Set-Valued Prediction for
Part-of-Speech Tagging

Stefan Heid

'L(‘ PADERBORN UNIVERSITY i INTELLIGENT

The University for the Information Society SYSTEMS

Department of Electrical Engineering, Intelligent Systems Group (ISG)
Computer Science and Mathematics

Warburger StraBe 100

33098 Paderborn

Master’s Thesis

Set-Valued Prediction for Part-of-Speech Tagging

Stefan Heid

1. Reviewer ~ Prof. Dr. Eyke Hullermeier

Department of Computer Science
Paderborn University

2. Reviewer Prof. Dr. Michaela Geierhos

Department of English and American Studies
Paderborn University

Supervisor Marcel Wever

December 2, 2019

Stefan Heid sheid@mail.upb.de

Set-Valued Prediction for Part-of-Speech Tagging

Master’s Thesis, December 2, 2019

Reviewers: Prof. Dr. Eyke Hiillermeier and Prof. Dr. Michaela Geierhos
Supervisor: Marcel Wever

University of Paderborn
Intelligent Systems Group (ISG)
Department of Computer Science
Pohlweg 51

33098 Paderborn

Abstract

Part-of-speech (P0S)-tagging is a method to predict a sequence of word classes given
a sequence of words. Set-valued prediction can be used to allow a classifier to make
restrained predictions in the face of uncertainty. In this thesis, we present a method for
combining set-valued prediction with part of speech tagging to retrieve more reasonable
predictions on difficult data. The set size allows the tagger to express its uncertainty of
a specific prediction. The devised method can be applied to any PoOs-tagger capable of
predicting a posterior distribution over the tags and provides set-valued predictions in
a post-processing step. We implemented the method using the state-of-the-art tagger
CcoreNLP as our basis. The tagger is tuned to a diachronic corpus of Middle Lower
German (MLG) that spans a wide spacial area. Because the corpus also captures human
annotator uncertainty, special performance measures have been devised to properly
evaluate the tagging performance. The resulting algorithm clearly outperforms our
baseline in all considered measures. Our evaluation proves that set-valued prediction can
give good predictions with utilities outperforming the accuracy score by large margins.
This is especially shown in robustness tests that are difficult for the classifier. Results are
compared against a baseline tagger, which profits even more from set-valued prediction.

Acronyms

cP conformal prediction. 1

CRF conditional random fields. g, 19, 31

HMM hidden Markov model. 5—9, 19, 33, 35, 40, 63

HMP hidden Markov process. 5, 6

IAA inter annotator agreement. 1, 23, 27
KNN k-nearest neighbor. g

LSTM long short-term memory. 19

MBL memory based learner. 9, 13
MEMM maximum entropy Markov model. 7-9, 19, 28, 31, 63

MLG Middle Lower German. v, 1, 4, 9, 19, 21-23, 25, 27, 29, 40, 41, 56, 58, 61
NLP natural language processing. 1, 3, 9, 10, 19, 23, 63

Pos part-of-speech. v, 14, 19, 27, 31

PTB Penn Treebank. 23

REN Reference Corpus Middle Low German/Low Rhenish (1200-1650). 22

RNN recurrent neural network. g

SMAC Sequential Model-based Algorithm Configuration. 15

SVM support vector machine. 8

UBOP Unrestricted Bayes-optimal prediction. 27, 36

vii

Notation

w | word, token

w; | i-th word in a sequence

word sequence, sentence

universe of words. Usually we mean the words observed during the training
phase.

tag

tags sequence

set of tags

universe of tags for example the Penntree-bank tagset

s g

ﬂﬂ&@’-

single-valued ground truth
single-valued prediction

set-valued ground truth

set-valued prediction

set, of all classes

|Y'| when given to the discount function

Vi

Ne RN e

frequency of a given data point or feature-set in the corpus
1 if P is true

0 otherwise

()
[-] | Iverson bracket to evaluate boolean predicates: [P] = {

Contents

1 Introduction
1.1 Thesis Structure

2 Prerequisites

2.1 Part-of-Speech Tagging,
2.2 POS-Tagging as a Machine Learning Problem
2.3 Ewvaluation.

3 Related Work

4 Corpus
4.1 Description oL
4.2 Tagset
4.3 Multi-Label Tags
5 Algorithm
5.1 Problem Definition o o
5.2 Data Preparation o
5.3 Modified Performance Measures
5.4 CoreNLP Tagger
5.5 Extension L

6 Evaluation

6.1 Dataset Splitting and Experiment Setup
6.2 Baseline
6.3 Model Selectiono
6.4 In-Domain Performance
6.5 Cross Domain Robustness
6.6 Robustness Against Unrelated Data
6.7 Across Corpus Performance
6.8 Error Analysis
6.9 Other Experiments L.
7 Conclusion
7.1 Future Work Lo
Bibliography

A Appendix
Aad Corpus. e
A2 Implementation L

.

N~ w W

Introduction

To retrieve the basic bits of information from natural language texts, we need to
accomplish a sequence of tasks to understand the structure and semantics of language.
One such task is to label each word with the part-of-speech (P0s), which is a prerequisite
for many other tasks in natural language processing (NLP). In POS-tagging, we try to
find the most plausible tag sequence t, for a given word sequence w. The tag sequence
provides one tag for each word. In order to harvest contextual information, the tagger
will, however, usually predict the tags for the whole word sequence combined.

For modern languages as English, the problem can be considered as mostly solved.
However, historic languages such as Middle Lower German (MLG) can be more challeng-
ing. This is because the language does not have general spelling or punctuation rules
that are obeyed by all writers. Koleva et al. (2017) report an inter annotator agreement
(1AA) of around 91%, which means that predicting one specific word class for a MLG
word is even difficult for human annotators.

The above-mentioned difficulties express themselves as uncertainty or noise in the
data. In addition to this noise, we have other ambiguities introduced by the complexity
of natural languages. Single words are often ambiguous and can only be interpreted
by incorporating contextual information, like surrounding words. However, even for a
trained expert, some sentences can be read in different interpretations, resulting in a set
of possible PO s-tags for single words.

Therefore, instead of forcing the classifier to predict exactly one tag we could allow
it to return a set of labels. It is still possible to make single predictions in the form
of singletons but it also allows for further flexibility. This approach is motivated by
the idea of better abstaining from predicting in the case of uncertainty rather than
enforcing it. Unlike classification with reject option, set-valued predictors can express
their uncertainty more gradually, by returning larger or smaller sets instead of clear
predictions or complete abstention. The framework of set-valued prediction allows the
classifier to find a balance between small sets, containing only a few candidate classes,
and correctness. Formally, there is a variety of frameworks that can achieve such tasks.
One of them is conformal prediction (CP), which is rooted in frequentist statistics and
is focused on predicting sets that contain the true class with high confidence. The other
framework we will consider is called set-valued prediction, which is motivated more by
the concept of utility of the prediction (Mortier et al., 2019).

Despite the potential, set-valued prediction hast not been combined with P 0S-tagging
so far. That is mainly because part-of-speech tagging is often a prerequisite of many
other NLP-tasks which would need to be capable of working on set-valued input data.
However, machine learning tools are also often used as support for manual processes. In
NLP-research, gold-standard tagged documents are very important. Having a tagger
that can pre-label the document such that the human expert merely needs to validate
the prediction is an ideal setting to investigate the potential for set-valued prediction in
the realm of part-of-speech tagging.

First, the state-of-the-art of POS-tagging needs to be investigated thoroughly to
understand which algorithms are used in this field. From this, we will derive an
algorithm that is capable of providing set-valued targets. The algorithm is then tuned

1.1

2

to the corpus provided by the Intergramm research project. The performance of the
resulting algorithm is evaluated against a baseline. Set-valued prediction shows promising
results on both taggers.

Thesis Structure

In Chapter 2 we will cover the foundations of P0Os-tagging including several algorithms.
Also, we will introduce methods to evaluate machine learning algorithms. In Chapter 3
an overview of the available literature related to this problem domain will be provided.
In Chapter 4 the corpus used for the evaluation of our algorithm will be introduced. This
chapter will, therefore, explain the domain in which the algorithm is applied. At the
beginning of Chapter 5, we will formalize the problem of set-valued prediction for part
of speech tagging. The remainder of this chapter will introduce the CoreNLP tagging
algorithm and explain the extensions developed to use it for set-valued prediction. In
Chapter 6 we will introduce a simple reference tagger and find an optimal configuration of
the introduced algorithm. The remainder of this chapter will investigate the performance
of the tagger in several experiments and examine its errors. Finally, the thesis results
will be summarized in Chapter 7.

Chapter 1 Introduction

2.1

Prerequisites

First, we introduce the reader to part of speech tagging. In Section 2.2, we view the topic
as a machine learning problem and investigate several algorithms. In Section 2.3, we
introduce all measures and procedures needed to evaluate a machine learning algorithm.

Part-of-Speech Tagging

raw text sentence relation relations
string segmentation extraction list of tuples
sentences chunked sentences
list of strings list of trees
L part-of-speech parsing and
tokenization . . .
tagging entity detection
tokenized sentences pos-tagged sentences
list of lists of strings list of lists of tuples

The NLP pipeline. The scope of this thesis is limited to part-of-speech tagging

The detection of word classes is a central task in most NLP-pipelines. Fig. 2.1 shows
an exemplary pipeline for relation extraction, a process to mine structured data from a
given corpus. As a prerequisite, raw textual data needs to be split into sentences and
then into single tokens. Those tokens are then tagged with their part-of-speech. From
the resulting tagged sentences, other tools can extract further grammatical structure
and detect certain entities. Fig. 2.2 shows a small example sentence with extracted
relation.

subject object

—

Obama is President

Example sentence with extracted relations using https://corenlp.run

A word class or POS is a grammatical role a word takes on in a given sentence.
Examples are noun, verb, or adjective. Some words can only take on one P0OS. Others
might fill in different grammatical roles. The problem of detecting the class is associated
with a word inside a given sentence is called disambiguation, as sometimes more than
one class is possible for a given word. Those word classes are usually called tags in the
context of POS-tagging.

Each tag can be considered either an open class or a closed class tag. Closed class
tags are tags that often take on structural roles in sentences. Among others, those are
determiners like articles (the, a, an), interrogative determiners (which, ...), or pronouns
(I, you, it). For those classes, the number of words is rather limited and fixed. When

https://corenlp.run

2.2

4

we consider POS-tagging as a learning problem, we can assume that if our corpus is
sufficiently large, we have seen all instances of each of the closed class tags. This means
in conclusion that all words unknown to the tagger during inference fall in the category
of open class tags.

Open class tags, on the other hand, have a lexical function and convey the meaning
of the text. Examples of open class tags are nouns, verbs, and adjectives. Most of the
words added to a language have lexical functions, as they express new inventions or
ideas. Henceforth, those new words often belong to open classes, meaning that the
tagger will likely encounter unknown words, no matter how large the corpus it is trained
on.

Since part-of-speech tags express grammatical structure, some tags often appear in
sequence. Other sequences, in turn, are very unlikely. In English, for example, the
tag sequence (article, adjective,noun) is a common grammatical structure (“The quick
fox.”). This indicates already that a good tagger will generally need to be able to learn
not only from the words but also take into account the tags it is planning to assign to
neighboring words. This means that a tagger, tagging only word by word, will most
likely be limited in predictive performance compared to a tagger taking into account
the entire sequence and hence exploiting contextual information.

Even though many languages are composed of the same grammatical building blocks,
the tag sets are not completely static. Since the corpus of this thesis stems from a
project interested in historical changes of MLG the tagset contains specific tags to
describe a more fine-grained structure. The resolution of specific subclasses of tags is,
however, nowhere near homogeneous. While nouns are generally only split up into a
couple of classes, verbs are split into more than 20 subclasses for different inflections
(finite, infinitive) or concerning their grammatical function (auxiliary verbs). Nouns are
usually only subdivided into common nouns and proper nouns with respective singular
and plural forms. The whole tag set is elaborated in Table 4.1.

POS-Tagging as a Machine Learning Problem

Tagging can formally be seen as the task to assign labels to single word tokens. Those
tokens are part of a sentences and hence embedded in a context/sequence. This
contextual nature of words in sentences has been vividly described by the famous quote

“You shall know a word by the company it keeps”
— John Rupert Firth, 1957

One can define a classifier that tags single words without the use of their context, but
those capabilities are always limited.

In the following sections, we introduce various algorithms, to give an overview of the
history and state-of-the-art of P0Os-tagging. In Section 2.2.4, we look in more detail at
how to convert a word, its preceding and succeeding words into a representation that a
machine learning classifier can use. One can think of different features we can extract
from a word. E.g. we could use its length or binary features that check for a specific
suffix. Such features can also be extracted from the surrounding words.

Many of the most potent taggers not only use the word and its surroundings but
rather predict sequences of tags to the sequence of words. This offers the potential to
not only rely on the data but also on partial predictions the classifier has done for the
context.

Chapter 2 Prerequisites

2.2.1

Hidden Markov Model

A hidden Markov model (HMM) is a generative model for tag probabilities in a token
sequence. The goal is deriving the most likely tag-sequence " for a given token-sequence

wn

t" = argmax P(t" | w™). (2.1)
n

In its simplest version, the model is a hidden Markov process (HMP) whose states
represent tags that emit words. The word emission probability distribution in a given
state is tuned during training. For example, we could imagine a state proper noun
emitting proper noun words. However, the output set of states is not necessarily disjoint,
as some words can take parts-of-speech depending on the context. The transition
probabilities between the states are learned as well and express the probability of a tag
succeeding another tag. One path from a start state to an end state will generate a
sentence.

A Markov process is formally described by the following sixtuple:

start state alphabet emission matrix
\V /
{ S y S0 F ’)Y) A) r }

set of states set of final states transition matrix

The Markov process starts in sg € S and ends its traversal in one of the final states
F C S. In our case, there will be only one final state. The process can emit words from
the alphabet ¥ whenever being in one of the states. The transitions between states are
defined by a matrix T whose rows sum up to 1, forming a proper probability distribution
over the out-edges. The rows of the emission matrix I' specify probability distribution
over the alphabet for each state.

To formally fix the minor issue that start and end state do not emit words, we can
introduce the words (init) and (end) which will be emitted in the start and end state
respectively with probability 1.

Formally an HMM is basically built on two assumptions:

1. The probability of a word is only determined by its tag

Pw" | t") ~ H P(w; | t;)
1=1

2. The probability of a tag is only determined by its predecessor (Markov assumption)

n

P(tn) ~ H P(ti ’ ti—l)

i=1

When we use these simplifying assumptions on Eq. (2.1), we can derive the following:

n
" = argmax P(t" | w™) ~ arg maXH P(w; | t;) P(t; | ti—1) (2.2)
tn tn .

=1 R .
emission transition

Deriving such a sequence would be trivial if each word could only be generated by
exactly one state. In the next subsection, we introduce the Viterbi algorithm which is
usually used to derive the prediction.

2.2 POS-Tagging as a Machine Learning Problem

6

This rather simple model has seen many extensions over the years. One issue ignored
here is e.g. the handling of unknown words. If a word is not known during training, its
likelihood can also not be derived. Samuelsson (1993) proposed extension is to train
another simple model on word suffixes estimating the posterior P(¢; | w;) which can
be converted to the likelihood needed for the HMM with the help of Bayes rule*. This
approach has been further refined by Brants (2000) which propose statistical smoothing
between suffixes of different length. Another shortcoming of the simple model is the
fact that the Markov assumption, that a tag depends only on its direct predecessor,
is sometimes violated in natural language. According to Jurafsky and Martin (2008,
p. 183) bigrams and trigrams of tags are often used to increase the sight distance within
the sequence history. Lafferty et al. (2001) and Toutanova, Klein, et al. (2003) have
indicated that considering only on previous words and tags is insufficient.

Estimating the probabilities of the HMP is fairly simple because they can be derived
directly from the frequencies in the dataset. The emission probabilities of a word given
a tag are

#(w;, t;)
#(t;)

The transition probabilities between tag states are calculated by dividing the frequency
of the two subsequent tags by the total frequency of the preceding tag:

Plw; [t;) =

#(ti ti-1)
Pt | t;y) = o=l
(1 | 1) #(tlfl)
We refer for more details to Jurafsky and Martin (2008). They describe the training
process in detail and list additional extensions to the ones proposed here.

Viterbi Algorithm

The goal of the inference algorithm is to find the most likely path through the HMP.
The trivial solution to generate all paths and return the most likely one is, however, not
tractable. Since the problem has an optimal substructure property, we can solve this
problem optimally even though the number of potential paths grows exponentially in
the sequence length.

The basic idea of the algorithm is to go through the sequence token by token, starting
at the beginning. For each new token, we calculate the probability to reach that state
from any of the previous states, weighted by the state distribution, multiplied by the
probability in each state to generate the token (see Eq. (2.2)). In each step, we also
save the most likely predecessor (backpointer) for each state. Finally, we can backtrack
these backpointers and derive the complete tagging sequence.

Algorithm 1 is a recursive pseudo-code of the algorithm. The dynamic programming
is achieved with the help of caching. Iterative implementation is, however, also possible.
Line 7 of Algorithm 1 needs to completely re-evaluate the probability because the
maximum depends on many local features. In the last lines, we are only doing a lookup.

To increase computational efficiency and numerical stability, the calculations are
usually done in log-space, resulting in the summation of log-probabilities instead of the
product of normal probabilities.

*Jurafsky and Martin, 2008, p. 193.

Chapter 2 Prerequisites

2.2.2

Algorithm 1 returns a tuple with the most likely state sequence and its likelihood
given a sequence of tokens and a goal state. On initial call of the function, the goal
state is t(cpna)-

1: procedure VITERBI(W, teng)

2: if [w|== 0 then

3: return (tena), P(w1 | tend) - Ptend | t(init))

4: if tend == t(end) then

5: ty < argmax VITERBI(wy . p—1,t)2 - P(tend | t) > Backpointer

teT

6: t < VITERBI(W1, . n—1,tn)1]|tn > Eq. (2.2)

7! Pt | w) « max VITERBI(wi, . n—1,t)2 - P(Wn—1 | tend) - P(tend | t)

8: return t, P(t | w)

9: tn < argmax VITERBI(W, 1) > most likely end state
teT

10: t < VITERBI(W,tp)1]|tn > recalculate path from previous result

11: P(t|w) < VITERBI(W,1,)2 > recalculate likelihood

12: return t, P(t | w)

For illustration, we apply Algorithm 1 to the example HMM in Fig. 2.3. Assuming we
are given the sentence “the green fire truck” which we want to tag. The state transition
matrix is given as
06 02 02 0

0 05 04 0.1
0.1 06 0.2 0.1
0.2 03 04 0.1
0o 0 0 0 1

o O O O

Now we can apply the algorithm recursively and derive the most likely path.

Fig. 2.4 visualizes the calculated backpointers. Here we can see again that fire could
also be an adjective and therefore also has a backpointer. Since transition edges from
the end-state and to the start state only make sense at the bounds of the sequence,
they are omitted in the shown graph. In a real-life example, every node would have a
backpointer. In our toy example, most paths in the graph are zero, because many of the
emission probabilities are zero.

Maximum Entropy Markov Model

As we stated already, the predictive performance of HMMs is limited in some ways.
Therefore, we investigate a related approach. Since an HMM is a generative model, the
most likely tag sequence is predicted indirectly through the likelihood:

" = argmax P(t" | w") = arg max P(w" | t")P(t")
tn tn

n n
= arg;nax H P(wi | ti) H P(ti | tz;l)

=1

P =1 .
emission transition

In the maximum entropy Markov model (MEMM), the posterior is directly predicted:

n
" = argmax P(t" | w") = arg max H P(t; | wi, ti—1)
tn tn

=1

2.2 POS-Tagging as a Machine Learning Problem

8

fire 0
green 0

start — the 1
truck 0O

fire 0.1
green 0.9

the 0

truck 0

fire 0.5

s een 0

noun (end) grecn

5 the 0

51 3 3,4 truck 0.5

Visualization of an exemplary hidden Markov process used in an HMM, which might
be used to tag the sentence “the green fire truck”. The tables on the right side
represent the emission probability distributions for each state. The Markov process
can start and terminate in each state.

=@, © @ ©

- - 0027
nn nn nn (end)
0.0054 0.00054

the green fire truck

Visualization of the Viterbi path and the backpointers calculated. The predicted
tag-sequence is therefore (dt, jj, nn,nn), where dt represents article, jj adjective and
nn represents noun

The name mazimum entropy is another term for the logistic regression classifier. However,
the use of a discriminative model allows us to use many more features for the prediction.
Usually, the source of a prediction is not limited to the current word and previous
tag, but often consists of a whole sequence of tokens and tags (compare Fig. 2.5). In
Section 2.2.4 we see in more detail what features can be used for the training of the
classifier.

If we assume for now we have a classifier that can give us a posterior prediction given
the features, we can reuse the Viterbi algorithm from the previous section. We only
need to replace the probability estimates P(wy—1 | t;) - P(t; | t;—1) with the posterior
P(t; | f1, fo,...) where fi could be w; and fa may be ¢;_1. This will again give us the
Bayes optimal sequence given the posterior predictions.

McCallum et al. (2000) initially proposed MEMM using logistic regression as base-
learner. Generally, any probabilistic classifier could be used to estimate the posteriors.
For example the python library sklearn offers a version of an support vector machine
(svM) implementing a method proposed by Platt (1999) to get probabilistic predictions
for that classifier.

Chapter 2 Prerequisites

2.2.3

2.2.4

classifier

. ﬁfwf/\w
to t1

Example of features that could be used by a MEMM. The bold features are the ones
an HMM could use.

As already mentioned in the previous section, deriving the predictions in a unidi-
rectional way only considering the previous tags is not sufficient to grasp the whole
complexity of natural languages. To this end, Toutanova, Klein, et al. (2003) have
proposed an extension they call bidirectional-dependency network. This extension allows
the predictor to condition on previous and succeeding tags. Their implementation—
coreNLP—is widely used in practice and is still maintained by the working group at
Stanford University. We discuss CoreNLP in detail in Chapter 5 as our approach mainly
relies on a patched version of CoreNLP.

Other Approaches

For the sake of completeness, we discuss some other approaches that have been tried in
literature.

Koleva et al. (2017) use, among others, a memory based learner (MBL) to tag MLG
texts. MBLs memorize the whole training dataset and compare new samples with the
memorized ones, classifying by similarity to the memorized elements. An example of
an MBL is k-nearest neighbor (KNN). KNN relies on a distance metric to compare two
samples. Inference samples are then compared to all memorized samples. The k-closest
elements with respect to the metric are then used and the maximum vote is used as a
prediction.

Another approach, specifically tuned for sequence data, has been proposed by Lafferty
et al. (2001). The sequentiality of natural language data makes conditional random fields
(CRF) applicable in many tasks of NLP. Jurafsky and Martin (2008) state, however,
that CRFs are computationally more expensive than MEM Ms while providing no gain
in predictive performance. Koleva et al. (2017) also use a CRF tagger which clearly
outperforms the MBL. However, they do not use any other taggers.

Many of the latest published papers employ neural network-related methods for tagging.
Deep neural network implementations like recurrent neural networks (RNNs) are showing
promising performance. However, neural network models are computationally demanding
in the fitting process. Additionally, those models need more training data to generalize
well and to outperform simpler models like logistic regression. The large number of
parameters allows the neural network to memorize a small training dataset, which will
result in a large out-of-sample error. For an overview and a comparison of different
neural network approaches in NLP, we refer to Yin et al. (2017, Table 1).

Feature Extraction

Discriminative machine learning models estimate their posteriors from features extracted
from the data. Generally, a classifier tries to find a mapping between vectors of data

2.2 POS-Tagging as a Machine Learning Problem

10

features to classes. When applying this idea to NLP we need to establish a way to
“convert” textual data into vectors of features. This is achieved by feature functions.

Since textual data is sequential, those features are usually not only extracted from a
single word or tag but also surrounding data. Feature extractors can generally come in
different flavors. They can be binary or categorical, but also ordinal or numerical.

An example of a binary feature would be the Boolean value encoding whether a
certain word starts with a capital letter or whether the current word is at the beginning
of a sentence.

Categorical features could be the suffix of the current word. Since a word could,
in general, have different suffixes of which only one is present in the word, one of a
set of categories is true. But we cannot represent this category with only one scalar
by simply enumerating the classes. If we did so, the tagger would assume that some
suffixes are somewhat closer to each other, since their numbers are closer. To avoid this
misconception we use a so called one-hot encoding. To this end, we map an element
s; from a set S of size |S|= n to an n-dimensional vector whose i-th value is 1 and 0
otherwise (see Fig. 2.6).

S92 VS. S9 > nnn

{51 52 83 84} =S

Comparison of numerical and one-hot encoding

Ordinal features are categorical features that can indeed be sorted according to an
inherent order. Those features are therefore often expressed by scalar values, but they
are rare in NLP.

Lastly, we consider numerical features. Those features can be related to discrete
counting, but could also be real-valued. One common example from NLP is counting the
number of characters of a word. For example, in German, large word lengths indicate
compound nouns. Short words often take on structural roles, e.g. particles, and hence
indicate that the word is an instance of a closed class tag.

All the previous examples considered only extracting information from single words in
the vicinity of the currently tagged words or tags close by. In the realm of sequence data,
it is often useful to not only look at single elements but extract features directly of small,
fixed-sized sequences of tokens. In NLP, this is called shingling. In a generative model,
for example, we cannot only count the relative frequency of a word but also succeeding
pairs of words. Those pairs or longer sequences are called n-grams or sometimes also n-
shingles. For short sequences, the Greek prefixed names unigram, bigram, and trigram
are often used to refer to single tokens, pairs, or triples respectively. Those detected
bigrams can then be seen again as categorical features and converted using a one-hot
encoding. This can not only be done for tokens but also for the tags to allow the learner
to learn common subtuples of tags.

With those ideas, we can easily devise hundreds of different features. However, adding
huge amounts of features increases the size of the learning problem and hence often
effects the accuracy negatively.

Chapter 2 Prerequisites

2.3 Evaluation

2.3.1

In this section, we go through several foundations for evaluating machine learning
applications. First, we introduce measures to compare the predictive performance of
classifiers. Later, we investigate some concepts to properly evaluate machine learning
applications while minimizing the risk of overfitting and data-dredging. Afterward, we

shortly talk about statistical testing and finally about the hyperparameter optimization.

Types of Classification Problems

The goal of an evaluation measure is to assign a score to the overall prediction of a
classifier against the ground truth values. This number can then be used to compare
algorithms with each other or give a general idea of the reliability of the predictions.

In Table 2.1, we can see several types of classifications. Binary classification problems
are problems that only know two states, often true or false. One example could be a
spam-filter responsible to detect whether a specific mail is spam or not. This concept
can easily be generalized to more than one class. In a multi-class setting, there is only
exactly one correct label. The tagging problem described above is such a multi-class
problem, as every word can be labeled with one of the tags. In multi-label classification,
we have several classes as in the multi-class setting. However, not only one label is
correct, but a subset Y C) of the labels is correct. An example of such a problem
would be to assign a set of topic tags for a news article. However, we can also consider
our tagging problem to be a multi-label task. The target label might contain uncertainty
and thus all labels in question could be added to the ground truth. The tagger should
then try to predict all of those labels.

Comparison of different classification problems

Type Ground truth shape Prediction shape
binary one of two classes one of two classes
multi-class one of n classes one of n classes
multi-label subset of n classes subset of n classes
restrained multi-class one of n classes subset of n classes
restrained multi-label subset of n classes subset of n classes

One problem that all previously mentioned concepts have in common is the fact that
the classifier is forced to make a prediction, even though the entropy of the posterior is
high. The idea of letting the classifier abstain, in case it can make no reliable prediction
has been studied by Ramaswamy et al. (2018a). The idea of abstaining can be further
generalized. Mortier et al. (2019) propose algorithms that allow the classifier not only
to predict or reject, but also to predict sets that most likely contain the ground truth
element. In case of high uncertainty, more elements can be added to the set. The
extreme case of abstention can be reflected by predicting all classes. This concept is
also sometimes called prediction with partial abstention or set-valued prediction. This
concept can be further generalized to the multi-label case, where partial abstentions
can be super-sets of the underlying ground truth set. The idea is that missing ground
truth labels are more severe then predicting additional elements that are not part of the
ground truth.

2.3 Evaluation

11

2.3.2 Measures

12

In the following section, we define the performance measures for the problems defined in
the previous section. This is by no means a complete list, but we limit ourselves to the
measures used in this thesis. All measures introduced here are bounded by the interval
[0,1]. The following definitions are always calculated for a single data element. When
calculated over the whole dataset, the measures are usually averaged.

The accuracy measures fraction of correct classifications. It can be turned into the
0/1-loss subtracting the accuracy from one:

acc(y,9) = [== vy]
0/1-loss(y,) = 1 — acc(y,)

with ¢ being the prediction and y the respective ground truth (Sokolova and Lapalme,
2000).

When generalizing the accuracy to the problem of set-valued prediction, we can create
new utilities by combining the effect of correct classification and discounting the score
for the redundant elements.

u(y,Y) =y € Y]-g(|Y]) (2-3)
—_— ——

score discount

g(+) is the discount function. Y is the set-valued prediction. In case the prediction is
only a singleton, the scoring term will reflect the accuracy and the discount will be 1 by
the definition below. The scoring term can, therefore, be seen as a generalization for
the accuracy.

Mortier et al. (2019) give an extensive overview of different discount functions. Since
our algorithm relies on one of the proposed algorithms in the paper, we must also choose
discount functions that satisfy the following properties:

1. g(1) =1, the utility is not discounted if only the ground truth label is predicted.

2. ¢(s) should be non-increasing

3. g(s) > %, , the utility u(y,) of predicting a set containing the true and

s—1 addmonal classes should not be lower than the expected utility of randomly
guessing one of these s classes.

According to Mortier et al. (2019), the last property implements the idea of risk-aversion,
where abstaining from a prediction (including more elements into the predicting set)
should be favored against random guessing (predicting a randomly chosen element from
the candidates).

The authors propose the following discount function:

s—1\7"
9a,3(8) :1—a<K_1> (2.4)
K is the total number of classes, whereas 0 < o« < 1 and f €]0, co[are parameters to
tune the curve of the discount function. « is the penalty for abstention. Small values
allow the classifier to add more elements to the prediction set, hence abstaining more.
Large values force the classifier to select less elements. 3 selects whether the function is
convex (8 < 1) or concave (5 > 1).

Chapter 2 Prerequisites

2.3.3 Cross-Validation

The goal of any machine learning classifier is to minimize the so-called out-of-sample
error. This is the error, the classifier makes on previously unseen data. This is opposed
to the in-sample error the error, the classifier makes on the dataset it is trained on.
The notion overfitting describes in this context that the in-sample error is low and the
out-of-sample error is high. This means the classifier memorized the training data but
has not grasped the general concepts behind the data. For MBLs the in-sample error is
mostly zero as all training instances are memorized and can be predicted perfectly. This
is only violated if the training data contains conflicting data. The performance on the
training data is usually significantly higher than on unseen data. To properly evaluate
an algorithm, therefore, we need to split the data up into two parts. The algorithm
is trained on the first, usually a larger portion. The evaluation is carried out on the
second. This evaluation will give an estimate of the real out-of-sample error that can
not be measured directly.

Training Data Test Data
[\ Evaluation
Split 1] Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 \
Split 2 ‘ Fold 1 ‘ Fold 2 | Fold 3 | Fold 4 | Fold 5 \
Split 3 ‘ Fold 1 | Fold 2 \ Fold 3 | Fold 4 | Fold 5 \ Szfe(:tiin
Split 4 ‘ Fold 1 | Fold 2 | Fold 3 \ Fold 4 | Fold 5 \
Split 5 | Fold1 | Fold2 | Foldg [Foldg | Folds |

Performance Evaluation {

Splitting of data for cross-validation and performance evaluation. Training data is
marked green, evaluation data blue, and testing data is marked in orange.

In Fig. 2.7, we see how the data is generally split for performance evaluation. First,
we split-off a fraction of the data that is not involved in any training, the test data. The
rest of the data, the training data, will be used for model selection. Since the classifier’s
parameters are selected with respect to the training data, it is no longer suited as a
prediction for the out-of-sample error. Therefore, the evaluation needs to be done with
the previously split-off test data (Arlot, Celisse, et al., 2010).

Fig. 2.7 visualizes the so-called 5-fold cross-validation. In this case, we split the
data into 5 parts, use 4 of them for training and evaluate on the remaining instance.
The results of the different evaluation data splits will than be used to estimate the
performance of the model. In the next sections, we will go in more detail to different
types of cross-validation. The notion of model selection is usually focused on the idea
that we choose one of the different algorithms. However, hyperparameter optimization
discussed later can also be seen as a form of model selection.

Different Methods for Implementing Cross-Validation

The generalization of the above mentioned 5-fold cross-validation is called k-fold cross-
validation (Geisser, 1975). Theoretically, k& could be any integer, but common values
in literature are 3,5, and 10. An increase of k£ will usually also increase evaluated

2.3 Evaluation 13

14

performance, as the classifier can use 1 — % of the training data to learn from in each
split. The score, derived from the cross-validation is usually the average score across
all splits. In Section 2.3.5, we can see other usages of the sequence of scores instead of
simple aggregation by mean.

Since we cut the data into pieces, we have to decide how exactly we want to select the
cutting positions. Fig. 2.7 already indicates that we select equally sized pieces. However,
we can still shuffle the data and select the position of the first cut. All succeeding cuts
are then determined by the size of each piece. Independent of the actual choice, we
must make sure that the resulting data splits are reproducible between different model
selection runs. Otherwise, we evaluate different algorithms on slightly differing datasets
and henceforth change two variables at once.

Since data is usually not perfectly uniform, there are many variants of this basic idea.
Stratified versions of cross-validation make sure that all target classes occur in the same
frequencies in all splits. Yet, this can only be applied if all data elements are statistically
independent of each other.

One extreme case of the k-fold cross-validation is the leave-one-out cross-validation.
In this version, we have n different splits with n being the number of data elements.
The classifier is trained on the whole dataset except for one element and evaluated on
this element. This form of cross-validation is computationally only feasible if the dataset
is reasonably small and the training time of the classifier is small.

The cross-validation described so far assumes that the data has no structure and all
individual data points are among equals. Sometimes the data decomposes into groups
that should be taken into account when splitting the dataset.

A modification of the leave-one-out cross-validation that is aware of those groups
is the leave-one-group-out cross-validation. Similarly, we train the data on all groups
except for one and evaluate the performance on the remaining group.

In the context of statistical testing, we might want to evaluate an algorithm on more
than k splits or choose the fraction used for training and the number of iterations
independent of each other. This can be achieved by sampling the training fraction from
the dataset (Picard and Cook, 1984). Therefore, we can use a fraction of size p from
the dataset for training and by choosing another random split, we can create different
combinations. This method is also called monte-carlo cross-validation.

For this thesis, we generally consider two basic ideas of splitting our data. The corpus
is made up of several documents. The data is quite homogeneous within a document
but heterogeneous between documents.

The first mode is in-document splitting, we split each document individually and
then combine the splits across all documents. This mode can be used for k-fold cross-
validation and Monte-Carlo cross-validation alike. Secondly, we can split the document
boundaries. In this case, we can see the documents as groups of data and therefore this
splitting method is similar to the leave-one-group-out splitting.

The idea of k-fold cross-validation or the Monte-Carlo version is that we can generally
select each data element for itself. Unfortunately, our dataset consists of sequential data
and cutting out single tokens destroys their important context. The sentences of such a
document can, however, be seen as an independent entity, therefore we can shuffle the
dataset before cutting. This could theoretically also be used to implement a constrained
version of stratified cross-validation. However, the sentences in our corpus are generally
very long and the machine learning programming libraries usually do not support such
specific splitting. In later chapters, we will see that the dataset has however no proper
sentences and hence, we can not rely on that notion for cross-validation. The lack of
fine-grained sentences forces the splitter to make cuts within the document. This might

Chapter 2 Prerequisites

2.3.4

2.3.5

not be ideal, but since k is large compared to the size of the dataset, this issue can be
ignored. In the case of Monte-Carlo cross-validation, only at most two cuts are placed
within sentences.

The splitting between documents is easier to carry out. However, the documents in
our corpus differ significantly in size, which results in significantly different amounts of
training-data depending on which document has been selected for evaluation. Ideally,
we would like to cluster the documents to generate groups of similar size, but it is not
simple to do that in a principled manner.

Hyperparameter Optimization

To properly compare two algorithms, their parameters need to be optimized. Otherwise,
there is no evidence to believe that we compare the best instances of the algorithms,
which renders the evaluation meaningless.

Hyperparameter optimization is a search problem in the parameter space. Generally,
every search technique can be used, such as handcrafted heuristics, simulated annealing,
or evolutionary algorithms. In the last decade, Bayesian optimization techniques have
been proven powerful for hyperparameter optimization (Hutter et al., 2011; Bergstra
et al., 2011). Apart from that, the early stopping mechanisms are also very powerful, as
they start on a wide search space with little computational resources and then invest
more resources on most promising instances. An influential algorithm from Li et al.
(2016) implements this idea in the form of a multi-armed bandit problem. This concept
has also been combined with Bayesian optimization by Falkner et al. (2018). However,
the fitting process of our algorithm can not be monitored or stopped, therefore we
cannot employ those techniques.

Even though we could simulate some kind of early stopping, by fitting only a subset
of the training data, this would be not very reasonable, as this yields sublinear speedups,
which means we could as well fit the whole data and get a more reliable score.

Therefore, we opted for Sequential Model-based Algorithm Configuration (SMAC)
version 3, which is available as a python library on
https://github.com/automl/SMAC3. The full documentation can be found at https:
//automl.github.io/SMAC3/master).

Statistical Tests

In the previous sections, we discussed the idea of model selection. Model selection is a
form of optimization whose goal is to find the best parameters that result in the best
model after training. However, once we have stopped optimization, we never know if we
found the optimum. Not only because we might get stuck in a local optimum, but also
because the evaluation of the model has uncertainty in it. The measured performance
might be over-estimated and other models we evaluated in the past have a lower out-
of-sample error, but we do not know that. Since single changes in parameters might
have tiny effects on performance, the overall result after a hyperparameter optimization
might still be significant.

This can be verified with the statistical toolbox of hypothesis testing. The basic
concept in hypothesis testing is that we assume the so-called null-hypothesis, which we
aim to reject. The null hypothesis assumes that changes in results are only occurring
due to random effects, but not because one of the algorithms is better than another one.
When rejecting the null hypothesis with high probability, we can be sufficiently certain
that one of the algorithms is better than the other one.

2.3 Evaluation

15

https://github.com/automl/SMAC3
https://automl.github.io/SMAC3/master)
https://automl.github.io/SMAC3/master)

16

One such test, usable for pairwise comparison of two algorithms is the Wilcoxon
signed-rank test (Sheskin, 2011). This test is used to check whether the median of a
series of numbers deviates significantly from zero. In contrast to the paired Student’s
t-test, the Wilcoxon signed-rank test does not assume that the numbers are sampled
from a normal distribution. This makes it more robust, as this assumption cannot be
verified for algorithm scores.

The series of numbers are the pairwise differences of the scores of two algorithms
when applied to a series of datasets. The source of such a series of datasets might be
the Monte-Carlo cross-validation with a fixed random seed. The two algorithms are
therefore applied to the same splits of data and we can compare each pair of scores.

Example performance scores and application of the Wilcoxon signed-rank test.

sorted signed

Aq Ay Al — Ay score diffs rank
Split 1 0.61 0.62 -0.01 -0.01 -1
Split 2 0.69 o0.60 0.09 -0.02 -2
Split 3 0.83 0.80 0.03 0.03 3
Split 4 0.67 o0.57 0.1 0.04 4
Split 5 0.72 0.77 -0.05 -0.05 -5
Split 6 0.81 o.77 0.04 0.06 6
Split 7 0.80 0.82 -0.02 0.07 7
Split 8 0.82 o0.75 0.07 0.08 8
Split g 0.84 0.78 0.06 0.09 9
Split 10 0.95 0.87 0.08 0.1 10
39

In order to understand the process, we will calculate an example in Table 2.2. Assume
we have two algorithms A; and As, which we would like to compare and test whether
one of them performs statistically significantly better than the other. We carry out
performance evaluations on 10 different cross-validation splits. Each run will result in
one accuracy for each algorithm, estimated on the evaluation data of the split. Now,
the score differences are calculated. This sequence of score differences is used as input
for the test. If the test rejects the null hypothesis, the median deviates from zero and
hence one of the algorithms performed better. The next step is to sort the differences
by absolute value. The signs will be applied back to the rank each of the evaluations
takes. Finally, we sum up all signed-ranks and receive the test statistic. If this statistic
exceeds a critical value, we reject the null hypothesis and the sign of the statistic tells
us which of the algorithms has performed better. The critical value depends on the
length of the number sequence and the choice of the so-called p-value. The p-value
is the probability of falsely rejecting the null hypothesis. This value is usually set to
fixed values like p = 0.05 in literature. With n = 10 and p = 0.05, the critical value is
33. Since the calculated value of 39 exceeds the critical value, we can reject the null
hypothesis and assume that the algorithm A; indeed performs better than As. However,
with a probability of nearly 0.05, the deviation of the two performance numbers occurred
by random chance and our deduction is wrong.

Apart from this simple example shown above, many specific details have to be taken
into account, but we will omit them here for simplicity. One such issue, for example, is
the handling of duplicate values or o-values in the number-sequence. Statistical tests
like this one are usually readily implemented in most programming libraries.

Chapter 2 Prerequisites

2.3.6 Pearson Correlation Coefficient

The Pearson correlation coefficient expresses relation between two statistical variables
(Pearson, 1895). Let X and Y be two variables and their variance is denoted by o, then
the Pearson correlation is defined as follows:

cov(X,Y)

p(X,Y) =
OX0y

Let u denote the mean of a variable and n the number of values, then the covariance
(cov) is defined by:

n

cov(X,Y) = i=1 (i — px)(yi — py)
n—1

p(+) is bounded by —1 and 1. Positive values indicate a correlation, negative values a
inverse correlation. The absolute value of the measure indicates the strength of this
correlation.

2.3 Evaluation 17

Related Work

The topic of this thesis is loosely connected to the demands of the Intergramm research
project at Paderborn University. The goal of this interdisciplinary project based in
linguistics and computer science is to research the language elaboration process of ML G
(Seemann et al., 2017). To this end, the Cora (Bollmann et al., 2014) annotation tool
has been extended for the needs of this project. The goals for this project demand that
human annotator uncertainty and general ambiguity is captured in the corpus. This
introduces additional challenges to a machine learning tagger as the tagger has to cope
with this noise.

Over the years many approaches have been considered for PoOs-tagging. Schmid

(1994) proposes a tagger inspired by HMM which uses decision trees as baselearner.
This approach, initially tailored to English, was adapted to Germany by Schmid (1999).

Echelmeyer et al. (2017) investigate the same model on Middle High German, however,

it remains unclear why this tagger has been chosen, since it is no longer state-of-the-art.

Ratnaparkhi (1996) suggested a similar method but relied on a logistic regression as the
baselearner. Their work has been further refined by McCallum et al. (2000) by modeling
state transitions differently. Lafferty et al. (2001) build upon that solving the issue they
call label bias problem. The issue related to biased predictions in sequence models. The
proposed algorithm is called CRF. Based on the work of Ratnaparkhi (1996), Toutanova
and Manning (2000) refine MEMM models with a focus of unknown words. Toutanova,

Klein, et al. (2003) extend this work by incorporate the findings of Lafferty et al.

(2001). Their suggestion to solve the label bias problem is, however, computationally
less expensive. Instead of calculating a global model for state transitions, they build a

MEMM which does not only condition on previous tags, but also on succeeding tags.

The resulting algorithm is the coreNLP tagger, which is extended in this thesis. Unlike
the previously mentioned referred literature, Brants (2000) shows, that plain HMMs are

however similarly powerful when used with trigrams and suitable statistical smoothing.

Shen et al. (2007) propose an entirely different approach using perceptrons. Their
algorithm slightly outperforms coreNLP. Collobert et al. (2011) investigate recent
neural network approaches for p0Os-tagging and other NLP-tasks. Huang et al. (2015)
incorporate the bidirectional nature of CRF with long short-term memory (LSTM).
The tagset used for the annotation corpus is strongly based on the HiTs tagset
introduced by Dipper et al. (2013). This tagset is designed to handle the specific
challenges faced in annotating a historic MLG corpus. Koleva et al. (2017) use a

corpus that has many overlapping documents with the corpus used in this thesis.

They investigate different kinds of part-of-speech taggers on the documents. The
hyperparameters of the parametrized classifier used in their paper are optimized using
evolutionary algorithms. Their taggers, however, have no capabilities of working on
set-valued training data, neither can they produce predictions that reflect the uncertainty
of the machine learning tagger.

The annotator’s uncertainty can be seen as a form of noise, obscuring an idealized
version of the data. The general problems faced with noisy data have been investigated
by Derczynski et al. (2013). The authors use the tagger also used in this thesis. However,
they tune the hyperparameters by hand and do not use hyperparameter optimization to

19

20

find optimal configurations for their dataset. The P 0S-tagger implementation used in
this paper is the already mentioned CoreNLP tagger that is also used in this thesis.

In the past decades, different approaches have been proposed to make machine learning
more reliable. One issue with machine learning is that the classifier is usually forced to
give a prediction, irrespective of its confidence in this prediction. To tackle this issue,
prediction with reject option has been proposed (C.-K. Chow, 1957; C. Chow, 1970).
El-Yaniv and Wiener (2010) investigate the trade-off between classifier coverage and
high accuracy in the context of binary classification. This concept has been generalized
to the multi-class setting by Ramaswamy et al. (2018b). However, abstention might be
too strict for many real-world applications, because it is a binary concept that cannot
reflect different degrees of uncertainty. To this end, concepts like conformal prediction
or set-valued prediction have been proposed. Conformal prediction, as introduced by
Shafer and Vovk (2008), focuses on the statistical ideas of confidence, the probability
that the true class is contained in the predicted set of classes. Mortier et al. (2019) focus
more on a concept of utility. This concept allows us to specify the trade-off between
large prediction sets and high confidence predictions in a more flexible way.

Chapter 3 Related Work

4.1

Corpus

In this chapter, we introduce the dataset used in this thesis. The dataset has been used
to predict the out-of-sample performance of the algorithm, but the algorithm is also
tuned specifically to this dataset.

Description

The corpus consists of several historic documents, written in MLG. Most of the
documents are municipal law texts that have been read to the general public during
trails (Tophinke, 2009). Tophinke (2012) express also that the boundaries of sentences
are not as clear as they are today. We will therefore not be able to rely on sentence
splitting. Since some tagger’s memory complexity scale linear with the size of sentences
and use sentence boundaries as guidance, this is difficult in this dataset. However, we
implemented some kind of pseudo sentence splitting, which will be described in more
detail later on.

54 A

()

® Year

531 g 1200
1300
1400

® 1500

Tokencount

0

10000

20000

30000

Datasource

® REN

201 o # other

6 8 10 12 14 16
Longitude

Latitude
(6]
N

51 A

Scatter plot of document origin and metadata from the corpus. Small jittering has
been added to the geographic positions to decrease the overlap of the datapoints.

Additionally MLG is not standardized during the time period of interest, meaning
that there is no orthography. This issue was however already solved in the version of
the dataset that has been provided for this thesis. The words have been clustered using
a Levenshtein distance and the resulting spelling correction rules have been verified by
language experts to prevent contamination of the dataset. Therefore we can assume all
documents to be orthographically correct, even though this assumption can usually not

21

be made for ML G. The full list of all documents in the corpus can be found in Table A.1.
This table also reports all shorthand for document names used throughout this thesis.

The corpus consists of a total of 23 documents from different time periods and of
different sizes. In Fig. 4.1, we can see that the documents span a large region. The east-
west extension ranges from Duisburg in the West to Koltobrzeg in the East. Kotobrzeg,
now a Polish city, was part of Prussia in the 12th century. In the north, we have
texts originating from Rostock and Hamburg. The separated southern text stems from
Bamberg.

The earliest documents in the texts are from Kolobrzeg and Stade, written in the
12th century. The latest documents are from Duisburg, Bamberg, and Rostock from the
15th century.

The documents vary significantly in size. The smallest documents contain no more than
500 tokens (Hamburger Urkunden 1301-1350, Werler Urkunden Neheim, Ravensberger
Urkunden) while the largest (Bremer Stadtrecht) contains nearly 24,000 tokens.

Fig. 4.2 shows the number of tokens per city and per time period. It shows clearly
that a large majority of the documents stem from Bremen. The second most tokens
come from the single text from Bamberg. The majority of the documents, namely the
ones from Bremen, are written around 1300. The three from Bamberg, Rostock, and
Duisburg make up the spike at 1500.

40000

20000 A

RRaReXs

22

....- 20000 -
0_

S 55 3 5 5P 05 b o (P, KD
B T T R e

60000 -

40000 -

O T T T T
1200 1250 1300 1350 1400 1450 1500

City Year

00\ ‘e‘%‘o‘(\g\f‘;\ﬁ@c

Distribution of the origin and creation time of the documents. The x-axis is the total
number of tokens from documents in the respective category.

The corpus as a whole is taken from the research project InterGramm, which is creating
a gold-standard tagged corpus in order to investigate the establishment of grammatical
structures and sentences in MLG (Seemann et al., 2017). Part of their dataset, in turn,
is taken from Reference Corpus Middle Low German/Low Rhenish (1200-1650) (REN)*.
The documents from RENare tagged with a slightly different tagset but partially adapted
to the tagging schema of the remaining dataset. This issue is visualized in Fig. 4.3.
REN7, REN11, and REN12 are particularly small documents, hence it is expected that
they only use a small subset of the tags. Generally, the documents which do not stem
from the REN corpus have a larger variety of tags, because they are generally labeled
more fine-grained. The tag with the largest variety across the dataset is the NE tag,
expressing proper nouns. This figure gives also a first impression of the difficulty of the
tagging task.

"ReN-Team, 2019.

Chapter 4 Corpus

1550

The documents vary not only because of the difficulties that are inherent to diachronic

corpora but also because they have been tagged with different annotation guidelines.

Some of these ideas will be revisited in Section 6.9.2.

Since ML G differs significantly from modern languages and following the demands of
such a specific research project, the set of tags is obviously different than the ones used
mostly in NLP. The widely used Penn Treebank (PTB) II tag set® contains roughly 40
tags, but it contains also special tags for inter punctuation. In the corpus used here, the
punctuation is of little interest and therefore automatically tagged by another, simpler
tagger. The used tagset contains more than go tags, as seen on the x-axis labels of

Fig. 4.3.
M la 1 . = 1.0. 1 - a Ba
ig % §§ §§§ fg §§§§§ ggffé § %%ﬁ g§ i%% 23 $§g 2 8 % §§ § % g gg % §§§ﬁ £%
§§§§ g éﬁg gf sggzg § §§§ g§g§§ §§ §§§ £58% §_§ £ 7 §§ 52 g 5% § §§§ §§§§§§§
850 £ a8EeX S ReSKaSXEQeaX & SaBL SaXSReagglany 2 ofLR Bagadae K LReallaaalans
§g§§ g §§§§ 3§%\£§§§§§%%gff§ 8 §%§g§§ i%g\ifii ffg g§§ % %g,§§ gz § g %\fév :ff%f;
ARZAREEARARLE SeSKeaLBaBRILeat & SHaRKS QenSGanaflRe K KK ¢ T LY Baag X SIKaRLLan S
BS% 28 £ 2aX Ll 1eXTEEOARaa SRLLARRT JaXK sARESAR B L A LIRAX 2fx XX SAKe Kpaafans
B b e o s S R R SR L S e
§§§§§g £ EEX g§§ if%gf%é§§§§% b é;i%%%\ 2 Hrall 223 §§‘ 4% % §g§§ %‘5 LBz gﬁf b
885058 £ef X arCRaEKeeX & LLAXRK XK wagd £ BEK 0 K K aXea® KK KKBes Swsafass
E3%4 08 sfead BaX eafRaRRAGeal § TXeLEL XY wags axX SR LY K a%ax F QX Ax fea Leas
835 8% SKEAsgERacdeeSRasig A5EKRL ARIRAAKL eeiflY SEReSSEHLAR B BHKREE QBT 8 S
ER% A SRESR e RKIRRIGH 8 S B Lr XKLL RTLLS 0 388 | ARRRSSERLKRILREY 4 BLaBRRLe SEERRX #%S
§§§f gff §§§ fg § §$§g§g §§§§g g g§§§§§ §§§ £5% §§§ £ &% fg fgffff §§§ 55 £
185 S%x Laex¥ SalQ aXX SXRLaaRERaLLaBUILR Bhasngpeang 2 ar LR % X o2 XY aXpaslen
§g§§§§ §§§§§ e iggiggggff 8 %%i §§ Qs % £25] gg | BE gf 258 §§§§§§ %%é§§ SEaRZe X
135 &% éf%g‘ 2 xeg%eX XRea% & X 2K '§§§ -FH TR B R T F §§\v X&xx £5s A4
£ ReexRK AR ReX x AR a%A%e LARRX QaX g axf Ak B LRReTx AQERRARIRARAITELLLx x
2RI §§§ 8% aSRaR KXrak QaRRx § f%% L EREEREE] b iéfigf\ 2% RSE S % <§§§
S 855 S i%%ig 288 85K §§§ %g ”i§§ B | B k] el e i%f §§§§ Ra&% JeR< g¥%ex
I § §§§ fg §§§§§§gg§§§ %gﬁggg gf g §§§§§§§g E5E % g §§§ §§§ gf gff 5% gﬁf
- % £8XQ Rx ArefRal SXeekQ RXeLLX Qe pere 4a¥ & g oay afe X ¥ a8 XLALK EXX 2o
4 s g gii\%glfé & & §§%\ 5'25 3\\g§§ £53 LT éigg §§§ ‘§§§§ BI&s %
#Rr R SEen Ref effeR O8RS XD RS merlRendf oS e aBE e B SR R Bgee [eepend
= 2 5 YR TSt T CEr g

Fig. 4.3.: Heat map reporting the tag distribution of each document. If a tag has not been used
in a document, the field is marked with a crosshatch. The top plot shows the prior
distribution across the tags. The color in the heatmap marks the difference to the
prior, while the numbers in the fields list the probability mass of the tag within each
document. The plot on the right shows the relative size of the documents

Another important metric for NLP datasets is the so-called 1A A. This measure is
used to estimate the uncertainty in a dataset. To this end, two human annotators tag
the same dataset and their overlap is calculated. Unfortunately, we do not have such a
measure for the dataset we are using here. Therefore, we will report the agreement from
Koleva et al. (2017). Their 1A A is about 91,4% on the “Soester Schrae, 1300”7 (SOS1)
and 92.2% on the “Statuarrecht Riithen, 1300” (SRR1). The two documents are also
part of our dataset. However, they annotated the documents with a less fine-grained
tagset; therefore, we conjecture that such an agreement would be even smaller on our
dataset. This number can be seen as an upper bound of our classifier’s accuracy, as the

“Prasad et al., 2008.

4.1 Description

020000

23

0.16

0.12

-0.08

-0.04

-0.00

--0.04

corpus documents are annotated by several experts, all in slight disagreement with each
other.

4.2 Tagset

The tagset used by the Intergramm project to tag this corpus is strongly based on the
Dipper et al. (2013) tagset. Table 4.1 lists the whole list of tags. The first group of tags
is concerning classical word classes like nouns, adjectives, and verbs. The last section
consists of three special tags aimed to mark noise in the dataset. Tags like ADJA<VVPP
express historic relation of words, for example, that this adjective historically stems
from a simple past participle of a main verb. Tags ending with an asterisk like the KO*
express groups of tags. In this case, the word would be one KOKOM, KON or KOUS,
but a more general class is chosen by the annotator. Some of the documents contain
latin words like “capitulum” for “chapter”. Those words are tagged with the FM tag.
The 0A tag is used to mark spelling mistakes like accidental word duplication by the
writer. Chapter numbers like “X11” are often tagged with the XY tag.

The tagset used in the corpus.

Word class

Related tags

Adjectives

Pre- and postpositions
Adverbs

Cardinal numbers

Determiners

Conjunction
Noun
Pronominal adverb

Pronoun
Particle

Auxiliary verb
Copular verb

Modal verb

Main verb

ADJA, ADJA<VVPP, ADJA<VVPS,
ADIN<VVPP, ADJS, ADJV

ADJD, ADIJN,

APPR, APPO
AVD, AVG AVNEG, AVREL, AVW
CARDA, CARDN, CARDS

DDA, DDART, DDD, DDN, DDS, DDSA, DGA, DGN, DGS,
DIA, DIART, DID, DIN, DIS, DNEGA, DNEGS, DPDS, DPOSA,
DPOSD, DPOSGEN, DPOSN, DPOSS, DRELA, DRELS, DWS

KO* KOKOM, KON, KOUS

NA, NE

PAVAP, PAVD, PAVG, PAVREL
PG, PI, PKOR, PNEG, PPER, PRF

PTKA, PTKANT, PTKG, PTKN, PTKNEG, PTKREL, PTKVZ,
PTKZU

VAFIN, VAFIN.* VAFIN.ind, VAFIN.konj, VAINF, VAPP
VKFIN.*, VKFIN.ind, VKFIN.konj, VKINF, VKPP, VKPS
VMFIN.*, VMFIN.ind, VMFIN.konj, VMINF

VVFIN.¥* VVFIN.ind, VVFIN.konj, VVIMP, VVINF, VVPP,
VVPS

Foreign language
No annotation

Not a word

FM

OA

XY

24 Chapter 4 Corpus

4.3 Multi-Label Tags

To allow the human annotators to express uncertainties in a more detailed way, the
tagging schema is not a classical multi-class setting, forcing one tag per word. Each
tagging is provided as a weighted multi-label set. The weights do not always sum up to
1 as there are generally three cases we distinguish:

Multiple Correct Tags If a word can be interpreted in two ways, the annotators can
assign it two tags. E.g. the ML G word dhe could be classified with two different
determiner tags {(DDs,1.0), (DRELS, 1.0)}. Since all of them are correct, they
are both weighted 1.

Partially Correct Tags If the annotators are uncertain about the tags they can assign
multiple tags in a weighted manner. Those weights sum up to one and express
a probability distribution. The human annotators can choose to assign the
same probability to all tags or express that they deem one tag more likely. e.g.
so {(pPTKG,0.33), (AVD,0.66)}
al {(D1s,0.5), (AvD,0.5)}

Single Targets If a word can be tagged by the annotator, only one tag is assigned.
E.g. braunschweig {(NE, 1)}

The list above indicates, that no more than two tags can be provided. The weights
are also discrete and can only take on the values listed above (1/3,1/2,2/3,1) Although
most of the tags are actually single targets (Table 4.2).

Relative frequency of the multi-label target types in the dataset.

Target Type Relative Frequency

(1.0) 99.09%
(0.5, 0.5) 0.42%
(0.33, 0.66) 0.28%
(1.0, 1.0) 0.20%

To tackle this peculiarity of the dataset, we will introduce modified performance
measures in Section 5.3.

4.3 Multi-Label Tags 25

5.1

Algorithm

The following chapter will define the problem faced in this thesis and the algorithm and
extensions used to solve it.

Problem Definition

In Pos-tagging, we aim to predict the word classes for each word. Since the notion of
word classes is strongly tied to the concept of a sentence, we assume the problem can be
solved optimally on sentence level. Formally, we aim to predict a tag-sequence " given a
words-sequence w™. This word-sequence represents a sentence. Since historic languages
like ML G do not have the notion of a sentence as we know it today, this word-sequence
might be a large document consisting of hundreds of tokens.

The corpus used in our dataset is rather small and noisy. This noise is also reflected
as uncertainty in the 1A A. This uncertainty should be reflected in the predictions of the
classifier, as the tagging of the classifier is only used as the first guidance for a human
annotator to validate its predictions to generate a gold standard dataset. This capability
can be expressed by allowing the classifier to abstain from its prediction for difficult
data elements. A strict abstention is albeit not very useful for the human annotator
working on the machine-generated tagging. To increase the classifier’s expressiveness,
it should be capable of predicting a set of classes, adding more in case it is unsure.
To numerically grasp the value of such a prediction, we introduced several metrics in
Section 2.3.2, specifically Eq. (2.3).

The Unrestricted Bayes-optimal prediction (UBOP) algorithm (Algorithm) defined
by Mortier et al. (2019) can generally produce Bayes-optimal set-valued predictions
with respect to the utility function, for any probabilistic classifier. This is, however,
based on the assumption that each data element can be predicted on its own. This
assumption is violated in sequence data as the prediction for one token should take
predictions for tokens close by into account.

Another problem related to the assumptions of Mortier et al. (2019) and the reality
of our dataset is related to the utility function proposed there. The authors propose
their algorithm with multi-class problems in mind. However, as described in Section 5.3,
the training data provided to the learner is a weighted form of multi-label data.

When considering set-valued prediction on sequences, there are generally two inter-
pretations:

Token-level The tagger will produce a set of classes for each data element. Hence a
prediction for a sequence of words is a sequence of sets of tags. When combining
the sequence of sets with the Cartesian product, we can convert every token-level
solution into a sentence-level solution.

Sentence-level Another interpretation would be to produce sets of prediction sequences.
Each of the predicted sequences must provide a complete tagging for the word
sequence. The sequences produced will however likely overlap significantly. Since
a sentence-level solution produces sequences directly, they cannot always be
factorized into token-level solutions and are therefore more expressive.

27

5.2

28

Comparison between token and sentence-level set-valued prediction

Token-level Sentence-level
(’U)l, w2, ’11}3) (QUl, wa, ?Ug)
{t1,ta} {t2,t3} {ta}
induces: vs. predicts:
(t1, to, ta) (t1, t2, ta)
(t1, ts, ta) (t1, t3, ta)
(t2, to, ta) (t2, t3, ta)
(t27 t3a t4)

The nature of those two views is visualized in Table 5.1. In this small example, we
can see that the token-level predictor is not capable of creating the prediction that the
sentence-level predictor generates. The token level tagger cannot express that (ta,to,t4)
should be excluded from the prediction.

From a more conceptualized view, sentence-level set-valued prediction allows the
tagger to predict different interpretations of the sentence. This would allow the tagger to
express unsureness on the general interpretation of a sentence. However, the tagger can
also express unsureness for a single word only, which would result in sequences that are
identical except for a single position. The token-level prediction only allows the tagger
to express this pointwise unsureness. To predict different interpretations of the sentence,
the tagger will have to predict unsureness in multiple positions but has no possibility
that only a subset of the Cartesian product are valid interpretations. In this case, the
tagger would, therefore, generate many more solutions than it would like to express.
Since this thesis proposes a way of set-valued prediction via a postprocessing step, the
base classifier will be forced to focus on one specific interpretation of the sentence. This
is, however, only a practical restriction. Generally, one could devise other algorithmic
solutions being capable to solve the sentence-level form.

The problem structure we selected for this thesis is the token-level form. The main
reason for this choice is the structure of the training corpus used. The modified version
of corA used in the Intergramm project allows the human annotators to assign multiple
tags to a word. It does, however, not allow to define any additional restrictions. This
means that the training data is in the structure of token-level sets. Apart from that, we
assume that sentence-level set-predictions are much harder to achieve because neither
MEMM nor any of the other approaches produces a posterior probability for whole
sequences.

However, a first informal view on the data indicated that it is generally unlikely that
a significant portion of the sentences have completely different interpretations. Most
uncertainty is limited to single words. Since the corpus has no proper notion of sentences,
the number of sentences is extremely small, which renders the training and evaluation
of such an algorithm infeasible. Therefore, the less flexible approach was deemed much
more reasonable.

Data Preparation

At the beginning of every data-related process is a cleaning phase to make the data
learnable. In our case, this is mainly fixing tags and removing words that are of no
interest to this evaluation, like punctuation. The result of this preparation process is

Chapter 5 Algorithm

a dataset that can be passed to the tagging algorithm, which produces the set-valued
prediction.

The dataset is provided as CorA export in XML format. This format is not ortho-
graphically corrected and contains much annotation specific information which is not
needed for this project. Orthographic correction is, however, one important cleaning
step, as the classifier will find many words it does not know. ML G does not have a unified
spelling, especially not for our diachronic corpus. However, the Intergramm project is
capable of reading the corA XML files and convert them into orthographically unified,
easy-to-parse text files. Koleva et al., 2017 show that applying spelling correction as a
preprocessing step has no detrimental effects on the performance. They also show that
the raw representation including transcription markers has little to no effect on tagging
accuracy.

Modifications on Taggings With data cleaning, we are limited to fixing simple errors,
that can be solved without extensive domain knowledge. In Fig. 4.3, we saw general
inconsistencies of the dataset. This is out of scope for this cleaning phase of this thesis,
since this can hardly be solved without expert knowledge. We fixed two types of errors
in the cleaning phase: Untagged words and tokens that are some kind of punctuation.

The tagset contains the tag 0A which is generally used to tag words that have no
tagging because they are writing errors of some sort like words duplicated during writing.
Therefore, this tag is suitable for tagging words that have no tag assigned.

Secondly, we tag all tokens that are punctuation of some kind with the $. tag. Those
are tokens like:

, ¢ ~ Dblankline / o 9 I | $

The word “blankline” for example is mostly an untagged word and is also clearly English
despite the ML G corpus. In hyperparameter optimization, we allow the tagger to enable
or disable punctuation symbols, however, they will never be part of the performance
evaluation. Since these tokens are never ambiguous, they are easier to tag, which would
distort the performance evaluation of the tagger.

Simplification and Fitting Most of the modifications needed for set-valued prediction
will concern only the inference process. However, CoreNLP is not capable of handling
weighted multi-label values, as we will describe further in Section 5.3. Therefore, we
need to simplify the data to multi-class targets in order to fit it. This introduces some
issues, as the loss the algorithm is optimized for is not congruent with the actual problem
we would like to solve. As we will see in Chapter 6, this works quite well, nevertheless.
To convert the weighted multi-label problem to a classical multi-class problem, we simply
take one of the highest weighted tags as ground truth.

E.g.: {(pDS,1),(DRELS,1)} — DDS
{(AvD,0.66), (PTKG,0.33)} — AVD

The concrete tag values have no influence in that selection. Another solution and further
details of that issue will be discussed in Section 5.5.1.

Now we have the clean training data and know-how to fit the classifier. The derivation
of set-valued taggings will be explained in Section 5.4 and Section 5.5.

5.2 Data Preparation

29

5.3 Modified Performance Measures

30

As the machine learning problem tackled by this thesis is not a classical multi-class
problem, we need modified versions of the above-mentioned measures. Concretely, ground
truth for any particular word w is not a single tag t, but a weighted set of tags. However,
more than 99% of the tags can be seen as classical multi-class targets. A complete
description of the different cases of set-valued targets is introduced in Section 4.3
Generally, most of the targets in the training data will be singletons. However, we will
devise measures that solve this issue principled.

The meaning of those tags will be further explained in Section 4.2. Since those two
different settings are weighted sets, we cannot rely on typical measures for multi-label
classification. Godbole and Sarawagi (2004, sec. 5.2) list several metrics that are
generally considered in multi-label classification:

5 Yyny

multi-accuracy(Y,Y) = Q

YUY

5 Yyny

multi-precision(Y,Y) = Q
Y]

A Yyny

multi-recall(Y,Y) = ||Y\|

Y is the target set and ¥ the predicted set as before. The multi-label accuracy is also
called Jaccard index. The precision and recall are measures generally used in information
retrieval and the realm of binary classification. The recall expresses how many of the
actual true elements have been detected. The precision corresponds to the fraction of
predicted positives that are true.

Most multi-label performance measures assume that the classifier aims to predict the
ground truth. In the face of risk-aversion, this is not true though, since the classifier
might add additional elements to the prediction to improve its recall. Considering the
utility defined in Eq. (2.3), we want a scoring function that is not affected negatively
by the expendable elements, since this is handled by the discount function. The multi-
label accuracy and precision are therefore ill-suited as they discount the relative to the
predicted set.

Before we carry out the modifications, we should notice that modifications on the
scoring function might invalidate the proofs for optimality devised by Mortier et al.
(2019).

As already seen in Eq. (2.3), the discount function should have no affect if there
are no expandable elements. When considering single-valued prediction, the term will,
therefore, be ignored.

a(Y) = 2 if Y ey s(y) >1
1 else
Zerm? S(y)>a(Y)
ZyEY S(y)
Let s(-) be a function that derives the weight for a specific prediction. The s(-) is

only defined for elements in the ground truth set, but the above equation only queries
elements that are in Y. The exponentiation term only affects the results if the overall

ml-acc(Y,Y) = (

Chapter 5 Algorithm

5.4

score is less than 1, hence Y are the missing elements, and the target consists of multiple
correct tags (see multiple correct tags enumeration above). The exponent 2, therefore,
reduces the score if only one of multiple correct tags is predicted. This effect gets clearer
when looking at the following examples:

ml-acc ({(DDs, 1), (DRELS, 1)}, {DDsS}) =0.25

ml-acc ({(AvD,0.5),(D1s,0.5)},{AvD}) = 0.5

ml-acc ({(AvVD, 0.66), (PTKG,0.33)},{AvD}) = 0.66
ml-acc ({(NE, 1)}, {NE}) =1

Before we can redefine the utility for our purpose, we need to modify the discount
function as well. The current version of the discount function calculates the penalty
concerning]f/| However, this is unfair, in case the ground truth also contains more
than one element. This can be expressed in the following manner:

ml-util(Y, V) = ml-acce(Y,Y) - g(1+ [V \ Y]) (5.1)

The discount is therefore not calculated with respect to the cardinality of the predicted
set, but only by the cardinality of the redundant elements. The increment by 1 is needed
to align the modification with the definition of g(-).

CoreNLP Tagger

In this section, we will introduce the CoreNLP tagger. It is used and extended to solve
the problems defined in Section 5.1.

At first, it is important to explain the reason we selected this specific algorithm as
a basis to solve the problem. In Chapter 2, we have seen different algorithms to solve
the task of pP0OS-tagging. Generally, we looked at different properties to select the most
suitable tagger. The most important selection was the performance we expected to
get out of any specific implementation. Therefore, well-established implementations
should be favored against implementing from scratch. Since the early stages of the
project indicated that the implementation needs to be modified to solve the tasks, all
implementations considered should be open-source and reasonably documented.

The whole domain of neural network implementations has been deemed unsuitable
for this thesis, because they tend to need fine hyperparameter tuning and rely on large
amounts of training data.

For these reasons, we aimed at more mature implementations:

CoreNLP This library is developed and still maintained by the natural language process-
ing workgroup at Stanford University. It is widely used and the implementation
is available on github and was known to the author before starting this thesis.
coreNLP implements an extended version of a MEMM. It offers high predictive
performance and is specifically tuned for English, but not limited to this language.

CRF++ This library has been discovered during the later phases of the thesis during
the study of the paper by Koleva et al. (2017). It implements the CRF approach.
According to Jurafsky and Martin (2008), CRFs are computationally more de-
manding than simple MEMM approaches, but do not offer additional performance
in the specific domain of POs-tagging.

Finally, coreNLP has been chosen for several reasons: It is widely used, mature and
available as an open-source implementation.

5.4 CoreNLP Tagger

31

5.4.1

32

Algorithm

In Algorithm 2, we see the high-level structure of the CoreNLP inference algorithm.
Line 4 of the algorithm calls the classifier fitted on the training corpus. It will be capable
of estimating the probability of a word given its word and context. The window defines
the contextual tags; however, the classifier also depends on contextual words. The tag
context is calculated bidirectionally by this algorithm we will now explain in more detail.

Algorithm 2 Coarse-grained algorithm of CoreNLP, L, R be the left and right viewing
offset feature extractor

1: procedure INFERENCE (W)

2: for w; € w do > for every position
3: for window; ; € [IF_; valid_tags(w; ;) do > for every tag context
4: windowposterior; j < P(T|window;, w, 1) > Emission probability
5: for i e {1,...,|w|—-1} do
6: for window; ; € windows; do
7: for window; 1 j» € windows; {1 do

. {1 if window consistent
8: transition; ; j <) > layered graph

0 otherwise

o: return VITERBI(G) > return optimal Viterbi path

The window sizes L and R are determined by the hyperparameters selected. Those
feature extractors will be further explained in Section §5.4.2. If the feature extractors
look at more preceding or succeeding tags, the algorithmic complexity increases. This
can be seen in the Cartesian product in line 3 of the algorithm.

The function

valid_tags : w — P(T)

calculates a constrained set of tags to be considered for each word. It is needed to reduce
the amount of considered tags to a reasonable set to keep the Cartesian product in line
3 as small as possible.

. {tags, the word occurred with frequency(w) > threshold
valid__tags(w) = _
open class tags otherwise

This constraint is built on the assumption that words are either only tagged by closed-
class tags or only open class tags. The idea behind closed class tags is that every word
for this tag can be seen in the training corpus. On the inverse, we can, therefore, assume
that for each word, if it is tagged with closed class tags, it appears with all its tags in
the training corpus. However, if a word only seldom appears with a specific tag, the
tagger might not have seen it with this specific tag during training. Therefore, these
constraints might sometimes force the tagger to make misclassifications. If a word is
not known, all open class tags are considered for tagging. This is also based on the
assumption described before, because the tagger assumes that it knows all unknown
words that belong to open classes. The Cartesian product of the constraint tags for a

viewing window with L = —2 and R = 1 can be visualized as follows:
i t2 u
t1 2 u U t1 to L 1o
_>
t4 t2 ta t2 Ut
e t2 o 12

Chapter 5 Algorithm

Words

valid_tags

Graph

5.4.2

The tagset of this corpus consists of nearly a hundred tags and many of them belong
to open class tags. This means that for a sequence of unknown words, the function
valid_tags allows many tags at each of the positions. This results in a particularly
large number of context windows considered. Therefore, the size of the viewing window
depends more or less directly on the number of open class tags. Let n be the cardinality
of the open class tags and [the width of the viewing window. Then the Cartesian
product in a position with [unknown words will result in n! viewing windows.

The graph on which we apply the Viterbi algorithm is different than the examples we
have seen in Fig. 2.3. An example graph of how it is generated inside CoreNLP can be
seen in Fig. 5.1. For a sequence of words, we can derive the valid tags as described above.

w1 w2 w3 Wy Ws
{t1,t2} {ts} {t1,ta} {ta, 13,85} {ta}

ts t1 to tr t2 s

4751 i3 t t3 t1 13 1 t3 s byt L

Lot t3 t1 13 14 ts 11 5 t1 15 14 T

Lo te t3 ib i3 11 t3 tq4 t2 ty to2 14 T
to t3 14 t3 tg 13 ty t3 14
ts tg4 s ta 15 14

Example graph on which CoreNLP calculates the optimal tagging. Each node in the
graph is a tag context for which the classifier estimates a probability. The Viterbi
algorithm is used to find the globally most likely path.

Those tags induce the tagging context windows for every position in the sequence. The
edges in the graph are binary, unlike the HMM. Two windows are only connected if their
contexts are consistent. Consistency in this case is such that the overlapping part of
the two windows in question is identical. Formally such a context window is a sequence
of tags. Two sequences are consistent if the suffix of length n — 1 of the first sequence
is identical to the prefix of length n — 1 of the following sequence. Let o be the first
sequence and p the succeeding sequence and o; be the i-th element of the sequence and
n their length.

o and p are consistent if and only if V1 <i<n:o0; = p;i—1

Algorithm 1 is used to calculate the optimal path. Apart from this basic struc-
ture, CoreNLP has additional hyperparameters to tune the frequency threshold for
valid_tags(-).

Feature extractors

In Section 2.2.4 we have seen what can generally be used to convert textual features into
vector data. CoreNLP allows a large set of feature extractors. From the performance
point of view they split up into two sets: Feature extractors that incorporate tag
information and extractors that only use the textual data. This is the case because the
runtime is mainly defined by the size of the viewing window used in line 3 of Algorithm 2.
This means that we can add any feature extractor that works only on the textual data.
However, when selecting too many feature extractors that incorporate tag information,
the runtime and memory demands can grow intensively. An overview of those feature
extractors can be found in Table 5.2.

5.4 CoreNLP Tagger

33

5.5

5.5.1

34

Selection of coreNLP feature extractors

Effects tag window Description

words X One feature for each unigram in the given range
biwords X One feature for each bigram in the given range
One feature for each lowercased unigram in the given
lowercasewords X

range
One feature each prefix/suffix of length n at the given

prefix/suffix X relative position
tags v One feature for each tag in the given range
twoTags Y Qne feature for each consecutive pair of tag in the
given range
order v One combined feature for all tags in the given range
Extension

In this section, we will describe all modifications done to the CoreNLP implementation
and wrappers around the algorithm. The methods provided allow minimal modifications
on the coreNLP algorithm while providing a solution for the problem specified in
Section 5.1. Therefore, the approach can be used with any probabilistic classifier and is
not tied to CoreNLP specifically. In fact, during the early phases of this thesis, different
classifiers have been used within this framework. In Section 6.2 another probabilistic
classifier is introduced, which can directly work within this framework.

First, we discuss preparations to modify our training data, such that it can be used
by coreNLP. Then, the modifications to the implementation are presented. Finally, we
will see how to provide a set-valued prediction for the given data.

Set-valued Loss and Data Augmentation

In Section 5.3, we have seen that the training data provided is not classical multi-class
data. In Section 5.2, we have however already seen a simple solution for this issue.
The following paragraphs are therefore focusing on two aspects: First, we explain why
the simplification of the training data has been chosen instead of modifying the loss
the tagger is trying to fit. Secondly, we will propose another solution to the data
simplification that provides the classifier more data about the ground truth.

Since more than 99% of the tags are classical multi-class tags, a modification of the loss
function is unlikely to have a large effect on the overall accuracy. Our data-augmentation
approach gives the classifier generally access to all the data and therefore the multi-label
case is encoded in the loss in some way. Because this method needs no modification on
the base-classifier, it can still be applied to other data-sets easily.

The basic idea behind our approach is to provide the classifier with multiple instances
for sentences if a sentence happens to have any kind of multi-label ground-truth. Assume
we have a sentence w with the tagging sequence t. If this tagging sequence is only a
sequence of singletons, we can interpret it as proper multi-class data and pass it to the
classifier as it is. Otherwise we could generate all sequences of tags T for the sentence
w that can be generated by the Cartesian product over t. The classifier would then be
provided with each combination of w and a t’ € T. However, since we have no sentence
boundaries, even with a small probability of multi-label tags, T will most likely be

Chapter 5 Algorithm

5.5.2

intractable for at least one sentence. To this end, we devised an augmentation method
that generates less duplicate sentences formalized in Algorithm 3. This algorithm makes

Algorithm 3 Let t be a sequence of weighted sets. It returns a set of sequences T

1: procedure AUGMENTSENTENCES(t)

2: for j € {1, max;c¢|t|} do > as many sequences as the sets have elements
3 for i € |t| do

4 k < max(1, |t;|—7) > take any element, but don’t exceed set
5 t; < ti,k

6 Tjt

7

return T

sure that each tag is shown to the classifier at least once. However, not all contextual
constellations are shown to the tagger. More precisely, Algorithm 3 will return only one
or two sequences, since the maximal size of a multi-label tag is 2 (see Section 4.3).

Set-valued Prediction in General

As we described in Section 5.1, we will focus on the token-level interpretation of set-
valued prediction in this thesis. Ideally, we would like to modify CoreNLP to produce
set-valued prediction directly. To tackle that, we would need to make modifications to
the training loss and in the inference process. For the time being, we ignore the training
and focus on the inference. We saw that CoreNLP uses a graph of context windows
to derive the optimal tagging sequence. This yields two potential entry points for the
implementation: Either we make the context windows set-valued or the set-valued
prediction is somehow generated during the inference on the graph. However, trivial
solutions have large computational complexity and solving the problem heuristically is
hard to evaluate.

As an example of the computational complexity of the naive solution, we will shortly
look at one example. Let us assume we plan to implement set-valued prediction by
substituting the context windows by windows with set-valued tag contexts. The number

classifier
{ti,ta} {ti,t2,t5} u {t3,t6}

Visualization of a set-valued context window in CoreNLP

of considered windows for CoreNLP at a specific position in the sentence is the Cartesian
product of the valid tags for each position in the window. With set-valued prediction,
the complexity increases further, because we need to consider a Cartesian product of
powersets of valid tags. That is because the need to consider all sets to stay in alignment
with the consistency idea in the connection between windows for the HMM graph. To
execute this, we would then need to find a way to score set-valued context windows.
This could be either done by combining scores for single-valued context windows that
make up the set-valued windows of some sort. However, we found no principled solution
to solve the fundamental problem of the increased computational complexity.

5.5 Extension

35

5.5.3

5.5.4

36

Modifications on the CoreNLP Implementation

To apply set-valued prediction in a post-processing step, we need to be able to export
much of the internal information. The implementation has therefore been modified in
two ways: First, we implemented that CoreNLP stores all posteriors for each of the
finally selected context-windows; secondly, we implemented a command-line interface,
to be able to relax the constraints, set by the valid tags function.

Early analysis showed that the selection of valid tags will sometimes force the classifier
to make mistakes, as the correct tag is not contained in the valid tags. The classifier
could be provided with deterministic rules R which can be applied to a set of tags T’
and generate a relaxed set 77 O T (see Algorithm 4). The selection of the ruleset R can,
therefore, be seen as a hyperparameter. T" will, therefore, allow more tags as valid and
therefore increase the search space considered by the Viterbi algorithm. More in-depth
explanation and experiments will be shown in Section 6.9.3.

Algorithm 4 Let T be set of valid tags before the deterministic expansion. R be a set
of tagsets representing the expansion rules. The expanded tagset T” is returned.

procedure EXPANDVALIDTAGS(T, R)
T« T
for r € R do
if TNr#(then
T+ T Ur
return 7’

Set-valued Prediction via Postprocessing

The basic idea behind this method is that the tagger can give us a distribution over the
tags for each word. This can be done either by predicting tags context-free, like the
baseline tagger in Section 6.2, or by taking tag context into account, as the CoreNLP
tagger does. Algorithm 5 describes the algorithm used for predicting set, given a
posterior and a discount function. The algorithm has been introduced by Mortier et al.

(2019).

Algorithm 5 (UBOP) — input: g(-), context x, set of classes Y = {c1,...,cx}, and
posterior probability P
Y 0, py < 0,U" 0 > Init. best solution, its probability and utility
2: Q< () > Init. priority queue of classes sorted by decreasing P(c | x)
3: for c€ Y do > For all classes
4: Q.add((c, P(c | x))) > Query the distribution P to get P(c | x)
5: while Q # () do > Loop until the list of sorted classes is empty
6: (¢,pc) + Q.pop() > Pop the most probable element from Q
7 Y« YU {c}, py < py +pe > Update the current solution and its probability
8: Uf, < Pe X g(’YD
9: if U* < Uy then > If the utility increased
10: ?J — f/, U* Uy > Replace the current best solution
11: else > If there is no improvement
12: break
13: return }A/u* > Return the set of classes with the highest utility

Chapter 5 Algorithm

Since the post-processor does not rely on the predicted tags, but only on the posterior,
it can completely override the predictions made by CoreNLP or any other tagger. When
viewing the contextual nature of the problem, this could be a problem, as the results
from the Viterbi algorithm can be revoked. However, the posterior distribution also
reflects the chosen Viterbi path, as the final path determines the context for each
posterior distribution.

To validate whether the post-processor will revoke the tagger’s predictions, we calcu-
lated how often the single tag predicted by the tagger is contained in the set-prediction
at the specific position. For known words, this was the case in every single position. For
unknown words, more than 99.5% of the single tags were contained in their respective
set-prediction.

When we compare our approach to the two views on the problem of set-valued
prediction on sequence data (see Section 5.1), we can see that this approach is very well
in alignment with the token-level setting. That is, predicting one interpretation for the
sentence, and then relaxing the prediction locally for every position of the sequence.

5.5 Extension

37

6.1

Evaluation

In the previous chapter, we introduced all the work done to solve the research problem
defined in Section §5.1. In this chapter, we aim to evaluate the provided algorithm on
the corpus described in Chapter 4. First, we select the optimal model in Section 6.3.
Then, we evaluate this model in different ways.

Dataset Splitting and Experiment Setup

To allow for a clean performance evaluation, we will split the dataset in the beginning
into a test and a training part. The test part will not be involved in the process of model-
selection and can, therefore, provide a clean performance estimate. The training part is
used in cross-validation to find the optimal model during hyperparameter optimization.
Fig. 6.1 visualizes the data splitting process. The corpus decomposes into multiple
documents. The test part is composed of 20% of each document. The test part is cut
out on a random position. Since the documents are not chunked into sentences, there is
no way to shuffle data without destroying the word context.

The training and test data is split across all documents. The blue fraction is used for
model-selection, while the orange part is held back for performance evaluation. The
fraction is taken from random sections of each document.

For Section 6.5, the evaluation is less obvious, as we will set the splits differently.
Since the performance of this setting is anyway hardly comparable with the other two
settings, it makes no sense to exclude the test set for training. The goal of this setting
is to evaluate the robustness of the classifier.

Different performance measures are used for model selection and evaluation. Due
to the nature of this dataset, the classifier itself is optimized concerning the 0/1-loss.
However, for hyperparameter optimization, we can use a measure that is more suitable
for our corpus. Therefore, we use the multi-label ground-truth accuracy (ml-acc) devised
in Section 5.3 for this means. Since the topic of this thesis is set-valued prediction, we
are not so much interested in the accuracy of our classifier, but rather in the utility it
achieves. But it is not obvious for which utility we would like to optimize. As already
indicated in Section 2.3.2, there are many choices for the discount function g(-) and
many of them can be parameterized even further. Optimizing for one of these measure
instances does not indicate good performance for other measures, as the utility highly
depends on the structure of the posterior probability distributions of the classifier.
Therefore, we opted to optimize the model with respect to the ml-acc measure via 5-fold
cross-validation.

39

6.2

6.3

40

The different evaluation settings we investigate are hardly comparable to each other.
Especially for small datasets like this, the performance is significantly influenced by
the amount of training data considered (see Section 6.8.3). Therefore, we use the
baseline algorithm defined in the following section as a relative performance indicator.
This tagger will always be trained and evaluated on the same parts as the classifier
we are interested in. For the evaluation, we use the ml-acc and ml-util measures. The
utility will be calculated for different parameters with the discount function defined in
Eq. (2.4). If nothing is specified, ml-utilwill be configured with the discount function
ga=1,8=1(-). Similarly to the work of Derczynski et al. (2013) and Toutanova, Klein,
et al. (2003) we will analyze the performance of known and unknown words in the
error analysis. We would like to remind the reader again that Koleva et al. (2017)
indicated that the inter-annotator agreement on their ML G documents is only about
91%. Since the documents in the dataset stem from different sources, they have been
annotated by several different annotators. Therefore, it is unlikely that a tagger can
learn a performance above this annotator agreement when trained and evaluated across
the whole corpus. The an explanation of the abbreviations for the dataset documents is
provided in Table A.1.

Hardware Setup All experiments where run on an Arch Linux (kernel 5.3.8 x64)
machine with an Intel 8700k hexa-core CPU and 32GiB of RAM DDR4-2166. Detail
on the programming language and libraries used can be found in Appendix A.2.

Baseline

The baseline model explained in this section is even simpler than an HMM. This model
will predict a tag with the highest probability and depend solely on the word itself. In
case the word is known, the predictor is as follows:

t; = argmax P(t | w;)
teT
This posterior probability is estimated by the relative word frequency:
#(t, w)
#(w)

If the word is unknown, we will fallback on predicting the globally most frequent tag

Pt | w) =

via the prior:

t; = arg max P(t)
teT

In our corpus this is the NA tag which represents a common noun. In alignment with
coreNLP, this tagger cannot predict tags that are not seen in the training data.

Since this tagger is very simple, it is well suited for lower bounding the performance
of any tagger for a specific corpus. It will, therefore, take on the function of indicating
the difficulty of the dataset itself.

Model Selection

The goal of the model selection is to find a configuration of the tagging algorithm, that
is fit to the data as good as possible. Therefore, we use the within document splitting
across the whole dataset. This setting is described further in Section 6.7. The resulting
model is kept fixed for all evaluation settings in this chapter.

Chapter 6 Evaluation

6.3.1

Configuration Space

Before we define the configuration space considered for model selection we would like
to mention that we had to constrain the configuration space strictly. The theoretical
configuration space for CoreNLP is not only very large, but it contains also many
configurations that are not practically useful. As discussed in Section 5.4.1 large tag
window sizes will result in extraordinary run time during evaluation or will exceed main
memory. Apart from that, many configurations will crash for other reasons or run
extremely long, slowing down the search process.

Therefore, we chose to only consider a small subspace for the feature extractors. We
also split up the model selection into two parts: First, we optimized the feature extractor
using the default parameters for all other hyperparameters. Secondly, we fixed the
optimal feature extractor and optimized the remaining hyperparameters. This constraint
search might exclude the optimal model of the combined search space. Although the
results of the second optimization step indicate that their effect is generally minor anyway
and the feature extractor selected with default parameters might be close enough to the

optimum. All parameters not mentioned here have been kept at their default setting.

Accidentally, the parameter lang has been set to german instead of the default value
english during the evaluation. However, Section 6.3.3 shows that this parameter has no
effect on the final model. Therefore we assume that it would not have influenced the
model selection in the first place.

The configuration space for the feature extraction is defined in Table 6.1. The default
model for CoreNLP is specified by words(-1,1) and order(-2,0); therefore, it is natural
that we include it. The words feature extracts one feature for each word in the specified
range relative to the current word. We added larger frames to give the classifier a larger
word context. We allowed the classifier to also select prefixes of length 1,2, and 3 for
rare words. The selection for suffixes considered is guided by the special rules created
for a expert system of the Intergramm project. We selected the configuration space such
that the classifier could theoretically recreate the inference rules crafted by the human
experts.

The second list in Table 6.1 concerns the tag extractors. Since the width of the tag
context window significantly influences the classifiers computational complexity, we
extracted the offset into a variable and specified all tag related features relative to this
offset. The maximum tag window size that can be kept in main memory is 3. The order
feature has been kept fixed in size, but might be moved such that one tag in front and
one tag behind the current word is considered. The wordTag feature extracts a specific
rule for the current word combined with the tag at the specified index. In the default
configuration it is disabled completely. This selection is again modified by expert rules
from the Intergramm project. The full list of architectural parameters is available at
the projects website'2.

The last section in Table 6.1 lists parameters of our wrapper algorithm. Since

punctuation very easy to tag, we choose to exclude it from the evaluation of our classifier.

However, also the unregulated punctuation of MLG could convey contextual information
that can be exploited by the tagger. Therefore, we allowed the model selection to enable
or disable punctuation. Apart from that we allowed the hyperoptimizer to enable or

"https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/ExtractorFrames.
html

*https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/
ExtractorFramesRare.html

6.3 Model Selection

41

https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/ExtractorFrames.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/ExtractorFrames.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/ExtractorFramesRare.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/ExtractorFramesRare.html

Configuration space for the feature extraction architecture. The blue marked elements
are the default values from which the search was started.

Parameter name Description Values
words Interval of words to consider for tagging {(-1,1),(-2,2),(-3,2)}
prefix One feature for each prefix length extracted from (0, 41,2,3)}

the current word.

One feature for each suffix length extracted from

suffix the current word. {21 41,2,31,{2,3,4,5}1}
X Offset tag related features {-2,-1}
order One combined feature for the tags of the provided (2,24 2)}

index range.

One feature for a word and tag. First parameter
wordTag is the word index, second parameter is the tag pow ({(0,z +1) | i € {0,1,2}})
index. The default value is §).

Exclude punctuation words. They do not con-

. . T False
tribute to the score evaluation. {True, False}

punctuation

augment_data FEnable process explained in Section 5.5.1 {True, False}

disable the data augmentation approach introduced in Section 5.5.1. All in all, this
search space contains 3 X 2 x 4 x 2 x 1 x 23 x 2 x 2 = 1536 configurations.

The second phase of model selection is concerning classical numerical hyperparameters.
The first parameter listed in Table 6.2 influences the regularization of the underlying
optimizer for the logistic regression model inside of CoreNLP. The other parameters
manipulate the feature-selection and pruning. The extractor frames specified above
will be generally used as templates to add features. However, those frames will create
thousands of singular features, from which many are only triggered once or twice during
the whole training process. The parameters below will decide when which features
can be dropped, to reduce the dimensionality of the optimization surface the logistic
regression has to fit. The last parameter will add additional features not mentioned
before. Those features will detect extremely common words. This configuration space is
theoretically of infinite size, as it contains real valued parameters.

Apart from that, we could have specified open and closed class tags. However, the
assumptions for open- and closed-class tags are violated in our dataset, as some of the
closed-class words are not seen in the training dataset as our training set is only small,
compared to other natural language datasets. The effect on classifiers performance will
be further evaluated in Section 6.3.3. The other command line parameters for CoreNLP
should not effect the fitting and inference process. The full list of the command line
parameters for CoreNLP can be found on the project website3

6.3.2 Resulting Configuration

Since the CoreNLP training and inference algorithm is a black box evaluation, we can not
interrupt and resume this process. Therefore, we can not use bandit like hyperoptimizers

3https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/Maxent Tagger.
html

42 Chapter 6 Evaluation

https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html

Configuration space for the feature extraction architecture.

Parameter name Description Range : Default

sigmaSquared Regularization parameter for model fitting (0.01,10) : 0.5

Above this threshold, feature extractors for this

curWordMinFeatureThreshold (1,5):2
word are generated
minFeatureThreshold ;Efgatures below this threshold are marked for prun- (1,20) : 5
rareWord Thresh Below this threshold, rare word feature extractors (1,100) : 5

for this word are generated

rareWordMinFeatureThresh Rare word feat}lres below this threshold are (1,100) : 10
marked for pruning

Words more frequent than this threshold, get a

extra detecting feature (10,500) = 250

veryCommonWord Thresh

like Hyperband4 and BOHBS5. Those type of hyperoptimizers evaluate the algorithm
with a specific time budget and use an intermediate score to decide which configurations
they want to evaluate further. In deep learning applications, for example, the training
process takes very long and the validation is usually done on intermediate models
that are further trained. The fitting of a logistic regression is very fast in comparison.
Because of the complexity of our algorithm, most of the evaluation time is spent in the
inference of the sentences. In deep learning, fitting and evaluation are interweaved while
we execute this processes in sequence. That is, because evaluation is expected to be
cheap in comparison to fitting; therefore, we can execute full performance evaluations
multiple times within the fitting process.

To this end we selected smac3® HPO for hyperoptimization. The algorithm combines
Bayesian optimization with random forest classifiers to approximate the parameter
space. Smac has been run in the sequential form as the model evaluation with 5-fold
cross-validation was sufficiently parallelized on the 6-core machine.

The first configuration space has been searched starting from the default configuration
with a budget of up to 14h and 100 configuration evaluations. The 100 configurations
where finished after 8h 36 minutes. The resulting cofiguration is as follows:

words (—3,2) order (—2,0)
prefix {1,2,3} wordTag (0,-1)
suffix {2,3,4,5} punctuation True

augment_data False

The optimizer selected the largest word context and based its tag context on the two
preceding tags. It seems that the wordTag feature is only useful when combining the
preceding tag with the current word. Punctuation seems to have a positive effect on this
configuration, but maybe this is also related to the large word context window, allowing
the classifier to look past the punctuation as well. Surprisingly, the data augmentation
has detrimental effects on this model. Early experiments on the default configuration
indicated that the data augmentation is helpful. For more detail on these two parameters
refer to Section 6.3.3.

4Li et al., 2016.
5Falkner et al., 2018.
5Lindauer et al., 2017.

6.3 Model Selection 43

6.3.3

44

The second half of the parameter space has been optimized with the same budget as
before. Since the intermediate model is larger than CoreNLP’s default configuration,
the average configuration in the parameter space takes probably longer to evaluate.
The optimization runtime for this part takes about 11h 23 minutes summing to a total
hyperoptimization time of 20 hours. The resulting parameters are:

sigmaSquared 0.768 rareWord Thresh 6
curWordMinFeatureThreshold 4 rareWordMinFeatureThresh 1
minFeatureThreshold 1 veryCommonWordThresh 234

Interestingly, the pruning parameters minFeature Threshold and rare WordMinFea-
ture Thresh were set to their minimal reasonable value of 1, therefore, disabling pruning.
The curWordMinFeature Threshold value has been doubled compared to the default and
and thus these features will be added only for more frequent words. The rest of the
parameters are fairly close to their default setting.

Model Analysis

In this section, we will analyze statistical significance of the performance improvement
and analyze the robustness of the selected model with respect to the punctuation and
data augmentation parameters as well as the selection for open and closed classes.

CoreNLP provides some predefined feature extraction architectures. For our analysis,
we select the two default models leftgwords and leftswords. Their feature extraction
architectures are defined by “words (-1,1); order (-2,0)” and “words (-2,2); order (-2,0)".
All other parameters are set to the defaults defined in Table 6.1 and Table 6.2. To
validate the improvement, we rerun each of the models with a 15-fold Monte Carlo
cross-validation with 80% training data and 20% validation. The resulting accuracy
scores have been tested pairwise for statistical significance with the Wilcoxon signed-rank
test. All evaluations are performed on the specific dataset at hand and might turn out
differently for other datasets or other splittings of this dataset.

Performance Improvement

After the optimization, we end up with two default models and two optimized models,
we call opt intermediate and opt final, respectively. Fig. 6.2 reports the average accuracy

left3words leftywords opt intermediate opt final
84.27% 84.58% 85.94% 86.05%

p < 0.0010 p < 0.0007 p < 0.0007

Performance comparison of the two default models and the two results of our opti-
mization runs

of each model and shows that all model differences are indeed statistically significant.
The probability of a falsely rejected null-hypothesis is less than 0.1%.

Punctuation

As we stated in Section 5.2, the punctuation in our dataset is not standardized. Hence,
dots and other symbols might also be inside the sentence and might not even have a

Chapter 6 Evaluation

proper meaning. This means that punctuation can potentially destroy word contexts by
splitting them apart. On the other hand, punctuation also indicates structure and can
therefore contribute positively to the classifiers performance.

The hyperoptimization yielded a model which enabled punctuation. However, we
deemed this was related to the large word context windows of this model. To this
end, we evaluated the effect on punctuation on the simpler default model leftgwords
and the optimal model. Fig. 6.3 shows that specifically the simple model profits from
punctuation. The effect is statistically significant according to the Wilcoxon signed-rank
test. Surprisingly, the parameter has no effect on the performance of the optimized
model.

left3words leftgwords + punct opt final + no punct opt final
84.27% 84.83% 86.05% 86.05%

p < 0.0054 p=1

Performance effect of punctuation analyzed on the simpler default model and the
final optimization model

Data Augmentation

Additionally, we checked whether data augmentation has a positive effect on the accuracy.
Fig. 6.4 shows that the data augmentation has a negative effect on the models perfor-
mance. We stated in Table 4.2 that only 0.2% of the data is actually multi-labeled. The
way the augmentation is done might add conflicting information to the dataset, as even
weighted targets as {(AvD,0.66), (PTKG,0.33)} are added twice to the dataset and the
classifier might think the PTKG tag is equally valid as the adverb tag AvD. Therefore,
the data augmentation effects the accuracy negatively with statistical significance.

opt final 4+ data augmentation opt final
85.91% 86.05%

p < 0.0018

Performance effect of data augmentation analyzed on the final optimization model

Open and Closed Tags

coreNLP knows three ways to specify the set of open and closed tags. First, you can set a
language which will select a predefined set of closed class tags (parameter lang). Second,
the closed class tags can be learned from the corpus (parameters learnClosedClassTags
and closedClassTagThreshold). Third, we can specify the set of open or closed class tags
directly.

The selection of open and closed class tags selects the valid tags constraints that
influence the search space of the Viterbi algorithm. Selecting the wrong segmentation
can therefore incur significant performance losses as the algorithm is not allowed to
evaluate context windows that might lie on the optimal path.

During hyperparameter optimization, the lang parameter was accidentally set to
german, so we would like to find out if the default parameter english would have
yielded a better model. Fig. 6.5 shows, that the resulting models for those parameters

6.3 Model Selection

45

are actually more or less identical and neither of the two can statistically significant
outperform the other.

As a next step, we set the open class tags to the linguistically correct value for this
tagset. This means we will set the open class tags to contain all verbs (V*), nouns
(N*), adjectives (ADJ*), numbers (CARD™), and all special error classes (OA, FM, XY).
All remaining tags will be consequently interpreted as closed class tags. The CoreNLP
algorithm is built on the assumption that all closed class words are seen during training
data and therefore, unknown words can only fall into the category of open class tags.
This assumption is too strong for our dataset and hence influences the performance
negatively. This loss is statistically significant according to the Wilcoxon signed-rank
test.

Finally, we investigated if learning the segmentation could improve the performance.
However, the performance was again identical to the german end english setting of the
lang parameter.

opt final, correct classes opt final, learned opt final, english opt final, german

6.4

46

85.88% 86.67% 86.67% 86.67%

p < 0.0007 p=1 p=1

Performance effect of the open and closed class segmentation analyzed on the final
optimization model

In-Domain Performance

As discussed earlier, the documents of the corpus are not homogeneous. Therefore, we
assume that a classifier that is trained only on one specific document will likely perform
well on that dataset (see Fig. 6.6). In some way, this can be seen as an upper bound
performance, because of the similarity assumption of the data. However, this will also

Evaluation of in-domain performance. The classifier is trained on the training part of
one document and evaluated on the test part of the same document.

limit the training data, which means that estimates of very small datasets might be less
reliable. Since our corpus is quite large, we limited this evaluation to documents with
at least 7.000 tokens. The comparison of the sizes of the different documents can be
seen in Fig. 6.7

We will maintain the train and test splits used for model selection; however, we will
constraint each experiment to one of the documents. The performance is evaluated
relative to the baseline classifier.

The plots in Fig. 6.7 show that the classifier outperforms the baseline always with
a clear margin. This margin is generally larger for the accuracy. This might be due
to the fact that the accuracy is generally the more distinctive measure or that the
utility is more forgiving. Since the postprocessor is smoothing out the uncertainties of

Chapter 6 Evaluation

the classifier, as large sets are less penalized than misclassifications. When comparing
document size and the performance in Fig. 6.7, we can see that the accuracy hardly
correlates with the amount of training data. The REN2 document, which is the “Bremer
Stadtrecht, 1300” is the largest in the corpus and still, the classifier has difficulties to
fit it. The relation between tagger performance and training data size will be further
evaluated in Section 6.8.3.

When comparing the performance of the classifier on the “Soester Schrae, 1300”(S0S1)
to the results of Koleva et al. (2017) we can see that their version and tagging scheme of
the document must have been significantly different. They achieve a baseline performance
of 80.90% when training and evaluating this document with the same size of training and
evaluation parts. Our baseline performance is only 75.17%. This is also the document
where CoreNLP has the least relative gain to the baseline classifier. Overall, CoreNLP
achieves most of the time accuracies above 80%, while the baseline performs mostly
5-10 percent points worse.

The utility is generally much higher than the accuracy and also closes the gap between
the two classifiers. The utility measure is usually more than 10 percentage points higher

for the baseline tagger. The gain for CoreNLP is usually larger, but also very significant.

However, the utility does not express much when ignoring the average set size. As hinted
already, most of the baseline classifier’s gains are achieved by adding many elements into
the predicted set. The set size for this tagger is usually around 3 or 4. CoreNLP on the
other hand often achieves set sizes between 2 and 2.5, hence reflecting the confidence
for single class classifications. Table 6.3 lists all results for this set of experiments.

Results of the in-domain experiment. The performance of the main classifier and the
baseline are compared across g different datasets with the performance measures
accuracy, utility and average set size

DSR Ko REN1 REN14 REN19 REN2 REN4 SOS1 St2

CoreNLP 88.21 86.92 82.8g 88.28 86.78 83.13 79.78 77.64 88.43

ml-acc .
baseline 77.71 79.73 7711 79.55 80.23 73.68 75.41 75.17 80.27

coreNLP 92.82 96.34 9277 95.62 94.35 93.45 90.95 091.84 95.95

ml_utﬂbauseline 91.09 94.76 91.01 92.33 93.84 89.18 88.05 90.84 94.90

e CoreNLP 1.79 2.18 2.41 2.01 2.12 2.66 3.04 2.74 2.01
¥l baseline 4.61 3.66 4.31 4.08 3.05 4.63 5.18 4.73 3.44

6.4 In-Domain Performance

47

25000

Tokencount

DSR Ko REN1 REN14 REN19 REN2 REN4 SOS1 St2
mlacc
1.0
0.9
0.8
0.7
0.6 4 baseline
[coreNLP
0.5 -
DSR Ko REN1 REN14 REN1Q REN2 REN4 SOS1
mlutil
1.0
0.9
0.8
0.7
0.6 baseline
[coreNLP
0.5 -
DSR Ko REN1 REN14 REN1Q REN2 REN4 SOS1

Fig. 6.7.: Performance of the baseline and the main tagger. The top plot shows the performance
in terms of accuracy. The bottom plot shows the utility with ga—1,8=1(:).

48 Chapter 6 Evaluation

6.5 Cross Domain Robustness

To evaluate the robustness of the classifier trained on some corpus and applied to unseen
data we will split up the corpus along the document boundaries. Since we select one
document for testing and the remaining documents for training we have to decide how to
handle the test and training part boundaries setup for model-selection. For the training
documents we have to decide whether to include their test part and for the evaluation
document we have to decide if we want to use the training part for this document for
the evaluation. The two extreme cases are are visualized in Fig. 6.8. Including the
test part of documents ¢, D, E will give the tagger more training data. However, the
model-selection is only optimized to the training part. For the evaluation on document F,
we face the following trade-off: On the one hand, we would like to have a good estimate,
but on the other hand, we also want the estimate to be clean and not overly optimistic.
Since the model-selection has been done including the test-part of F, the classifier might
perform better on that part of F, than in its test part. If we look back to Section 6.4,

Visualization of the two evaluation variants for across-document performance. The
blue fraction is used for model-fitting, while the orange part is held back for perfor-
mance evaluation.

we saw that the estimate of only 20% of one document seems to be sufficiently precise if
the document is large enough. Therefore, we constrain the experiment similarly to only
use documents for testing which are larger than 7.000 tokens. Additionally, we choose
to exclude the test part of the training documents, because this might give the baseline
a unfair advantage as it is not specifically tuned to the training part of the document.
To this end, we select the left option of Fig. 6.8, using only that part for evaluation
that has not been involved in model-selection.

For this experiment, we will train the two classifiers on the whole corpus except for one
document each and evaluate its performance on the test part of this excluded document.

Unlike in Section 6.4, the evaluation in this chapter cannot be seen without considering
the structure of the whole dataset. If the excluded document is in some way isolated
from the dataset, the classifier will most likely perform bad on that document.

When comparing the overall accuracies in Fig. 6.9 to Section 6.4 or Section 6.7, we
can see that both classifiers perform generally worse. This is, however, not surprising, as
the classifier knows nothing about the document he is tested on. For some documents,
the corpus contains texts which are roughly similar and hence allow reasonably high
performance. The utility is generally in alignment with the accuracy but significantly
increased.

Two documents are particularly interesting in this experiment: “Duisburger Stadtrecht,
1500” (DSR) and “Bremer Urkunden, 1351-1400” (REN4). The performance on DSR is
much worse than on any other document. This document is one of the latest documents
in the corpus. The two other documents from the 15th century are from Rostock
and Bamberg and therefore originate far away from this document. This makes it
very difficult to tag. On this text, both classifiers perform similarly bad with respect
to accuracy. However, when letting the classifiers choose more elements, CoreNLP

6.5 Cross Domain Robustness

49

50

mlacc

1.0
0.9
0.8
0.7
0.6
0.5 - baseline |
j [coreNLP
0.4 -
REN1 REN14 REN19 REN2 REN4 SOS1
mlutil
1.0
0.9
0.8
0.7
0.6
0.5 baseline |
[coreNLP
04 -
REN1 REN14 REN19Q REN2 REN4 SOS1

Fig. 6.9.: Performance of the baseline and the main tagger. The top plot shows the performance
in terms of accuracy. The bottom plot shows the utility with go=1 s=1(:).

outperforms the baseline clearly. This can especially be noticed in the average set size
on this dataset. The baseline selects more than twice as many elements as our selected
model.

The performance on REN4 is particularly high. The document is a collection of deeds.
Those documents are part of a larger collection of deeds from Bremen ranging from
1301-1500. Additionally, the corpus contains many other documents from Bremen in
the same period. REN2, for example, is the Bremen municipal law test from 1300. This
high performance is also reflected in an average set size below 2 for the CoreNLP tagger.
The accuracy even exceeds the performance on this document when trained on the test
part of this dataset. Note that despite from Section 6.4, the classifiers have not seen
anything of the REN4 document during training.

Another fact worth noting is that the utility of the two classifiers is sometimes
extremely close (Ko, st2). However, the set size shows that their performance is not
similar. This is in alignment with the argumentation in the beginning of this chapter,
stating that the utility is very sensitive to the chosen parameters for the discount
function. Table 6.4.

Chapter 6 Evaluation

6.6

Results of the cross-domain robustness experiment. The performance of the main
classifier and the baseline are compared across g different datasets with the per-
formance measures accuracy, utility and average set size. The training has been
conducted on the whole corpus except for the evaluation dataset.

DSR Ko REN1 REN14 REN19 REN2 REN4 SOS1 St2

CoreNLP 5105 79.76 78.51 74.53 79.34 82.68 88.98 75.93 80.26

ml-acc baseline 49.68 71.90 73.30 65.76 75.51 7415 80.66 71.43 72.10

CoreNLP 74.96 9514 92.54 92.28 93.76 93.93 96.59 90.91 92.07

ml_uulbaseline 68.23 94.41 90.65 86.41 90.58 92.29 094.19 88.55 92.41

CoreNLP 5.84 2.23 2.43 3.00 2.57 2.29 1.94 2.72 2.25
baseline 13.05 3.79 4.57 8.25 4.72 4.15 3.94 5.69 3.75

¥

Robustness Against Unrelated Data

In the previous section, we saw that the dataset is inhomogeneous. In particular the
DSR text differs significantly from the rest of the dataset. To validate whether the
classifier can deal with unrelated data, we conducted similar tests as in Section 6.4, but
we trained on the whole dataset instead.

Training and Test data used for this experiment. The classifier is trained across the
whole dataset and tested on the testing parts of single documents.

Fig. 6.11 shows the accuracy difference to the in-domain setting. On the first glance we
can see that CoreNLP almost never loses predictive performance due to the additional
training data. This is also true for the difficult DSR text. The baseline tagger on the
other hand, can lose up to 5% points. The “Kolberger Kodex, 1300” (Ko) and the St2
document lose significantly for this tagger. Those datasets are among the older ones in
the dataset and adding many other documents from later period might reflect an overall
language shift. The contextual information available to CoreNLP seems to allow the
tagger to distinguish the different usages. Since the baseline tagger ignores the word
context, it will suffer performance losses for word usages that are uncommon for the
dataset.

The performance gains are usually also larger for CoreNLP compared to the baseline
tagger. This might be result of another effect. Fig. 6.15 indicates that the training
data from one document is insufficient to fully train out the coreNLP classifier. In
combination with the observation from Section 6.5, that the dataset contains additional
documents similar to REN4, it is little surprising that the classifier performs well. They
gain 10 percent points against the classifier being trained only on REN4.

We have observed that the baseline classifier sometimes suffers from additional data,
and even our main classifier can loose performance by adding additional data. When

we observe the utility, on the other hand, both classifiers gain in nearly every dataset.

This might be based on the same effect for which the baseline classifier outperformed
our classifier on the DSR in Section 6.5, but did not outperform it in the utility. If
the classifier has two strong candidates he is forced choose greedily the most probable
one. Set-valued prediction allows to add multiple values and accept a small penalty

6.6 Robustness Against Unrelated Data

51

mlacc

e — RS
I I

Il baseline
[coreNLP

—0.10 T T T T T T T T T
DSR Ko REN1 REN14 REN19 REN2 REN4 S0Ss1 St2
Accuracy gain in comparison to Section 6.4 across several datasets.
mlutil
0.10
I baseline
0.08 1 W coreNLP
0.06
0.04 1
0402 _ .
—0.02 T T T T T T T T T
DSR Ko REN1 REN14 REN19 REN2 REN4 S0s1 St2

Utility gain in comparison to Section 6.4 across several datasets.

for each prediction. This will overall increase the performance of the classifier. This
improvement in utility is not even penalized with large increases in average set size
compared to the in-domain setting. For the Ko document, both classifiers add less than
0.2 additional elements. The largest improvements on the utility happen however on
the datasets that also gain the most accuracy. Table 6.5 lists the absolute performance
numbers of this experiment.

Absolute performance of the classifier on a selection of datasets when trained on the
whole training dataset.

DSR Ko REN1 REN14 REN19 REN2 REN4 SOS1 St2

coreNLP 87.62 86.12 83.45 8712 87.89 86.33 89.34 82.67 87.92

ml-acc .
baseline 76.11 74.59 76.95 79.53 83.05 7774 8132 76.59 74.94

CoreNLP 93.01 96.58 94.30 95.84 95.69 95.27 96.98 094.51 96.42
baseline 91.07 9542 92.72 92.95 94.49 93.75 94.58 93.41 94.73

ml-util

|Y| CoreNLP 1.82 2.14 2.24 2.06 2.02 2.19 1.90 2.29 2.04
baseline 4.84 3.45 3.90 4.54 3.23 3.95 3.82 4.28 3.35

52 Chapter 6 Evaluation

6.7 Across Corpus Performance

The overall performance of the classifier is evaluated on the whole dataset. For this
experiment, we train on the whole training data used for model-selection and test on
the remaining 20% (compare Fig. 6.1)

In Fig. 6.13, we can see the comparison of the accuracy and different utility scores.
Since we use the discount function of Eq. (2.4), we have two parameters that we can
modify. Since the value of o changes only the amount of abstention, we decided to keep
it fixed at the default value of 1 and only modified the convexity parameter 3. Mortier
et al. (2019) made similar decisions for their evaluation. A small value of 5 means the
function is convex, hence adding more elements to the prediction is penalized strongly.
Large values form a concave discount function, penalizing large sets only by a little.

Predictive Performance

1.0

I baseline
[coreNLP

ml-acc ml-util 8 =0.2 ml-util 5=0.5 ml-utilg=1 ml-util g =2 ml-util B =5

Average Set Size

Bl baseline
[coreNLP

B =0.2 B=05 B=1 B=2 B=5

Fig. 6.13.: Performance of the baseline and the main tagger. The top plot shows the performance
in terms of accuracy and utility for different choices the discount functions parameter
(5. The bottom plot shows the set size for the different utility measures.

For our dataset, larger values of 8 allow the classifiers to achieve very high recall. As
we noted earlier, the utility is fundamentally connected to the accuracy by a factor of
the discount function. Hence, achieving a utility that is lower than the accuracy value

is generally possible, because the improved recall is penalized by the discount function.

However, this is not very likely if we increase 3, because this will reduce the penalty
for larger sets. For 5 = 0.2, the penalty is so large, that the classifiers only seldom

predicts more than one element. In this case, the utility is very close to the accuracy.

In the extreme case for § — 0, the utility and accuracy coincide. One nice effect of the
utility is, that bad classifiers profit more than good classifiers. Therefore, we can also

6.7 Across Corpus Performance

53

6.8

6.8.1

6.8.2

54

achieve high scores with the baseline classifier. This comes, however, with the expense
of preciseness. The set size increases significantly when selecting more concave discount
measures. Interestingly, the relative difference of the set size is the highest g = 1, which
means a linear discount. Here, the baseline selects nearly twice as many elements. This
effect has also been seen in the previous experiments. For g = 0.2 and § = 5, the
difference is much smaller. The sets are of the baseline are only 10%—20% larger.

Results of the overall corpus performance experiment. The performance of the main
classifier and the baseline are compared different choices of the convexity parameter
of the utility discount function g(-).

£=0.2 B=05 g=1 B=2 B=5
mlacc mlutil [Y]| mlutil Y| mlutil |¥| ml-util Y] ml-util |V

CoreNLP 86.99 86.43 110 91.28 1.50 95.44 2.09 97.37 3.51 97.77 5.97
baseline 77.64 78.33 1.21 86.45 2.82 93.59 4.02 96.47 5.54 97.85 7.05

Error Analysis

In the previous section, we analyzed how the performance of the classifier in a broad
way. The goal of this section to analyze the weaknesses of the classifier. If not stated
differently, the training and test datasets are taken across the whole dataset, exactly as
for the hyperparameter optimization and the experiments in Section 6.7.

Unknown Word Performance

The performance of part-of-speech taggers is usually quite powerful for known words.
Table 6.7 shows high performance of the baseline tagger compared to the CoreNLP
tagger. However, for unknown words, our baseline tagger can only predict with respect
to the prior distribution. The high entropy of this prior distribution yields to a constant
prediction set with 22 elements, which is basically a quarter of the whole label space.
coreNLP on the other hand is capable of tagging unknown words with around 70%
accuracy. With 7.4% of the words in the test being unknown, this yields a much stronger
overall performance. The amount of unknown words will probably explain also a part of
the performance of the experiments in Section 6.4 and Section 6.5, however, they have
been left out for reasons of space.

Tagger performance on known and unknown words

Known Unknown Total
ml-acc ml-util |Y| ml-acc ml-util |V ml-acc ml-util |Y|

CoreNLP 88.49 95.95 1.89 70.17 89.72 4.25 86.99 95.44 2.09
baseline 81.49 95.94 2.59 29.38 64.07 22.00 77.64 93.59 4.02

Per Tag Performance

Next, we will analyze the classifiers performance for each tag. Some tags of the dataset
are extremely rare, so that only 81 of the g2 total tags show up as ground truth tags

Chapter 6 Evaluation

1.0

0.8

0.6

0.4

0.2

0.0

in the test set. To better understand the errors, we report the most frequent tags in
Table 6.8.

Tab. 6.8.: Relative tag frequency across the whole dataset of the 10 most frequent tags.

NA APPR DDART KON PPER AVD VVINF ADJA DPOSA KOUS

Probability 19.61% 8.58% 6.72% 6.27% 5.00% 4.19% 4.09% 3.04% 2.49% 2.47%

Fig. 6.14 shows significantly differing performance across the different classifiers. The
accuracy and relative frequency of a tag in the training data is correlated (0.44 Pearson
correlation). This means that a the frequency of a tag effects the classifiers performance
(compare Section 6.8.3), however, those low performances have smaller influence on
the overall performance. However, for some tags like the DDA (definite, attributive
determiner), 0.6% of the training data are sufficient to train the classifier to above
97.4% accuracy. Since this is a closed class tag, we would expect other closed class tags

to perform similarly, as we assume most words of this have been seen during training.
The results on the DDS tag (definite, substituting determiner) is, however, much lower.

Despite 1.7% of the words in the training data belong to this class the accuracy of on
this tag is only 72.82%. Overall, many of the verb classes (v-prefix) have only about
60% accuracy. This might be result of the large number of subclasses of verb tags.

I ml-acc
[relative frequency

] A
<> < H AR TOZUNDH g * ok g g i
e AT T T S e e S SO e I RO i S A L
<><<Dt<<ﬂ-‘<cﬁioiﬁdg<ﬂgg SAHROE™SZO :<>[:<Cﬁﬁ MZQ"‘LFEHZMMEZ'&'EEZEHZ’&EZ%;>>
q <Tea<ta T 7T ZAE %% Az A easfdbERssSbgdEasEes oSS
= A noTER T SRR

2 >> > >§ >>

Fig. 6.14.: ml-acc and relative frequency in the training data for each tag. The relative frequency
is normalized to the most frequent tag (NA). Ouly tags with at least 20 occurrences
in the test data are shown.

This issue gets even more visible when Table 6.9. There are generally two main types

of errors: Missclassified verb forms and words that are falsely classified as common nouns.

The 5 out of the top ten errors are verb form misclassifications. This is significantly
more than Koleva et al. (2017) report. However, their tagset is much less fine grained

6.8 Error Analysis

55

56

with respect to verb forms. Misclassifications as (VVFIN.*, VVFIN.ind) are however
much more reasonable than (VVFIN.*, NA). Although when trying to establish a
gold standard tagging, the error has to be weighted equally. Confusing infinitive verbs
(VVINF) with nouns (NA) and the other way around seems to be a very common
tagging error for MLG. Koleva et al. (2017) report similar errors for their tagger. Also,
classifying adverbs (ADV), adjectives (ADJ) and finite verbforms of full verbs (VVFIN.*
VVFIN.ind) as common nouns has been reported in their paper. Apart from that, we can
see that the 0A tag (“ohne Annotat”) shows overall very poor performance. This tag is
meant to capture tagging errors and is therefore a mix of different word classes. Words
from this class will come in very different shapes and many different word contexts. It
is therefore expected that the classifier performs poorly on this tag.

The 10 most misclassified tags and their most common misclassifications. The last
two columns lists the total number of errors and the accuracy of this tag on the test
dataset. The tagging errors (second column) explain 34.84% of all errors on the test

set.
Correct tag Most common errors Total errors ml-acc
VVFIN.* VVFIN.ind (107), VVINF (102), NA (68) 354 54.03
NA VVINF (56), ADJA (36), VVFIN.*(28), NE (23), VVFIN.ind (14) 207 95.85
AVD PAVD (31), NA (28), KON (25), APPR (16), ADJV (15) 203 80.59
VVFIN.ind VVFIN.*(92), NA (27), VVPP (18), VAFIN.ind (16) 201 56.65
VMFIN.* VMFIN.ind (142) 159 72.96
DDS DDART (68), DRELS (31), KOUS (16) 137 72.82
VVINF NA (118) 125 85.85
OA NA (37), APPR (15), XY (8), ADJA(7), NE (7) 120 28.57
VAFIN.* VAFIN.ind (52), VVFIN.*(23), VAFIN.konj (12), VVFIN.ind (9) 118 50.00
ADJA NA (54), ADJS (10), NE (8), VVPP (8) 102 89.23

The errors related to the NA tags raise the questions on the correlation of word
ambiguity and tag confusion. Words that generally show up with similar tags might be
confused more easily. Inversely, we can calculate the similarity of bag of words of two
tags and hence express their risk for confusion. If this risk is high, we would expect the
classifier to make many tagging errors on those tags, with low distance and to confuse
them often. In order to formally measure this distance between two tags we will use the
Ruzicka similarity, a multi-set generalization of the Jaccard similarity (Cha, 2007)

Zi min(xiayi) ’ (6.1)
> max(wi, y;)
with x and y being multi-sets and i iterating over the elements in the multi-set. Applied
to the tag context of taggings, x and y are bags of words labeled with tag t; and ¢; in
the training dataset. We can therefore calculate a similarity of two tags with respect to
relative overlap in their induced words.

Two tags with high Ruzinca similarity are APPR (preposition) and PAVAP (pronom-
inal adverb, prepositional part). But even though their similarity is 0.246, the total
number of confusions is only 28. Notice that APPR is the second most common tag;
therefore, we might expect more errors. The contextual differences are allow the classifier
to disambiguate the words well.

When analyzing the tagging errors related to the noun tags (NA), the similarities are
much smaller, but the tagging errors are still more severe. The similarity between NA
and ADJA is 0.025 and between NA and ADV is 0.015. This indicates that the tag
confusion might be the result of less distinctive contextual information.

ruz(x,y) =

Chapter 6 Evaluation

Score

6.8.3 Generalization vs. Training Dataset Size

Another interesting analysis is the connection between generalization performance
and available training data. Generally, simpler models are less flexible to fit complex
problems, and achieve very low out-of-sample errors. On the other hand, simpler models
achieve their maximal performance with less training data, as they have less parameters
to tune. With this said, we would expect the simple baseline classifier to perform better
with few training data and expect CoreNLP to take over once the data is sufficient to
fit a reasonable model.

To investigate this further, we selected the document that achieved highest performance
in Section 6.4. The “Stadtrecht Stade, 1250” (sT2) is with around 16,000 tokens fairly
large and therefore suited for such an experiment. The evaluation is done on the whole
test part of the text, but the training is done on only a fraction p of the test dataset.
We trained and evaluated the classifiers with 1%-100% of the training data. The results
are visualized in Table 6.10. The specific steps in between have been selected to a
roughly smooth curve with limited amount of computation time. The kink at around
1600 tokens is result of the in homogeneity of the training part. The additional 8000
tokens achieved nearly no improvement. The estimation could be improved by selecting
different sections of the training data for each specific value of p and averaging the
results. We are confident that this would remove the local concavity of the function.
Due to time constraints we omitted further investigation of this issue.

1.0
0.9 — — B —— . .
-—" —- 3
B & 3 0= . eeeme—— I ot 203
0.8 Al e cit
ol xm—— .
0.7 4 = baseline
N e CoreNLP
0.6 1 . 7 Measure
05 4 7 —@— ml-util
' =% ml-acc
0.4 T T T T T T
0 2000 4000 6000 8000 10000 12000 14000

Token count

Classifiers performance and Utility evaluated trained and evaluated on the ST2
dataset. The fraction of the total training data is gradually increased from 135
tokens up to the whole training part of 13509 tokens.

Fig. 6.15 proves our assumption of the baseline outperforming CoreNLP for small
datasets correct. However, this is only true when the classifiers are trained on only
135 tokens. Already when trained on 2% of the training data, our classifier is on even
terms with the baseline. With around 3000 tokens, the accuracy of the two classifiers is
clearly separated. Although they still profit from additional training data. The baseline

performance barely increases between 70% and 100% of the available training data.

The main tagger, on the other hand, continues to gain performance and could probably
profit from even more training data. When looking at the utility, we see again that
the performance numbers are much less distinct. The performance gap between the
two classifiers gets smaller when observing the utility. Nevertheless, the set size shows
reflects the different confidence we observe in the accuracy from around 3000 tokens
and more. The exact values are reported in Table 6.10.

6.8 Error Analysis

57

6.9

6.9.1

6.9.2

58

Classifiers accuracy, utility and set size ST2. The training set is gradually increased.
The performance is evaluated on the whole test data.

135 270 540 810 1621 2971 5403 9456 13509

CcoreNLP 48.59 55.22 62.97 67.80 71.04 80.00 84.13 87.15 88.43
baseline 50.40 55.04 62.33 64.89 67.79 72.86 77.80 80.17 80.27
CoreNLP 70.77 77-38 82.14 85.13 85.82 90.64 93.37 95.07 95.96
baseline 73.31 75.06 79.10 82.97 84.02 89.58 92.26 93.67 94.90
CoreNLP 10.40 8.08 6.01 5.05 3.59 2.81 2.29 210 2.01
baseline 10.35 8.22 6.89 6.39 5.05 4.45 3.68 3.58 3.44

ml-acc

ml-util

V]

Other Experiments

In this section, we present observations that were not incorporated because their effects
demand further research.

Performance Effect of Shuffling Sentences

As discussed in previous sections, the sentence splitting in ML G is not reliable, therefore
we finally selected not to chunk the documents into sentences. However, in early
experiments, we chunked the sentences with respect to the punctuation and Xy tags.
The preliminary performance evaluation showed that shuffling those document sentences
improved the performance. This observation hints that it is advantageous to shuffle
the dataset when annotating the dataset by a human annotator. The effect might
be explained the following way: If we assume the document itself is not entirely
homogeneous, but instead decomposes into several sections A, B, C, Shuffling the
dataset first, before selecting the training and test part, gives us training data from each
section and test data across the whole document. If, on the contrary, we set a random
split inside the document and then select a continuous chunk for training, we might end
up with sections B, C, D as training data, but section A as testing data. Therefore, the
classifier will show worse performance than by selecting training data from all sections.

Pruning Dataset

The dataset used in this thesis is fairly diverse. Therefore, we analyzed the possibility of
selecting a subset of the training data with respect to the testing data which we would
like to tag. Farly ideas were to define a distance metric on the documents meta-data
and exclude documents whose distance is above some threshold. It has been investigated
with full knowledge of the performance, meaning that we fitted different subsets of the
training data and analyzed if the score on the evaluation exceeds the score on the whole
training data. This very simple method yielded only very small improvements. When
trying to apply this technique in inference, we have to define the selection algorithm
beforehand and than use the prediction that the tagger produces with this training data.
In inference, there is no possibility to check which set of training data would yield best
tagger performance.

Later evaluations, however, showed that the preselection of the training data seems to
affect only the accuracy of the classifier positive. Section 6.6 indicates, that the utility
is almost never effected negatively with increasing training data, although the set size
could potentially improve.

Chapter 6 Evaluation

6.9.3 Constraint Reduction

The selection of valid tags for a specific word is very strict in CoreNLP and strongly
tied to the selection of open and closed class words. To relax this constraint the original
implementation applies a procedure, similar to Algorithm 4. For English they apply the
rules R = {{vB,vBP},{VvBD, VBN}}. The reasoning behind those rules is that some
tags are often confused and therefore all confusion pairs should be considered.

For this reason, we introduced above the Ruzicka similarity between tags, calculated
over their induced bag of words (see Eq. (6.1)). Table 6.11 shows the ten tag pairs with
the highest similarity values. In order to investigate the effect of the tag expansion rules
we selected the 15 tag pairs with the highest similarity and allowed the hyperoptimizer
to choose any subset of R’ C R among these expansion rules. While fixing all other
hyperparameters this results in a parameter space of 215 = 32 768 configurations.

Top ten closest tag pairs by Ruzicka similarity of the induced words.

DDD AVG DGN PAVD AVG DIN DRELS VAFIN.ind VAFIN.konj AVwW
DDSA PAVG DGS PAVREL AVW DIS PKOR VKFIN.ind VKFIN.konj PAVG

ruz(-,-) 0.5 0.5 0.5 0.3913 0.375 0.3704 0.3585 0.3392 0.3077 0.2857

We stopped the optimization in this configuration space after around 25 evaluations
executed in 3h 15 minutes, since none of the so-far tested rules showed significant
improvements.

6.9 Other Experiments 59

7.1

Conclusion

In this thesis, we developed a part-of-speech tagger, capable of providing set-valued
predictions. For this reason, we investigated existing tagger implementations and
developed a wrapper that can provide set-valued predictions from any tagger capable of
predicting a posterior distribution. To test the performance of the algorithm we selected
a historic corpus in MLG. We modified the classical performance measures to match
the needs of this specific dataset. Additionally, we introduced a baseline tagger to be
able to compare the performance of our tuned tagger.

The algorithm has been tuned to the dataset in several hyperparameter optimization
steps. We investigated the performance of our classifier with several experiments on
different fractions of the dataset. The CoreNLP tagger was able to beat the baseline in
every setting. For some settings, the margin was very large. In all experiments we saw,
that set-valued prediction allows both classifiers to perform much better than in their
classical setting. The performance difference in terms of utility was much smaller than
for the accuracy score. However, this performance increase came with the cost of larger
sets.

The error analysis showed once more that the classifiers gain especially when they are

uncertain. For example on unknown words, nearly g of 10 correct tags where retrieved.

We also showed that CcoreNLP is also capable to provide good predictions with very

little data and outperformed our simple baseline with only 1000 tokens of training data.

The learning curves indicate that the classifier is not even trained out completely and
could learn even more from additional data.

Overall set-valued prediction allows the classifier to provide powerful predictions in
the context of uncertainty. The evaluation also showed that set-valued prediction makes

the classifier more robust against confusing data elements as we observed in Section 6.6.

Future Work

Some observations during early stages were not fully understood and might allow further
improvements of the classifier’s performance.

Pseudo Sentence Splitting FEarly experiments indicated, that the classifier benefits
from clear sentence boundaries. Since MLG provides on reliable boundaries, we could
add a preprocessing step that would produce a chunking first and then predict the
chunked sentences. Such a chunking could rely on XY tags and punctuation.

Improved Pruning We saw, that the pruning of unrelated data can boost the classifier’s
accuracy. It would be interesting to investigate if there are settings where also the utility
will profit from dataset pruning. This would mean, that the dataset would need to be
split in smaller chunks than only the document boundaries and more reliable distance
metrics need to be defined. The selection of training samples could be managed by a
machine learning algorithm itself.

61

62

Valid Tag Constraint The selection of valid tags influences the algorithmic complexity
negatively if too many tags are considered. However, considering too little tags will
constraint the search space in such a way, that only suboptimal taggings can be selected.
In combination with the strong assumptions about open- and closed tags, the classifier
could probably gain significant performance or speedup if the selection of valid tags is
done in a more principled way. Instead of selecting the valid tags by a static heuristic, a
good selection could be learned with a machine learning algorithm. Smaller sets of valid
tags would allow the classifier to consider larger tag context windows.

Improved Model Selection Since many configurations of CoreNLP are not valid, the
search space for the feature extractor frames was strongly restricted. A better under-
standing of the effect of those parameters on the performance of the classifier would
allow to consider a larger search space, which more runnable configurations.

Chapter 7 Conclusion

Bibliography

Arlot, Sylvain, Alain Celisse, et al. (2010). “A survey of cross-validation procedures for model
selection”. In: Statistics surveys 4, pp. 40—79 (cit. on p. 13).

Bergstra, James S, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl (2011). “Algorithms
for hyper-parameter optimization”. In: Advances in neural information processing systems,

pp. 2546—2554 (cit. on p. 15).

Bollmann, Marcel, Florian Petran, Stefanie Dipper, and Julia Krasselt (2014). “CorA: A web-
based annotation tool for historical and other non-standard language data”. In: Proceedings
of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and
Humanities (LaTeCH), pp. 86—90 (cit. on p. 19).

Brants, Thorsten (2000). “TnT: a statistical part-of-speech tagger”. In: Proceedings of the sizth
conference on Applied natural language processing. Association for Computational Linguistics,

pp. 224-231 (cit. on pp. 6, 19).

Cha, Sung-Hyuk (2007). “Comprehensive survey on distance/similarity measures between
probability density functions”. In: City 1.2, p. 1 (cit. on p. 56).

Chow, C (1970). “On optimum recognition error and reject tradeoff”. In: IEEE Transactions on
information theory 16.1, pp. 41-46 (cit. on p. 20).

Chow, Chi-Keung (1957). “An optimum character recognition system using decision functions”.
In: IRE Transactions on FElectronic Computers 4, pp. 247-254 (cit. on p. 20).

Collobert, Ronan, Jason Weston, Léon Bottou, et al. (2011). “Natural language processing
(almost) from scratch”. In: Journal of machine learning research 12.Aug, pp. 2493-2537
(cit. on p. 19).

Derczynski, Leon, Alan Ritter, Sam Clark, and Kalina Bontcheva (2013). “Twitter part-of-speech
tagging for all: Overcoming sparse and noisy data”. In: Proceedings of the International
Conference Recent Advances in Natural Language Processing RANLP 2013, pp. 198—206

(cit. on pp. 19, 40).

Dipper, Stefanie, Karin Donhauser, Thomas Klein, et al. (2013). “HiTS: ein Tagset fiir historische
Sprachstufen des Deutschen.” In: JLCL 28.1, pp. 85-137 (cit. on pp. 19, 24).

Echelmeyer, Nora, Nils Reiter, and Sarah Schulz (2017). “Ein PoS-Tagger fiir' das" Mittel-
hochdeutsche”. In: (cit. on p. 19).

Falkner, Stefan, Aaron Klein, and Frank Hutter (July 2018). “BOHB: Robust and Efficient
Hyperparameter Optimization at Scale”. In: Proceedings of the g5th International Conference
on Machine Learning (ICML 2018), pp. 1436-1445 (cit. on pp. 15, 43).

Geisser, Seymour (1975). “The predictive sample reuse method with applications”. In: Journal
of the American statistical Association 70.350, pp. 320—328 (cit. on p. 13).

Godbole, Shantanu and Sunita Sarawagi (2004). “Discriminative methods for multi-labeled
classification”. In: Pacific-Asia conference on knowledge discovery and data mining. Springer,

pp. 22—30 (cit. on p. 30).

Huang, Zhiheng, Wei Xu, and Kai Yu (2015). “Bidirectional LSTM-CRF models for sequence
tagging”. In: arXiv: 1508.01991 (cit. on p. 19).

63

https://arxiv.org/abs/1508.01991

64

Hutter, Frank, Holger H Hoos, and Kevin Leyton-Brown (2011). “Sequential model-based
optimization for general algorithm configuration”. In: International conference on learning
and intelligent optimization. Springer, pp. 507—523 (cit. on p. 15).

Jurafsky, Daniel and James H. Martin (May 16, 2008). Speech and Language Processing.
An Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. 2nd ed. Prentice Hall (cit. on pp. 6, 9, 31).

Koleva, Mariya, Melissa Farasyn, Bart Desmet, Anne Breitbarth, and Véronique Hoste (2017).
“An automatic part-of-speech tagger for Middle Low German”. In: International Journal of
Corpus Linguistics 22.1, pp. 107-140 (cit. on pp. 1, 9, 19, 23, 29, 31, 40, 47, 55, 56).

Lafferty, John, Andrew McCallum, and Fernando CN Pereira (2001). “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data”. In: (cit. on pp. 6, 9, 19).

Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar (2016).
“Hyperband: A novel bandit-based approach to hyperparameter optimization”. In: arXiv:
1603.06560 (cit. on pp. 15, 43).

Lindauer, Marius, Katharina Eggensperger, Matthias Feurer, et al. (2017). SMAC v3: Algorithm
Configuration in Python. https://github.com/automl/SMAC3 (cit. on p. 43).

McCallum, Andrew, Dayne Freitag, and Fernando CN Pereira (2000). “Maximum Entropy
Markov Models for Information Extraction and Segmentation.” In: (cit. on pp. 8, 19).

Mortier, Thomas, Marek Wydmuch, Eyke Hillermeier, Krzysztof Dembczynski, and Willem
Waegeman (2019). “Efficient Algorithms for Set-Valued Prediction in Multi-Class Classifica-
tion”. In: arXiv: 1906.08129 (cit. on pp. 1, 11, 12, 20, 27, 30, 36, 53).

Pearson, Karl (1895). “VII. Note on regression and inheritance in the case of two parents”. In:
proceedings of the royal society of London 58.347-352, pp. 240—242 (cit. on p. 17).

Picard, Richard R and R Dennis Cook (1984). “Cross-validation of regression models”. In:
Journal of the American Statistical Association 79.387, pp. 575583 (cit. on p. 14).

Platt, John C. (1999). “Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods”. In: ADVANCES IN LARGE MARGIN CLASSIFIERS.
MIT Press, pp. 61—74 (cit. on p. 8).

Prasad, Rashmi, Nikhil Dinesh, Alan Lee, et al. (2008). “The Penn Discourse TreeBank 2.0.”
In: LREC. Citeseer (cit. on p. 23).

Ramaswamy, Harish G, Ambuj Tewari, Shivani Agarwal, et al. (2018a). “Consistent algorithms
for multiclass classification with an abstain option”. In: Electronic Journal of Statistics 12.1,

pPP- 530-554 (cit. on p. 11).
— (2018b). “Consistent algorithms for multiclass classification with an abstain option”. In:
Electronic Journal of Statistics 12.1, pp. 530-554 (cit. on p. 20).

Ratnaparkhi, Adwait (1996). “A maximum entropy model for part-of-speech tagging”. In:
Conference on Empirical Methods in Natural Language Processing (cit. on p. 19).

ReN-Team (Aug. 2019). Referenzkorpus Mittelniederdeutsch/Niederrheinisch (1200-1650). http:
//hdl.handle.net/11022/0000-0007-D829-8. Version 1.0 (cit. on p. 22).

Samuelsson, Christer (1993). “Morphological tagging based entirely on Bayesian inference”. In:
Proceedings of the gth Nordic Conference of Computational Linguistics (NODALIDA 1993),
pp- 225-238 (cit. on p. 6).

Schmid, Helmut (1999). “Improvements in part-of-speech tagging with an application to German”.
In: Natural language processing using very large corpora. Springer, pp. 13—25 (cit. on p. 19).

— (1994). “Probabilistic Part-of-Speech Tagging Using Decision Trees, Intl”. In: Conference on
New Methods in Language Processing. Manchester, UK (cit. on p. 19).

Bibliography

https://arxiv.org/abs/1603.06560
https://github.com/automl/SMAC3
https://arxiv.org/abs/1906.08129
http://hdl.handle.net/11022/0000-0007-D829-8
http://hdl.handle.net/11022/0000-0007-D829-8

Seemann, Nina, Marie-Luis Merten, Michaela Geierhos, Doris Tophinke, and Eyke Hiillermeier
(2017). “Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low
German”. In: Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for
Cultural Heritage, Social Sciences, Humanities and Literature, pp. 40—45 (cit. on pp. 19, 22).

Shafer, Glenn and Vladimir Vovk (2008). “A tutorial on conformal prediction”. In: Journal of
Machine Learning Research g.Mar, pp. 371—421 (cit. on p. 20).

Shen, Libin, Giorgio Satta, and Aravind Joshi (2007). “Guided learning for bidirectional sequence
classification”. In: Proceedings of the 45th annual meeting of the association of computational
linguistics, pp. 760-767 (cit. on p. 19).

Sheskin, David J (Apr. 2011). Handbook of parametric and nonparametric statistical procedures.

5th ed. Chapman and Hall/CRC (cit. on p. 16).

Sokolova, Marina and Guy Lapalme (2009). “A systematic analysis of performance measures for
classification tasks”. In: Information processing & management 45.4, pp. 427—437 (cit. on

p. 12).

Tophinke, Doris (2012). “Syntaktischer Ausbau im Mittelniederdeutschen. Theoretisch-methodische

Uberlegungen und kursorische Analysen”. In: Niederdeutsches Wort 52, pp. 19—46 (cit. on
p. 21).

— (2009). “Vom Vorlesetext zum Lesetext: Zur Syntax mittelniederdeutscher Rechtsverordnun-
gen im Spétmittelalter”. In: Oberfldche und Performanz. Untersuchungen zur Sprache als
dynamische Gestalt, pp. 161-186 (cit. on p. 21).

Toutanova, Kristina, Dan Klein, Christopher D Manning, and Yoram Singer (2003). “Feature-
rich part-of-speech tagging with a cyclic dependency network”. In: Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1. Association for computational Linguistics, pp. 173-180

(cit. on pp. 6, 9, 19, 40).

Toutanova, Kristina and Christopher D Manning (2000). “Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger”. In: Proceedings of the 2000 Joint SIGDAT
conference on Empirical methods in natural language processing and very large corpora: held
in conjunction with the 98th Annual Meeting of the Association for Computational Linguistics-
Volume 13. Association for Computational Linguistics, pp. 63—70 (cit. on p. 19).

El-Yaniv, Ran and Yair Wiener (2010). “On the foundations of noise-free selective classification”.

In: Journal of Machine Learning Research 11.May, pp. 1605-1641 (cit. on p. 20).

Yin, Wenpeng, Katharina Kann, Mo Yu, and Hinrich Schiitze (2017). “Comparative study of
CNN and RNN for natural language processing”. In: arXiv: 1702.01923 (cit. on p. 9).

Bibliography

65

https://arxiv.org/abs/1702.01923

List of Figures

2.2

2.3
2.4

2.5
2.6

2.7

4.1

4.3

5.1
5.2

6.1
6.2

6.3
6.4
6.5

6.6

6.7

6.8
6.9

6.10

6.11

The NLP pipeline. The scope of this thesis is limited to part-of-speech
tagging e e
Example sentence with extracted relations using https://corenlp.run . . .
Visualization of an exemplary hidden Markov process used in an HMM . .
Visualization of Viterbi path and backpointers
Example of features that could be used by a MEMM
Comparison of numerical and one-hot encoding
Splitting of data for cross-validation and performance evaluation

Scatter plot of document origin and metadata from the corpus. Small
jittering has been added to the geographic positions to decrease the overlap
of the datapoints.
Distribution of the origin and creation time of the documents. The x-axis
is the total number of tokens from documents in the respective category. .
Heat map reporting the tag distribution of each document

Example graph on which coreNLP calculates the optimal tagging
Visualization of a set-valued context window in CoreNLP

Visualization of the within document train-test split
Performance comparison of the two default models and the two results of
our optimization runs Lol
Performance effect of punctuation analyzed on the simpler default model
and the final optimization model
Performance effect of data augmentation analyzed on the final optimization
model
Performance effect of the open and closed class segmentation analyzed on
the final optimization model
Evaluation of in-domain performance. The classifier is trained on the
training part of one document and evaluated on the test part of the same
document.
Performance of the baseline and the main tagger. The top plot shows the
performance in terms of accuracy. The bottom plot shows the utility with
ga:LB:l(').
Visualization the two variants to evaluate cross-document performance . .
Performance of the baseline and the main tagger. The top plot shows the
performance in terms of accuracy. The bottom plot shows the utility with

ga:l,,@:l(')-
Training and Test data used for this experiment. The classifier is trained

© 00 0w W

10
13

21

22
23

33
35

39
44
45
45

46

46

48
49

across the whole dataset and tested on the testing parts of single documents. 51

Accuracy gain in comparison to Section 6.4 across several datasets.

52

67

https://corenlp.run

68

6.12
6.13
6.14

6.15

Utility gain in comparison to Section 6.4 across several datasets.
Across corpus performance and set size L.
ml-acc and relative frequency in the training data for each tag. The relative
frequency is normalized to the most frequent tag (NA). Only tags with at
least 20 occurrences in the test data are shown.
Classifiers performance and Utility evaluated trained and evaluated on the
sT2 dataset. The fraction of the total training data is gradually increased
from 135 tokens up to the whole training part of 13509 tokens.

List of Figures

List of Tables

2.1
2.2

4.1
4.2

5.1
5.2

6.1
6.2
6.3

6.4

6.5

6.6

6.7
6.8

6.9
6.10

6.11

Aa

Comparison of different classification problems 11
Example performance scores and application of the Wilcoxon signed-rank

test. . e 16
The tagset used in the corpus. 24
Relative frequency of the multi-label target types in the dataset. 25
Comparison between token and sentence-level set-valued prediction 28
Selection of CoreNLP feature extractors 34

Configuration space for the feature extraction architecture. The blue
marked elements are the default values from which the search was started. 42
Configuration space for the feature extraction architecture. 43
Results of the in-domain experiment. The performance of the main clas-
sifier and the baseline are compared across g different datasets with the
performance measures accuracy, utility and average set size 47
Results of the cross-domain robustness experiment. The performance of
the main classifier and the baseline are compared across g different datasets
with the performance measures accuracy, utility and average set size. The
training has been conducted on the whole corpus except for the evaluation

dataset. e 51
Absolute performance of the classifier on a selection of datasets when
trained on the whole training dataset. 52

Results of the overall corpus performance experiment. The performance of
the main classifier and the baseline are compared different choices of the

convexity parameter of the utility discount function g(-). 54
Tagger performance on known and unknown words 54
Relative tag frequency across the whole dataset of the 10 most frequent tags. 55
Most common tagging errorso oo 56
Classifiers accuracy, utility and set size sT2. The training set is gradually

increased. The performance is evaluated on the whole test data.. 58
Top ten closest tag pairs by Ruzicka similarity of the induced words. . . . 59

List of all documents in the corpus with their full name, year (50 year
resolution) and their number of Tokens. 71

69

Appendix

A.1 Corpus

Table A.1 provides metadata information for all documents in the Corpus.

List of all documents in the corpus with their full name, year (50 year resolution)
and their number of Tokens.

Name Year Tokencount

SOsS1 Soester Schrae 1300 7,413
SRR1 Statuarrecht Stadt Riithen 1300 5,391
St2 Stadtrecht Stade 1250 16,572
WS1 Werler Statuten 1300 1,328
BS1 Stadtrecht Braunschweig 1200 2,376
DSR Duisburger Stadtrecht 1500 15,514
Ko Kolberger Kodex 1300 13,249
REN1 Bremer Sachsenspiegel 1350 15,803
REN2 Bremer Stadtrecht 1300 26,076
REN3 Bremer Urkunden 1301-1350 1350 1,869
REN4 Bremer Urkunden 1351-1400 1400 7,531
RENF Bremer Urkunden 1401-1450 1450 1,739
RENG Bremer Urkunden 1451-1500 1500 2,632
REN7 Hamburger Urkunden 1301-1350 1350 202
RENS Hamburger Urkunden 1351-1400 1400 6,589
RENg Hamburger Urkunden 1401-1450 1450 4,181

REN10 Hamburger Urkunden 1451-1500 1500 3,407
REN11 Ravensberger Urkunden 1300 501
REN12 Werler Urkunden Neheim 1300 255
REN14 Bamberg 1500 19,715

REN15 Rostocker Biirgerspr. 1550 1,169
REN18 Braunschweig Alt. DegB Altst. I 1300 1,711

REN19 Braunschweig Alt. DegB Altst. II 1300 8,243

A.2 Implementation

Most of the implementation of this thesis has been done in python. CoreNLP, as well
as the preprocessor from the Intergramm Project, are written in java. To call them
from the python code, wrappers where written, that provided input data as temporary
files, called the external programs and the output was read in. In that way, the external
programs could be called like normal python functions.

Most of the implementation was done with the use of the pandas and scikit-learn
library. All taggers implement the BaseEstimator class. Similarly, all special data

splitting implementations obeyed the sklearns interfaces. This allows to seamlessly use
our implementation with the standard functions from scikit-learn.

The visualization was mainly done with seaborn and pandas directly and only modified
with matplotlib as needed. Most of the tables in this thesis were also generated directly

with pandas.

72 Appendix A Appendix

Colophon

Most of the figures where created using the python library matplotlib or its wrapper
seaborn.

This thesis was typeset with IXTEX 2¢. It uses the Clean Thesis style developed
by Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

Declaration

I declare that the work is entirely my own and was produced with no assistance from
third parties. I certify that the work has not been submitted in the same or any similar
form for assessment to any other examining body and all references, direct and indirect,
are indicated as such and have been cited accordingly.

Erklarung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder &hnlicher
Form noch keiner anderen Priifungsbehorde vorgelegen hat und von dieser als Teil einer
Priifungsleistung angenommen wurde. Alle Ausfiihrungen, die wortlich oder sinngeméf
iibernommen wurden, sind als solche gekennzeichnet.

Paderborn, December 2, 2019

Stefan Heid

	Cover
	Titlepage
	Abstract
	Acronyms
	Notation
	1 Introduction
	1.1 Thesis Structure

	2 Prerequisites
	2.1 Part-of-Speech Tagging
	2.2 POS-Tagging as a Machine Learning Problem
	2.3 Evaluation

	3 Related Work
	4 Corpus
	4.1 Description
	4.2 Tagset
	4.3 Multi-Label Tags

	5 Algorithm
	5.1 Problem Definition
	5.2 Data Preparation
	5.3 Modified Performance Measures
	5.4 CoreNLP Tagger
	5.5 Extension

	6 Evaluation
	6.1 Dataset Splitting and Experiment Setup
	6.2 Baseline
	6.3 Model Selection
	6.4 In-Domain Performance
	6.5 Cross Domain Robustness
	6.6 Robustness Against Unrelated Data
	6.7 Across Corpus Performance
	6.8 Error Analysis
	6.9 Other Experiments

	7 Conclusion
	7.1 Future Work

	Bibliography
	A Appendix
	A.1 Corpus
	A.2 Implementation

	Colophon
	Declaration

