at which scaling
starts. The left part of the figure shows the values of the pattern match counter
on both instances. The experiment is executed two times. At first, with a
baseline system without any state sharing functionality and second, with our
libestate system. In the baseline case, the second instance starts its match
counters from zero after flows are moved to it, even though the first instance
has already detected intrusive packets. This might lead to missed detections
and influences the correctness of the overall IDS system. In the libestate case,
the state for the moved flows is transferred to the second instance and the
operation can continue without information loss. The right part of the figure
shows how the overall performance of the elastic VNF deployment increases
after the system is scaled out. It shows that NF.2 can directly proceed with
processing after the flows are moved.

Figure 3.4 (bottom) shows the scale-in case in which the experiment starts with
two VNF instances and then moves all flows to NF.1 after about 55 seconds. It
shows how the match counter of NF.2 stops counting in the baseline version
and the information is lost.

The second experiment evaluates the scaling behaviour of our state manage-
ment system with an elastic deployment of 2 to 16 replicated VNF instances. It
compares our libestate prototype to three other approaches using the average
number of processed packets per second (PPS) to show the overall system
performance and the average state item request delay to show the state shar-
ing performance. First, we compare to the baseline IDS implementation not
using any state management mechanisms1. Second, we compare to a state
management system (centralmem) that uses a single REDIS instance [Red15] to
maintain the state of all VNF instances. And third, we compare to a distributed
REDIS cluster (clustermem) that runs one REDIS node on each VNF instance
and can be used through the same API as the centralised version.

The left plot of Figure 3.5 shows how the performance of the IDS system
increases when additional instances are added and how the scaleability of a
system with centralised memory is limited. This is, on the one hand, caused by
additional delay introduced by turning each state access into a network request
and, on the other hand, by the maximum number of requests a centralised
solution can serve. It also shows that a distributed memory solution does not

1Global values of the baseline experiment are calculated offline by summing up the local
values logged on each VNF instance.

36

3.5. Evaluation

0 20 40 60 80 100 120
time [s]

0

100000

200000

300000

400000

500000

#
 p

a
tt

e
rn

 m
a
tc

h
e
s

NF.1 libestate

NF.2 libestate

NF.1 baseline

NF.2 baseline

(a) Match counter during scale-out

0 20 40 60 80 100 120
time [s]

0

1000

2000

3000

4000

5000

p
a
ck

e
ts

 p
e
r

se
co

n
d

total

NF.1

NF.2

(b) System performance during scale-out

0 20 40 60 80 100 120
time [s]

0

100000

200000

300000

400000

500000

#
 p

a
tt

e
rn

 m
a
tc

h
e
s

NF.1 libestate

NF.2 libestate

NF.1 baseline

NF.2 baseline

(c) Match counter during scale-in

0 20 40 60 80 100 120
time [s]

0

1000

2000

3000

4000

5000

p
a
ck

e
ts

 p
e
r

se
co

n
d

total

NF.1

NF.2

(d) System performance during scale-in

Figure 3.4.: Match counter value of two IDS instances (left) and overall system performance
before and after scale operation (right).

provide benefits because state items are not stored on those VNF instances
that access them most often. The performance of our library, in contrast, is
near to the baseline performance since most of the state accesses are done
locally and the global state is requested less often. It is important to note
that the baseline implementation does not share any state information when
flows are moved. Our system, in contrast, maintains all state information and
provides comparable performance, which is a clear advantage. However, an
increasing number of VNF instances results in an increased delay for each
global request performed by our library (Figure 3.5, right). This is expected
because the system always requests state items from all instances of an elastic
VNF. It is interesting that the request delays of the clustermem version are
higher than the delays of the centralmem version. The reason is that state items
have to be fetched from multiple cluster instances to obtain the global view
instead of requesting all items at once from centralised memory.

The third experiment shows the delays that can be expected for different state
item sizes in a system with four VNF instances. It shows that the request delays
quickly increase when the size of the transmitted state increases. However,
typical flow state items are only tens of KByte [Raj+13] and our experiment
shows that item sizes around 60 KByte (216 bytes) can still be requested in less
than 150 ms. The delays for these requests are on the same order as the times

37

3. Developing stateful VNFs

2 4 6 8 10 12 14 16
number of replicated VNF instances

0
100
200
300
400
500
600
700
800
900

a
v
g
.
p
ro

c.
 p

k
t/

s baseline

libestate

centralmem

clustermem

(a) PPS

2 4 6 8 10 12 14 16
number of replicated VNF instances

0.00

0.01

0.02

0.03

0.04

0.05

0.06

a
v
g
.

st
a
te

 r
e
q
.

d
e
la

y
 [

s]

baseline

libestate

centralmem

clustermem

(b) State request delay

Figure 3.5.: System performance (packets per second) (left) and state item request delay (right)
for different numbers of replicated VNF instances

210211212213214215216217218219220221222223224

state item size [byte]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

a
v
g
.
re

q
u
e
st

 d
e
la

y
 [

s]

baseline

libestate

centraldb

clusterdb

Figure 3.6.: Request delays of different state item sizes

needed by OpenNF’s move operations presented in [Gem+14].

3.6. Conclusion

This chapter presents E-State, a novel approach to manage application state
in elastic VNF deployments. Our solution shows that NFV state management
can be done without central control components, which are used by existing
approaches [Raj+13; Gem+14]. The presented prototype can easily be extended
to provide additional consistency models for state requests to study tradeoffs
between consistency requirements and management overhead. The results
of our experiments show that our system outperforms approaches that use
generic centralised or distributed state memory solutions.

Even if the recent developments in the cloud and NFV domains show that the
best way to build network functions for NFV, and especially for cloud-native
deployments [5GP18], is to redesign the functions and to remove all stateful

38

3.6. Conclusion

parts, there will still be stateful network functions in legacy deployments.
The presented solution helps to run such legacy functions, not designed for
cloud-native deployments, inside elastic environments and can thus be consid-
ered as an important tool for the transition from legacy to fully softwarised
networks.

During the execution of the experiments, presented in this chapter, we have
noticed several shortcomings of the Mininet platform when it comes to pro-
totyping NFV scenarios, e.g., the limited isolation of Mininet hosts resulting
from the shared file system. This is one of the motivations for creating a
rapid prototyping platform for the NFV domain as presented in Part II of this
thesis.

39

4. Operation support for stateful VNFs

Enhancing stateful VNFs with state sharing mechanisms allows to migrate
state between VNF instances during dynamic operations, like scaling. But to
actually implement such dynamic operations, additional platform support
for traffic control, e.g., flow rerouting between VNF instances, is needed. To
this end, I present SHarP, a flow handover protocol that allows seamless,
order-preserving, and loss-free flow handovers between VNFs. This part is
based on Hannes Küttner’s Bachelor thesis [Küt17], which was supervised
by me. In the thesis, Mr. Küttner developed the initial SHarP prototype using
the idea of marking and buffering packets to ensure order-preserving and
loss-free handovers as I described it in the thesis announcement. The high-
quality prototype implementation done by Mr. Küttner allowed us to do an
in-depth analysis of the developed concepts, for which Mr. Küttner collected
the data under my supervision and helped during its analysis. We published
the results of this work at a conference [PKK18b] as well as in a journal
paper [PKK19], both written by me. This chapter is based on this journal paper
and contains figures and verbatim copies of the text from the paper. After
discussing the relevant related work in Section 4.2, we present the design of
SHarP in Section 4.3 and evaluate the presented solution in Section 4.4.

4.1. Introduction

There exist state management solutions, like Split/Merge [Raj+13] or OpenNF
[Gem+14], to tackle the problem of stateful VNFs in elastic NFV deployments.
They jointly manage the state migration between VNF instances and the
rerouting of traffic between them. The downside of these approaches is that
they impose complex modifications of the VNF implementations in order to
provide the required interfaces to extract and inject state information into the
involved instances. We argue that this is a major obstacle for an interoperable
and open NFV landscape. It requires VNF vendors to custom-tailor their
VNFs to the NFV platform on which they should be on-boarded if they want
to benefit from the state management solutions offered by these platforms.
Alternatively, VNF vendors could implement their very own state management
and traffic rerouting solution, not tight to any platform, but this results in silo
solutions in which VNFs of different vendors might not be compatible to each
other, e.g., chaining them is not possible.

41

4. Operation support for stateful VNFs

To remove this obstacle, we present “SHarP”, a very lightweight traffic-steering
solution for elastic VNF deployments that leaves the actual choice of the state
migration solution to the VNF vendor, while still providing these solutions
with additional control triggers, if needed. The resulting system provides a
clearer separation of concerns than existing solutions by implementing the
traffic rerouting functionality as part of the NFV platform and leaving the
state management task to the VNFs. As a result, VNF vendors benefit from
SHarP’s sophisticated rerouting mechanism offering features, like loss-freeness
and oder-preserving, while still being able to run their own state migration
systems custom-tailored to the involved VNFs and their internal state. The
presented approach combines the benefits of both worlds, which makes SHarP
a better fit for practical, real-world deployments.

The key contributions of this chapter are as follows: We introduce our seamless
flow handover protocol design that does not require a dedicated control
interconnection between the SDN controller and the involved VNFs. Our
handover protocol assigns the majority of the packet buffering tasks, required
to provide a loss-free and order-preserving flow rerouting mechanism, to
the destination VNF instances and thus reduces the load on the centralised
SDN controller. More specifically, the controller is only used for buffering
during the first phase of our the proposed rerouting mechanism as described
in Section 4.3.3. During the other phases, e.g., during the phase in which the
state is migrated, all buffering happens at the destination VNF. In addition,
we introduce the “handover support layer (HSL)”: a helper component that
can easily be integrated into existing VNF implementations and requires fewer
modifications than existing approaches, like the FreeFlow library used by
Split/Merge [Raj+13]. Finally, we provide an extensive evaluation based on a
set of testbed experiments. These experiments verify that the controller buffer
usage of the proposed approach scales well with the packet rate of the data
plane and stays constant irrespective of the time required for state transfers
between the VNFs. The results also show that our handover solution has only
minor impact, e.g., in terms of introduced delays, to the moved flows.

4.2. Related work

Steering and moving flows between dynamically allocated VNFs is already
well studied and several approaches which target different use cases like load
balancing, service chaining, or scaling exist [JTS08; Qaz+13; Fay+14]. However,
none of them provides supporting information and triggers to integrate with
additional state management mechanisms and not all of them provide seamless
handover mechanisms that do not introduce additional packet loss. As a result,
these approaches are not useful for stateful VNFs.

42

4.2. Related work

Table 4.1.: Comparison of related NFV state management and flow handover solutions

Sp
lit

/M
er

ge
[R

aj
+1

3
]

Pi
co

R
ep

.[
R

W
J1

3
]

O
pe

nN
F

[G
em

+1
4
]

O
pe

nN
F

Ex
t

[G
A

1
5

]

O
pe

nN
F

D
iS

T
[K

D
S1

5
]

O
pe

nN
F

Ta
g

[W
an

+1
7

]

C
oG

S
[S

G
Z

1
7
]

Sl
iM

[N
ob

+1
7

]

SH
ar

P

Flow handover support # # #
Loss-free handover # # # n.a.
Order-preserving handover # # # n.a.
Distributed packet buffering # # # # # #
Fixed to state migration solution #
No changes in VNFs required # # # # # # # #
Designed for scaling use case #

n.a. = not applicable

Other solutions that are designed to migrate state of virtual machine instances
exist. But they come with a large overhead because they move much more state
information than needed to operate a VNF [LLJ14]. In addition, more specific
approaches that focus on joint traffic steering and state migration of VNFs
have been proposed. The most prominent ones are Split/Merge [Raj+13], Pico
Replication [RWJ13], OpenNF [Gem+14] with its extensions [GA15; KDS15],
CoGS [SGZ17], as well as a novel approach called SliM [Nob+17] and a tagging-
based solution presented in [Wan+17]. We give a structured overview of these
NFV state management and handover solutions in Table 4.1.

In contrast to these approaches, which focus on joint state management and
traffic steering, our approach (SHarP) focuses on the latter only. As a result,
SHarP offers much more flexibility by leaving the choice of the used state
management approach to the VNF vendor instead of fixing it for the complete
execution environment; even different state management schemes for different
VNFs or groups of VNFs are possible. This simplifies the on-boarding of VNFs
to different platforms since the platforms do not introduce any requirements
for specific state-management interfaces. An example for a complementary
state management solution is E-State [PK16a], presented in the previous chap-
ter; it works seamlessly with SHarP. Other distributed state management
solutions, like the recently introduced CoGS [SGZ17], SliM [Nob+17] or Fog-
Store [May+17] approaches, are also complementary to SHarP and could
benefit from its loss-less flow migration procedures. In contrast to OpenNF,
our system distributes most of the buffering process required for loss-less
handovers to the destination VNF instances; this heavily reduces the controller
load and provides better scalability. The work of [Wan+17] analyses OpenNF

43

4. Operation support for stateful VNFs

and is of a more theoretical nature. It backs our findings of drastically reduced
controller load when most buffering happens at the destination VNF. In con-
trast to our SHarP prototype, their solution does not provide a flow detection
mechanism to support the selection of the right parts of the overall state to be
migrated.

4.3. Seamless handover protocol (SHarP)

The design of our handover protocol follows two main goals. First, the flow
handover mechanism has to explicitly support state migration procedures
but should not mandate any specific state migration solution. Second, our
solution will offer improved scalability compared to existing approaches. More
specifically it aims to reduce the load on the central controller by minimising
the number of packets the controller has to buffer during a loss-less and
order-preserving handover.

To achieve these design goals, we defined the following set of requirements:
The first requirement for a handover mechanism is a flexible flow selection (R1)
interface that allows to select single flows as well as groups of flows that shall
be moved from one VNF to another. These handovers should be performed
as fast as possible to minimise service interruption times (R2) and they have
to ensure that they do not introduce additional packet loss or packet reordering
(R3). To be able to handle many flows, the scalability (R4) in terms of control
load and buffer usage is important. Finally, a handover mechanism has to be
designed for compatibility (R5) without requiring specific modifications from
VNF implementations to accommodate a wide range of different VNFs.

4.3.1. Handover scenario

SHarP is designed to work with networks that contain at least two SDN
switches: an ingress and an egress switch as shown in Figure 4.1. Our design
extends to any number of switches, yet to simplify presentation, we limit
ourselves here to two switches; evaluation results do not depend on number of
switches. Between the switches, multiple VNF instances are located and their
data plane interfaces are connected with one port to the ingress switch and
one port to the egress switch as shown in Figure 4.1. In addition to this, the
VNFs are connected to a management network that allows them to directly
exchange information between each other. Data flows enter the SHarP-enabled
VNF deployment from a source (Host1) through the ingress switch, traverse
one VNF instance (or a chain of multiple VNF instances), and leave the system
through the egress switch towards the destination (Host2). Bi-directional flows
in which packets are sent from the destination (Host2) to the source (Host1) are

44

4.3. Seamless handover protocol (SHarP)

Figure 4.1.: Example network with multiple VNF instances, ingress and egress switch as well
as a data flow processed by VNF1 (icons taken from [Küt17])

also supported (Figure 4.1). Flows can be moved between VNF instances using
the proposed handover mechanism by triggering the handover procedure
through the northbound API of the controller. For example, the flow shown in
Figure 4.1 will be moved from VNF1 to VNFn.

The involved VNFs do not need a direct connection to the controller as this
is not commonly the case and thus would impose a needless requirement.
Instead, control messages sent by the controller to the VNFs are forwarded
by the switches and intercepted by an intermediate software layer that is
running inside the VNF’s container (or VM). This layer also buffers packets
as required to ensure loss-free and order-preserving handovers (described
in Section 4.3.2). We assume that the links of the example networks do not
introduce any additional packet loss or packet reordering.

4.3.2. Transparency towards VNF and state management

One of the main requirements for SHarP is to be as transparent as possible
towards VNF implementations that operate in a SHarP-enabled environment
(R5). This also means that SHarP must not enforce the use of a particular state
management or state sharing framework. Instead, it provides the means to
assist state sharing solutions, like E-State [PK16a], with functionalities to pause
and buffer incoming flows or to inform the actual state migration solutions
when a handover is performed by the network.

This functionality is completely encapsulated in an additional software layer,
called HSL, that is located between the actual VNF implementation and the
network interfaces of the VNF container (VNFC) as shown in Figure 4.2. This
software layer acts as a bridge and is able to forward and intercept packets
between the interfaces of the VNFC and the VNF implementation. Depending
on the used technology, the HSL appears to be completely transparent to the
used VNF implementations. For example, if the implementation is done with
Unix sockets, as shown in Figure 4.2a, the VNFC shim of the HSL directly
connects to the network interfaces of the VNFC (i.e., the network interfaces

45

4. Operation support for stateful VNFs

VNFC user space

VNF shim

VNFC shim

c
t
r
l
.

s
h
i
mHSL

logic

intf0 intf1

vintf0 vintf1

Unix socket VNF implementation

VNFC kernel

c
t
r
l
.
b
u
f
f
.

c
t
r
l
.
b
u
f
f
.

s
w
.

b
u
f
f
.

s
w
.

b
u
f
f
. o
p
t
.

c
t
r
l
.

c
h
a
n
n
e
l

bidirectional flow

H
S
L

(a) Unix socket-based setup

VNFC user space

VNF shim

VNFC shim

c
t
r
l
.

s
h
i
mHSL

logic

dpdk0 dpdk1

vdpdk0 vdpdk1

DPDK VNF implementation

DPDK shared memory

c
t
r
l
.
b
u
f
f
.

c
t
r
l
.
b
u
f
f
.

s
w
.

b
u
f
f
.

s
w
.

b
u
f
f
.

o
p
t
.

c
t
r
l
.

c
h
a
n
n
e
l

H
S
L

(b) DPDK-based setup

Figure 4.2.: HSL sitting between VNFC and VNF implementation

of the VM in which the VNF runs). Then the HSL creates one virtual network
interface for each of the network interfaces of the VNFC and forwards packets
between those pairs of interfaces. The actual VNF implementation connects
to those virtual interfaces as if they are the normal network interfaces of the
VNFC. Using this approach, the HSL can be transparently placed between the
network interfaces of the VNFC and the VNF implementation and gets access
to all received and sent packets.

The HSL also implements a control logic that intercepts control messages sent
by the SHarP controller through an SDN switch over the data plane of the
system. Those control messages allow the SHarP controller to trigger events,
like preparing the destination VNF for a handover, without requiring a direct
connection between controller and VNF. Besides this control logic, first-in,
first-out (FIFO) packet buffers are implemented and used to buffer incoming
packets when the destination VNF is not yet ready to process them, i.e., the
state transfer from the source VNF has not completed. The HSL distinguishes
between ctrl. buffers and switch buffers to separate packets that are coming
from the controller from packets that are directly arriving from the data plane
switch. This distinction is done using packet flags that mark packets that have
previously been processed by the SHarP controller, as described in Section 4.3.3.
Figure 4.2a shows a bi-directional example flow that enters the VNFC through
its default network interfaces provided by the VNFC kernel. The flow is
then intercepted by the HSL and directly forwarded to the virtual interfaces
to which the actual VNF implementation is connected. In this example, no
packets are buffered.

The HSL optionally offers a control channel to the VNF implementation used
to inform the VNF about the status of the handover, e.g., to trigger its state
migration mechanism. We leave it to the VNF to prepare and migrate all state
belonging to the flows that are handed over. This allows us to transparently

46

4.3. Seamless handover protocol (SHarP)

handle multiple VNF implementations without needing information about the
internal state structure, a major difference to OpenNF [Gem+14]. This control
channel can be realised with different kinds of interprocess communication
solutions, such as Unix sockets, pipes, or message queues. It is an optional
SHarP-specific modification imposed to the VNF implementation. The amount
of further VNF modifications depends on the used state migration solution
rather than on SHarP. This reduces the overhead of integrating a VNF into
a SHarP environment. For example, a VNF vendor or integrator only needs
to install the HSL inside the VNFC and reconfigure the VNF to use the right
network interfaces—a process that can be partly automated and requires far
less effort than changing code of the VNF implementation.

All parts of the HSL are implemented as modular, plugin-like components
(shims) that can easily be replaced to make the HSL agnostic to different data
layer interfaces. Besides the standard Unix socket shim shown in Figure 4.2a,
more NFV-specific implementations are possible. For example, HSL shims
that are based on DPDK [Lin17] as shown in Figure 4.2b. In the DPDK case,
the HSL directly accesses the DPDK shared memory in the VNFC’s user space
and does not need to access any Unix network interface. It is worth noting
that Figure 4.2 shows an example setup for a VNF that has two data interfaces
(intf0 and intf1), but the general design of the HSL allows arbitrary numbers
of interfaces and their corresponding buffers.

4.3.3. Handover procedure

SHarP’s handover procedure is split into the following three phases: Phase 1:
Initialisation, Phase 2: Pause, and Phase 3: Resume & Release. The idea behind this
split is that a handover first needs to be prepared, e.g., the flows to be handed
over need to be detected and selected (R1). After this, the flow processing of the
VNFs needs to be paused so that the actual handover from one VNF to another
can be performed without loosing any state changes (R3/R5). Finally, after
the flows are migrated to the destination VNF, processing has to be resumed
and packets that might have been buffered during the previous phase need
to be released (R3). The SHarP controller uses its internal knowledge as well
as signalling messages, which are injected into the date plane, to trigger the
transitions from one phase to another. This way, it keeps the overall handover
time short (R2). More specifically, it moves from Phase 1 to Phase 2 once the
VNFs signal that they are prepared and ready for the handover. It moves from
Phase 2 to Phase 3 when all traffic is rerouted, the state has been transferred,
and the packet processing can continue at the destination VNF.

We now describe each of the three phases in more detail. Figure 4.3 shows the
three phases for handing over a single unidirectional flow from VNF1 (source
VNF) to VNFn (destination VNF). It also shows the forwarding table entries

47

4. Operation support for stateful VNFs

of the ingress switch (IngrSw). We decided to show the handover of a unidi-
rectional flow to keep the figures clean and understandable. SHarP supports
the handover of bidirectional flows by performing symmetric handover steps
on the ingress and the egress switch.

At the beginning of the first phase, the scenario looks like the one shown
in Figure 4.1 in which all flows between Host1 and Host2 are processed by
VNF1. A handover is triggered by a request to the northbound API of the
SHarP controller (Ctrl). The request contains an OpenFlow-like matching rule
for a flow (or a group of flows) to be moved, a priority r for the handover
request, as well as the identifier (e.g., medium access control (MAC) address
or switch port ID) of the destination VNF to which the flows should be moved.
The priority r enables our system to organise the handover procedure among
multiple handover requests and allows the user of the system, e.g., an NFV
orchestrator, to overwrite existing handover rules. A SHarP handover request
does not require any further knowledge about the state of the network, in
particular, the requesting external entity, e.g., an NFV orchestrator, does not
need to know by which VNFs the flows matching the request are currently
processed (R1/R5). In the example given in Figure 4.1, the handover request
will move all flows from VNF1 to VNFn by using a wildcard (*) in its match
field.

Once the request arrives at Ctrl, it installs a so-called “flow detection table
entry” on IngrSw that matches all flows specified by the handover request and
forwards their packets to Ctrl. The priority of this entry pt is set to pt = 2r + 1
so that there is room for another table entry belonging to this handover
request with priority r. Using this fixed mapping of handover rule priorities r
to forwarding table entry priorities pt on the switch ensures a clear separation
of forwarding entries belonging to different handover requests. Next, a second
table entry is installed that matches the same flows but forwards their packets
to the destination VNFn. This entry has priority 2r + 0 such that it will only
be used once the detection table entry is removed.

Figure 4.3a shows how incoming packets from Host1 are matched and for-
warded to Ctrl, which buffers them. Packets that are still processed by VNF1
leave the system via EgrSw. In this state, the controller learns about all flows
that are affected by the handover and can generate exact match entries for each
of these flows to hand them over one by one. To do so, one exact table entry for
each flow is installed in IngrSw which forwards all packets of this particular
flow to Ctrl. These exact entries implicitly have the highest priority since no
wildcard fields are used anymore1. The detection phase stays active until a
maximum silence time, which is set as the idle timeout of the detection entry, is
reached and the detection entry is removed from IngrSw. Flows that have not
been detected during this time are treated as new flows by our system. They

1OVS documentation: http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

48

http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

4.3. Seamless handover protocol (SHarP)

(a) Phase 1 (Initialisation): Flow detection and handover initialisation. New
packets are buffered at the controller.

(b) Phase 2 (Pause): Installed temporary forwarding entry to destination VNFn.
Buffering done at destination VNFn to allow early controller buffer release
and load distribution. Trigger of state transfer solution.

(c) Phase 3 (Resume & Release): Final forwarding state reached and state mi-
gration finished. Release and replay of buffered packets at destination
VNFn.

Figure 4.3.: Three phases of SHarP’s handover procedure for a flow moved from VNF1 to VNFn
(icons taken from [Küt17])

49

4. Operation support for stateful VNFs

are directly forwarded to VNFn by the table entry with priority 2r + 0. When
the detection phase is over, Ctrl sends START HO messages to the involved
VNFs using a PACKET OUT event on IngrSw to inject them into the data plane.
The controller knows the destination VNF from the handover request and the
source VNF by utilising the controller’s internal knowledge about the previous
network configuration. The HSL in the VNF intercepts the control message
and can, e.g., trigger the preparation of the state transfer before replying with
acknowledgments as shown in Figure 4.3a.

Once Ctrl receives the ACKs it enters the second phase of the handover proce-
dure that is shown in Figure 4.3b. Immediately after this phase has started,
Ctrl starts to mark (e.g. by VLAN tag or encapsulation) and release the pack-
ets from its buffer and sends them towards the destination VNFn via IngrSw.
VNFn detects the marked packets and puts them in its internal ctrl buff

because it knows that they have been buffered at Ctrl before. At the same
time, Ctrl updates the exact forwarding table entry to forward all new packets
of the flow arriving at IngrSw directly to VNFn. At VNFn, the packets are
buffered in the internal sw buff of the VNF to not mix them up with the
packets previously buffered at the controller (important for R3).

One problem at this point is that Ctrl needs to know when it has received all
packets that are not already forwarded to VNFn. But there may be packets that
are still in flight between IngrSw and Ctrl. To solve this, Ctrl instructs IngrSw
to duplicate and flag packets (BUFFER FOLLOW UP) that are forwarded to VNFn
and to send the flagged copy of them also to Ctrl. In this configuration, Ctrl
can inject a test packet into the data plane at IngrSw and will immediately
know that it has seen all packets not yet forwarded to VNFn once it receives
the test packet. Thus, Ctrl knows that it does not need to buffer any new
packets and removes the packet duplication configuration from IngrSw.

During the entire second phase shown in Fig 4.3b, no traffic is processed by
any of the VNFs and all arriving packets are buffered in the two buffers of the
destination VNFn. In this state, the VNFs can trigger their state management
solutions, which can transfer the VNF’s internal states over the management
network between the VNFs. HSL can support these state management solu-
tions by giving them information about the source and destination VNF as
well as the exact flow identifier.

The third phase of the handover, shown in Figure 4.3c, is entered once Ctrl

has released all its buffered packets and the state management mechanism at
the VNFs indicates that all state has been moved. The HSL then immediately
starts to release the buffered packets towards the VNF implementation of
VNFn to be processed using the state that has been moved from VNF1 to
VNFn in the previous step. It first releases its ctrl buff and afterwards its
sw buff to ensure that all packets are processed by VNFn in the same order as
they have entered the SHarP system (see [PKK19]). Finally, Ctrl can remove

50

4.3. Seamless handover protocol (SHarP)

the additional handover table entries from IngrSw and reach a stable system
state in which all flows involved in the handover are processed by VNFn. More
details, like control packet formats and handover rule removal procedures, are
described in [Küt17].

One of the benefits of SHarP is that it does not require a dedicated control
channel between Ctrl and the involved VNFs. Instead, all control messages
are injected/fetched from the switch and sent over the data plane to the
VNFs, where the HSL intercepts them (R5). The used control messages are
encapsulated inside standard Ethernet frames using EtherType=0x821c. This
EtherType value is chosen because it is usually unused [Joe13] and will thus
not interfere with other standardised protocols. In case this EtherType is
already used in the domain in which SHarP should be deployed, this config-
uration needs to be changed. The payload of each control message contains
a command code to express its functionality, an identifier used to reference
the handover to which the control message belongs, and a sequence of type-
length-values (TLV) fields. Those TLVs hold additional context information,
like the matching rule used for the handover or its priority. If control messages
are sent from Ctrl to a VNF, the destination VNF’s Ethernet address is used
as destination address of the control message. If control messages are sent
from a VNF to Ctrl, the address field is left empty, as the switch detects all
control messages matching their EtherType and forwards them to Ctrl using
PACKET IN events.

4.3.4. Removing buffer load from the controller

For a seamless handover, packets need to be buffered while the state is syn-
chronised between the VNF instances and no state updates can be performed.
Later, the buffered packets can be released to the destination instance to be
applied to the state. In OpenNF [Gem+14], packet buffering takes place com-
pletely at the controller which may lead to performance issues. The controller
can quickly be overloaded if the amount of packets to be buffered is large,
i.e., because of a long-lasting state transfers. Our system design, in contrast,
reduces the buffer load of the controller by moving the responsibility to buffer
incoming packets during a state transfer to the destination VNF instance. The
SHarP controller only needs to buffer packets during the period of time in
which the handover is initialised (Figure 4.3a) and tries to release this buffer
as early as possible (R2). In particular, the buffer is released before the actual
state transfer is started, which makes the controller buffer usage of SHarP
independent of the state transfer. We show this property in more detail in our
evaluation (Section 4.4).

Buffering most of the packets directly at the destination instance has the ad-
ditional advantage of using the capacity of the destination VNF instance. A

51

4. Operation support for stateful VNFs

VNF only needs to buffer the packets belonging to flows that are redirected
to that instance and not of all handovers in the network, further improving
scalability of the entire system (R4). Further details about bidirectional han-
dovers, message flows, and preserved packet order can be found in our journal
paper [PKK19].

4.4. Evaluation

We analyse SHarP with a set of experiments to validate that our handover
protocol behaves as expected, e.g., no packet loss or reordering occurs and the
controller buffer usage remains constant even when the state migration time
increases. We have also presented a direct comparison to OpenNF, based on a
theoretic analysis which was entirely done by Mr. Küttner, in our journal pa-
per [PKK19]. We have used this theoretical analysis, not presented in this thesis,
because of outdated codebases and limited documentation of OpenNF, which
makes an experimental evaluation in our lab setup not feasible. Summarising
these theoretic results, the analysis has shown that the number of packets
processed by the controller depend on the packet rate of the data plane in both
systems. In SHarP, however, the number of packets processed by the controller
is expected to be about five times smaller compared to OpenNF [PKK19]. More
importantly, the analysis has shown that in OpenNF the number of packets
processed by the controller heavily depends on the state transfer time, and
thus the size of the transferred state, whereas it is expected to be constant
in the SHarP case [PKK19]. We back this finding and characterise the SHarP
system with the experimental evaluation, presented in the following.

In our experiments, we use six metrics to characterise the performance of our
system: The handover duration (1), maximum packet delay introduced by
handover (2), controller buffer usage (3), VNF buffer usage (4), packet loss (5),
and packet reordering (6). Our results present these metrics as a function of
data plane data rate and the duration it takes the VNFs to migrate their state.
The maximum packet delay is the main indicator for the delay introduced into
the service as the handover is executed. The buffer usage at the controller and
at the VNF indicate how well SHarP fulfils the claim that only a small amount
of data has to be buffered and processed at the controller. Further, we show
how SHarP behaves under load when multiple handover requests for many
flows arrive within less than a second.

We built a prototype of the SHarP controller based on the Ryu SDN Frame-
work [Ryu17]. The prototype offers an easy-to-use, northbound interface that
offers the required functionalities to trigger handover procedures between
arbitrary VNF instances. In addition to the controller prototype, we imple-
mented a Python-based HSL prototype that acts as a bridge between the VNFC
and the actual VNF implementation using standard Unix sockets as shown

52

4.4. Evaluation

in Figure 4.2a. Those implementations were done by Mr. Küttner during his
thesis [Küt17]. The use of Python limits the throughput of the HSL prototype
but still allows us to evaluate SHarP in terms of buffer usage and handover
performance. The Python-based HSL prototype is also the reason why we limit
our experiments to 1000 PPS. A high-performance implementation of the HSL
using DPDK [Lin17] is planned as future work (Section 11.3). Both prototypes
(SHarP and HSL) are open-source and available on GitHub [KP18].

All experiments are executed on an SDN testbed based on the emulation frame-
work Containernet [Peu16], which will be presented in Chapter 5, running on
a server with an Intel(R) Core(TM) i7 CPU 960 @ 3.20 GHz and 24 GB memory.
The used network topology is the same as shown in Figure 4.1 consisting of
two hosts, two switches, and two VNFs that are able to forward arbitrary traffic
between their input and output interfaces. This setup reflects a typical setup of
a SHarP system. Our solution does, however, also support more complex net-
works involving more switches and VNFs. In such a case, a SHarP controller
has to coordinate the flow rules on all switches that are directly involved in the
handover procedure. These are usually those switches that are placed directly
before or after the involved VNF instances, e.g., the software switches in the
NFV platform that also take care of the VNF chaining. The SHarP controller
does explicitly not need to control all switches of a network.

The involved Containernet links are configured to not introduce any artificial
delay or bandwidth limits and we ensured that the link saturation is below
10 % in all experiments so that the links do not become the bottleneck of the
setup. Both the hosts and VNFs are represented by Docker (1.12.3) containers
connected to the emulated network created by Containernet (2.3.0d1) contain-
ing two Open vSwitches (2.5.2). The VNFs are implemented as layer 2 bridges
that do not perform any additional packet processing to not bias our handover
performance measurements. Our prototype controller is implemented on top
of Ryu 4.13. We simulate the state migration process in all experiments, which
allows us to evaluate the actual handover protocol independently of a specific
state management implementation. Using this approach, we have full control
over the state migration process and can test SHarP in different scenarios, e.g.,
with different state transfer durations.

4.4.1. Handover characteristics

The first part of our experimental evaluation analyses handovers performed
with our prototype and how they impact the rerouted packets and the involved
buffers. During the experiments, a constant user datagram protocol (UDP)
traffic flow is generated on Host1 and sent to Host2 over the first VNF. Host2
receives the packets and sends them back to Host1 creating a bidirectional
traffic flow which is then handed over to VNFn by our SHarP controller.

53

4. Operation support for stateful VNFs

0

10

20

Av
g.

 R
TT

 (m
s)

Packet Rate (1/s)
100
500
1000

460 480 500 520 540 560 580 600
Packet Sent Time (ms)

0.0

2.5

5.0

7.5

10.0

Av
g.

 V
NF

 B
uf

fe
r (

#p
kt

s)

Packet Rate (1/s)
100
500
1000

(a) Handover behaviour for different packet
rates using 58 byte packets

0

10

20

Av
g.

 R
TT

 (m
s)

Packet Rate (1/s)
100
500
1000

460 480 500 520 540 560 580 600
Packet Sent Time (ms)

0.0

2.5

5.0

7.5

10.0

Av
g.

 V
NF

 B
uf

fe
r (

#p
kt

s)

Packet Rate (1/s)
100
500
1000

(b) Handover behaviour for different packet
rates using 1000 byte packets

Figure 4.4.: Packet delay and VNF buffer state during a handover for different packet rates and
packet sizes (based on data from [Küt17])

During this procedure, we collect the metrics mentioned before as follows:
First, each of the packets is identified by a unique sequence number so that
any lost, reordered, or duplicated packet can be easily identified. Second, the
round-trip time (RTT) of the packets is measured at Host1 to identify packet
delays that are introduced by the execution of a handover. Third, we measure
the buffer usage at the VNFs as well as at the SHarP controller during the
entire experiment. Finally, the total handover duration, which is defined as the
time taken between the initial handover request and the final migration of the
flow to the destination VNF, is measured at the controller.

The first set of experiments focuses on a single handover procedure, with state
transfer duration set to 0 seconds, to analyse what happens to the packets and
VNFs during a flow migration. The experiments have been performed with
58 byte packets (Figure 4.4a) as well as with 1000 byte packets (Figure 4.4b)
and each experiment is repeated 100 times. All error bars shown in this
chapter indicate 95 % confidence intervals. The upper parts of Figure 4.4 show
packet delays over experiment time with the handover happening at about
470 ms. The results show how the delay of the packets quickly increases to
about 25 ms before they drop to their old level after about 50 ms. Except
for smaller variations, this effect remains the same for different packet rates
and packet sizes. The lower parts of Figure 4.4 show the number of packets
stored in the destination VNF buffer during the handover. Depending on the
packet rate, different numbers of packets need to be buffered. All of them are
quickly released, once the handover is done. These results confirm that SHarP
handovers show a stable performance under different conditions.

In the second set of experiments, we execute handovers with different packet
rates, packet sizes, and state transfer durations. Every configuration is executed

54

4.4. Evaluation

100 times with a fully restarted network and controller setup to eliminate side
effects from previous runs. The goal of these experiments is to analyse the
general behaviour of SHarP under different conditions. The first set of results
given in Figure 4.5 shows the handover performance as a function of the data
rate of the moved flow given as PPS. The results shown in Figure 4.5 are based
on measurements using a packet sizes of 58 bytes and 1000 bytes. As shown
by the figures, the packet size has no impact on the handover duration or
packet delays, but obviously accounts for more buffer usage if larger packets
are used.

Figure 4.5a shows that the overall handover duration yields a linear increase
with the changing packet rate, since more packets need to be processed. The
maximum packet delay introduced by the handover procedure is shown in
Figure 4.5b. It slightly increases with the packet rate and stays at around 27 ms
at higher rates. This maximum delay is limited by the time the controller needs
to notify the VNF about the handover and the VNFs to synchronise the state.
If there is no state to be exchanged, the packet delay stagnates towards the
end since the round-trip time between controller and VNF does not increase.
Further, Figure 4.5b also compares the measured results against a baseline
scenario in which no handover is performed (see: w/o HO). It shows that
handovers increase the maximum packet delay by a constant value of 20 ms to
30 ms. The buffer usage of the controller and the VNFs is shown in Figure 4.5c
and Figure 4.5d, respectively. As the packet rate increases, the entire system
has to buffer more packets. This results in a linear increase in buffer usage
at both the controller and the VNF. However, the controller buffer usage is
lower by a factor of about five than the VNF buffer usage, contributing to
the scalability of the system since the VNF buffer usage is distributed across
the involved VNFs. During all experiments, no packets are lost, reordered, or
duplicated, verifying the seamless nature of our handover mechanism.

The handover performance as a function of state transfer duration is shown
in Figure 4.6. The increase in the state transfer duration is simulated by
artificially introducing a delay after which the VNFs signal the completion
of the state transfer. The experiments are executed with a fixed packet rate
of 1000 PPS using packet sizes of 58 bytes and 1000 bytes. The state transfer
duration is increased by 100 ms every step, ranging from 0 ms to 1000 ms.
Figure 4.6a shows that the handover duration increases linearly with the
additional time introduced by the state transfer, as expected. The maximum
packet delay shown in Figure 4.6b is only offset by a small constant delay
from the state transfer duration it experiences. This shows that the packets
are indeed released from the buffers as soon as possible and that the packet
delay is directly influenced by the state size and transfer duration. This is also
highlighted by the comparison to a baseline scenario in which no handover is
performed (see: w/o HO), as shown in the Figure 4.6b.

The most important results of our evaluation are given in Figure 4.6c and

55

4. Operation support for stateful VNFs

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

30

35

Ha
nd

ov
er

 D
ur

at
io

n
(m

s)

Packet Size
58B 1000B

(a) Handover duration

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

10

20

30

M
ax

. P
ac

ke
t R

TT
 (m

s)

Packet Size
1000B w/o HO
58B w/o HO

58B
1000B

(b) Maximum packet RTT

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

0

2

4

6

Co
nt

ro
l B

uf
fe

r U
sa

ge
 (k

B)

Packet Size
58B 1000B

(c) Controller buffer usage

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

0

10

20

30
VN

F
Bu

ffe
r U

sa
ge

 (k
B)

Packet Size
58B 1000B

(d) VNF buffer usage

Figure 4.5.: Handover performance of SHarP dependent on UDP PPS with a packet sizes of 58

and 1000 bytes (based on data from [Küt17])

Figure 4.6d. They present the buffer usage at the controller as well as at the
VNF and highlight the reduced controller load of SHarP. Even though the
total amount of packets buffered in the system increases with the state transfer
duration, the number of packets buffered at the controller remains constant.
This produces a significantly lower workload for the controller compared to
OpenNF, which is achieved by buffering the majority of the packets during
the state transfer at the VNF, as the graph in Figure 4.6d attests. Again, no
packet loss or reordering is detected during the experiments.

Further, Figure 4.7 shows the packet delay distributions of 58 byte packets
sent during an experiment with either no handover (w/o HO) or a single
handover. The left part of the figure shows that the packet rate has only minor
impact on the delay and only few packets are delayed by the handover. The
right part, in contrast, shows the impact of the state transfer duration to the
delay experienced by the packets. It clearly shows that longer state transfer
durations lead to a high number of delayed packets and thus is critical for
the overall performance of elastic VNF deployments. In the right figure, the
baseline (w/o HO) measurements are barely visible since they obviously do
not experience the increased packet delays introduced by the state transfers.

56

4.4. Evaluation

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

500

1000

1500

Ha
nd

ov
er

 D
ur

at
io

n
(m

s)

Packet Size
58B 1000B

(a) Handover duration

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

250

500

750

1000

M
ax

. P
ac

ke
t R

TT
 (m

s)

Packet Size
1000B w/o HO
58B w/o HO

58B
1000B

(b) Maximum packet RTT

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

2

4

6

Co
nt

ro
l B

uf
fe

r U
sa

ge
 (k

B)

Packet Size
58B 1000B

(c) Controller buffer usage

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

500

1000
VN

F
Bu

ffe
r U

sa
ge

 (k
B)

Packet Size
58B 1000B

(d) VNF buffer usage

Figure 4.6.: Handover performance of SHarP dependent on the state transfer duration with 1000

UDP PPS and packet sizes of 58 bytes and 1000 bytes (based on data from [Küt17])

0 1 2 3 4
Packet RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

PPS
100 w/o HO
500 w/o HO
1000 w/o HO
100
500
1000

(a) Packet RTT for different packet rates

0 200 400 600 800 1000
Packet RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

STD (ms)
0 w/o HO
100 w/o HO
500 w/o HO
1000 w/o HO
0
100
500
1000

(b) Packet RTT for different state transfer du-
rations

Figure 4.7.: Distribution of packet delays during different handover experiments using a packet
size of 58 bytes (based on data from [Küt17])

57

4. Operation support for stateful VNFs

4.4.2. Multi-handover performance

The second part of our experimental evaluation focuses on how our SHarP
prototype behaves in an environment in which an NFV orchestrator requests
many handovers, e.g., because large parts of a service are reconfigured. We
again use our previously described experiment setup and send bidirectional
UDP traffic between Host1 and Host2. Each experiment is again executed
100 times. Instead of focusing on the handover of a single flow, multiple
flows (up to 100) are now generated in parallel, each with a packet rate of
50 packets/s, and moved from VNF1 to VNF2 during the experiments. We
generate handover requests using a Poisson arrival process with a rate of 2, 5,
or 10 handover requests per second (λ = 2, λ = 5, λ = 10) and send them to
SHarP’s northbound interface. This simulates an environment in which the
NFV orchestrator reconfigures the service multiple times per second, showing
that SHarP is already designed for future, cloud-native NFV deployments in
which reconfigurations may happen on a sub-second basis, which is usually
not the case in today’s VM-based deployments.

During the experiment, handover durations are measured and the total number
of handover requests as well as their arrival rate is changed to evaluate the
impact of the overall system load to individual handovers. Figure 4.8 shows
the results of these experiments for different numbers of handover requests,
request arrival rates, and flows with small (58 byte) and large (1000 byte)
packets. Figures 4.8a and 4.8c show the behaviour of the handovers for an
increasing number of performed handovers. They show that the handovers
become slightly slower when more of them are executed. This effect is a bit
stronger when larger packets are used (Figure 4.8c), which can be explained
by the generally higher load in the system due to higher buffer usage at the
controller. The handover request rate also impacts the handover duration as
shown in Figures 4.8b and 4.8d. With a higher rate, the handovers become
slightly slower. The size of the packets in the moved flows have almost no
impact on this, which is an important property of SHarP because the handover
performance does not depend on the nature of the moved traffic. In general,
90 % of the handovers in the experiment are completed in less than 120 ms.
This shows that SHarP can deal with multiple handovers per second without
substantial performance degradation.

4.5. Conclusion

This chapter presents SHarP, a novel flow handover mechanism that provides
loss-free and order-preserving flow migration for both unidirectional and bidi-
rectional flows. We show how SHarP preserves the order of packets by using

58

4.5. Conclusion

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests (#)
10
50
100

(a) Handover durations for 10 to
100 requests with fixed arrival
rate (λ = 10) moving flows with
58 byte packets

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2.0
5.0
10.0

(b) Handover durations for 100

requests and changing arrival
rates (λ) moving flows with 58

byte packets

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests (#)
10
50
100

(c) Handover durations for 10 to
100 requests with fixed arrival
rate (λ = 10) moving flows with
1000 byte packets

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2.0
5.0
10.0

(d) Handover durations for 100

requests and changing arrival
rates (λ) moving flows with 1000

byte packets

Figure 4.8.: Distribution of handover durations for multiple handovers using different numbers
of handover requests, request arrival rates, and flows with small and large packets
(based on data from [Küt17])

59

4. Operation support for stateful VNFs

multiple FIFO buffers and subsequently releasing the packets. In contrast to ex-
isting approaches, SHarP does not come with an integrated state management
solution but provides the means to support any state management solution
implemented by a given VNF by sending triggers to it whenever flows are
migrated. We believe that this is a much more practical separation of concerns
since it leaves the choice of the used state management mechanism to the VNF
vendors. It also reduces the required effort to integrate exiting VNFs into the
system because no changes in the VNF’s code are needed and the integration
effort is limited to the installation of additional software components in order
to enable support for flow handovers.

Our experimental evaluation clearly shows that SHarP reduces the maximum
packet delay that constitutes the service interruption time during a handover,
as it mostly depends on the initial time required to signal the VNF plus the
state transfer duration. The interruption time only increases slightly with an
increased packet rate and does not worsen at higher packet rates. Compared
to a baseline scenario, the maximum packet delays are increased by 20 ms to
30 ms. The evaluation of the controller buffer at increasing packet rates and
state transfer durations shows that with SHarP, the controller’s buffer usage,
and thus the amount of processed packets, only depends on the round-trip time
between controller and VNFs and on the packet rate. It does not depend on
the time taken for the state transfer that is usually hard to predict and heavily
depends on the VNF implementation. This gives SHarP a major advantage
over similar handover approaches. Our results also show that SHarP is ready
for future, cloud-native NFV deployments with sub-second reconfiguration
times.

60

Part II.

Rapid prototyping

61

5. Rapid prototyping of NFV functions
and services

Once a VNF developer has finalised the implementation of a VNF, e.g., by
using the concepts and solutions presented in the first part of this thesis,
the VNF must be tested and integrated with other VNFs to create the final
NS. Those NSs are then deployed across multiple sites, so called multi-PoP
environments. This allows to improve service performance by optimising
its placement in the network. But prototyping and testing of these complex,
distributed scenarios becomes very challenging. The reason is that not only
the NS as such has to be tested but also its integration with MANO systems.
Existing solutions, like simulators, basic network emulators, or local cloud
testbeds, do not support all aspects of these tasks.

To this end, I present a rapid prototyping platform for VNFs, NSs, and SFCs
that is able to execute production-ready VNFs, provided as containers, in
an emulated multi-PoP environment. These VNFs can be controlled by any
third-party MANO system that connects to our platform through standard
interfaces. Based on this, a developer can use our platform to prototype and
test VNFs as well as complex NSs in a realistic environment running on a
single machine, e.g., a developer’s laptop.

This chapter is based on my paper [PKV16] and contains figures as well
as verbatim copies of the paper’s text. All presented concepts have been
developed by me. The co-authors of the paper contributed small parts of the
prototype implementation, e.g., additional monitoring features, which are not
part of this chapter. After presenting related work in Section 5.2, Section 5.3 and
Section 5.4 introduce the general concepts behind the presented prototyping
platform and evaluate its network emulation features. After that, a concept to
simulate resource limits of multiple PoPs, which are emulated by the platform,
is presented and tested in Section 5.5. The presented platform is based on two
sub-projects, “Containernet” and “vim-emu” which are both available as open-
source projects [Peu16; ETS17b] and are actively used by other researchers,
e.g., at the time of writing, Containernet has more than 120 stars and is forked
more than 70 times on GitHub. As a result, various collaborators submitted
bugfixes and code contributions which have all been reviewed and approved
by me, e.g., more than 30 pull requests have been created by external users
and merged by me.

63

5. Rapid prototyping of NFV functions and services

5.1. Introduction

Developing and implementing VNFs and NSs that are deployed across dis-
tributed multi-PoP infrastructures is a complex software development process
that consists of two main parts. First, the development of the VNFs and the
composition of the resulting NS as such. Second, the integration of the NS
with a MANO system that manages the service during its lifecycle. The second
part involves the implementation and test of management interfaces but also
the design, implementation, and validation of service-specific management
components, like auto-scaling rules or placement strategies [Kar+16]. This
complicates the overall development process. To reduce this complexity, ex-
tended tool support is required to reduce time-to-market, to save costs, and to
improve the quality of service.

A special problem in this process is the lack of tools to support local prototyp-
ing or testing of complete NSs in end-to-end multi-PoP scenarios. In practice,
this means that developers need to set up local NFV testbeds on which the de-
veloped VNFs and NSs are deployed and tested. Setting up those testbeds and
maintaining them is, however, a complex task that requires many resources,
especially for multiple PoPs, and a lot of expert knowledge, e.g., to configure
a fully functional OpenStack installation. Once the VNFs and NSs have been
tested on those testbeds, the developer has to export the VM or container
images to ship them—a manual process that does not play well with agile
environments and slows down turnaround times. This clearly motivates the
need for more advanced prototyping solutions like we present in this chapter.
Such prototyping solutions should not only allow testing of the involved VNFs,
composed NS, as well as the SFC that interconnects the different components,
e.g., by sending generated traffic through it. They also have to validate the NS’s
interactions with a MANO system, e.g., dynamic reconfiguration or placement
strategies. This is not possible with existing approaches which either rely on
local cloud testbeds that lack multi-PoP support, simulations that only execute
simplified versions of network functions, or network emulation tools that do
not offer interfaces to interact with MANO systems.

There are several simple and complex use cases for such a development
support tool which motivate our proposed solution. These use cases can be
divided into two categories. First, use cases that check the functionality of the
NS as such (NF-UC); this can already be done with existing network emulation
solutions, but requires considerable manual effort, e.g, for first migrating the
VNF implementations to the emulation platform before porting them back to
the production environments. Second, use cases that check the interoperation
between NS and a MANO system (MANO-UC), which can today only be
done with complex cloud testbeds or with public testbeds, such as [Fed18;
Sof17], which are not available to every developer. Examples for both use case
categories are listed in the following:

64

5.1. Introduction

NF-UC1 (Single VNF): An NS developer wants to deploy and test single
VNFs in a local test environment, e.g., by sending some generated traffic
through them. A prototyping platform should be able to execute the VNF’s
code as it is without requiring any adaption. For example, the VNFs should
be executed using the same virtualisation technologies as the production
environments. During prototyping, a developer wants to interact with the
running VNFs to, e.g., change configurations or monitor their behaviour. We
address this use case in Section 5.3 and Section 5.4.

NF-UC2 (Complex NSs): A developer wants to test entire complex NSs
consisting of several VNFs. Such NSs are composed using different descrip-
tion approaches, as described in Section 2.2.3. A prototyping platform should
support those or at least offer the means to add support for new description
approaches when they are needed. In general, a local test environment should
be able to execute such complex NSs so that end-to-end tests, e.g., sending
traffic through the service’s chain, can be performed. While doing so, a devel-
oper needs to be able to interact with each VNF, like in NF-UC1. Section 5.4
explains how our proposed solution can support this use case.

MANO-UC1 (Service management): NSs are usually deployed under the
control of a MANO system. The behaviour of such a deployment needs to be
validated to ensure that the NS and MANO integrate correctly. To do so, a
test environment needs to be able to interface with existing MANO systems
through standardised interfaces. The important point in such a setup is that the
used MANO system does not notice any difference between the prototyping
environments and production environments to be able to realistically test its
management operations. We discuss this in more detail in Section 5.4.4.

MANO-UC2 (Multi-PoP support): Another important use case is execut-
ing NSs in realistic multi-PoP environments to test both the behaviour of a
service when its functions are distributed across multiple PoPs and service
management approaches, like placement optimisation algorithms that decide
which VNF is placed in which PoP. To this end, a multi-PoP prototyping
solution needs to offer the means to describe and emulate arbitrary multi-PoP
topologies, including realistic inter-PoP networking conditions. Section 5.4
provides the details on how multi-PoP scenarios can be emulated with our
proposed solution and Section 5.5 investigates how resource limitations can
be used to model multi-PoP scenarios more accurately. Further related work
on this topic has been published by us in [SPK18] but is out of scope of this
thesis.

To cover the previously described use cases and overcome the shortcomings of
existing development support tools (Section 5.2), we introduce vim-emu (VIM

65

5. Rapid prototyping of NFV functions and services

N
FV M

anagem
ent &

O
rchestration (M

AN
O

)vim-emu

VNFVNF

NFVINFVI

OSS/BSS

Element Management

VNF

NFVI

VNFVNFVNF

NFV Orchestrator

VNF Manager

VIM

Figure 5.1.: The vim-emu platform in the (simplified) ETSI NFV reference architecture [ETS14b].

Emulator), a novel prototyping platform for NSs. The vim-emu platform was
originally published under the name MeDICINE (multi Datacenter servIce
ChaIN Emulator) in [PKV16] but renamed later when it became part of the
OSM [ETS16c] project. It is able to execute production-ready network functions
in realistic multi-PoP environments and allows standard MANO systems to
control the deployment, like in a real-world system. Figure 5.1 shows the scope
of vim-emu and its mapping to the ETSI NFV reference architecture in which
it emulates multiple NFVIs and VIMs.

5.2. Related work

NFV development support is still a novel research direction with a limited
amount of existing solutions. The small number of existing solutions are often
organised as so-called NFV software development kits (SDKs) and mainly
focus on manual descriptor creation or generation of base descriptors that can
then be changed by a user. They also offer tools to perform syntactical and
semantical checks among those descriptors [Van+18; Van+17]. These tools help
to identify bugs and errors in the static descriptors, like a missing link in an
SFC definition. But they do not offer support for developers when VNFs and
their contained software components should be integrated and configured.
Other prototyping tools focus on SDN debugging rather than on prototyping
of complex NSs [Pel+15]. Some approaches are based on simulations to test
and validate management solutions, e.g., placement algorithms, but they only
provide very limited realism since the simulated network functions are only
proxies and not real implementations used in production [Cal+11; Zha+12;
Hen+08]. The very lightweight service platform (VLSP) project [MCG15] offers
more realism but the tested VNFs are still limited to simple Java programs
and not full-featured, realistic VNF implementations.

Emulation tools, like Mininet, are able to execute arbitrary software, e.g.,
VNF implementations, in isolated network namespaces [LHM10; Wet+14;
Ahr10]. However, moving these VNF implementations from Mininet into a

66

5.2. Related work

production environments, i.e., packaging them as containers or VMs, is still
a time-consuming and error-prone task. These tools also lack the possibility
to emulate distributed PoPs or cloud sites, e.g., they have no functionality to
stop and remove hosts at runtime. The ESCAPE platform overcomes some
of these limitations by combining a MANO system with different test VIMs
(including Mininet and OpenStack) but it does not target development support
or prototyping tasks. Its main focus is on orchestration between non-emulated
PoPs [Son+15].

Another related solution is called NIEP (NFV infrastructure emulation plat-
form) and pursues similar goals as vim-emu does. It also utilises Mininet to
emulate arbitrary network topologies. In those topologies, it runs minimised
VMs based on ClickOS [Mar+14], which can be used to implement arbitrary
VNF functionalities using the Click modular router [Koh+00] framework. As a
result, it offers an interesting solution to quickly prototype and test new VNF
designs. However, the use of Click limits the platform to Click-only VNFs,
which makes it not suitable to test arbitrary, production-ready VNFs. Further,
NIEP does not offer interfaces to integrate with real-world orchestration so-
lutions, which is a shortcoming compared to vim-emu. NIEP was released in
2018 and thus two years after vim-emu.

An alternative to emulation platforms are real cloud testbeds, which might
be installed on a single physical machine, but are typically not able to run
services in arbitrary network topologies [Ope10a]. And even if they do, they
come with considerable management overhead and only a limited number of
PoPs that can be used for tests [KRP13].

Table 5.1 compares the relevant features of the existing simulation, emulation,
and testbed solutions. It shows that all existing approaches lack some of the
features. For example, it shows that only vim-emu supports the combination
of production-ready VNFs and multi-PoP scenarios.

After all, Table 5.1 shows that vim-emu is the most sophisticated solution
for NFV prototyping in multi-PoP scenarios available at the moment. As a
result, vim-emu is reused and extended by other researches, for example, in
a project called Fogbed by Coutinho et al. [Cou+18]. Fogbed was released
in 2018 and is a fork of vim-emu that modifies it to provide specialised
interfaces and APIs to prototype fog computing [Bon+12] scenarios. Further, I
contributed to a collaborative work that extends our Containernet platform to
support prototyping of P4-based offloading solutions [Bos+14] and is called
FOP4 [Mor+19b; Mor+19a].

67

5. Rapid prototyping of NFV functions and services

Table 5.1.: Feature matrix of existing prototyping approaches for NFV

Si
m

ul
at

io
ns

V
LS

P
[M

C
G

1
5
]

M
in

in
et

[L
H

M
1
0
]

ES
C

A
PE

[S
on

+1
5
]

N
IE

P
[T

av
+1

8
]

D
ev

St
ac

k
[O

pe
1
0
a]

C
lo

ud
te

st
be

ds
[K

R
P1

3
]

vi
m

-e
m

u
[P

K
V

1
6
]

production ready VNFs # # G# G#
arbitrary topologies G# # #
multi PoP support G# G# G# # G#
PoP resource modelling G# G# # # # #
realistic VNF performance # # G# G# G#
support for hybrid VNF chains G# # # G# # # #

Fe
at

ur
e

generic chaining support G# G# # # G#
NSH-based chaining # # # # # G#
MANO system integration G# G# # #
run offline/local G# G# #
test/prototyping support # G# G#

 fully supported / G# partly supported / # not supported

5.3. Container-based network emulations

We base the design and implementation of vim-emu on a tool called Con-
tainernet [Peu16], which was also developed by us as preliminary work for
vim-emu. The main idea behind Containernet is to extend the Mininet network
emulation platform so that arbitrary containers (i.e. Docker) can be connected
to the emulated network. The benefit of this is that container images with
preinstalled and configured software can directly be used within the emulation
experiments. For example, the default Apache httpd container can be pulled
and used to integrate a simple web server into an emulation experiment—a
much simpler process than installing and configuring the server manually in
a classical Mininet topology. Compared to Mininet, Containernet already be-
haves much more like a typical NFV environment in which VNFs are shipped
as container or VM images.

In addition, Containernet allows adding and removing containers from the
emulated network at runtime, which is not possible in Mininet. This concept
allows us to use the environments emulated by Containernet like cloud in-
frastructure in which we can start and stop compute instances (in the form

68

5.3. Container-based network emulations

1 from mininet.net import Containernet

2 # create Containernet network object

3 net = Containernet ()

4 # add two Docker containers (Ubuntu and Httpd)

5 d1 = net.addDocker("d1", dimage="ubuntu:trusty")

6 d2 = net.addDocker("d2", dimage="httpd:latest")

7 # add a switch

8 s1 = net.addSwitch("s1")

9 # interconnect containers and switch

10 net.addLink(s1 , d1)

11 net.addLink(s1 , d2)

Listing 5.1: Example of Containernet’s Python API

of containers) at any point in time. Another feature of Containernet is that it
allows to change resource limitations, e.g., CPU time available for a single con-
tainer, at runtime and not only once when a container is started, like in legacy
container setups. To define the network topologies to be emulated, Contain-
ernet offers an extended but fully backward-compatible version of Mininet’s
Python API. We use this design to lower the entry barrier for researchers
that are already familiar with the Mininet APIs. Most of our extensions are
hidden behind a single method, called addDocker(name, dimage), which can
be used to add a Docker container to a Mininet network. Listing 5.1 gives a
brief example of this and shows how two Docker containers are added to the
network and are interconnected with a switch.

The two mandatory arguments for the addDocker method are a name to
identify the container and the identifier of the container image to be used.
Besides this, the method offers a large number of optional arguments that
allow to transparently pass and forward configuration options to the Docker
containers, like environment variables, volumes, etc. [Peu16].

The main challenge to solve when integrating Docker with Mininet is the fact
that the default Docker APIs do not offer any built-in solutions to add multiple
network interfaces to a Docker container. This means, each Docker container,
created with the default Docker API, has always only a single network interface.
Having multiple network interfaces in a single container is, however, one
of the must-have features to connect containers to arbitrary topologies. To
solve this, Containernet uses a trick: Instead of only relying on the single
network interface created inside a container by the Docker daemon, it creates a
virtual ethernet device pair (veth) [Lin18b] outside the container whenever the
addLink(d1, s1) method is called. One interface of the pair is then connected
to the switch (s1), just like in a normal Mininet, and the other interface is
moved into the network namespace of the running Docker container (d1) using
the ip link set intf1 netns d1.pid command. Using this, users can add
an arbitrary number of network interfaces to a Docker container running

69

5. Rapid prototyping of NFV functions and services

within Containernet. The use of veth pairs is a good fit for the described
problem, since they behave like virtual patch cables and simply forward all
traffic between two virtual network interfaces. This also fits the idea that a
virtual link in a Mininet topology basically emulates a physical network cable.
Moving one end of the veth pair into the container, to connect it to the topology,
is possible since Mininet, as well as Containernet, are executed with root

privileges, which are also needed to create and manage the virtual switches.
Further it allows to create and remove links at runtime, something which is
not possible using Docker’s default APIs. Having this, Containernet becomes
a great starting point to build a multi-PoP NFV prototyping platform.

The limitation of this design is the fact that some VNFs might not be im-
plementable using lightweight container technology, e.g., because they rely
on customised kernel functionalities. In that case, the use of VMs cannot
be avoided. To provide a solution for this, we presented an extension of
Containernet that allows to add full-featured VMs to the emulated network
topologies [PKK18a; Kam17]. However, this is an entirely optional exten-
sion to the presented platform which I will not further discuss in this thesis,
since more and more VNFs follow a cloud-native design and can thus run
in container-based environments [5GP18]. Still, adding additional container
technologies to Containernet offers interesting opportunities for future work
(Section 11.3).

5.4. Emulating multi-PoP NFV scenarios

Even though Containernet allows to specify and emulate arbitrary network
topologies with connected containers that execute arbitrary software, e.g., VNF
implementations (use case NF-UC1 defined in Section 5.1), it is not able to
emulate NFV multi-PoP scenarios or automatically deploy complex NSs (use
case NF-UC2, MANO-UC1, and MANO-UC2). To amend this shortcoming, we
introduce vim-emu as an additional layer running on top of Containernet. This
layer offers the required APIs, endpoints, and abstractions to emulate realistic
NFV multi-PoP scenarios. The resulting emulated environment can then be
used as prototyping platform for VNFs, NSs, or novel MANO concepts.

To do so, vim-emu provides the following key features: First, it exploits Con-
tainernet’s topology API to define arbitrarily complex multi-PoP environments
with realistic link properties, like delay, data rate limitation, and loss rate.
Second, it uses standard containers (i.e. Docker) to execute arbitrary VNFs,
allowing a developer to directly deploy the prototyped container images to
production after they have been tested locally. Third, it provides cloud-like
interface endpoints, e.g., an OpenStack Nova-like [Ope10c] interface, to control
each emulated PoP in the platform. This allows developers to connect their
local prototyping environment to existing MANO solutions. The following

70

5.4. Emulating multi-PoP NFV scenarios

sections describe the general workflow of vim-emu, give insights about its ab-
stract topology definition as well as PoP control endpoint APIs, and discusses
its support for SFC.

5.4.1. Workflow

The general concept of vim-emu and the workflow of a developer who uses it
to prototype an NFV scenario is shown in Figure 5.2. The depicted workflow
focuses on a service-centric prototyping scenario in which a developer proto-
types a new NS. Other scenarios in which a developer tests, for example, a
novel MANO system against a multi-PoP environment are also possible. The
shown scenario assumes that the developer has already installed a MANO
system of his choice which is responsible to orchestrate the service on the
emulated infrastructure.

The developer’s workflow can then be split into the following steps: First, the
developer defines an NS, consisting of function (VNFD) and service (NSD)
descriptors as well as pre-built container images or Dockerfiles that contain
the network functions to be tested. The actual format of this NS and its
descriptors depends on the used MANO system that deploys the NS on top
of our platform. Then, the developer defines a multi-PoP topology on which
the service should be tested (step 1) and starts the vim-emu platform with this
topology definition (step 2). After the platform has been started, the developer
connects the MANO system of his choice to the emulated PoPs by using a
flexible endpoint API (step 3) described in Section 5.4.4. After this step, the
MANO system has full control over the emulated multi-PoP infrastructure
and the NS can be deployed on vim-emu. To do so, it needs to be on-boarded
to the MANO system (step 4) which deploys each VNF as a container in one of
the emulated PoPs, connects the container to the emulated network topology,
and sets up the service chain. In this stage, the service is deployed and runs
inside the emulated multi-PoP environment (step 5).

To easily test and configure this running prototype of the NS, the developer can
directly interact with each running container through Containernet’s interac-
tive command line interface (CLI), e.g., to view log files, change configurations,
or run arbitrary commands. This makes the interaction with the involved
VNFs much easier, since neither remote connections nor preinstalled security
keys, i.e., for SSH connections, are needed, as it would be the case in a normal
cloud testbed. The NS and its VNFs can then be stimulated with generated
traffic, e.g., using tools like iperf or tcpreplay. Furthermore, a developer
and the MANO system can access arbitrary monitoring data generated by the
containers connected to vim-emu or the VNFs themselves. Once the developer
has verified the correct behaviour and configuration of the NS, it can be ter-
minated and moved to a production environment using the same container

71

5. Rapid prototyping of NFV functions and services

vim-emu

30ms 15ms

10ms
45ms

10ms60ms

PoP1

PoP2 PoP5PoP3

PoP4

Management and Orchestration System
(e.g. OSM, SONATA, or vim-emu's LLCM)

emulated multi-PoP environment

em
ul

at
io

n
pl

at
fo

rm
(ru

nn
in

g
on

 a
 s

in
gl

e
m

ac
hi

ne
)

Endpoint

Endpoint Endpoint Endpoint

OVS
OVS

OVS OVS OVS

OVS 90ms
s1

Endpoint

VNFa

VNFc

VNFb

VNFe

VNFdservice chain

container-based network service
executed on emulated environment

s
t

veth pair(s)

Topology Def.

Service Def.

NSD VNFD

Developer

defines

defines

executes

on-board/
deploy

1

2

4
3

5

Figure 5.2.: General idea and workflow of the system. The example shows a running emulation
environment with five emulated PoPs, five allocated compute instances executing
VNFs, and a service chain setup chaining those VNFs through which generated
traffic is sent from node s to node t (logos from [Doc13]).

images and descriptors. If, in contrast, a problem is detected, the developer
can quickly change one or more VNFs and re-start the platform to have a fresh
environment for the next round of testing.

5.4.2. System architecture

The system design of vim-emu is highly customisable. It offers plugin in-
terfaces for most of its components, like API endpoints, container resource
limitation models, or topology definitions.

Figure 5.3 shows the main components of vim-emu and how they interact
with each other and with the underlying Containernet. The emulator core
component implements the main emulation environment, e.g., the emulated
PoPs. It is the core of the system and interacts with the topology API to load
topology definitions as described in Section 5.4.3. The flexible endpoint API
allows vim-emu to be extended with different control interfaces that can be
used, e.g., by MANO systems to manage and orchestrate NSs in the emulated
environment (Section 5.4.4). The resource management API allows to connect
resource emulation models that define how much resources, like CPU time
and memory, are available in each of the emulated PoPs, as further described
in Section 5.5. Finally, we provide an easy-to-use representational state transfer
(REST) control API and a CLI [Peu17] that allows developers to interact with
vim-emu and manage the lifecycle of single VNFs and complete NSs.

72

5.4. Emulating multi-PoP NFV scenarios

vim-emu

Emulator Core

Topology
API

Resource
API

Endpoint
API

Containernet

Docker Mininet

REST &
CLI

PoP2
Endpoint ...PoP1

Endpoint
PoPn

Endpoint

Figure 5.3.: System architecture and components with N active PoP endpoints offering control
interfaces to an external MANO system

5.4.3. Topology definition

To test NSs in realistic multi-PoP scenarios, vim-emu needs to be able to
emulate arbitrary network topologies. To do so, it offers a topology definition
API used to define available PoPs, their resources, as well as the network
between them and its properties. In contrast to legacy Containernet or Mininet
topologies, vim-emu topologies do not describe single network hosts connected
to the emulated network. Instead, they define available PoPs, represented by
emulated cloud data centres in which compute instances can be started and
stopped at any point in time. In the most simplified case, such a PoP emulates
just a single node, i.e., a router with attached compute and storage facilities
like a Blade server. A more sophisticated node represents a small data centre,
which comprises several servers and is internally connected by a single SDN
switch. More abstractly, an emulated PoP can also be a complex data centre
whose internal connection is simplified into a “big-switch” abstraction (as
shown in Figure 5.2). For all these versions, we assume that the MANO system
has full control over whether a particular VNF is executed at a particular PoP
but does not care about internals of the PoPs.

A vim-emu topology allows to add an arbitrary number of SDN switches
between PoPs (Figure 5.2, s1 and s2). These SDN switches as well as any SDN
switches within each PoP can be either controlled by standard SDN controllers,
by custom controller implementations provided by the user of the platform, or
by the MANO system itself. Thus, complex network and forwarding setups
with a high number of inter-PoP switches can be emulated.

73

5. Rapid prototyping of NFV functions and services

1 # create basic vim -emu emulation

2 net = DCNetwork ()

3 # create two PoPs

4 p1 = net.addPoP("My PoP 1")

5 p2 = net.addPoP("My PoP 2")

6 # create an intermediate SDN switch

7 s1 = net.addSwitch("s1")

8 # connect PoPs: p1 <-> s1 <-> p2

9 net.addLink(p1 , s1 , delay="10ms", bw=10)

10 net.addLink(p2 , s1 , delay="50ms", loss =2)

11 # attach cloud endpoints to control each PoP

12 api1 = OpenstackApiEndpoint(port =6001)

13 api1.connectPoP(p1)

14 api1.start ()

15 api2 = OpenstackApiEndpoint(port =6002)

16 api2.connectPoP(p2)

17 api2.start ()

18 # start the emulation

19 net.start()

20 # start and enter the interactive CLI

21 net.CLI()

Listing 5.2: Example vim-emu topology with two PoPs connected to OpenStack-like cloud
endpoints

We based our topology API on Containernet’s Python API. This has the benefit
that developers can use scripts to define or algorithmically generate topologies.
It also allows to implement generators that can read given topologies, e.g.,
based on GraphML files, and turn them into vim-emu multi-PoP topologies.
We implemented a prototype of such a generator that transforms topologies
provided by the Internet Topology Zoo [Kni+11] into executable emulation
scripts [Peu+18b].

Listing 5.2 shows an example topology script defining two PoPs that are
interconnected by a single switch. It shows how the PoPs are connected and
how the link setup is done (lines 1–10). It also shows how link properties, like
delay, loss, and data rate can be set. At the end of the script, the emulation
is started (line 19) and vim-emu’s interactive CLI is opened (line 21) which
allows a user to directly interact with the emulated scenario, e.g., list running
PoPs, VNFs, and their interconnections.

5.4.4. Flexible endpoint API

After an emulation topology is defined, MANO systems need a way to control
the emulated PoPs, e.g., to start and stop compute instances inside them. To
realise this, we introduce the concept of flexible API endpoints (Figure 5.3). Such
an API endpoint is an interface to a single PoP which provides typical IaaS

74

5.4. Emulating multi-PoP NFV scenarios

cloud control interface semantics to manage compute instances or networking.
Instead of fixing our design to a single interface implementation, we provide an
abstract API and allow users of the platform to implement their own endpoints
on top of it. This has the benefit that our platform can be integrated with
any MANO system as long as an API endpoint that provides the expected
interfaces is created. Examples for such endpoints are OpenStack-compatible
interfaces [Ope10b], which are among the most commonly used VIM interfaces
in the NFV landscape. But our design allows any other open or proprietary
interface to which a MANO system can connect as well. We implemented
and presented prototypes of OpenStack-compatible interfaces in [Peu+17] and
present more details about this implementation in Chapter 7.

Besides interfaces that act as a bridge between MANO systems and emulated
PoPs, more intelligent control components can be implemented on top of the
provided endpoint API. An example for this is the “SONATA-NFV Dummy-
Gatekeeper” [SON16] which is a simplistic orchestration solution that allows to
directly deploy SONATA-NFV compliant NS packages [SON16] on vim-emu
without the need of an external MANO solution. This component later evolved
to the “5GTANGO lightweight lifecycle manager (LLCM)” [5GT18b], which
adds additional support for NS packages compatible with 5GTANGO’s ad-
vanced NFV package format [5GT18a]. Even though those lightweight control
components offer a very restrictive set of features compared to real-world
MANO solutions, e.g., no day-0 and day-N configuration mechanisms, no
monitoring etc., they still turn out to be useful for quick prototyping of VNFs
and NSs. An example for this is 5GTANGO’s smart manufacturing pilot,
which was entirely developed on top of vim-emu before it was migrated to its
production environment [Sch+19; Peu+19d].

Technically, API endpoints are instantiated and assigned to PoPs using topol-
ogy definition scripts as shown in Listing 5.2 lines 12–17. The default approach
is adding one endpoint to each PoP so that each emulated PoP provides its
own management interface towards the MANO system (Figure5.3). From the
perspective of the MANO system, this looks exactly like a real multi-PoP
environment offering a heterogenous set of management interfaces towards
the available PoPs.

5.4.5. Chain management and forwarding paths

To run complex NSs on top of vim-emu, we need to deploy its VNFs and set
up the forwarding path between them, like the SFC shown in Figure 5.2. Since
all emulated PoPs are based on SDN switches, a vim-emu user can have full
control over the forwarding of an NS’s network traffic. Setting up a chain where
traffic is steered along a defined path is now a matter of setting the correct
forwarding entries in the involved SDN switches using an SDN controller. To

75

5. Rapid prototyping of NFV functions and services

A

B

D

I

E

C

F

H
K

J

G

100 ms
100 Mbits

35 ms
20 Mbits

65 ms
80 Mbits

25 ms
5 Mbits

115 ms
100 Mbits

50 ms
60 Mbits

50 ms
40 Mbits

60 ms
10 Mbits

70 ms
60 Mbits

50 ms
50 Mbits

20 ms
10 Mbits

80 ms
90 Mbits

40 ms
60 Mbits

10 ms
10 Mbits

Figure 5.4.: Topology used for multi-PoP evaluation (based on “Abilene” topology [Kni+11])

support users to setup arbitrary forwarding path and thus chain the VNFs, we
provide a simplified API that brings basic SFC functionality to vim-emu while
hiding the complexity of low-level SDN protocols. This API allows to chain
running containers, i.e., VNF instances, by calling a single Python method,
i.e., setChain(vnf1, ... , vnfN) that gets a list of VNF instance objects as
inputs. An internal graph representation of the topology and its attached
containers is kept to compute the forwarding path with the fewest hops or
the smallest delay, depending on the used vim-emu configuration. This basic
SFC implementation uses VLANs to isolate different forwarding graphs and
to steer traffic to the correct VNFs. Even though this approach works fine for
many prototyping use cases, a more sophisticated SFC solution, relying on
NSH [QEP18], has been added to vim-emu as further detailed in Chapter 6.

5.4.6. Evaluation

To evaluate the multi-PoP features of vim-emu and in particular the correct
emulation of networking properties between the PoPs, we perform a set of
experiments. We execute these experiments using a topology called “Abilene”,
which is part of the Internet topology zoo (ITZ) [Kni+11] and is shown in
Figure 5.4. The topology has 11 PoPs (A–K) and 14 links between them. We
assign the shown rate limits and delays to each link and let vim-emu run this
topology. We then measure the RTT as well as the achieved throughput on
each of the links and compare the measured results with the values modelled
by the emulated topology. The goal is to confirm that the connections between
the emulated PoPs behave as intended when real traffic is transmitted between
them.

We execute these experiments on a single physical machine with an Intel(R)

76

5.4. Emulating multi-PoP NFV scenarios

A-
B

A-
D

C-
B

C-
F

B-
D

E-
H

E-
D E-
F

G-
H G-
J

G-
F I-H I-K K-
J

Link

0

50

100

150

200

250
RT

T
[m

s]
RTT (model)
RTT (measuremnt.)

(a) RTT (ICMP)

A-
B

A-
D

C-
B

C-
F

B-
D

E-
H

E-
D E-
F

G-
H G-
J

G-
F I-H I-K K-
J

Link

0

20

40

60

80

100

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Throughput (model)
Throughput (measuremnt)

(b) Throughput (TCP)

Figure 5.5.: Modelled vs. measured RTT and throughput between the PoPs of the emulated
“Abeline” topology (Figure 5.4)

Xeon(R) W-2145 CPU at 3.70 GHz CPU, 32 GB of memory, running Linux
4.4.0-142-generic. To perform the measurements, a single VNF, represented
by an Ubuntu 16.04 Docker container with ping as well as iperf3 installed, is
deployed in each of the PoPs. The measurements are then executed between
these test VNFs. The RTT is measured using ping with its default options
and the achievable TCP throughput is measured with iperf3 also using the
default options. Each measurement is repeated 30 times and the error bars
show 95 % confidence intervals. Figure 5.5a presents the RTT results. It can
be seen that all measurements are quite constant (error bars are almost not
visible) and that measurements are close to the modelled RTTs used as inputs
to the emulator. In general, the measured RTTs tend to be slightly higher than
the modelled ones, which can be explained by the additional delay that is
added by the intermediate Open vSwitch (OVS) switch in each PoP and the
network stacks of the measurement VNFs that need to be traversed in addition
to the link between the PoPs.

A similar picture can be seen in Figure 5.5b, which reports the TCP throughput
achieved on each of the links. Again the measured values are close to the
modelled values, which proofs that the network emulation features work
as expected. It also shows that vim-emu is capable of emulating realistic
network topologies with configurable link properties between the PoPs. These
features can, for example, be used to test VNF placement algorithms in realistic
scenarios, going beyond simple simulation approaches in which no real VNFs
are executed, as we have shown in [SPK18].

77

5. Rapid prototyping of NFV functions and services

5.5. Emulating PoP resource limits

Even though cloud systems provide virtually infinite compute resources to
their customers, realistic scenarios, especially with small PoPs, look different.
Such PoPs offer limited compute, memory, and storage resources which have to
be considered by a MANO system when placement and scaling decisions are
taken. Those limitations especially apply in fog and MEC scenarios [Bon+12;
ETS14a]. To emulate such resource-limited PoPs, vim-emu offers the concept
of flexible resource models. Such a model can be assigned to a PoP and simulates
the resource behaviour of that PoP by restricting the resources assigned to
the containers that are deployed in that PoP. As a result, the actual resources,
e.g., CPU time or memory, available to a container and its contained VNF
implementation are restricted. This looks, from the perspective of the VNF
implementation running in the restricted container, like a real-world scenario
in which the resources might be limited, e.g., because the available CPU
time has to be shared with other VNFs. A resource model can also reject
instantiation requests for new containers, if not enough simulated resources
are free and available, as we show in the first example in Section 5.5.1.

Technically, resource models can be assigned to and configured for each PoP
within the topology definition as shown in Listing 5.3 lines 5–10. These models
do bookkeeping of the used resources and are called whenever resources
should be allocated or released, e.g., a new container should be started or
a running container should be stopped. When a new container should be
started, the user specifies the amount of simulated resources that should be
allocated to this container. This corresponds to requesting a specific resource
configuration (also called flavour) in a real-world IaaS scenario in which a
new compute instance should be instantiated in a PoP. Upon this request, the
used model computes CPU, memory, and storage limits to be applied to the
requested container, i.e., it restricts the resources available to the container in
the emulation scenario. For example, a model can automatically reduce the
available resources, say CPU time, of all containers running inside an emulated
PoP when additional containers should be allocated in this PoP. This simulates
an oversubscription scenario in which all containers of a PoP have to share a
limited set of resources, as further detailed in the second example given in
Section 5.5.1.

A generic API allows developers to easily create their own resource models.
For example, a telco operator that deploys services in its own PoPs might have
more control about available resources than a web service provider that buys
cloud resources from a third party, like Amazon. The telco operator can enforce
detailed configurations, like core pinning or even use a fixed dedicated physical
node for a specific VNF. These options are often not offered in shared third-
party cloud environments. Vim-emu can, however, be used as a prototyping
platform in both cases. The telco operator might, e.g., use a resource model in

78

5.5. Emulating PoP resource limits

1 # create two PoPs

2 p1 = net.addPoP("My PoP 1")

3 p2 = net.addPoP("My PoP 2")

4 # initialize and assign resource models to PoPs

5 r1 = ModelA_FixedLimit(

6 max_cu =24, max_mu =80, max_su =90)

7 r1.assignPoP(p1)

8 r2 = ModelB_Oversubscription(

9 max_cu =80, max_mu =120, max_su =280)

10 r2.assignPoP(p2)

11 # ...

12 net.start()

Listing 5.3: Example vim-emu topology with two different resources models, each assigned to
a particular PoP

which resources are strictly reserved whereas the web service provider uses
a model in which the service’s performance is influenced by other services
that share the same infrastructure. Models for other operational metrics, like
prizing models, can also be implemented, e.g., increase prizes for resources if
a PoP is highly utilised.

5.5.1. Models

To showcase how a vim-emu resource model looks like, we provide two exam-
ple CPU limitation models that are implemented in our prototype; memory
and storage models that use the same ideas and concepts are available as
well. We use models that limit the available CPU time of the containers rather
than models that change the number of CPU cores, because it gives us much
more flexibility in terms of possible configurations since vim-emu is usually
executed on a single physical (or virtual) machine with a small number of
available CPU cores, e.g., a developer’s laptop.

The goal of the presented models is to limit the overall available CPU capacity
of each PoP in a way such that the utilisation of one PoP does not influence other
PoPs. This is an important feature to realistically emulate multi-PoP scenarios
on a single (physical or virtual) machine on which vim-emu is executed. Our
example models use the notion of compute units (CUs) to describe the relative
amount of CPU time allocated to a single container. For example, a container
that requests 4 CUs will get twice as much CPU time as a container requesting
2 CUs. These relative resource requirements can be described independently
from absolute available resources. This results in emulated scenarios in which
the relative resources available to each container (running a VNF) reflect the
resources available to them in real-world deployments, e.g., VNFi that gets
half the resources of VNFj in a real-world deployment, will get also half as

79

5. Rapid prototyping of NFV functions and services

Table 5.2.: Definitions used to build our example CPU resource models

Symbol Description

Ecpu ∈ (0, 1] Percentage of physical CPU time available for the
overall emulation. For example, all containers to-
gether will not use more than 75 % of the physical
CPU if Ecpu = 0.75.

N ∈N>0 Number of PoPs in the emulated topology.
mcp ∈N>0 Number of CUs available in PoP p.
acp ∈N Number of CUs already allocated by running contain-

ers in PoP p.
ncc ∈N>0 Number of CUs requested for a new container c.
Pc ∈ [0, 1] Percentage of physical CPU time computed by the

resource model and finally assigned to container c.

much resources as VNFj in the emulation. More specifically, we define a CPU
model using the symbols described in Table 5.2 and use this to define a CPU
limitation function that gets the number of CUs requested for a container (ncc)
and the PoP on which the container should be deployed (p) as inputs and
maps this to the absolute CPU time that will be assigned to the container:
f : ncc × p → Pc.

Figure 5.6 presents an abstract example of this model. It shows the total
available CPU time ([0, 1]) of the host machine which executes the emulation.
The global parameter Ecpu = 0.75, which has to be configured before vim-emu
is started, defines that 75 % of the total CPU time can be used for emulating
the PoPs, leaving the remaining CPU time to the host operating system and
other tasks. In this example, an emulation scenario with two PoPs is shown.
During initialisation of the scenario, the “size” of the two PoPs in terms of
available resources is defined. PoP1 is configured to provide six CUs (mc1 = 6)
and PoP2 is configured to offer half of the resources of PoP1 (mc2 = 3). This
shows how a user can use the abstract notion of CUs to define the relative size
of the PoPs involved in the emulation.

Figure 5.6 also shows how these PoP configurations are used to initially
compute the absolute size of a single CU by dividing the CPU time available for
the emulation by the total number of configured CUs as shown in Equation 5.1.
There is no VNF deployed in this example and as a result none of the available
CUs is allocated.

Ecpu

∑N
i=1 mci

=
0.75
6 + 3

= 0.0833 (5.1)

We use this abstract model to introduce two example resource models with

80

5.5. Emulating PoP resource limits

0.0 1.00.75
CPU time

Abstract resource model:

1CU = 8.33% CPU time

75% CPU time available for emulation ()𝐸𝑐𝑝𝑢

total CPU time (100%)

PoP1: 6 compute units (CUs)

PoP2: 3 compute units (CUs)

CU is allocated (assigned to a VNF)

Figure 5.6.: Abstract example of the presented resource models showing two PoPs with different
sizes (PoP1=6 CUs, PoP2=3 CUs) and how these abstract CU are mapped to the
available CPU time of the host machine on which the emulation is executed

different complexity in the following sections. First, a model that simulates
PoPs with a fixed amount of available resources that cannot be oversubscribed
is presented. Second, a model is introduced that uses a fixed resource limit per
PoP but allows oversubscription when more and more containers are deployed
in a PoP. It is important to note that the abstract model shown in Figure 5.6 is
an example to demonstrate how the resource model feature of vim-emu can
be used. Vim-emu is not limited to this model and the used notations.

5.5.1.1. Model A: Fixed limit

Our first model assigns a fixed amount of CUs to each PoP in the system and
does not allow to oversubscribe a PoP. This is modelled by defining a mapping
function (fp) for each PoP (p) that maps requested CUs (ncc) to absolute CPU
time (Pc) as shown in Equation 5.2. If a new VNF container is requested and
not enough free CUs are left in the target PoP, the instantiation request is
rejected (function fp returns 0). If enough CUs are available, the absolute CPU
time (Pc) for the container is computed based on the overall CPU time available
for the emulation (Ecpu) and the CU limit assigned to the selected PoP (mcp) as
described in Equation 5.1. As a result a PoP can never be over-utilised. In this
model, the amount of absolute CPU time per CU stays constant throughout
the entire emulation.

fp(ncc) =

{ Ecpu

∑N
i=1 mci

· ncc, if acp + ncc ≤ mcp

0 (reject), else
(5.2)

Example: To better demonstrate the behaviour of this model, we present
an example in Figure 5.7. The example is split into two steps. The first step,

81

5. Rapid prototyping of NFV functions and services

0.0 1.00.75
CPU time

Model A: Fixed limit

VNF1 using 4 CUs VNF2 using 2 CUs

(a) Step 1: VNF1 (using 4 CUs) and VNF2 (using 2 CUs) are deployed and
running on PoP1 and PoP2

0.0 1.00.75
CPU time

Model A: Fixed limit

VNF1 using 4 CUs VNF2 using 2 CUs

Error! Not enough resources left
on PoP1 Reject request!→

VNF3 requesting 4 CUs

(b) Step 2: Instantiation request of VNF3 (with 4 CUs) sent to PoP1 is rejected,
because PoP1 has only two free CUs left

Figure 5.7.: Example scenario using Model A: Fixed limit

shown in Figure 5.7a, depicts a situation in which two VNFs are deployed in
the system. More specifically VNF1 is deployed in PoP1 and allocates the four
CUs it has requested when it was instantiated. Similarly, VNF2 runs in PoP2

and allocates two CUs. This means there are two and one free CUs available
in PoP1 and PoP2, respectively.

In the second step, shown in Figure 5.7b, VNF3 with four CUs is requested
and should be started in PoP1. During the processing of the request, vim-emu
contacts the resource model and asks for the additional four CUs in PoP1. In
this example, the request cannot be fulfilled since the used model does not
allow oversubscription and thus rejects the request. As a result, vim-emu is
not able to start VNF3 in PoP1.

5.5.1.2. Model B: Cloud-like oversubscription

Our second model does not enforce a fixed CU limit per PoP. Instead, it
allows oversubscription, which is a typical concept in IaaS clouds. For example,
OpenStack Nova sets its default cpu allocation ratio property to 16:1 which
means that for each physical CPU core of an OpenStack cluster up to 16 virtual
CPU (vCPU) cores can be allocated [Ope16]. This results in situations in which
compute instances get less resources than initially requested and allocated
because cores are shared with other compute instances. As a result, a VNF
might slow down if more and more VNFs are started in the same PoP so that
the PoP becomes oversubscribed.

82

5.5. Emulating PoP resource limits

To model this behaviour, we use a so called “oversubscription factor” which we
define as the fraction of available and currently used CUs in a PoP as shown
in Equation 5.3. This factor reduces the available CPU time of all containers
within the same PoP once more CUs are requested than there have been
initially assigned to that PoP, i.e., acp > mcp. We do this by updating the
resource limits of all containers of PoP p whenever a new container is added
or removed from p.

The key concept here is that only the CPU time per CU of the oversubscribed
PoP is reduced but not the CPU time of other PoPs. As a result, our model
creates a realistic environment in which oversubscription in one PoP does
not influence the VNF instances running in another PoP. Using this model
means, in particular, that each PoP offers a virtually infinite number of CUs
and will never reject a request. Instead, the absolute CPU time per CU in
the oversubscribed PoP will be continuously reduced as more and more CUs
are allocated. This is the main difference to Model A. Mixed forms of both
presented models are, however, possible, e.g., the oversubscription factor of
Model B could be bounded so that, at some point, requests are rejected like it
is done by Model A.

fp(ncc) =
Ecpu

∑N
i=1 mci

·
mcp

max {acp; mcp}︸ ︷︷ ︸
oversubscr. factor

·ncc (5.3)

This model provides a playground for realistic multi-PoP scenarios, e.g., an
overloaded PoP might motivate a MANO system to reassign its containers to
other PoPs with better performance. As a result, the previously oversubscribed
PoP is relieved and the performance of containers it is hosting improves.

Example: We demonstrate Model B with our previously used example. Fig-
ure 5.8a again shows the situation in which VNF1 and VNF2 are deployed and
running on PoP1 and PoP2. In this situation, the instantiation of VNF3 that
wants to use four CUs is requested. In contrast to the previous example, the
request is not rejected as shown in Figure 5.8b. Instead, PoP1 is oversubscribed
and the absolute CPU time per CU in PoP1 is scaled-down by the oversub-
scription factor to make room for the requested CUs. After that, a single CU
in PoP1 maps to only 6.25 % CPU time once VNF3 is deployed. As a result,
all eight CUs of VNF1 and VNF3 fit into PoP1. The total absolute CPU time
available for PoP1 stays, however, constant so that the oversubscription has no
effect on PoP2 and its VNFs.

83

5. Rapid prototyping of NFV functions and services

0.0 1.00.75
CPU time

Model B: Cloud-like oversubscription

VNF1 using 4 CUs VNF2 using 2 CUs

(a) Step 1: VNF1 (using 4 CUs) and VNF2 (using 2 CUs) are deployed and
running on PoP1 and PoP2

Model B: Cloud-like oversub.

0.0 1.00.75
CPU time

VNF1 using 4 CUs VNF2 using 2 CUs

VNF3 using 4 CUs1CU = 6.25% 1CU = 8.33%

Valid request! PoP1 is
oversubscribed now scale-
down the absolute CU size!

→

(b) Step 2: Instantiation request of VNF3 (with 4 CUs) sent to PoP1 is granted
by oversubscribing PoP1 and reducing the absolute CPU time of the CUs
of PoP1

Figure 5.8.: Example scenario using Model B: Cloud-like oversubscription

5.5.2. Implementation

Implementation-wise, our system does not use Docker’s default CPU share
limitation API since it is not sufficient for our use case. The first reason for
this is that it only limits the CPU share if two or more containers want to
utilise the entire CPU at the same time. It does not limit the CPU time if
only one container is utilised and the competing ones are idle. Instead, we
use the “CPU bandwidth control” functionalities of Linux’s completely fair
scheduler (CFS) [TRR10] which allows us to assign a fixed upper limit of
CPU time to each container in the system. The second reason for our custom
implementation is that the used Docker API does only allow to set resource
limitations when a container is started but not to update limits at runtime.
We bypass these shortcomings by directly manipulating the cgroup system
properties. Using this, Containernet sets the CPU period and CPU quota

fields in the CFS properties of a given container according to the percentage
of CPU time this container should be able to use. This gives a fine-grained
control over the absolute fraction of CPU time a single container is allowed to
consume.

In addition to this, Containernet is also able to control the number of CPU
cores available to each container as well as to pin a container to a specific
set of cores on the host machine. This can, for example, be used to pin all
containers of an emulated PoP to a single core to achieve better isolation
between containers assigned to different PoPs.

84

5.5. Emulating PoP resource limits

0

20

40

60

80

100

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
]

ECPU

model

aggregate CPU

avg. per container CPU

0 50 100 150 200 250 300
experiment time [s]

0
4n

o
. containers

(a) Model A

(a) Model A: Fixed Limit

0

20

40

60

80

100

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
]

0 50 100 150 200 250 300
experiment time [s]

0
4
8

n
o
.

(b) Model B

(b) Model B: Cloud-like oversubscription

Figure 5.9.: Modeled vs. measured container CPU usage

5.5.3. Evaluation

We perform a series of experiments to prove the presented concept, validate
the behaviour of the introduced resource models, and to showcase the system.
The experiments use topologies with one and two PoPs in which Docker
containers that run a workload generator (stress) are started. The workload
generator is configured such that every container always tries to fully utilise
the CPU. The overall available CPU time for all containers of the emulation
is set to Ecpu = 0.5 and the experiments are executed on a single physical
machine with Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz and 16GB memory.

The goal of our first experiment is to validate our implementation by checking
that the measured CPU usage of containers in a single PoP is aligned to the
theoretical CPU usage computed by our models. During the experiment a
new container (requesting one CU) is allocated every 20 s during the exper-
iment until a total of eight containers are requested. After additional 20 s,
these containers are terminated one by one, again using 20 s between each
termination request. The maximum limit of available CUs in the PoP is set
to four CUs so that some of the requests are rejected (Model A) or the PoP
becomes oversubscribed (Model B).

Figure 5.9 shows the aggregated CPU usage for the entire PoP as well as
the average CPU usage for a single container, both measured with Docker’s
status API that returns detailed CPU time statistics. Additionally, the expected
CPU utilisation calculated by our models is plotted. The results show that the
measured CPU utilisation for all containers in the PoP is close to the limits
computed by the model. The graph at the bottom of the figures shows the
number of running containers in the PoP.

Figure 5.9a shows how Model A rejects requests after four containers are
running and thus enforces the fixed upper resource limit of the PoP. Model B,

85

5. Rapid prototyping of NFV functions and services

0 5 10 15 20 25 30
no. container in PoP1

0

20

40

60

80

100

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
]

PoP1: container CPU

PoP2: container CPU

(a) No Resource Model

(a) No resource model

0 5 10 15 20 25 30
no. container in PoP1

0
2
4
6
8

10
12
14

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
] (b) No isolation

(b) No isolation

0 5
no. container in PoP1

0
2
4
6
8

10
12
14

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
] (c) Model A

(c) Model A

0 5 10 15 20 25 30
no. container in PoP1

0
2
4
6
8

10
12
14

p
h
y
si

ca
l
C

P
U

 u
sa

g
e
 [

%
] (d) Model B

(d) Model B

Figure 5.10.: Cross-PoP resource isolation using different resource models

in contrast, accepts all eight containers since it allows oversubscription, which
is shown in Figure 5.9b. It also shows how the available average CPU time,
available to all containers, is reduced when the PoP becomes oversubscribed.
An interesting observation in Figure 5.9b are the spikes in the measured
CPU usage. They happen during the reconfiguration of CPU limits of already
running containers which is needed by Model B and happens whenever a
container is added or removed from the system. The root cause for this seems
to be Linux’s cgroups implementation. Still, those peaks happen only for short
time periods (usually less than 1 s) and thus do not have a big impact to long
running experiments. Investigating this issue will be part of future work.

The second experiment shows how the presented resource models provide
resource isolation between PoPs. It emulates a topology with two PoPs, each
with a limit of two CUs. During the experiment, the average physical CPU time
available for a single container is measured for different numbers of stress
containers running in PoP1. The number of stress containers running in PoP2

is fixed to two containers. With this setup, we can observe how the changing
number of containers in PoP1 influences the performance of containers in
PoP2.

Figure 5.10 shows the results for different resource models. Figure 5.10a shows
what happens when no resource limitation model is used. All containers

86

5.6. Conclusion

compete for the entire physical CPU time and the performance of containers
in PoP2 is reduced when more containers are added to PoP1. The same
happens in Figure 5.10b with the difference that it uses a common resource
model for both PoPs. Thus, the containers do not influence each other until
the maximum of two containers is running in PoP1. Figure 5.10c shows the
behaviour of Model A which does not allow oversubscription and rejects all
requests when two containers are already running in a PoP. The behaviour
of Model B is shown in Figure 5.10d. The figure validates that the model
enables resource isolation between PoPs even when PoP1 is oversubscribed
and the CPU time for each of its containers is reduced. Figure 5.10d shows that
there is still some minor impact to the performance of PoP2 when containers
are added to PoP1, i.e., PoP2’s performance is reduced by around 2 % when
PoP1 is oversubscribed by a factor of 16×. Our results show that vim-emu
can simulate resource limitations in multi-PoP environments while ensuring
resource isolation between PoPs. As a result, local prototyping of realistic
multi-PoP NFV scenarios becomes possible.

5.6. Conclusion

We introduce vim-emu, a prototyping platform for NFV that goes beyond its
initial NFV use cases and is an excellent prototyping and test platform for
all kinds of distributed services. Our experiments show that vim-emu can
emulate realistic network conditions and resource limitations in multi-PoP en-
vironments while ensuring resource isolation between PoPs. By using Docker
containers to execute VNFs within our emulation platform, vim-emu allows
developers to directly move their tested services into production without
requiring additional changes, which speeds up development cycles.

We argue that vim-emu is an important step towards a fully integrated devel-
opment support toolchain for NS development. The entire project has been
recently adopted by ETSI OSM which offer free hosting of vim-emu’s open-
source code [ETS17b] and provide a Jenkins-based CI/CD pipeline as well as
code review and bug tracking tools for the project. The following chapters
will present several extension to vim-emu, e.g., the integration with different
MANO systems and advanced service chaining techniques.

87

6. Adding NSH-enabled SFC
prototyping capabilities

Even though vim-emu already supports basic service chaining, e.g., using a
VLAN-based approach to separate different VNF-FGs and VNF-FPs, it does
not support more advanced service function chaining (SFC) technologies as
they are standardised by IETF [QN15]. To rectify this, we build an extension to
the vim-emu platform that adds support for NSH-based service chaining. This
chapter contains figures and verbatim copies of my paper [Peu+18a], which is
based on work I did together with Frédéric Tobias Christ. It introduces the gen-
eral concept to integrate NSH into vim-emu, which was designed by me, and
presents a prototype implemented by Mr. Christ in his Bachelor thesis [Chr18;
CP18]. Mr. Christ not only contributed to the prototype implementation but
also helped to run the presented experiments, under my supervision, which
lead to the presented results; they were analysed by me and are presented as
part of a case study.

6.1. Introduction

A key concept to deploy complex NSs within NFV environments is SFC as
defined by IETF [QN15]. SFC allows to combine multiple VNFs or CNFs into
larger services. In this context, single VNFs or CNFs are usually referred to as
service functions (SFs). Multiple SFs are traversed by packets according to the
SFC configuration, using one or multiple service function paths (SFPs) [HP15].
To simplify forwarding along an SFP, Quinn et al. [QEP18; QG14] introduced
NSH as a possible protocol to encapsulate and mark packets according to the
SFPs they are assigned to. The main benefits of NSH are the possibility to
create topology-independent SFPs and its ability to pass arbitrary metadata
between the involved SFs, e.g., classification information.

However, in a recent survey, Medhat et al. [Med+17] identify the lack of NSH
support in current switch and SF implementations as one of the key chal-
lenges for SFC, which is limiting its applicability and leading to unnecessary
complexity in today’s NFV solutions. We argue that one reason for the lack
of practical implementations are missing prototyping environments in which
NSH-enabled network functions (NFs) can be easily developed and tested.

89

6. Adding NSH-enabled SFC prototyping capabilities

Even if major VIMs, like OpenStack, are currently integrating SFC solutions
into their platforms, their availability for prototyping is still very limited. One
reason for this is that they focus on production-grade systems rather than on
systems that offer development support, e.g., debugging.

To this end, we extend vim-emu with support for NSH-based SFC [Peu+18a].
This extension allows researchers as well as function and service developers to
quickly test their NSH-enabled components and to validate and verify their
functionality before putting them into production. The resulting NSH-enabled
platform can be used in three different ways. First, an SF developer can use
our platform to validate and verify that an SF behaves correctly in an NSH-
enabled SFC setup. Second, SFC integrators can test complex service chains
with many SFs in a controlled environment. Third, MANO solutions can use
our platform as an experimentation and test backend to test their service
orchestration functionality, e.g., to verify that their chaining logic requests
correct forwarding paths.

To simplify the prototyping process, we also design a set of pre-packed auxil-
iary components such as a generic NSH-enabled SF and a traffic generator for
NSH encapsulated traffic. Using these components, we perform a case study
that showcases the resulting platform.

6.2. Related work

Besides the request for comments (RFC) mentioned in Section 6.1, the SDN and
NFV communities investigate a variety of different aspects within SFC, e.g.,
regarding resilience against failures [BBS16; Med+16] or dynamic readjustment
to changed service requests [Liu+17]. So far, these research findings have
been mostly evaluated using simulation [BBS16; Liu+17] or heavyweight
testbeds [Med+16], which are not available to every developer and are hard to
set up. Future evaluations and case studies can benefit from the lightweight
prototyping solution proposed in this chapter.

Davoli et al. provide a proof-of-concept implementation of an SFC control
plane using NSH [Dav+17] in combination with a set of OVSs used as service
function forwarders (SFFs), which is similar to our design. Each of their SFs
is, however, also implemented around an OVS instance which is different to
our approach in which SFs can be simply realised with lightweight and easy-
to-use Docker containers. Further, our approach focuses on enabling quick
prototyping, e.g., quickly spin up complex SFC scenarios on a developer’s
laptop, including emulated multi-PoP scenarios, whereas the proof-of-concept
presented in [Dav+17] consists of manually configured VMs connected to a
fixed topology.

90

6.3. Requirements

We build our NSH-based prototyping platform on top of vim-emu, which
is highly scalable and can efficiently emulate hundreds of PoPs [Peu+18b].
This makes it a perfect fit for lightweight NSH prototyping and large-scale
NSH experiments. Other emulation platforms like Mininet [LHM10], Max-
inet [Wet+14], or VLSP [MCG15] are not suitable for prototyping of SFC
approaches as they do not emulate NFV infrastructure to which hosts can
be added or removed at runtime and be chained dynamically. In contrast to
vim-emu, they do not provide standard VIM interfaces, which allow using
MANO systems for managing chained network services. While VLSP pro-
vides some support for attaching MANO systems, it does not allow to execute
real-world SFs.

Pelle et al. [Pel+15] provide a framework for troubleshooting and debug-
ging SDN, but it does not focus on quick prototyping of SFC. Similarly, ES-
CAPE [Cso+14] is not suitable for quick prototyping of SFC approaches as
it focuses on orchestration between non-emulated PoPs. Finally, simulation
approaches [Cal+11; Zha+12; Hen+08] do not support real SF implementations
and can thus not be considered as prototyping environments. Hence, emula-
tion platforms are more appropriate for prototyping and the validation and
verification of realistic SFC setups, functions, and tools.

6.3. Requirements

To solve the problem of missing prototyping platforms for NSH-enabled
SFs, we first collected the requirements that such a platform should fulfil
to properly support developers: (i) The platform has to be able to quickly
deploy the prototyped SFs. This includes the execution of SFs written in
different programming languages using arbitrary frameworks and libraries.
(ii) A developer should be able to configure arbitrary network topologies
in which SFs or complex SFCs can be tested. (iii) The created test networks
should allow to transport and deliver real network traffic and implement the
correct forwarding behaviour of NSH-encapsulated packets. (iv) A prototyping
platform should seamlessly integrate with other tools commonly used in the
NFV landscape, e.g., MANO systems.

Even though vim-emu already fulfils requirements (i) and (ii), it still lacks
support for NSH-based SFC and only provides a very simplistic chaining
model using VLAN tags statically assigned to SF ports. Hence, we address
requirements (iii) and (iv) by extending vim-emu as shown in Figure 6.1
and adding support for NSH. We describe those extensions in the following
sections.

91

6. Adding NSH-enabled SFC prototyping capabilities

vim-emu

Emu-Core

Topology
API

Resource
API

Endpoint
API

Containernet

CLIPoP 2
Endpoint ...PoP 1

Endpoint
PoP n

Endpoint

SFC Controller

SFC
API

Figure 6.1.: Extended vim-emu architecture with additional SFC controller and API (based
on [Chr18])

6.4. Adding NSH support to the emulation platform

Starting from the bottom, we first look at the networking layer of vim-emu
and identify the required changes to support NSH. Each emulated network
topology consists of multiple PoPs and each PoP in a vim-emu emulation is
represented by a single virtual SDN switch instance. Thus, every PoP simplifies
its internal network using a big-switch abstraction, turning an emulated multi-
PoP topology into a much simpler network of virtual switches as shown in
Figure 6.2. All these switches can be controlled by a single SDN controller,
fitting to the IETF SFC architecture and NSH design, which expects to be
deployed in a single control domain [QEP18].

The next question is whether the used switches support NSH encapsulated
packets, i.e., match the NSH fields, and can be used as SFFs [HP15]? For-
tunately, OVS already comes with experimental support for NSH starting
with version 2.9. It supports the installation of NSH-specific rules using ei-
ther its command-line client (ovs-ofctl) or OpenFlow using the extensible
match (OXM) feature introduced in OpenFlow 1.2 [McK+08; Ope11]. Since
OVS version 2.9 is fully compatible to earlier versions, it can directly be inte-
grated into vim-emu without loosing any other functionalities or features.

Making use of the NSH support of the involved OVS switches has the benefit
that each switch in the emulated multi-PoP topology can be directly used as
SFF, as shown in Figure 6.2. It, in particular, means that prototyping scenarios
running on vim-emu do not have to deal with legacy networking components
that do not offer support for NSH. This simplifies the use of the platform, e.g.,
an SFP can be directly established between any SF pair in the system.

92

6.4. Adding NSH support to the emulation platform

An important advantage of our design is the fact that all emulated PoPs are
part of a single layer 2 network. Further, vim-emu allows to flexibly define and
change the used topologies and provides realistic inter-PoP connections, e.g.,
emulated delays. The benefits of this become more visible when comparing
our platform to a testbed-based multi-PoP prototyping setup that relies on
multiple OpenStack installations at different physical locations [Sof17]. Even
though such setups provide all features of OpenStack, e.g., support for VMs,
they also come with many downsides. First of all, interconnecting multiple
OpenStack installations over the Internet, to build a reliable network to test
different SFC scenarios, is a tedious and error prone task, e.g., to setup tunnels
between the OpenStack sites. Another problem is that OpenStack does only
come with support for SFC within a single OpenStack domain, e.g., its API
has no notion of inter-PoP chains as described in Section 6.4.2, making SFC
setups between two OpenStack sites challenging. Finally, testbeds consisting of
multiple OpenStack sites are usually quite inflexible and it is often not possible
to change their topology on-demand; this collides with requirement (ii).

Another reason why vim-emu puts all PoPs and the involved SFFs into a single
layer 2 network is that it allows us to simply use Ethernet to transport the
NSH encapsulated packets [QEP18], as shown in Figure 6.2. If other transport
protocols should be used within our platform the user can extend the SFC
controller accordingly.

Considering all this, it becomes clear that our emulation-based design removes
a lot of complexity from the SFC setup if multi-PoP scenarios are considered.
From the perspective of the prototyped SFs and SFCs it provides, however,
a full-featured and standard-compliant SFC architecture [HP15], once NSH
is supported by the underlying network emulation and requirement (iii) is
satisfied. As next step, the core layer of vim-emu needs to be extended as
shown in Figure 6.1. This extension is twofold. First, an “SFC controller”
component is added to the emulator core; it translates high-level chaining
requests into low-level rules and installs them into the involved switches as
described in Section 6.4.1. Second, we extended vim-emu by additional SFC
APIs that allow a user to create and configure SFPs between the deployed
functions (Section 6.4.2).

6.4.1. SFC controller

The SFC controller is added to the emulator core and receives chaining requests
from the SFC API. These requests contain the identifiers of the ports, i.e.,
network interfaces of the SFs, to be chained. The controller then translates those
high-level chaining requests and installs the resulting rules in the switches of
the emulated topology. This process uses the available knowledge about the
topology to calculate the shortest path (using number of hops or emulated

93

6. Adding NSH-enabled SFC prototyping capabilities

30ms
15ms

10ms

90ms

10ms60ms
PoP1

PoP2
PoP5PoP3

PoP4

SF1

SF3

SF2

SF5

SF4

SFP

emulated multi-PoP environment

container-based SFs
executed on emulated environment

em
ul

at
ed

 s
ce

na
rio

VIM

VIM VIM VIM

VIM

SF ex
ec

uti
on

 la
ye

r

ne
tw

ork
 em

ula
tio

n l
ay

er

trnsp.
Eth. NSH original

payload
orig.
Eth.

NSH encapsulated packet

(SFF)

(SFF) (SFF)

(SFF)

(SFF)

Figure 6.2.: Emulated network scenario with five interconnected PoPs and five Docker-based
SFs deployed among them (logos from [Doc13])

link delays) between the two SFs that are about to be chained. It generates
the so-called rendered service path (RSP) [HP15], containing a list of all SFs
and SFFs that should be traversed by the packets assigned to the path. Our
current prototype [CP18], which was developed as part of Mr. Christ’s Bachelor
thesis under my supervision [Chr18], simplifies the SFC model at this point
by only using the first available path between two SF ports. As a result, our
prototype does not support multiple paths between the same SFs, which is
not needed for the case study presented in Section 6.5 and simplifies the
implementation of the prototype controller by not requiring load balancing
features as considered by the IETF [HP15]. It is, however, possible to extend
the presented prototype with those features and our API already provides the
basics for this by supporting the concept of port pair groups as discussed
in the next section. A possibility to implement load balancing among multiple
SFPs, and maybe multiple instances of the same SF, is extending the SFC
controller to instruct the involved SFFs to distribute the traffic among the
available paths, e.g., based on policies defined in the controller.

In our prototype, we use a custom implementation for this SFC controller
based on the Ryu SDN controller [Ryu17]. We pick this approach over existing
SFC implementations, provided by SDN controllers like OpenDaylight [The13],
firstly because they are heavyweight and would destroy the lightweight na-
ture of the presented platform. And secondly, the SFC implementations of
controllers like OpenDaylight [The13] focus on production-grade systems and
are tailored to interface with existing cloud deployments, e.g., they deploy
their own OVS instances as SFFs which does not fit our needs.

94

6.4. Adding NSH support to the emulation platform

6.4.2. SFC API

As vim-emu already comes with APIs that mimic the OpenStack northbound
interface to start, stop, and configure SFs inside the emulated PoPs, we align
our chaining API prototype to OpenStack as well. More specifically, we align
our SFC API with the OpenStack Neutron SFC API model [Ope18] by reusing
the concept of having three basic elements that define an SFP—or in OpenStack
terminology a port chain. A port chain is defined as an ordered set of port
pair groups, each containing at least one port pair. Each port of a port

pair corresponds to a specific network interface of an SF and thus the ordered
set of port pairs within the port chain defines how packets should traverse
the different SFs. The reason to additionally wrap port pairs with port pair

groups is to group SFs that provide equivalent functionality and enable load
balancing among them [Ope18].

Following this model, we add a new REST interface to vim-emu that offers API
endpoints to create, list, update, and delete port pairs, port pair groups,
as well as port chains. This API design is closely following the OpenStack
SFC approach and simplifies the integration of our prototyping platform with
other NFV solutions, e.g., MANO systems, to satisfy requirement (iv).

To support inter-PoP chaining, we provide a single chaining API endpoint for
all PoPs of an emulated network instead of providing one endpoint per PoP.
Using a single endpoint is, however, different from the original OpenStack
approach, which only deals with SFC setups within a single OpenStack domain.
We made this design choice to allow developers to easily create complex
chaining setups in multi-PoP scenarios and simplify the use of our prototyping
system (ii), even though it results in slightly different semantics compared to
the original OpenStack interfaces. We have later evolved this implementation,
which is used for the prototype presented in this chapter, to a second SFC
API implementation that provides one endpoint per PoP. This additional API
can be consumed by the native OpenStack client tools and has been tested
in combination with OSM. This additional work has been done as part of a
Master thesis by Erik Schilling [Sch19] under my supervision.

6.4.3. Simplified prototyping using pre-packaged SFC components

Having a prototyping platform for NSH-enabled SFs available is already help-
ful. But we have noticed that building such NSH-enabled SFs is challenging
because there are no usable SF implementations that implement NSH yet. Also
the Linux kernel module that plans to add native NSH support to the Linux
kernel [Dat17] has not been available when this research has been performed.
Even though this kernel module is available at the time of writing, it must still

95

6. Adding NSH-enabled SFC prototyping capabilities

be considered as experimental and lacks documentation. As a result, we intro-
duce some easy-to-use, pre-packed NSH-enabled SFs to support developers to
quickly setup NSH experiments and to experiment with complex SFCs.

More specifically, we add an NSH-enabled forwarder SF as well as a basic NSH
traffic generator SF to our platform. The forwarder receives NSH-encapsulated
packets from an SFF, logs the information from the NSH such as service
path identifier (SPI) and service index (SI) for debugging and analysis pur-
poses, decrements the SI field in the NSH according to the IETF-defined
behaviour [QEP18], and returns the packet to the SFFs from which it was
received so that it can be forwarded to the next SF.

The traffic generator can be used to generate flows of NSH-encapsulated pack-
ets with configurable rate, SPI, and SI values. It provides the means to test if
the prototyped SFC scenarios correctly forward and handle NSH encapsulated
packets, but is rather limited in terms of performance and configurations
options for the generated traffic. The reason for this is that the traffic generator
as well as the NSH-enabled forwarder SF are both implemented using the
Scapy Python library [Sec15]. The first reason why we pick Scapy is because
all SFs in our platform are executed as Docker containers which share their
kernel with the host operating system. As a result, we would need to introduce
a complex dependency to the host operating system if we want to make use of
the experimental NSH kernel module. The problem of Scapy is, however, its
limited performance since it is implemented in Python and runs as a normal
user space application—an acceptable drawback since the main focus of our
platform are functional tests of SFC setups. The second reason for our design
decision is that Scapy already implements an NSH packet header module
that follows the official standard [QEP18] and allows for quickly prototyping
NSH-enabled SF implementations.

We assume that this situation will change in the future and once a fully-
working NSH implementation is available in the kernel of the host machine
on which our platform is executed, the prototyped SFs should be able to
make use of it without further changes of our platform. This will also allow
to use existing, more sophisticated traffic generators. An alternative option
for generating NSH traffic with higher data rates might be the use of packet
traces that contain NSH packets and can be replayed with higher rates using
tools like tcpreplay [KA00a]. In any case, our Scapy-based traffic generator
provides all the features required to perform a case study that showcases the
functionality of the presented platform as described in the next section.

96

6.5. Case study

SF2

SF3

SF4

SF5

SFF1 SFF2

SF1TG

PoP1

PoP2

SFP1

SFP2

SFP3
SFP5

SFP4

SFP6

N
SH

 m
et

ad
at

a

Figure 6.3.: Experiment setup over two PoPs: A traffic generator (TG) is injecting packets into
an SFC with five SFs and six different SFPs.

6.5. Case study

We use our vim-emu-based prototype to perform a case study which showcases
that the presented platform design can be used to prototype complex SFC
scenarios across multiple PoPs. This case study does not only demonstrate
the use of NSH to realise multiple SFPs between a set of SFs, it also verifies
that all packets are correctly forwarded by our platform. We also show how
reconfiguration functionalities, i.e., reclassification of packets that rely on NSH
metadata, can be tested on our platform.

The presented experiments have been executed by Mr. Christ under my su-
pervision [Chr18]. In the experiments, we use a complex SFC that consists of
one traffic generator (TG) and five forwarder SFs that are deployed on two
PoPs as shown in Figure 6.3. The traffic generator is located at the beginning
of the SFC and mimics an SFC classifier [HP15] that encapsulates incoming
traffic with NSHs. We establish a total of six different SFPs among the available
SFs as shown by the coloured lines in Figure 6.3: SFP1 (red), SFP2 (green),
SFP3 (blue), SFP4 (red dashed), SFP5 (blue dashed), and SFP6 (green dashed).
These paths are grouped (by colour) to pairs and the dashed paths represent
alternatives to the solid paths. They are used to show how our platform can
redirect packets when their SFP identifier is changed. SF3 plays a special role
in this setup, since this SF can reclassify packets from SFP2 to SFP6 and thus
redirect the traffic from SF4 to SF5. We exploit this feature in our case study to
demonstrate reclassification at runtime and the use of NSH metadata in our
platform.

During an experiment, the traffic generator generates a pre-defined amount
of packets with a given rate for each of the SFPs and sends them to the SFC.
Detailed numbers about the generated traffic are shown in Table 6.1.

97

6. Adding NSH-enabled SFC prototyping capabilities

Table 6.1.: Generated traffic per SFP (based on data from [Chr18])

color path id. rate packets sent ∑ packets sent

red
SFP1 8 pkt/s 60

300

SFP4 8 pkt/s 240

blue
SFP3 24 pkt/s 380

580

SFP5 24 pkt/s 200

green
SFP2 16 pkt/s 440

440

SFP6 16 pkt/s 0

SF1 SF2 SF3 SF4 SF5
service functions (SF)

0

100

200

300

400

500

pa
ck

et
s r

ec
ei

ve
d

60

200
240

380
440

packets received per SFP in each SF
SFP1
SFP3
SFP2

SFP5
SFP4
SFP6

Figure 6.4.: Total packets received per SFP in each SF during the experiment and the expected
values shown as horizontal lines (based on data from [Chr18]).

In each SF, received packets are identified by their SPI and the number of
packets seen per SFP is logged. This allows us to verify that the right number of
packets, belonging to the right SFP, traverses the correct set of SFs. Figure 6.4
shows these counters for each SF and verifies that the expected amount of
packets has been seen (indicated by horizontal lines). The goal of this is to
show that our platform and the implemented SFC approach does not loose
packets and does not forward packets to the wrong SFs. This experiment can
be understood as a functional test of our platform. We do not measure the
maximum forwarding performance of the SFC because of the used Scapy-
based traffic generator that is not able to generate high data rates, as described
in Section 6.4.3. The expected forwarding performance of the system depends,
however, mainly on the performance of the used OVS switches which can
easily process multiple gigabit per second (Gbit/s) on a normal laptop as
we verified by running non-NSH traffic through the platform. A user of our
platform can, in general, expect that the forwarding performance of the tested
SFCs is similar to the performance achieved by network experiments executed
on Containernet [Peu16] or Mininet [LHM10].

98

6.5. Case study

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00

total packets sent
in experiment

0
50

100
150
200
250
300
350
400
450
500

pa
ck

et
s r

ec
ei

ve
d

pe
r S

FP

e1 e3

SF1
SFP1
SFP2
SFP3

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00

total packets sent
in experiment

e1

SF2
SFP1
SFP2
SFP4

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00

total packets sent
in experiment

e3

SF3
SFP2
SFP3
SFP5

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00

total packets sent
in experiment

e1 e2

SF4
SFP1
SFP2
SFP4

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00

total packets sent
in experiment

e2

SF5
SFP6

Figure 6.5.: Packets received per SFP over the total number of packets sent to the experimental
SFC. One plot per SF and vertical markers for events e1, e2, and e3 (based on data
from [Chr18]).

Having verified that the total number of packets seen by each SF is correct,
we investigate a more dynamic scenario in which we change the assigned
SFPs of the generated traffic and activate the reclassification in SF3 at pre-
defined points in time. During the presented scenario, the following events
are triggered in the system to simulate dynamic changes:

e1: The traffic generator stops the generation of packets for SFP1 and starts
to generate packets for SFP4⇒ SF1 does not see red packets anymore.
SF2 and SF4 still see the red packets.

e2: SF2 starts to inject metadata into the NSH of packets belonging to SFP2

which causes SF3 to reclassify SFP2 packets to SFP6 packets⇒ SF4 does
not see green packets anymore and SF5 starts to receive green packets.

e3: Generation of SFP3 packets is stopped and SFP5 traffic is generated
instead⇒ SF1 does not see blue packets anymore and SF3 still sees blue
packets.

The goal of this experiment is to test if our platform can be used to prototype
more complex and dynamic SFC scenarios. It also shows that the auxiliary
SFs shipped with our platform (traffic generator and forwarder SF) correctly
handle the NSH traffic and can be used to build prototypes that make use of
advanced NSH features, i.e., NSH metadata.

Figure 6.5 shows the events and the counters for the packets seen per SFP over
the total number of generated packets for each of the SFs in the experiment.
It verifies that the correct number of packets arrives at the correct SFs. It also
shows how the three events impact the flow of the packets in the system, e.g.,
how packets marked with SFP1 and SFP2 disappear in SF1 at event e1 and e3,
respectively.

A special case in this experiment is marked by event e2. At this point in time,
SF3 starts to reclassify packets marked with SFP2 and changes their identifier
to SFP6. As a result, the involved SFFs forward the packets to SF5 instead of

99

6. Adding NSH-enabled SFC prototyping capabilities

SF4. This also explains why we do not need to generate SFP6 traffic as shown
in Table 6.1. To trigger the event in SF3, we exploit the metadata field of NSH:
Once SF2 has seen more than 200 packets of SFP2, it starts to set a flag in the
NSH metadata field of the processed packets. SF3 then reacts to this flag in the
metadata field and starts the reclassification. This example shows how an SFC
with dynamic reclassification mechanisms can be prototyped in our platform
and how developers can easily play with the advanced features of NSH, e.g.,
metadata transport between SFs. The case study shows that the presented
platform works correctly and can be used to locally prototype complex SFCs
using NSH.

6.6. Conclusion

NSH can be considered as one of the key enablers for the wide adoption of
SFC. However, the availability of platforms, frameworks, kernel modules and
tools that support NSH is still limited, which makes experimentation with
this technology challenging. The presented prototyping platform changes this
and enables researchers and developers to quickly prototype NSH-enabled
components or test novel service management systems against an easy-to-
deploy, NSH-enabled platform. The presented platform is very lightweight and
still allows for experiments with complex SFCs using advanced NSH features
such as metadata-triggered reclassification, as shown by the presented case
study. Our platform should be understood as starting point which provides the
means for custom NSH-related developments. It is designed to be extended by
its users, e.g., to add support for further transport encapsulations by extending
its SFC controller.

100

7. Supporting the evolution of MANO
systems using emulation-based
smoke testing

In this chapter, I present an approach and a platform to test MANO systems
in large-scale NFV scenarios. The chapter uses figures and verbatim copies
of text from my papers [Peu+18b] and [Peu+19a]; it uses vim-emu version
4.0 [ETS17b]. The presented concepts, designs, and experiments have been
entirely done by me. However, the publications are joint work together with
Michael Marchetti and Gerardo Garcı́a de Blas, who gave support during
the first integration of vim-emu into the OSM project, e.g., to setup the used
Jenkins pipelines in the OSM infrastructure. The chapter starts by motivating
the need for prototyping and testing MANO systems in Section 7.1. After that,
it provides background about the integration of MANO solutions into the NFV
ecosystem and about the concept of smoke testing in Section 7.2. Section 7.3
presents the relevant related work. After that, I introduce “emulation-based
smoke testing” for MANO solutions in Section 7.4. This approach and the
scalability of our prototyping platform is then evaluated and a case study with
two versions of OSM is presented in Section 7.5. Finally, the benefits of the
presented approach are discussed in Section 7.6 and the chapter concludes in
Section 7.7.

7.1. Introduction

The presented prototyping platform turned out to be very helpful for VNF,
NS, and SFC development, including complex NSs such as 5GTANGO’s smart
manufacturing pilot [Peu+19d]. However, NFV is still a novel topic and re-
search and innovation does not only happen on the VNF and NS layer. In
fact, the MANO part of the NFV architecture is one of the main topics of
interest, due to many open research questions and optimisation opportunities,
e.g., automated placement [Sou+19; MKK14]. This raises the question how to
quickly prototype and test new MANO features? And in particular, how to
test MANO solutions in realistic, large-scale multi-PoP environments without

101

7. Supporting the evolution of MANO systems using emulation-based smoke testing

having a large, distributed testbed available? An example for this are place-
ment optimisation algorithms that need to be tested in realistic environments
and different topologies, as we show in [SPK18].

This motivates us to reuse and extend our existing prototyping platform and
its interfaces to turn it into a prototyping and test environment for MANO
systems. To this end, we present an emulation-based test platform, enabling
automated tests of MANO systems in large multi-PoP scenarios. The presented
solution is inspired by a concept called “smoke testing” [DRP99] which focuses
on testing only the main functionalities of a system and skips unimportant
details to reduce test times (Section 7.2.2). Our platform does exactly this by
re-implementing a subset of the OpenStack APIs, the de-facto standard for
VIM interfaces, today. A MANO system can then use these APIs to deploy
container-based test NSs on the emulated NFVI PoPs. By adding an ETSI
standard-compliant test suite to the setup we can automatically test MANO
systems in end-to-end scenarios. We show this in a case study in which we test
two major versions of OSM. We also show that our test platform prototype
can easily emulate up to 1024 PoPs on a single physical machine and that it
can reduce the setup time of a single test PoP by a factor of 232× compared
to a DevStack-based PoP installation. During this work, we discovered some
interesting insights and bugs that would not have been found with existing,
lab-scale NFVI testbeds offering only a handful of PoPs.

7.2. Background

Before presenting our solutions, we first analyse components and interfaces
required to test MANO systems and give deeper insights into the smoke
testing concept.

7.2.1. Management and orchestration in NFV

MANO systems are complex software systems and represent the main con-
trol entity in NFV-enabled network infrastructures. Besides basic LCM tasks,
MANO systems are also responsible for performing more complex orches-
tration tasks, like scaling, self-healing, or failover management [Par+18] (see
Section 2.2.4). Those tasks are often automated and part of a closed control
loop, which uses monitoring data as inputs to trigger orchestration deci-
sions based on pre-defined policies or service-/function-specific management
algorithms [Kou+18]. To provide all these functionalities, MANO systems
usually interface with a high number of external components, as shown in
Figure 7.1. The figure shows a simplified version of ETSI’s NFV architectural

102

7.2. Background

MANO under testnorthbound test trigger(s)

southbound test deployment

southbound test infrastructure

OSS/BSS

EM 1 EM 2 EM n

VNF 1 VNF 2 VNF n

NFVI VIM WIMVIMVIM WIMWIMNFVI

VNFMVNFMVNFM

NFV
Orchestrator

 Vi-Vnfm Or-Vi

 V
e-

Vn
fm

Vn-Nf

N
f-V

i
NFVI

 O
s-

M
a

test harness componentMANO system under test

tested reference point

Figure 7.1.: A simplified version of ETSI’s NFV architectural framework [ETS14b] showing the
main components of an NFV environment, including the MANO system which
we want to test. The figure highlights which of the NFV components need to be
mocked to build a test harness for ETSI-aligned MANO systems.

framework [ETS14b] and highlights the MANO system and its interfaces to
external components.

In general, the interfaces of a MANO system can be categorised into north-
bound and southbound interfaces. The northbound interfaces are those inter-
faces used by service providers, platform providers, or OSSs/BSSs to trigger
LCM actions, like NS instantiation. They are consolidated within the Os-Ma
reference point in the ETSI architecture (Figure 7.1). The southbound interfaces
of a MANO system are considered to be those interfaces that connect to the
underlying NFVI and the corresponding management components, like VIMs
and wide area network infrastructure managers (WIMs). Those interfaces are
part of the Vi-Vnfm and Or-Vi reference points. In addition, the interfaces
that connect to the instantiated VNFs and NSs, e.g., for configuration and
monitoring tasks, are also considered part of the southbound interfaces of a
MANO system. They are represented by the Ve-Vnfm reference point.

When looking at this complex environment, it becomes clear that testing
MANO systems in isolation, e.g., using unit tests, is not sufficient to ensure
that they behave as desired. More specifically, testing solutions are needed

103

7. Supporting the evolution of MANO systems using emulation-based smoke testing

that efficiently test the interoperability of a given MANO system in different
environments, e.g., a large number of connected VIMs in multi-PoP scenarios.
Our proposed solution offers exactly this by providing a lightweight “test
harness” for MANO systems. Figure 7.1 shows which of the components in
the ETSI architecture need to be implemented by this test harness to build a
full test environment around a MANO system. The first component contains
the test triggers that connect to the northbound interface of a MANO system
and trigger OSS/BSS actions. The second and most important component of
the test harness is the test infrastructure, which is connected to the MANO’s
southbound interface and can be used by the MANO system to test NFV
deployments without requiring one or more full-featured NFVI installations.
Those deployments are the third component of the test harness, called “test
deployments”, for example, lightweight NFV services or service mockups.

7.2.2. Smoke testing

The term “smoke testing” was originally introduced by the electrical engineer-
ing community and describes a basic test to see if the tested device catches fire
(smokes) after it is plugged into a power source. Later, the term “smoke testing”
was taken up by the software testing community and used to describe rapid
tests that verify that the most basic but critical functions of a system work
as they should [McC96]. They are also called “build verification tests” and
should be executed whenever a new built of a system (or of a subcomponent
of that system) becomes available. They can be considered as a preliminary
testing stage that is used to qualify builds for further, more complex tests,
like regression or integration tests. The important thing here is that smoke
tests do not substitute regression or integration tests; they are still needed to
test every detail of a system. The main goal of smoke tests is to ensure that
the basic functionality of a software product works, e.g., the program can be
started and the default usage path does something meaningful. Using this
approach, broken builds with major bugs are rejected early before more time
and resource-intensive tests are deployed and executed [DRP99].

We have noticed that those smoke testing concepts perfectly match the problem
of testing complex NFV MANO systems where testing suffers from the high
resource demands of end-to-end tests due to the needed NFVIs. Our main idea
is to use a more lightweight NFV environment, including a very lightweight
NFVI, that allows to test the basic functionalities of a MANO system, e.g.,
NS on-boarding and initial instantiation. This can be done before testing the
MANO system and all its features in a full-fledged NFV environment, which
might not even be available to each individual developer of a MANO system.
Section 7.4 presents our smoke testing approach for NFV in more detail.

104

7.3. Related work

7.3. Related work

Automated testing of NFV deployments is still a novel research direction
with a limited amount of solutions. Most of them focus on testing NFVIs and
their corresponding data planes or the corresponding VIMs, e.g., the test tool
collection of OPNFV with projects like Yardstic, Functest or Nfvperf [Lin16].
They neither consider testing of VNFs, complex NSs nor MANO solutions,
which makes those solutions complementary to our work. Some recent work
focuses on end-to-end testing in 5G networks [Cat+16] or the verification and
validation of NSs and VNFs [Zha+17], including our own work [Peu+19b].
Even though [Zha+17] and [Peu+19b] consider the case of applying integration
tests in the NFV domain to test interoperability between different VNFs, none
of them explicitly considers the need of testing the core part of NFV deploy-
ments: The MANO system. In the software engineering community, smoke
testing has already been established since several years, providing the ability
to quickly integrate new versions of different software components [DRP99],
which is what our solution introduces for NFV MANO systems.

Another related research direction are automated performance tests of either
VNFs, NSs, or NFVIs, which I present in Part III of this thesis. A handful
of solutions have been proposed for performance testing of VNFs with the
goal to characterise their performance under different configurations or in
different environments [Cao+15; RBR17]. Some solutions focus more on end-
to-end performance tests for complete NSs, like [PK17], arguing that testing
the performance of a single VNF in isolation does not yield representative
results. All of these solutions require an end-to-end deployment of the tested
VNFs and NSs during their tests, but none of them focuses on testing the
performance of the MANO system as such.

A straight-forward solution to setup those NFVIs for testing is to use testbed
installations. Testbeds can either be installed locally, e.g., lab-scale installations,
or third-party testbeds can be used remotely. In our early work [KRP13], we
have proposed a locally installed multi-cloud testbed based on a handful of
physical machines, each representing a single cloud site, i.e., a small Open-
Stack installation. Those machines are then interconnected and traffic-shaping
solutions are added to emulate realistic delays between the sites. The problem
with local installations, like [KRP13], are their limited resources that prevent
large-scale test cases, e.g., with many PoPs. Remote testbeds, like [Chu+03;
Sof17; Fed18], may offer the required NFV infrastructure and interfaces, but
their main focus is the development, experimentation, and evaluation of NSs
rather than being an infrastructure for automated test pipelines. Most of their
infrastructure deployments and management functionalities are fixed, e.g.,
the used SDN controllers, VIMs, and MANO solutions, offering limited space
for custom-tailored MANO tests. In addition, they are shared between many

105

7. Supporting the evolution of MANO systems using emulation-based smoke testing

users, which means they may not always be available to quickly execute auto-
mated tests on them. In general, these testbed solutions are complementary
to our presented approach and should be used for final, manually-deployed
integration tests rather than for automated smoke testing.

Another option for automated smoke tests is using locally available network
emulation approaches, like Mininet [LHM10], CORE [Ahr+08], or VLSP [MCG15].
Unfortunately, these solutions focus on prototyping and evaluation of new
protocols or network management paradigms rather than on interactions with
production-ready MANO solutions. None of these solutions offers de-facto
standard VIM northbound interfaces for easy MANO system integration, like
our solution does with its OpenStack-like interfaces. Even if VLSP focuses
on MANO-like experiments in the NFV domain, it lacks the ability to exe-
cute real-world VNF software, which is possible in our platform that uses
lightweight container solutions to run VNFs in an emulated environment.

7.4. Emulation-based smoke testing

We introduce the approach of “emulation-based smoke testing” and discuss its
benefits and limitations in Section 7.4.1. After that, we present our prototype
in Section 7.4.2.

7.4.1. Approach

An emulated test infrastructure provides some major benefits when compared
to a real NFV multi-PoP deployment, e.g., based on OpenStack. First, the
state of emulated VIMs and NFVIs can be made volatile, which ensures that
tests are always executed in a clean environment. For example, there are no
zombie VMs left in a PoP resulting from a former test execution in which
the used environment and infrastructure was not cleaned properly. Such a
cleanup is complicated in real-world VIM systems which are designed to
maintain their state, i.e., every action or configuration is not only applied
to the specific subsystem, e.g., a VM is terminated, it is also stored in a
persistent database. As a result, the system can get easily out of sync if things
fail, e.g., the VM crashes but is not correctly removed from the database.
As a result, the reinstallation or reinitialisation of the entire VIM system
might become necessary to ensure a clean state for a new test. Second, the
setup of an emulation platform can be expected to be much quicker and the
needed resources are far less than for a full-featured VIM installation and the
configuration of the attached compute, storage, and networking infrastructure.
More importantly, an emulation platform can even be executed on a single
machine (physical or VM), making it a much better fit for existing test pipelines,

106

7.4. Emulation-based smoke testing

e.g., based on Jenkins [Jen11]. It also allows parallelisation by using multiple
VMs, each containing its own emulated NFVI deployment. Third, emulated
infrastructure can be easily scaled to hundreds (or even thousands) of PoPs
whereas a fully automated setup of hundreds of interconnected OpenStack
installations is very challenging and may be even infeasible to realise in short
timeframes, as we show in Section 7.5.1.

Figure 7.2 shows the proposed testing setup in which a test controller, e.g.,
Jenkins [Jen11] or a simple shell script, automatically sets up an environment
that emulates a pre-defined multi-PoP topology (1). This setup can either be
done on a physical machine or a VM, the so-called “test executor”. Once this
is done, the test controller configures the MANO system to be tested and
connects it to the VIM interfaces of the emulated PoPs. In the figure, we use
OSM as an example for a MANO system under test (SUT); we emphasise
again that other MANOs can be used. After that, the test controller triggers the
test cases against the MANO’s northbound interface (2), e.g., deploying a test
NS. To do so, either custom test suites or pre-defined standard-compliant test
suites, e.g., our test suite for ETSI NFV’s SOL005 [ETS18i] MANO northbound
interface specification introduced in Section 7.4.2.2, may be used. Those tests
should trigger the main functionalities of a MANO system, starting from
VNF and NS on-boarding, followed by browsing the elements of a MANO’s
catalog, to the instantiation and scaling of a VNF or an NS. By doing so,
the MANO system is tested end-to-end. Once a test NS is instantiated, the
test controller checks if the resulting deployments and configurations on the
emulated infrastructure, done by the MANO system during the tests, are
correct (3). For example, it checks if the number of VNFs deployed on the PoPs
is correct and if the intended configuration values have been applied to them.
Once all tests are done, the test controller destroys the emulated infrastructure
by stopping the emulation environment and freeing the test executor machine.
It can then start a new emulation instance, e.g., with a different multi-PoP
topology, for further tests.

As expected, there are also a couple of limitations when using an emulation-
based infrastructure for testing. First, not all features of the original OpenStack
APIs will be supported by the emulated infrastructure. This behaviour is
intentional and helps to achieve the goal of a very lightweight substitution
of a full-featured NFVI. In our prototype implementation, presented in the
next sections, we focused on the API endpoints required to let typical MANO
solutions, like OSM, believe that they talk to a real OpenStack installation,
namely the OpenStack Keystone, Nova, Glance, and Neutron endpoints. Each
of these OpenStack endpoints is required for NFV scenarios. More specifically,
the Keystone endpoint is required to register the VIM to the MANO solution,
i.e., perform the login procedures and generate API tokes. Further, it provides
the MANO system with pointers to the other API endpoints, e.g., Nova. The
Nova endpoint is the main endpoint to manage compute resources. It is used

107

7. Supporting the evolution of MANO systems using emulation-based smoke testing

physical or virtual (VM) test executor

PoPi

em
ul

at
ed

 V
IM

Keystone API

Glance API

Nova API

Neutron API em
ul

at
ed

 to
po

lo
gy

(C
on

ta
in

er
ne

t)

VNFc

VNFb

emulated
PoPs

MANO under test

RO

VCA

NBI

1. deploy ad-hoc test scenario(s)

3.
 c

he
ck

 te
st

 d
ep

lo
ym

en
t

2.
 tr

ig
ge

r t
es

ts
/g

et
 re

su
lts

co
nt
ro
l

configure

Test Controller

Test Suite

O
s-

M
a

Ve-Vnfm

Vi
-V

nf
m

O
r-V

i

LCM

ET
SI

 S
O

L0
05

Te

st
 S

ui
te

Figure 7.2.: An automated testing setup for a MANO system, using OSM as an example. The
test controller automatically sets up the emulated infrastructure (multiple PoPs) in a
test executor machine and tests the MANO system against this fresh infrastructure
using a test suite, e.g., aligned to ETSI SOL005 (logos from [Doc13; Ope10b; ETS16c;
Jen11]).

by the MANO system to deploy, configure, and terminate VNFs. The Glance
endpoint is required to let a MANO system do basic image management,
e.g., on-board disk images or list the available disk images. Without this
endpoint, a MANO system would fail because it cannot validate if a required
disk image is available in the emulated system. Finally, the Neutron endpoint
is required to do the network setup between the VNFs including advanced
network configurations for SFC. Other OpenStack endpoints, like the Cinder
block storage endpoint, are not used by current MANO solutions and are thus
not relevant for and not implemented by our test platform.

Second, our emulated infrastructure will not be able to deploy VNFs as full-
blown VMs; instead it is limited to lightweight Docker containers. This means
that it is not possible to use existing, VM-based VNF implementations as part
of the tests. For example, its not possible to run a proprietary firewall VNF
only available as Kenrel-based Virtual Machine (KVM) disk image inside our
test environment. It also means that our platform does not support acceleration
technologies often used by VNF VMs, e.g., SR-IOV. Nevertheless, these limita-
tions are fine since our platform aims to test the basic MANO functionalities
rather than concrete features of specific VNFs.

Third, the total available resources of the emulated infrastructure are limited.
Even though the platform allows to emulate hundreds of PoPs as shown in
Section 7.5.1, the resources of the host machine are still limited. To improve
this and to be able to scale to even larger test setups, a distributed version of
our platform could be implemented as future work (see Section 11.3).

These limitations must be kept in mind when using our emulation-based

108

7.4. Emulation-based smoke testing

smoke testing approach in a testing pipeline. In general, emulation-based
smoke tests should not be considered as a full replacement of a final integration
test against a real multi-PoP environment but as a much faster, intermediate
testing stage that can easily be executed for each new commit to the MANO
system’s code base.

7.4.2. Prototype

We built a prototype of the described testing platform to validate our design
and to check the feasibility of the proposed testing approaches. The core of
our prototype is based on vim-emu [PKV16] and is described in Section 7.4.2.1.
After extending the emulation platform to support large-scale MANO test
scenarios with many emulated PoPs, we added a test suite for MANO systems
to it (Section 7.4.2.2). Finally, we integrated the entire system with existing
testing solutions to be able to automatically run them within CI pipelines as
shown in Section 7.4.2.3.

7.4.2.1. Multi-PoP emulation platform

The emulation platform consists of three main layers as shown in Figure 7.3.
First, the network emulation layer, shown at the bottom of the figure, is based
on Containernet [Peu16] (as described in Section 5.3) and allows to execute
network functions inside Docker containers that are connected to arbitrary,
user-defined network topologies [PKV16].

The VIM emulation layer of our platform, shown in the middle of Figure 7.3,
creates an abstraction for the network emulation and allows a user to define
arbitrary topologies with emulated NFVI PoPs. Each of these emulated NFVI
PoPs represents a single VIM endpoint and allows to deploy, terminate, and
configure VNFs executed inside the emulated PoP, as described in Section 5.4.
This allows the emulation platform to emulate realistic, distributed NFVI
deployments, e.g., by adding artificial delays to the links between the PoPs.
We utilise this to allow the emulator to automatically load topologies from the
ITZ library [Kni+11], as we show in Section 7.5.2. Once the container-based
VNFs are deployed and running in the system, traffic can be steered through
multiple VNFs by using the emulator’s chaining functionalities as presented
in Chapter 6.

The top layer of our emulation platform provides a set of APIs that mimic
the original OpenStack APIs endpoints for each of the emulated PoPs and
translate OpenStack requests, e.g., openstack compute start, into requests
that are executed by the emulation platform, e.g., start a container-based
VNF in one of the emulated PoPs. We mimic the OpenStack APIs because

109

7. Supporting the evolution of MANO systems using emulation-based smoke testing

Figure 7.3.: A multi-PoP topology with five emulated OpenStack-like NFVIs running on a single
physical machine (bottom) and five Docker-based VNFs running on the emulated
infrastructure (middle), all controlled by a real-world MANO system (top) (logos
from [Doc13; Ope10b; ETS16c; SON15b]).

OpenStack is currently the de-facto standard VIM and is supported by most
MANO systems.

Figure 7.3 shows a usage scenario in which our emulation platform (bottom
layer) emulates five interconnected PoPs, each offering its own OpenStack-
like northbound APIs. This emulated infrastructure can be controlled by any
real-world MANO system that is able to use OpenStack, e.g., OSM [ETS16c]
or SONATA [SON15b] (top layer). The MANO system is used to instantiate
a complex, distributed NSs, consisting of five VNFs, on top of the emulated
infrastructure (middle layer). With this setup, the emulated infrastructure
and the instantiated NSs look like a real-world multi-PoP NFVI deployment
from the perspective of the MANO system consisting of multiple data centres
deployed at different geographical locations.

7.4.2.2. Standard-compliant MANO test suite

Once the emulated NFVI is up and running and the MANO system that is
supposed to be tested is installed, running, and configured, everything is ready
for test execution. The only missing piece in such a setup are the actual test
cases as well as mechanisms to invoke the tested MANO system during the
tests. One option to do this is to implement test cases that are custom-tailored
to the MANO SUT. This approach makes a lot of sense if very specific aspects
of a single MANO solution should be tested, e.g., a proprietary management
interface. However, the goal of NFV is to establish an open environment

110

7.4. Emulation-based smoke testing

with well documented and standardised interfaces. An example for this is
the Os-Ma-Nfvo reference point defined by ETSI [ETS14b] and its interface
specification ETSI NFV-SOL005 [ETS18i].

Motivated by this, we started to design a standardised test suite for ETSI’s
Os-Ma-Nfvo reference point, implemented it as part of our prototype, and
released it under an Apache 2.0 license [Peu18a]. To make this test suite as re-
usable as possible, we use a two-layered design. The top layer, which is based
on Python’s unittest library, implements the abstract test logic according to
the written interface specifications of ETSI SOL005. Those tests then call the
bottom layer of our test suite which contains plug-able connection adapters,
abstracting MANO-specific connection details that are not part of the interface
specification, e.g., authentication mechanisms. Our prototype comes with an
example MANO adapter that supports OSM starting from rel. FOUR and uses
OSM’s client libraries to access OSM’s northbound interface.

Table 7.1 presents an overview over the implemented tests. It shows different
operations of the tested interfaces grouped by the resources they manipulate.
The table also shows the availability of each interface endpoint in ETSI SOL005

and its implementation status in OSM rel. FOUR. Some endpoints, e.g., the
endpoints to manipulate the VIMs that are connected to a MANO system,
are only available in OSM’s interface but not in ETSI’s specification. Those
differences to the written specification usually originate from additional re-
quirements of practical implementations. Other endpoints, e.g., NSs healing,
are defined by ETSI but are not yet available in OSM. To keep the table short,
it does not show the NSs performance and fault management interfaces defined
by ETSI, since they are not yet available in OSM. Finally, the table presents
mean runtimes of each test, as we further describe in Section 7.5.2.3.

7.4.2.3. CI pipeline integration

One of the key points in modern software testing is automation. Today, most
software projects, including MANO system projects, use CI approaches to
automatically execute tests whenever a developer commits new code to the
code base. Those tests are organised in so-called test pipelines that start
with static code style checks, continue with detailed unit tests, and end with
basic integration tests between the project’s components. Once all these tests
passed, the resulting software artefacts have to be tested in more complex
environments to check their compatibility with external components, e.g.,
different VIM solutions, to find integration issues.

The main problem of those complex tests is the required test infrastructure,
e.g., to setup multiple OpenStack-based VIMs and to maintain them. Another
problem with those tests is their scaleability: Even if some lab-scale OpenStack
installations are available, they can only be used to execute a limited number

111

7. Supporting the evolution of MANO systems using emulation-based smoke testing

Table 7.1.: Mapping between interfaces specified/implemented by ETSI SOL005 and OSM rel.
FOUR and their coverage in the presented test suite. The table also shows the mean
runtime of each test.

ETSI OSM Tests Suite Mean Runtime
Resource: VIMs
Create # 1.31s± 0.19s
List # 2.58s± 0.20s
Resource: Individual VIM
Show # 1.26s± 0.23s
Update # #
Delete # 1.16s± 0.21s
Resource: NSDs
Create 0.52s± 0.05s
List 0.55s± 0.03s
Resource: Individual NSD
Show 0.54s± 0.06s
Update #
Delete 0.53s± 0.07s
Resource: VNFDs
Create 0.24s± 0.04s
List 0.40s± 0.05s
Resource: Individual VNFD
Show 0.24s± 0.04s
Update #
Delete 0.23s± 0.04s
Resource: NS instances
Create 9.35s± 0.32s
List 9.56s± 0.27s
Resource: Indiv. NS instance
Show 9.44s± 0.27s
Update # #
Scale #
Create Alarm # #
Export Metric # #
Heal # #
Terminate 9.44s± 0.27s
Resource: VNF instances
List # 9.81s± 0.30s
Resource: Indiv. VNF instance
Show # 9.67s± 0.26s

112

7.5. Results

of test cases at a time. They can easily become a bottleneck as the number
of developers and thus the number of contributions increases. A common
solution for this is to reduce the frequency of complex tests by not executing
them for each new commit, but only once a day. At this point, our emulation-
based smoke testing solution can help and improve the test workflow because
it can be used as an intermediate test stage between frequent basic tests and
complex integration tests in real environments.

More specifically, our emulation-based solution provides some characteristics
which make it a perfect fit for a frequent execution in CI pipelines. First, the
entire platform can be started and configured with a single command. Second,
our platform always starts in a clean state. There is no need to manually
cleanup the environment after a test has been executed. Third, the emulator
can be packaged and executed within a container (nested Docker deployment)
or a VM which make distribution, initial setup, and integration with existing
test environments easy. It also allows highly parallelised test setups because
multiple VMs, each running one emulation platform instance, can be deployed
on an existing test infrastructure and used completely independently from
each other. This feature should be particularly helpful for multi-branch test
pipelines. Finally, the resource footprint of the emulation platform is very
small and it can be (re-)started within seconds (or minutes if hundreds of PoPs
should be emulated) as we show in the following sections.

7.5. Results

The evaluation of the proposed smoke testing approaches and our platform
prototype can be split into two parts. First, we evaluate the scaleability of our
emulation platform in Section 7.5.1 using the same approach as in [Peu+18b]
but using scenarios ten times larger to push the platform to its limits. Second,
we conduct a case study using OSM as a state-of-the-art MANO solution
and test it against our platform using real-world topologies in Section 7.5.2.
In this case study, we not only test two major releases of OSM, namely
OSM rel. THREE and OSM rel. FOUR, and compare them, but also analyse the
runtimes of our ETSI-compliant test suite executed against OSM rel. FOUR.

7.5.1. Emulation platform scalability

To get a first idea about the setup time savings that can be expected from emu-
lated PoPs, we compare the setup times of our emulation platform configured
to emulate a single OpenStack-like PoP with the setup times of a single-node
OpenStack DevStack [Ope10a] installation, which can be considered as the
most simple way to install a fully-featured OpenStack in a PoP. We execute

113

7. Supporting the evolution of MANO systems using emulation-based smoke testing

both setup procedures 10 times on a single physical machine with Intel(R)
Core(TM) i5-4690 CPU @ 3.50 GHz as well as 16 GB memory and find a mean
setup time for a single emulated PoP of 2.48 s compared to a mean setup time
of 576.42 s for a fresh DevStack installation, which is more than 232 times
slower. This comparison makes sense since we want to ensure that we always
test against a clean environment and thus a fresh installation of DevStack
would always be required.

To quantify the scaling abilities of our emulation platform, we run a set of
experiments to study its behaviour when topologies with many PoPs are
emulated or when hundreds of NS instances are deployed on the emulated
infrastructure. This experiment and all following experiments are executed
on a single physical machine with Intel(R) Xeon(TM) E5-1660 v3 CPU with 8

cores @ 3.0 GHz as well as 32 GB memory and are repeated 10 times. All error
bars in this chapter show 95 % confidence intervals. In the first experiment,
we analyse the startup and configuration time of the emulation platform for
different synthetic topologies with different numbers of PoPs. Figure 7.4 shows
the setup time breakdown for up to 1024 PoPs using four topologies. It shows
how much time is used by which of the four phases of the emulation setup
procedure: Initialisation, PoP setup, link setup, and emulation start. The linear
topology connects all PoPs into a long chain and the star topology connects
all PoPs to a single central PoP. The two randomised (rnd) topologies get the
number of PoPs |V| and a factor k as inputs and interconnect the PoPs with
|E| = bk|V|c links where |E| is the number of created links. This is done by
considering the set of all possible links between all involved PoPs (i.e. a full
mesh) and selecting a subset of |E| links to be used. The selection is done by
random sampling using Python’s random.sample() function and results in
disconnected topologies, in which not every PoP can reach every other PoP, if
k < 1.0. This is intended since we are interested in measuring the platform’s
resource footprint for various topology setups, including those disconnected
topologies, and not in testing the interconnection between the PoPs.

The results show that in all topologies 128 PoPs can be set up in between 91.8 s
and 197.7 s, which is a huge improvement when compared to 128 DevStack
installations. Even the maximum tested number of 1024 PoPs can, on aver-
age, be created in 3,704.0 s using the rdm(k=0.5) topology. The results of the
randomised topologies indicate that the number of links which have to be es-
tablished in the topology has a non-negligible impact on the overall setup time.
Further, the plots indicate a non-linear relationship between number of PoPs
and total setup times. We have identified the OVS daemon (ovs-vswitchd)
with its single-threaded design as the root cause of this. The OVS daemon
becomes the bottleneck in large deployments as it has to manage one OVS
instance per PoP in the deployment.

We also analyse the memory consumption for these four topologies and
directly compare their total setup times (Figure 7.5). The figure shows that the

114

7.5. Results

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

101

102

103

104

tim
e

[s
]

Topology: linear
initialise
PoP setup
link setup
start

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Topology: star

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

number of PoPs

101

102

103

104

tim
e

[s
]

Topology: rdm(k=0.5)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

number of PoPs

Topology: rdm(k=1.5)

Figure 7.4.: Breakdown of the emulator setup times into four phases using four different
topologies

115

7. Supporting the evolution of MANO systems using emulation-based smoke testing

0

20
0

40
0

60
0

80
0

10
00

number of PoPs

0

2000

4000

6000

8000

10000

tim
e

[s
]

Emulator setup time
topology
line
star
rnd(k=0.5)
rnd(k=1.5)

0

20
0

40
0

60
0

80
0

10
00

number of PoPs

0

1

2

3

4

5

m
em

or
y

us
ed

 [G
b]

Emulator memory usage

Figure 7.5.: Emulator setup times and memory usage

total memory used by the tested environment increases proportionally to the
number of PoPs in the topology. In general, not more than 5 Gb of memory is
used, even with large topologies, which shows that our emulation platform can
easily be executed on existing test nodes or locally on a developer’s laptop.

Finally, we study the time required to deploy a large number of VNFs on top
of the emulated infrastructure. We again use our liner, star, rdm(k=0.5), and
rdm(k=1.5) topologies with either 8 or 128 PoPs and deploy up to 256 VNFs
on those PoPs (VNFs are randomly placed). The used VNFs are based on the
default Docker ubuntu:trusty image and do not run any additional software,
since we are only interested in the bare instantiation times. Figure 7.6 shows
that the instantiation times scale proportionally with the number of VNFs
and are also influenced by the number of links in a topology, i.e., more links
slow down the system. Please note that most error bars are hidden behind
the markers of the plots. It can be seen that with our platform hundreds of
VNFs can be quickly deployed on a single machine, enabling fast tests of large
deployment scenarios.

7.5.2. Case study: OSM rel. THREE vs. OSM rel. FOUR

In our case study, we have decided to compare OSM rel. THREE and OSM
rel. FOUR [ETS16c] because OSM rel. FOUR is the first release following
OSM’s new micro service architecture with a central message bus and im-
plements ETSI’s SOL005 interfaces. OSM rel. THREE, in contrast, has a more
monolithic design with three or four large components using fixed APIs for
communication. Besides the improved flexibility, the design of OSM rel. FOUR
also promises better scalability and performance, which we validate with our
experiments.

116

7.5. Results

0 50 10
0

15
0

20
0

25
0

number of deployed VNFs

0

100

200

300

400

500

600
tim

e
[s

]

Service deployment time (8 PoPs)
topology
line
star
rnd(k=0.5)
rnd(k=1.5)

0 50 10
0

15
0

20
0

25
0

number of deployed VNFs

Service deployment time (128 PoPs)

Figure 7.6.: NS instantiation times on a small and a large topology using NSs with up to 256

VNFs.

The setup for the study is the same as described in Figure 7.2 but we use a
scripted test controller that automatically performs a series of experiments
and collects additional data. Besides the general functionality of the VIM
attachment procedure, we investigate the behaviour of OSM when it has to
interact with large multi-PoP deployments and a high number of instantiated
NSs. To be more realistic, we use a set of real-world topologies with different
sizes that are taken from the ITZ library [Kni+11]. In our case study, each node
of a given topology is turned into a single PoP emulating an OpenStack VIM,
resulting in topologies with 4 to 158 PoPs. The delays between the PoPs are
calculated based on the geolocations provided by the ITZ dataset. These are
test cases which are not covered by existing NFV testbed installations that
usually only use a single PoP installation.

7.5.2.1. OSM in large multi-PoP environments

In the first set of experiments, we analyse the VIM attach procedure, which
is used to connect OSM to a single PoP using the osm vim-create command.
Figure 7.7 shows the total setup time breakdown to start the emulated in-
frastructure and to attach all emulated VIMs to OSM. The numbers behind
the topology names indicate the number of nodes and links in the topology.
The results show that the time required to attach the VIMs to OSM uses most
of the test environment’s setup time, but the system can still be deployed
and configured in between 200 s and 330 s, even if the largest topology with
more than 150 PoPs is used. The figure also shows the request times for all
osm vim-create requests. It indicates that the attachment procedure becomes
slightly slower when larger topologies are used. Comparing the results be-
tween the two OSM releases, OSM rel. FOUR shows improved setup times and
reduced request times to attach the VIMs. It can also be seen that the setup

117

7. Supporting the evolution of MANO systems using emulation-based smoke testing

UsCarrier (158/189)
Ion (125/150)

Interoute (110/158)
Telcove (73/70)

Globenet (67/113)
AsnetAm (65/79)

Dfn (58/87)
BtLatinAmerica (51/50)

LambdaNet (42/46)
Chinanet (42/66)

Geant2012 (40/61)
DeutscheTelekom (39/62)

BtNorthAmerica (36/76)
Arpanet19728 (29/32)

BtEurope (24/37)
Belnet2010 (22/32)

BtAsiaPac (20/31)
Oxford (20/26)
Abilene (11/14)

Basnet (7/6)
Telecomserbia (6/6)

Arpanet196912 (4/4)

OS
M

 re
l.

TH
RE

E

total setup times
emu. initialise
emu. PoP setup
emu. link setup
emu. start
osm vim-create

'vim-create' actions

0 50 100 150 200 250 300 350
time [s]

UsCarrier (158/189)
Ion (125/150)

Interoute (110/158)
Telcove (73/70)

Globenet (67/113)
AsnetAm (65/79)

Dfn (58/87)
BtLatinAmerica (51/50)

LambdaNet (42/46)
Chinanet (42/66)

Geant2012 (40/61)
DeutscheTelekom (39/62)

BtNorthAmerica (36/76)
Arpanet19728 (29/32)

BtEurope (24/37)
Belnet2010 (22/32)

BtAsiaPac (20/31)
Oxford (20/26)
Abilene (11/14)

Basnet (7/6)
Telecomserbia (6/6)

Arpanet196912 (4/4)

OS
M

 re
l.

FO
UR

emu. initialise
emu. PoP setup
emu. link setup
emu. start
osm vim-create

0.4 0.6 0.8 1.0
time/request [s]

Figure 7.7.: OSM and emulator setup times with real-world topologies

times of the emulation platform are smaller in the OSM rel. FOUR case. The
reason of this is the significantly smaller resource footprint of OSM rel. FOUR,
which is executed on the same physical machine as the emulation platform.

7.5.2.2. OSM service instantiation and termination

In the second set of experiments, we investigate OSM’s NSs management
behaviour. More specifically, we test the NSs instantiation (osm ns-create),
NSs termination (osm ns-delete), and NSs show (osm ns-show) operations.
To do so, we use a test NS consisting of two linked VNFs. We request OSM to
sequentially create 64 instances of this NS, which corresponds to 128 deployed
VNFs. Later, these NSs are terminated one after each other. In each instantiation
request, the NS is randomly placed on the available PoPs of the three used
topologies (Figure 7.8). The given instantiation and termination times represent
the time until the requested containers (the VNFs of the NS) are started or
stopped, not only the raw API response times.

The results show that an NS instantiation takes between 7 s and 12 s in most
of the cases if OSM rel. FOUR is used. OSM rel. THREE, in contrast, shows

118

7.5. Results

0 10 20
request time [s]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

'ns-create'

0 5 10 15
request time [s]

'ns-delete'

0.00 0.25 0.50 0.75 1.00
request time [s]

'ns-show'

OSMv3 (DeutscheTelekom)
OSMv4 (DeutscheTelekom)

OSMv3 (Abilene)
OSMv4 (Abilene)

OSMv3 (UsCarrier)
OSMv4 (UsCarrier)

Figure 7.8.: OSM service management interfaces request time analysis

instantiation times between 10 s and 20 s. The results also show that the instan-
tiation times in OSM rel. FOUR are more stable. The increased instantiation
times shown by OSM rel. FOUR, when the small Abilene (11 PoPs) topology
is used, are caused by the fact that more NSs are instantiated per emulated
PoP. The analysis of NSs termination operations, presented in the middle of
Figure 7.8, clearly shows that NS termination is much faster and shows smaller
variance in OSM rel. FOUR compared to OSM rel. THREE. NS termination
times also have only very small dependencies on the used topologies. Further,
the request times to fetch details of a running NSs instance have been im-
proved in OSM rel. FOUR as shown in the right part of the figure. In general,
osm ns-show requests are much faster than the other operations, since nothing
in the actual NS deployment is changed during a request.

This test validates the design choices made in OSM rel. FOUR and shows
that they improve the overall system performance. Those large-scale test cases
would not have been feasible without our presented testing platform and
clearly show its usefulness for the NFV community and how it can support
future 5G developments.

7.5.2.3. ETSI-compliant test suite

Using our ETSI SOL005-compliant test suite, presented in Section 7.4.2.2, we
record the request times for more endpoints of OSM’s northbound interface.
Table 7.1 shows the mean request times and 95 % confidence intervals among
10 runs of the test suite against OSM rel. FOUR using an emulated PoP as
a single connected VIM. The results show that the request times are all very
stable and the use of our emulation platform allows to execute a complete test
run in about 67.03 s, which is a result of the fast instantiation times of VNFs

119

7. Supporting the evolution of MANO systems using emulation-based smoke testing

and NSs. Similar test runs in cloud testbeds will take substantially longer.
We do not present results for OSM rel. THREE, because of its missing ETSI
SOL005 support and the resulting incompatibility with the test suite.

7.6. Discussion

The results of our case study show the evolution of OSM and how its perfor-
mance has improved in rel. FOUR. Especially the reduced resource require-
ments contribute to a better performance when used with many PoPs.

During our case study, we have found and reported some interesting issues,
for example, a bug in OSM rel. THREE that prevents a user to instantiate an
NS on the 101st or higher-numbered PoP. The reason for this is a hard-coded
query limit that causes the OSM client to only fetch the first 100 PoPs that
are attached to the system. This results in a “PoP not found” exception when
an NS should be instantiated on, e.g., PoP 101. Based on our feedback, this
issue is fixed in OSM rel. FOUR. We have also noticed that for every osm

vim-show <pop x> command the entire VIM list is fetched by the OSM client,
instead of only fetching the information of the requested PoP. This increases
request delays when OSM is used with many attached PoPs. An observation
that we have also reported to the OSM community and has lead to further
improvements of the code base.

It is important to note that such issues would not have been discovered by
today’s NFV test deployments which usually do not use more than a handful
of PoPs. But the 5G and NFV community envisions very large multi-PoP
scenarios for future use cases, like IoT. As a result, MANO systems need to
be tested against such large multi-PoP networks. To do this, our platform
provides a flexible and easy to apply test solution that allows to verify and
improve the quality of MANO systems for use cases of future networks.

The presented approach and platform is able to test other MANO solutions.
On candidate is ONAP [Lin18a] which is the second “big” player in the open-
source MANO landscape. However, the majority of the available codebase of
ONAP is, at the time of writing1, not in a state to perform those experiments,
e.g., because of API limitations. Other reasons are the lack of automated
installation procedures and the very high resource requirements of ONAP. But
we are confident that this will change in the next two or three release cycles.

Another improvement we have recently integrated into the presented platform
is support for VNF and NS configuration mechanisms, like Juju Charms [Can12].
This allows VNF and NS developers to use our platform to perform complex
integration tests between their developed products and the MANO systems

1June 2018, ONAP version 2.0 (Beijing)

120

7.7. Conclusions

while having the benefits of a lightweight test platform that can be deployed
locally.

7.7. Conclusions

Using emulation-based smoke testing as part of the automated test and inte-
gration pipeline, used by MANO software projects, contributes to the quality
and production readiness of these complex software systems. The presented
approach enables automated testing of MANO systems in large-scale 5G sce-
narios with hundreds or thousands of PoPs. This is not possible with today’s
lab-scale NFV testbed installations.

Our case study shows how our presented approaches are used to find bugs
and to reveal the performance improvements between two major releases of
OSM, one of the most prominent open-source MANO solutions, today.

121

Part III.

Performance benchmarking

123

8. Automated benchmarking for NFV

In this chapter, I present the concept of automated benchmarking in agile NFV
environments to gain insights about the performance of VNFs and NSs prior to
their production deployment. The chapter is based on my papers [PK16b] and
[PK17] and contains figures and verbatim copies of the text from these papers.
The chapter presents a benchmarking platform that is published as open-
source project [Peu18c]. After motivating the need for benchmarking concepts
in NFV, I discuss their integration into the NFV DevOps cycle in Section 8.1.1
and present the resulting challenges and research questions in Section 8.1.2,
followed by an overview of related work in Section 8.2. The architecture and
concepts of the presented benchmarking platform are described in Section 8.3.
The resulting prototype is then used to perform a case study, presented in
Section 8.4, which answers the questions if VNFs should only be benchmarked
in isolation or within the NS they are part of. Finally, Section 8.5 concludes.

8.1. Introduction

The softwarisation of network functions comes with many benefits but also
introduces new challenges. One of them is the enforcement of service level
agreements (SLAs) in these dynamic software-based environments. This ques-
tion is aggravated by VNFs being deployed as part of complex NSs, containing
multiple VNFs potentially distributed across multiple PoPs. Since these chains
of VNFs (or SFCs) are often deployed between the end users and third-party
services, enforcing the QoS of the entire SFC is crucial to meet user expec-
tations. MANO systems play a key role in such scenarios where they are
responsible to decide how many resources are allocated for each VNF to meet
the aforementioned goals—a process called “resource dimensioning”. This
process does not only happen during the initial deployment of a VNF but also
as part of automated LCM operations such as scaling or healing; this means
that resource dimensioning itself needs to be highly automated.

Existing approaches for these problems rely on live-monitoring solutions. In
such systems, performance data is continuously collected and the configura-
tions of the deployed VNFs are adapted to meet the SLAs. However, this has
the downside that it is not possible to make statements about the expected
performance and resource requirements of a VNF prior to its deployment. It

125

8. Automated benchmarking for NFV

also makes the consequences of LCM operations difficult to foresee since the
MANO system has no concrete knowledge about the VNF’s behaviour under
changed configurations, e.g., increased resource allocations. This becomes es-
pecially important in very agile DevOps environments in which new versions
of VNFs and NSs are directly deployed into production. In such scenarios,
up-to-date monitoring data of the new artefacts is not available and can lead
to wrong orchestration decisions and degraded performance, as we further
detail in Section 8.1.1. Consequently, the NFV and research community started
looking for benchmarking solutions which can give insights about the VNF
and NS performance that can be expected for a given configuration [Mor17;
RRS15; Cao+15]. However, those initial solutions are either tied to specific
platforms on which the VNFs are benchmarked, or they require manual steps
to setup and run benchmarking experiments. This complicates the integration
of the benchmarking procedure into automated DevOps workflows.

Another important aspect for benchmarking in an NFV context is the need to
consider complex SFCs and not only single, isolated VNFs. This is because the
end-to-end performance of the entire SFC is the metric of interest, especially if
the SFC is deployed on the path between end users and a customer service,
e.g., between user and a content delivery network (CDN). One option to
get the end-to-end SFC performance is to combine benchmarking results of
single VNFs using a performance model of the SFC, e.g., using model-based
performance prediction approaches known from the software engineering
community [BKR07]. The problem of this approach is that SFCs can consist
of many VNFs that could possibly be chained in different ways, like different
order of functions, different structures (branches), and different forwarding
paths, which makes it hard to find correct models. More importantly, the
required details about the SFC structure might not even be available, e.g.,
for proprietary (black-box) SFCs. This means that model-based approaches
highly depend on this expert knowledge of VNF and SFC developers who
have to manually provide the correct models—a clear contradiction to the
idea of automation as we further detail in Section 8.2. An alternative option
is to develop benchmarking solutions that are able to benchmark the actual
implementations of the SFCs end-to-end, using an experiment-based approach,
as we do in this chapter.

More specifically, we analyse and discuss the missing components to au-
tomatically collect, process, and use benchmarking data to improve NFV
deployments and automate resource dimensioning decisions. We, in particular,
focus on DevOps concepts and their interactions between service development
and operation. After discussing the need for benchmarking solutions in NFV
DevOps scenarios, we identify the main challenges and research questions
in this domain. We then present a novel NFV benchmarking solution that
addresses the shortcomings of existing approaches: Platform dependency, lack
of automation, and missing support for SFC benchmarking. The presented

126

8.1. Introduction

solution is designed to be completely platform-agnostic using a descriptor-
based experiment generation approach. We use the presented solution to show
that naive approaches which benchmark single VNFs in isolation and combine
their results do not work well and can result in inaccurate predictions for the
resulting SFC performance.

8.1.1. Benchmarking as part of the NFV DevOps cycle

The main idea behind the DevOps concept is that the team (or individuals) that
build a software artefact are also responsible to operate it [BWZ15]. It bridges
the gap between development of software artefacts and the operation of the
resulting services [Kim+15]. Updated artefacts, e.g., a new VNF version or a
redesigned SFC, are directly deployed into production after they have been
quickly tested by an automated CI pipeline. In addition, feedback collected
during operation is used for development, e.g., to optimise the performance of
the created artefacts.

As a result, manual tests must be removed from the development cycle, in
order to apply DevOps in the NFV domain. This becomes challenging for NFV
where services are always expected to meet certain SLAs. On one hand, it
becomes hard for service developers to validate that changes do not have any
negative impact on the resulting performance before they put their artefacts
to production. On the other hand, MANO systems will be continuously faced
with the management of new artefact versions, which means that resource
dimensioning algorithms, e.g., scaling algorithms, have to be continuously
adapted to the behaviour of the managed artefacts. This can be tricky because
historical monitoring information, available from old artefact versions, might
not provide correct assumptions about the new version. For example, assume
a developer fixes a performance bug in an IDS VNF that reduces its resource
requirements. A MANO system will not know about this and it will allocate
too much resources to the new IDS instance.

We verify these assumptions with a set of experiments in which we test the
performance of commonly used VNFs under different resource configura-
tions [PK16b]. Figure 8.1 shows the results of those experiments, which are
executed on a machine with Intel(R) Core(TM) i7-960 CPU@3.20 GHz, 4 physi-
cal cores, hyper threading, and 24 GB memory. Each experiment is repeated
25 times and the error bars indicate 95 % confidence intervals.

Figure 8.1 shows the performance of two different Snort IDS [Cis16] versions
for different CPU configurations. Figure 8.1a shows their behaviour under
limited CPU time allocations (≤ 10 %) on a single core under which both Snort
versions behave almost identical. In contrast to this, Snort 3 outperforms the old
Snort 2 version and shows a completely different scaling behaviour when the
number of available CPU cores is increased (Figure 8.1b). The obvious reason

127

8. Automated benchmarking for NFV

91 102 3 4 5 6 7 8
CPU time [%]

0

5000

10000

15000

20000

25000

30000

35000

40000

p
kt

s/
s

Snort Throughput

Snort2
Snort3

(a) Limited CPU time

1 5432 6
num. CPU cores

0

20000

40000

60000

80000

100000

120000

p
kt

s/
s

Snort Throughput

Snort2
Snort3

(b) Number of CPU cores

Figure 8.1.: Comparison of two major versions of the Snort IDS system under different CPU
configurations

for this is the fact that Snort 3 introduces multithreading. A MANO system
cannot know about such changes and either needs to rely on expert knowledge
or on benchmarking data, similar to Figure 8.1, to support its orchestration
decisions. In our work, we focus on collecting such benchmarking data prior
to the production deployment of the benchmarked components. An alternative
to this is to modify VNF and NS configurations of the production system itself
and learn from the monitored changes. The clear downside of this is that such
modifications could cause performance degradations of the production system
and it would barely be possible to test border cases, e.g., configurations with
very limited resources, in a production system.

Another important point that motivates the need for pre-deployment bench-
marking is based on the assumption that low-level metrics, like throughput,
are often not sufficient to perform good resource allocation decisions. Espe-
cially for QoS optimisations, application-level metrics, like frames/s of a video
stream, are more interesting. However, due to encryption and privacy issues,
it is not always possible to collect such metrics from operational services,
e.g., no DPI mechanisms are available. In an offline benchmarking solution,
in contrast, developers are able to collect many more performance metrics
since the entire test setup is under their control. It is, for example, possible
to add additional measurement VNFs, called “probes”, to the benchmarked
SFC; these probes can tap to intermediate connections within an SFC to collect
statistics or generate specific traffic patterns to tigger specific actions of an
SFC, e.g., malicious traffic to test the rules of an IDS VNF.

To collect this benchmarking data, a mechanism is needed that automatically
gathers performance information of single VNFs and/or full SFCs prior to
their production deployment. This can be done by iteratively deploying the
benchmarked VNFs or SFCs, which are also called SUT in this context, under
different configurations, e.g., resource allocations or software configurations,
stimulating them and collecting metrics that describe their resulting perfor-

128

8.1. Introduction

mance. This mechanism, which we call “offline benchmarking”, has to be
tightly integrated into the NFV DevOps cycle and must be fully automated so
that it can be executed, e.g., whenever the code of a VNF changes or during
the on-boarding procedure of a VNF or NS to an NFV platform.

8.1.2. Challenges and research questions

Introducing benchmarking into the NFV ecosystem and enabling it to be
part of the DevOps cycle raises several research questions that we outline in
this section. These questions will then be discussed in the remainder of this
thesis.

Q1: How to automatically benchmark VNFs prior to their deployment to obtain
insights into their performance behaviour under different configurations?
VNFs are complex, multi-layer software systems and predicting their
resulting performance for a given configuration is hard. To overcome this,
benchmarking mechanisms that actually execute VNFs to gather insights
about their resulting performance can be used. Such benchmarking
approaches need to be fully automated to seamlessly integrate them
into the envisioned DevOps-based NFV workflows. This challenge is
addressed in the reminder of this chapter.

Q2: How to design an automated benchmarking solution that provides a high degree
of flexibility?
VNFs can be benchmarked using black-box, grey-box, and/or white-box
approaches. Benchmarking processes have to consider different metrics,
starting from low-level system metrics up to application-level metrics,
and need to be executed on different NFV platforms. This requires a
highly flexible design of the benchmarking solution. This challenge is
addressed in the reminder of this chapter.

Q3: Is it sufficient to benchmark VNFs in isolation and infer the performance of
an SFC composed of those VNFs? Or should SFCs always be benchmarked
end-to-end?
Benchmarking single VNFs will already increase the knowledge about
the runtime behaviour of an SFC composed of these VNFs. But such
VNF-specific results might not be able to capture all runtime dynamics
of complex SFCs. To identify bottlenecks and relationships between
resources assigned to different parts of the SFC, it might be required to
benchmark the entire chain end-to-end, as we show in Section 8.4.1.

Q4: How to deal with large configuration spaces? Is it possible to to benchmark
only a subset of VNF and SFC configurations and predict the missing results to
speed up the benchmarking process?
VNFs and SFCs can have many configuration parameters resulting in
large configuration spaces. An automated benchmarking process might

129

8. Automated benchmarking for NFV

not be able to efficiently explore those configuration spaces or the re-
sulting benchmarking process might simply take too long, e.g., if it is
applied during the on-boarding phase. Benchmarking only a subset of
configurations and interpolating the missing results might be a solution
for this. This is addressed in Chapter 9.

Q5: How to represent and share benchmarking results so that they can easily be
picked up by others?
The results of benchmarking processes, also called NFV-PPs, need to
be efficiently represented and stored so that they can be easily reused
and shared. Besides storing the raw results, performance profiles might
be represented by their statistical properties or using machine-learning
models. Initial solutions for this are presented in Chapter 10.

Q6: How can next-generation MANO systems utilise the resulting performance
profiles?
Existing MANO systems base most of their resource dimensioning, scal-
ing, and placement decisions on monitoring data collected at runtime.
Having detailed performance profiles available as input to these systems,
before the service is deployed, or before it has to be scaled up or down,
will help to optimise their decisions. To do so, several extensions like
standardised interfaces and updated control loops are required. We have
presented initial work on this topic in a collaborative paper [Drä+18].
Further optimisation solutions that assume to have such profiles available
are presented by my colleagues in [DKM18; DSK18]. To complement this
work, Chapter 10 presents a solution to automatically turn raw NFV-PPs
into piecewise constant or linear functions that can directly be used as
inputs for the mentioned optimisation solutions.

8.2. Related work

In the software engineering community, model-based performance prediction
solutions for composed software exist [BKR07; BKR09]. They rely on abstract
component models that can be used to simulate the resulting performance
of complex, composed systems. They aim to evaluate architectural design
decisions [BKR07], e.g., differences between micro service-based architectures.
Such a model-based solution is, in principle, an interesting approach to evalu-
ate the performance behaviour of a complex SFC which is nothing more than
a composed service. In the DevOps scenarios, discussed in this thesis, the
components (the VNFs) are, however, often considered to be black boxes that
are implemented by a third party. This means that implementation details of
these components might not be available making it impossible to build such
simulation models. Further, the need of manual modelling of the components
does not allow for full end-to-end automation of the benchmarking process,

130

8.2. Related work

e.g., executed during the on-boarding process. As a result, model-based ap-
proaches from the software engineering community can only be considered as
an additional tool for the design (pre-development) phase of VNFs and SFCs,
which is out of scope of this thesis. They cannot be considered as solution to
automatically collect performance data of already implemented, third-party,
or black-box VNFs and SFC that are about to be deployed.

A lot of work about benchmarking of virtualised applications has already
be done by the cloud computing community, proposing a couple of solu-
tions to benchmark single cloud applications [Woo+08; TZK16; TZK17] and
some solutions to benchmark composed applications [Tak+13; Gia+15]. Espe-
cially [TZK16; TZK17] is comparable to the benchmarking approach presented
in this thesis [PK16b]. Similar to our approach, the authors use resource limit-
ing features of a hypervisor to test workloads under different configurations.
Their goal is, however, to quantify the sensitivity of a VM to shared cloud
resources for a given workload rather than to derive full performance profiles
of a given application. They do this by closely monitoring the hypervisor
metrics during application execution, which is different to our approach that
focuses mainly on the input/output and application-level metrics of VNFs
and SFCs, e.g., achieved throughput or observed delays. Their solution focuses
on scenarios with a single VM and cannot be used to benchmark SFCs. The
other solutions [Woo+08; Tak+13; Gia+15] can also not directly be applied
to NFV scenarios due to different application modelling approaches. For ex-
ample, none of them allows to directly deploy a VNF or SFC specified with
ETSI-aligned descriptors as our solution does. Further, they lack support for
SFC scenarios which limits their usefulness for NFV use cases.

Benchmarking in NFV use cases is already considered by standardisation
bodies, like IETF [Mor17] and ETSI [ETS16b], but the availability of real-
world solutions to perform such benchmarks is still limited. Most existing
solutions have emerged in parallel with the solutions presented in this the-
sis [RRS15; Cao+15; BS15; Kha+18; RBR17]. The first approach is called “VNF
benchmarking as a service (VBaaS)” [RRS15] and proposes a framework to
benchmark NFV infrastructure as well as single VNFs, but lacks support to
benchmark complex SFCs. Another approach is called “NFV-VITAL” [Cao+15]
and introduces a VNF characterisation framework based on an orchestrator
component that allows a user to automatically benchmark SFCs. This approach
is close to our solution but it is limited to services described by HEAT tem-
plates [Ope10d], which offer only limited chaining support. In contrast, the
work presented in [BS15] provides a theoretical model to estimate VNF perfor-
mance. This model does not consider SFCs and requires detailed knowledge
about elementary operations performed inside VNFs, which is not necessarily
available, e.g., for proprietary VNFs. None of the presented solutions focuses
on the impact of SFC reconfiguration, e.g., reordering, as it is done in our case
study. The authors of [Kha+18] present a platform called “NFV Inspector” that

131

8. Automated benchmarking for NFV

mainly focusses on providing a systematic approach for VNF classifications.
It is complementary to our work. A highly automated DevOps environment
is not explicitly considered by any of these solutions. NFV-VITAL [Cao+15]
provides some degree of automation but with limited flexibility compared to
our experiment description and configuration approach.

Finally, a solution called “Gym” was initially presented in [RBR17] and pro-
vides a solution for end-to-end automation of VNF benchmarking experiments.
Gym, however, focuses on single and composed VNFs and does not have built-
in support to profile SFCs. Gym was developed in parallel with our solution
and uses, in its latest version, our NFV prototyping platform vim-emu, pre-
sented in Part II of this thesis, as its execution platform. At some point, we
joined forces with the authors of Gym and started to work on a joint IETF draft
on VNF benchmarking automation [Ros+18] for which Gym as well as the
solutions presented in this thesis act as official reference implementations.

8.3. Automated performance benchmarking of NFV
functions and services

The first two questions (Q1/Q2) presented in Section 8.1.2 highlight the need
of a flexible, fully-automated NFV benchmarking framework, which we ad-
dress in this section. To design this framework, we identified the following
requirements. (R1) Automation: Allow fully automated (i.e. scriptable) bench-
marking experiments without any human interaction after the experiment’s
initial description. (R2) Flexibility: Support many NFV platforms so that bench-
marking experiments can be executed in different environments. This includes
support for different control and monitoring interfaces as well as different
description languages. (R3) Abstraction: Once a developer has described a
benchmarking experiment it should be possible to execute this experiment
on different target NFV platforms. (R4) Integration: The benchmarking tool
as such has to be integrable into different workflows, e.g., to be executed
inside a CI/CD pipeline or to become part of an NFV platform’s on-boarding
procedure.

Based on those requirements, a benchmarking framework can be split into three
areas. First, a description approach is needed that defines the benchmarking
procedures, i.e., defines how a benchmarking experiment should be conducted.
Second, an NFV platform with its infrastructure and MANO facilities is used
to deploy, configure, and execute the SUT, which can be either a single VNF or
a complex SFC. Third, a benchmarking controller is needed that coordinates
the benchmarking process and controls the test system by interfacing with the
NFV platform. The following sections describe the design and implementation

132

8.3. Automated performance benchmarking of NFV functions and services

of our benchmarking framework, called “tng-bench”, which fulfils the above
requirements and covers all three areas.

8.3.1. Benchmarking platform design and workflow

We designed the core of our benchmarking framework, containing the bench-
marking controller, as a highly modularised system that allows to replace
many of the components that interface with external systems so that it can
be extended and used with any NFV platform. The key idea of this design
is to utilise existing VNF and NS description mechanisms used by MANO
systems to control SUT deployments and benchmark a SUT with different
parameterisations and configurations. This is unlike many existing approaches
that manipulate the execution platforms directly. Our approach has the clear
benefit that our system becomes agnostic to the target NFV platform and does
not require interface changes in these platforms. Further, it ensures that our
system can quickly be adapted to new MANO solutions by implementing an
additional module to generate NFV descriptors for the new platform. This
approach is only limited by the expressiveness of the VNF and SFC model
used by the target platform, i.e., if a SUT can be expressed with the descriptors
of a target platform, we can provide a plugin for it.

Figure 8.2 shows our general system design as well as its benchmarking
workflow. The figure also contains annotations with technology options for
external components. In the first step (1. Define), a user creates a so-called
“performance experiment descriptor (PED)”, a YAML-based descriptor file that
contains all necessary information to perform a benchmarking experiment.
In particular, a PED references the SUT that should be benchmarked, e.g.,
a VNF/NS package or descriptor, and it includes descriptions of all service
configurations that should be tested, e.g., different resource assignments for
the tested VNFs (see Section 8.3.2 for more details). The PED is used to trigger
our benchmarking framework by using its CLI interface. Alternative interfaces,
like REST-based interfaces, are possible as well. These interfaces also allow
the integration of our benchmarker into existing CI/CD workflows (R4). The
benchmarker reads the PED and forwards the request to its descriptor engine.
This module takes the descriptors of the SUT referenced by the PED file
and embeds (or extends) them with additional measurement VNFs, called
“measurement probes (MPs)”. Our system offers default MPs that contain
standard networking test tools, like iperf or hping. A tester can replace
these by any custom measurement VNF that may contain domain-specific or
proprietary traffic generators. For example, an message queuing telemetry
transport (MQTT) traffic generator can be used to benchmark IoT scenarios.
After the embedding step, one copy of the new SUT description, for each
configuration specified in the PED, is generated (2. Generate). This results in a
set of SUT packages C = {ci | i ∈N∧ 0 < i ≤ n} for n different configurations

133

8. Automated benchmarking for NFV

Inputs

NFV Benchmarking Framework

Descriptor Engine (w. Plugin)

Benchmarking Controller

PED

SUT package

C1 C2 Cn
... Pl

at
f.

D
riv

er

co
nt

ro
l

m
on

ito
r

Outputs

Data

Exp.
Param.

1. Define

6. Postprocessing

5. Collect

3. On-board & Deploy

2. Generate NFV Platform NFV Platform

NFV Platform

MANOCi

NFV Infrastructure

MP SUT MP

control

Docker container (or VM)

4. Execute & Measure

Log files, Prometheus, etc.

vim-emu (or OpenStack)

vim-emu (or OSM, SONATA-NFV, etc.)

on
-b

oa
rd

CLI REST

references

ProfileConfigurations

Figure 8.2.: System architecture of our benchmarking framework interacting with several NFV
platforms. The figure also shows the general workflow and generated artefacts and
is annotated with external technologies that can be used.

that should be tested. Each of them includes resource configurations, like
number of CPU cores assigned to a VNF, MP configurations, like the packet
sizes used by a traffic generator, as well as SUT-specific configurations. The
descriptor engine itself offers a plugin interface for service description generators
so that our benchmarker becomes service-descriptor agnostic and can be
extended to further description formats, e.g., OSM [ETS16c] (R2).

In the third step (3. On-board & Deploy), the system iterates over the generated
configurations. In each step, one of the generated configurations (ci) is on-
boarded and deployed on a free execution platform using the platform driver
modules. These drivers act as a client to the execution platform and form
an abstraction layer between specific MANO northbound interfaces and our
internal control mechanisms (R3).

Once a service instance is up and running, MPs are triggered, e.g., the con-
tained traffic generators are activated, and start to stimulate the SUT. The
system now enters the measurement phase in which the actual performance
achieved by the SUT is recorded (4. Execute & Measure). The measurement
phase either ends after a predefined time limit or once a MP has finished its
work, e.g., a full traffic trace has been replayed. After this, the SUT instance is
destroyed and removed from the platform before the next SUT configuration

134

8.3. Automated performance benchmarking of NFV functions and services

is deployed (ci+1). We call the deployment, execution, and test of a single SUT
configuration a benchmarking round. The overall benchmarking process finishes
once all n benchmarking rounds (one for each of the n configurations) have
been executed.

During a benchmarking round, performance data is collected in two ways
(5. Collect). First, SUT-internal performance metrics are monitored, including
log files inside the MP and SUT (the later is only possible in white-box bench-
marking scenarios with direct access to the internals of the SUT). Second,
platform metrics, like packet counters of network interfaces, are collected
through the platform’s monitoring APIs. The latter are platform-specific and
may not be available on each execution platform. In both cases, two types of
data can be collected. First, experiment data, which is collected at the end of
each benchmarking round and summarises this round, e.g., total number of
packets processed by the SUT in the benchmarking round. Second, time series
data, which is continuously collected during the benchmarking round, e.g.,
samples of CPU utilisation collected once per second. Both types of data are
stored and are available to the user afterwards.

As a last step (6. Post-processing), all measured data collected from various
sources are aggregated and stored in unified, table-based formats. For exper-
iment data, each row in the table represents exactly one of the tested SUT
configurations. For time-series data, multiple tables, one for each collected
metric, indexed by time stamps are created. These tables are then passed to
a post-processing module that automatically triggers user-defined analysis
scripts that can, for example, perform statistical analysis on the collected data
sets (R1).

8.3.2. Describing benchmarking experiments

One of our key contributions is the so called performance experiment descrip-
tor (PED) which is an easy-to-understand, human-readable description format
used to define benchmarking experiments end-to-end. This not only simpli-
fies the creation and definition of new experiments, it also helps to repeat
existing experiments and provides a standardised way to exchange and share
experiments. Listing 8.1 shows a (shortened) example of such a YAML-based
descriptor showcasing the key features of our description approach.

In the header (line 1–5), the descriptor contains general information and
version fields. The PED also contains an uniform resource locator (URL) to the
SUT definition which can be provided in different formats, e.g., a 5GTANGO
service package (line 7). This reference is used by the descriptor engine to access
the definitions of the SUT that should be benchmarked.

135

8. Automated benchmarking for NFV

1 descriptor_version: 0.2

2 vendor: "de.upb"

3 name: "ped1_ids_proxy_service_example"

4 version: "0.1"

5 author: "Manuel Peuster , Paderborn University"

6 # path to the SUT we want to profile

7 service_package: "file :// services/ns -2vnf -ids -proxy .1.0. tgo"

8 # definition of benchmarking experiments

9 service_experiments:

10 - name: "service_throughput_traces"

11 # basic experiment configurations

12 repetitions: 25

13 time_limit: 120

14 time_warmup: 30

15 # NS to be used (vendor.name.version reference)

16 target:

17 vendor: "de.upb"

18 name: "ns -2vnf -ids -proxy"

19 version: "0.1"

20 # definition of measurement probes

21 measurement_probe:

22 - name: "mp.input"

23 connection_point: "ns:input"

24 container: "mpeuster/tng -bench -mp"

25 address: "20.0.0.1/24"

26 - name: "mp.output"

27 # (...)

28 # experiment parameters to be tested

29 experiment_parameters:

30 - node: "de.upb.ids -suricata .0.1"

31 cmd_start: ["./ start.sh small_ruleset",

32 "./start.sh large_ruleset"]

33 cpu_bw: {"min": 0.05, "max": 1.0, "step": 0.05]

34 cpu_core_set: ["0", "0, 1"]

35 mem_max: [128, 256, 512, 1024]

36 # (...)

37 io_bw: null

38 - node: "de.upb.proxy -squid .0.1"

39 # (...)

40 - node: "mp.input"

41 cmd_start: "tcpreplay --preload -pcap smallFlows.pcap"

42 # (...)

43 - name: "service_throughput_iperf"

44 extends: "service_throughput_traces"

45 # (...)

Listing 8.1: Example PED (shortened) showing the main features of our experiment description
approach

Each PED specifies one or multiple experiments (line 9). Each experiment has
a unique name (line 10), number of repetitions (line 11), a time limit for a
single benchmarking round (line 13), and a warmup time that gives the SUT
some time to bootstrap and configure before it is actually tested, e.g., traffic is

136

8.3. Automated performance benchmarking of NFV functions and services

sent to it (line 14). An experiment also contains a target field containing an
identifier of the service descriptor to be used (line 16). This is needed because
SUT packages might contain multiple VNFs and NSs. They are referenced
using a triple of vendor, name, and version field, as it is typically done in the
ETSI, 5GTANGO, or OSM data models.

In the next section of the PED, the measurement probes used in the experiment
are defined. Besides a unique name (line 22), these definitions must include a
reference to a connection point of the SUT so that the descriptor engine knows
how to combine and interconnect measurement probes with the benchmarked
VNF or NS (line 23). The definitions also specify the container or VM image
that should be used to deploy the measurement probe (line 24) and offer
optional fields for network configurations (line 25).

Finally, a set of experiment parameters, for each of the VNFs contained in
the SUT as well as for all measurement probes, must be specified. Those
parameters include, for example, resource configurations, like the number of
vCPU cores (line 34) or start parameters for the involved VNFs and probes
(line 31). Platform-dependent resource configurations, like the available CPU
time of a container (also called CPU bandwidth in the container domain), are
also possible and are ignored if the experiments are executed on a platform
that does not support such configurations (line 33).

To simplify the specification of complex parameter studies and significantly
reduce the effort required to define new experiments, we add two features
that are inspired by the configuration language of simulation tools, like OM-
NeT++ [OMN05]. First, we support macros for automated parameter expan-
sion. Those macros can be either specified as loops (line 33) or as lists of values
(line 35) that should be tested for a specific parameter. Second, we support
inheritance for experiment descriptions (line 44). If a second experiment ex-
tends a first experiment, it inherits all configurations specified by the first
experiment and can overwrite only the parameters that should be different.
With these two features, our description approach allows to efficiently specify
complex parameter studies that can then be automatically executed by the
presented benchmarking framework.

Based on the PED and the SUT specification, our benchmarking framework
will generate one SUT configuration for each combination of parameters that
should be tested. This is done by computing the Cartesian product [War90]
of all specified experiment parameters and their assigned values. This means
that the example experiment in Listing 8.1 results in repetitions · |cmd start| ·
|cpu bw| · |cpu core set| · |mem max| = 25 · 2 · 20 · 2 · 4 = 7680 different config-
urations, and thus benchmarking rounds, to be executed. This already shows
why automation is key in this area, because manually executing hundreds or
even thousands of different experiments is infeasible.

137

8. Automated benchmarking for NFV

Figure 8.3.: SUT descriptor generation examples. Extended SUT descriptor (a) and embedded
SUT descriptor Sembedded (b).

The generation of these configurations highly depends on the VNFD and
NSD models used by the target execution platforms. These are often simi-
lar but in most cases not exactly the same. For example, the descriptors of
SONATA [SON15b], 5GTANGO[5GT17a], and OSM [ETS16c] are all based
on the ETSI description model [ETS18c], but they differ in implementation
details, like field names. This is why we support the use of different plugins to
generate the SUT configurations, allowing us to implement specific generators
for any execution platform.

One of the main functionalities of these generators is to extend the VNFD or
NSD of the SUT with additional measurement probes (that can be considered
VNFs themselves). This can be achieved with two different approaches as
shown in Figure 8.3. The first approach extends the service graph of the SUT
itself by appending the additional probe VNFs to the connection points speci-
fied in the PED (a). The second approach, in contrast, does not modify the NSD
of the SUT but embeds it into another NSD that contains the measurement
probes (b). As shown in the figure, the second approach has a much cleaner
design and simplifies the generator implementation. However, it requires that
the execution platform’s description models support hierarchical service struc-
tures, which is an advanced feature often not supported by today’s MANO
systems (e.g., 5GTANGO or OSM). This is why option (a) is still needed and
used in our prototype.

8.3.3. Packaging benchmarking results

Our benchmarking framework collects different metrics, including time series
metrics, during each benchmarking round and stores them in table-based data
formats for further processing. The collection can either be done by using
the outputs of the test tools executed inside the measurement probes or with
platform-specific monitoring systems accessible trough the platform drivers.

The collected results can finally be analysed and normalised, for example,
lookup tables can be created that are then bundled with the SUT and used by
MANO systems, e.g., for NS-specific scaling decisions. These analysis tasks
highly depend on the use cases and the kind of collected data, as Chapter 10

shows. To this end, our system allows to plug-in arbitrary post-processing

138

8.4. Case study: Chain-based benchmarking

scripts that are automatically executed at the end of a benchmarking experi-
ment. Those scripts can be used to turn the raw data into an NFV-PP format
that can be understood and used by other systems. To bundle the final bench-
marking results with the SUT, 5GTANGO’s advanced NFV packaging format
can be used [5GT18a]; it allows to reference digitally-signed benchmarking
results. This concept does not only allow to exchange benchmarking results be-
tween different stakeholders in the NFV ecosystem, e.g., between operators of
public catalogues and service providers. It also supports new business models
enabled by a concept called “verification and validation (V&V) platform” intro-
duced by the 5GTANGO project and presented in one of my papers [Peu+19b].
This concept is out of scope of this thesis.

8.4. Case study: Chain-based benchmarking

We perform a series of experiments to test our benchmarking solution and to
answer the question whether approaches that combine benchmarking results,
obtained from isolated VNFs benchmarks, to model the end-to-end perfor-
mance of an SFC are sufficient or if end-to-end benchmarking solutions are
needed?

8.4.1. Scenarios and approach

For this study, we use linear SFCs consisting of up to three different VNFs
all acting as forwarding elements. The first used SFC (SOVS) contains three
simple switching VNFs (fOVS) each realised by an OVS instance running as
layer 2 learning switch in userspace datapath mode within a Docker container.
We consider this SFC as our baseline scenario in which we expect a direct
linear relationship between resources assigned to the SFC and achieved perfor-
mance, since all packets are just forwarded between the VNFs, without further
processing, until the end of the SFC is reached.

Further, we use three more complex VNFs, each configured to act as layer 4 for-
warding element, that are chained in different orders to create three additional
SFCs (S1, S2, S3). The used VNFs are Nginx (fN) [NGI04] configured as TCP
load balancer, the TCP relay Socat (fS) [Soc01], and Squid proxy (fP) [Squ96]
with disabled caching functionality to forward every packet. These SFCs
are used to investigate the impact of more complex VNFs, which work on
higher networking layers, on the end-to-end SFC performance. The goal is to
demonstrate that, even with a simple linear chain, it becomes complicated to
accurately model the performance of the SFCs based on single-function VNF
benchmarking results. To do so, we measure the performance for each of the
isolated VNFs as well as for multiple setups of the full SFCs. All tested VNFs

139

8. Automated benchmarking for NFV

Table 8.1.: Benchmarking scenarios considered in the case study

isolated VNF fOVS MPU ←→ fOVS ←→ MPW
isolated VNF fN MPU ←→ fN ←→ MPW
isolated VNF fS MPU ←→ fS ←→ MPW
isolated VNF fP MPU ←→ fP ←→ MPW

SFC SOVS MPU ←→ fOVS ←→ fOVS ←→ fOVS ←→ MPW
SFC S1 MPU ←→ fN ←→ fS ←→ fP ←→ MPW
SFC S2 MPU ←→ fS ←→ fP ←→ fN ←→ MPW
SFC S3 MPU ←→ fP ←→ fN ←→ fS ←→ MPW

and SFCs are deployed between two probes, a web-service (MPW) and end
users (MPU), which are used to perform the measurements. Table 8.1 shows a
full list of all considered scenarios and involved VNFs.

All scenarios are deployed with the presented benchmarking framework using
vim-emu [PKV16] as execution platform. As described in Part II of this thesis,
vim-emu allows to quickly deploy complex SFCs consisting of container-based
VNFs on a single physical machine. All used VNFs are packaged as Docker
containers. In addition, we execute experiments on multiple physical machines,
using Maxinet [Wet+14], to verify that vim-emu running on a single physical
machine can be used for benchmarking as we proposed in [PK16b]. In both
cases, each VNF container is allocated to a dedicated CPU core for isolation.
To check the performance of our VNFs and SFCs under different resource
configurations, we allocate different fractions of CPU time to each individual
VNF container to emulate a large set of different resource configurations. It
is important to note that the resulting performance numbers, generated by
these experiments, should not be taken as absolute values but they allow us
to compare our scenarios. The experiments are executed on a single machine
with Intel(R) Core(TM) i7-960 CPU @ 3.20 GHz, 8 cores, hyper threading, and
24 GB memory. For the distributed (Maxinet) setup, multiple of these machines,
interconnected by 10G Ethernet interfaces, are used. In the Maxinet setup, a
dedicated machine is used for each deployed VNF container. All error bars in
this chapter indicate 95 % confidence intervals based on 10 repetitions.

We focus on two metrics to measure VNF and SFC performance: Overall
throughput and response time.

8.4.2. Throughput: Isolated function vs. service chain

In the first set of experiments, we measure the total throughput between web
service (MPW) and end users (MPU) by downloading 1.0 MByte files with
random content to simulate a virtualised content delivery network (vCDN)

140

8.4. Case study: Chain-based benchmarking

0.16 0.32 0.64 1.0
CPU configuration (c1)

0.0

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 [G

bp
s]

Open vSwitch (fOVS)

Figure 8.4.: Throughput of the OVS VNF under different CPU time configurations executed in
a single-machine (vim-emu) setup.

service that is served through our VNFs and SFCs. In this setup, we use
Apache2 [The93] running in MPW and Apachebench [The93] installed in MPU
to run the downloads.

The first experiment focuses on our baseline scenarios in which we measure
the throughput of a single OVS VNF under different configurations as well
as the throughput achieved by an SFC of three chained OVS VNFs. Figure 8.4
shows the results of the isolated VNF measurements. It clearly shows the linear
relationship between CPU configuration and the resulting performance. The
small variance of the results show that the vim-emu platform is well suited for
benchmarking experiments.

Using the results reported in Figure 8.4, which provide us with performance
numbers for an individual VNF, we naturally model the expected through-
put of a linear SFC (T̃SFC(C)), composed of three chained OVS VNFs, as the
minimum among the throughputs measured in the single-VNF experiment
(TOVS1, TOVS2, TOVS3) for a given configuration, as shown in Equation 8.1. As
input to this model, a tuple C containing a CPU configuration for each of the
three VNFs is used: C = (c1, c2, c3). The assumption behind this model is that
the VNF with the smallest throughput for the given configuration determines
and limits the overall performance of the composed SFC.

T̃SFC(C) = min{TOVS1(c1), TOVS2(c2), TOVS3(c3)} (8.1)

We then compare the predicted SFC throughput (T̃SFC(C)) to measurement
results we obtain from an experiment in which we deployed the complete SFC
with three OVS VNFs and measured its end-to-end throughput. Figure 8.5
shows this comparison for different CPU time configurations. It can be seen
that the measured end-to-end performance of the SFC is close to the perfor-
mance predicted by the model in most of the cases. For some configurations,
however, the modelled performance is up to 7.61 % less than the actually
measured performance. This result shows that for simplistic SFCs, composed
of VNF that do simple packet forwarding, naive performance models can

141

8. Automated benchmarking for NFV

(0.16, 0.16, 0.16)

(0.16, 0.16, 0.32)

(0.16, 0.16, 0.64)

(0.16, 0.32, 0.16)

(0.16, 0.32, 0.32)

(0.16, 0.32, 0.64)

(0.16, 0.64, 0.16)

(0.16, 0.64, 0.32)

(0.16, 0.64, 0.64)

(0.32, 0.16, 0.16)

(0.32, 0.16, 0.32)

(0.32, 0.16, 0.64)

(0.32, 0.32, 0.16)

(0.32, 0.32, 0.32)

(0.32, 0.32, 0.64)

(0.32, 0.64, 0.16)

(0.32, 0.64, 0.32)

(0.32, 0.64, 0.64)

(0.64, 0.16, 0.16)

(0.64, 0.16, 0.32)

(0.64, 0.16, 0.64)

(0.64, 0.32, 0.16)

(0.64, 0.32, 0.32)

(0.64, 0.32, 0.64)

(0.64, 0.64, 0.16)

(0.64, 0.64, 0.32)

(0.64, 0.64, 0.64)

CPU configuration: C = (c1, c2, c3)

0.00

0.05

0.10

0.15

0.20

Th
ro

ug
hp

ut
 [G

bp
s]

Model: min{TOVS1(c1); TOVS2(c2); TOVS3(c3)}
Measurement: SFC SOVS

Figure 8.5.: Throughput of an SFC composed of three OVS VNFs under different CPU time
configurations compared to the expected throughput modelled on basis of the
results from our single-VNF measurements.

produce reasonable results. But many real-world SFCs are composed of VNFs
that perform more complicated tasks such that a model-based approach might
be infeasible as we confirm in the following.

The next experiment relies on the same setup as the previous experiment but
uses the layer 4 forwarding VNFs (fN , fS, fP) and SFCs (S1, S2, S3) described
in Table 8.1. In addition, we not only execute this experiment on a single
vim-emu machine but also run it as a distributed scenario on four physical
machines using Maxinet. The goal of this is to confirm that our results are not
biased by the use of a single-machine running vim-emu as experimentation
platform.

Figure 8.6 shows the results for each of the three used VNFs and different
CPU configurations, measured in the single-machine (vim-emu) and multi-
machine (Maxinet) setup. Again, the results indicate a linear relationship
between CPU time and throughput and show that fN performs best. Moreover,
it highlights that the absolute performance values of the single-machine setup
are much better than in the multi-machine setup. The reason for this is that our
benchmarking platform directly interconnects the VNF containers in the single-
machine setup (virtual Ethernet pairs between containers). This means that
there are no intermediate software switches that might consume additional
resources and no tunnels between physical machines that need to be traversed.
It can also be observed that the variance of the results in the single-machine
case is smaller, which is also caused by the absence of intermediate switches
and tunnels between the VNFs. It can be seen that vim-emu-based single-
machine setups are better suited to solely focus on VNF performance and to

142

8.4. Case study: Chain-based benchmarking

0.16 0.32 0.64 1.0
CPU configuration (cn)

0

2

4

6

8
Th

ro
ug

hp
ut

 [G
bp

s]

Nginx (fN)

single-machine
multi-machine

0.16 0.32 0.64 1.0
CPU configuration (cs)

Socat (fS)

0.16 0.32 0.64 1.0
CPU configuration (cp)

Squid (fP)

Figure 8.6.: Throughput of the three VNFs under different CPU time configurations executed
in a single-machine (vim-emu) and multi-machine (Maxinet) setup.

get more stable results.

Similar to the OVS experiment, we use the results from the isolated VNF mea-
surements, reported in Figure 8.6, to model the expected throughput of a linear
SFC composed of all three VNFs. As before, the model uses the minimum
of the throughput measured in the single-VNF experiments (TN , TS, TP) for a
given configuration C = (cn, cs, cp), as shown in Equation 8.2.

T̃SFC(C) = min{TN(cn), TS(cs), TP(cp)} (8.2)

Figure 8.7 compares the predicted SFC throughput (T̃SFC(C)) to the measured
results we obtain from the end-to-end benchmarking experiments. All these
experiments are executed on our single-machine setup (Figure 8.7a) and on
our multi-machine setup (Figure 8.7b). The overall performance of the single-
machine setup is higher (up to 2.6 Gbps) compared to the multi-machine
case (1.2 Gbps). The later also shows more variance in the results, which is
caused by the additional software switches and tunnels needed to deploy the
benchmarked SFC across multiple physical machines.

Both setups show that even though the modelled results are often near to
the experimental results there are still many configurations in which the real
performance of the SFC is much better than predicted by the model—a non-
intuitive result. In fact, the end-to-end measurements show an up to seven
times higher throughput than initially predicted in some of the configurations.
This is different from the results obtained from the OVS experiment, which
has been much closer to the modelled results. A reason for this could be that
the involved VNFs act on layer 4 and above, which means that between every
pair of VNFs a dedicated TCP connection is used that terminates at the next
VNF. As a result, each VNF does its packet processing independently from
the other VNFs and forwards the packets to the remaining VNFs of the chain
whenever it is ready to do so. In the OVS case, in contrast, flows are passing
through the SFC end-to-end without being terminated at the individual VNFs,
i.e., the packets are simply forward without further processing.

143

8. Automated benchmarking for NFV

(0.16, 0.16, 0.16)

(0.16, 0.16, 0.32)

(0.16, 0.16, 0.64)

(0.16, 0.32, 0.16)

(0.16, 0.32, 0.32)

(0.16, 0.32, 0.64)

(0.16, 0.64, 0.16)

(0.16, 0.64, 0.32)

(0.16, 0.64, 0.64)

(0.32, 0.16, 0.16)

(0.32, 0.16, 0.32)

(0.32, 0.16, 0.64)

(0.32, 0.32, 0.16)

(0.32, 0.32, 0.32)

(0.32, 0.32, 0.64)

(0.32, 0.64, 0.16)

(0.32, 0.64, 0.32)

(0.32, 0.64, 0.64)

(0.64, 0.16, 0.16)

(0.64, 0.16, 0.32)

(0.64, 0.16, 0.64)

(0.64, 0.32, 0.16)

(0.64, 0.32, 0.32)

(0.64, 0.32, 0.64)

(0.64, 0.64, 0.16)

(0.64, 0.64, 0.32)

(0.64, 0.64, 0.64)

CPU configuration: C = (cn, cs, cp)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 [G

bp
s]

Model: min{TN(cn); TS(cs); TP(cp)}
Measurement: SFC S1
Measurement: SFC S2
Measurement: SFC S3

(a) single-machine setup

(0.16, 0.16, 0.16)

(0.16, 0.16, 0.32)

(0.16, 0.16, 0.64)

(0.16, 0.32, 0.16)

(0.16, 0.32, 0.32)

(0.16, 0.32, 0.64)

(0.16, 0.64, 0.16)

(0.16, 0.64, 0.32)

(0.16, 0.64, 0.64)

(0.32, 0.16, 0.16)

(0.32, 0.16, 0.32)

(0.32, 0.16, 0.64)

(0.32, 0.32, 0.16)

(0.32, 0.32, 0.32)

(0.32, 0.32, 0.64)

(0.32, 0.64, 0.16)

(0.32, 0.64, 0.32)

(0.32, 0.64, 0.64)

(0.64, 0.16, 0.16)

(0.64, 0.16, 0.32)

(0.64, 0.16, 0.64)

(0.64, 0.32, 0.16)

(0.64, 0.32, 0.32)

(0.64, 0.32, 0.64)

(0.64, 0.64, 0.16)

(0.64, 0.64, 0.32)

(0.64, 0.64, 0.64)

CPU configuration: C = (cn, cs, cp)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Th
ro

ug
hp

ut
 [G

bp
s]

Model: min{TN(cn); TS(cs); TP(cp)}
Measurement: SFC S1
Measurement: SFC S2
Measurement: SFC S3

(b) multi-machine setup (using Maxinet)

Figure 8.7.: Throughput of three SFC configurations under different CPU time configurations
compared to the expected throughput modelled on basis of the results from our
single-VNF measurements. Experiments are executed in our (a) single-machine
setup and (b) multi-machine setup.

144

8.4. Case study: Chain-based benchmarking

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0
CD

F

CPU c = 0.04

0 1 2

CPU c = 0.08

0 1 2

CPU c = 0.16

0 1 2

CPU c = 0.32

0 1 2

CPU c = 0.64

none Nginx (fN) OVS (fOVS) Socat (fS) Squid (fP)
response time [ms]

Figure 8.8.: Empirical response time CDFs for each VNF and a setup without VNF between
MPU and MPW .

The presented results also show that SFC S3 performs worse than the other two
SFCs even though the exact same VNFs are used in all three cases. It shows
that the ordering of the functions in an SFC can have an effect on the SFC’s
end-to-end performance. This is something that can clearly not be captured if
VNFs are benchmarked in isolation. We confirm this finding with a second set
of experiments that focus on response time as a second performance metric.

8.4.3. Response time: Isolated function vs. service chain

In the second set of experiments, we investigate the impact of different VNF
and SFC configurations on the response time. This is done by performing
500 response time measurements (hypertext transfer protocol (HTTP) HEAD
requests using Httping [Htt05] installed in MPU) in each benchmarking round.
These experiments are only performed in the single-machine setup, because
a multi-machine Maxinet setup would have introduced a lot of bias to the
response times caused by intermediate switches and network tunnels that
need to be traversed. Figure 8.8 shows the results for our single-VNF scenarios
as well as for a scenario in which no VNF is deployed between MPU and MPW .
It shows that each VNF implementation has slightly different response times
and that the allocated CPU time has only a small effect on these response
times.

We again create a model to predict the behaviour of our SFC scenarios based
on single-VNF measurements. This model approximates the response time
of an SFC by the sum of the response times measured in the individual VNF
experiments. This assumption makes sense since we know that all our SFC
scenarios use linear chains in which packets have to traverse every VNF.
Building the sum of the response times from the single-VNF measurements
can be understood as summing up independent random variables and is
done by computing the discrete convolution using their probability density

145

8. Automated benchmarking for NFV

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

c1 = 0.64
c2 = 0.04
c3 = 0.64

0 1 2 3 4

c1 = 0.64
c2 = 0.08
c3 = 0.64

0 1 2 3 4

c1 = 0.64
c2 = 0.16
c3 = 0.64

0 1 2 3 4

c1 = 0.64
c2 = 0.32
c3 = 0.64

0 1 2 3 4

c1 = 0.64
c2 = 0.64
c3 = 0.64

Model: rOVS1(c1) * rOVS2(c2) * rOVS3(c3) SFC SOVS

response time [ms]

Figure 8.9.: Measured empirical response time CDFs of the OVS SFC compared to the modelled
response times derived from single-VNF measurements.

functions (PDFs). Let rx(t) with x ∈ { f1(c1), f2(c2), f3(c3)} be the PDF derived
from the results of the given single-VNF experiment x with a given CPU
configuration. For example, rN(0.32)(t) is the density of the response times of the
Nginx VNF configured with 0.32 % CPU time. The approximated response time
PDF of an SFC with three functions is then defined as shown in Equation 8.3.

r̃SFC(C)(t) = (r f1(c1) ∗ r f2(c2) ∗ r f3(c3))(t)

=
t

∑
i=0

(i

∑
j=0

r f1(c1)(j)r f2(c2)(i− j)
)

r f3(c3)(t− i)
(8.3)

This model can be used for all our linear SFC scenarios due to the associative
and commutative nature of the convolution. Figure 8.9 compares this model to
the measured results of our OVS SFC experiments for changing CPU times of
the second VNF in the chain. It demonstrates that the SFC does not behave like
expected and shows response times that are faster as the modelled response
times.

The same happens for our second set of SFCs (S1, S2, S3) as shown by Fig-
ure 8.10. The figure compares the response time under different CPU time
configurations of VNF fP with the modelled response times. Changing the
CPU configurations of the other VNFs gives similar results. Again, the mea-
sured response times are faster than the modelled response times. It can also
be seen that the order of the VNFs in our linear SFCs matters if the layer 4

forwarding VNFs are used. It confirms the results of the throughput experi-
ments and illustrates that modelling SFC performance based on single-VNF
measurements, without detailed knowledge about the used VNFs and SFC

146

8.5. Conclusion

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
CD

F

cn = 0.64
cs = 0.64
cp = 0.04

0 1 2 3 4

cn = 0.64
cs = 0.64
cp = 0.08

0 1 2 3 4

cn = 0.64
cs = 0.64
cp = 0.16

0 1 2 3 4

cn = 0.64
cs = 0.64
cp = 0.32

0 1 2 3 4

cn = 0.64
cs = 0.64
cp = 0.64

Model: rN(cn) * rS(cs) * rP(cp) SFC S1 SFC S2 SFC S3

response time [ms]

Figure 8.10.: Empirical response time CDFs measured for three SFC setups (S1, S2, S3) compared
to the modelled response times derived from single-VNF measurements.

structure, does not lead to accurate results. It shows that finding good perfor-
mance models for SFCs is often complicated, might require detailed insights
into the implementation of the used VNFs as well as structure of the SFC,
and can barely be automated. As a consequence, SFC benchmarking solutions
that support end-to-end SFC measurements, as presented in this chapter, turn
out to be a much better solution for fully automated environments in which
black-box benchmarking is required.

8.5. Conclusion

The presented benchmarking framework allows to fully automate end-to-
end SFC benchmarking experiments using a simple, yet flexible, description
approach. It goes beyond existing NFV benchmarking solutions and is a
step toward fully automated NFV DevOps toolchains. The presented results
show that the order of the VNFs in an SFC directly affects the SFC’s end-
to-end performance. This behaviour cannot easily be simulated with natural
performance models combining single-VNF benchmarking results. Our study
also demonstrates that end-to-end SFC benchmarking is a better solution
for automated benchmarking setups than benchmarking VNFs in isolation
since it removes manual modelling steps and allows black-box benchmarking
of entire SFCs. We foresee such benchmarking procedures not only in the
SFC development process but also as part of automated verification and
validation systems [Peu+19b] and as part of on-boarding procedures giving
MANO systems initial information about the behaviour of SFCs prior their
deployment.

The prototype of the presented framework is open-source and acts as one of

147

8. Automated benchmarking for NFV

the reference implementations of the IETF draft about VNF benchmarking
automation methodologies [Ros+18]. This draft also aims to standardise a
description approach for VNF benchmarking based on the PED approach
presented in this chapter.

148

9. Benchmarking under time
constraints

This chapter focuses on the challenge of large configuration spaces that need to
be explored during automated benchmarking processes. Such large configura-
tion spaces become especially challenging if a benchmarking process should be
finalised in a fixed amount of time in which not all possible configurations can
be tested. Besides a formal problem formulation of NFV benchmarking under
time constraints given in Section 9.2, we present related work in Section 9.3.
The key contributions of this chapter are twofold: First, the design, workflow,
and used algorithms for a time-constrained benchmarking (T-CB) system are
presented and an open-source prototype platform [Peu18b] is introduced in
Section 9.4. Second, the prototype is used to evaluate the general T-CB concept
in Section 9.5, before concluding the topic in Section 9.6. This chapter is based
on my paper [PK18] and contains figures and verbatim text from this paper.

9.1. Introduction

Benchmarking processes collect information about the runtime behaviour of
the tested SFC (the SUT) by deploying it under different resource configura-
tions and testing its resulting performance. The results of these benchmarking
processes, the so-called NFV-PPs, are then used by MANO systems to opti-
mise their resource dimensioning decisions. It is essential that the obtained
NFV-PPs provide enough information to accurately describe the behaviour
of the deployed SFC to meet performance goals and to avoid unexpected
performance degradations caused by, for example, automatically deployed
service updates.

A challenge for benchmarking solutions is, on the one hand, based on the
fact that the configuration space sizes of even simple SFCs, which have to be
explored during the benchmarking process, tend to become very large if the
number of configuration parameters or number of involved VNFs increases.
For example, consider an SFC with five VNFs, in which each VNF can have
1–16 CPU cores, {128, 256, 512, . . . , 16384} MB memory and non-uniform
memory access (NUMA) enabled or disabled; this leads to 16 · 8 · 2 = 256
possible configurations per VNF and 2565 possible configurations for the

149

9. Benchmarking under time constraints

CPU, mem, SR-IOV

4, 1024, 1A:

6, 512, 1B:

2, 128, 0C:

2, 128, 0C':

5, 256, 0D:

CPU, mem, SR-IOV

4, 1024, 1A:

6, 512, 1B:

2, 128, 0C:

2, 128, 0C':

5, 256, 0D:

CPU, mem, NUMA

4, 1024, 1A:

6, 512, 1B:

2, 128, 0C:

2, 128, 0C':

5, 256, 0D:

SFC-UT

fA fB ′fC

fC fD

256 5 in out

flo
w

∈ Cci

Figure 9.1.: Example scenario of an SFC with five VNFs and their configuration parameters

entire SFC, as shown in Figure 9.1. It can be seen that the configuration
space of such an SFC is huge and it becomes infeasible to test each of these
configurations during the benchmarking process—keep in mind that each
test entails re-deploying or re-configuring the SUT. On the other hand, the
benchmarking processes as such are expected to be performed as part of
the NFV DevOps cycle and thus have to be completed in a reasonably short
time, i.e., a couple of hours or even minutes [Kar+16]. Because of this, novel
benchmarking solutions are needed that do not require to exhaustively test
the complete configuration space of an SFC. These benchmarking solutions
aim to already produce usable NFV-PPs at the beginning of the benchmarking
process and potentially improve their quality, in terms of result accuracy, over
time. In this context, result accuracy means the error between the expected
performance values described in the NFV-PP and the performance values
achieved in reality.

To fill this gap, we introduce the concept of “time-constrained benchmarking
(T-CB)”; the goal is to produce SFC benchmarking results within a given time
limit. After formulating the problem, we present the design, workflow, and
used algorithms for a T-CB-enabled benchmarking system and evaluate it.

9.2. Problem formulation

Given the huge configuration space of an SFC and the fact that the re-
deployment or re-configuration of an SFC takes a considerable amount of
time [NL17], executing benchmarking measurements on the complete config-
uration space is infeasible. It gets even worse if the benchmarking process
should be performed in a given time frame, i.e., with a given time constraint l.
As a result, only a subset of the complete configuration space can be tested and
benchmarking measurements for untested configurations need to be predicted
using the available results.

More formally, we define the set of all possible configurations V of a VNF as
the Cartesian product of a series of sets V = F1 × F2 × ...× Fm, where each set
represents a single, discrete configuration parameter (also called a feature) Fi

150

9.2. Problem formulation

and its possible values, e.g., number of CPU cores: Fcores = {1, 2, ..., 16}. Using
discrete configuration parameters works fine since all relevant real-world
configurations are also based on discrete values. In a complex SFC, multiple
VNFs are combined and each of them can be configured independently of
other VNFs with a configuration c ∈ V. For simplicity of the model, we assume
that every involved VNF supports the same configuration space and thus all
available configuration features of V. Based on this, the overall configuration
space C of a complex SFC with n VNFs can be defined as C = V1×V2× ...×Vn.
Its cardinality as function of available configuration features and number of

VNFs is given by |C| =
(

∏m
i=1 |Fi|

)n
.

For each SFC configuration that should be tested, the service is deployed and
configured (taking setup time tup), its performance is measured for a fixed
amount of time (tmeasure), e.g., traffic traces are sent to the SFC for tmeasure
seconds, and it is terminated to free the resources (taking time tdown). After
this, the next SFC benchmarking round is started and the next configuration is
tested [PK17]. The total time t needed to benchmark a single SFC configuration
is hence t = tup + tmeasure + tdown where t is usually dominated by tup and
tdown [NL17]. We consider t to be constant for each configuration to be tested.

As a result, the number of configurations k that can be tested in a given
time limit l is limited by k ≤

⌊
l
t

⌋
. More specifically, we define the subset

of configurations to be tested within the given time limit as C̃ ⊂ C and
|C̃| = k. This subset is defined by a selection function Sk : C → {0, 1}. For
each configuration c ∈ C̃, we obtain benchmarking results (R), denoted by a
function P̃ : C̃ → R (benchmarking results could be tuples of real numbers
or other values as well; this does not matter for the remaining discussion).
We lift these measured benchmarking results, obtained on C̃, to predicted
results for the entire configuration space by defining a benchmarking predictor
P : C → R that uses the measured results for C̃ as training data. We denote
these predicted benchmarking results as R̂.

This model poses two questions. First, how to best select the subset of k
configurations to be tested? And second, using the performance measurements
made on these k configurations, how to best pick the function that lifts P
so that the resulting NFV-PPs accurately predict the performance of the SFC
compared to real measurements, i.e., minimising the prediction error? We will
give answers to these two questions in the remainder of this chapter.

To measure the quality of the predicted results R̂ compared to the measured
results R, we use the normalised root-mean-squared deviation (NRMSD) as our
main evaluation metric. The NRMSD is based on the mean-squared error
(MSE), calculated over the entire configuration space with n predictions, and
is normalised using the range (max(R) −min(R)) which is available from

151

9. Benchmarking under time constraints

the measured data R (Equation 9.1). We pick a normalised metric to ease
comparison between NFV profiles with different scales.

NRMSD =

√
1
n ∑n

i=1(R̂i − Ri)2

max(R)−min(R)
(9.1)

9.3. Related work

A couple of solutions for performance benchmarking of virtualised applica-
tions has already been proposed by the cloud-computing community. Most
of them focus on solutions to benchmark single-VM applications [Woo+08;
TZK16] but some solutions also support complex, composed applications
[Tak+13]. In addition to this, the NFV community has also started to search
for benchmarking solutions that focus specifically on NFV use cases [ETS18k;
Ros+18]. These solutions either focus on benchmarking single VNFs or on
evaluating NFV infrastructure deployments [RRS15; BS15; RBR17]. Others do
consider benchmarking of complex SFCs [Cao+15] to characterise the perfor-
mance of end-to-end services, which cannot be derived from isolated VNF
benchmarks [PK17; NSS18], as also shown in Chapter 8. Some of the SFC
benchmarking solutions even support automated testing of different VNF
sequences in an SFC [NSS18]. All of these solutions, however, face the chal-
lenge of huge SFC configuration spaces that have to be explored, leading
to impractical runtimes of the benchmarking process. None of the existing
approaches can automatically select a subset of configurations to be bench-
marked to systematically reduce the time needed to characterise an SFC. Even
if it is possible to simply stop these existing NFV benchmarking solutions after
the time limit is reached, irrespective of their current system state, it would
cause very poor or even incomplete benchmarking results. This is because
those solutions might only have explored a very small or unimportant part of
the configuration space at the point in time when they are stopped. Because of
this, smarter solutions are needed that start to sample the configuration space
at large, in the first steps, and then successively improve the result quality
until the time limit is reached. This is where our T-CB approach can be used
as a complementary extension to the existing approaches as we do not tie our
T-CB design to a specific benchmarking solution as shown in Section 9.4.1.

One solution that does smart selections in a cloud application context is
called PANIC [Gia+15]. In their paper, the authors compare three selection
approaches: Uniform grid, random sampling, as well as their greedy adaptive
sampling algorithm (PGAS), each combined with different prediction (or
interpolation) approaches, like linear regression. Their results indicate that
testing a small subset of the overall configuration space already yields sufficient

152

9.3. Related work

results to generate reasonably good benchmarking results. Their solution
focuses on a two-dimensional configuration space and their evaluation uses
cloud benchmarks based on big data frameworks like Hadoop. Even if their
PGAS algorithm can be used for NFV scenarios, as we show in Section 9.5
where we compare PGAS to our algorithms, the PANIC system as such was
not designed for NFV scenarios and does not offer support for complex SFCs,
e.g., it does not support configurations spaces with many features as it is
required for SFCs.

An extension to PANIC is a decision tree-based selection approach, which was
recently proposed in [GTK17]. This approach uses decision trees to iteratively
partition the configuration space based on the accuracy of linear regression
models applied to each of these partitions. The final partitioning and the
selected configuration points, obtained during the partitioning phase, are then
used to train a new decision tree-based model to finally represent the cloud
application’s performance behaviour. According to [GTK17], this approach
tends to show a reduced accuracy when only small numbers of configurations
are tested. Further, the approach tends to show better results when executed on
configuration spaces with few, for example, two dimensions, which is rarely the
case if SFCs, often consisting of more than two VNFs, should be benchmarked.
As a result, their solution is not directly applicable to our scenarios. The use
of decision trees, however, seems to be a promising approach and we have
further investigated it in a Bachelor thesis written by Heidi Neuhäuser [Neu19]
under my supervision. Her results show that a decision tree-based solution
can improve the selection process in some cases, but they are not substantially
better in general. This is why we think further research on this topic is needed,
as described in Chapter 11.

Another interesting approach is called “NetBOA” and proposes the use
of black-box optimisation techniques (i.e. Bayesian optimisation) to build
an adaptive and “data-driven” traffic generator to measure network per-
formance [Zer+19]. Even though the focus of the authors is not on time-
constrained benchmarking of SFCs, the problem solved by NetBOA is similar
to ours, e.g., the challenge of large configuration spaces. As a result, Net-
BOA can be considered to be complementary to our work and motivates
further work, e.g., by adapting the NetBOA algorithm to be used as selector
component for the system presented in this chapter.

Even though some of the related solutions try to reduce the size of configura-
tion spaces that have to be explored during benchmarking, none of them has
a notion of time-constrained benchmarking nor do they integrate with NFV
benchmarking platforms. This underlines the novelty of our T-CB concepts for
the NFV domain.

153

9. Benchmarking under time constraints

9.4. Designing a T-CB system

Based on our work presented in Chapter 8, we designed an SFC benchmarking
system that explicitly supports time-constrained benchmarking. The system
gets all possible configuration parameters and a fixed time limit as inputs,
runs automated performance measurements on the SUT until the time limit
is reached, and derives an NFV performance profile based on the available
measurements.

9.4.1. Building blocks and workflow

Using the problem formulation (Section 9.2) we identify and analyse the re-
quired building blocks and workflows of a T-CB system and developed a
prototype as shown in Figure 9.2. Its components are placed around one or
multiple benchmarking platforms, e.g., tng-bench (Chapter 8), that execute
the SUT and measure its performance under different resource configura-
tions. Before that, the configurations to be tested are selected by the selection
component Sk (step 1) and serve, together with the service description, as
inputs to the benchmarking platform(s) (step 2). Note that we do not tie our
T-CB system to a specific SFC benchmarking platform and designed it to use
arbitrary, existing solutions. To combine other benchmarking platforms with
T-CB, they need to have an interface where the configurations to be tested
during the benchmarking runs can be specified as well as an interface to
output the measured performance results—requirements that are fulfilled by
tng-bench [PK17], Gym [RBR17], and Probius [NSS18] (see Chapter 8). The
measured results are forwarded to the prediction component P, which uses
them as training data and generates predicted performance values for all
possible configurations of the SUT (step 3). Finally, the predicted results R̂
can be forwarded to a MANO system to optimise its resource assignment
decisions and for automated lifecycle actions, like scaling, healing, or recon-
figuration (step 4). Alternatively, the obtained benchmarking results R̂ can be
used to analyse the behaviour of the SUT, e.g., by an SFC developer, to debug
performance issues.

The two main building blocks that distinguish this system from existing bench-
marking solutions [PK17; RBR17; NSS18] are the selection component Sk and
the prediction component P. The selection component gets all possible config-
uration parameters of the SUT (C) and a maximum number of k configurations
to be selected as inputs before selecting the first configuration to be measured
by the benchmarking platform. Once this is done, the selection algorithm
selects the next configuration to be measured. This round-based design allows
to not only use static selection algorithms, like random sampling, but also

154

9.4. Designing a T-CB system

��

�

(1)

(3)

(4)

feedback

MANO

Resource
Management

�ˆ

Benchm. Platform ()�˜

SUT
(2)

�˜�˜

Network Service

VNFD
NSD

�

T-CB System

 s
el
ec
t

 p
ro
du
ce

 u
se

train

train

predict

Figure 9.2.: Main building blocks and workflow of our T-CB system, build around existing
benchmarking platforms, feeding the resource management component of a MANO
system.

dynamic selection algorithms that use feedback of already performed mea-
surements as additional input, potentially improving the selection quality. We
present an example of a feedback-based selection algorithm in the next section.
If multiple parallel benchmarking platforms are available in a T-CB system,
a centralised Sk component selects the configurations to be benchmarked,
which are then distributed among the available benchmarking platforms (see
Section 9.4.2). It is important that all parallel benchmarking platforms are built
on top the exact same hardware and use the same software, in such a scenario,
to ensure comparability between the obtained results. The resulting measure-
ments are collected and processed by a centralised prediction component as
described in Section 9.4.3.

9.4.2. Selection component

We implement three different selection algorithms for our T-CB system. First,
a simple random selection algorithm, called uniform random selection (URS),
that selects configurations uniformly at random and does not rely on the
feedback of previous measurements.

Second, we re-implement the PGAS cloud benchmarking algorithm proposed
by Giannakopoulos et al. [Gia+15] as a first example for a feedback-based
algorithm. PGAS initially picks a fixed number of samples at the borders of

155

9. Benchmarking under time constraints

the configuration space (border points) before picking further samples based
on the maximum distances between the measured results of the previous
samples.

Third, we develop our own feedback-based algorithm, called weighted random
VNF selection (WRVS), which comes in two flavours: WRVS1 and WRVS2.
WRVS’s general idea is to favour the configurations that belong to the VNFs
of the SFC which seem to have a higher impact on the overall SFC perfor-
mance. To detect those VNFs, the algorithm is split into two phases. First, a
bootstrapping phase is used to select n (WRVS1) or 2n (WRVS2) initial con-
figuration points for an SFC with n VNFs. Each of these configuration points
minimises or maximises the configuration parameters of one of the n VNFs
and sets the configuration parameters of all other VNFs to their median val-
ues. More specifically, WRVS1 picks configurations that minimise parameters
and WRVS2 picks configurations that minimise and maximise the param-
eters. For example, in an SFC with three VNFs in which only the number
of vCPU cores (1...16) can be configured, the first two configuration points,
using WRVS2, would be (vnf1=1, vnf2=8, vnf3=8) and (vnf1=16, vnf2=8,

vnf3=8). Thus, vnf1 is once tested with minimum number of vCPUs and once
with the maximum number of vCPUs with the goal to gain knowledge about
the impact of the vCPU configuration parameter of vnf1. The definition how to
minimise and maximise parameters is given by the developer of the VNFs or
by the benchmarking experiment developer as annotation to the configuration
space used as input to our system. Using this initial selection scheme, the
algorithm collects information about the impact of the individual VNFs to the
overall SFC performance. This impact is defined as the change to the overall
SFC performance ∆i when the configuration of VNF i is altered. These values
are used as weights in the next phase of the algorithm.

The second phase of the algorithm starts after n or 2n configurations have been
tested and randomly picks configurations from the overall configuration space
until the limit of k configurations is reached. This random selection process
uses the weights from the first phase to favour the selection of configuration
points which alter the configurations of those VNFs that have higher weights
assigned. That is, configuration points from VNFs with a higher ∆i are more
likely to be selected for further benchmarking rounds. As a result, the feedback
from the benchmarking process guides our selection algorithm to improve the
overall benchmarking result by focusing on those parts of the configuration
space that seem to have higher impact to the overall SFC performance.

9.4.3. Prediction component

This component can either be based on simple regression techniques or on
more complex machine learning solutions. In our prototype, we utilise the

156

9.5. Evaluation

scikit-learn machine learning library [Bui+13] to implement the prediction
component. Besides a simple polynomial regression predictor, we also use support
vector regression predictors with different kernels, decision tree regression, lasso
regression, elastic net regression, ridge regression, and stochastic gradient descent
regressions predictors, resulting in a total of 11 prediction algorithms available
in our prototype.

9.5. Evaluation

We use our T-CB system prototype [Peu18b] to evaluate our design and to
study the impact of different selection algorithms, prediction algorithms,
service topologies, and number of samples on the overall result quality, i.e.,
prediction error. To do so, we execute a set of benchmarking experiments
in which all possible configurations of the SUT are tested. This exhaustive
benchmarking step gives us baseline results serving as ground truth for later
comparison. Then we use T-CB to execute benchmarking experiments that
only test a fixed number of configurations k and compare their results to
the initial experiments using the NRMSD metric. In all our experiments, we
use the maximum throughput as VNF and SFC performance metric captured
during the benchmarking measurements. However, the presented system is not
limited to throughput and can be used for arbitrary benchmarking metrics.

The presented experiments utilise our previous work about automated SFC
benchmarking [PK17] and are based on a real-world benchmarking process
using an SFC with three VNFs. This allows us to evaluate our system in a
real-world scenario including realistic performance numbers that are based
on measurements. As described in Chapter 8, the used SFCs are linear chains
that contain three forwarding VNFs (Nginx [NGI04] configured as TCP load
balancer, the TCP relay Socat [Soc01] and Squid Proxy [Squ96]) in different
orders, resulting in three possible SFC topologies. Each VNF has a single
configuration parameter (CPU time) and the maximum achieved throughput
during a HTTP download is measured. The measurements to test each possible
configuration of this chain took about 39 hours, with 60 seconds measurement
time per configuration. Our raw measurements are available online and can be
reused by other researchers [Peu18b]. Each of the following experiments has
been repeated 30 times and the error bars indicate 95 % confidence intervals.

The first experiment analyses the behaviour of different prediction algorithms
implemented in our T-CB system using URS and WRVS1 selectors. Figure 9.3
shows a comparison of four prediction algorithms, namely support vector
regression (SVRPRK), decision tree regression (DTRP), lasso regression (LRP),
and ridge regression (RRP). Results for the other implemented prediction
algorithms, which produce similar results, are available in the project reposi-
tory [Peu18b]. The figures show the NRMSD for different numbers of samples

157

9. Benchmarking under time constraints

(a) URS

2 4 6 8 1012141618
number of samples (k)

0.0

0.1

0.2

0.3

0.4

0.5

no
rm

. R
M

SD

Pred. Study (WRVS1)

SVRPRK
DTRP

LRP
RRP

(b) WRVS1

Figure 9.3.: Comparison of prediction algorithms for different numbers of measured samples
using URS and WRVS1 selectors

k selected from the overall configuration space of the benchmarked SFCs. The
results show that already a small number of samples allows to reasonably well
predict the behaviour of the overall configuration space of an SFC. They also
show that the LRP and RRP predictors perform best for the used SFCs, which
is why we selected them to be used in the following experiments.

Next, we compare the behaviour of our selection approaches using data from
three different SFCs, namely nx-sc-sq, sc-sq-nx, and sq-nx-sc (Chapter 8),
together with the LRP and RRP prediction algorithms as shown in Figure 9.4.
The results show that the WRVS algorithm works better than the random
selector (URS) and the PGAS approach in most of the cases, once k ≥ 6
samples are selected. However, for k = 4 the models are often overfitted when
WRVS is used. This could be a result of the static selection of the initial points
during the bootstrapping phase of WRVS. The results show that the specific
SFC in combination with the selected prediction approach directly impacts the
selection quality, i.e., WRVS1 works much better with the RRP predictor if the
sq-nx-sc SFC is benchmarked.

Nevertheless, those results report the mean over 30 experiment repetitions,
which has the potential to hide the shortcomings of the randomised URS
selector, which can, by chance, have a very good or very bad result in a
single experiment run. In a real-world system, however, the benchmarking and
selection process cannot be repeated multiple times because of the given time
constrains. As a result, the selection approach should produce good results,
e.g., a low NRMSD, in the first run. To study the behaviour of our selection
approaches under those circumstances, we present the 99th percentiles of the
NRMSD in Figure 9.5. The results clearly show the benefits of the proposed
WRVS selection approach. In all scenarios, WRVS outperforms the two other
approaches when k ≥ 6. The results show that the URS selector shows a very

158

9.5. Evaluation

2 4 6 8 1012141618
number of samples (k)

0.0

0.1

0.2

0.3

0.4

0.5

no
rm

. R
M

SD

nx-sc-sq (LRP)

URS
PGAS

WRVS2
WRVS1

(a) nx-sc-sq using LRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.1

0.2

0.3

0.4

0.5
no

rm
. R

M
SD

sc-sq-nx (LRP)

URS
PGAS

WRVS2
WRVS1

(b) sc-sq-nx using LRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.1

0.2

0.3

0.4

0.5

no
rm

. R
M

SD

sq-nx-sc (LRP)

URS
PGAS

WRVS2
WRVS1

(c) sq-nx-sc using LRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.1

0.2

0.3

0.4

0.5

no
rm

. R
M

SD

nx-sc-sq (RRP)

URS
PGAS

WRVS2
WRVS1

(d) nx-sc-sq using RRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.1

0.2

0.3

0.4

0.5

no
rm

. R
M

SD

sc-sq-nx (RRP)

URS
PGAS

WRVS2
WRVS1

(e) sc-sq-nx using RRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.1

0.2

0.3

0.4

0.5

no
rm

. R
M

SD

sq-nx-sc (RRP)

URS
PGAS

WRVS2
WRVS1

(f) sq-nx-sc using RRP

Figure 9.4.: Selector performance comparison using three real-world SFCs and two prediction
approaches (LRP and RRP)

159

9. Benchmarking under time constraints

2 4 6 8 1012141618
number of samples (k)

0.0

0.2

0.4

0.6

0.8

1.0

99
%

til
e

no
rm

. R
M

SD

nx-sc-sq (LRP)
PGAS
URS

WRVS1
WRVS2

(a) nx-sc-sq using LRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.2

0.4

0.6

0.8

1.0

99
%

til
e

no
rm

. R
M

SD

sc-sq-nx (LRP)
PGAS
URS

WRVS1
WRVS2

(b) sc-sq-nx using LRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.2

0.4

0.6

0.8

1.0

99
%

til
e

no
rm

. R
M

SD

sq-nx-sc (LRP)
PGAS
URS

WRVS1
WRVS2

(c) sq-nx-sc using LRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.2

0.4

0.6

0.8

1.0

99
%

til
e

no
rm

. R
M

SD

nx-sc-sq (RRP)
PGAS
URS

WRVS1
WRVS2

(d) nx-sc-sq using RRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.2

0.4

0.6

0.8

1.0

99
%

til
e

no
rm

. R
M

SD

sc-sq-nx (RRP)
PGAS
URS

WRVS1
WRVS2

(e) sc-sq-nx using RRP

2 4 6 8 1012141618
number of samples (k)

0.0

0.2

0.4

0.6

0.8

1.0

99
%

til
e

no
rm

. R
M

SD

sq-nx-sc (RRP)
PGAS
URS

WRVS1
WRVS2

(f) sq-nx-sc using RRP

Figure 9.5.: Selector performance comparison using three real-world SFCs and two prediction
approaches (LRP and RRP) showing the 99th percentile over the 30 experiment
repetitions

unstable behaviour as the number of selected samples increases, a result of
the random selection process (Figure 9.5c). Our WRVS approach, in contrast,
shows a stable behaviour as the number of samples increases. The results also
show that the PGAS approach does not work well for such SFC scenarios and is
outperformed by WRVS in all scenarios. In some scenarios URS performs even
better than PGAS, e.g., Figure 9.5f. If very small sample sizes (e.g., k < 6) are
used, WRVS sometimes shows an unstable and overfitting behaviour, which
seems to be caused by its bootstrapping phase, an issue to be investigated in
future work.

Besides the experiments presented in this chapter, which use real-world per-
formance measurements, we have also performed a set of experiments using
synthetic performance models and have presented them in [PK18]. Those mod-
els use randomly selected functions (e.g., linear, polynomial, or exponential)
to model the performance of the involved VNFs. The resulting experiments,
however, did not provide any additional insights compared to the results
reported here. Taking into account the results of the previous chapter, which
clearly show that modelling the end-to-end performance of SFCs with simplis-

160

9.6. Conclusion

tic models does not work well, it becomes clear why such a synthetic approach
is of limited use to evaluate our time-constrained benchmarking approach.
These synthetic results can, however, be useful to test the basic functionality of
the presented prototype and can, e.g., be used for unit testing.

9.6. Conclusion

The size of real-world SFC configuration spaces makes the application of exist-
ing NFV benchmarking solutions infeasible for agile DevOps environments.
Even though existing NFV benchmarking solutions could be simply stopped
after a given amount of time, the produced benchmarking results would only
reflect a small subset of the configuration space and would loose important
information about the SUT’s performance behaviour. This chapter presents a
solution for this by introducing our T-CB concepts for NFV.

To study these concepts, we present our open-source T-CB system [Peu18b]
and use it to analyse different selection and prediction algorithms. Our results
show that a T-CB system can generate reasonably accurate NFV-PPs by bench-
marking only small subsets of the overall configuration space. We show that
the subset of configuration points that are benchmarked has a big impact to the
quality, in terms of prediction error, of the resulting NFV-PPs. Our presented
selection algorithm outperforms related approaches from the cloud computing
community and produces better and more stable results than approaches that
randomly pick configurations for benchmarking. As a result, benchmarking
processes can be performed under time constraints without loosing too much
result accuracy. Still, there are other promising ideas to build such selection
approaches, for example, based on decision trees as shown in [GTK17; Neu19],
which have the potential to further improve the presented T-CB solution in the
future.

161

10. Collecting, analysing, and
publishing benchmarking data sets

This chapter focusses on using the previously presented benchmarking ap-
proaches to collect real-world data sets from different NFV scenarios and
makes them available for other researchers, e.g., to use them to train machine
learning (ML) models. This goes beyond the small data sets collected for
the evaluations of the previous chapters and verifies the practicability of the
presented solutions. This chapter is based on my paper [PSK19b], from which
it contains figures and verbatim text copies. The softwarised network data
zoo (SNDZoo) project, presented in this chapter, archives the collected data sets
and is available online [PSK19a]. After discussing related work in Section 10.2,
we first introduce the methodology and workflow used to collect the data
sets in Section 10.3. Second, we present and analyse our data sets, containing
millions of performance measurements collected from different real-world
VNFs from the security, web, and 5G vertical (IoT) areas, in Section 10.4. In
this section, we also show how to automatically generate models, i.e. NFV-PPs,
that can be used by MANO optimisation algorithms, e.g., placement or scaling
algorithms. We conclude in Section 10.5.

10.1. Introduction

To automate network management and to realise so-called zero touch network
and service management (ZSM) [Mia+17], more and more ML and artificial
intelligence (AI)-based network management solutions arise and claim to be
able to manage and optimise different aspects of our networks [Wan+18].
Many of them focus on automated resource dimensioning for NFV scenarios,
which try to optimise the amount of resources assigned to each involved VNF.
To do so, they predict the upcoming network load as well as the performance
a VNF achieves using a given amount of resources [Mij+17; Sun+18].

But ML-based solutions are always data-driven and do not only depend
on programming code, which is a huge difference to legacy management
and automation approaches. This means that ML approaches can only work
efficiently if enough data is available to train and test the involved models,
before they are put into production. Even if data is available in some custom

163

10. Collecting, analysing, and publishing benchmarking data sets

environments, e.g., in the form of volatile monitoring metrics, we are still
missing a publicly available collection of open data sets that can be used
to evaluate and compare different ML solutions and algorithms with each
other. Such open data sets are a common tool in other communities, like
image recognition [Den+09] or natural language processing [Maa+11], and
accelerated the adoption of ML solutions in those domains.

We argue that the software networking community also needs such open data
sets to simplify and streamline ML research and to improve the reproducibility
of new ideas. To this end, we introduce the SNDZoo—an open repository to
collect, host, and share software networking data sets. The SNDZoo is, to the
best of our knowledge, the first effort to build such a central repository for
softwarised network data. It specifically focuses on NFV and SDN performance
data sets, collected through performance measurements of real-world network
setups. These data sets go beyond existing collections of open networking data
sets, such as topology data sets or traffic traces [Orl+10; Kni+11].

10.2. Related work

As in many other domains, ML recently found its way into the ICT sector
and networking domain [Wan+18]. The use of ML is especially appealing for
network management and optimisation use cases in softwarised networks.
It can, for example, be used for NFV/SDN scenarios, which shall be highly
automated to allow zero-touch network operations following DevOps meth-
ods [Kar+16; Mia+17]. Existing work focuses on, e.g., learning and predicting
of service metrics, such as response time and frame rate [SPF17; SS18], scaling
and resource dimensioning [Mij+17] as well as placement decisions [Sun+18].
But all of this work relies on custom data sets which might not even be pub-
licly available. The available public data sets, such as [SPF17], are however not
available in a common repository and thus are often hard to find. Our work
improves this situation by offering a common repository to host and share
data sets focusing on performance measurements of softwarised networks as
well as the involved platforms and components. This also complements and
goes beyond existing collections of open network data sets mainly focusing on
network topology graphs, like [Kni+11; LK14; Orl+10].

To collect the presented data sets, automated solutions to benchmark NFV and
SDN scenarios, including our own work [PK16b; PK17] presented in Chapter 8,
can be used [RBR17; Cao+15; NSS18; Kha+18]. They are complementary to the
work presented in this chapter.

164

10.3. Methodology & workflow

10.3. Methodology & workflow

Collecting data sets from softwarised network scenarios is more than per-
forming a handful of manual measurements on a testbed running in a lab.
In fact, manual measurements should be avoided where possible to be able
to (i) quickly and objectively reproduce the measurements, (ii) run a given
measurement in a new environment, e.g., outside the lab, and (iii) make use
of the fact that software-based networking scenarios can be automatically
deployed, allowing to completely remove all manual steps from the process.
On top of that, software-based networks usually offer a much higher degree
of configuration freedom, e.g., in terms of virtual resources assigned to a VNF,
resulting in many different configurations for which measurements can be and
need to be performed.

We use our NFV benchmarking framework presented in Chapter 8 to imple-
ment such a fully-automated data collection methodology. A data collection
setup consists of two main components. First, the setup needs an NFV bench-
marking framework that is responsible to control, manage, and automate the
measurement and collection process. Second, it needs one or multiple NFV
platforms, consisting of MANO layer and NFVI, as presented in Figure 8.2
(Chapter 8). They are used to deploy and execute the experiment setups, includ-
ing the deployment and execution of the SUT. This concept is independent of
the technical realisation of the different components. It is, for example, possible
to not only use our own benchmarking framework, but also other benchmark-
ing solutions such as Gym [RBR17] or NFV Inspector [Kha+18], combined with
different NFV platforms, such as vim-emu [PKV16; Peu17], OSM [ETS16c], or
SONATA SP [SON15b], to collect data from different environments.

Using our own benchmarking framework (Chapter 8), we collected two kinds
of metrics. First, the experiment metrics that are collected from the probes as
well as the SUT at the end of an experiment, e.g., total number of processed
packets. Those metrics are captured by collecting log files from the involved
containers before termination. Second, we collect time series metrics using
the Prometheus time series database [Lin12] controlled by our benchmarking
framework. Prometheus periodically fetches all metrics, including the resource
usage of the involved containers (using cAdvisor [Goo14]) as well as SUT-
specific metrics as we detail in the following section.

10.4. Collecting, analysing, and publishing the first data
sets

We collect eight initial data sets, focusing on the performance of real-world
VNFs under different configurations to kick-off the SNDZoo project and to

165

10. Collecting, analysing, and publishing benchmarking data sets

test the presented methodology, workflow, and tools. All initial data sets
are automatically collected and can be reproduced using our benchmarking
tool. We want to highlight that the scope of the SNDZoo is not limited to
performance data sets of single VNFs.

10.4.1. Experiment setup

To collect the data sets, we pick eight VNFs from three different categories
as shown in Table 10.1: Security (IDS systems), web (load balancers, proxies),
and IoT (MQTT brokers). This way, we not only have VNFs that transparently
forward the traffic while passively analysing it (IDS systems), but also active
VNFs that can modify the traffic (proxies). We also have scenarios (MQTT
broker) that can be considered as examples for 5G vertical use cases, such as
IoT, smart manufacturing, or industry 4.0 [Sch+19].

In the first category (SEC01 - SEC03), we benchmark three IDS VNFs, namely
Suricata 4.0 [OIS09], Snort 2.9 [Cis16], and Snort 3.0 [Cis16]. Each IDS is
configured as transparent layer 2 bridge and passively monitors the incoming
traffic. To stimulate the VNFs, we use two publicly available traffic traces with
small and big flows that are continuously replayed at maximum speed [KA00b].
During the benchmarking experiment, the VNFs are configured with different
IDS rule sets, taken from [ET 19], and with different resource assignments,
i.e., CPU time (10 % to 100 %) and memory (256 MB and 1024 MB). As a result,
80 different configurations are tested1 and each configuration is repeated 20

times, resulting in 1,600 experiment runs, each testing a single configuration.

The second category (WEB01 - WEB03) represents web scenarios in which we
test an Nginx 1.10.3 [NGI04] and a HAProxy 1.6.3 [HAP01] load balancer
VNF as well as a Squid 3.5.12 [Squ96] proxy. The VNFs are placed between a
source probe (user requests generated by Apache Bench [The93]) and a target
probe (web server running Apache 2.0 [The93]). As shown in Table 10.1, 80

different configurations are executed, including small and large requests and
different resource assignments, i.e., CPU time (10 % to 100 %) and memory
(64 MB, 128 MB, 256 MB, and 512 MB).

In the third category (IOT01 - IOT02), the MQTT brokers Mosquitto 1.6.2 [Ecl09]
and Emqx 3.1.0 [EMQ16] are tested using Malaria [Mal13], an MQTT load
generator. The broker is placed between two probes running Malaria instances.
One acting as publisher and the other is acting as subscriber allowing us
to measure the end-to-end delay of MQTT messages. Besides different re-
source assignments for the broker VNF, Malaria is executed with different
configurations, e.g., message sizes between 10 and 1000 bytes as well as two

1There are only 40 configurations in the case of Snort 3.0 because of the smaller rule set
available for this version of Snort.

166

10.4. Collecting, analysing, and publishing the first data sets

different MQTT QoS levels (1 and 2). Please note that the full details of all
used configurations, versions, and workloads are published along with the
data sets [PSK19a].

167

10. Collecting, analysing, and publishing benchmarking data sets

Ta
bl

e
1

0
.1

.:
O

ve
rv

ie
w

of
th

e
ei

gh
t

V
N

F
be

nc
hm

ar
ki

ng
da

ta
se

ts
in

it
ia

lly
pu

bl
is

he
d

in
th

e
SN

D
Z

oo
[P

SK
1

9
a]

N
am

e
C

la
ss

V
N

F
Pr

ob
e

Te
st

ed
C

on
-

fi
g-

u
ra

-
ti

on
s

R
ep

e-
ti

t-
io

ns

E
xp

-
er

i-
m

en
t

M
et

-
ri

cs

Ti
m

e
Se

-
ri

es
M

et
-

ri
cs

To
ta

l
E

xp
.

R
u

n-
ti

m
e

To
ta

l
d

at
a

po
in

ts

S
E
C
0
1

ID
S

Sy
st

em
s

Su
ri

ca
ta

Tr
ac

es
8
0

2
0

2
8
0

1
5
7

7
1

.1
h

1
5

.5
M

S
E
C
0
2

Sn
or

t
2
.9

Tr
ac

es
8
0

2
0

2
8
0

1
6
9

7
2

.5
h

1
6

.7
M

S
E
C
0
3

Sn
or

t
3
.0

Tr
ac

es
4
0

2
0

2
8
1

5
9
3

3
5

.8
h

2
8

.7
M

W
E
B
0
1

Lo
ad

ba
la

nc
er

s
N

gi
nx

A
B

8
0

2
0

2
6
8

4
3

7
0

.4
h

4
.6

M
W
E
B
0
2

H
A

Pr
ox

y
A

B
8
0

2
0

2
6
8

4
3

7
0

.2
h

4
.6

M
W
E
B
0
3

Pr
ox

ys
Sq

ui
d

A
B

8
0

2
0

2
6
8

4
3

7
0

.5
h

4
.6

M

I
O
T
0
1

M
Q

TT
Br

ok
er

M
os

qu
it

to
M

al
ar

ia
8
0

2
0

2
7
5

9
0

7
1

.6
h

9
.1

M
I
O
T
0
2

Em
qx

M
al

ar
ia

8
0

2
0

2
7
5

1
0
9

1
1

5
.8

h
1

0
.9

M

168

10.4. Collecting, analysing, and publishing the first data sets

10.4.2. Data collection

To collect the presented data sets, we use the setup presented in Section 10.3
using vim-emu [PKV16] as NFV platform, which is executed on a machine
with Intel(R) Xeon(R) W-2145 CPU at 3.70 GHz CPU, 32 GB of memory, running
Linux kernel 4.4.0-142-generic2. In our experiments, the tested VNFs as well
as the probes used to stimulate them are deployed as Docker containers. Each
of these containers is always pinned to a single physical CPU core for better
isolation between VNFs and probes [PK17].

We collect a large number of different experiment metrics for each tested con-
figuration as well as a large number of time series metrics during experiment
execution. More specifically, we collect 268 to 281 experiment metrics after
each experiment and between 43 and 593 time series metrics during each
experiment. This results in up to 474,400 collected time series records in data
set SEC033, as shown in Table 10.1. Each of these records contains about 60

data points resulting from a collection frequency of 0.5 Hz and an experiment
runtime of 120 s per configuration. Those numbers highly depend on the
involved VNFs and the number of metrics they expose. The used Snort 3.0
VNF, for example, exposes more than 400 metrics that can be collected, e.g.,
packet counters for different protocol types.

The use of our automated NFV benchmarking framework allows to reproduce
all presented experiments. To do so, nothing more is required than two Linux
machines on which tng-bench and vim-emu are installed (see [Peu18c] for
more detailed instructions). All involved VNFs can be downloaded from the
SNDZoo repositories as pre-defined Docker containers [PSK19a] and used
to re-run the experiments. We also publish the used experiment descriptors
along with the data sets. The absolute performance numbers in those data
sets obviously depend on the underlying hardware and will differ for new
measurements performed in different environments. Generic aspects, however,
will still be visible in the resulting data sets [PK16b], e.g., trends that can be
identified between different VNF configurations.

10.4.3. Resulting data sets

The presented data sets contain between 4.6 and 28.7 million data points and
are, for example, usable as training and testing data sets for different kinds
of prediction or optimisation algorithms in the NFV domain. The collection
process of each data set took between 35.8 h and 115.8 h, as shown in Table 10.1.

2The full hardware and software specifications of the used testbed are available as part of
the SNDZoo repositories.

3Considering configurations, repetitions, and collected metrics results in: 40·20·593=474,400

time series records.

169

10. Collecting, analysing, and publishing benchmarking data sets

Even though the SEC03 data set has the shortest runtime, it contains the most
data points. The reason for this is that the tested VNF, Snort 3.0, exposes more
VNF-specific metrics than any other tested VNF. The measurements to collect
IOT02 took more time than the others because the used VNF (Emqx) takes
much longer to start up and to be ready to process traffic.

To get some first insights into the relationships between different parameters
and metrics in the presented data sets, we investigate the correlation among
them. Figure 10.1 presents matrices showing Pearson correlation coefficients
for a selected subset of eight parameters and metrics from each data set. We
skip the matrices for data sets SEC03 and WEB03 in the figure to keep it short
and because they do not yield additional insights.

Figure 10.1a and Figure 10.1b present the results of the two security data sets
captured from the Suricata and Snort 2.9 IDSs. They show that the chosen
rulset has a direct impact on the number of packets processed and dropped
(ids pkts and ids drop) by the IDS systems. It further shows that CPU re-
sources (cpu bw) for both VNFs are much more important than the amount of
assigned memory. The CPU configuration shows the highest correlation to the
main performance metrics (ids *). Memory (memory), in contrast, has almost
no effect on the resulting performance. The Snort 2.9 VNF is more sensitive to
the size of the processed flows (flow size) than the Suricata VNF. Similarly,
the Snort 2.9 VNF is much less sensitive to the selected ruleset (see ruleset

and ids drop) compared to the Suricata VNF. This is an interesting insight for
service developers that plan to use either of these VNFs as part of their service.
A developer could, e.g., select the Snort 2.9 VNF because a growing ruleset will
not result in a substantially growing number of missed packets. Such insights
would be hard to obtain without the use of our presented benchmarking
solutions.

The correlation matrices of the Nginx VNF (Figure 10.1c) and HAProxy VNF
(Figure 10.1d) look both very similar, meaning that both VNFs will show com-
parable behaviour. The size of the requests (req size) has a big impact to the
resulting throughput (transf bytes), where larger requests usually perform
better. Again, CPU (cpu bw) shows a strong positive correlation to the result-
ing performance, whereas memory does not have an impact at all. If more
requests can be performed per second (req per sec), obviously more requests
are successfully completed (req compl), resulting in a strong correlation. The
packet counters of the network interfaces (if rx bytes and if tx bytes) are
directly correlated with the amount of data processed by the VNF implemen-
tations (transf bytes), which shows that the VNF implementations do not
drop many packets during processing.

Finally, the IoT data sets show a direct relationship between the selected
message type (req tpe), e.g., message size or QoS level, and the resulting
performance of the tested MQTT brokers (Figure 10.1e and Figure 10.1f). The

170

10.4. Collecting, analysing, and publishing the first data sets

flo
w_

siz
e

ru
le

se
t

cp
u_

bw

m
em

or
y

id
s_

by
te

s

id
s_

pk
ts

id
s_

dr
op

if_
rx

_b
yt

es

flow_size

ruleset

cpu_bw

memory

ids_bytes

ids_pkts

ids_drop

if_rx_bytes

0.00

0.00 -0.00

0.00 0.00 0.00

-0.44 -0.28 0.75 0.01

-0.11 -0.12 0.90 0.01 0.90

-0.07 0.42 -0.84 -0.00 -0.70 -0.76

-0.88 0.22 -0.38 -0.01 0.01 -0.28 0.49 0.8

0.4

0.0

0.4

0.8

(a) SEC01 (Suricata [OIS09])

flo
w_

siz
e

ru
le

se
t

cp
u_

bw

m
em

or
y

id
s_

by
te

s

id
s_

pk
ts

id
s_

dr
op

if_
rx

_b
yt

es

flow_size

ruleset

cpu_bw

memory

ids_bytes

ids_pkts

ids_drop

if_rx_bytes

0.00

0.00 -0.00

0.00 0.00 0.00

0.03 -0.44 0.80 -0.00

0.29 -0.42 0.75 -0.00 0.95

-0.28 0.10 -0.54 -0.00 -0.55 -0.55

-0.38 0.00 -0.06 0.02 -0.05 -0.15 0.14

0.3

0.0

0.3

0.6

0.9

(b) SEC02 (Snort 2.9 [Cis16])

re
q_

siz
e

cp
u_

bw

m
em

or
y

re
q_

co
m

pl

re
q_

pe
r_

se
c

tra
ns

f_
by

te
s

if_
rx

_b
yt

es

if_
tx

_b
yt

es

req_size

cpu_bw

memory

req_compl

req_per_sec

transf_bytes

if_rx_bytes

if_tx_bytes

0.00

0.00 -0.00

-0.92 0.23 0.00

-0.92 0.23 0.00 1.00

0.79 0.44 -0.00 -0.72 -0.72

0.65 0.60 0.00 -0.54 -0.54 0.97

0.79 0.44 0.00 -0.72 -0.72 1.00 0.97 0.8

0.4

0.0

0.4

0.8

(c) WEB01 (Nginx [NGI04])

re
q_

siz
e

cp
u_

bw

m
em

or
y

re
q_

co
m

pl

re
q_

pe
r_

se
c

tra
ns

f_
by

te
s

if_
rx

_b
yt

es

if_
tx

_b
yt

es

req_size

cpu_bw

memory

req_compl

req_per_sec

transf_bytes

if_rx_bytes

if_tx_bytes

0.00

0.00 -0.00

-0.82 0.37 0.00

-0.82 0.37 0.00 1.00

0.78 0.44 0.00 -0.64 -0.64

0.61 0.70 0.00 -0.35 -0.35 0.94

0.78 0.44 0.00 -0.64 -0.64 1.00 0.94 0.8

0.4

0.0

0.4

0.8

(d) WEB02 (HAProxy [HAP01])

re
q_

ty
pe

cp
u_

bw

m
em

or
y

m
sg

_p
er

_s
ec

m
sg

_t
_m

ea
n

m
sg

_t
_s

td
if_

rx
_b

yt
es

if_
tx

_b
yt

es

req_type

cpu_bw
memory

msg_per_sec
msg_t_mean

msg_t_std
if_rx_bytes
if_tx_bytes

0.00

0.00 -0.00

-0.65 -0.02 -0.01

-0.64 0.01 0.00 0.61

-0.71 0.01 0.00 0.64 0.99

0.77 0.00 0.00 -0.72 -0.98 -0.99

0.72 0.01 0.01 -0.68 -0.98 -0.98 0.96 0.8

0.4

0.0

0.4

0.8

(e) IOT01 (Mosquitto [Ecl09])

re
q_

ty
pe

cp
u_

bw

m
em

or
y

m
sg

_p
er

_s
ec

m
sg

_t
_m

ea
n

m
sg

_t
_s

td
if_

rx
_b

yt
es

if_
tx

_b
yt

es

req_type

cpu_bw
memory

msg_per_sec
msg_t_mean

msg_t_std
if_rx_bytes
if_tx_bytes

0.00

0.00 -0.00

-0.62 0.21 -0.02

-0.62 -0.20 0.00 0.47

-0.65 -0.27 0.00 0.40 0.98

0.77 -0.01 -0.00 -0.68 -0.94 -0.89

0.63 0.09 -0.01 -0.58 -0.81 -0.78 0.84 0.8

0.4

0.0

0.4

0.8

(f) IOT02 (Emqx [EMQ16])

Figure 10.1.: Matrices showing the Pearson correlation coefficients from a subset of metrics for
different data sets

171

10. Collecting, analysing, and publishing benchmarking data sets

higher the QoS level, the lower is the number of messages that can be pro-
cessed per second (msg per sec). The results show that the performance of
the Mosquitto VNF is only marginally impacted by the selected CPU config-
uration. This indicates that we are not able to fully saturate the VNF during
our experiments and underlines the efficient and lightweight implementation
of Mosquitto. Emqx, in contrast, shows a stronger correlation between CPU
configuration and resulting performance. One reason for this could be its
Erlang-based implementation [EMQ16], which requires the Erlang runtime.
Memory has again almost no impact to the performance of the two VNFs.

These results give insights into the nature of our data sets and show how they
could be used to detect interrelationships between different parameters and
metrics, which cannot easily be discovered without benchmarking. All this
is done without knowing about the internals of the VNF implementations.
These results can support developer decisions as well as MANO optimisation
approaches.

10.4.4. Using the data sets

A typical use case for benchmarking data sets is their use within MANO
systems to optimise resource dimensioning decisions, e.g., during initial de-
ployment or scaling operations. However, using the raw data to automatically
lookup the relationships between VNF configurations and the resulting per-
formance by a MANO system, which has no further insights into the data, is
complicated. A better solution for this is to represent the benchmarking results,
i.e., NFV-PPs, by regression models. The benefit of this is that those models
can be easily used by MANO systems and can provide (depending on the used
model) a complete mapping between configuration space and performance
values, even though not all of these configurations have been tested during
benchmarking (see Chapter 9). Picking the right models, which are compatible
to existing MANO optimisation solutions and show low regression errors, is
not a simple task as we show in the following.

When looking at existing work in the field of MANO optimisation algorithms,
like [MKK14; HB16; DKM18], it becomes clear that many of the presented
optimisation algorithms rely on (mixed) integer linear programs (ILPs) using
hardcoded constant or linear mappings between VNF configurations and per-
formance metrics. To improve accuracy, some of the existing work extends this
approach and use so-called “piecewise constant and linear functions” [DKM18;
RBB16]. The benefit of these piecewise models is that they can better represent
complex performance profiles while still keeping the models linear and as
a result usable for ILPs. If those hardcoded representations should now be
replaced by NFV-PPs that are automatically generated from our data sets,

172

10.4. Collecting, analysing, and publishing the first data sets

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

50000

100000

150000

200000
pr

oc
es

se
d

pa
ck

et
s

data
break pt.

nseg=1
nseg=3

(a) Piecewise constant

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

50000

100000

150000

200000

pr
oc

es
se

d
pa

ck
et

s

data
break pt.

nseg=1
nseg=3

(b) Piecewise linear

Figure 10.2.: Example that represents a single metric (processed packets) from the SEC01 data
set using (piecewise) constant and linear functions with different numbers of
segments (nseg) that can be easily reused by optimisation solutions, e.g., ILPs

we have to generate piecewise constant or linear regression models to be
compatible with those optimisation approaches.

Figure 10.2 presents an example of these piecewise regression models, showing
an NFV-PP based on our SEC01 data set representing the relationship between
CPU time and processed packets using piecewise constant and linear func-
tions. To fit this example, we use a Python library called PWLF [JV19] that
relies on least squares regression [Gol04]. PWLF combines this with a global
optimisation approach, using differential evolution [SP97], to automatically fit
piecewise-linear models with a given number of segments to a data set and
find the locations of the break points.

Figure 10.2a shows how the measured data can be represented by piecewise
constant functions with either a single segment or with three segments (re-
sulting in two break points). It becomes clear that in the constant case, more
segments will usually result in more accurate models. Figure 10.2b shows
two linear models with one and three segments. While the model that uses
only a single segment fits the data already well (coefficient of determination
R2 = 0.961), the model with three segments fits even better (R2 = 0.995).
Looking at this examples, the question arises how many segments a model
should use? An answer to this question is, however, always a trade-off between
model accuracy as well as model complexity (number of segments). Using
a constant number of segments for all models is also not a good idea, since
the best number of segments heavily depends on the underlying data set. As
a result, the decision must be taken on-the-fly during model generation. We
present a fully-automated solution for this in the remainder of this section.

As a first step, to automatically optimise the number of used segments, we
define a cost metric that takes the model quality as well as model complexity
into account. We call this metric piecewise model cost (PMC). PMC depends
on the number of segments s used in the model, a penalty factor ω, as well as

173

10. Collecting, analysing, and publishing benchmarking data sets

the normalised root-mean-squared deviation (NRMSD), which is a normalised
error metric calculated over the number of samples n, as already introduced
in Chapter 9. Based on this, we define the PMC as follows:

PMCω =

(√ 1
n ∑n

i=1(ŷi − yi)2

max(y)−min(y)

)
︸ ︷︷ ︸

NRMSD

+sω (10.1)

The idea behind this definition is to combine an error metric, the NRMSD,
with a cost function that increases with the number of used segments (sω).
By changing the penalty factor ω, the tradeoff between model quality and
model complexity can be fine-tuned, i.e., ω is used to control the impact
of the number of used segments s to the overall costs. By increasing ω, the
resulting models become less complex, meaning they use fewer segments. The
assumption behind this is that, in general, the model quality tends to improve
with the number of used segments, even though the improvements become
smaller and smaller the more segments are used. To compensate for this and
to limit the model’s complexity, this tuneable cost function is added.

We then minimise the PMC metric to optimise the number of segments that
should be used for the generated models. Figure 10.3 shows this process
for two models that are based on the SEC01 and WEB01 data sets. Each sub-
figure shows the original data points (CPU time vs. processed packets or
requests per second) and a set of models with different numbers of segments
(nseg ∈ [1, 2, 3, 4]) as well as one model using the optimal number of segments
(opt) according to the PMC. The figures also show the selected break point
locations that are again computed using the PWLF Python library [JV19]. In
all experiments, ω is set to 0.005, which turns out to work well and result in
reasonable simple models with less than 10 segments.

The first set of results uses piecewise constant models that tend to require a
higher number of segments to fit the used data sets. For example, the model
shown in Figure 10.3a uses up to nine segments, which fits much better than
the models with less segments. This can be seen in Figure 10.4a which reports
the regression performance as MSE and coefficient of determination (R2) of the
models shown in Figure 10.3. The second result, shown in Figure 10.3b, selects
ten segments for its optimal model which makes sense when comparing this
to the reported error metrics in Figure 10.4b that show fluctuating MSE values
until a certain number of segments is used.

In the second set of results, piecewise linear models are used. The results in
Figure 10.3c and Figure 10.3d show that our proposed optimisation approach
picks models with three and two segments that fit the data very well, indicating
that it works as expected. This impression is clearly confirmed when looking at

174

10.4. Collecting, analysing, and publishing the first data sets

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

50000

100000

150000

200000

pr
oc

es
se

d
pa

ck
et

s

data
break pt.
nseg=1
nseg=2

nseg=3
nseg=4
nseg=9 (opt)

(a) SEC01: Piecewise constant

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

2000

4000

6000

8000

re
qu

es
ts

/s

data
break pt.
nseg=1
nseg=2

nseg=3
nseg=4
nseg=10 (opt)

(b) WEB01: Piecewise constant

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

50000

100000

150000

200000

pr
oc

es
se

d
pa

ck
et

s

data
break pt.
nseg=1

nseg=2
nseg=4
nseg=3 (opt)

(c) SEC01: Piecewise linear

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

2000

4000

6000

8000

re
qu

es
ts

/s

data
break pt.
nseg=1

nseg=3
nseg=4
nseg=2 (opt)

(d) WEB01: Piecewise linear

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

50000

100000

150000

200000

pr
oc

es
se

d
pa

ck
et

s

data
break pt.
nseg=1

nseg=2
nseg=4
nseg=3 (opt)

(e) SEC01: Piecewise quadratic

0.2 0.4 0.6 0.8 1.0
CPU bandwidth [%]

0

2000

4000

6000

8000

re
qu

es
ts

/s

data
break pt.
nseg=1

nseg=3
nseg=4
nseg=2 (opt)

(f) WEB01: Piecewise quadratic

Figure 10.3.: Automatically optimised piecewise constant, linear, or quadratic fits to represent
NFV-PPs

175

10. Collecting, analysing, and publishing benchmarking data sets

constant linear quadratic

108

109

M
SE

Segments
1
2
3
4
5
6

7
8
9
10
11
12

(a) SEC01: Mean squared error

constant linear quadratic

104

105

106

M
SE

Segments
1
2
3
4
5
6

7
8
9
10
11
12

(b) WEB01: Mean squared error

constant linear quadratic
0.0

0.2

0.4

0.6

0.8

1.0

R
2

Segments
1
2
3
4
5
6

7
8
9
10
11
12

(c) SEC01: Coefficient of determination

constant linear quadratic
0.0

0.2

0.4

0.6

0.8

1.0
R

2
Segments

1
2
3
4
5
6

7
8
9
10
11
12

(d) WEB01: Coefficient of determination

Figure 10.4.: Regression performance of models presented in Figure 10.3 for different model
parameters and up to 12 segments used for the piecewise fits

the resulting regression performance reported in Figure 10.4a and Figure 10.4b.
It can be seen that the MSE heavily drops at the selected number of segments
and that it only marginally decreases if more segments are used.

A third set of results, depicted in Figure 10.3e and Figure 10.3f, shows the
behaviour of our approach if quadratic models are used. These quadratic
models are, however, of limited use for many MANO optimisation approaches
and we analyse them just to show that our system is not limited to constant or
linear models. Again, a relatively small number of segments (three and two) is
selected which fits to the reported regression performance in Figure 10.4.

Using this automatic generation of piecewise constant, linear, and quadratic
functions allows to directly use the NFV-PPs, resulting from the collected data
sets, within existing MANO solutions. Especially the first two model types
(constant and linear) are directly compatible and usable with existing MANO
optimisation approaches [DKM18]. This demonstrates the usefulness of the
concepts presented in Part III of this thesis for use during deployment and
operation of network services. The results also show that we can automatically
optimise the number of used segments and thus keep the complexity of the
generated models low while not losing too much model accuracy.

176

10.5. Conclusion

10.4.5. Publishing the data sets

We version all experiment configurations that are used to collect the pre-
sented data sets using Git [Git05] so that we can reproduce old experiments
even if they are updated or improved over time. This also allows us to use
GitHub [Git19] as the hosting platform to publish and share the contents of
the SNDZoo. However, keeping large data sets, containing multiple files with
gigabytes of data, within a Git repository is bad practice and results in poor
performance. To solve this, we make use of a recently introduced project called
data version control (DVC) [DVC17]. DVC focuses specifically on versioning
ML data sets and allows to store and version large files on external storage
solutions such as Amazon S3 [Ama15], while referencing them from a Git
repository. Users can then access and download a specific data set by simply
running two commands (git clone and dvc pull) on their machine.

Each data set hosted in the SNDZoo is located in its own Git/DVC repository
with a connected Amazon S3 bucket holding the data files (a total of 7.3 GB).
Those repositories not only contain the configurations and resulting data
sets but also meta data like the hardware and software specifications of the
machines on which the measurements have been performed. Further, they
contain license information as well as all raw measurements, time series, and
logs produced by our benchmarking framework.

Besides the data set repositories, SNDZoo also provides repositories containing
the sources and descriptions of used VNFs and services. All published data
sets are indexed on and linked from the SNDZoo website [PSK19a]. They are
published under creative commons CC-BY-SA 4.0 license.

10.5. Conclusion

We introduce the SNDZoo project as the first open collection of NFV perfor-
mance data sets. The SNDZoo project aims to support the adoption of ML/AI
in the software networking community by enabling researchers to work with
common data sets simplifying comparisons and reproduction of results. We
publish eight initial data sets, containing performance measurements collected
from a set of real-world security, web, and IoT VNFs. We plan to continue our
efforts and add new data sets over time. Our broader vision for the SNDZoo is
to have a large collection of different data sets for a wide variety of use cases,
scenarios, and deployments. Not only focusing on NFV and SDN performance
measurements but also on measurements of MANO system and management
performance.

177

10. Collecting, analysing, and publishing benchmarking data sets

Using these data sets, we show an automated model generation approach
which can be combined with the automated data collection approach, pre-
sented in Chapter 8, to fully automate the end-to-end workflow between
benchmarking at the development phase and MANO optimisations during
the deployment and operation phase—an important contribution to close the
DevOps loop for NFV services.

178

11. Final thoughts

This chapter summarises the key contributions of my thesis and draws final
conclusions. Afterwards, future research directions are presented and briefly
discussed.

11.1. Summary

In this thesis, I have investigated the gaps between development and deploy-
ment of softwarised network services and I have proposed a series of concepts,
solutions, and supporting tools to close these gaps. The overall goal of my
thesis has been to simplify the development and deployment of softwarised
network services to accelerate the adoption of DevOps concepts in the ICT
domain. This has been addressed within three different areas of work.

First, E-State, a solution to handle the state of VNFs within elastic deployments,
has been presented in Chapter 3. E-State allows to migrate VNF-specific state
between VNF instances. This migration is performed upon request when,
e.g., a VNF is horizontally scaled. In contrast to existing solutions, E-State
does not require a centralised management component and is able to perform
state migrations directly between the VNF instances. It also allows each VNF
instance to request the global state among all existing instances, which is
a key feature to support seamless scaling of stateful applications, like IDSs.
The presented results confirm that E-State outperforms approaches that rely
on generic state sharing solutions and provides an efficient solution to run
stateful VNFs in elastic deployments. E-State can be considered as supporting
technology that simplifies both the development and the deployment of stateful
network functions.

In contrast to existing approaches, and to not impose any strict requirements
to the underlying NFV platform, E-State has not been designed to reroute
traffic between VNF instances to balance flows within elastic deployments.
Instead, I have introduced a second supporting technology, called SHarP, which
closes this gap and can be combined with E-State, if needed. SHarP has been
presented in Chapter 4. Even though it is designed to complement E-State, it
can also be used as a standalone solution to enable seamless traffic rerouting
in elastic VNF deployments. The presented results show that SHarP allows

179

11. Final thoughts

to efficiently reroute flows between VNFs, while ensuring that no packets are
dropped or re-ordered.

During the work on E-State and SHarP, I have noticed the general lack of
prototyping solutions within the NFV community, motivating the second area
of work presented in this thesis. With Containernet and vim-emu, I have
presented a novel emulation-based prototyping solution to close this gap.
The resulting platform enables NFV developers, for the first time, to quickly
prototype complex NSs, built of a series of chained VNFs, in a lightweight
environment, e.g., on a developer’s laptop. Chapter 5 has presented the general
concepts and abstractions used to locally emulate NFV infrastructure. The
presented results demonstrate how the resource limitation functionalities of
Linux cgroups can be reused to emulate environments that behave similar
to resource-limited infrastructure, e.g., NFVI PoPs deployed at the network
edge.

Chapter 6 has investigated extensions to this prototyping platform and aligned
it with recent IETF standardisation activities by introducing support for NSH-
based traffic steering, i.e., SFC. The presented case study shows how our
prototyping platform can be used to implement complex SFC scenarios and
test them in a local environment. The platform allows the assessment of such
novel chaining technologies without requiring expensive testbeds—one of the
key benefits of my solution.

The presented prototyping approach is not limited to VNFs and NSs but can
also be used to prototype and test MANO systems as it has been shown in
Chapter 7. The chapter has introduced a novel approach called “emulation-
based smoke testing”; it extends the smoke testing concept by using emulation-
based test environments to test MANO systems in realistic, large-scale sce-
narios. The results show how the presented solution can efficiently emulate
arbitrary topologies with hundreds of NFVI PoPs and how it integrates with
state-of-the-art MANO solutions. It can be considered a supporting technology
for the development phase of VNFs, NSs, and MANO systems.

After VNFs have been implemented, NSs have been composed, and their pro-
totypes have been tested within my prototyping platform, they are deployed
to production. At this stage, resource allocation decisions are required to ade-
quately dimension the deployed VNFs and NS to meet the agreed quality goals.
This has motivated the third area of my work, in which I have used bench-
marking to understand the behaviour of given (possibly proprietary) VNFs
and/or NSs prior to their production deployment. Chapter 8 has presented
a solution to fully automate this benchmarking procedure and to integrate
it into existing NFV workflows and architectures. The results clearly showed
that VNFs must not only be benchmarked in isolation but also as part of the
NS to which they belong—something not considered in existing approaches.

180

11.2. Conclusions

The problem of performing automated benchmarking procedures under given
time constraints has been investigated in Chapter 9. The main challenge in such
scenarios are the large configuration spaces that need to be explored during
the benchmarking process. The presented results show that it is possible to
optimise such scenarios by benchmarking only a subset of configurations and
using prediction approaches to extrapolate the resulting data.

Finally, I have used the developed benchmarking solutions to collect data
sets from real-world VNFs in Chapter 10. After analysing those data sets
and showing how they could be used to generate inputs for existing MANO
optimisation algorithms, I have published them for use by the community. This
has resulted in the first collection of open data sets to be used by researchers
working on NFV optimisation solutions, such as placement and scaling algo-
rithms. The presented benchmarking concepts, approaches, and tools can be
considered as supporting technologies for the intersection between develop-
ment, deployment, and operation of VNFs as well as NS and contribute to
close the DevOps loop for NFV scenarios.

11.2. Conclusions

During the time of my research, network softwarisation has evolved from
initial ideas and early prototypes to widely agreed concepts, protocols, stan-
dards, as well as technology stacks. Based on these developments, first field
trails have been performed and more and more production deployments, often
using open-source technology stacks, can be discovered. Nevertheless, devel-
oping, prototyping, and deploying new VNFs and NSs remains a challenging
task. This thesis has addressed a broad scope of those challenges and has
presented concepts and solutions to support developers at different stages of
the development and deployment process.

State management is still a hot topic in the community. Even if there is a
clear trend to design newly developed NFs as stateless components, following
cloud-native or even server-less design principles, most of the NFs on the
market are still based on legacy implementations which require some sort of
state management solutions. With E-State and SHarP, I have presented two
flexible solutions for this.

Existing prototyping solutions for the software networking domain were lim-
ited to SDN use cases. My work has changed this and has initiated two open-
source projects, Containernet and vim-emu, which are now widely used by the
NFV community1. I have also utilised these tools to build novel prototyping
and testing concepts for the NFV domain. For example, Containernet has been,
at the time of its initial release, the first container-based NFV platform that

1Containernet has, e.g., more than 120 stars and more than 70 forks on GitHub [Peu16].

181

11. Final thoughts

supports chaining over multiple network interfaces. It has later evolved to
the first prototyping platform with NSH support. Vim-emu itself is still the
leading platform for testing MANO solutions in large-scale scenarios without
requiring large testbeds. The user base of both tools drastically increased
after vim-emu has been adopted by the OSM project, leading to hundreds
of repository clones and several upstream contributions by the community.
These projects have also been picked up and used by other researchers, e.g., to
prototype P4 offloading, fog computing, or IoT scenarios [Mor+19b; Cou+18;
Ngu+19]. All these aspects are important for the sustainability of my work
and will ensure that those two projects will continue.

The domain of NFV benchmarking has gained more and more traction in the
last years, especially as concepts like ZSM arose. My work has contributed in
several ways to this research field. Most importantly, I have presented a bench-
marking framework that allows for end-to-end automation of arbitrary NFV
benchmarking scenarios and is now acting as one of the two reference imple-
mentations in our ongoing standardisation effort within IETF BMWG [Ros+18].
The presented approach to perform benchmarking under time constraints
works well, but has its limits, i.e., benchmarking runs which only perform a
handful of measurements will always produce results with limited accuracy.
Finally, I have shown how my benchmarking framework can be used in prac-
tice by publishing open data sets, which are the first of their kind in the NFV
community. Even though the amount of data sets is still limited, my thesis has
introduced all required workflows and tools to collect, process, and publish
additional data sets, paving the way to contribute new data sets collected by
other researchers.

11.3. Future research

There are several promising research directions which could be explored to
extend the presented work or further optimise the presented solutions.

E-State: Reduced communication overhead In the current prototype of E-
State, every VNF subscribes to every other VNF using the broker-less ZeroMQ
protocol. This works fine for many practical cases in which not more than a
couple of dozen instances are deployed. Nevertheless, it means a quadratic
overhead in terms of subscriptions that need to be established, certainly
limiting the scalability of the prototype. There are two options to improve
this. The first option is to replace ZeroMQ by a messaging approach that
uses a centralised broker, e.g., Apache Kafka [The11]. This will reduce the
subscription overheads since each VNF instance will only subscribe exactly
once to a common topic on that broker. The downside of this approach is

182

11.3. Future research

the required broker, which needs to be deployed in addition to the VNFs,
introducing additional management overhead and a single point-of-failure.
Another option is to cluster the VNFs with the assumption that it is enough
to retrieve the global view on the state only within a cluster of VNFs with a
limited size. For example, a multi-instance IDS deployment could be clustered
in a way that some IDS instances are responsible to only monitor a certain type
of traffic, say all HTTP traffic, whereas another cluster of IDS instances only
deals with voice over Internet protocol (VoIP) traffic. In this scenario, it should
be sufficient that the HTTP instances only receive information from other
HTTP instances, when, e.g., a global view on the matching counters of the
HTTP-specific rules is required. Alternatively, geographical and/or topological
clustering might be an option, assuming that state is mainly shared between
flows coming from the same geographical location. Using such a clustering
approach, several research questions arise, e.g., how to best cluster the VNFs
or which cluster size to use?

E-State: Additional consistency models E-State implements an eventual
consistency model that works well as shown in Chapter 3. There might be,
however, specific VNFs that require stricter consistency models, e.g., to ensure
that each VNF always accesses the latest state. Those stricter consistency
models could be implemented on top of the presented prototype and be
compared among each other. Further, it would be interesting to integrate this
with a couple of real-world VNFs to see the impact of the selected consistency
model to the performance of the VNFs (e.g., IDS detection rate).

SHarP: DPDK-based HSL implementation The presented prototype of SHarP
uses a Python-based HSL implementation. Implementing this intermediate
software layer, including its buffers and packet marking functionalities, with
Python has been a good choice to quickly build the SHarP prototype and
evaluate the general concept. For a production deployment, however, this pro-
totype does not provide the required performance, as mentioned in Chapter 4.
The right solution for this is to reimplement the HSL using some zero-copy
high-performance packet processing technology, such as Intel’s DPDK [Lin17].
Such an implementation would follow the exact same design as the existing
prototype but would require substantial more engineering efforts.

Containernet: Integration of other container technologies The core idea be-
hind Containernet is to integrate container technologies into Mininet-based
network topologies to emulate realistic NFV scenarios. In its current version,
Containernet uses Docker as underlying container technology, because it has
been the most advanced container solution at the time the project has been
started and it is still the most commonly used container platform, today.

183

11. Final thoughts

Nevertheless, during the time of my research many more container tech-
nologies, such as linux containers (LXC) or Kata containers [Can08; Kat17],
have emerged. It would be interesting to further extend Containernet and
integrate such technologies. Especially the Kata container approach, which
offers VM-like isolation, looks promising to replace some work I have done in
collaboration with Johannes Kampmeyer to integrate full-featured VMs into
Containernet [PKK18a]. This work has never been integrated into the master
branch of Containernet as its dependencies and configuration requirements
have been too complex, which would have limited the usability of the platform
for normal users.

Distributed vim-emu Vim-emu already scales well and allows to emulate
hundreds of PoPs on a single machine, as shown in Chapter 7. An option to
push this further would be to distribute vim-emu across multiple machines.
To build such a distributed version of vim-emu, Maxinet [Wet+14] can be
used. Since Maxinet is already compatible with Containernet, it can run and
control multiple Containernet instances on different machines and interconnect
them using generic routing encapsulation (GRE) tunnels. There is no technical
reason that prevents the integration of vim-emu and Maxinet. It will, however,
require a major rewrite of the additional abstraction layers of vim-emu to
implement a distributed version of it.

Benchmarking: Update benchmarking results in production The presented
benchmarking approaches allow to gain insights into the behaviour of VNFs
and NSs prior their production deployment. Once those VNFs and NSs are
deployed and running in production, they are monitored by the MANO system
which means additional data about real system load and resource usage is
collected. An interesting research question in this scenario is whether and how
it would be possible to combine the online monitoring data with benchmarking
results to further improve the insights the system can gain.

Benchmarking: Further selection algorithms and model enhancements for
time-constrained scenarios The concept of time-constrained benchmarking,
presented in Chapter 9, compares several selection approaches and shows that
even though the presented algorithm works well in general, it sometimes over-
fits or performs only slightly better than the other approaches. Other selection
algorithms, like the adaptive decision tree approach which has been developed
in a Bachelor thesis by Heidi Neuhäuser under my supervision [Neu19] are an
interesting field for further research.

184

11.3. Future research

Benchmarking: Standardised models The key idea behind the automated
benchmarking approach which has been presented in Chapter 8 is having a
simple-to-use description approach to quickly define and model benchmarking
experiments. The presented PED description approach achieves exactly this;
however, it is still a custom solution that is only used by the benchmarking
framework presented in this thesis. To change this and to get our description
approach used by third-party benchmarking solutions, my collaborators and I
are working towards a standardised description model as part of our activities
within IETF BMWG [Ros+18]. The goal of this work and the work performed
in the future is to propose and standardise a YANG-based description model
for NFV benchmarking experiments that is based on the models presented
in this thesis. This will simplify the application of the presented benchmark-
ing concepts even further and can turn automated benchmarking solutions
into a vital part of software-based network ecosystems and NFV DevOps
processes.

185

List of Acronyms

3GPP 3rd Generation Partnership Project
AI artificial intelligence
API application programming interface
BMWG benchmarking methodology working group
BSS business support system
CAPEX capital expense
CDN content delivery network
CDU cloud-native deployment unit
CD continuous delivery
CFS completely fair scheduler
CI/CD continuous integration/continuous delivery
CI continuous integration
CLI command line interface
CNF cloud-native network functions
COTS commercial off-the-shelf
CPU central processing unit
CSAR cloud service archive
CU compute unit
DevOps development and operation
DHCP dynamic host configuration protocol
DPDK data plane development kit
DPI deep packet inspection
DTRP decision tree regression
DVC data version control
EM element manager
ETSI European Communications Standards Institute
FIFO first-in, first-out
FSM function-specific manager
Gbit/s gigabit per second
GRE generic routing encapsulation
GUI graphical user interface
HSL handover support layer
HTTP hypertext transfer protocol
IaaS infrastructure as a service
ICT information and communication technology
IDS intrusion detection system

187

11. Final thoughts

IETF Internet Engineering Task Force
IFA interfaces and architecture
ILP integer linear program
IoT Internet of Things
IPC inter-process communication
IP internet protocol
ITZ Internet topology zoo
IT information technology
JSON JavaScript object notation
KVM Kenrel-based Virtual Machine
LCM lifecycle management
LLCM lightweight lifecycle manager
LRP lasso regression
MAC medium access control
MANO management and orchestration
MEC multi-access edge computing
MeDICINE multi Datacenter servIce ChaIN Emulator
MILP mixed integer linear program
ML machine learning
MP measurement probe
MQTT message queuing telemetry transport
MSE mean-squared error
NAT network address translation
NBI northbound API
NFVI network function virtualisation infrastructure
NFVO NFV orchestrator
NFV-PP NFV performance profile
NFV network function virtualisation
NF network function
NRMSD normalised root-mean-squared deviation
NSD network service descriptor
NSH network service header
NS network service
NUMA non-uniform memory access
ONAP open network automation platform
OPEX operational expense
OSM OpenSource MANO
OSS operation support system
OS operating system
OTT over-the-top
OVS Open vSwitch
OXM extensible match
PDF probability density function
PED performance experiment descriptor

188

11.3. Future research

PGAS greedy adaptive sampling algorithm
PMC piecewise model cost
PoP point of presence
PPS packets per second
QoE quality of experience
QoS quality of service
REST representational state transfer
RFC request for comments
RO resource orchestrator
RRP ridge regression
RSP rendered service path
RTT round-trip time
SDK software development kit
SDN software defined networking
SDO standards developing organisation
SFC service function chaining
SFF service function forwarder
SFP service function path
SF service function
SI service index
SLA service level agreement
SMS short message service
SNDZoo softwarised network data zoo
SOL ETSI solution
SPI service path identifier
SP service platform
SR-IOV single-root input/output virtualisation
SSH secure shell
SSM service-specific manager
SUT system under test
SVRPRK support vector regression
T-CB time-constrained benchmarking
TCP transmission control protocol
TG traffic generator
TLV type-length-values
TOSCA topology and orchestration specification for cloud applications
UDP user datagram protocol
URL uniform resource locator
URS uniform random selection
VCA VNF configuration and abstraction
vCDN virtualised content delivery network
vCPU virtual CPU
VDU virtual deployment unit
vim-emu VIM Emulator

189

11. Final thoughts

VIM virtual infrastructure manager
VLAN virtual LAN
VLSP very lightweight service platform
VM virtual machine
VNFC VNF container
VNFD virtual network function descriptor
VNF-FG VNF forwarding graph
VNF-FP VNF forwarding path
VNFM VNF manager
VNF virtual network function
VoIP voice over Internet protocol
V&V verification and validation
WIM wide area network infrastructure manager
WRVS weighted random VNF selection
XML extensible markup language
YAML YAML ain’t markup language
YANG yet another next generation
ZSM zero touch network and service management

190

List of Figures

2.1. Software defined network architecture as described by the ONF
(taken from [Ope12]) . 12

2.2. A typical NFV scenario with multiple physical PoPs and a com-
plex NS composed of multiple VNFs managed and controlled
by a MANO system (based on [ETS14b]). 15

2.3. ETSI’s NFV reference architectural framework as it is presented
in [ETS14b] . 16

3.1. State management with local and global view 32

3.2. Design of the shared library including a communication man-
ager that interacts with other E-State instances 34

3.3. Mininet topology used for prototype evaluation 35

3.4. Match counter value of two IDS instances (left) and overall
system performance before and after scale operation (right). . . 37

3.5. System performance (packets per second) (left) and state item
request delay (right) for different numbers of replicated VNF
instances . 38

3.6. Request delays of different state item sizes 38

4.1. Example network with multiple VNF instances, ingress and
egress switch as well as a data flow processed by VNF1 (icons
taken from [Küt17]) . 45

4.2. HSL sitting between VNFC and VNF implementation 46

4.3. Three phases of SHarP’s handover procedure for a flow moved
from VNF1 to VNFn (icons taken from [Küt17]) 49

4.4. Packet delay and VNF buffer state during a handover for differ-
ent packet rates and packet sizes (based on data from [Küt17]) 54

4.5. Handover performance of SHarP dependent on UDP PPS with
a packet sizes of 58 and 1000 bytes (based on data from [Küt17]) 56

4.6. Handover performance of SHarP dependent on the state transfer
duration with 1000 UDP PPS and packet sizes of 58 bytes and
1000 bytes (based on data from [Küt17]) 57

4.7. Distribution of packet delays during different handover experi-
ments using a packet size of 58 bytes (based on data from [Küt17]) 57

191

List of Figures

4.8. Distribution of handover durations for multiple handovers us-
ing different numbers of handover requests, request arrival
rates, and flows with small and large packets (based on data
from [Küt17]) . 59

5.1. The vim-emu platform in the (simplified) ETSI NFV reference
architecture [ETS14b]. 66

5.2. General idea and workflow of the system. The example shows a
running emulation environment with five emulated PoPs, five
allocated compute instances executing VNFs, and a service chain
setup chaining those VNFs through which generated traffic is
sent from node s to node t (logos from [Doc13]). 72

5.3. System architecture and components with N active PoP end-
points offering control interfaces to an external MANO system 73

5.4. Topology used for multi-PoP evaluation (based on “Abilene”
topology [Kni+11]) . 76

5.5. Modelled vs. measured RTT and throughput between the PoPs
of the emulated “Abeline” topology (Figure 5.4) 77

5.6. Abstract example of the presented resource models showing
two PoPs with different sizes (PoP1=6 CUs, PoP2=3 CUs) and
how these abstract CU are mapped to the available CPU time of
the host machine on which the emulation is executed 81

5.7. Example scenario using Model A: Fixed limit 82

5.8. Example scenario using Model B: Cloud-like oversubscription . 84

5.9. Modeled vs. measured container CPU usage 85

5.10. Cross-PoP resource isolation using different resource models . 86

6.1. Extended vim-emu architecture with additional SFC controller
and API (based on [Chr18]) . 92

6.2. Emulated network scenario with five interconnected PoPs and
five Docker-based SFs deployed among them (logos from [Doc13]) 94

6.3. Experiment setup over two PoPs: A traffic generator (TG) is
injecting packets into an SFC with five SFs and six different SFPs. 97

6.4. Total packets received per SFP in each SF during the experiment
and the expected values shown as horizontal lines (based on
data from [Chr18]). 98

6.5. Packets received per SFP over the total number of packets sent
to the experimental SFC. One plot per SF and vertical markers
for events e1, e2, and e3 (based on data from [Chr18]). 99

7.1. A simplified version of ETSI’s NFV architectural framework [ETS14b]
showing the main components of an NFV environment, in-
cluding the MANO system which we want to test. The figure
highlights which of the NFV components need to be mocked to
build a test harness for ETSI-aligned MANO systems. 103

192

List of Figures

7.2. An automated testing setup for a MANO system, using OSM
as an example. The test controller automatically sets up the em-
ulated infrastructure (multiple PoPs) in a test executor machine
and tests the MANO system against this fresh infrastructure us-
ing a test suite, e.g., aligned to ETSI SOL005 (logos from [Doc13;
Ope10b; ETS16c; Jen11]). 108

7.3. A multi-PoP topology with five emulated OpenStack-like NFVIs
running on a single physical machine (bottom) and five Docker-
based VNFs running on the emulated infrastructure (middle), all
controlled by a real-world MANO system (top) (logos from [Doc13;
Ope10b; ETS16c; SON15b]). 110

7.4. Breakdown of the emulator setup times into four phases using
four different topologies . 115

7.5. Emulator setup times and memory usage 116

7.6. NS instantiation times on a small and a large topology using
NSs with up to 256 VNFs. 117

7.7. OSM and emulator setup times with real-world topologies . . . 118

7.8. OSM service management interfaces request time analysis . . . 119

8.1. Comparison of two major versions of the Snort IDS system
under different CPU configurations 128

8.2. System architecture of our benchmarking framework interacting
with several NFV platforms. The figure also shows the general
workflow and generated artefacts and is annotated with external
technologies that can be used. 134

8.3. SUT descriptor generation examples. Extended SUT descriptor
(a) and embedded SUT descriptor Sembedded (b). 138

8.4. Throughput of the OVS VNF under different CPU time config-
urations executed in a single-machine (vim-emu) setup. 141

8.5. Throughput of an SFC composed of three OVS VNFs under
different CPU time configurations compared to the expected
throughput modelled on basis of the results from our single-
VNF measurements. 142

8.6. Throughput of the three VNFs under different CPU time con-
figurations executed in a single-machine (vim-emu) and multi-
machine (Maxinet) setup. 143

8.7. Throughput of three SFC configurations under different CPU
time configurations compared to the expected throughput mod-
elled on basis of the results from our single-VNF measurements.
Experiments are executed in our (a) single-machine setup and
(b) multi-machine setup. 144

8.8. Empirical response time CDFs for each VNF and a setup without
VNF between MPU and MPW . 145

193

List of Figures

8.9. Measured empirical response time CDFs of the OVS SFC com-
pared to the modelled response times derived from single-VNF
measurements. 146

8.10. Empirical response time CDFs measured for three SFC setups
(S1, S2, S3) compared to the modelled response times derived
from single-VNF measurements. 147

9.1. Example scenario of an SFC with five VNFs and their configu-
ration parameters . 150

9.2. Main building blocks and workflow of our T-CB system, build
around existing benchmarking platforms, feeding the resource
management component of a MANO system. 155

9.3. Comparison of prediction algorithms for different numbers of
measured samples using URS and WRVS1 selectors 158

9.4. Selector performance comparison using three real-world SFCs
and two prediction approaches (LRP and RRP) 159

9.5. Selector performance comparison using three real-world SFCs
and two prediction approaches (LRP and RRP) showing the
99th percentile over the 30 experiment repetitions 160

10.1. Matrices showing the Pearson correlation coefficients from a
subset of metrics for different data sets 171

10.2. Example that represents a single metric (processed packets)
from the SEC01 data set using (piecewise) constant and linear
functions with different numbers of segments (nseg) that can be
easily reused by optimisation solutions, e.g., ILPs 173

10.3. Automatically optimised piecewise constant, linear, or quadratic
fits to represent NFV-PPs . 175

10.4. Regression performance of models presented in Figure 10.3 for
different model parameters and up to 12 segments used for the
piecewise fits . 176

194

List of Tables

1.1. Open-source projects that have been created as part of my re-
search activities . 7

2.1. List of open-source SDN controllers (non exhaustive) 13

2.2. List of open-source MANO solutions (non exhaustive) 22

4.1. Comparison of related NFV state management and flow han-
dover solutions . 43

5.1. Feature matrix of existing prototyping approaches for NFV . . 68

5.2. Definitions used to build our example CPU resource models . . 80

6.1. Generated traffic per SFP (based on data from [Chr18]) 98

7.1. Mapping between interfaces specified/implemented by ETSI
SOL005 and OSM rel. FOUR and their coverage in the presented
test suite. The table also shows the mean runtime of each test. . 112

8.1. Benchmarking scenarios considered in the case study 140

10.1. Overview of the eight VNF benchmarking data sets initially
published in the SNDZoo [PSK19a] 168

195

List of Listings

5.1. Example of Containernet’s Python API 69

5.2. Example vim-emu topology with two PoPs connected to OpenStack-
like cloud endpoints . 74

5.3. Example vim-emu topology with two different resources mod-
els, each assigned to a particular PoP 79

8.1. Example PED (shortened) showing the main features of our
experiment description approach 136

197

Bibliography

[3GP15] 3GPP. TR32.842: Telecommunication management; Study on network
management of virtualized networks. Jan. 2015. url: https://port
al.3gpp.org/desktopmodules/Specifications/Specificatio

nDetails.aspx?specificationId=2248 (visited on 02/28/2019)
(cit. on p. 15).

[5GP18] 5G-PPP Software Network Working Group. From Webscale to Telco,
the Cloud Native Journey. July 2018. url: https://5g-ppp.eu/wp-
content / uploads / 2018 / 07 / 5GPPP - Software - Network - WG -

White-Paper-July-2018.pdf (visited on 01/31/2019) (cit. on
pp. 1, 18, 38, 70).

[5GT17a] 5GTANGO project consortium. 5GTANGO Development and Vali-
dation Platform for Global Industry-specific Network Services and Apps.
2017. url: https://5gtango.eu (visited on 12/06/2018) (cit. on
pp. 7, 19, 138).

[5GT17b] 5GTANGO project consortium. D2.2 Architecture Design. Ed. by
Manuel Peuster and Stefan Schneider. Nov. 2017. url: https://w
ww.5gtango.eu/documents/D22_v1.pdf (visited on 01/26/2018)
(cit. on p. 19).

[5GT18a] 5GTANGO project consortium. 5GTANGO Package Specification.
Ed. by Manuel Peuster. Jan. 2018. url: https://github.com/
sonata- nfv/tng- schema/wiki/PkgSpec_LATEST (visited on
02/21/2019) (cit. on pp. 19, 75, 139).

[5GT18b] 5GTANGO project consortium. D4.1 First open-source release of
the SDK toolset. Ed. by Wouter Tavernier. Apr. 2018. url: http:
//5gtango.eu/documents/D41_v1.pdf (visited on 02/21/2019)
(cit. on pp. 19, 75).

[Ahr+08] Jeff Ahrenholz et al. ‘CORE: A real-time network emulator’. In:
2008 IEEE Military Communications Conference (MILCOM). San
Diego, CA, USA: IEEE, Nov. 2008, pp. 1–7. doi: 10.1109/MILCOM.
2008.4753614 (cit. on p. 106).

[Ahr10] Jeff Ahrenholz. ‘Comparison of CORE network emulation plat-
forms’. In: 2010 IEEE Military Communications Conference (MIL-
COM). IEEE, Oct. 2010, pp. 166–171. doi: 10.1109/MILCOM.2010.
5680218 (cit. on p. 66).

199

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2248
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2248
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2248
https://5g-ppp.eu/wp-content/uploads/2018/07/5GPPP-Software-Network-WG-White-Paper-July-2018.pdf
https://5g-ppp.eu/wp-content/uploads/2018/07/5GPPP-Software-Network-WG-White-Paper-July-2018.pdf
https://5g-ppp.eu/wp-content/uploads/2018/07/5GPPP-Software-Network-WG-White-Paper-July-2018.pdf
https://5gtango.eu
https://www.5gtango.eu/documents/D22_v1.pdf
https://www.5gtango.eu/documents/D22_v1.pdf
https://github.com/sonata-nfv/tng-schema/wiki/PkgSpec_LATEST
https://github.com/sonata-nfv/tng-schema/wiki/PkgSpec_LATEST
http://5gtango.eu/documents/D41_v1.pdf
http://5gtango.eu/documents/D41_v1.pdf
https://doi.org/10.1109/MILCOM.2008.4753614
https://doi.org/10.1109/MILCOM.2008.4753614
https://doi.org/10.1109/MILCOM.2010.5680218
https://doi.org/10.1109/MILCOM.2010.5680218

Bibliography

[Ama15] Amazon. Amazon Elastic Compute Cloud (Amazon EC2). 2015. url:
http://aws.amazon.com/de/ec2/ (visited on 03/01/2019) (cit.
on pp. 23, 177).

[BBS16] Michael Till Beck, Juan Felipe Botero, and Kai Samelin. ‘Resilient
Allocation of Service Function Chains’. In: IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE, Nov. 2016, pp. 128–133. doi: 10.1109/NFV-SDN.2016.
7919487 (cit. on p. 90).

[Bes10] Sandford Bessler. ‘Telco Service Delivery Platforms in the Last
Decade - A R&D Perspective’. In: International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation.
Berlin, Heidelberg: Springer, 2010, pp. 367–374. isbn: 978-3-642-
16558-0 (cit. on p. 1).

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf Reussner. ‘Model-Based
Performance Prediction with the Palladio Component Model’.
In: Proceedings of the 6th International Workshop on Software and
Performance. WOSP ’07. Buenes Aires, Argentina: ACM, 2007,
pp. 54–65. isbn: 1-59593-297-6. doi: 10.1145/1216993.1217006
(cit. on pp. 126, 130).

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. ‘The Palladio
component model for model-driven performance prediction’. In:
Journal of Systems and Software 82.1 (2009), pp. 3–22. issn: 0164-
1212. doi: https://doi.org/10.1016/j.jss.2008.03.066
(cit. on p. 130).

[Bon+12] Flavio Bonomi et al. ‘Fog Computing and Its Role in the Internet
of Things’. In: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing. MCC ’12. New York, NY, USA: ACM,
Aug. 2012, pp. 13–16 (cit. on pp. 67, 78).

[Bos+14] Pat Bosshart et al. ‘P4: Programming protocol-independent packet
processors’. In: ACM SIGCOMM Computer Communication Review
44.3 (July 2014), pp. 87–95. doi: 10.1145/2656877.2656890 (cit.
on p. 67).

[BS15] Mario Baldi and Amedeo Sapio. ‘A network function modeling
approach for performance estimation’. In: 2015 IEEE 1st Interna-
tional Forum on Research and Technologies for Society and Industry
Leveraging a better tomorrow (RTSI). Turin, Italy: IEEE, Sept. 2015,
pp. 527–533. doi: 10.1109/RTSI.2015.7325152 (cit. on pp. 131,
152).

[Bui+13] Lars Buitinck et al. ‘API design for machine learning software:
experiences from the scikit-learn project’. In: ECML PKDD Work-
shop: Languages for Data Mining and Machine Learning. Springer,
Sept. 2013, pp. 108–122 (cit. on p. 157).

200

http://aws.amazon.com/de/ec2/
https://doi.org/10.1109/NFV-SDN.2016.7919487
https://doi.org/10.1109/NFV-SDN.2016.7919487
https://doi.org/10.1145/1216993.1217006
https://doi.org/https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/RTSI.2015.7325152

Bibliography

[BWZ15] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software archi-
tect’s perspective. Addison-Wesley Professional, 2015 (cit. on pp. 3,
127).

[Cal+11] Rodrigo N Calheiros et al. ‘CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation
of resource provisioning algorithms’. In: Software: Practice and
Experience 41.1 (Aug. 2011), pp. 23–50. doi: doi.org/10.1002/
spe.995 (cit. on pp. 66, 91).

[Can08] Canonical Ltd. LXC: Linux containers. 2008. url: https://linuxc
ontainers.org/ (visited on 03/06/2019) (cit. on p. 184).

[Can12] Canonical Ltd. Juju Charms. 2012. url: https://www.jujucharms.
com (visited on 02/13/2019) (cit. on pp. 20, 120).

[Cao+15] Lianjie Cao et al. ‘NFV-VITAL: A Framework for Characterizing
the Performance of Virtual Network Functions’. In: 2015 IEEE
Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN). San Francisco, CA, USA: IEEE, Nov. 2015,
pp. 93–99. doi: 10.1109/NFV-SDN.2015.7387412 (cit. on pp. 105,
126, 131, 132, 152, 164).

[Cas+15] C Cascone et al. ‘OpenState: platform-agnostic behavioral (state-
ful) forwarding via minimal OpenFlow extensions’. In: ACM
Sigcom symposium on SDN research. ACM. July 2015 (cit. on p. 30).

[Cat+16] Andrea F Cattoni et al. ‘An end-to-end testing ecosystem for
5G’. In: 2016 European Conference on Networks and Communications
(EuCNC). IEEE. June 2016, pp. 307–312. doi: 10.1109/EuCNC.
2016.7561053 (cit. on p. 105).

[Chi+12] Margaret Chiosi et al. Network Functions Virtualisation: An Intro-
duction, Benefits, Enablers, Challenges & Call for Action. Oct. 2012.
url: https://portal.etsi.org/NFV/NFV_White_Paper.pdf
(visited on 12/02/2018) (cit. on pp. 1, 13, 14).

[Chr18] Frédéric Tobias Christ. ‘Docker-based Emulation of Service Func-
tion Chains Using Network Service Header’. Bachelor’s Thesis.
Paderborn University, 2018 (cit. on pp. 9, 89, 92, 94, 97–99).

[Chu+03] Brent Chun et al. ‘PlanetLab: An Overlay Testbed for Broad-
coverage Services’. In: SIGCOMM Comput. Commun. Rev. 33.3 (July
2003), pp. 3–12. issn: 0146-4833. doi: 10.1145/956993.956995
(cit. on p. 105).

[Cis16] Cisco Systems. Snort IDS/IPS. 2016. url: http://www.snort.org
(visited on 05/02/2019) (cit. on pp. 127, 166, 171).

201

https://doi.org/doi.org/10.1002/spe.995
https://doi.org/doi.org/10.1002/spe.995
https://linuxcontainers.org/
https://linuxcontainers.org/
https://www.jujucharms.com
https://www.jujucharms.com
https://doi.org/10.1109/NFV-SDN.2015.7387412
https://doi.org/10.1109/EuCNC.2016.7561053
https://doi.org/10.1109/EuCNC.2016.7561053
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://doi.org/10.1145/956993.956995
http://www.snort.org

Bibliography

[Cis19] Cisco Systems. Cisco SDN Solution Overview. 2019. url: https:
//www.cisco.com/c/en/us/solutions/software-defined-

networking / overview . html (visited on 01/31/2019) (cit. on
p. 12).

[Clo18] Cloudify Inc. Cloudify. 2018. url: https://cloudify.co/ (visited
on 02/22/2019) (cit. on p. 22).

[Cou+18] Antonio Coutinho et al. ‘Fogbed: A Rapid-Prototyping Emulation
Environment for Fog Computing’. In: 2018 IEEE International
Conference on Communications (ICC). IEEE. Kansas City, MO, USA,
May 2018, pp. 1–7. doi: 10.1109/ICC.2018.8423003 (cit. on
pp. 67, 182).

[CP18] Frédéric Tobias Christ and Manuel Peuster. OSM vim-emu NSH
prototyping platform. 2018. url: https://github.com/sonata-nfv
/son-emu/tree/experimental/nsh-sfc (visited on 08/28/2019)
(cit. on pp. 89, 94).

[Cso+14] Attila Csoma et al. ‘ESCAPE: Extensible service chain prototyp-
ing environment using mininet, click, netconf and pox’. In: SIG-
COMM Computer Communication Review 44.4 (Oct. 2014), pp. 125–
126. doi: 10.1145/2740070.2631448 (cit. on p. 91).

[Dat17] Linux Kernel Driver DataBase. Network Service Header (NSH) pro-
tocol. 2017. url: https://cateee.net/lkddb/web-lkddb/NET_
NSH.html (visited on 08/28/2019) (cit. on p. 95).

[Dav+17] Gianluca Davoli et al. ‘Implementation of Service Function Chain-
ing Control Plane through OpenFlow’. In: 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE. Berlin, Germany, Nov. 2017, 1–4. doi: 10.1109/NFV-
SDN.2017.8169852 (cit. on p. 90).

[Den+09] Jia Deng et al. ‘Imagenet: A large-scale hierarchical image database’.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. Miami, FL, USA, June 2009, pp. 248–255. doi: 10.1109/
CVPR.2009.5206848 (cit. on p. 164).

[DKM18] Sevil Dräxler, Holger Karl, and Zoltán Ádám Mann. ‘JASPER:
Joint Optimization of Scaling, Placement, and Routing of Virtual
Network Services’. In: IEEE Transactions on Network and Service
Management 15.3 (Sept. 2018), pp. 946–960. issn: 1932-4537. doi:
10.1109/TNSM.2018.2846572 (cit. on pp. 130, 172, 176).

[Doc13] Docker, Inc. Docker: Enterprise Application Container Platofrm. 2013.
url: https://www.docker.com (visited on 03/01/2019) (cit. on
pp. 23, 72, 94, 108, 110).

202

https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
https://cloudify.co/
https://doi.org/10.1109/ICC.2018.8423003
https://github.com/sonata-nfv/son-emu/tree/experimental/nsh-sfc
https://github.com/sonata-nfv/son-emu/tree/experimental/nsh-sfc
https://doi.org/10.1145/2740070.2631448
https://cateee.net/lkddb/web-lkddb/NET_NSH.html
https://cateee.net/lkddb/web-lkddb/NET_NSH.html
https://doi.org/10.1109/NFV-SDN.2017.8169852
https://doi.org/10.1109/NFV-SDN.2017.8169852
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/TNSM.2018.2846572
https://www.docker.com

Bibliography

[Drä+17] Sevil Dräxler et al. ‘SONATA: Service programming and orches-
tration for virtualized software networks’. In: 2017 IEEE Interna-
tional Conference on Communications Workshops (ICC Workshops).
IEEE. Paris, France, May 2017, pp. 973–978. doi: 10.1109/ICCW.
2017.7962785 (cit. on pp. 20, 22).

[Drä+18] Sevil Dräxler et al. ‘Generating Resource and Performance Mod-
els for Service Function Chains: The Video Streaming Case’. In:
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). IEEE. Montreal, QC, Canada, June 2018, pp. 318–322.
doi: 10.1109/NETSOFT.2018.8460029 (cit. on p. 130).

[DRP99] Elfriede Dustin, Jeff Rashka, and John Paul. Automated software
testing: introduction, management, and performance. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1999 (cit. on
pp. 102, 104, 105).

[DSK18] Sevil Dräxler, Stefan Schneider, and Holger Karl. ‘Scaling and
Placing Bidirectional Services with Stateful Virtual and Physical
Network Functions’. In: 2018 4th IEEE Conference on Network Soft-
warization and Workshops (NetSoft). IEEE. Montreal, QC, Canada,
June 2018, pp. 123–131. doi: 10.1109/NETSOFT.2018.8459915
(cit. on p. 130).

[DVC17] DVC project. DVC: Open-source Version Control System for Ma-
chine Learning Projects. 2017. url: https://dvc.org/ (visited on
05/02/2019) (cit. on p. 177).

[Ecl09] Eclipse Foundation. Eclipse Mosquitto: An open source MQTT broker.
2009. url: https://mosquitto.org/ (visited on 05/02/2019)
(cit. on pp. 166, 171).

[EMQ16] EMQ Technologies Co., Ltd. EMQ: Scalable and Realtime MQTT
Messaging for IoT in 5G Era. 2016. url: https://www.emqx.io/
(visited on 05/02/2019) (cit. on pp. 166, 171, 172).

[Enn06] Rob Enns. NETCONF Configuration Protocol. RFC 4741. IETF, 2006.
url: https://datatracker.ietf.org/doc/rfc4741/ (visited on
03/01/2019) (cit. on p. 12).

[Eri13] David Erickson. ‘The Beacon OpenFlow Controller’. In: Proceed-
ings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking (HotSDN). ACM. Hong Kong, China, Aug. 2013.
doi: 10.1145/2491185.2491189 (cit. on p. 13).

[ET 19] ET Labs. Emerging Threats Open Ruleset. 2019. url: https://
rules.emergingthreats.net/ (visited on 05/05/2019) (cit. on
p. 166).

203

https://doi.org/10.1109/ICCW.2017.7962785
https://doi.org/10.1109/ICCW.2017.7962785
https://doi.org/10.1109/NETSOFT.2018.8460029
https://doi.org/10.1109/NETSOFT.2018.8459915
https://dvc.org/
https://mosquitto.org/
https://www.emqx.io/
https://datatracker.ietf.org/doc/rfc4741/
https://doi.org/10.1145/2491185.2491189
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/

Bibliography

[ETS14a] ETSI. Mobile-Edge Computing. Sept. 2014. url: https://portal.
etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Compu

ting_-_Introductory_Technical_White_Paper_V1%2018-09-

14.pdf (visited on 02/15/2019) (cit. on pp. 23, 78).

[ETS14b] ETSI. NFV002v1.2.1: Network Functions Virtualisation (NFV): Archi-
tectural Framework. Dec. 2014. url: https://www.etsi.org/
deliver / etsi _ gs / nfv / 001 _ 099 / 002 / 01 . 02 . 01 _ 60 / gs _

nfv002v010201p.pdf (visited on 02/18/2019) (cit. on pp. 15,
16, 66, 103, 111).

[ETS15] ETSI. INF001v1.1.1: Network Functions Virtualisation (NFV); Infras-
tructure Overview. Aug. 2015. url: https://docbox.etsi.org/
ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-INF%

20001v1.1.1%20-%20GS%20-%20Infrastructure%20Overview.

pdf (visited on 02/28/2019) (cit. on p. 17).

[ETS16a] ETSI. IFA009v1.1.1: Network Functions Virtualisation (NFV); Manage-
ment and Orchestration; Report on Architectural Options. July 2016.
url: https://docbox.etsi.org/ISG/NFV/Open/Publications_
pdf/Specs- Reports/NFV- IFA%20009v1.1.1%20- %20GS%20-

%20MANO%20architectural%20options%20report.pdf (visited
on 02/28/2019) (cit. on pp. 17, 21).

[ETS16b] ETSI. TST001v1.1.1: Network Functions Virtualisation (NFV); Pre-
deployment Testing; Report on Validation of NFV Environments and
Services. Apr. 2016. url: https : / / www . etsi . org / deliver /
etsi _ gs / NFV - TST / 001 _ 099 / 001 / 01 . 01 . 01 _ 60 / gs _ NFV -

TST001v010101p.pdf (visited on 02/28/2019) (cit. on p. 131).

[ETS16c] ETSI OSM. Open Source MANO: Open Source NFV Management and
Orchestration (MANO) software stack aligned with ETSI NFV. 2016.
url: https://osm.etsi.org (visited on 12/06/2018) (cit. on
pp. 7, 19, 20, 22, 66, 108, 110, 116, 134, 138, 165).

[ETS17a] ETSI. NFV001v1.2.1: Network Functions Virtualisation (NFV); Use
Cases. 2017. url: https://docbox.etsi.org/ISG/NFV/Open/
Publications_pdf/Specs- Reports/NFV%20001v1.2.1%20-

%20GR%20-%20NFV%20Use%20Cases%20revision.pdf (visited on
02/28/2019) (cit. on p. 15).

[ETS17b] ETSI OSM. OSM vim-emu code repository. 2017. url: https://
osm . etsi . org / gitweb / ?p = osm / vim - emu . git; (visited on
05/21/2019) (cit. on pp. 63, 87, 101).

[ETS18a] ETSI. IFA007v3.1.1: Network Functions Virtualisation (NFV) Release
3; Management and Orchestration; Or-Vnfm reference point - Interface
and Information Model Specification. Aug. 2018. url: https://
docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-

Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%

204

https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-INF%20001v1.1.1%20-%20GS%20-%20Infrastructure%20Overview.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-INF%20001v1.1.1%20-%20GS%20-%20Infrastructure%20Overview.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-INF%20001v1.1.1%20-%20GS%20-%20Infrastructure%20Overview.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-INF%20001v1.1.1%20-%20GS%20-%20Infrastructure%20Overview.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20009v1.1.1%20-%20GS%20-%20MANO%20architectural%20options%20report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20009v1.1.1%20-%20GS%20-%20MANO%20architectural%20options%20report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20009v1.1.1%20-%20GS%20-%20MANO%20architectural%20options%20report.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://osm.etsi.org
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20001v1.2.1%20-%20GR%20-%20NFV%20Use%20Cases%20revision.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20001v1.2.1%20-%20GR%20-%20NFV%20Use%20Cases%20revision.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20001v1.2.1%20-%20GR%20-%20NFV%20Use%20Cases%20revision.pdf
https://osm.etsi.org/gitweb/?p=osm/vim-emu.git;
https://osm.etsi.org/gitweb/?p=osm/vim-emu.git;
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf

Bibliography

20ref%20point%20Spec.pdf (visited on 02/28/2019) (cit. on
pp. 18, 21).

[ETS18b] ETSI. IFA008v3.1.1: Network Functions Virtualisation (NFV) Release
3; Management and Orchestration; Ve-Vnfm reference point - Interface
and Information Model Specification. Aug. 2018. url: https://
docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-

Reports/NFV-IFA%20008v3.1.1%20-%20GS%20-%20Ve-Vnfm%

20ref%20point%20Spec.pdf (visited on 02/28/2019) (cit. on
pp. 18, 21).

[ETS18c] ETSI. IFA011v3.1.1: Network Functions Virtualisation (NFV) Release
3; Management and Orchestration; VNF Descriptor and Packaging
Specification. Aug. 2018. url: https://docbox.etsi.org/ISG/
NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20011v

3.1.1%20-%20GS%20-%20VNF%20Packaging%20Spec.pdf (visited
on 02/28/2019) (cit. on pp. 19, 138).

[ETS18d] ETSI. IFA014v3.1.1: Network Functions Virtualisation (NFV) Release
3; Management and Orchestration; Network Service Templates Specifica-
tion. Aug. 2018. url: https://docbox.etsi.org/ISG/NFV/Open/
Publications_pdf/Specs-Reports/NFV-IFA%20014v3.1.1%20-

%20GS%20-%20Network%20Service%20Templates%20Spec.pdf

(visited on 02/28/2019) (cit. on p. 19).

[ETS18e] ETSI. IFA015v3.1.1: Network Functions Virtualisation (NFV) Release
3; Management and Orchestration; Report on NFV Information Model.
Aug. 2018. url: https://docbox.etsi.org/ISG/NFV/Open
/ Publications _ pdf / Specs - Reports / NFV - IFA % 20015v3 . 1 .

1%20-%20GR%20-%20Info%20Model%20Report.pdf (visited on
03/05/2019) (cit. on p. 19).

[ETS18f] ETSI. SOL001v2.5.1: Network Functions Virtualisation (NFV) Release
2; Protocols and Data Models; NFV descriptors based on TOSCA spec-
ification. Dec. 2018. url: https://docbox.etsi.org/ISG/NFV/
Open/Publications_pdf/Specs-Reports/NFV-SOL%20001v2.

5.1%20-%20GS%20-%20TOSCA-based%20NFV%20descriptors%

20spec.pdf (visited on 02/28/2019) (cit. on p. 19).

[ETS18g] ETSI. SOL002v2.5.1: Network Functions Virtualisation (NFV) Release
2; Protocols and Data Models; RESTful protocols specification for the
Ve-Vnfm Reference Point. Dec. 2018. url: https://docbox.etsi.
org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-

SOL%20002v2.5.1%20- %20GS%20- %20Ve- Vnfm%20RESTful%

20protocols%20spec.pdf (visited on 02/28/2019) (cit. on p. 22).

[ETS18h] ETSI. SOL004v2.5.1: Network Functions Virtualisation (NFV) Release
2; Protocols and Data Models; VNF Package specification. Sept. 2018.
url: https://docbox.etsi.org/ISG/NFV/Open/Publicatio

205

https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20007v3.1.1%20-%20GS%20-%20Or-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20008v3.1.1%20-%20GS%20-%20Ve-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20008v3.1.1%20-%20GS%20-%20Ve-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20008v3.1.1%20-%20GS%20-%20Ve-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20008v3.1.1%20-%20GS%20-%20Ve-Vnfm%20ref%20point%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20011v3.1.1%20-%20GS%20-%20VNF%20Packaging%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20011v3.1.1%20-%20GS%20-%20VNF%20Packaging%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20011v3.1.1%20-%20GS%20-%20VNF%20Packaging%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20014v3.1.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20014v3.1.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20014v3.1.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20015v3.1.1%20-%20GR%20-%20Info%20Model%20Report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20015v3.1.1%20-%20GR%20-%20Info%20Model%20Report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA%20015v3.1.1%20-%20GR%20-%20Info%20Model%20Report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20001v2.5.1%20-%20GS%20-%20TOSCA-based%20NFV%20descriptors%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20001v2.5.1%20-%20GS%20-%20TOSCA-based%20NFV%20descriptors%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20001v2.5.1%20-%20GS%20-%20TOSCA-based%20NFV%20descriptors%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20001v2.5.1%20-%20GS%20-%20TOSCA-based%20NFV%20descriptors%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20002v2.5.1%20-%20GS%20-%20Ve-Vnfm%20RESTful%20protocols%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20002v2.5.1%20-%20GS%20-%20Ve-Vnfm%20RESTful%20protocols%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20002v2.5.1%20-%20GS%20-%20Ve-Vnfm%20RESTful%20protocols%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20002v2.5.1%20-%20GS%20-%20Ve-Vnfm%20RESTful%20protocols%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%20-%20VNF%20Package%20Stage%203%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%20-%20VNF%20Package%20Stage%203%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%20-%20VNF%20Package%20Stage%203%20spec.pdf

Bibliography

ns_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%

20-%20VNF%20Package%20Stage%203%20spec.pdf (visited on
02/28/2019) (cit. on pp. 19, 22).

[ETS18i] ETSI. SOL005v2.5.1: Network Functions Virtualisation (NFV) Release
2; Protocols and Data Models; RESTful protocols specification for the Os-
Ma-nfvo Reference Point. Sept. 2018. url: https://docbox.etsi.
org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-

SOL%20005v2.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs.pdf

(visited on 02/28/2019) (cit. on pp. 22, 107, 111).

[ETS18j] ETSI. TST008v3.1.1: Network Functions Virtualisation (NFV) Release
3; Testing; NFVI Compute and Network Metrics Specification. Aug.
2018. url: https://www.etsi.org/deliver/etsi_gs/NFV-
TST/001_099/008/03.01.01_60/gs_nfv-tst008v030101p.pdf

(visited on 02/28/2019) (cit. on p. 17).

[ETS18k] ETSI. TST009v3.1.1: Network Functions Virtualisation (NFV) Release
3; Testing; Specification of Networking Benchmarks and Measurement
Methods for NFVI. Oct. 2018. url: https : / / www . etsi . org /
deliver/etsi_gs/NFV-TST/001_099/009/03.01.01_60/gs_

NFV-TST009v030101p.pdf (visited on 02/28/2019) (cit. on p. 152).

[ETS18l] ETSI OSM. Open Source MANO Information Model. 2018. url:
https://osm.etsi.org/wikipub/index.php/OSM_Information

_Model (visited on 03/05/2019) (cit. on p. 19).

[ETS19] ETSI. ETSI - Welcome to the World of Standards. 2019. url: https:
//www.etsi.org/ (visited on 02/28/2019) (cit. on p. 22).

[Fay+14] Seyed Kaveh Fayazbakhsh et al. ‘Enforcing Network-wide Policies
in the Presence of Dynamic Middlebox Actions Using Flowtags’.
In: Proceedings of the 11th USENIX Conference on Networked Sys-
tems Design and Implementation. NSDI’14. Seattle, WA: USENIX
Association, 2014, pp. 533–546. isbn: 978-1-931971-09-6 (cit. on
p. 42).

[Fed18] Fed4Fire+ project consortium. Fed4Fire: The largest federation of
testbeds in europe. 2018. url: https://www.fed4fire.eu (visited
on 08/22/2019) (cit. on pp. 64, 105).

[Fra15] Frauenhofer Fokus. OpenBaton. 2015. url: http://openbaton.
github.io (visited on 02/22/2019) (cit. on p. 22).

[GA15] Aaron Gember-Jacobson and Aditya Akella. ‘Improving the Safety,
Scalability, and Efficiency of Network Function State Transfers’.
In: Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics
in Middleboxes and Network Function Virtualization. HotMiddlebox
’15. London, United Kingdom: ACM, 2015, pp. 43–48. isbn: 978-
1-4503-3540-9. doi: 10.1145/2785989.2785997 (cit. on pp. 29,
43).

206

https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%20-%20VNF%20Package%20Stage%203%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%20-%20VNF%20Package%20Stage%203%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%20-%20VNF%20Package%20Stage%203%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20004v2.5.1%20-%20GS%20-%20VNF%20Package%20Stage%203%20spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20005v2.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20005v2.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL%20005v2.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/008/03.01.01_60/gs_nfv-tst008v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/008/03.01.01_60/gs_nfv-tst008v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/009/03.01.01_60/gs_NFV-TST009v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/009/03.01.01_60/gs_NFV-TST009v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/009/03.01.01_60/gs_NFV-TST009v030101p.pdf
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://www.etsi.org/
https://www.etsi.org/
https://www.fed4fire.eu
http://openbaton.github.io
http://openbaton.github.io
https://doi.org/10.1145/2785989.2785997

Bibliography

[Gar+16] Jokin Garay et al. ‘Service description in the NFV revolution:
Trends, challenges and a way forward’. In: IEEE Communications
Magazine 54.3 (Mar. 2016), pp. 68–74. issn: 0163-6804. doi: 10.
1109/MCOM.2016.7432174 (cit. on p. 18).

[Gem+12] Aaron Gember-Jacobson et al. ‘Toward software-defined middle-
box networking’. In: Proceedings of the 11th ACM Workshop on Hot
Topics in Networks. ACM. New York, NY, USA, Oct. 2012, pp. 7–12.
doi: 10.1145/2390231.2390233 (cit. on p. 27).

[Gem+14] Aaron Gember-Jacobson et al. ‘OpenNF: Enabling Innovation
in Network Function Control’. In: SIGCOMM Comput. Commun.
Rev. 44.4 (Oct. 2014), pp. 163–174. issn: 0146-4833. doi: 10.1145/
2740070.2626313 (cit. on pp. 28, 29, 32, 38, 41, 43, 47, 51).

[Gia+15] Ioannis Giannakopoulos et al. ‘PANIC: modeling application per-
formance over virtualized resources’. In: 2015 IEEE International
Conference on Cloud Engineering (IC2E). IEEE. Tempe, AZ, USA,
Mar. 2015, pp. 213–218. doi: 10.1109/IC2E.2015.27 (cit. on
pp. 131, 152, 155).

[Git05] Git SCM Project. Git: Distributed is the new centralized. 2005. url:
https://git-scm.com/ (visited on 06/17/2019) (cit. on p. 177).

[Git19] GitHub, Inc. GitHub. 2019. url: https://github.com (visited on
06/17/2019) (cit. on p. 177).

[Gol04] Nikolai Golovchenko. Least-squares fit of a continuous piecewise lin-
ear function. Aug. 2004. url: https://www.golovchenko.org/doc
s/ContinuousPiecewiseLinearFit.pdf (visited on 07/25/2019)
(cit. on p. 173).

[Goo14] Google Inc. Google cAdvisor. 2014. url: https://github.com/
google/cadvisor (visited on 05/02/2019) (cit. on p. 165).

[GTK17] Ioannis Giannakopoulos, Dimitrios Tsoumakos, and Nectarios
Koziris. ‘A decision tree based approach towards adaptive model-
ing of big data applications’. In: 2017 IEEE International Conference
on Big Data (Big Data). IEEE. Boston, MA, USA, Dec. 2017, pp. 163–
172. doi: 10.1109/BigData.2017.8257924 (cit. on pp. 153, 161).

[HAP01] HAProxy project. HAProxy: The Reliable, High Performance TCP
/ HTTP Load Balancer. 2001. url: http://www.haproxy.org/
(visited on 05/02/2019) (cit. on pp. 166, 171).

[HB16] Juliver Gil Herrera and Juan Felipe Botero. ‘Resource Allocation in
NFV: A Comprehensive Survey’. In: IEEE Transactions on Network
and Service Management 13.3 (Sept. 2016), pp. 518–532. issn: 1932-
4537. doi: 10.1109/TNSM.2016.2598420 (cit. on p. 172).

207

https://doi.org/10.1109/MCOM.2016.7432174
https://doi.org/10.1109/MCOM.2016.7432174
https://doi.org/10.1145/2390231.2390233
https://doi.org/10.1145/2740070.2626313
https://doi.org/10.1145/2740070.2626313
https://doi.org/10.1109/IC2E.2015.27
https://git-scm.com/
https://github.com
https://www.golovchenko.org/docs/ContinuousPiecewiseLinearFit.pdf
https://www.golovchenko.org/docs/ContinuousPiecewiseLinearFit.pdf
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://doi.org/10.1109/BigData.2017.8257924
http://www.haproxy.org/
https://doi.org/10.1109/TNSM.2016.2598420

Bibliography

[Hen+08] Thomas R Henderson et al. ‘Network simulations with the ns-3
simulator’. In: SIGCOMM demonstration 14 (2008), p. 527 (cit. on
pp. 66, 91).

[HP15] Joel Halpern and Carlos Pignataro. Service Function Chaining (SFC)
Architecture. RFC 7665. IETF, 2015. url: https://datatracker.
ietf.org/doc/rfc7665/ (visited on 08/19/2019) (cit. on pp. 15,
89, 92–94, 97).

[Htt05] Httping project. Httping: Measure the lateceny and throughput of a
webserver. 2005. url: https://linux.die.net/man/1/httping
(visited on 05/02/2019) (cit. on p. 145).

[IEE17] IEEE 5G Initiative. 5G and Beyond Technology Roadmap. Oct. 2017.
url: https://futurenetworks.ieee.org/images/files/pdf/
ieee-5g-roadmap-white-paper.pdf (visited on 08/19/2019)
(cit. on pp. 1, 2).

[iMa15] iMatix. ZeroMQ Distributed Messaging. 2015. url: http://zeromq.
org (visited on 05/21/2019) (cit. on p. 34).

[Jen11] Jenkins Project. Jenkins: Build great things at scale. 2011. url: https:
//jenkins.io (visited on 08/22/2019) (cit. on pp. 107, 108).

[Joe13] Donald Eastlake amd Joe Abley. IANA Considerations and IETF
Protocol and Documentation Usage for IEEE 802 Parameters. RFC 7042.
IETF, 2013. url: https://datatracker.ietf.org/doc/rfc7042/
(visited on 08/19/2019) (cit. on p. 51).

[JTS08] Dilip A Joseph, Arsalan Tavakoli, and Ion Stoica. ‘A Policy-aware
Switching Layer for Data Centers’. In: ACM SIGCOMM Computer
Communication Review 38.4 (2008), pp. 51–62 (cit. on p. 42).

[Jun12] Juniper Networks. Contrail: SDN-enabled management and control
software for simplified service delivery. 2012. url: https://www.ju
niper.net/us/en/products-services/sdn/contrail/ (visited
on 01/31/2019) (cit. on p. 12).

[JV19] Charles F. Jekel and Gerhard Venter. pwlf: A Python Library for
Fitting 1D Continuous Piecewise Linear Functions. 2019. url: https:
//github.com/cjekel/piecewise_linear_fit_py (visited on
07/25/2019) (cit. on pp. 173, 174).

[KA00a] Fred Klassen and AppNeta. Tcpreplay - Pcap editing and replaying
utilities. 2000. url: https://tcpreplay.appneta.com/ (visited
on 08/05/2019) (cit. on p. 96).

[KA00b] Fred Klassen and AppNeta. Tcpreplay: Sample Captures. 2000. url:
http://tcpreplay.appneta.com/wiki/captures.html (visited
on 05/05/2019) (cit. on p. 166).

208

https://datatracker.ietf.org/doc/rfc7665/
https://datatracker.ietf.org/doc/rfc7665/
https://linux.die.net/man/1/httping
https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
http://zeromq.org
http://zeromq.org
https://jenkins.io
https://jenkins.io
https://datatracker.ietf.org/doc/rfc7042/
https://www.juniper.net/us/en/products-services/sdn/contrail/
https://www.juniper.net/us/en/products-services/sdn/contrail/
https://github.com/cjekel/piecewise_linear_fit_py
https://github.com/cjekel/piecewise_linear_fit_py
https://tcpreplay.appneta.com/
http://tcpreplay.appneta.com/wiki/captures.html

Bibliography

[Kam17] Johannes Kampmeyer. ‘A Hybrid Prototyping and Profiling Plat-
form for NFV and Cloud Services’. Master’s Thesis. Paderborn
University, 2017 (cit. on p. 70).

[Kar+16] Holger Karl et al. ‘DevOps for network function virtualisation:
an architectural approach’. In: Transactions on Emerging Telecom-
munications Technologies 27.9 (July 2016), pp. 1206–1215. doi: doi.
org/10.1002/ett.3084 (cit. on pp. 3, 64, 150, 164).

[Kat17] Kata Containers project. Kata Containers. 2017. url: https://
katacontainers.io/ (visited on 07/25/2019) (cit. on p. 184).

[KDS15] Babu Kothandaraman, Manxing Du, and Pontus Sköldström.
‘Centrally Controlled Distributed VNF State Management’. In:
Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics in
Middleboxes and Network Function Virtualization. ACM. New York,
NY, USA, Aug. 2015, pp. 37–42. doi: 10.1145/2785989.2785996
(cit. on pp. 29, 43).

[Kha+18] Michel Gokan Khan et al. ‘NFV-Inspector: A Systematic Approach
to Profile and Analyze Virtual Network Functions’. In: 2018 IEEE
7th International Conference on Cloud Networking (CloudNet). IEEE.
Tokyo, Japan, Oct. 2018, pp. 1–7. doi: 10.1109/CloudNet.2018.
8549333 (cit. on pp. 131, 164, 165).

[Kim+15] Juhoon Kim et al. ‘Service provider DevOps for large scale mod-
ern network services’. In: 2015 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM). IEEE. Ottawa, ON,
Canada, May 2015, pp. 1391–1397. doi: 10.1109/INM.2015.
7140502 (cit. on pp. 3, 127).

[Kni+11] Simon Knight et al. ‘The Internet Topology Zoo’. In: IEEE Journal
on Selected Areas in Communications 29.9 (Sept. 2011), pp. 1765–
1775. issn: 0733-8716. doi: 10.1109/JSAC.2011.111002 (cit. on
pp. 74, 76, 109, 117, 164).

[Koh+00] Eddie Kohler et al. ‘The Click modular router’. In: ACM Transac-
tions on Computer Systems (TOCS) 18.3 (Aug. 2000), pp. 263–297.
doi: 10.1145/354871.354874 (cit. on p. 67).

[Kou+18] Hadi Razzashi Kouchaksaraei et al. ‘Programmable and Flexible
Management and Orchestration of Virtualized Network Func-
tions’. In: 2018 European Conference on Networks and Communi-
cations (EuCNC). Ljubljana, Slovenia, Slovenia: IEEE, June 2018,
pp. 1–9. doi: 10.1109/EuCNC.2018.8442528 (cit. on p. 102).

[KP18] Hannes Küttner and Manuel Peuster. SHarP prototype repository.
2018. url: https://github.com/CN- UPB/sharp (visited on
05/21/2019) (cit. on p. 53).

209

https://doi.org/doi.org/10.1002/ett.3084
https://doi.org/doi.org/10.1002/ett.3084
https://katacontainers.io/
https://katacontainers.io/
https://doi.org/10.1145/2785989.2785996
https://doi.org/10.1109/CloudNet.2018.8549333
https://doi.org/10.1109/CloudNet.2018.8549333
https://doi.org/10.1109/INM.2015.7140502
https://doi.org/10.1109/INM.2015.7140502
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/354871.354874
https://doi.org/10.1109/EuCNC.2018.8442528
https://github.com/CN-UPB/sharp

Bibliography

[KRP13] Matthias Keller, Christoph Robbert, and Manuel Peuster. ‘An
Evaluation Testbed for Adaptive, Topology-aware Deployment of
Elastic Applications’. In: ACM SIGCOMM Computer Communica-
tion Review. Vol. 43. 4. Hong Kong, China: ACM, 2013, pp. 469–
470. isbn: 978-1-4503-2056-6 (cit. on pp. 67, 68, 105).

[Küt17] Hannes Küttner. ‘Seamless SDN-based handover for virtualized
network functions’. Bachelor’s Thesis. Paderborn University, 2017

(cit. on pp. 8, 41, 45, 49, 51, 53, 54, 56, 57, 59).

[Lam78] Leslie Lamport. ‘Time, clocks, and the ordering of events in a
distributed system’. In: Communications of the ACM 21.7 (July
1978), pp. 558–565. doi: 10.1145/359545.359563 (cit. on p. 32).

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. ‘A network in
a laptop: rapid prototyping for software-defined networks’. In:
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks. ACM. New York, NY, USA, Oct. 2010. doi: 10.1145/
1868447.1868466 (cit. on pp. 35, 66, 68, 91, 98, 106).

[Lin12] Linux Foundation. Prometheus Time Series Database. 2012. url:
https://prometheus.io/ (visited on 05/02/2019) (cit. on p. 165).

[Lin14a] Linux Foundation. Kubernetes: Production-Grade Container Orches-
tration. 2014. url: https://kubernetes.io/ (visited on 03/01/2019)
(cit. on p. 24).

[Lin14b] Linux Foundation. Open Network Operating System (ONOS). 2014.
url: https://onosproject.org/ (visited on 02/15/2019) (cit. on
pp. 12, 13, 23).

[Lin16] Linux Foundation. OPNFV Project. 2016. url: https : / / www .
opnfv.org (visited on 08/22/2019) (cit. on pp. 23, 105).

[Lin17] Linux Foundation. Data Plane Development Kit (DPDK). 2017. url:
http://dpdk.org (visited on 03/01/2019) (cit. on pp. 23, 47, 53,
183).

[Lin18a] Linux Foundation. ONAP: Open Network Automation Platform.
2018. url: https://www.onap.org (visited on 12/06/2018) (cit.
on pp. 19, 22, 120).

[Lin18b] Linux man-pages project. Linux Programmer’s Manual: veth(4) -
Virtual Ethernet Device. 2018. url: http://man7.org/linux/man-
pages/man4/veth.4.html (visited on 03/08/2019) (cit. on p. 69).

[Liu+17] Junjie Liu et al. ‘On Dynamic Service Function Chain Deployment
and Readjustment’. In: IEEE Transactions on Network and Service
Management 14.3 (June 2017), pp. 543–553. doi: 10.1109/TNSM.
2017.2711610 (cit. on p. 90).

210

https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://prometheus.io/
https://kubernetes.io/
https://onosproject.org/
https://www.opnfv.org
https://www.opnfv.org
http://dpdk.org
https://www.onap.org
http://man7.org/linux/man-pages/man4/veth.4.html
http://man7.org/linux/man-pages/man4/veth.4.html
https://doi.org/10.1109/TNSM.2017.2711610
https://doi.org/10.1109/TNSM.2017.2711610

Bibliography

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large
Network Dataset Collection. June 2014. url: http://snap.stanfor
d.edu/data (visited on 05/02/2019) (cit. on p. 164).

[LLJ14] Jiaqiang Liu, Yong Li, and Depeng Jin. ‘SDN-based Live VM
Migration Across Datacenters’. In: ACM SIGCOMM Computer
Communication Review. Vol. 44. 4. Chicago, Illinois, USA: ACM,
2014, pp. 583–584. isbn: 978-1-4503-2836-4. doi: 10.1145/2619239.
2631431 (cit. on p. 43).

[Maa+11] Andrew L. Maas et al. ‘Learning Word Vectors for Sentiment Anal-
ysis’. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies. Portland,
Oregon, USA: Association for Computational Linguistics, June
2011, pp. 142–150 (cit. on p. 164).

[Mal13] Malaria Project. Malaria: Attacking MQTT systems with Mosquit-
tos. 2013. url: https://github.com/etactica/mqtt-malaria
(visited on 05/02/2019) (cit. on p. 166).

[Mar+14] Joao Martins et al. ‘ClickOS and the Art of Network Function
Virtualization’. In: Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation. NSDI’14. Seattle,
WA: USENIX Association, 2014, pp. 459–473. isbn: 978-1-931971-
09-6 (cit. on p. 67).

[May+17] Ruben Mayer et al. ‘FogStore: toward a distributed data store for
fog computing’. In: 2017 IEEE Fog World Congress (FWC). IEEE.
Santa Clara, CA, USA, May 2017, pp. 1–6. doi: 10.1109/FWC.
2017.8368524 (cit. on p. 43).

[McC96] Steve McConnell. ‘Daily build and smoke test’. In: IEEE Software
13.4 (July 1996), pp. 144–143. doi: 10.1109/MS.1996.10017 (cit.
on p. 104).

[MCG15] Lefteris Mamatas, Stuart Clayman, and Alex Galis. ‘A service-
aware virtualized software-defined infrastructure’. In: IEEE Com-
munications Magazine 53.4 (Apr. 2015), pp. 166–174. doi: 10.1109/
MCOM.2015.7081091 (cit. on pp. 66, 68, 91, 106).

[McK+08] Nick McKeown et al. ‘OpenFlow: Enabling Innovation in Campus
Networks’. In: SIGCOMM Comput. Commun. Rev. 38.2 (Apr. 2008),
pp. 69–74. issn: 0146-4833. doi: 10.1145/1355734.1355746 (cit.
on pp. 12, 92).

[Med+16] Ahmed M Medhat et al. ‘Resilient Orchestration of Service Func-
tions Chains in a NFV Environment’. In: 2016 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE. Palo Alto, CA, USA, Nov. 2016. doi: 10.1109/NFV-
SDN.2016.7919468 (cit. on p. 90).

211

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/2619239.2631431
https://doi.org/10.1145/2619239.2631431
https://github.com/etactica/mqtt-malaria
https://doi.org/10.1109/FWC.2017.8368524
https://doi.org/10.1109/FWC.2017.8368524
https://doi.org/10.1109/MS.1996.10017
https://doi.org/10.1109/MCOM.2015.7081091
https://doi.org/10.1109/MCOM.2015.7081091
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/NFV-SDN.2016.7919468
https://doi.org/10.1109/NFV-SDN.2016.7919468

Bibliography

[Med+17] Ahmed M Medhat et al. ‘Service Function Chaining in Next
Generation Networks: State of the Art and Research Challenges’.
In: IEEE Communications Magazine 55.2 (Oct. 2017), pp. 216–223.
doi: 10.1109/MCOM.2016.1600219RP (cit. on p. 89).

[Mia+17] Jie Miao et al. Zero-touch Network and Service Management. Dec.
2017. url: https://portal.etsi.org/TBSiteMap/ZSM/Operato
rWhitePaper (visited on 05/02/2019) (cit. on pp. 163, 164).

[Mij+17] Rashid Mijumbi et al. ‘Topology-Aware Prediction of Virtual
Network Function Resource Requirements’. In: IEEE Transactions
on Network and Service Management 14.1 (Mar. 2017), pp. 106–
120. issn: 1932-4537. doi: 10.1109/TNSM.2017.2666781 (cit. on
pp. 163, 164).

[MKK14] Sevil Mehraghdam, Matthias Keller, and Holger Karl. ‘Specifying
and Placing Chains of Virtual Network Functions’. In: 2014 IEEE
3rd International Conference on Cloud Networking (CloudNet). IEEE.
Luxembourg, Luxembourg, Dec. 2014, pp. 7–13. doi: 10.1109/
CloudNet.2014.6968961 (cit. on pp. 20, 101, 172).

[Mor+19a] Daniele Moro et al. ‘Demonstrating FOP4: A Flexible Platform to
Prototype NFV Offloading Scenarios’. In: 2019 IEEE Conference
on Network Function Virtualization and Software Defined Network
(NFV-SDN). IEEE. Dallas, Texas, USA, Nov. 2019 (cit. on p. 67).

[Mor+19b] Daniele Moro et al. ‘FOP4: Function Offloading Prototyping in
Heterogeneous and Programmable Network Scenarios’. In: 2019
IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN). IEEE. Dallas, Texas, USA, 2019 (cit.
on pp. 67, 182).

[Mor17] Al Morton. Considerations for Benchmarking Virtual Network Func-
tions and Their Infrastructure. RFC 8172. IETF, July 2017. url:
https://datatracker.ietf.org/doc/rfc8172/ (visited on
08/19/2019) (cit. on pp. 4, 126, 131).

[Nau+16] Bram Naudts et al. ‘Deploying SDN and NFV at the speed of
innovation: toward a new bond between standards development
organizations, industry fora, and open-source software projects’.
In: IEEE Communications Magazine 54.3 (Mar. 2016), pp. 46–53.
issn: 0163-6804. doi: 10.1109/MCOM.2016.7432171 (cit. on p. 14).

[Neu19] Heidi Neuhäuser. ‘Using Machine Learning to Optimize Time-
Constrained Network Service Profiling’. Bachelor’s Thesis. Pader-
born University, 2019 (cit. on pp. 153, 161, 184).

[NGI04] NGINX Inc. NGINX: High Performance Load Balancer, Web Server,
Reverse Proxy. 2004. url: https://www.nginx.com/ (visited on
05/02/2019) (cit. on pp. 139, 157, 166, 171).

212

https://doi.org/10.1109/MCOM.2016.1600219RP
https://portal.etsi.org/TBSiteMap/ZSM/OperatorWhitePaper
https://portal.etsi.org/TBSiteMap/ZSM/OperatorWhitePaper
https://doi.org/10.1109/TNSM.2017.2666781
https://doi.org/10.1109/CloudNet.2014.6968961
https://doi.org/10.1109/CloudNet.2014.6968961
https://datatracker.ietf.org/doc/rfc8172/
https://doi.org/10.1109/MCOM.2016.7432171
https://www.nginx.com/

Bibliography

[Ngu+19] Tri Gia Nguyen et al. ‘SeArch: A Collaborative and Intelligent
NIDS Architecture for SDN-Based Cloud IoT Networks’. In: IEEE
Access 7 (2019), pp. 107678–107694. issn: 2169-3536. doi: 10.1109/
ACCESS.2019.2932438 (cit. on p. 182).

[NL17] Thuy Linh Nguyen and Adrien Lebre. ‘Virtual Machine Boot
Time Model’. In: 2017 25th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP). IEEE. St.
Petersburg, Russia, Apr. 2017, pp. 430–437. doi: 10.1109/PDP.
2017.58 (cit. on pp. 150, 151).

[Nob+17] Leonhard Nobach et al. ‘Statelet-Based Efficient and Seamless
NFV State Transfer’. In: IEEE Transactions on Network and Service
Management PP.99 (Oct. 2017), pp. 1–1. issn: 1932-4537. doi: 10.
1109/TNSM.2017.2760107 (cit. on pp. 29, 43).

[NSS18] Jaehyun Nam, Junsik Seo, and Seungwon Shin. ‘Probius: Auto-
mated Approach for VNF and Service Chain Analysis in Software-
Defined NFV’. In: Proceedings of the Symposium on SDN Research.
SOSR ’18. Los Angeles, CA, USA: ACM, Mar. 2018, 14:1–14:13.
isbn: 978-1-4503-5664-0. doi: 10.1145/3185467.3185495 (cit. on
pp. 152, 154, 164).

[Oas13] Oasis TOSCA. TOSCA Topology and Orchestration Specification for
Cloud Applications Version 1.0. Nov. 2013. url: http://docs.
oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html (visited
on 03/05/2019) (cit. on p. 19).

[Oas16] Oasis TOSCA. TOSCA Simple Profile for Network Functions Virtu-
alization (NFV) Version 1.0. Mar. 2016. url: http://docs.oasis-
open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-

csd03.html (visited on 03/05/2019) (cit. on p. 19).

[OIS09] Open Information Security Foundation (OISF). Suricata: Open
Source IDS / IPS / NSM engine. 2009. url: https://suricata-
ids.org/ (visited on 05/02/2019) (cit. on pp. 166, 171).

[OMN05] OMNeT++ Project. OMNeT++ Discrete Event Simulator. 2005. url:
https://omnetpp.org (visited on 12/07/2018) (cit. on p. 137).

[Ope10a] OpenStack Foundation. DevStack. 2010. url: https://docs.ope
nstack.org/devstack/latest/ (visited on 05/16/2019) (cit. on
pp. 67, 68, 113).

[Ope10b] OpenStack Foundation. OpenStack. 2010. url: https://www.ope
nstack.org/ (visited on 02/15/2019) (cit. on pp. 12, 23, 75, 108,
110).

[Ope10c] OpenStack Foundation. OpenStack Compute (Nova). 2010. url:
https://docs.openstack.org/nova/ (visited on 03/19/2019)
(cit. on p. 70).

213

https://doi.org/10.1109/ACCESS.2019.2932438
https://doi.org/10.1109/ACCESS.2019.2932438
https://doi.org/10.1109/PDP.2017.58
https://doi.org/10.1109/PDP.2017.58
https://doi.org/10.1109/TNSM.2017.2760107
https://doi.org/10.1109/TNSM.2017.2760107
https://doi.org/10.1145/3185467.3185495
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.html
https://suricata-ids.org/
https://suricata-ids.org/
https://omnetpp.org
https://docs.openstack.org/devstack/latest/
https://docs.openstack.org/devstack/latest/
https://www.openstack.org/
https://www.openstack.org/
https://docs.openstack.org/nova/

Bibliography

[Ope10d] OpenStack Foundation. OpenStack Orchestration (Heat). 2010. url:
https://docs.openstack.org/heat/ (visited on 03/19/2019)
(cit. on p. 131).

[Ope11] Open Networking Foundation (ONF). OpenFlow Switch Specifica-
tion Version 1.2. Dec. 2011. url: https://www.opennetworking.
org/wp-content/uploads/2014/10/openflow-spec-v1.2.pdf

(visited on 04/10/2019) (cit. on p. 92).

[Ope12] Open Networking Foundation (ONF). Software-Defined Network-
ing: The New Norm for Networks. Apr. 2012. url: https : / / w

ww.opennetworking.org/images/stories/downloads/sdn-

resources/white- papers/wp- sdn- newnorm.pdf (visited on
02/13/2019) (cit. on pp. 11, 12).

[Ope16] OpenStack Foundation. OpenStack Nova Scaling Guide. 2016. url:
https://docs.openstack.org/operations-guide/ops-capa

city-planning-scaling.html (visited on 08/22/2019) (cit. on
p. 82).

[Ope17] OpenStack Foundation. OpenStack Container Infrastructure Man-
agement service (Magnum). 2017. url: https://wiki.openstack.
org/wiki/Magnum (visited on 02/15/2019) (cit. on p. 24).

[Ope18] OpenStack Foundation. OpenStack Neutron SFC. 2018. url: https:
//docs.openstack.org/newton/networking-guide/config-

sfc.html (visited on 08/22/2019) (cit. on p. 95).

[OR12] Vladimir Andrei Olteanu and Costin Raiciu. ‘Efficiently migrat-
ing stateful middleboxes’. In: ACM SIGCOMM Computer Com-
munication Review. Vol. 42. 4. ACM. Oct. 2012, pp. 93–94. doi:
10.1145/2377677.2377697 (cit. on pp. 28, 29).

[Orl+10] Sebastian Orlowski et al. ‘SNDlib 1.0—Survivable Network De-
sign Library’. In: Networks 55.3 (Oct. 2010), pp. 276–286. doi:
10.1002/net.20371 (cit. on p. 164).

[Par+18] Carlos Parada et al. ‘5GTAGNO: A Beyond-Mano Service Plat-
form’. In: 2018 European Conference on Networks and Communi-
cations (EuCNC). IEEE. Ljubljana, Slovenia, Slovenia, June 2018,
pp. 26–30. doi: 10.1109/EuCNC.2018.8443232 (cit. on pp. 19,
102).

[Pel+15] István Pelle et al. ‘One Tool to Rule Them All: A Modular Trou-
bleshooting Framework for SDN (and Other) Networks’. In: Pro-
ceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. SOSR ’15. Santa Clara, California: ACM, June
2015, 24:1–24:7. isbn: 978-1-4503-3451-8. doi: 10.1145/2774993.
2775014 (cit. on pp. 66, 91).

214

https://docs.openstack.org/heat/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.2.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://docs.openstack.org/operations-guide/ops-capacity-planning-scaling.html
https://docs.openstack.org/operations-guide/ops-capacity-planning-scaling.html
https://wiki.openstack.org/wiki/Magnum
https://wiki.openstack.org/wiki/Magnum
https://docs.openstack.org/newton/networking-guide/config-sfc.html
https://docs.openstack.org/newton/networking-guide/config-sfc.html
https://docs.openstack.org/newton/networking-guide/config-sfc.html
https://doi.org/10.1145/2377677.2377697
https://doi.org/10.1002/net.20371
https://doi.org/10.1109/EuCNC.2018.8443232
https://doi.org/10.1145/2774993.2775014
https://doi.org/10.1145/2774993.2775014

Bibliography

[Peu+17] Manuel Peuster et al. ‘A flexible multi-pop infrastructure emula-
tor for carrier-grade MANO systems’. In: 2017 3rd IEEE Conference
on Network Softwarization and Workshops (NetSoft). IEEE. Bologna,
Italy, July 2017, pp. 1–3. doi: 10.1109/NETSOFT.2017.8004250
(cit. on pp. 5, 75).

[Peu+18a] Manuel Peuster et al. ‘A Prototyping Platform to Validate and
Verify Network Service Header-based Service Chains’. In: 2018
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE. Verona, Italy, Italy, Nov. 2018,
pp. 1–5. doi: 10.1109/NFV-SDN.2018.8725614 (cit. on pp. 6, 9,
89, 90).

[Peu+18b] Manuel Peuster et al. ‘Emulation-based Smoke Testing of NFV
Orchestrators in Large Multi-PoP Environments’. In: 2018 Euro-
pean Conference on Networks and Communications (EuCNC). IEEE.
Ljubljana, Slovenia, Slovenia, June 2018, pp. 1–9. doi: 10.1109/
EuCNC.2018.8442701 (cit. on pp. 6, 9, 74, 91, 101, 113).

[Peu+19a] Manuel Peuster et al. ‘Automated testing of NFV orchestrators
against carrier-grade multi-PoP scenarios using emulation-based
smoke testing’. In: EURASIP Journal on Wireless Communications
and Networking 2019.1 (June 2019), p. 172. issn: 1687-1499. doi:
10.1186/s13638-019-1493-2 (cit. on pp. 6, 9, 101).

[Peu+19b] Manuel Peuster et al. ‘Introducing Automated Verification and
Validation for Virtualized Network Functions and Services’. In:
IEEE Communications Magazine 57.5 (May 2019), pp. 96–102. issn:
0163-6804. doi: 10.1109/MCOM.2019.1800873 (cit. on pp. 7, 105,
139, 147).

[Peu+19c] Manuel Peuster et al. ‘Joint testing and profiling of microservice-
based network services using TTCN-3’. In: ICT Express 5.2 (June
2019), pp. 150–153. issn: 2405-9595. doi: https://doi.org/10.
1016/j.icte.2019.02.001 (cit. on p. 7).

[Peu+19d] Manuel Peuster et al. ‘Prototyping and Demonstrating 5G Ver-
ticals: The Smart Manufacturing Case’. In: 2019 IEEE Conference
on Network Softwarization (NetSoft). IEEE. Paris, France, June 2019,
pp. 236–238. doi: 10.1109/NETSOFT.2019.8806685 (cit. on pp. 6,
75, 101).

[Peu15] Manuel Peuster. E-State prototype repository. 2015. url: https:
//github.com/mpeuster/estate (visited on 05/21/2019) (cit. on
p. 34).

[Peu16] Manuel Peuster. Containernet a Mininet Fork adding Container Sup-
port to Network Emulations. 2016. url: https://containernet.
github.io (visited on 03/06/2019) (cit. on pp. 7, 53, 63, 68, 69,
98, 109, 181).

215

https://doi.org/10.1109/NETSOFT.2017.8004250
https://doi.org/10.1109/NFV-SDN.2018.8725614
https://doi.org/10.1109/EuCNC.2018.8442701
https://doi.org/10.1109/EuCNC.2018.8442701
https://doi.org/10.1186/s13638-019-1493-2
https://doi.org/10.1109/MCOM.2019.1800873
https://doi.org/https://doi.org/10.1016/j.icte.2019.02.001
https://doi.org/https://doi.org/10.1016/j.icte.2019.02.001
https://doi.org/10.1109/NETSOFT.2019.8806685
https://github.com/mpeuster/estate
https://github.com/mpeuster/estate
https://containernet.github.io
https://containernet.github.io

Bibliography

[Peu17] Manuel Peuster. OSM vim-emu documentation. 2017. url: https:
//osm.etsi.org/wikipub/index.php/VIM_emulator (visited on
05/21/2019) (cit. on pp. 7, 72, 165).

[Peu18a] Manuel Peuster. ETSI NFV SOL005 Test Suite. 2018. url: https://
github.com/mpeuster/etsi-nfv-sol005-test-suite (visited
on 08/22/2019) (cit. on p. 111).

[Peu18b] Manuel Peuster. nfv-t-cp: NFV Time-Constrained Profiling Frame-
work. 2018. url: https://github.com/CN-UPB/nfv-t-cp (visited
on 08/22/2019) (cit. on pp. 149, 157, 161).

[Peu18c] Manuel Peuster. tng-bench: Automated Benchmarking of NFV Sce-
narios. 2018. url: https://github.com/sonata-nfv/tng-sdk-
benchmark (visited on 12/06/2018) (cit. on pp. 125, 169).

[PK16a] Manuel Peuster and Holger Karl. ‘E-State: Distributed state man-
agement in elastic network function deployments’. In: 2016 2nd
IEEE Conference on Network Softwarization and Workshops (NetSoft).
IEEE. Seoul, South Korea, June 2016, pp. 6–10. doi: 10.1109/
NETSOFT.2016.7502432 (cit. on pp. 5, 8, 27, 30, 43, 45).

[PK16b] Manuel Peuster and Holger Karl. ‘Understand Your Chains: To-
wards Performance Profile-Based Network Service Management’.
In: 2016 Fifth European Workshop on Software-Defined Networks
(EWSDN). IEEE. The Hague, Netherlands, Oct. 2016, pp. 7–12.
doi: 10.1109/EWSDN.2016.9 (cit. on pp. 6, 9, 125, 127, 131, 140,
164, 169).

[PK17] Manuel Peuster and Holger Karl. ‘Profile your chains, not func-
tions: Automated network service profiling in DevOps environ-
ments’. In: 2017 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). IEEE. Berlin, Germany,
Nov. 2017, pp. 1–6. doi: 10.1109/NFV-SDN.2017.8169826 (cit. on
pp. 6, 9, 105, 125, 151, 152, 154, 157, 164, 169).

[PK18] Manuel Peuster and Holger Karl. ‘Understand Your Chains and
Keep Your Deadlines: Introducing Time-constrained Profiling for
NFV’. In: 2018 IEEE/IFIP 14th International Conference on Network
and Service Management (CNSM). IEEE. Rome, Italy, Nov. 2018,
pp. 240–246 (cit. on pp. 6, 9, 149, 160).

[PKK18a] Manuel Peuster, Johannes Kampmeyer, and Holger Karl. ‘Con-
tainernet 2.0: A Rapid Prototyping Platform for Hybrid Service
Function Chains’. In: 2018 4th IEEE Conference on Network Soft-
warization and Workshops (NetSoft). IEEE. Montreal, QC, Canada,
June 2018, pp. 335–337. doi: 10.1109/NETSOFT.2018.8459905
(cit. on pp. 6, 70, 184).

216

https://osm.etsi.org/wikipub/index.php/VIM_emulator
https://osm.etsi.org/wikipub/index.php/VIM_emulator
https://github.com/mpeuster/etsi-nfv-sol005-test-suite
https://github.com/mpeuster/etsi-nfv-sol005-test-suite
https://github.com/CN-UPB/nfv-t-cp
https://github.com/sonata-nfv/tng-sdk-benchmark
https://github.com/sonata-nfv/tng-sdk-benchmark
https://doi.org/10.1109/NETSOFT.2016.7502432
https://doi.org/10.1109/NETSOFT.2016.7502432
https://doi.org/10.1109/EWSDN.2016.9
https://doi.org/10.1109/NFV-SDN.2017.8169826
https://doi.org/10.1109/NETSOFT.2018.8459905

Bibliography

[PKK18b] Manuel Peuster, Hannes Küttner, and Holger Karl. ‘Let the state
follow its flows: An SDN-based flow handover protocol to support
state migration’. In: 2018 4th IEEE Conference on Network Softwariza-
tion and Workshops (NetSoft). IEEE. Montreal, QC, Canada, June
2018, pp. 97–104. doi: 10.1109/NETSOFT.2018.8460007 (cit. on
pp. 5, 8, 41).

[PKK19] Manuel Peuster, Hannes Küttner, and Holger Karl. ‘A flow han-
dover protocol to support state migration in softwarized net-
works’. In: International Journal of Network Management 29.4 (Apr.
2019), e2067. doi: 10.1002/nem.2067 (cit. on pp. 5, 8, 41, 50, 52).

[PKV16] Manuel Peuster, Holger Karl, and Steven Van Rossem. ‘MeDICINE:
Rapid prototyping of production-ready network services in multi-
PoP environments’. In: 2016 IEEE Conference on Network Func-
tion Virtualization and Software Defined Networks (NFV-SDN). IEEE.
Palo Alto, CA, USA, Nov. 2016, pp. 148–153. doi: 10.1109/NFV-
SDN.2016.7919490 (cit. on pp. 5, 8, 63, 66, 68, 109, 140, 165, 169).

[Pon+19] Salvatore Pontarelli et al. ‘Flowblaze: stateful packet processing
in hardware’. In: Proceedings of the 16th USENIX Conference on
Networked Systems Design and Implementation. USENIX Association.
Boston, MA, USA, Feb. 2019, pp. 531–547 (cit. on p. 30).

[Pro11] Project Floodlight. Project Floodlight. 2011. url: http : / / www .
projectfloodlight.org (visited on 02/15/2019) (cit. on p. 13).

[PSK19a] Manuel Peuster, Stefan Schneider, and Holger Karl. Softwarised
Network Data Zoo. 2019. url: https://sndzoo.github.io (visited
on 05/05/2019) (cit. on pp. 7, 163, 167–169, 177).

[PSK19b] Manuel Peuster, Stefan Schneider, and Holger Karl. ‘The Soft-
warised Network Data Zoo’. In: 2019 IEEE/IFIP 15th International
Conference on Network and Service Management (CNSM). IEEE. Hal-
ifax, Canada, Oct. 2019 (cit. on pp. 5, 7, 10, 163).

[Qaz+13] Zafar Ayyub Qazi et al. ‘SIMPLE-fying Middlebox Policy Enforce-
ment Using SDN’. In: SIGCOMM Comput. Commun. Rev. 43.4 (Oct.
2013), pp. 27–38. issn: 0146-4833. doi: 10.1145/2534169.2486022
(cit. on p. 42).

[QEP18] Paul Quinn, Uri Elzur, and Carlos Pignataro. Network Service
Header (NSH). RFC 8300. IETF, 2018. url: https://datatracker.
ietf.org/doc/rfc8300/ (visited on 08/19/2019) (cit. on pp. 76,
89, 92, 93, 96).

[QG14] Paul Quinn and Jim Guichard. ‘Service Function Chaining: Cre-
ating a Service Plane via Network Service Headers’. In: IEEE
Computer 47.11 (Nov. 2014), pp. 38–44. doi: 10.1109/MC.2014.328
(cit. on p. 89).

217

https://doi.org/10.1109/NETSOFT.2018.8460007
https://doi.org/10.1002/nem.2067
https://doi.org/10.1109/NFV-SDN.2016.7919490
https://doi.org/10.1109/NFV-SDN.2016.7919490
http://www.projectfloodlight.org
http://www.projectfloodlight.org
https://sndzoo.github.io
https://doi.org/10.1145/2534169.2486022
https://datatracker.ietf.org/doc/rfc8300/
https://datatracker.ietf.org/doc/rfc8300/
https://doi.org/10.1109/MC.2014.328

Bibliography

[QN15] Paul Quinn and Thomas Nadeau. Problem Statement for Service
Function Chaining. RFC 7498. IETF, 2015. url: https://datatra
cker.ietf.org/doc/rfc7498/ (visited on 08/19/2019) (cit. on
pp. 15, 89).

[Raj+13] Shriram Rajagopalan et al. ‘Split/Merge: System Support for Elas-
tic Execution in Virtual Middleboxes’. In: Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implemen-
tation. NSDI’13. Lombard, IL: USENIX Association, Apr. 2013,
pp. 227–240 (cit. on pp. 27–29, 31, 32, 37, 38, 41–43).

[RBB16] Varun S Reddy, Andreas Baumgartner, and Thomas Bauschert.
‘Robust embedding of VNF/service chains with delay bounds’.
In: 2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). IEEE. Palo Alto, CA, USA,
Nov. 2016, pp. 93–99. doi: 10.1109/NFV- SDN.2016.7919482
(cit. on p. 172).

[RBR17] Raphael Vicente Rosa, Claudio Bertoldo, and Christian Esteve
Rothenberg. ‘Take Your VNF to the Gym: A Testing Framework
for Automated NFV Performance Benchmarking’. In: IEEE Com-
munications Magazine 55.9 (Sept. 2017), pp. 110–117. issn: 0163-
6804. doi: 10.1109/MCOM.2017.1700127 (cit. on pp. 105, 131, 132,
152, 154, 164, 165).

[Red15] Redislabs. Redis in-memory store. 2015. url: http://redis.io
(visited on 05/21/2019) (cit. on pp. 30, 36).

[Rie+16] Jordi Ferrer Riera et al. ‘TeNOR: Steps towards an orchestration
platform for multi-PoP NFV deployment’. In: 2016 IEEE NetSoft
Conference and Workshops (NetSoft). IEEE. Seoul, South Korea, June
2016, pp. 243–250. doi: 10.1109/NETSOFT.2016.7502419 (cit. on
p. 22).

[RIF16] RIFT.io. RIFT.ware. 2016. url: https://riftio.com/ (visited on
02/22/2019) (cit. on p. 22).

[Ros+18] Raphael Vicente Rosa et al. Methodology for VNF Benchmarking
Automation. Internet-Draft. IETF, July 2018. url: https://datatr
acker.ietf.org/doc/draft-rosa-bmwg-vnfbench/ (visited on
08/19/2019) (cit. on pp. 7, 132, 148, 152, 182, 185).

[RRS15] Raphael Vicente Rosa, Christian Esteve Rothenberg, and Robert
Szabo. ‘VBaaS: VNF benchmark-as-a-service’. In: 2015 Fourth
European Workshop on Software Defined Networks. IEEE. Bilbao,
Spain, Oct. 2015, pp. 79–84. doi: 10.1109/EWSDN.2015.65 (cit. on
pp. 126, 131, 152).

218

https://datatracker.ietf.org/doc/rfc7498/
https://datatracker.ietf.org/doc/rfc7498/
https://doi.org/10.1109/NFV-SDN.2016.7919482
https://doi.org/10.1109/MCOM.2017.1700127
http://redis.io
https://doi.org/10.1109/NETSOFT.2016.7502419
https://riftio.com/
https://datatracker.ietf.org/doc/draft-rosa-bmwg-vnfbench/
https://datatracker.ietf.org/doc/draft-rosa-bmwg-vnfbench/
https://doi.org/10.1109/EWSDN.2015.65

Bibliography

[RWJ13] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. ‘Pico
Replication: A High Availability Framework for Middleboxes’.
In: Proceedings of the 4th Annual Symposium on Cloud Computing.
SOCC ’13. Santa Clara, California: ACM, Oct. 2013, 1:1–1:15. isbn:
978-1-4503-2428-1. doi: 10.1145/2523616.2523635 (cit. on p. 43).

[Ryu17] Ryu SDN Framework Community. Ryu Controller. 2017. url: h
ttps://osrg.github.io/ryu/ (visited on 02/15/2019) (cit. on
pp. 12, 13, 52, 94).

[Sch+19] Stefan Schneider et al. ‘Putting 5G into Production: Realizing a
Smart Manufacturing Vertical Scenario’. In: 2019 IEEE European
Conference on Networks and Communications (EuCNC). June 2019

(cit. on pp. 75, 166).

[Sch19] Erik Schilling. ‘Telco in a Box: Emulating Full-Stack NFV De-
ployments’. Master’s Thesis. Paderborn University, 2019 (cit. on
p. 95).

[Sec15] Secdev.org. Scapy Project. http://www.secdev.org/projects/
scapy/. 2015 (cit. on p. 96).

[SGZ17] Xiaozhe Shao, Lixin Gao, and Hao Zhang. ‘CoGS: Enabling dis-
tributed network functions with global states’. In: 2017 IEEE
Conference on Network Softwarization (NetSoft). IEEE. Bologna, Italy,
July 2017, pp. 1–9. doi: 10.1109/NETSOFT.2017.8004112 (cit. on
pp. 29, 43).

[Soc01] Socat project. Socat - Multipurpose relay. 2001. url: http://www.de
st-unreach.org/socat/ (visited on 05/02/2019) (cit. on pp. 139,
157).

[Sof17] SoftFIRE project consortium. SoftFIRE Approach to Experiment
Management: Why and How. 2017. url: https://www.softfire.
eu / wp - content / uploads / SoftFIRE - White - Paper - 2 - Soft

FIRE- Approach- to- Experiment- Management- Why- and- How.

pdf (visited on 08/22/2019) (cit. on pp. 64, 93, 105).

[Son+15] Balázs Sonkoly et al. ‘Multi-Domain Service Orchestration Over
Networks and Clouds: A Unified Approach’. In: Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communica-
tion. SIGCOMM ’15. London, United Kingdom: ACM, Aug. 2015,
pp. 377–378. isbn: 978-1-4503-3542-3. doi: 10.1145/2785956.
2790041 (cit. on pp. 22, 67, 68).

[SON15a] SONATA project consortium. D2.2 Architecture Design. 2015. url:
http://sonata-nfv.eu/sites/default/files/sonata/publi

c/content-files/deliverables/SONATA_D2.2_Architecture_

and_Design_1.pdf (visited on 03/21/2019) (cit. on p. 21).

219

https://doi.org/10.1145/2523616.2523635
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://doi.org/10.1109/NETSOFT.2017.8004112
http://www.dest-unreach.org/socat/
http://www.dest-unreach.org/socat/
https://www.softfire.eu/wp-content/uploads/SoftFIRE-White-Paper-2-SoftFIRE-Approach-to-Experiment-Management-Why-and-How.pdf
https://www.softfire.eu/wp-content/uploads/SoftFIRE-White-Paper-2-SoftFIRE-Approach-to-Experiment-Management-Why-and-How.pdf
https://www.softfire.eu/wp-content/uploads/SoftFIRE-White-Paper-2-SoftFIRE-Approach-to-Experiment-Management-Why-and-How.pdf
https://www.softfire.eu/wp-content/uploads/SoftFIRE-White-Paper-2-SoftFIRE-Approach-to-Experiment-Management-Why-and-How.pdf
https://doi.org/10.1145/2785956.2790041
https://doi.org/10.1145/2785956.2790041
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/deliverables/SONATA_D2.2_Architecture_and_Design_1.pdf
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/deliverables/SONATA_D2.2_Architecture_and_Design_1.pdf
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/deliverables/SONATA_D2.2_Architecture_and_Design_1.pdf

Bibliography

[SON15b] SONATA project consortium. SONATA-NFV. 2015. url: http:
//sonata-nfv.eu (visited on 02/22/2019) (cit. on pp. 7, 110, 138,
165).

[SON16] SONATA project consortium. D3.1 Basic SDK Prototype. 2016. url:
http://sonata-nfv.eu/sites/default/files/sonata/publ

ic/content-files/deliverables/SONATA%20D3.1%20Basic%

20SDK%20Prototype.pdf (visited on 03/21/2019) (cit. on p. 75).

[Sou+19] Nathan F. Saraiva de Sousa et al. ‘Network Service Orchestration:
A survey’. In: Computer Communications 142–143 (2019), pp. 69–94.
issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.
2019.04.008 (cit. on p. 101).

[SP97] Rainer Storn and Kenneth Price. ‘Differential Evolution – A Sim-
ple and Efficient Heuristic for global Optimization over Contin-
uous Spaces’. In: Journal of Global Optimization 11.4 (Dec. 1997),
pp. 341–359. issn: 1573-2916. doi: 10.1023/A:1008202821328
(cit. on p. 173).

[SPF17] Rolf Stadler, Rafael Pasquini, and Viktoria Fodor. ‘Learning from
Network Device Statistics’. In: Journal of Network and Systems
Management 25.4 (Oct. 2017), pp. 672–698. issn: 1573-7705. doi:
10.1007/s10922-017-9426-z (cit. on p. 164).

[SPK18] Stafan Schneider, Manuel Peuster, and Holger Karl. ‘A Generic
Emulation Framework for Reusing and Evaluating VNF Place-
ment Algorithms’. In: 2018 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN). IEEE.
Verona, Italy, Italy, Nov. 2018. doi: 10.1109/NFV- SDN.2018.
8725795 (cit. on pp. 65, 77, 102).

[Squ96] Squid Project. Squid: Optimising Web Delivery. 1996. url: http:
//www.squid-cache.org (visited on 05/02/2019) (cit. on pp. 139,
157, 166).

[SS18] Forough Shahab Samani and Rolf Stadler. ‘Predicting Distribu-
tions of Service Metrics using Neural Networks’. In: 2018 14th In-
ternational Conference on Network and Service Management (CNSM).
IEEE. Rome, Italy, Nov. 2018, pp. 45–53 (cit. on p. 164).

[Sun+18] Jian Sun et al. ‘A Q-Learning-Based Approach for Deploying
Dynamic Service Function Chains’. In: Symmetry 10.11 (Nov. 2018).
issn: 2073-8994. doi: 10.3390/sym10110646 (cit. on pp. 163, 164).

[Tak+13] Byung Chul Tak et al. ‘Pseudoapp: performance prediction for
application migration to cloud’. In: 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013). IEEE. May
2013, pp. 303–310 (cit. on pp. 131, 152).

220

http://sonata-nfv.eu
http://sonata-nfv.eu
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/deliverables/SONATA%20D3.1%20Basic%20SDK%20Prototype.pdf
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/deliverables/SONATA%20D3.1%20Basic%20SDK%20Prototype.pdf
http://sonata-nfv.eu/sites/default/files/sonata/public/content-files/deliverables/SONATA%20D3.1%20Basic%20SDK%20Prototype.pdf
https://doi.org/https://doi.org/10.1016/j.comcom.2019.04.008
https://doi.org/https://doi.org/10.1016/j.comcom.2019.04.008
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s10922-017-9426-z
https://doi.org/10.1109/NFV-SDN.2018.8725795
https://doi.org/10.1109/NFV-SDN.2018.8725795
http://www.squid-cache.org
http://www.squid-cache.org
https://doi.org/10.3390/sym10110646

Bibliography

[Tav+18] Thales Nicolai Tavares et al. ‘NIEP: NFV Infrastructure Emulation
Platform’. In: 2018 IEEE 32nd International Conference on Advanced
Information Networking and Applications (AINA). IEEE. Krakow,
Poland, May 2018, pp. 173–180. doi: 10.1109/AINA.2018.00037
(cit. on p. 68).

[The11] The Apache Software Foundation. Apache Kafka: A distributed
streaming platform. 2011. url: https://kafka.apache.org (vis-
ited on 07/25/2019) (cit. on p. 182).

[The13] The OpenDaylight Foundation. OpenDaylight. 2013. url: https:
//www.opendaylight.org (visited on 02/15/2019) (cit. on pp. 12,
13, 23, 94).

[The15a] The Apache Software Foundation. Cassandra Distributed Database.
2015. url: http://cassandra.apache.org (visited on 05/21/2019)
(cit. on p. 30).

[The15b] The NOX/POX Project. NOX/POX OpenFlow Controller. 2015. url:
http://www.noxrepo.org (visited on 02/15/2019) (cit. on pp. 12,
13, 35).

[The93] The Apache Software Foundation. Apache HTTP Server. 1993. url:
https://httpd.apache.org/ (visited on 05/02/2019) (cit. on
pp. 141, 166).

[TRR10] Paul Turner, Bharata B Rao, and Nikhil Rao. ‘CPU bandwidth con-
trol for CFS’. In: Linux Symposium. Vol. 10. Google, 2010, pp. 245–
254 (cit. on p. 84).

[TZK16] Javid Taheri, Albert Y Zomaya, and Andreas Kassler. ‘vmBB-
ThrPred: A Black-Box Throughput Predictor for Virtual Ma-
chines in Cloud Environments’. In: European Conference on Service-
Oriented and Cloud Computing. Springer. Aug. 2016, pp. 18–33. doi:
10.1007/978-3-319-44482-6_2 (cit. on pp. 131, 152).

[TZK17] Javid Taheri, Albert Y. Zomaya, and Andreas Kassler. ‘vmBBPro-
filer: a black-box profiling approach to quantify sensitivity of
virtual machines to shared cloud resources’. In: Computing 99.12

(Dec. 2017), pp. 1149–1177. issn: 1436-5057. doi: 10.1007/s00607-
017-0552-y (cit. on p. 131).

[Van+17] Steven Van Rossem et al. ‘A network service development kit sup-
porting the end-to-end lifecycle of NFV-based telecom services’.
In: 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). Berlin, Germany, Nov. 2017,
pp. 1–2. doi: 10.1109/NFV-SDN.2017.8169859 (cit. on p. 66).

221

https://doi.org/10.1109/AINA.2018.00037
https://kafka.apache.org
https://www.opendaylight.org
https://www.opendaylight.org
http://cassandra.apache.org
http://www.noxrepo.org
https://httpd.apache.org/
https://doi.org/10.1007/978-3-319-44482-6_2
https://doi.org/10.1007/s00607-017-0552-y
https://doi.org/10.1007/s00607-017-0552-y
https://doi.org/10.1109/NFV-SDN.2017.8169859

Bibliography

[Van+18] Steven Van Rossem et al. ‘Introducing Development Features for
Virtualized Network Services’. In: IEEE Communications Magazine
PP.99 (Feb. 2018), pp. 2–10. issn: 0163-6804. doi: 10.1109/MCOM.
2018.1600104 (cit. on p. 66).

[VMw13] VMware, Inc. vSphere: Server Virtualization Software. 2013. url:
https://www.vmware.com/products/vsphere.html (visited on
03/01/2019) (cit. on p. 23).

[Wan+17] Wenxin Wang et al. ‘Consistent State Updates for Virtualized
Network Function Migration’. In: IEEE Transactions on Services
Computing (Oct. 2017). doi: 10.1109/TSC.2017.2765636 (cit. on
p. 43).

[Wan+18] Mowei Wang et al. ‘Machine Learning for Networking: Workflow,
Advances and Opportunities’. In: IEEE Network 32.2 (Mar. 2018),
pp. 92–99. issn: 0890-8044. doi: 10.1109/MNET.2017.1700200
(cit. on pp. 163, 164).

[War90] Seth Warner. Modern Algebra. Courier Dover Publications, 1990

(cit. on p. 137).

[Wet+14] Philip Wette et al. ‘Maxinet: Distributed emulation of software-
defined networks’. In: 2014 IFIP Networking Conference. IEEE.
Trondheim, Norway, June 2014, pp. 1–9. doi: 10.1109/IFIPNetw
orking.2014.6857078 (cit. on pp. 66, 91, 140, 184).

[Woo+08] Timothy Wood et al. ‘Profiling and modeling resource usage of vir-
tualized applications’. In: Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware. Springer-. Dec. 2008, pp. 366–
387 (cit. on pp. 131, 152).

[Zer+19] Johannes Zerwas et al. ‘NetBOA: Self-Driving Network Bench-
marking’. In: Proceedings of the 2019 Workshop on Network Meets AI
& ML. NetAI’19. Beijing, China: ACM, Aug. 2019, pp. 8–14. isbn:
978-1-4503-6872-8. doi: 10.1145/3341216.3342207. url: http:
//doi.acm.org/10.1145/3341216.3342207 (cit. on p. 153).

[Zha+12] Wei Zhao et al. ‘Modeling and simulation of cloud computing:
A review’. In: Cloud Computing Congress (APCloudCC), 2012 IEEE
Asia Pacific. IEEE. Shenzhen, China, Nov. 2012, pp. 20–24. doi:
10.1109/APCloudCC.2012.6486505 (cit. on pp. 66, 91).

[Zha+17] Mengxuan Zhao et al. ‘Verification and validation framework
for 5G network services and apps’. In: 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE. Berlin, Germany, Nov. 2017, pp. 321–326. doi: 10.
1109/NFV-SDN.2017.8169878 (cit. on p. 105).

222

https://doi.org/10.1109/MCOM.2018.1600104
https://doi.org/10.1109/MCOM.2018.1600104
https://www.vmware.com/products/vsphere.html
https://doi.org/10.1109/TSC.2017.2765636
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/IFIPNetworking.2014.6857078
https://doi.org/10.1109/IFIPNetworking.2014.6857078
https://doi.org/10.1145/3341216.3342207
http://doi.acm.org/10.1145/3341216.3342207
http://doi.acm.org/10.1145/3341216.3342207
https://doi.org/10.1109/APCloudCC.2012.6486505
https://doi.org/10.1109/NFV-SDN.2017.8169878
https://doi.org/10.1109/NFV-SDN.2017.8169878

	Abstract
	Introduction
	Chances and challenges in network softwarisation
	Publications
	Structure of the thesis

	Background
	Software defined networking
	Interfaces
	Open-source SDN controllers

	Network function virtualisation
	An NFV scenario
	The NFV reference architecture
	Service description and packaging approaches
	Management and orchestration
	NFV infrastructure

	Development and operation support
	Developing stateful VNFs
	Introduction
	Related work
	A distributed state management framework
	State management with global view
	Programming model and APIs

	Prototype implementation
	Evaluation
	Conclusion

	Operation support for stateful VNFs
	Introduction
	Related work
	Seamless handover protocol (SHarP)
	Handover scenario
	Transparency towards VNF and state management
	Handover procedure
	Removing buffer load from the controller

	Evaluation
	Handover characteristics
	Multi-handover performance

	Conclusion

	Rapid prototyping
	Rapid prototyping of NFV functions and services
	Introduction
	Related work
	Container-based network emulations
	Emulating multi-PoP NFV scenarios
	Workflow
	System architecture
	Topology definition
	Flexible endpoint API
	Chain management and forwarding paths
	Evaluation

	Emulating PoP resource limits
	Models
	Implementation
	Evaluation

	Conclusion

	Adding NSH-enabled SFC prototyping capabilities
	Introduction
	Related work
	Requirements
	Adding NSH support to the emulation platform
	SFC controller
	SFC API
	Simplified prototyping using pre-packaged SFC components

	Case study
	Conclusion

	Supporting the evolution of MANO systems using emulation-based smoke testing
	Introduction
	Background
	Management and orchestration in NFV
	Smoke testing

	Related work
	Emulation-based smoke testing
	Approach
	Prototype

	Results
	Emulation platform scalability
	Case study: OSM rel. THREE vs. OSM rel. FOUR

	Discussion
	Conclusions

	Performance benchmarking
	Automated benchmarking for NFV
	Introduction
	Benchmarking as part of the NFV DevOps cycle
	Challenges and research questions

	Related work
	Automated performance benchmarking of NFV functions and services
	Benchmarking platform design and workflow
	Describing benchmarking experiments
	Packaging benchmarking results

	Case study: Chain-based benchmarking
	Scenarios and approach
	Throughput: Isolated function vs. service chain
	Response time: Isolated function vs. service chain

	Conclusion

	Benchmarking under time constraints
	Introduction
	Problem formulation
	Related work
	Designing a T-CB system
	Building blocks and workflow
	Selection component
	Prediction component

	Evaluation
	Conclusion

	Collecting, analysing, and publishing benchmarking data sets
	Introduction
	Related work
	Methodology & workflow
	Collecting, analysing, and publishing the first data sets
	Experiment setup
	Data collection
	Resulting data sets
	Using the data sets
	Publishing the data sets

	Conclusion

	Final thoughts
	Summary
	Conclusions
	Future research

	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

