
Local Graph Transformation
Primitives for Some Basic Problems

in Overlay Networks

Dissertation
In partial fulfillment of the requirements for the academic degree

Doctor rerum naturalium (Dr. rer. nat.)
at the Faculty of Computer Science,

Electrical Engineering and Mathematics
at Paderborn University

submitted by

Alexander Setzer

Paderborn, June 2020

Advisor:
Prof. Dr. Christian Scheideler

Reviewers:
Prof. Dr. Christian Scheideler
Prof. Dr. Friedhelm Meyer auf der Heide

Members of the Doctoral Panel:
Prof. Dr. Christian Scheideler (Chairperson) Paderborn University
Prof. Dr. Friedhelm Meyer auf der Heide Paderborn University
Prof. Dr. Eckhard Steffen Paderborn University
Dr. Matthias Fischer Paderborn University
Dr. Saqib A. Kakvi University of Wuppertal

Contact:
Alexander Setzer (asetzer@mail.uni-paderborn.de)

mailto:asetzer@mail.uni-paderborn.de

Abstract

This thesis considers some basic problems in overlay networks, focusing on the
particular role that primitives for the transformation of the network graph play in
their solution.

In the first part, we investigate the complexity of computing a minimum sequence
of applications of graph transformation primitives to transform one graph into
another. For this we consider two sets of primitives (one for undirected and one
for directed graphs) that have proved to be useful in the context of self-stabilizing
overlay networks. We find that the problem is NP-hard but are able to develop
constant-factor approximation algorithms for both primitive sets.
In the second part, we study the problem of monotonic searchability in self-

stabilizing overlay networks. We develop a general approach to guarantee monotonic
searchability when the target topology is a supergraph of the line. Moreover, we
present a protocol that solves monotonic searchability for the line topology and
works correctly when nodes are allowed to leave the system as well. For our
solutions, local graph transformation primitives turn out to serve as an important
ingredient.

In the third part, we develop the relay model, a new model for interconnecting
nodes. Whereas in the standard model nodes were not able to leave the system
faithfully (i.e., without harming connectivity) unless they had access to an oracle,
in the relay model these oracles are not required. We show how to implement the
relay model in a self-stabilizing fashion and provide a generic approach to handle
node departures in this model. Moreover, we prove the relay model to be universal.
This means that arbitrary graph transformations are possible in this model. Even
more, they are possible via (weak-)connectivity-preserving graph transformation
primitives, which are “almost local” as they require the cooperation of up to three
nodes (which is due to the fact that connections cannot be forwarded without
consent in the relay model). Besides the aforementioned aspects, the relay model
has several additional advantages. For example, protocols for the standard model
can be transformed into the relay model. Furthermore, the model allows nodes to
grant and revoke access rights, making it useful beyond the context of studying
node departures.

iii

Zusammenfassung

Diese Dissertation betrachtet einige grundlegende Overlay-Netz-Probleme. Sie
konzentriert sich dabei auf die besondere Rolle, welche Primitive zur Transformation
des Netzwerkgraphen in ihrer Lösung spielen.

Im ersten Teil untersuchen wir die Komplexität der Berechnung einer kürzesten
Abfolge von Anwendungen von Graphtransformationsprimitiven, um einen Graphen
in einen anderen umzuformen. Hierfür betrachten wir zwei Mengen von Primitiven
(eine für ungerichtete und eine für gerichtete Graphen), die sich im Kontext von
Overlay-Netzen als nützlich erwiesen haben. Wir zeigen auf, dass dieses Problem
zwar NP-schwer ist, können aber Approximationsalgorithmen mit konstantem
Approximationsfaktor für beide Mengen von Primitiven angeben.

Im zweiten Teil behandeln wir das Problem der monotonen Suchbarkeit in
selbststabilisierenden Overlay-Netzen. Wir entwickeln einen generellen Ansatz, um
montone Suchbarkeit zu garantieren, wenn die Zieltopologie ein Obergraph der
Linientopologie ist. Außerdem stellen wir ein Protokoll vor, welches das Problem der
monotonen Suchbarkeit für die Linientopologie löst und selbst dann korrekt arbeitet,
wenn Knoten das System verlassen dürfen. Lokale Graphtransformationsprimitive
erweisen sich hierbei als wichtiger Bestandteil unserer Lösungen.
Im dritten Teil entwickeln wir das Relay-Modell, ein neues Modell zur Vernet-

zung von Knoten. Während es im Standard-Modell nicht möglich ist, dass Knoten
das System gewissenhaft (das heißt, ohne den Zusammenhang zu gefährden) ver-
lassen, sofern sie nicht Zugang zu einem Orakel haben, werden diese Orakel im
Relay-Modell nicht benötigt. Wir zeigen, wie das Relay-Modell selbststabilisierend
implementiert werden kann und stellen außerdem einen generellen Ansatz vor,
um das Verlassen von Knoten in diesem Modell zu behandeln. Ferner zeigen wir,
dass das Relay-Modell universell ist. Das bedeutet, dass beliebige Graphtransfor-
mationen in diesem Modell möglich sind. Genauer gesagt sind sie mithilfe von
Graphtransformationsprimitiven möglich, die den (schwachen) Zusammenhang
bewahren und “nahezu lokal” sind, da sie die Zusammenarbeit von bis zu drei
Knoten erfordern (was damit zusammenhängt, dass Verbindungen im Relay-Modell
nicht einfach weitergeleitet werden dürfen). Zusätzlich zu den bereits genannten
Aspekten hat das Relay-Modell weitere Vorteile. So können beispielsweise Proto-
kolle für das Standard-Modell in das Relay-Modell überführt werden. Außerdem
ermöglicht letzteres, Zugriffsrechte zu gewähren und zu entziehen, wodurch es auch
jenseits des Kontexts von Knotenabgängen von Nutzen ist.

v

Contents

Abstract iii

Zusammenfassung v

1. Introduction 1
1.1. Four Basic Graph Transformation Primitives 2
1.2. Motivation . 3
1.3. Related Work . 4
1.4. List of Own Publications . 9
1.5. Contribution and Outline of the Thesis 11

2. Preliminaries 13
2.1. Model Overview . 13
2.2. Further Known Results and Additional Terminology 15
2.3. Formal Problem Definitions . 15
2.4. Pseudocode Explanation . 17

I. The Complexity of Local Graph Transformations 19

3. NP-Hardness and Approximability of Local Graph Transformations 21
3.1. Problem Statement . 21
3.2. NP-hardness Results . 22
3.3. Approximation Algorithms . 30

II. Monotonic Searchability in Self-Stabilizing Topologies 41

4. Monotonic Searchability for Supergraphs of the Line 43
4.1. Communication Model and Problem Statement 44
4.2. Primitives for Monotonic Searchability 48
4.3. Transforming Classical Protocols 54
4.4. The Generic Search Protocol . 57
4.5. Examples . 68
4.6. A Short Digression: The Bridge-SKIP+ Graph 72

vii

Contents

5. Monotonic Searchability under Leaving Nodes 75
5.1. Problem Statement . 75
5.2. Protocol Description of Build-List* and Search* 76
5.3. Build-List* Solves the FDP . 84
5.4. Build-List* Self-Stabilizes to the Line Topology 96
5.5. Build-List* Satisfies Monotonic Searchability 100

III. Relays: A New Interconnection Model for Overlay Networks 113

6. The Relay Model and Its Self-Stabilizing Realization 115
6.1. Communication Model and Problem Statement 116
6.2. The Relay Layer . 117
6.3. Self-Stabilization Proofs . 138
6.4. Universal Relay Primitives . 173
6.5. Solving the FDP with Relays . 179

IV. Conclusion 197

7. Applications and Open Research Questions 199

Bibliography 203

viii

Introduction

C
H
A
P
T
ER 1

One of the most basic tasks to be conducted in overlay networks is the transforma-
tion of the network graph. Even the joining or the departure of a single member
of the distributed system may entail a large number of changes to the network.
Apart from this, an overlay network may undergo continuous transformations for
the purpose of optimizing certain metrics (such as dilation or congestion). In many
cases, reaching a certain target topology is not the only goal, though. Often it is
desirable to maintain some properties throughout the transformation process. For
example, many applications require the network graph to be connected in every
state. Other applications may also require certain monotonicity properties of the
transformation, for instance to enable reliable search.
A major challenge for distributed systems is introduced by the fact that their

members may display erroneous behavior. Unfortunately, for realistic, large systems,
faults are not the exception but the norm. To approach this problem, two principles
have turned out to be very helpful, which we will also follow in this thesis: The
first is to perform the graph transformations by only local operations. This means
that the changes induced by a single participant can affect only his neighborhood
in the network graph. The second is to make (almost) no assumptions on the
initial correctness of variables and messages in the design of all protocols: i.e., to
make the system self-stabilizing.
An extremely useful tool in the context of local graph transformations in the

self-stabilizing setting was introduced by Koutsopoulos, Scheideler, and Stroth-
mann [KSS17]. The authors describe a set of simple graph transformation primitives
that exhibit the following three desirable properties: First, they are local in the
sense that the application of one such primitive by a node affects only the neigh-
borhood of that node. Second, they preserve weak connectivity: i.e., none of
their applications can disconnect a weakly connected component. Third, they
are universal, which means that they can be used to transform a given weakly
connected graph into any weakly connected graph consisting of the same nodes.
This thesis further investigates the graph transformation primitives due to

Koutsopoulos, Scheideler and Strothmann as well as their usefulness for basic
problems in the context of overlay networks. As an introduction, we study the
complexity of computing a minimum sequence of graph transformation primitive
applications to obtain a desired target graph. As it turns out, the problem is
NP-hard but constant-approximable. In the further parts of the thesis we consider
several problems in the self-stabilization setting.
The first problem in the self-stabilization setting we consider is the problem

of searching reliably during the stabilization process: Simply put, if a message

1

Chapter 1 INTRODUCTION

from a node u to a node v succeeds at some point in time, then every future such
message must do as well. Therefore, this problem is also called the problem of
monotonic searchability. It turns out that an adaptation of the aforementioned
graph transformation rules serves as an important ingredient to the solution of
this problem.
The second problem in the self-stabilization setting we consider is that of safe

departures. In general, nodes that want to leave the system cannot simply do
so immediately: There could be a cut of the network graph consisting entirely
of nodes that want to leave and their immediate departure would disconnect
the network. For this reason, before the nodes wanting to leave have left the
system, the network graph needs to be transformed such that all nodes can leave
without harming connectivity. This problem was originally introduced by Foreback,
Koutsopoulos, Nesterenko, Scheideler and Strothmann [For+14] and is known as
the finite departure problem. The same authors also proved that the problem is
not solvable without oracles in the standard communication model. In this thesis,
we present an approach that solves monotonic searchability as well as the finite
departure problem at the same time and assumes access to a reasonable oracle.
In the third part of this thesis, we design a novel interconnection model for

overlay networks that permits a solution to the finite departure problem without
oracles. To justify this model, we present a self-stabilizing implementation that
only requires a reliable link-layer as a base. Our model possesses a number of
interesting characteristics that make it useful for applications beyond the finite
departure problem, e.g., in the access-control domain.

1.1. Four Basic Graph Transformation Primitives
We now describe the primitives for the manipulation of graphs, first introduced
by Koutsopoulos, Scheideler, and Strothmann [KSS17] in the context of overlay
networks.
For directed graphs, consider the set IDFR consisting of the following four

graph transformation primitives:

Introduction If a node u has a reference of two nodes v and w such that v 6= w, u
introduces w to v if u sends a message to v containing a reference of w while
keeping the reference.

Delegation If a node u has a reference of two nodes v and w such that u, v, w are
all different, then u delegates w’s reference to v if u sends a message to v
containing a reference of w and deletes the reference of w.

Fusion If a node u has two references v and w such that v = w, then u fuses the
two references if it only keeps one of these references.

Reversal If a node u has a reference of some other node v, then u reverses the
connection if it sends a reference of itself to v and deletes its reference of v.

2

Motivation 1.3

u
v

w
u

v

w

(a) Introduction primitive

u
v

w
u

v

w

(b) Delegation primitive

u v u v

(c) Fusion primitive

u v u v

(d) Reversal primitive

Figure 1.1.: The four primitives in IDFR in pictures.

The four primitives are visualized in Figure 1.1. Note that for the introduction
primitive, it is possible that w = u: i.e., u introduces itself to v. To simplify the
description, we sometimes say that a node u introduces or delegates the edge (u, v)
if u introduces v to some other node or delegates v’s reference to some other node,
respectively.
The primitives in IDFR are known to be universal (c.f. [KSS17]): i.e., it is

possible to transform any weakly connected graph into any other weakly connected
graph by using only the primitives in IDFR. Note that for every edge (u, v) used
in any of the primitives, either (u, v) still exists after the corresponding primitive
is applied, or there is still an (undirected) path from u to v in the resulting graph.
This directly implies that no application of the primitives can disconnect the graph.

For undirected graphs, consider the set IDF containing only the primitives intro-
duction, delegation and fusion (defined correspondingly). These three primitives,
accordingly, are universal on undirected graphs: i.e., any connected undirected
graph can be transformed into any other connected undirected graph by applying
the primitives in IDF (c.f. [KSS17]).

1.2. Motivation

Despite being quite simple and fully local, the graph transformation primitives
described in Section 1.1 become very powerful because they preserve (weak)
connectivity and are universal. Therefore, it is reasonable to investigate these
primitives further. This thesis does so by addressing the following three central
questions: First, what is the complexity of transforming graphs with a minimum
number of primitive applications? Second, in which way can the primitives (and
suitable adaptations of them) be used to develop self-stabilizing protocols for
network topologies that, in addition to the pure stabilization, solve the problem of
monotonic searchability? Third, how is it possible to overcome the issue inherent
to the primitives that they might violate user rights (caused by the fact that
references of nodes can be forwarded without permission)?

3

Chapter 1 INTRODUCTION

1.3. Related Work

This section gives an overview of the relevant existing research in the subject
areas of this thesis. Since every part of this thesis is in some way concerned
with primitives for transforming graphs, we begin in Section 1.3.1 with giving an
overview of the existing literature regarding graph transformations in distributed
systems. The majority of this thesis deals with self-stabilizing systems, more
precisely self-stabilizing overlay networks. In Section 1.3.2 we thus give an overview
of the related work in this area. This includes related work on the specific problems
(such as monotonic searchability and the finite departure problem) concerned in this
thesis. The third part of this thesis deals with a new model for the interconnection
of nodes in distributed systems based on so-called relays. As a matter of fact, there
are many models or concepts that aim at overcoming some of the issues our relay
model solves. Therefore, in Section 1.3.3 we give an overview of similar or related
concepts. Last, in Section 1.3.4 we list additional literature that is related to this
thesis in some way.

1.3.1. Graph Transformations in Distributed Systems

Graph transformations have been studied in many different contexts and appli-
cations, including but not limited to pattern recognition, compiler construction,
computer-aided software engineering, the description of biological developments in
organisms and the implementation of functional programming languages. Detailed
introductions and an extensive overview of the existing literature in this area even
beyond distributed systems can be found in [And+99], [Hec06], or [Roz97; Ehr+99],
for example. Simply put, a graph transformation (or graph-rewriting) system
consists of a set of rules L→ R that may be applied to subgraphs isomorphic to
L of a given graph G, thus replacing L with R in G. One can generate a graph
grammar by enumerating all graphs reachable from some starting graph by the
(repeated) application of these rules. These graph grammars can also be viewed as
generalizations of Chomsky grammars (see [ASK18]). Since changing the labels
assigned to a graph (graph relabelling) is also a kind of graph transformation,
basically every distributed algorithm can be understood as a graph transformation
system (c.f. [Ehr+99]).
Transforming the network graph is one of the most basic tasks to be carried

out in overlay networks. The purpose of network graph transformations is not
only to integrate new nodes into the network or to remove nodes from them. In
fact, topologies are often transformed continuously to optimize certain metrics,
for example to ensure connectivity properties of the graph [Liu+06] or to perform
load-balancing [Kru+10]. The idea of transforming the network graph according
to a set of rules, as employed in Chapter 3, is not entirely new. In fact, Stein et
al. [Ste+16] proposed TARL, a language for expressing topology adaptation rules.
These rules can be far more complex than the rules considered in this thesis. In
contrast to our work, however, that work focuses on empirical evaluations and does

4

Related Work 1.3

not consider the complexity of transforming a graph with a minimum number of
rule applications.
Another interesting problem related to our work in Chapter 3 is the so-called

graph transformation problem [Lin94]. In this problem the goal is to find the
minimum integer k such that an initial graph Gs can be transformed into a final
graph Gt by relocating at most k edges in Gs. Lin proved that the decision
version of the graph transformation problem for general k is NP-complete [Lin94].
In contrast to our work, the nodes in this setting are not uniquely identifiable,
causing, for example, the decision version of this problem for k = 0 to be the graph
isomorphism problem. Another difference is that in this thesis we do not allow
arbitrary edge relocations but restrict them to a set of rules that can be applied
locally.

1.3.2. Self-Stabilization and Self-Stabilizing Overlay Networks

Self-stabilization in distributed computing was originally introduced by Dijkstra in
1974 [Dij74]. In this seminal work, he considered the synchronization of machines ar-
ranged in a ring topology. Since then, self-stabilization has been considered in many
applications, such as clock synchronization, model conversion and monitoring (see
[Dol00] for an overview). This thesis is specifically concerned with self-stabilizing
overlay networks. The problem of stabilizing network topologies from arbitrary
weakly connected states has first been considered for simple line and ring networks
(e.g., [SR05; ORS07; Gal+14]). Over the years increasingly more network topolo-
gies were considered, ranging from skip lists and skip graphs [NNS13; Jac+14] to
expanders [DT13], Delaunay graphs [Jac+12], double-headed radix trees [AW07]
hypertrees [DK08], De Bruijn networks [RSS11], small-world graphs [KKS12], and
variants of Chord [KKS14]. Furthermore, a universal algorithm for topological
self-stabilization has been developed, known as the Transitive Closure Frame-
work [BGP13]. Only recently, Feldmann, Schmid, and Scheideler published a
thorough survey on self-stabilizing overlay networks [FSS20].

The four graph transformation primitives introduced by Koutsopoulos, Scheideler,
and Strothmann, which in some way play a role throughout this thesis, have
originally been introduced for the topic of self-stabilizing overlay networks as
well [KSS17]. The authors found out that three of these primitives (introduction,
delegation and fusion) are sufficient to turn any weakly connected graph G into
any strongly connected graph G′ and that all four primitives together are sufficient
to achieve the same for weakly connected graphs G′. In addition, they proved that
the four primitives are also necessary to accomplish these graph transformations
in general.

The notion of monotonic searchability, which Part II considers, was introduced
by Scheideler, Setzer and Strothmann [SSS15]. Apart from defining monotonic
searchability, the authors proved in that paper that it is impossible to satisfy
monotonic searchability if arbitrary corrupted messages are present, and they
showed how to achieve monotonic searchability in the line topology. The paper also

5

Chapter 1 INTRODUCTION

has a second part, in which monotonic searchability is solved in the setting where
nodes may leave the system, and this part serves as the basis for Chapter 5 of
this thesis. After that, Scheideler, Setzer, and Strothmann considered a universal
approach for monotonic searchability [SSS16]. Since this approach can entail a high
message cost, researchers still considered monotonic searchability for particular
topologies afterwards. For example, Feldmann, Kolb, and Scheideler developed
a self-stabilizing quad-tree protocol satisfying monotonic searchability [FKS18].
Moreover, Luo, Scheideler, and Strothmann considered monotonic searchability
for the perfect skip graph [LSS19]. Closely related to monotonic searchability is
the notion of monotonic convergence by Yamauchi and Tixeuil [YT10]. A self-
stabilizing protocol is monotonically converging if every change done by a node
p makes the system approach a legal state and if every node changes its output
only once. The authors investigate monotonically converging protocols for different
classic distributed problems (e.g., leader election and vertex coloring) and focus
on the amount of non-local information that is needed for them. Even apart from
that, maintaining safety properties during the convergence phrase is not entirely
new. In fact, several such approaches have been investigated in self-stabilization.
One example of this is snap-stabilization [Bui+07; Del+10]: A protocol is snap-
stabilizing if it always behaves according to its specification independent of its
initial configuration. Another example is super-stabilization [DH97]: A super-
stabilizing protocol guarantees that starting from a legal configuration, a safety
property is preserved after only one specific topology change and that the safety
property is maintained during the convergence to a legal configuration, assuming
that no more topology changes occur during the stabilization phase. In contrast to
super-stabilization, self-stabilization with service guarantee [JM10] provides and
maintains the safety property even before the stabilization. As a generalization
of super-stabilization, safe convergence [KM06] was formulated. When the safe
convergence property is fulfilled, the system quickly converges to a configuration
fulfilling a safety property and continues to fulfill that safety property while
converging to a legal configuration.

The finite departure problem (FDP) studied in two main chapters of this thesis
was originally introduced by Foreback et al. [For+14]. The aim was to investigate
graceful departures of nodes in a self-stabilizing setting. Simply put, in the FDP,
nodes that want to leave a distributed system should decide when they can leave
without affecting the weak connectivity of the topology. The authors of [For+14]
conclude that it is not possible to solve the FDP in general. However, with
the use of distributed oracles (which are specialized failure detectors [CT96]) the
authors propose a protocol that solves the problem and arranges the nodes in a line.
Additionally, they show that oracles are not needed if the problem is transformed
into a non-decision variant (called the finite sleep problem). In this problem, nodes
just fall asleep whenever they think it is safe to do so, but they will be woken up
again whenever a message is delivered to them. Therefore, the goal of the finite
sleep problem is just to ensure that eventually a state is reached at which all leaving
nodes are permanently asleep. In the aftermath, Koutsopoulos, Scheideler, and

6

Related Work 1.3

Strothmann generalized the idea of the FDP to a protocol framework that solves
the FDP without being reliant on a certain topology [KSS17]. This protocol is
thus combinable with most existing overlay protocols. The idea of this framework
also influenced the results of Chapter 6 where we present a framework to solve the
FDP in the relay model. A significant difference, though, is caused by the fact
that the oracle used in [KSS17] is not implemented by the relay layer, which is
why it was not possible to simply transfer that result for this thesis.

1.3.3. Relays

The idea of using relays in communication networks, as we do in Chapter 6 of this
thesis, is not entirely new, but has a long history already. Relays are commonly
used when two devices are too far away from each other to exchange information
directly, like in wireless networks, or if two devices cannot interact directly because
of firewalls. Relay networks have also been used to improve availability (prominent
examples are Resilient Overlay Networks [And+01]), to provide anonymity (a
prominent example is the TOR network [DMS04]) or to improve performance
(a prominent example is AKAMAIs IPA Relay service). In general, most of the
peer-to-peer systems and overlay networks proposed so far are using their members
as relays for the exchange of requests or information between its members.

The relay concept we propose in Chapter 6 has some interesting connections to
the access control domain. As we will see, our concept is equipped with commands
to close a relay or to shut down a process (called delete and stop, respectively).
This makes it possible to grant and revoke access rights with relays. There is
a substantial amount of literature on access control in distributed systems. For
surveys on access control approaches in various contexts such as operating systems,
file systems, distributed systems, and web-based systems, we refer to [Del+07;
KMD17; Mil+08; HFK06; Kos09; LMM10]. One can summarize that there are
three important requirements for access control schemes: integrity, propagation,
and revocation. Integrity means that it should not be possible to construct, tamper
with or steal an access right. Propagation means that there should be mechanisms
in place controlling the transfer of access rights. Revocation means that it should
be possible to revoke an access right. Interestingly, the relay approach presented
in Chapter 6 can satisfy these requirements if the processes cannot tamper with
the relay layer introduced there.
The simplest ways of controlling access rights are to use passwords or crypto-

graphic keys, but these can easily be delegated from one process to another. Another
simple method is to use access control lists (ACLs), which gained prominence in the
1970s with the advent of multiuser systems such as UNIX. In distributed systems,
the ACL approach usually requires a trusted third party, in order to prevent
tampering with the ACLs. Other popular access control models are Role-Based
Access Control (RBAC), Attribute-Based Access Control (ABAC), Policy-Based
Access Control (PBAC), and Risk-Adaptive Access Control (RAdAC). For all of
these models, various variants have been proposed depending on the context in

7

Chapter 1 INTRODUCTION

which they are used and the focus on particular properties. In most of the imple-
mentations of these models, trusted third parties are used as well since otherwise it
is hard to guarantee integrity and prevent uncontrolled propagation of access rights.
More decentralized approaches keep track of delegation chains, which is somewhat
similar to our relay approach: If one of the delegations is revoked, all delegations
beyond it will not be accepted any more so the corresponding processes will lose
their access rights to certain objects. However, to the best of our knowledge, this
chaining approach has not been used in order to control the interconnection of
processes. An example where access rights are provided via explicit communication
channels is the Singularity operating system [Hun+05; Wob+07]. A key aspect
of Singularity are Software-Isolated Processes (SIPs), which encapsulate pieces of
an application or a system and provide information hiding, failure isolation, and
strong interfaces. Communications between SIPs is through bidirectional, strongly
typed, higher-order channels. When a channel is created, both of its endpoints are
returned to the SIP that created it. These endpoints can be freely delegated along
existing channels but not replicated, which provides a more flexible form of access
control than our relay approach, but still opens up the possibility of stealing access
rights or delegating them by mistake.
For the relay model proposed in this thesis, we assume a reliable link layer.

Therefore, the research by Dolev et al. on self-stabilizing link layers [Dol+11;
Dol+12] is noteworthy. They provide self-stabilizing algorithms to deliver (higher
level) messages in FIFO order without duplicates or omissions even if the network
may duplicate, omit or reorder packets. The assumption required for this is that
the total number of packets in the system at every point in time is bounded.
Their protocol may be applied below the relay layer we propose, to obtain an
eventually-reliable link layer. We highlight, however, that the FIFO assumption is
not required for the relay model.

1.3.4. Additional Literature

In thesis (more specifically, in Chapter 3), we prove the NP-hardness of two
problems and provide approximation algorithms for them. For the NP-hardness
proofs, we conduct a reduction from the well-known satisfiability problem (SAT),
whose NP-hardness was proven independently by Cook [Coo71] and Levin [Lev73]
and represents one of the most fundamental results in theoretical computer science.
For the approximation algorithms, we use an approximation algorithm for the
undirected Steiner forest problem as a black-box. In this problem, a graph G and
a set S of pairs of nodes from G are given. The task is to find a forest F in G
of minimum cost such that in F the two nodes of each pair in S are connected
by a path. The cost of the forest is the sum of the edge costs, which are defined
according to a metric. This problem is also known as the Steiner subgraph problem
with edge sharing. Since the Steiner forest problem is a generalization of the
Steiner tree problem, in which the goal is to find a tree connecting a set of given
terminals, its NP-hardness is implied by the NP-hardness of the Steiner tree. The

8

List of Own Publications 1.4

latter was proven by Karp [Kar72]. In a generalization of the Steiner forest problem
called the survivable network design problem or the generalized Steiner problem,
the input may additionally consist of a connectivity requirement for each pair of
nodes, i.e., a number of distinct paths connecting the pair of nodes. According to a
survey by Kerivin and Mahjoub [KM05], this generalized problem was introduced
by Steiglitz, Weiner, and Kleitman [SWK69]. The first 2-approximations of this
problem were primal-dual algorithms given by Agrawal, Klein, and Ravi [AKR95]
and by Goemans and Williamson [GW95] who generalized the former results. Later,
Jain [Jai01] also presented a 2-approximation using an iterative rounding technique.
Gupta and Kumar [GK15] showed a simple greedy algorithm to have a constant
approximation ratio. Recently, Groß et al. [Gro+18] presented a local-search
constant approximation for the Steiner forest. On a side note, the Steiner forest
problem was also considered in the online setting: Awerbuch, Azar, and Bartal
showed a greedy algorithm to be O(log2 |S|)-competitive [AAB04], and Berman
and Coulston gave an O(log |S|)-competitive algorithm [BC97].

1.4. List of Own Publications
In addition to the publications that directly serve as a basis for the main chapters
of this dissertation, I co-authored a number of other publications as well during my
research time at Paderborn University. In one way or another, my work on these
topics also influenced this dissertation, which is why I will give a brief overview of
the published works I participated in so far.
Aside from the topics of this thesis, I additionally worked on game theory

(see [Cor+12]), online algorithms (in particular, the minimum linear arrangement
problem, see [ESS14a]), and robust distributed storage systems (see [ESS14b]).
Furthermore, I worked on a distributed queue (see [FSS18]) and the consensus
problem (see [RSS18]). Additional research involved multi-dimensional range
queries in peer-to-peer based storage (see [Ben+18]) and a minimum spanning tree
construction on tree-underlays (see [GSS18]).
The complete list of papers co-authored by me and published so far is the

following:

[Cor+12] Andreas Cord-Landwehr, Martina Hüllmann, Peter Kling, and Alexander
Setzer. Basic Network Creation Games with Communication Inter-
ests. In: Proceedings of the 5th International Symposium on Algorithmic
Game Theory (SAGT). Barcelona, Spain, 2012.

[ESS14a] Martina Eikel, Christian Scheideler, and Alexander Setzer. Minimum
Linear Arrangement of Series-Parallel Graphs. In: Revised Selected
Papers of the 12th International Workshop on Approximation and Online
Algorithms (WAOA). Wrocław, Poland, 2014.

[ESS14b] Martina Eikel, Christian Scheideler, and Alexander Setzer. RoBuSt:
A Crash-Failure-Resistant Distributed Storage System. In: Proceed-

9

Chapter 1 INTRODUCTION

ings of the 18th International Conference on Principles of Distributed Systems
(OPODIS). Cortina d’Ampezzo, Italy, 2014.

[SSS15] Christian Scheideler, Alexander Setzer, and Thim Strothmann. To-
wards Establishing Monotonic Searchability in Self-Stabilizing
Data Structures. In: Proceedings of the 19th International Conference on
Principles of Distributed Systems (OPODIS). Rennes, France, 2015.

[SSS16] Christian Scheideler, Alexander Setzer, and Thim Strothmann. To-
wards a Universal Approach for Monotonic Searchability in Self-
stabilizing Overlay Networks. In: Proceedings of the 30th International
Symposium on Distributed Computing (DISC). Paris, France, 2016.

[FSS18] Michael Feldmann, Christian Scheideler, and Alexander Setzer. Skueue:
A Scalable and Sequentially Consistent Distributed Queue. In: Pro-
ceedings of the 32nd IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Vancouver, British Columbia, Canada, 2018.

[RSS18] Peter Robinson, Christian Scheideler, and Alexander Setzer. Breaking
the Ω̃(

√
n) Barrier: Fast Consensus under a Late Adversary. In:

Proceedings of the 30th on Symposium on Parallelism in Algorithms and
Architectures (SPAA). Vienna, Austria, 2018.

[Ben+18] Markus Benter, Till Knollmann, Friedhelm Meyer auf der Heide, Alexan-
der Setzer, and Jannik Sundermeier. A Peer-to-Peer Based Cloud Stor-
age Supporting Orthogonal Range Queries of Arbitrary Dimension.
In: Revised Selected Papers of the 4th International Symposium on Algo-
rithmic Aspects of Cloud Computing (ALGOCLOUD). Helsinki, Finland,
2018.

[GSS18] Thorsten Götte, Christian Scheideler, and Alexander Setzer. On
Underlay-Aware Self-Stabilizing Overlay Networks. In: Proceed-
ings of the 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS). Tokyo, Japan, 2018.

[SS18] Christian Scheideler and Alexander Setzer. Relays: A New Approach
for the Finite Departure Problem in Overlay Networks. In: Pro-
ceedings of the 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS). Tokyo, Japan, 2018

[SS19] Christian Scheideler and Alexander Setzer. On the Complexity of Lo-
cal Graph Transformations. In: Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming (ICALP). Patras,
Greece, 2019.

10

Contribution and Outline of the Thesis 1.5

1.5. Contribution and Outline of the Thesis

Chapter 2 contains preliminaries required for the four main chapters of this thesis.
It gives an overview of the models used in this thesis and some notions respective
to them, formally defines all problems that play a role in more than one chapter,
and explains the pseudocode notation.
The thesis is divided into three parts: The first deals with the complexity

of the aforementioned local graph transformations, the second with monotonic
searchability and the third with the novel interconnection model for the finite
departure problem.
Part I consists of Chapter 3, which deals with the complexity of computing a

minimum sequence of applications of the graph transformations due to Koutsopou-
los, Scheideler and Strothmann. We show that this problem is NP-hard in both the
undirected and the directed case. For both cases, we also present approximation
algorithms that have a constant approximation ratio.

Part II consists of two chapters that both deal with monotonic searchability. In
Chapter 4, we provide a general framework to enable monotonic searchability in
a wide range of self-stabilizing topologies thereby generalizing a previous result
by Scheideler, Setzer and Strothmann (first part of [SSS15]). For this approach,
we use adaptations of the graph transformation primitives mentioned before. Our
framework not only generally enables monotonic searchability but also allows
successful search requests to reach their target fast (where the exact definition of
“fast” depends on the topology). As a small digression, for a special class of graphs,
called the SKIP+ graphs, we show that monotonic searchability can alternatively
be obtained by lifting the requirements for the topology that should be formed: If
one allows the final topology to be a superset of the actual topology, monotonic
searchability can be enabled by only a slight adaptation of an existing protocol
for the self-stabilization of the SKIP+ graph. In Chapter 5 we then present
a protocol that enables monotonic searchability and solves the finite departure
problem at the same time. Because of the description complexity involved with
this, this protocol is not a general framework for a set of topologies, but a specific
solution for a simple class of graphs, namely the line graph.

Part III consists of Chapter 6, in which we introduce a new interconnection model
called the relay model. As we show in this chapter, the relay model has a number
of advantageous properties. First of all, it allows transforming arbitrary graphs
into arbitrary other graphs. Furthermore, existing protocols for the classical model
can easily be adapted for the relay model. Moreover, only assuming a reliable or
self-stabilizing link layer, the relay model can be implemented in a self-stabilizing
fashion: i.e., even if the variables and messages for the internal operation of the
relay layer are initially corrupted, the relay layer will eventually conform to its
specification.1 Last, but perhaps most importantly since this originally motivated

1This is a simplified view, for the ease of description. In fact, some additional assumptions need
to be made, but this will be clarified in the corresponding chapter.

11

Chapter 1 INTRODUCTION

the invention of the relay model, it is possible to solve the finite departure problem
without an oracle in this model. We prove this by developing and analyzing a
general protocol that can be used to transform existing protocols in the relay model
such that nodes can leave the system without harming connectivity, i.e., such that,
in addition to their original behavior, they solve the finite departure problem. It
turns out that the relay model has the potential to be useful in other scenarios as
well, such as in the access control domain, which we will discuss in the conclusion.

The last part of this thesis is Part IV. It consists of Chapter 7 where we review
the results of this thesis and give an outlook on open research questions raised by
these results.

12

Preliminaries

C
H
A
P
T
ER 2

This chapter lays the technical foundations for this thesis. Here we explain the
graph transformation primitives that this thesis builds on, introduce the main
models considered in this thesis and define some terms used throughout the thesis.
We also formally define various problems that are used in several chapters of the
thesis. Specific problems that are relevant to single chapters only are defined
in the respective chapters. Moreover, at the end of this chapter, we explain the
pseudocode notation used in this thesis.

Outline of This Chapter In Section 2.1, we give an overview of the models used in
this thesis. After that, Section 2.2 introduces some additional terminology relevant
for the whole thesis and restates some existing results on the graph transformation
primitives in IDF . The formal definition of the problems referred to extensively
in this thesis is then given in Section 2.3. Last, in Section 2.4 we explain how to
read the pseudocode used in most chapters of this thesis.

2.1. Model Overview
In this section, we describe the models used in this thesis. For the complexity
analysis in Part I, it is sufficient to consider a very simple system model, which we
describe in Section 2.1.1. For the problems in the self-stabilization setting (Part II
and Part III), we consider a more complex system model, which we describe in
Section 2.1.2.

2.1.1. System Model for the Complexity Analysis
For Part I of this thesis, we consider a simple model. We model the overlay network
as a graph: i.e., nodes represent participants of the network and if there is a
directed edge (u, v) in the graph, this means that there is a connection from u to v.
Undirected edges {u, v} model the two connections from u to v and from v to u.
Since there may be multiple connections between the same pair of participants, the
graphs we consider in this thesis are multigraphs: i.e., edges may appear several
times in the multiset of edges. For convenience, throughout this thesis we will use
the term “graph” instead of “multigraph” and refer to the “edge set” of a graph
even though it is actually a multiset.
In this setting, a computation C is a finite sequence G1 → G2 → . . . → Gl of

either directed or undirected graphs, in which each graph Gi+1 is obtained from
Gi by the application of a single primitive from IDFR or IDF , respectively. The

13

Chapter 2 PRELIMINARIES

graphs G1 and Gl are called the initial and the final graphs of C, respectively.
The variable l is called the length of the computation.

2.1.2. System Model for Monotonic Searchability and Relays

The system model used for Part II and Part III is as follows: We consider a
distributed system consisting of a fixed set of nodes that are interconnected to
each other and in which each node has a unique immutable numerical identifier.
The nodes are controlled by a local-control protocol that specifies the variables and
actions that are available at each node. We distinguish between protocol-based
variables that are defined along with the protocol and system-based variables
defined by the communication model.

We now describe the computation model used in this setting. Since we consider
two different communication models for Part II and Part III, we specify them in
the corresponding parts of this thesis.

Computation Model for Monotonic Searchability and Relays

There are two types of actions that a protocol can execute. The first type has
the form of a standard procedure consisting of a header 〈label〉(〈parameters〉) and
a body 〈commands〉, where label is the unique name of that action, parameters
specifies the parameter list of the action, and commands specifies the commands
to be executed when calling that action. Such actions can be called locally (which
causes their immediate execution) or remotely. In fact, we assume that every
message must have the form 〈label〉(〈parameters〉), where label specifies the action
to be called in the receiving node and parameters contains the parameters to be
passed to that action call. All other messages are ignored by the nodes. The second
type is a dedicated action called the timeout action. Its header simply consists of
the keyword Timeout and its body is a sequence of commands, too.

The system state is an assignment of values to every variable of each node. An
action in some node v is enabled in some system state if and only if it is a timeout
action or there is a message requesting to call it (with further details on this to be
specified in the communication model).
In this setting, a computation is an infinite sequence of system states such

that for each state Si, the next state Si+1 is obtained by executing an action
that is enabled in Si. This disallows the overlap of action executions: i.e., action
executions are atomic. We assume weakly fair action execution, meaning that if an
action is enabled in all but finitely many states of a computation, then this action
is executed infinitely often. Note, in particular, that the timeout action of a node
is executed infinitely often. Besides this, we place no bounds on node execution
speeds and no restrictions on the execution order of enabled actions: i.e., we allow
fully asynchronous computations and non-FIFO message delivery.

14

Further Known Results and Additional Terminology 2.3

2.2. Further Known Results and Additional Terminology
Regarding the set IDF consisting of the three primitives introduction, delegation
and fusion, we can make the following observation:

Observation 2.1. The introduction primitive is the only primitive that can in-
crease the number of edges in a graph. The fusion primitive is the only primitive
that can decrease the number of edges in a graph. The delegation primitive is the
only primitive that can remove the last edge between two nodes (i.e., an edge of
multiplicity one).

When nodes can perform only local computations, it seems intuitive that the
network graph is transformed in a way similar to applying one of these graph
transformation primitives. In fact, the following was proven in [SSS16]:

Theorem 2.2. Any compare-store-send protocol that self-stabilizes to a static
strongly-connected topology and preserves weak connectivity can be transformed
such that the interactions between nodes can be decomposed into the primitives of
IDF .

In Part II and Part III it will become useful to have the following three terms
defined that deal with computations and states in the computation. As these terms
are not used in Part I, we only define them with respect to the definition of a
computation according to Section 2.1.2:

Definition 2.3 (Reachable State). We say a state S′ is reachable from a state S
if and only if there is a sequence of possible action executions such that beginning
in state S, the resulting state is S′.

Definition 2.4 (S > S′, S ≥ S). When the computation we refer to is clear from
the context, we use the notion S′ > S as a shorthand to indicate that the state
S happened chronologically before S′. Accordingly, S′ ≥ S means that S′ > S or
S′ = S.

Definition 2.5 (Computation Suffix). For a computation C and a state S of
C, the computation suffix SUFFIXC(S) is the sub-sequence of C starting with S.
Where it is clear from the context, we might omit the C and just refer to the suffix
by SUFFIX(S).

Notice that according to the above definition, a computation suffix is also a
computation.

2.3. Formal Problem Definitions
We now define all problems that are relevant for more than one chapter. Every
problem that is relevant for a single chapter only will be defined in the corresponding
chapter.

15

Chapter 2 PRELIMINARIES

2.3.1. Self-Stabilization
In Chapters 4 to 6, we consider so-called self-stabilizing protocols. A protocol is
self-stabilizing if it satisfies the following two properties as long as no transient
faults occur:

Convergence Starting from an arbitrary system state the protocol is guaranteed
to arrive at a legal state.

Closure Starting from a legal state the protocol remains in legal states thereafter.

A self-stabilizing protocol is thus able to recover from transient faults regardless of
their nature. Moreover, a self-stabilizing protocol does not have to be initialized
as it eventually starts to behave correctly regardless of its initial state.

2.3.2. Monotonic Searchability
Part II deals with searching during the stabilization process in self-stabilizing topolo-
gies. We model searching for nodes in the network in the following way: Whenever a
node v wants to search for another node, it initiates a Search(v, destID) message
in which destID is the identifier of the node searched for. Here, destID does not
need to be an identifier of an existing node since it is also possible to search for a
node that is not in the system. Every such Search(v, destID) message is then
routed through the network according to some search protocol SP . This search
protocol is required to deliver the Search(v, destID) message to the node w with
id(w) = destID if it exists or to drop the message otherwise, both within a finite
number of steps. In the former case, we say the search request succeeds. In the
latter case, we say it fails.

Traditionally, search protocols for a given topology were only required to deliver
the search messages reliably once a legal state has been reached. However, in
self-stabilizing systems, it is never possible to determine whether a legal state
has been reached. Furthermore, searching reliably during the stabilization phase
is much more involved. To formalize this, we introduce the following notion of
monotonic searchability:

Definition 2.6 (Monotonic Searchability). A self-stabilizing protocol P satisfies
monotonic searchability according to some search protocol PS if search requests
are routed according to PS and it fulfills the following two properties for every
computation C of P :

Monotonicity For every pair of nodes v, w and every successful Search(v, id(w))
request r initiated in some state S of C, every Search(v, id(w)) request r′
such that r′ is initiated in a state S′ ≥ S also succeeds.

Non-Triviality C has a suffix such that in this suffix for every pair of nodes v, w,
Search(v, id(w)) requests will succeed if there is a path from v to w in the
target topology.

16

Pseudocode Explanation 2.4

We do not mention PS if it is clear from the context. Note that the non-
triviality property is required because a search protocol that never delivers any
message would be one according to which every protocol would trivially satisfy the
monotonicity property, but such a protocol is not desired.

2.3.3. The Finite Departure Problem
In Chapter 5 and Chapter 6, we consider departures of nodes from the network. To
model the ability of a node to leave the system, we let each node have a variable
mode ∈ {leaving, staying} that can only be changed from staying to leaving (and
not vice-versa). If for a node u, u.mode = leaving, the node is leaving; otherwise,
the node is staying. Note that staying nodes can dynamically decide at any
arbitrary state if they want to leave the system by changing the value of their mode
variable to leave. To actually depart from the system, a leaving node may execute
a dedicated exit command. When a node executes exit all remaining edges to or
from that node are deleted and the node is further referred to as inactive. For an
inactive node all actions are disabled and, in particular, it will not execute the
timeout action regularly. Any node that is not inactive (be it staying or leaving) is
called active. This way of modelling node departures is common in the literature
(see, e.g., [For+14; KSS17]). The problem gets challenging when we want leaving
nodes to be excluded from the system in a faithful manner: i.e., their departure
must not disconnect the network. To model this formally, Foreback, Koutsopoulos,
Nesterenko, Scheideler and Strothmann introduced the finite departure problem
[For+14]. We state this problem in a slightly adapted way as follows:

Definition 2.7 (Finite Departure Problem (FDP)). In case the exit command
is available, eventually reach a system state such that:

1. every staying node is active,

2. every leaving node is inactive, and

3. for each weakly connected component of the initial network graph, the staying
nodes in that component still form a weakly connected component.

2.4. Pseudocode Explanation
We now briefly explain the notation of the pseudocode provided in Part II and
Part III. These parts use the computation model described in Section 2.1.2. For
the explanation we will refer to the following short pseudocode:

1 Introduce(u)
2 N := N ∪ {u}
3
4 Timeout
5 for all u ∈ N do
6 send Introduce(self) to u

17

Chapter 2 PRELIMINARIES

Line 1 contains the header of an action named Introduce()1 that has one
parameter named u. This means that the indented lines following this line contain
the actions to be executed when this action is called, i.e., when the executing
node receives a message of type Introduce(). Whenever a node accesses its own
variables, we simply use the name of that variable in the pseudocode. Therefore,
Line 2 means that the value of parameter u is added to the (set) variable N owned
by the executing node.
Line 4 is the header of the Timeout action that is executed periodically. In

Line 5 one can see an example of a typical pseudocode construct (a for loop, in this
example). These constructs (such as conditional statements marked by if and else
keywords) are very common in computer science and thus will not be explained
in greater detail here. In Line 6, the executing node sends an Introduce()
message. The parameter of this message is a reference of the executing node itself,
represented by the special keyword self . The receiver of the message is the node
whose reference is stored in the variable u. Here it is implicitly assumed that all
elements in N are references of nodes. To simplify the description, we may also
refer to the node whose reference is stored in the variable u by u where this does
not cause any ambiguities.

1Throughout this thesis, we add parentheses to the name of every action but the Timeout
action to indicate that it is an action.

18

PA
R
T I

The Complexity of
Local Graph Transformations

T he first main part of this thesis reconsiders the universal graph transforma-
tion primitives IDF and IDFR introduced by Koutsopoulos, Scheideler
and Strothmann and answers the following question: What is the com-

plexity of transforming arbitrary initial graphs into arbitrary final graphs using
IDF and IDFR?
We not only prove that computing minimum transformation sequences is NP-hard,
but also provide approximation algorithms for this problem that have a constant
approximation factor.

19

NP-Hardness and Approximability
of Local Graph Transformations

C
H
A
P
T
ER 3

In this chapter, we analyze the complexity of computing a minimum sequence
of steps to transform arbitrary graphs into each other, when in each step, the
application of a single primitive from IDFR (for directed graphs) or IDF (for
undirected graphs) is allowed.

Via a reduction from the classical satisfiability problem we prove that these two
problems are NP-hard. However, we additionally show that both of them can be
constant-approximated.
The main results of this chapter have previously appeared in the following

publication:

Christian Scheideler and Alexander Setzer. On the Complexity
of Local Graph Transformations. In: Proceedings of the 46th
International Colloquium on Automata, Languages, and Programming
(ICALP). Patras, Greece, 2019. [SS19]

Outline of This Chapter We first formally state the problems considered in
this chapter in Section 3.1. The rest of this chapter consists of two main parts:
In Section 3.2, we prove the undirected and the directed problem variant to be
NP-hard. In Section 3.3 we then present constant approximation algorithms for
the two problems.

3.1. Problem Statement
We formally define the Directed Local Graph Transformation Problem (DLGT)
and the Undirected Local Graph Transformation Problem (ULGT) as follows:

Definition 3.1 (Directed Local Graph Transformation (DLGT)). The Directed
Local Graph Transformation Problem is defined as follows: Given two connected
directed graphs Gs, Gt, find a computation of minimum length whose initial graph
is Gs and whose final graph is Gt.

Definition 3.2 (Undirected Local Graph Transformation (ULGT). The Undi-
rected Local Graph Transformation Problem is defined as follows: Given two
connected undirected graphs Gs, Gt, find a computation of minimum length whose
initial graph is Gs and whose final graph is Gt.

Correspondingly, we define the following two decision problems:

21

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

Definition 3.3 (k-Directed Local Graph Transformation (k-DLGT)). The k-
Directed Local Graph Transformation Problem is defined as follows: Given a
positive integer k and two connected directed graphs Gs and Gt, decide whether
there is a computation with initial graph Gs and final graph Gt of length at most k.

Definition 3.4 (k-Undirected Local Graph Transformation (k-ULGT)). The
k-Undirected Local Graph Transformation Problem is defined as follows: Given a
positive integer k and two connected undirected graphs Gs and Gt, decide whether
there is a computation with initial graph Gs and final graph Gt of length at most k.

3.2. NP-hardness Results
In this section, we show the NP-hardness of the Undirected Local Graph Trans-
formation Problem by proving the NP-hardness of k-ULGT (see Section 3.2.1).
Since k-DLGT’s NP-hardness can be proven very similar to k-ULGT’s, we only
briefly sketch the differences between the proofs in Section 3.2.2.
Throughout this section, for any positive integer i we use the notation [i] to

refer to the set {1, 2, . . . , i}.

3.2.1. k-ULGT Is NP-hard
We prove k-ULGT’s hardness via a reduction from the Boolean satisfiability prob-
lem (SAT), which was proven to be NP-hard by Cook [Coo71] and, independently,
by Levin [Lev73]. We briefly recap SAT as follows:

Definition 3.5 (SAT). Given a set X of n Boolean variables x1, . . . , xn and a
Boolean formula Φ over the variables in X in conjunctive normal form (CNF),
decide whether there is a truth assignment t : X → {0, 1} that satisfies Φ.

To reduce SAT to k-ULGT, we use the following reduction function:

Definition 3.6 (Reduction function for SAT ≤p k-ULGT). Let S = (X,Φ) be
a SAT instance, in which X = {x1, . . . , xn} is the set of Boolean variables and
Φ = C1 ∧ · · · ∧ Cm for clauses C1, . . . , Cm. Then f(S) = (Gs, Gt, κ) in which
κ = 2n+m and Gs and Gt are undirected graphs defined as follows. Without loss
of generality, assume that each literal yi ∈ {xi, xi} occurs only once in each clause.

We define the following two sets of nodes: VC = {C1, . . . , Cm} and VXi =
{xi, xi, si, ti}. Then, the set of nodes of Gs and Gt is V =

⋃
1≤i≤n VXi ∪ VC ∪ {r}.

For the set of edges, define EXi = {{si, xi}, {si, xi}, {xi, ti}, {xi, ti}} for every
i ∈ [n], ECj = {{yi, Cj}|yi ∈ {xi, xi} ∧ yi occurs in Cj} for every j ∈ [m], Esr =
{{si, r}|1 ≤ i ≤ n}, Etr = {{ti, r}|1 ≤ i ≤ n}, ECr = {{Cj , r}|1 ≤ j ≤ m}. Both
Gs and Gt have the edges in

⋃
1≤i≤nEXi ∪

⋃
1≤j≤mECj . Additionally, Gs has the

edges in Esr and Gt has the edges in Etr ∪ ECr.

Intuitively, each variable xi is mapped to a gadget Xi consisting of the four
nodes xi, xi, si and ti. Also each clause Cj is connected with each literal occurring

22

NP-hardness Results 3.2

X1

s1

t1

x1x1

C1

r

X2

s2

t2

x2x2

X3

s3

t3

x3x3

C2 C3 C4

Figure 3.1.: Graph Gs returned by the reduction function in the undirected case
for the (example) Boolean formula (x1∨x2)∧(x1∨x3)∧(x2)∧(x2∨x3).
Gt differs from Gs in that the dashed edges do not exist and all grey
nodes share an edge with node r.

within it. Lastly, in Gs, each of the si is connected with the node r, whereas in
Gt, each of the ti and each of the Cj are connected with r. Figure 3.1 shows an
example of the output of the reduction function for a given formula in CNF.
We now show that every SAT instance S is satisfiable if and only if f(S) is a

“yes” instance of k-ULGT. We start with the “only if” part because this is the
simpler direction:

Lemma 3.7. If a SAT instance S as in Definition 3.6 is satisfiable then f(S) =
(Gs, Gt, κ) with κ = 2n + m is a k-ULGT instance and there is a computation
with initial graph Gs and final graph Gt of a length of at most 2n+m.

Proof. Assume there is a satisfying truth assignment t : X → {0, 1} of S. For
every 1 ≤ i ≤ n let yi := xi if t(xi) = 1 or yi := xi if t(xi) = 0. We construct the
following computation with initial graph Gs and final graph Gt:

1. For every 1 ≤ i ≤ n, si delegates the edge {si, r} to yi.

2. For every Cj ∈ {C1, . . . , Cm} choose one neighbor zj ∈ {y1, . . . , yn} (we show
below that this exists) and let zj introduce r to Cj .

3. For every 1 ≤ i ≤ n, yi delegates the edge {yi, r} to ti.

Obviously, the length of this computation is 2n+m. To prove the missing part,
recall that every Cj is satisfied under t. This means that there is at least one
literal zj in Cj that evaluates to true: i.e., there is an i ∈ [n] such that zj = xi

if t(xi) = 1 or zj = xi if t(xi) = 0. By definition of yi, zj = yi. Thus because zj

occurs in Cj , yi was a neighbor of Cj during Step 2.

23

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

The “if” part is more complex. We begin with the following insight that will
prove helpful in the course of this part.

Lemma 3.8. Suppose the nodes in the initial graph of a computation C can be
decomposed into disjoint sets V1, . . . , Vk, P such that there is no edge {u, v} for
any u ∈ Vi, v ∈ Vj, i, j ∈ [k], i 6= j and that throughout C none of the nodes in P
applies a primitive. Then there is no edge {u, v} for any u ∈ Vi, v ∈ Vj, i, j ∈ [k],
i 6= j in any graph of the computation.

Proof. Assume there is a computation C and sets V1, . . . , Vk, P as defined above
and assume for contradiction that the claim is not true. We consider the first
edge {u, v} such that u ∈ Vi, v ∈ Vj , i, j ∈ [k], i 6= j. Clearly, it cannot have been
created by the application of a fusion primitive. Thus it must have been created by
an introduction or delegation primitive applied by a node w that knew both u and
v before the application of this primitive. This implies w ∈ P . However, the nodes
in P do not apply any primitives by assumption, which yields a contradiction.

In the rest of this section, we use the following notation: For a given instance
of k-ULGT (Gs, Gt, k), we say a computation is feasible if and only if its initial
graph is Gs, its final graph is Gt and its length is at most 2n+m. Furthermore,
we say that the edge that is established during the application of an introduction
or delegation primitive (the edge (v, w) in Figure 1.1(a) and Figure 1.1(b)) is the
result of the introduction or delegation, respectively.

The next lemma we show represents a main building block of the proof of the
“if” part.

Lemma 3.9. Let S be a SAT instance and let (Gs, Gt, k) = f(S). For every
computation C with initial graph Gs and final graph Gt of a length of at most
2n + m it holds: There are y1, . . . , yn, yi ∈ {xi, xi} for every i ∈ [n], such that
in C there are no edges other than E(Gs) ∪ E(Gt) ∪ {{yi, r}|i ∈ [n]} and no edge
occurs twice in any graph of C (where E(Gs) and E(Gt) denote the edge sets of
Gs and Gt, respectively).

The general idea of the proof of Lemma 3.9 is the following: To obtain the final
graph, for each j ∈ [m] the edge {Cj , r} has to be created and for each i ∈ [n] the
edge {ti, r} has to be created. Each of these creations involves a distinct application
of a primitive. Therefore, only n applications of primitives are left in a feasible
computation. We show that the nodes in each gadget i have to apply at least one
primitive pi that does not create one of the above edges. This implies that each
gadget may apply no other primitive than pi to create an edge that is not in the
final graph and that the nodes r and Cj themselves cannot apply any primitives at
all, which by Lemma 3.8 means that there are no inter-gadget edges. We use these
facts to prove that pi is used to remove the edge {si, r} thereby creating either
{xi, r} or {xi, r}.

We split the full proof of Lemma 3.9 into three claims, which we prove individually.
The first claim we show is the following:

24

NP-hardness Results 3.2

Claim 3.10. In every feasible computation for every i ∈ [n], there is a node
zi ∈ {si, xi, xi} that applies a fusion primitive or an introduction or delegation
primitive whose result is not in Ec := {{Cj , r}|1 ≤ j ≤ m} ∪ {{ti, r}|1 ≤ i ≤
n} ∪ {{Cj , Cl}|i, j ∈ [m]} ∪ {{ti, Cj}|i ∈ [n], j ∈ [m]} ∪ {{ti, tk}|i, k ∈ [n]}.

Proof. Assume for contradiction that there is a feasible computation and an
i ∈ [n] such that there is no zi ∈ {si, xi, xi} that applies a fusion primitive or an
introduction or delegation primitive whose result is not in Ec. Note that si cannot
delegate away any of its incident edges {si, xi} or {si, xi} as the result would not
be in Ec (for it would be incident to xi or xi). Similarly, xi and xi could not
delegate away {xi, si} and {xi, si}, respectively. Therefore, the edges {xi, si} and
{si, xi} must be kept throughout the computation. Now observe that si has an
initial degree of three. Since si has a degree of two in the final graph, there must be
at least one application of a primitive in which si’s degree decreases. Consider the
last such application: i.e., the resulting neighborhood of si is xi and xi (remember
that these edges persist throughout the computation). If it was an application
of a fusion primitive, then xi, si or xi must have applied this primitive, yielding
a contradiction. Otherwise, it must have been a delegation primitive applied by
si for no other primitive could then reduce si’s degree. However, the result of
this delegation primitive must then be an edge incident to xi or xi, i.e., an edge
not in Ec, yielding a contradiction in this case as well. All in all, we have proven
Claim 3.10.

The second claim we show for the proof of Lemma 3.9 is:

Claim 3.11. For every feasible computation C, the following holds:

(i) for each i ∈ [n] the nodes in VXi may apply at most one primitive whose
result is not an edge {tk, r} or {Cj , r} for k ∈ [n], j ∈ [m],

(ii) the nodes in {r} ∪ {ti|i ∈ [n]} ∪ {Cj |j ∈ [m]} do not apply any primitives at
all, and

(iii) there is no graph in C that contains an edge {u, v} such that u ∈ VXi and
v ∈ VXk

for any i, k ∈ [n] such that i 6= k.

Proof. For the proof of this claim we distinguish between three types of edges.
Edges {ti, r} for some i ∈ [n] belong to type A. Edges {Cj , r} for some j ∈ [m]
belong to type B. Last, every edge e /∈ Ec belongs to type C. Note that in order
to obtain the final graph, the nodes need to establish n edges of type A, m edges
of type B and, according to Claim 3.10, for every i ∈ [n] one of the nodes in
{si, xi, xi} has to apply a primitive whose result is an edge of type C or which is a
fusion primitive. Since there may be at most 2n+m applications of primitives,
no other primitives may be applied. This immediately proves (i). Since r cannot
create the first instance of an edge of type A or B by itself, r cannot apply any
primitive at all as this would require more than 2n + m primitive applications

25

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

(n + m are used to create the type A/B edges and additional m primitives are
applied by the nodes from {si, xi, xi|i ∈ [n]}). For the same reason, the nodes
in {ti|i ∈ [n]} ∪ {Cj |j ∈ [m]} cannot apply any primitives which, together with
the fact that r cannot apply any primitives, equates to (ii). In addition this
implies that the initial graph can be decomposed into VX1 , VX2 , . . . , VXn , P with
P = {r} ∪ {Cj |j ∈ [m]} such that there is no edge {u, v} for any u ∈ VXi , v ∈ VXk

,
i, k ∈ [n] and i 6= k, and the nodes in P do not apply any primitive at all. Thus,
(iii) follows from Lemma 3.8.

The last claim we show for the proof of Lemma 3.9 is the following:

Claim 3.12. In every feasible computation, for every i ∈ [n] there must be a graph
containing an edge {xi, r} or {xi, r}.

Proof. To prove Claim 3.12, we show that si has to delegate {si, r} to xi or xi.
We do so by proving that si cannot have a neighbor other than xi, xi or r, which
is sufficient because r does not apply any primitive according to (ii) of Claim 3.11.
Assume for contradiction that si has an edge {si, v} such that v /∈ {xi, xi, r} and let
{si, v} be the last such edge that occurs in a graph in the computation. Due to (iii)
of Claim 3.11, v ∈ {ti|i ∈ [n]} ∪ {Cj |j ∈ [m]}. Consider the node w that applied
an introduction or delegation primitive whose result was the edge {si, v}. For this
to be possible, there must have been an edge {w, si} when w applied the primitive.
Since r, all ti for i ∈ [n] and all Cj for j ∈ [m] do not apply any primitives according
to (ii) of Claim 3.11 and because of (iii) of Claim 3.11, w ∈ {xi, si, xi}. According
to (i) of Claim 3.11, the computation may not contain another application (than
this one) of a delegation / introduction primitive by a node in VXi whose result is
not an edge {tk, r} or {Cj , r} for k ∈ [n], j ∈ [m] (*). Since {si, v} /∈ E(Gt), this
edge must be removed by some application of a delegation primitive. Note that
since v ∈ {ti|i ∈ [n]} ∪ {Cj |j ∈ [m]}, si must apply this primitive. Since {si, v} is
the last edge different from {si, r}, {si, xi} and {si, xi}, v must be delegated to
one of the nodes r, xi or xi. If si delegates {si, v} to xi or xi, then the result is an
edge {xi, v} or {xi, v}, which contradicts (*). Thus assume si delegates {si, v} to
r. Note that after this delegation, the edge {si, r} exists and si does not have a
neighbor v′ ∈ {ti|i ∈ [n]} ∪ {Cj |j ∈ [m]} in any of the subsequent graphs (recall
that v was the last edge of its kind). Since {si, r} /∈ E(Gt) and r does not apply
any primitives according to (ii) of Claim 3.11, this edge must be delegated to
either xi or xi yielding an edge {xi, r} or {xi, r}, which contradicts (*) as well.
As mentioned above this proves that si has to delegate {si, r} to xi or xi and, as
argued before as well, also implies the claim of the lemma.

Claim 3.12 gives that during a feasible computation, the edges {ti, r} for all
i ∈ [n], {Cj , r} for all j ∈ [m] and {yi, r}, yi ∈ {xi, xi} for all i ∈ [n] have to be
created. Since each primitive can create at most one of these edges and the length
of the computation is at most 2n+m, this implies the claim of Lemma 3.9.
The rest of the proof of the “if” part, as formalized by the following lemma, is

comparably straightforward.

26

NP-hardness Results 3.2

Lemma 3.13. Let S be a SAT instance as in Definition 3.6. If f(S) = (Gs, Gt, κ)
with κ = 2n+m is a k-ULGT instance and there is a computation with initial
graph Gs and final graph Gt of a length of at most 2n+m, then S is satisfiable.

Proof. Assume that f(S) = (Gs, Gt, 2n+m) is a k-ULGT instance and there is
a feasible computation C for f(S). According to Lemma 3.9 there are y1, . . . , yn,
yi ∈ {xi, xi} for every i ∈ [n] such that in C there are no edges other than
E(Gs) ∪ E(Gt) ∪ {{yi, r}|i ∈ [n]}. Note that in Gt, for every j ∈ [m] there is an
edge {Cj , r} and each such edge must have been the result of an introduction or
delegation primitive applied by an yi, i ∈ [n] (as throughout C, the Cj nodes do
not have any other neighbors with an edge to r that could possibly create this
edge) . Let g : {C1, C2, . . . , Cm} → {y1, y2, . . . , yn} be the mapping of each Cj to
the yi that applied a primitive that resulted in the edge {Cj , r}. Consider the
truth assignment t : X → {0, 1} such that t(xi) = 1 if yi = xi and t(xi) = 0 if
yi = xi. Observe that t(yi) = 1 for every i ∈ [n]. Assume for contradiction that
there is a clause Cj in S that does not evaluate to true under t. Note that g(Cj)
must occur in Cj by construction. However, since g(Cj) = yi for some i ∈ [n] and
t(yi) = 1, we obtain the desired contradiction.

Putting both directions of the reduction’s proof together, Lemma 3.7 and
Lemma 3.13 imply SAT ≤p k-ULGT, from which we obtain:

Corollary 3.14. k-ULGT is NP-hard.

3.2.2. k-DLGT Is NP-hard

The proof of the NP-hardness of k-DLGT is very similar to that of k-ULGT.
Therefore, we do not restate the whole proof but point out the differences between
the two proofs.

The reduction function is a “directed version” of Definition 3.6, in which each of
the edges is assigned a unique direction. Formally, it looks as follows:

Definition 3.15 (Reduction function for SAT ≤p k-DLGT). Let S = (X,Φ) be
a SAT instance, in which X = {x1, . . . , xn} is the set of Boolean variables and
Φ = C1 ∧ · · · ∧ Cm for clauses C1, . . . , Cm. Then f(S) = (Gs, Gt, κ) in which
κ = 2n+m and Gs and Gt are undirected graphs defined as follows. Without loss
of generality, assume that each literal yi ∈ {xi, xi} occurs only once in each clause.

We define the following two sets of nodes: VC = {C1, . . . , Cm} and VXi =
{xi, xi, si, ti}. Then, the set of nodes of Gs and Gt is V =

⋃
1≤i≤n VXi ∪ VC ∪ {r}.

For the set of edges, define EXi = {(si, xi), (si, xi), (xi, ti), (xi, ti)} for every i ∈ [n],
ECj = {(yi, Cj)|yi ∈ {xi, xi}∧yi occurs in Cj} for every j ∈ [m], Esr = {(si, r)|1 ≤
i ≤ n}, Etr = {(ti, r)|1 ≤ i ≤ n}, ECr = {(Cj , r)|1 ≤ j ≤ m}. Both Gs and Gt

have the edges in
⋃

1≤i≤nEXi ∪
⋃

1≤j≤mECj . Additionally, Gs has the edges in Esr

and Gt has the edges in Etr ∪ ECr.

27

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

X1

s1

t1

x1x1

C1

r

X2

s2

t2

x2x2

X3

s3

t3

x3x3

C2 C3 C4

Figure 3.2.: Graph Gs returned by the reduction function in the directed case for
the (example) Boolean formula (x1 ∨ x2)∧ (x1 ∨ x3)∧ (x2)∧ (x2 ∨ x3).
Gt differs from Gs in that the dashed edges do not exist and all grey
nodes share an outgoing edge with node r.

An example of the output of this reduction function is depicted in Figure 3.2.
Note that this picture only differs from Figure 3.1 in that the edges are directed.
More specifically, all solid edges are directed “downwards”, the dashed edges are
directed “upwards” and all grey nodes are supposed to have an “upward” edge to
r in Gt.

We now point out the differences in the proofs for the directed case, in which we
refer to the lemmas from Section 3.2.1. Note that to shorten the description, every
edge {u, v} that appears in the proof for the undirected case should be read as the
directed edge (u, v) unless noted differently.

Lemma 3.7 (the “only if” part of the reduction) directly transfers to the directed
case: the same approach described in that proof can be applied in the k-DLGT
scenario as well.
For the directed version of Lemma 3.8, the same proof applies, where the

only additional argument to be mentioned is that the first edge (u, v) such that
u ∈ Vi, v ∈ Vj , i, j ∈ [k], i 6= j not only cannot have been created by the application
of a fusion primitive, but also not by the application of a reversal primitive.

For the proof of the counterpart of Lemma 3.9, we individually consider all three
claims used for that lemma. The argument showing that the claim of the lemma
follows from these three claims is analogous.
Claim 3.10 must be completed such that z applied either a fusion primitive

or an introduction, delegation or reversal primitive whose result is not in Ec.
This set of edges is defined as: Ec := {(Cj , r)|1 ≤ j ≤ m} ∪ {(r, Cj)|1 ≤ j ≤
m} ∪ {(ti, r)|1 ≤ i ≤ n} ∪ {(r, ti)|1 ≤ i ≤ n} ∪ {(Cj , Cl)|i, j ∈ [m]} ∪ {(ti, Cj)|i ∈

28

NP-hardness Results 3.2

[n], j ∈ [m]} ∪ {(Cj , ti)|i ∈ [n], j ∈ [m]} ∪ {(ti, tk)|i, k ∈ [n]}. In the proof, the
assumption for contradiction includes that none of the zi applies a reversal primitive
whose result is not in Ec. In addition to that si cannot delegate away (si, xi) and
(si, xi), we argue that si cannot reverse this edge as the result would not be in Ec.
These two facts immediately imply that (si, xi) and (si, xi) persist throughout the
computation. For the last primitive application that reduces si’s degree to two,
we have to take into account that this could also be the application of a reversal
primitive. However, in that case, the result of this primitive application would be
an edge whose one endpoint is si: i.e., an edge not in Ec, yielding a contradiction
as well.
In the proof of Claim 3.11 we need the following additional argument to show

that r cannot apply any primitives (the previous argument that r cannot create
the first instance of an edge of type A or B by itself does not suffice if the reversal
primitive could also be applied): Since no primitives other than the n creating
the type A edges, the m creating the type B edges and the n creating the type
C edges or being a fusion primitive can be applied, there cannot be any edge
e ∈ Ec \ {(ti, r), (Cj , r)|i ∈ [n], j ∈ [m]} in any graph of the computation. In
particular, there can be no edge (r, Cj) for any j ∈ [m] or (r, ti) for any i ∈ [n].
Thus, r cannot create the first instance of a type A or B edge via a reversal
primitive and, together with the previous argument, we also obtain that r cannot
apply any primitive at all.

In the proof of Claim 3.12, in order to show that si has to delegate (si, r) to xi or
xi, we similarly prove that si cannot have an outgoing neighbor other than xi, xi

or r. In the directed scenario, however, this is not immediately sufficient because r
does not apply any primitive. Instead, we additionally have to consider that si

cannot simply reverse edge (si, r) as the resulting edge does not belong to Gt and
r does not apply any primitive, which would be necessary to remove that edge
again. After that, note that the edge (si, v) such that v /∈ {xi, xi, r}, which we
assume to exist for contradiction, cannot have been established by the application
of a reversal primitive, for such a v cannot apply any primitive at all according
to (ii) of the adapted Claim 3.11 (since v ∈ {ti|i ∈ [n]} ∪ {Cj |j ∈ [m]} follows
equally in the directed case). Thus it is feasible to continue with the consideration
of the w that applied an introduction or delegation primitive whose result was
(si, v). The claim (*) in the directed case is that the computation may not contain
another application (than the one applied by w to create (si, v)) of a delegation,
introduction or reversal primitive by a node in VXi whose result is not an edge
(tk, r) or (Cj , r) for k ∈ [n], j ∈ [m]. Again, in order to remove (si, v) /∈ E(Gt), si

must apply a delegation primitive to remove this edge. In this case, the argument
is that si cannot reverse the edge, because (v, si) /∈ E(Gt) and v does not apply
any primitive (as argued before). In the last contradiction of the proof, which
relies on that (si, r) /∈ E(Gt), there is not only the option that si delegates this
edge to xi or xi, but also that si reverses this edge. This however would yield an
edge (r, si), which does not belong to Gt and could not be removed, for r does not
apply any primitives.

29

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

The last lemma required is Lemma 3.13, but this is completely analogous. All
in all, we obtain as for the undirected case:

Corollary 3.16. k-DLGT is NP-hard.

3.3. Approximation Algorithms
The main part of this section consists in describing and analyzing a constant
approximation algorithm for ULGT (Section 3.3.1). As it turns out, an algorithm
for DLGT can be obtained by a suitable adaptation of this algorithm, as we will
elaborate on in Section 3.3.2.

As an ingredient our algorithms use a 2-approximation algorithm for the following
problem:

Definition 3.17 (Undirected Steiner Forest Problem (USF)). The Undirected
Steiner Forest Problem (USF) is defined as follows: For a given input (G,S) such
that G is a graph and S is a set of pairs of nodes from G, find a forest F in G
with a minimum number of edges such that the two nodes of each pair in S are
connected by a path in F .

Note that in the literature typically a more general definition of Steiner forest is
used, in which edges may have arbitrary edge weights. However, when all these
weights are set to one, we obtain the above problem and thus every algorithm for
the more general definition can also be used for the problem as defined here. We
will therefore use an existing 2-approximation algorithm (see Section 1.3.4 for an
overview) as a black box without discussing it any further.

3.3.1. A Constant Approximation Algorithm for ULGT

We now describe an approximation algorithm for ULGT and prove it to have a
constant approximation ratio.

Algorithm Description

For an initial graph Gs = (V,Es) and a final graph Gt = (V,Et), we define the
set of additional edges E⊕ := Et \ Es and the set of excess edges E	 := Es \ Et.
We now describe the algorithm in detail and then summarize its pseudo-code in
Algorithm 1. Our algorithm consists of two parts, the first of which deals with
establishing all additional edges and the second of which deals with removing all
excess edges.

In the first part, using an arbitrary 2-approximation algorithm for the USF as a
black box, the algorithm computes a 2-approximate solution to the following USF
instance: The given graph is Gs and the set of pairs of nodes is E⊕. Note that
the result is a forest such that for every edge {u, v} ∈ E⊕, u and v belong to the
same tree. For each tree T in this forest the algorithm then selects an arbitrary

30

Approximation Algorithms 3.3

root rT and connects all nodes in T that are incident to an edge in E⊕ to rT . The
exact details of this will be described when we analyze the length of the resulting
computation. In the next step, for every tree T and every {u, v} ∈ E⊕ such that
u and v belong to T , rT introduces u and v to each other, thereby creating the
edge {u, v}. After that, the superfluous edges (i.e., those edges that belong neither
to Gs nor to E⊕) are deleted in a bottom-up fashion: Every node that does not
have a descendant with a superfluous edge (in the tree T that this node belongs to
when viewing this tree as rooted by rT), fuses all superfluous edges and delegates
the last such edge to its parent in the tree. Note that all superfluous edges in the
same tree T have rT as one of their endpoints.
The second part of the algorithm is similar to the first, with the following

differences: In the fifth step, the USF is approximated for the input (Gt, E).
Note that the solution is a subgraph of the graph obtained after the first part of
the algorithm. In the sixth step, only one of the two endpoints of an edge from
E	 is selected to become connected with the root of the tree the endpoints belong
to. In the seventh step (where in the first part the additional edges are created
by the rT nodes), for each edge e ∈ E	, the endpoint selected in the sixth step
delegates this edge to rT (resulting in the edge {rT , v}). These edges can then
be delegated and fused in a bottom-up fashion by the endpoints other than rT in
Step 8. In contrast to Step 4, we begin with applying fusions here because the
edges superfluous {rT , v} exist twice here (one was created in Step 6 and one in
Step 7).

Analysis

In this section, we show that Algorithm 1 is a constant approximation algorithm
for ULGT, which proves the following theorem:

Theorem 3.18. There is a constant-factor approximation algorithm for ULGT.

For convenience we will analyze the two parts of the algorithm individually.
Therefore, for a given initial graph Gs and final graph Gt, let ALG1(Gs, Gt)
be the length of the computation of the first part of the algorithm for this in-
stance, ALG2(Gs, Gt) be the length of the computation of the second part and
ALG(Gs, Gt) := ALG1(Gs, Gt) + ALG2(Gs, Gt). Furthermore, let OPT (Gs, Gt)
be the length of an optimal solution to ULGT for initial graph Gs and final graph
Gt. We also define the intermediate graph G′ = (V,Es ∪E⊕). In the course of the
analysis we will establish a relationship between ALG1(Gs, Gt) and OPT (Gs, G

′)
and between ALG2(Gs, Gt) and OPT (G′, Gt). This will aid us in determining the
approximation factor of Algorithm 1 due to the following lemma:

Lemma 3.19. OPT (Gs, G
′) +OPT (G′, Gt) ≤ 2OPT (Gs, Gt) + |E⊕|.

Proof. Let P denote the problem equal to ULGT with initial graph Gs and
final graph Gt with the additional requirement that the computation must con-
tain G′ and let OPT ′(Gs, G

′, Gt) be the length of an optimal solution to it.

31

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

Algorithm 1 Approximation algorithm for ULGT
Input: Initial graph Gs and final graph Gt.
First part (add additional edges):

1: Compute a 2-approximate solution FALG,⊕ for the USF with input (Gs, E⊕).
2: For each tree T in FALG,⊕, select a root node rT and connect all nodes in
T that are incident to an edge in E⊕ with rT (for details see the proof of
Lemma 3.20).

3: For each {u, v} ∈ E⊕, the root of the tree that u and v belong to applies the
introduction primitive to create the edge {u, v}.

4: For each tree T in FALG,⊕, delegate all superfluous edges (i.e., not belonging
to Gs or E⊕) created during Step 2 bottom up in T rooted at rT , starting
with the lowest level. At each intermediate node fuse all of these edges before
delegating them to the next parent.
Second part (remove excess edges):

5: Compute a 2-approximate solution FALG,	 for the USF with input (Gt, E).
6: For each e ∈ E	, let s(e) be an arbitrary of the two endpoints of e. For each

tree T in FALG,	, select a root node rT and for each e ∈ E	 whose endpoints
belong to T , connect s(e) with rT (similar to Step 2, for details see the proof
of Lemma 3.21).

7: For each e ∈ E	, s(e) delegates e to rT .
8: For each tree T in FALG,	, delegate all superfluous edges (i.e., not belonging

to Gt) bottom-up while fusing multiple edges as in Step 4.

Clearly, OPT (Gs, G
′) + OPT (G′, Gt) = OPT ′(Gs, G

′, Gt) (note that one could
split the optimal solution to P at G′). We now show that OPT ′(Gs, G

′, Gt) ≤
2OPT (Gs, Gt) + |E⊕|.

Consider a computation C whose initial graph is Gs, whose final graph is Gt and
whose length is OPT (Gs, Gt) (note that such a computation is an optimal solution
to ULGT). We now transform C into a computation that represents a solution to
P . This transformation increases its length by only OPT (Gs, Gt) + |E⊕| and thus
proves the above claim.
Note that every edge {u, v} ∈ E	 is removed during C. This may happen due

to the application of a fusion primitive (in case Gt contains another edge; recall
that edges may have a multiplicity of more than one) or a delegation primitive.
For all edges to which the former case applies, we simply omit that application
of a fusion primitive. For all edges to which the latter case applies, we replace
each of these applications of delegation primitives by applications of introduction
primitives. Altogether, we obtain a new computation C ′ of equal length. Note that
changing these primitive applications does not make the computation infeasible
as this only causes the graph to have additional edges. The final graph of C ′ is
(V,Et ∪ E) = (V,Es ∪ E⊕) = G′ (recall that Et = (Es ∪ E⊕) \ E). Next we
append C ′ by C and obtain the computation C ′′ of a length of 2OPT (Gs, Gt).

32

Approximation Algorithms 3.3

v w

u

(a) Initial graph Gs.

v w

u

(b) Intermediate graph G′.

v w

u

(c) Final graph Gt.

Figure 3.3.: Example in which OPT (Gs, G
′) + OPT (G′, Gt) = 2OPT (Gs, Gt) +

|E⊕|: TransformingGs toG′ requires one application of an introduction
primitive. To transform G′ into Gt, one needs to apply a delegation
and a fusion primitive. OPT (Gs, Gt), on the other hand, is one since
v can simply delegate {u, v} to w.

Note that since C transformed Gs to Gt, this second half of C ′′, which starts from
G′ = (V,Es ∪ E⊕), has the final graph G′′ = (V,Et ∪ E⊕): i.e., each edge from
E⊕ appears twice in G′′. Thus we extend C ′′ by fusing each edge from E⊕ with
its double, resulting in a computation C ′′′ of a length of 2OPT (Gs, Gt) + |E⊕|.
Since C ′′′ represents a solution to P for initial graph Gs and final graph Gt, this
completes the proof.

One might question whether this bound is tight or, for example, if it is possible
to get rid of the additional |E⊕| addend by a more careful analysis. Figure 3.3
shows that this bound is indeed tight and shows an example where OPT (Gs, G

′) +
OPT (G′, Gt) = 2OPT (Gs, Gt) + |E⊕|.
In the rest of the analysis we show that ALG1(Gs, Gt) ≤ 11OPT (Gs, G

′)
(Lemma 3.20) and that ALG2(Gs, Gt) ≤ 11OPT (G′, Gt) (Lemma 3.21). According
to Lemma 3.19 this implies that ALG(Gs, Gt) ≤ 11(2OPT (Gs, Gt) + |E⊕|) ≤
33OPT (Gs, Gt) (since, clearly, OPT (Gs, Gt) ≥ |E⊕|), which yields the claim of
Theorem 3.18. We start with the former claim:

Lemma 3.20. ALG1(Gs, Gt) ≤ 11OPT (Gs, G
′).

Proof. Let FOP T,⊕ be an optimal solution to the USF with input (Gs, E⊕) and
recall that FALG,⊕ is the USF approximation computed in Step 1 of Algorithm 1.
Throughout the analysis, |FOP T,⊕| and |FALG,⊕| will denote the number of edges
in these solutions. In the first part of this proof, we show that ALG1(Gs, Gt) ≤
4|FOP T,⊕| + 3|E⊕|. The second part then consists in proving OPT (Gs, G

′) ≥
|FOP T,⊕| − |E⊕|, which together with the observation that OPT (Gs, G

′) ≥ |E⊕|
yields the claim.

To upper bound ALG1(Gs, Gt), we analyze the number of primitives applied in
each of the steps of the first part of the approximation algorithm. In Step 1, no
primitive is applied. To keep the number of edges as low as possible (which saves
fusion primitives in Step 4), the algorithm for every T in FALG,⊕ connects the
desired nodes to rT in Step 2 in the following way: To simplify the description, we
view T as rooted at rT and for a node u ∈ T denote by ST (u) the set consisting
of u and all of its descendants in the tree T rooted at rT . We say a node u is

33

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

x zy

w u v

rT

(a) Step 2 connects all end-
points of edges in E⊕ be-
longing to T with rT .

x zy

w u v

rT

(b) In Step 3, rT creates the
edges in E⊕ that belong
to T by an introduction.

x zy

w u v

rT

(c) Step 4 removes all superflu-
ous edges by delegating and
fusing them up in the tree.

Figure 3.4.: Example of a tree T with root rT for Steps 2-4 of Algorithm 1 assuming
{u, v} ∈ E⊕. ST (x) consists of x, w and u. x is relevant, whereas y is
not. Dashed edges exist temporarily during the displayed step.

relevant if ST (u) contains a node with an endpoint in E⊕
1. See Figure 3.4 for

an illustration of these notions. First of all, rT introduces itself to all relevant
children. Then, starting from the second level, we proceed level-wise in the tree:
For each level i, every node u at level i checks whether u is an endpoint of an edge
in E⊕. If so, u introduces rT to all relevant children. Otherwise, u introduces rT

to all but one of its relevant children (chosen arbitrarily) and delegates rT to the
relevant child it did not introduce rT to. The result of this procedure is that each
node incident to an edge in E⊕ has an edge to rT for the tree T it belongs to,
see Figure 3.4(a). Note that according to the definition of FALG,⊕, for each pair
{u, v} ∈ E⊕, u and v belong to the same tree T . The above procedure increases
the number of edges by at most 2|E⊕| and requires at most |FALG,⊕| applications
of primitives (at most one for every edge in T). It is easy to see that Step 3
(c.f. Figure 3.4(b)) involves exactly E⊕ applications of primitives. For the length
of Step 4 (c.f. Figure 3.4(c)), note that for every tree T at most one delegation has
to be applied for every edge in T (causing |FALG,⊕| delegations in total) and at
most 2|E⊕| fusions have to be applied, for this is the number of superfluous edges
created during Step 2. All in all, Step 2, Step 3 and Step 4 involve |FALG,⊕|, |E⊕|,
and |FALG,⊕|+ 2|E⊕| applications of primitives, respectively. This makes a total
of 2|FALG,⊕| + 3|E⊕|. Since FALG,⊕ is a 2-approximation of FOP T,⊕, we obtain
ALG1(Gs, Gt) ≤ 4|FOP T,⊕|+ 3|E⊕|.
For the lower bound on OPT (Gs, G

′), assume for contradiction that there
is a computation C with initial graph Gs and final graph G′ of a length of
L < |FOP T,⊕| − |E⊕|. Let Gs = G1 → G2 → . . .→ GL be the sequence of graphs
of this computation. For every {u, v} ∈ E⊕ we iteratively create a path from u
to v in the following way: Begin with PL

u,v := (u, v). Note that PL
u,v exists in GL.

We iterate through C in reverse order and for every graph Gi, if P i+1
u,v exists in

Gi, P i
u,v := P i+1

u,v . Otherwise, since Gi+1 is the result of a single application of a

1Note that although any tree in FALG,⊕ that contains nodes that are not relevant for any root
could trivially be reduced in size, we have to take into account that such trees exist since we
treat the approximation algorithm for USF as a black box.

34

Approximation Algorithms 3.3

x

u

y

v w

z

(a) Initial graph
G1.

x

u

y

v w

z

(b) G2: x has intro-
duced u to y.

x

u

y

v w

z

(c) G3: y has delegated
u to v.

x

u

y

v w

z

(d) G4: y has introduced
v to w.

x

u

y

v w

z

(e) G4:
P 4

u,v = (u, v),
P 4

v,w = (v, w).

x

u

y

v w

z

(f) G3:
P 3

u,v = (u, v),
P 3

v,w = (v, y, w).

x

u

y

v w

z

(g) G2:
P 2

u,v = (u, y, v),
P 2

v,w = (v, y, w).

x

u

y

v w

z

(h) G1:
P 1

u,v = (u, x, y, v),
P 1

v,w = (v, y, w).

Figure 3.5.: Example of an optimal computation C with initial graph G1 and
E⊕ = {{u, v}, {v, w}} and the notions used in the proof of Lemma 3.20.
The upper row shows C in order, the lower row illustrates the path
sets P i

u,v and P i
v,w, which are defined by iterating through C in reverse

order. In the lower row, the edges drawn in black in Gi are the edges
belonging to F i. Observe that F 1 is a superset of a feasible solution
to the USF for graph G1 and node pairs E⊕.

primitive to Gi, there is exactly one edge {x, y} in P i+1
u,v that exists in Gi+1 but not

in Gi and this edge was created by the application of an introduction or delegation
primitive of some node w such that {w, x} and {w, y} exist in Gi. Thus, let P i

u,v be
P i+1

u,v with (x, y) replaced by (x,w, y) and note that P i
u,v exists in Gi. Eventually, we

obtain a path P 1
u,v that exists in Gs. For i ∈ {1, . . . , L}, let F i :=

⋃
{u,v}∈E⊕ E(P i

u,v)
(where E(P) is the set of all edges on the path P) be a normal set of edges (i.e.,
not a multiset). Note that F 1 can be transformed into a feasible (though not
necessarily optimal) solution to the USF with input (Gs, E⊕) by removing cycle
edges. Therefore, |F 1| ≥ |FOP T,⊕|. An example is given in Figure 3.5. For an
arbitrary i ∈ {1, . . . , L − 1}, note that |F i| ≤ |F i+1| + 1: if Gi+1 was obtained
from Gi by the application of a fusion primitive, this inequality trivially holds as
none of the above paths changes in this case. Otherwise, Gi+1 was obtained from
Gi by an application of an introduction or delegation primitive by some node w
causing at most one edge {x, y} to exist in Gi+1 that does not exist in Gi. In this
case, we further know that {w, x} and {w, y} exist in Gi and by the definition of
the above paths, for every pair {u, v} such that P i+1

u,v contains the edge {x, y}, the
path P i

u,v contains (x,w, y) as a sub-path instead and for all other pairs {u′, v′},
P i

u′,v′ = P i+1
u′,v′ . By the definition of F i and F i+1, this implies |F i| ≤ |F i+1| + 1

also in this case. All in all, we obtain that |F 1| ≤ |FL|+ L = |E⊕|+ L because
FL = E⊕ (note the definition of FL). By the assumption that L < |FOP T,⊕|−|E⊕|,
we obtain |F 1| < |FOP T,⊕|, which represents a contradiction.

Lemma 3.21. ALG2(Gs, Gt) ≤ 11OPT (G′, Gt).

Proof. The general structure of this proof follows the line of the proof of Lemma 3.20,

35

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

but differs in the details. Similar to the notation used in that proof, let FOP T,	 be
an optimal solution for the USF with input (Gt, E) and recall that FALG,	 is the
USF approximation computed in Step 5 of Algorithm 1. Analogously, |FOP T,	|
and |FALG,	| denote the number of edges in these solutions. In the first part of
this proof, we show that ALG2(Gs, Gt) ≤ 4|FOP T,	| + 3|E	|. The second part
then consists in proving OPT (G′, Gt) ≥ |FOP T,	| − |E	|, which together with the
observation that OPT (G′, Gt) ≥ |E	| yields the claim.

To upper bound ALG2(Gs, Gt), we analyze the number of primitives applied
in each step of the second part of the approximation algorithm. Of course, no
primitive is applied in Step 5. The connections required in Step 6 can be created
in a similar fashion as in Step 2, which is described in the proof of Lemma 3.20:
For each tree T , we again proceed top-down in T rooted at some arbitrary but
fixed node rT . Here, each intermediate node u checks whether u = s(e) for some
e ∈ E	. If so, it introduces rT to all relevant children (here a node v is relevant
if ST (v) contains a node w such that w = s(e′) for some e′ ∈ E). Otherwise, it
introduces rT to all but one relevant children and delegates it to the remaining
one. In the end, for every edge e ∈ E	, s(e) has an edge to rT , the number of
edges in the graph has increased by at most |E	|, and the process involved at
most |FALG,	| applications of primitives. In Step 7, clearly exactly |E	| edges
have to be delegated. Step 8 is similar to Step 4 and for analogous reasons requires
at most |FALG,	| delegations and at most 2|E	| fusions (recall that up to |E	|
edges were added in Step 6 and the edges delegated in Step 7 have to be removed
as well). All in all, Step 6, Step 7 and Step 8 of the algorithm involve at most
|FALG,	|, |E	| and |FALG,	|+ 2|E	| applications of primitives, respectively, which
yields: ALG2(Gs, Gt) ≤ 2|FALG,	|+ 3|E	| ≤ 4|FOP T,	|+ 3|E	| (since FALG,	 is
a 2-approximation of FOP T,).

To lower bound the value of OPT (G′, Gt), assume for contradiction that there
is a computation C with initial graph G′ and final graph Gs of a length of
L < |FOP T,	| − |E	|. Let Gs = G1 → G2 → . . .→ GL be the sequence of graphs
of this computation. Similar to the proof of Lemma 3.20, for every {u, v} ∈ E	,
we create a path from u to v, but this time we start with P 1

u,v := (u, v) and
consider the graphs in increasing order: For i ∈ {2, . . . , L}, if P i−1

u,v exists in Gi,
P i

u,v := P i−1
u,v . Otherwise since Gi is the result of a single application of a primitive

to Gi−1, there is exactly one edge {x, y} in P i−1
u,v that exists in Gi−1 but not in

Gi and this edge must have been delegated by either x or y to some node w. In
the following denote the node that applied the delegation by z and denote by z
the other node from {x, y}.In Gi−1, z must share an edge with w and this edge
still exists in Gi (for only one primitive is applied in the transition from Gi−1 to
Gi). Since {z, z} was delegated by z to w, the edge {w, z} exists in Gi. Thus, let
P i

u,v be P i−1
u,v with (x, y) replaced by (x,w, y) and observe that P i

u,v exists in Gi.
Eventually, we obtain a path PL

u,v that exists in Gt. Define F i :=
⋃
{u,v}∈E	 E(P i

u,v)
(where E(P) is the set of all edges on the path P) as a normal set of edges (i.e.,
not a multiset) for every i ∈ {1, . . . , L}, and note that FL can be transformed

36

Approximation Algorithms 3.3

into a feasible (though not necessarily optimal) solution to the USF with input
(Gt, E) by removing cycle edges. Therefore, |FL| ≥ |FOP T,	|. Furthermore, for
an arbitrary i ∈ {1, . . . , L−1}, note that |F i+1| ≤ |F i|+ 1 because there is at most
one edge {x, y} that exists in Gi but not in Gi+1 and thus causes the replacement
of (x, y) by (x,w, y) for some fixed node w for all paths that contain (x, y) as a
sub-path. This yields that |FL| ≤ |F 1| + L = |E	| + L because F 1 = E	 (note
the definition of F 1). By the assumption that L < |FOP T,	| − |E	|, we obtain
|FL| < |FOP T,	|, which represents a contradiction.

As argued before, Lemma 3.20 and Lemma 3.21 (together with Lemma 3.19)
imply Theorem 3.18.

3.3.2. A Constant Approximation Algorithm for DLGT

In this subsection we describe how to adapt Algorithm 1 to obtain a constant
approximation algorithm for DLGT. The pseudocode of the adapted version of
the algorithm is given in Algorithm 2 (with differences to Algorithm 1 highlighted
in boldface). In this pseudocode and in the following proof, for a graph G = (V,E),
U(G) denotes the undirected version of G: i.e., each edge (u, v) in G is replaced
by {u, v}. An example of the procedure of Algorithm 2 is illustrated in Figure 3.6.
Algorithm 2 also has a constant approximation factor, which is stated by the

following theorem:

Theorem 3.22. There is a constant-factor approximation algorithm for DLGT.

Proof. We begin with establishing a relationship between solutions to DLGT
and to ULGT. For arbitrary directed graphs Gs and Gt, let Cd(Gs, Gt) be an
optimal solution to DLGT with (directed) initial graph Gs and (directed) final
graph Gt (this problem we denote by Pd(Gs, Gt)) and let OPTd(Gs, Gt) be its
length. Let Cu((U(Gs), U(Gt)) be an optimal solution to ULGT with initial graph
U(Gs) and final graph U(Gt), denote its length by OPTu((U(Gs), U(Gt)) and
denote this problem by Pu((U(Gs), U(Gt)). Let the computation C ′u be obtained
from Cd by ignoring all edge directions and removing all applications of reversal
primitives from Cd. Note that C ′u is a solution to Pu((U(Gs), U(Gt)) and that
its length is thus lower bounded by OPTu((U(Gs), U(Gt)) and upper bounded
by OPTd(Gs, Gt) (since we only shortened the optimal solution to Pd(Gs, Gt)).
Therefore, OPTu((U(Gs), U(Gt)) ≤ OPTd(Gs, Gt) for all directed graphs Gs and
Gt. We will use this insight to compare the length of the solution computed by
Algorithm 2 for initial graph Gs and final graph Gt with the length of the solution
computed by Algorithm 1 for initial graph U(Gs) and final graph U(Gt) in order
to prove the claim.

In the following, due to the similarities of Algorithm 2 with Algorithm 1, we only
describe the changes to the algorithm that require additional explanation (namely,
Step 2 and Step 6). The other changes (highlighted in boldface in Algorithm 2)
are self-explanatory. Additionally, we analyze the influence of the differences in

37

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

Algorithm 2 Approximation algorithm for DLGT
Input: Initial graph Gs and final graph Gt.
First part (add additional edges):

1: Compute a 2-approximate solution FALG,⊕ for the USF with input
(U(Gs),U(E⊕)).

2: For each tree T in FALG,⊕, select a root node rT , reverse all edges in T that
are oriented towards rT and for all nodes u in T that are incident to an edge
in E⊕, establish the edge (rT,u) (for details see the proof of Theorem 3.22).

3: For each (u,v) ∈ E⊕, the root of the tree u and v belong to applies the
introduction primitive to create the edge (u,v).

4: For each tree T in FALG,⊕, reverse all edges in T, reverse all superfluous
edges (i.e., not belonging to Gs or E⊕) created during Step 2 and
delegate them bottom up in T rooted at rT , starting with the lowest level. At
each intermediate node fuse all of these edges before delegating them to the
next parent. Afterwards, reverse all edges in T that were originally
oriented away from rT (i.e., the edges in T that were not reversed
in Step 2).
Second part (remove excess edges):

5: Compute a 2-approximate solution FALG,	 for the USF with input
(U(Gt),U(E)).

6: For each tree T in FALG,	, select a root node rT , reverse all edges in T
that are oriented towards rT and for each (u,v) ∈ E	 whose endpoints
belong to T , establish the edge (u, rT) (similar to Step 2, for details see the
proof of Theorem 3.22).

7: For each (u,v) ∈ E	, u delegates (u,v) to rT .
8: For each tree T in FALG,	, reverse all edges in T, reverse all edges

created during Step 7 and delegate all superfluous edges (i.e., not belonging
to Gt) bottom-up while fusing multiple edges as in Step 4. Afterwards,
reverse all edges in T that were originally oriented away from rT
(i.e., the edges in T that were not reversed in Step 6).

38

Approximation Algorithms 3.3

x z

u v

rT

(a) Initial situation of
tree T .

x z

u v

rT

(b) At the beginning
of Step 2, edges
are reversed to
point downwards
in the tree.

x z

u v

rT

(c) During Step 2, edges
(rT , u) and (rT , v)
are established.

x z

u v

rT

(d) In Step 3, rT

creates the
edge (u, v).

x z

u v

rT

(e) At the beginning of
Step 4, all super-
fluous and all tree
edges are reversed.

x z

u v

rT

(f) During Step 4, the
superfluous edges
are delegated up-
wards in T .

x z

u v

rT

(g) At the end of Step 4,
the original edge ori-
entations in T are
restored.

Figure 3.6.: Example of the first part of Algorithm 2 for a tree T with root rT

assuming (u, v) ∈ E⊕. Dashed edges exist temporarily during the
displayed step.

the algorithms on the length of the computations in order to obtain the desired
approximation factor.
The procedure for the creation of edges in Step 2 is, in general, very similar to

that used in Algorithm 1 (described in the proofs of Lemma 3.20). There are three
differences, though: First, in order to delegate / introduce edges downwards in a
tree T , all edges of T must be oriented downwards, which is why we first reverse
all edges oriented into the opposite direction (towards rT). Let ER be the set of
all these edges of all trees T . Then this additionally involves |ER| applications
of the reversal primitive in total. Second, since we deal with directed edges, we
have to clarify that the edges delegated / introduced through the tree must be
directed towards the root node. Third, this process creates the additional edges
(u, rT) for every u incident to an edge in E⊕, whereas (rT , u) is desired. Thus, for
each such edge, we apply the reversal primitive to turn (rT , u) into (u, rT), which
requires at most 2|E⊕| applications of primitives. In Step 4, we additionally have
to reverse all edges in every tree first in order to be able to delegate upwards in
the tree. This involves |FALG,⊕| additional applications of reversal primitives in
total. Furthermore, we have to reverse all superfluous edges before we can start the
bottom-up procedure. As their number is, again, upper bounded by 2|E⊕|, we have

39

Chapter 3 NP-HARDNESS AND APPROXIMABILITY OF LOCAL GRAPH . . .

to apply only that number of reversal primitives. In addition, we afterwards reverse
all edges whose orientation does not yet match their orientation in Gs, which totally
requires an additional |FALG,⊕ \ER| applications of reversal primitives (since these
are exactly the edges in FALG,⊕ that were not reversed in Step 2). Altogether,
the additional number of primitives required in comparison to Algorithm 1 is
|ER|+ |2E⊕|+ |FALG,⊕|+ 2|E⊕|+ |FALG,⊕ \ ER| = 2|FALG,⊕|+ 4|E⊕| Thus, the
length ALG2

1(Gs, Gt) of the computation computed in the first part by Algorithm 2
is at most ALG1

1(U(Gs), U(Gt))+4|E⊕|+2|FALG,⊕| (in which ALG1
1(U(Gs), U(Gt))

is the length of the computation of the first part of Algorithm 1 for initial graph
U(Gs) and final graph U(Gt)).
For the second part, note that the creation of edges in Step 6 is generally very

similar to that used in Algorithm 1 (described in the proof of Lemma 3.21). Here,
for each edge (u, v) ∈ E	, u corresponds to s(e) in Algorithm 1. As in Step 2,
we first have to reverse the edges downwards in the tree, incurring r additional
primitive applications. Again, the edges delegated / introduce through the tree
must be directed towards the root node. In Step 8, we again have to reverse all
edges in each tree, requiring an additional number of primitive applications of
|FALG,	|. Additionally, the edges created in Step 7 need to be reversed, which are
|E	| in total. Last, the edges whose orientation does not match their orientation
in Gt (which are those that were not reversed in Step 6) need to be reversed, which
requires |FALG,	| − r applications of reversal primitives. All in all, the length
ALG2

2(Gs, Gt) of the computation computed in the second part by Algorithm 2 is
at most ALG1

2(Gs, Gt) + 2|FALG,	|+ |E	| (in which ALG1
2(U(Gs), U(Gt)) is the

length of the computation of the second part of Algorithm 1 for initial graph U(Gs)
and final graph U(Gt)).
Incorporating the arguments and results of the proofs of Lemma 3.20 and

Lemma 3.21, we obtain:

ALG2
1(Gs, Gt) ≤ ALG1

1(U(Gs), U(Gt)) + 4|FOP T,⊕|+ 4|E⊕| ≤ 8|FOP T,⊕|+ 7|E⊕|
≤ 8OPT (U(Gs), U(G′)) + 15|E⊕| ≤ 23OPT (U(Gs), U(G′)), and

ALG2
2(Gs, Gt) ≤ ALG1

2(U(Gs), U(Gt)) + 4|FOP T,	|+ |E	| ≤ 8|FOP T,	|+ 4|E	|
≤ 8OPT (U(G′), U(Gt)) + 12|E	| ≤ 20OPT (U(G′), U(Gt)).

where OPT is defined as in Section 3.3.1 and G′ = U((V,Es ∪E⊕)) for Es being
the edge set of Gs.
Let ALG2(Gs, Gt) be the length of the computation computed by Algorithm 2

for initial graph Gs and final graph Gt. Building on the above two inequations, we
can apply Lemma 3.19 to obtain

ALG2(Gs, Gt) :=ALG2
1(Gs, Gt) +ALG2

2(Gs, Gt)
≤ 23(2OPTu(U(Gs), U(Gt)) + |E⊕|)
≤ 69OPTu(U(Gs), U(Gt)) ≤ 69OPTd(Gs, Gt).

This finishes the proof.

40

PA
R
T II

Monotonic Searchability
in Self-Stabilizing Topologies

T he second main part of this thesis considers monotonic searchability and
answers the following two questions: How can monotonic searchability
be obtained generally for a wide range of topologies? How can monotonic

searchability be guaranteed when nodes can additionally leave the system?
To answer the first question, we provide a general approach for monotonic search-
ability in graphs that contain the line graph as a subgraph. For a large number
of graphs, our solution permits answering successful searches efficiently in the
stabilized topology. To answer the second question, we provide a protocol that
solves the finite departure problem together with monotonic searchability. For
simplicity, we focus on line graphs for that solution.

Outline of This Part In Chapter 4 we describe a general framework to solve
monotonic searchability in supergraphs of the line. In Chapter 5 we consider the
combination of the FDP with monotonic searchability for the line topology.

41

Monotonic Searchability for
Supergraphs of the Line

C
H
A
P
T
ER 4

In this chapter, we provide a framework for monotonic searchability that is not
restricted to a single class of graphs but can be applied to a wide range of topologies:
line-supergraphs. The key idea to enable monotonic searchability in such a large
class of graphs is to restrict the manipulation of edges to a suitable set of graph
transformation primitives. These graph transformation primitives are based on the
primitives in IDF . Our framework is general enough to allow existing protocols to
be transformed such that they satisfy monotonic searchability, which we illustrate
with several examples. Beyond our general approach, at the end of this chapter we
also provide a specific solution to monotonic searchability for the Bridge−SKIP+
graph.
The main results of this chapter have previously appeared in the following

publication:

Christian Scheideler, Alexander Setzer, and Thim Strothmann. To-
wards a Universal Approach for Monotonic Searchability in
Self-stabilizing Overlay Networks. In: Proceedings of the 30th
International Symposium on Distributed Computing (DISC). Paris,
France, 2016. [SSS16]

Outline of This Chapter We start this chapter in Section 4.1 with a definition
of the communication model used in this part of the thesis and a formal statement
of the problem considered here. After that, we introduce three new graph trans-
formation primitives in Section 4.2 that one should use in a protocol to enable
monotonic searchability. Following this, we show that conventional protocols for
the self-stabilization of a topology can be transformed into ones using the new
primitives in Section 4.3. Then, in Section 4.4, we present a generic search protocol
according to which such protocols satisfy monotonic searchability and prove its
correctness. After that, we give examples in Section 4.5 on how to apply our results
to existing topologies — namely the list, the SKIP+ graph and the linearized De
Bruijn network. Last, as a small digression, in Section 4.6 we consider monotonic
searchability for a particular topology called the Bridge−SKIP+ graph, which is
a supergraph of the SKIP+ graph.

43

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

4.1. Communication Model and Problem Statement

The description of the system model in Section 2.1.2 deliberately left out a definition
of the communication model as this differs in Part II and Part III of this thesis. In
Section 4.1.1, we thus define the communication model for this part. After that, in
Section 4.1.2 we formally state the problem considered in this chapter.

4.1.1. Communication Model

We assume that each node has a unique reference. For each node, there is a
system-based variable called channel whose values are sets of messages. We denote
the channel of a node u as u.Ch and it contains all incoming messages to u. Its
message capacity is unbounded, although we assume that in each state there is
only a finite number of messages in each channel. Furthermore, we assume that
messages never get lost. A node can add a message to u.Ch if it has a reference
of u. Besides these channels there are no further communication means, so only
point-to-point communication is possible.
In this model, a message m requests to call an action A at some node u if m

corresponds to A and m is in the channel of u. When A is executed because it was
enabled due to m, m is processed (in which m is removed from u.Ch). Receiving
and processing a message is considered an atomic step.
We assume fair message receipt. This means that if a computation contains a

state in which there is a message in a channel of a node that enables an action
in that node, then that action is eventually executed with the parameters of that
message: i.e., the message is eventually processed.

The overlay network of a set of nodes is determined by their knowledge of each
other. We say that there is a (directed) edge from a to b, denoted by (a, b), if node
a stores a reference of b in its local memory or has a message in a.Ch carrying the
reference of b. In the former case, the edge is called explicit and in the latter case,
the edge is called implicit. Messages can only be sent via explicit edges. Note that
message receipt converts an implicit edge to an explicit edge since the message
is in the local memory of a node while it is processed. With NG we denote the
directed network (multi-)graph given by the explicit and implicit edges. ENG is
the subgraph of NG induced by only the explicit edges. We generally refer to the
node set of the network graph by V .
We consider protocols that do not manipulate the internals of node references.

Specifically, a protocol is compare-store-send if the only operations that it executes
on node references are comparing them, storing them in a variable and sending
them in a message. That is, operations on references such as addition, radix
computation, hashing and similar are not used. In a compare-store-send protocol,
a node may learn a new reference of a node only by receiving it in a message. A
compare-store-send protocol cannot create new references. It can only operate on
the references given to it.
It was proven in [NNS13] that if a compare-store-send protocol starts from a

44

Communication Model and Problem Statement 4.1

disconnected network graph, the network graph remains disconnected in every
state of the computation. Additionally, regarding the ability to form arbitrary
topologies, [NNS13] proved that we need to assume that the initial state does not
contain any nonexistent node references. Thus, throughout this chapter, for every
computation we consider, we assume that initially the network graph is weakly
connected and that for every reference stored in some node or some message, a
node with that reference exists in the system. This assumption is common in the
literature regarding self-stabilizing topologies (see, e.g., [BGP13; NNT13; KSS17]).

4.1.2. Problem Statement
The goal of this chapter is to provide a general solution for searching in a wide range
of topologies that fulfill certain requirements. On a high level, these requirements
are that the topologies are supergraphs of the line topology and that there exist
self-stabilizing protocols for them that “monotonically improve” the nodes’ outgoing
edges by letting them get “closer” to their target. Apart from being correct, our
solution allows to search efficiently once the topology has stabilized. To state the
problem formally and completely, we now introduce a set of definitions.
First of all, we have to note that compare-store-send protocols are generally

unable to satisfy monotonic searchability when starting from arbitrarily corrupted
states. To formalize this, we briefly introduce the following notions: A message
invariant I is a predicate defined for a specific message type and over the parameters
of the message type and the system state. For every protocol a number of message
invariants may be specified. A message m is called corrupted if m is in the
channel of a node and violates at least one message invariant. A state S is called
admissible if there are no corrupted messages in S. We say a (self-stabilizing)
protocol unconditionally satisfies monotonic searchability if it satisfies monotonic
searchability starting from any state. In [SSS15] it was proven that no self-stabilizing
compare-store-send protocol can unconditionally satisfy monotonic searchability
(Lemma 1 of [SSS15]). Consequently, to prove monotonic searchability for a
protocol (according to a given search protocol PS) it is sufficient to show that:
(i) in every computation of the protocol every state subsequent to an admissible
state is admissible as well, (ii) in every computation of the protocol there is an
admissible state, and (iii) the protocol satisfies monotonic searchability according
to PS in every computation that starts from an admissible state. Note that we
have not defined any invariants yet and it is possible to pick invariants such that
the set of admissible states equals the set of legitimate states in which the problem
becomes trivial. However, for the invariants we provide, any initial topology can
exist in an admissible state. In particular, as long as no corrupted messages are
initially in the system, our protocols satisfy monotonic searchability throughout
the computation.
To capture the class of topologies our generic solution can be used for, we

introduce the notion of a feasible topology:
Definition 4.1 (Feasible Topology). A topology T is called feasible if and only if:

45

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

1. there is a total order ≤ on the identifiers of the nodes, and

2. for each pair of nodes u and v, there is a path Q = (u = x1, x2, . . . , xk = v)
from u to v such that id(xi) < id(xi+1) for all 1 ≤ i < k or id(xi+1) < id(xi)
for all 1 ≤ i < k.

This definition is equivalent to that the topology is a supergraph of the line
topology. But this representation will turn out helpful later on. Due to the
total order defined on the node identifiers, we introduce the following notation
as well: for three nodes u, v, w we say v is closer to u than w if and only if
|id(v)− id(u)| < |id(w)− id(u)|.

For each feasible topology T , we assume the existence of a search protocol ST for
T , called the fast search protocol. The name is chosen due to the assumption that
the fast search protocol exploits the topology to find other nodes fast, although
this is not a requirement. Formally, the fast search protocol needs to fulfill the
following property:

Definition 4.2 (Fast Search Protocol, Search Edges, Non-Search Edges). For a
feasible topology T , a protocol ST is called a fast search protocol for T if and only
if:

1. for every pair of nodes source and dest in T , Search(source, id(dest))
always succeeds, and

2. for every Search(source, id(dest)) message, every node u only forwards
the search message to a node v such that: min(id(u), id(dest)) ≤ id(v) ≤
max(id(u), id(dest)).

The set of edges in T can be partitioned such that every edge that may possibly be
used in ST is called a search edge, whereas every edge that is never used in ST is
called a non-search edge.

Intuitively, every Search(source, id(dest)) message is always forwarded into
the same “direction” (w.r.t. the total order of the identifiers) and never oversteps
dest. The notion of (non-)search edges is introduced to allow for a wider range of
topologies. As we will see, non-search edges do not need to be treated as carefully
as search edges during self-stabilization to allow for monotonic searchability.

Throughout this chapter, we assume that the references for search and non-search
edges are stored in distinct variables in the stabilization protocols. We make use
of the following notions:

Definition 4.3 ((Non-) Search Variables, Search Neighborhood). For a topology
T and a fast search protocol ST for T , let P be a protocol for the self-stabilization
of T . Each variable of P is either a search variable, meaning that the references
stored in this variable are used by ST or a non-search variable otherwise. In the
legal states of P , all search edges of T must be stored in search variables.

Accordingly, the search neighborhood Γ∗(u) of a node u consists of all nodes
whose references are stored in search variables of u.

46

Communication Model and Problem Statement 4.1

y z

3 5 9 12 15
x

2
u v w

Figure 4.1.: Example graph with the identifiers listed below the nodes. Each node
is drawn thick if and only if it belongs to R(u, 12).

We will make use of the following notion of a straight path, which denotes a
path of search edges such that identifiers of the nodes on the path are strictly
monotonically increasing or decreasing:

Definition 4.4 (Straight Path). A path P = (x1, x2, . . . , xk) from x1 to xk is
called straight if and only if:

1. (xi, xi+1) is an explicit search edge for every i ∈ {1, . . . , k − 1}, and

2. either id(x1) < id(xi) < id(xk) or id(xk) < id(xi) < id(x1) for every
i ∈ {2, . . . , k − 1}.

For convenience we also define the following two functions:

Definition 4.5 (R(u, ID) / R(U, ID)). For a node u and an identifier ID,
R(u, ID) is the set containing all nodes v such that (i) min(id(u), ID) ≤ id(v) ≤
max(id(u), ID), and (ii) there is a (possibly empty) straight path from u to v.
Furthermore, for a set U , R(U, ID) :=

⋃
u∈U R(u, ID).

Note that since the straight path may be empty, by this definition u ∈ R(u, ID)
for every node u and identifier ID. An example of a set R(u, ID) is illustrated in
Figure 4.1.
We will show that a broad class of existing self-stabilizing protocols can be

transformed to satisfy monotonic searchability. More specifically, we will consider
protocols that fulfill the monotonic convergence property (mcp) defined as follows:

Definition 4.6 (Monotonic Convergence Property (mcp)). For a feasible topol-
ogy T and a fast search protocol ST for T , a protocol P fulfills the monotonic
convergence property for T w.r.t. ST if and only if:

1. for every node u and every search variable V ar there are two functions
γmin

u,V ar(A) and γmax
u,V ar(A) which, when given the current assignment of V ar

as an input, output a value such that:
a) whenever u inserts a node v into V ar, then id(v) ∈ [γmin

u,V ar(AV ar),
γmax

u,V ar(AV ar)] for the previous assignment AV ar of V ar, and
b) whenever u removes a node v from V ar, then for the assignment AV ar

of V ar before the execution of that action and for the assignment
A′V ar of V ar after the execution of that action, either γmin

u,V ar(A′V ar) >
γmin

u,V ar(AV ar), or γmax
u,V ar(A′V ar) < γmax

u,V ar(AV ar), and

47

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

2. there is a message type with exactly one parameter holding a node reference
(referred to as Delegate(x)) and whenever a node u removes a search edge
(u, v) or does not keep a reference of a node v received in a Delegate(v)
message, u delegates v’s reference in a Delegate(v) message to a search
neighbor w such that min(id(u), id(v)) < id(w) < max(id(u), id(v)).

Informally speaking, the first sub-property makes sure that [γmin
u,V (A), γmax

u,V (A)]
monotonically shrinks and implies that each search edge can be removed from the
neighborhood only finitely often. The second sub-property intuitively means that
a node v is always delegated to a neighbor w that is closer to v than the current
node u, yet on the same side of v as u (in terms of the total order of the identifiers).
Recall that Theorem 2.2 implies that in any protocol that does not disconnect
the network graph, each node always needs to delegate a reference it does not
keep (i.e., it cannot simply throw away this reference). Furthermore, note that the
mcp is generally not a severe restriction. Most existing protocols that stabilize
to feasible topologies naturally fulfill this property (see Section 4.5). To simplify
the description, in the following we assume that there is exactly one fast search
protocol for each topology, which we refer to as the fast search protocol for T and
thus omit its mention when we use the notion of a feasible stabilization protocol.

Given these definitions we can now formally state the problem we consider in this
chapter. The main goal is to develop a generic protocol that satisfies monotonic
searchability according to a small set of invariants in feasible topologies for which
a self-stabilizing protocol fulfilling the mcp exists. In addition, we show that if
a fast search protocol for such a topology has a running time of T (n) then our
protocol answers successful search requests in time O(T (n)) once the topology has
been stabilized.

4.2. Primitives for Monotonic Searchability
Although the primitives of [KSS17] are general enough to construct any conceivable
overlay, they do not inherently allow for monotonic searchability. This is due to
the fact that the delegation primitive may replace an explicit search edge (u, v)
by a path (u,w, v) consisting of an explicit search edge (u,w) and an implicit
edge (w, v). Thus a search message from u to v issued after the delegation may
be processed by w before there is a path from w to v via explicit search edges,
causing the search message to fail (even though an earlier message sent while
(u, v) was still an explicit edge was delivered successfully). This is illustrated in
Figure 4.2. Consequently, we are going to introduce a new set of primitives that
enables monotonic searchability. In addition, we show how to transform existing
protocols using the primitives of IDF and fulfilling the mcp into protocols using
the new set of primitives.

One key aspect of the new primitives is that nodes may not immediately delegate
search edges that they want to get rid of. To deal with this, in every fixed state S
in every execution of a self-stabilizing protocol, each node u can divide its explicit

48

Primitives for Monotonic Searchability 4.2

u w v

(a) Initial situation.

u w v

(b) Situation after u delegated (u, v) to w.

Figure 4.2.: Delegations can interfere with monotonic searchability: In the left
image, a search message from u to v can be delivered. If u delegates
(u, v) to w, whose result is shown in the right image, the same search
message could not be delivered.

search edges into two subsets: the stable edges and the temporary edges (not to be
confused with implicit edges). The first set contains those explicit search edges
that u wants to keep, given its current neighborhood in S; the second set holds the
explicit search edges that are not needed from the perspective of u in S. Note that
the set of temporary edges can be empty. We further make use of the following
definition:

Definition 4.7 (Stable / Temporary Neighborhood). The stable neighborhood
Γs(u) of a node u is defined as: Γs(u) := {v ∈ Γ∗(u) : (u, v) is a stable edge}.
Likewise, the temporary neighborhood Γt(u) of a node u is defined as: Γt(u) :=
{v ∈ Γ∗(u) : (u, v) is a temporary edge}

For the new primitives, a node does not only store references of its neighbors
but additionally stores sequence numbers for every reference in its local memory:
i.e., every node u stores for each neighbor v an entry u.eseq[id(v)] (or u.eseq[v], in
short).
The new set of primitives is basically obtained by replacing the delegation

primitive with a new primitive, called the safe-delegation primitive. This works as
follows:

Definition 4.8 (Safe-Delegation Primitive). Consider a node u that has references
of two different nodes v and w and that does not want to keep w’s reference. Then
safe-delegation of the edge (u,w) depends on whether this edge is an implicit, explicit
non-search, or explicit search edge: If (u,w) is an implicit or non-search edge, (u,w)
is delegated as in the original delegation primitive. If (u,w) is an explicit search
edge, the edge is a temporary edge by definition because temporary edges are those
explicit search edges a node does not want to keep. To safe-delegate the temporary
edge (u,w) to a node v, (u, v) must be a stable edge and min(id(u), id(w)) < id(v) <
max(id(u), id(w)). u then sends a DelegateREQ(u,w, eseq) message to v, where
eseq = u.eseq[w]. Additionally, it sets u.eseq[v] to max{u.eseq[v], u.eseq[w] + 1}.
Any node v that receives a DelegateREQ(u,w, eseq) message, adds (v, w) to
its set of search edges (either as a stable edge if v wants to keep w’s reference
or a temporary edge if v does not want to keep w’s reference), sets v.eseq[w] to
max{v.eseq[w], eseq + 1} and sends a DelegateACK(w, eseq) message back to
u. Upon receipt of this message, u checks whether eseq = u.eseq[w] and whether
(u,w) is actually a temporary edge (note that the last check is necessary to handle

49

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

u w

v
→

u w

v

(a) An implicit or a non-
search edge (u,w) may
be delegated via a stable
or temporary edge
(u, v) as in the original
delegation primitive.

u w

v
→

u w

v

(b) To safe-delegate a temporary edge
(u,w), u sends w’s reference in a Del-
egateREQ() message to a stable
neighbor v. v then creates a stable or
temporary edge (v, w). Note: Only
after the receipt of a corresponding
DelegateACK() message may u re-
move its temporary edge to w and
send w’s reference to one of its neigh-
bors.

u w

v

(c) A temporary
edge (u,w)
cannot be safe-
delegated via
a temporary
edge (u, v).

Figure 4.3.: Rules and restrictions of a safe-delegation.

corrupted initial states). If both conditions hold, u removes the temporary edge to
w and sends w to one of its neighbors in a message. Otherwise, u either keeps w’s
reference or sends it to one of its neighbors.

The different cases described in Definition 4.8 are illustrated in Figure 4.3.
Furthermore, the safe-delegation primitive is also described in pseudocode in
Listing 4.1.

Listing 4.1: Pseudocode of the safe-delegation Primitive
1 // Safe-Delegation of an edge (u, w) by a node u to a neighbor v of u
2 if (u, w) is implicit or a non-search edge then
3 | // w’s reference was received in a message
4 | (u, w) is delegated to v as in the original Delegation primitive
5 if (u, w) is an explicit search edge then
6 | // when (u, w) is supposed to be delegated, (u, w) is a temporary edge by definition
7 | send DelegateREQ(u, w, eseq[w]) to v
8 | eseq[v] := max {eseq[v], eseq[w] + 1}
9

10 // handling of a DelegateREQ(u, w, eseq) message by a node v:
11 either Γs := Γs ∪ {w} or Γt := Γt ∪ {w}
12 eseq[w] := max{eseq[w], eseq + 1}
13 send DelegateACK(w, eseq) to u
14
15 // handling of a DelegateACK(w, eseq) message by a node u:
16 if eseq = eseq[w] and w ∈ Γt then
17 | Γt := Γt \ {w}
18 | send w to a neighbor in an arbitrary message (excluding DelegateREQ() or
19 | DelegateACK())
20 else
21 | either keep w’s reference in Γs or send w to a neighbor in an arbitrary message (excluding
22 | DelegateREQ() or DelegateACK())

We define ISF as the set consisting of the three primitives introduction, safe-
delegation and fusion. Throughout the chapter we assume that DelegateREQ()

50

Primitives for Monotonic Searchability 4.2

and DelegateACK() messages are sent only in the context of the safe-delegation
primitive and that the u.eseq[v] variables for all nodes u and v are changed only in
the context of the safe-delegation primitive and only in the way described there. Let
PISF denote the set of all distributed protocols in which all interactions between
nodes can be decomposed into the primitives of ISF .

4.2.1. Universality of the New Primitives
To show that our primitives are search-universal we first show that they are weakly
universal.

Lemma 4.9. ISF is weakly universal.

Proof. The idea of this proof similar to that of the proof of (weak) universality for
the original primitives [KSS17]. However, it is a bit more involved because of the
safe-delegation primitive. In general, we will present a simple general strategy of
how to transform an arbitrary weakly connected graph G = (V,E) into any other
strongly connected graph G′ = (V,E′). At first, we use the introduction primitive
to transform G into a clique: i.e., every node continuously introduces all neighbors
(including itself) to each other. Obviously, O(logn) communication rounds are
sufficient to build a clique as the distances between the nodes halve in each round
of these introductions.
Next we show that by using safe-delegation and fusion one can transform the

clique into G′ = (V,E′). In general, each node u always keeps all references of
all other nodes w with (u,w) ∈ E′. Furthermore, whenever a node u has two
references of the same node w it fuses them. For the remaining superfluous edges,
consider the following approach: For every edge (u,w) that is in the clique but
not in E′, each node u uses the safe-delegation primitive to delegate the reference
of w to the neighbor v that is the next node on a straight path from u to w
in E′ (in the following, we use the notation PE′(u,w) for this path). Note that
such a path exists according to the definitions of a feasible topology (c.f. Defi-
nition 4.1) and a fast search protocol (c.f. Definition 4.2). More specifically, u
sends a DelegateREQ(u,w, eseq) message to v and when it receives a Dele-
gateACK(w, eseq) message, it no longer stores the reference of w, but delegates
it to v (which is still a neighbor of u by what we said before) via a Delegate(w)
message. We show that by this procedure, all edges (u, v) /∈ E′ will eventually
vanish.

We define the potential X :=
∑

u∈V X(u). For every node u ∈ V , X(u) :=
maxw∈V :(w,u)∈NG\E′ |PE′(w, u)|. Note that no node x ever delegates an edge (x, z)
to a node y such that |PE′(y, z)| > |PE′(x, z)|. Thus, X never increases. We
show that X monotonically decreases. For an arbitrary node w, consider a node
u ∈ argmaxu′∈V :(u′,w)∈E(|PE′(u′, w)|) and let d := |PE′(u,w)|. According to the
procedure we describe, u sends a DelegateREQ(u,w, eseq) with eseq = u.eseq[w]
message to v, the next node on PE′(u,w). By the fair message receipt assumption,
v will receive this message, act according to the safe-delegation primitive and send

51

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

back a DelegateACK(w, eseq) message to u which will ultimately be received
by u. Note that u.eseq[w] = eseq then because the only occasion at which u
would have increased u.eseq[w] since the sending of the DelegateREQ(u,w, eseq)
message is that it received a DelegateREQ(x,w, eseq′) message for some node
x and some number eseq′ ≥ eseq, but this would imply (x,w) ∈ NG when that
message was sent and |PE′(x,w)| > PE′ |(u,w)|, yielding a contradiction to the
definition of u. Thus, u will no longer store the reference of w and forward it via
a Delegate(w) message to v. As soon as this has happened for every u′ with
|PE′(u′, w)| = d, X decreases. By induction we have that X will eventually be 0,
which finishes our proof.

4.2.2. Invariants for Safe-Delegation
The primitives in PISF , or, more specifically, the safe-delegation primitive will
significantly help to enable monotonic searchability. Intuitively, it will ensure that
if a node v is reachable from a node u via a straight path in some state, then the
same will hold in every later path as well. However, the safe-delegation primitive
introduces two new message types that may, as every type of message, be corrupted
initially. Therefore, we now define two message invariants:

Definition 4.10 (Invariants Concerning the Messages Required for Safe-Delega-
tion). We define the following two invariants, in which we require that u, v and w
are node references and eseq is an integer greater than or equal to 0.

1. If there is a DelegateREQ(u,w, eseq) message in v.Ch, then (i) there
exists a straight path P = (u = x1, x2, . . . , xk = v) that does not contain
(u,w), such that for every 1 ≤ i < k, xi.eseq[xi+1] > u.eseq[w], or (ii)
u.eseq[w] > eseq.

2. If there is a DelegateACK(w, eseq) message in u.Ch, then (i) there exists a
straight path P = (u = x1, x2, . . . , xk = w) that does not contain (u,w), such
that for every 1 ≤ i < k, xi.eseq[xi+1] > u.eseq[w], or (ii) u.eseq[w] > eseq.

Intuitively, Invariant 1 states that whenever a node v has a DelegateREQ(u,w,
eseq) message in v.Ch (i.e., node u asked v to establish the edge (v, w) such that
u may remove its own edge to w), then there is a straight path from u to v that
does not use the edge (u,w). Invariant 2 states that whenever a node u has a
DelegateACK(w, seq) message in u.Ch (i.e., some other node v which u asked to
establish the edge (v, w) has already done so), then there is a straight path from u
to w that does not use the edge (u,w). However, both statements need to hold only
if the value of eseq indicates that the messages belong to a current safe-delegation:
i.e., if u.seq[w] > eseq, the DelegateREQ() or DelegateACK() message can
be ignored.
In the following, we say a state S is safe if Invariant 1 and Invariant 2 of

Definition 4.10 hold for all DelegateREQ() and DelegateACK() messages in
S. In order to approach search universality, we prove the following lemma.

52

Primitives for Monotonic Searchability 4.2

Lemma 4.11. Consider an arbitrary computation C of a protocol P ∈ PISF that
contains at least one safe state. Let S be the first safe state in C. For every state
S′ ≥ S it holds:

1. S′ is safe, and

2. for every two nodes u and v such that v ∈ R(u, ID) in S′ for some identifier
ID, v ∈ R(u, ID) in every state S′′ ≥ S′.

Proof. For an arbitrary computation C that contains a safe state, let S be the first
safe state. We prove 1 inductively by showing that every state subsequent to a
safe state is safe as well. Let S′ be an arbitrary safe state.
We begin with showing that Invariant 1 of Definition 4.10 will be true in the

state subsequent to S′ as well. Note that since a DelegateREQ() message
is only sent as specified in the Safe Delegation primitive, we know that if a
new DelegateREQ(u,w, eseq) message is sent from node u to node v, then
there has to be an explicit edge (u, v), u.eseq[v] is set to at least u.eseq[w] + 1,
and min(id(u), id(v)) < id(w) < max(id(u), id(v)) (see Definition 4.8). Thus,
new DelegateREQ() messages cannot violate Invariant 1. Additionally, for
every pair of nodes u and v, u.seq[w] is never decreased. Thus, as long as the
graph does not change, no existing DelegateREQ(v, w, eseq) message such that
u.seq[w] > eseq can cause Invariant 1 to be violated. Therefore, the only other
option under which the first invariant could become false is that for an existing
DelegateREQ(u,w, eseq) message in v.Ch for a node v such that u.eseq[w] ≤
eseq an explicit search edge (x, y) on the only remaining straight path P from u to
v that does not contain (u,w) is removed. According to the definition of PISF and,
in particular, the definition of the safe-delegation primitive (see Definition 4.8),
an explicit search edge is removed only if x receives a DelegateACK(y, eseq′)
message and eseq′ = x.eseq[y]. For this message, the second invariant holds by
assumption, yielding the existence of a straight path Q = (x = x1, x2, . . . , xk = y)
even after the removal of (x, y) such that for every 1 ≤ i < k : xi.eseq[xi+1] >
x.eseq[y]. Notice that since P was the only remaining straight path from u to v
not via (u,w), the first invariant implies that x.eseq[y] > u.eseq[w]. Thus, there is
a straight path R = (u = y1, y2, . . . , yl = w), which is P with (x, y) being replaced
by Q, such that for all 1 ≤ i < l : yi.eseq[yi+1] > u.eseq[w]. In particular, this
implies that (u,w) is not contained in R. Thus, the first invariant still holds.

Similarly, to show that Invariant 2 holds in the state subsequent to S′, note that
a new DelegateACK(w, eseq) message is sent to a node u only as a response to a
DelegateREQ(u,w, eseq) message received by a node v. According to Invariant 1,
if that is the case then there exists a straight path P = (u = x1, x2, . . . , xk = v)
that does not contain (u,w) and xi.eseq[xi+1] > u.eseq[w] for every 1 ≤ i < k (or
u.eseq[w] > eseq, in which case we are done). Since v adds a new explicit edge
(v, w) when it sends out the DelegateACK(w, eseq) message and also ensures
that v.eseq[w] > eseq (by adjusting v.eseq[w]), Invariant 2 still holds afterwards.
Since no node u decreases a u.seq[w] value for any node w, the only option left

53

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

under which Invariant 2 could become false for an existing DelegateACK(w, eseq)
message in u.Ch such that u.seq[w] ≤ eseq for some node u is that an edge (x, y)
on the only remaining straight path P from u to w that does not contain (u,w) is
removed or becomes implicit. However, for analogous reasons as for Invariant 1
above, there then exists another straight path R = (u = y1, y2, . . . , yl = w) from u
to w not containing (u,w) such that for all 1 ≤ i < l : yi.eseq[yi+1] > u.eseq[w].
Therefore the second invariant holds as well. Consequently, the state subsequent
to S′ is safe.
Assume that there is an identifier ID and two nodes u and v, such that v ∈

R(u, ID) in some state S′ ≥ S but v /∈ R(u, ID) in some later state. Note that
v ∈ R(u, ID) in S′ implies v ≤ ID if id(u) < ID and that v ≥ ID if ID < id(u).
Let S′′ be the first state such that v /∈ R(u, ID) and let S′′prev be the state
predecessing S′′. According to Definition 4.5, in S′′prev, there was a straight path Q
from u to v. Thus, in the action executed to obtain S′′, some explicit search edge
(x, y) on Q must have been removed. Since P ∈ PISF this may have happened only
if x received a DelegateACK(y, eseq) message and eseq = x.eseq[y]. Invariant 2
yields that there is still a straight path P = (x = x1, x2, . . . , xk = y) afterwards.
Therefore Q with (x, y) replaced by P is a straight path: i.e., there still exists a
straight path from u to v contradicting the fact that v /∈ R(u, ID) in S′′.

4.3. Transforming Classical Protocols

Let PIDF denote the set of all distributed protocols in which all interactions
between nodes can be decomposed into the primitives of IDF . In this section we
show that every protocol A ∈ PIDF that fulfills the mcp and that self-stabilizes to
some feasible topology T can be transformed into a protocol B ∈ PISF for which
it holds that in every computation of B there is a computation suffix throughout
which Invariants 1-2 hold. More formally:

Theorem 4.12. Consider a protocol A ∈ PIDF that self-stabilizes to a strongly
connected feasible topology T and that fulfills the mcp. Then A can be transformed
into another protocol B ∈ PISF such that B self-stabilizes to T as well and in
every computation of B there exists a computation suffix in which every state is
safe.

Proof. The general idea of the transformation of protocol A into protocol B is to
replace every use of the Delegation primitive by the original protocol A with a use
of the safe-delegation primitive. Therefore, every edge that would be delegated
away by A becomes a temporary edge and the reference of its endpoint is sent to
the receiving node. If that node wants to keep the received reference, the new edge
becomes a stable edge. Otherwise, A would delegate away that reference again
and this Delegation would again be transformed into a safe-delegation. As we will
see, the mcp ensures that this process will not repeat infinitely often: i.e., at some
point in time, the delegated reference will be kept, which then forms a stable edge.

54

Transforming Classical Protocols 4.3

We will show that finally, every computation of B converges to a fixed topology,
which we then prove to be equal to the one A converges to. Last, we will prove
the closure property of B to finish this proof.
Consider the following transformation of A:

1. Every action a in A is transformed into an action b in the following way:
Whenever in an action a the current node u removes the last reference of a
search neighbor w from its search variables and sends it to a stable neighbor
v (which it does in a Delegate(w) message according to sub-property 2
of the mcp), action b makes the edge (u,w) temporary (i.e., it stores w’s
reference in a dedicated set variable Ntmp) and additionally sends out a
DelegateREQ(u,w, u.eseq[w]) message to v. Other than that, b behaves
exactly as a. In particular, b does not consider the references in Ntmp at all
(and all computations are performed on stable, non-search, or implicit edges
only).

2. A node v that receives a DelegateREQ(u,w, eseq) message executes Del-
egate(w) and acts according to the safe-delegation primitive. This means it
makes (v, w) an explicit search edge (either a stable edge if Delegate(w)
would keep w’s reference or a temporary edge if that action would immedi-
ately delegate the reference again), sets v.eseq[w] to max{v.eseq[w], eseq+1}
and sends a DelegateACK(w, eseq) message back to u. If (v, w) is a tempo-
rary edge after this, it additionally sends a DelegateREQ(v, w, v.eseq[w])
message to the neighbor that Delegate(w) would forward this reference to.

3. A node u that receives a DelegateACK(w, eseq) message first checks
whether eseq = u.eseq[w] and whether (u,w) is a temporary edge (i.e., it
checks whether an execution of Delegate(w) would not keep (u,w) in u’s
current state) and, if so, removes the temporary edge (u,w). It then executes
Delegate(w).

4. In the Timeout action, in addition to the steps performed in the original
Timeout action, every node u for every reference w stored in u.Ntmp checks
whether (u,w) is a temporary edge: i.e., it checks whether an execution of
Delegate(w) would not keep (u,w) in u’s current state). If so, u sends a
DelegateREQ(u,w, u.eseq[w]) message to the stable neighbor v to which
that edge would be delegated to in Delegate(w). Otherwise, u stores the
reference in the search variable(s) that Delegate(w) would store them in
(making the edge (u,w) a stable edge).

We denote the resulting protocol by B. By the construction of B and the definition
of PISF , B ∈ PISF .

Note that the construction of B and the fact that A fulfills the mcp yields that
the following set of properties (not coincidentally resembling the mcp) is satisfied
by B:

55

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

1. for every node u and every search variable V ar other than Ntmp there are
two functions γmin

u,V ar(AV ar) and γmax
u,V ar(AV ar) which, when given the current

assignment of V ar as an input, output a value such that:
a) whenever u inserts a node v into V ar, then id(v) ∈ [γmin

u,V ar(AV ar),
γmax

u,V ar(AV ar)] for the previous assignment AV ar of V ar, and
b) whenever u removes a node v from V ar, then for the assignment AV ar

of V ar before the execution of that action and for the assignment
A′V ar of V ar after the execution of that action, either γmin

u,V ar(A′V ar) >
γmin

u,V ar(AV ar), or γmax
u,V ar(A′V ar) < γmax

u,V ar(AV ar), and

2. whenever a node u removes an edge (u, v) from its set of stable edges or makes
(u, v) a temporary edge upon receipt of a DelegateREQ(u, v, eseq) message,
u safe-delegates v’s reference in a DelegateREQ(u, v, u.eseq[v]) message to
a stable neighbor w such that min(id(u), id(v)) < id(w) < max(id(u), id(v)).

Property 1 basically implies that for each node u and every search variable V ar other
than Ntmp, |[γmin

u,V ar(AV ar), γmax
u,V ar(AV ar)]| monotonically decreases and eventually

the set of stable neighbors of each node will be fixed. Property 2 implies that every
temporary edge (u, v) is always delegated to a node between u and v.
We now prove the convergence property of B. Consider an arbitrary but fixed

computation CB of B starting from an arbitrary weakly connected graph. Let S
be the first state of CB such that the stable neighborhood of each node remains
unchanged in all states after S. Such a state has to exist due to the above
Property 1. We first show that there will be a state S′ from which on there will be
no temporary edges in the system.
The key idea is that, informally speaking, starting from S′ any new temporary

edge can only appear as a result of a (Safe)-Delegation of an existing temporary
edge. Since every edge is delegated to a node closer to the endpoint according
to the above Property 2, this may occur only finitely often. In addition, this
causes no new temporary edges to appear as soon as all temporary edges have
vanished. To prove this formally, let g(w) := max{maxu:(u,w) is temporary(|id(u)−
id(w)| · 2),maxu:DelegateREQ(v,w,eseq)∈u.Ch(|id(u)− id(w)| · 2 + 1)} where the two
maximum functions are supposed to be 0 if there is no such node u at all. We now
define the potential Φ :=

∑
w∈V g(w) and show that as long as Φ is not zero, it

will decrease in finite time.
Consider an arbitrary node w such that g(w) > 0. First assume g(w) is odd.

This implies that there is at least one node u with a DelegateREQ(v, w, eseq)
message in u.Ch and |id(u)−id(w)|·2+1 = g(w) and that there is no node x with a
temporary edge (x,w) such that |id(x)− id(w)| > |id(u)− id(w)| (by the definition
of g(w)). Note that this situation not only occurs from corrupted initial states but
also if during Timeout of a node several DelegateREQ() messages were sent and
the original temporary edge has already been removed in the meantime. Since new
temporary edges only result from stable edges turning into temporary edges (which
does not happen after S as we argued before) or from receipts of DelegateREQ()

56

The Generic Search Protocol 4.4

messages, once all the aforementioned DelegateREQ(v, w, eseq) messages have
been received by u.Ch and all other nodes with the same distance to w, Φ will
decrease. Next assume g(w) is even. This implies that there is at least one
node u with distance g(w) and a temporary edge (u,w) and that there is no
Delegate(v, w, eseq) message in u.Ch or in the channel of any other node with an
equal or higher distance to w nor a node x such that (x,w) is a temporary edge and
|id(x)−id(w)| > |id(u)−id(w)|. According to the above Property 2 of B, u will send
a DelegateREQ(u,w, eseq) to a node v such that |id(v)−id(w)| < |id(u)−id(w)|.
This will be answered with a DelegateACK(w, eseq) message, causing u to remove
the explicit edge (u,w) and to forward w to a node closer to w than u. The same
happens for all other temporary edges (y, w) with |id(y)− id(w)| · 2 = g(w). After
the last such edge has been removed, Φ decreases.
Note that the aforementioned also implies that Φ never increases. Therefore,

Φ will eventually be and remain zero from some state S′, meaning that there
will be no more temporary edges from S′ on. Since no DelegateREQ() and
DelegateACK() message will be sent during or after S′, Invariants 1 and 2 hold
in this state.

Since there are no DelegateREQ() and DelegateACK() messages in S′ and
the sets u.Ntmp are empty for every node u in S′, we can consider S′ as an input to
algorithm A and let SUFFIXA(S′) denote the computation of A starting from S′.
Likewise, let SUFFIXB(S′) be the suffix of CB starting from S′ in B. Consider the
first execution of an action whose result is different in A and B. Note that since
there are no DelegateREQ() and DelegateACK() messages in S′ or any later
state and since u.Ntmp is empty for every node u throughout SUFFIXB(S′), this
action cannot be a DelegateREQ(), DelegateACK() or Timeout message. By
the above transformation, the only possibility left is that this action removes the
last reference of another node w from a search variable of a node u in A and moves
it to u.Ntmp in B. This, however, cannot be the case as argued before. Therefore,
SUFFIXA(S′) and SUFFIXB(S′) are equivalent in A and B: i.e., for every i ≥ 1
the i-th state si(A) of SUFFIXA(S′) and the i-th state si(B) of SUFFIXB(S′)
are identical except for that each node in si(B) has an additional empty set Ntmp.
This implies that A performs the same changes to the network graph of S′ as B
does. Since A stabilizes to T and CB was chosen arbitrarily, we obtain that B
converges to T .
For the closure property, again compare the execution of A and of B starting

from a legitimate state and note that for analogous reasons, B also does not
perform any changes to the network graph.

4.4. The Generic Search Protocol

In this section we describe a generic search protocol such that every protocol in
PISF fulfilling the mcp satisfies monotonic searchability according to that search
protocol. We assume that when a node u wants to search for a node with identifier

57

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

ID, it performs an InitiateNewSearch(ID) action in which a Search(u, ID)
message is created. The search request is regarded as answered as soon as the
Search(u, ID) message is either dropped, i.e., it fails, or is received by the node
w with id(w) = ID, i.e., it succeeds.

We begin with describing the protocol in Section 4.4.1. After that, we introduce
some additional definitions and state the main theorems regarding the generic search
protocol in Section 4.4.2. These definitions include the definition of admissible
states. We prove the existence of these in all computations of protocols that satisfy
a certain set of properties in Section 4.4.3. Last, in Section 4.4.4, we prove that
starting from admissible states, monotonic searchability is satisfied.

4.4.1. Protocol Description

We begin with a textual description of the generic search protocol. For a better
overview, in Listing 4.2 we specify the pseudocode of this protocol along with
supplementary details. The principle idea of the generic search protocol is the
following: A node u with a Search(u, destID) message does not directly forward
this message through the network. Instead, u buffers the message and initiates a
probing algorithm whose goal is to either receive the reference of the node w with
id(w) = destID or to get a negative response in case this node does not exist or
cannot be reached yet. In the former case, u directly sends Search(u, destID)
to w. In the latter case, u drops Search(u, destID). Whenever an additional
Search(u, destID) message for the same identifier destID is initiated at u while
a probing for destID is still in progress, this message is combined with previous
Search(u, destID) messages waiting at u. In addition to the aforementioned,
an attempt is made to fast search for destID via the fast search protocol for
the topology using only stable edges. If a node with identifier destID exists, it
might be found this way. However, it is not guaranteed to be found as long as the
topology is not stabilized. Therefore, in case the fast search fails, the probing is
still continued. This can be used to speed up successful searches in the stabilized
topology.
For the probing, a node u with a buffered Search(u, destID) message period-

ically initiates a new Probe() message in its Timeout action. This Probe()
message contains four arguments: First, a reference source of the source of the
Probe() message: i.e., a reference of u. Second, the identifier destID of the
node that is searched. Third, a set Next that holds references of all stable or
temporary neighbors of u whose identifier is between id(u) and destID (according
to the total order on the identifiers). Last, a sequence number seq that is used
to distinguish probe messages that belong to different probing processes from the
same node and for the same target, i.e., seq = u.seq[destID], where u.seq[destID]
is a value stored at u. This is necessary because in each execution of the Timeout
action a new probe message is sent, although upon receipt of the first response
to such a message, the set of buffered search messages is sent out to the target
or dropped completely. Thus, future replies may arrive afterwards and u has to

58

The Generic Search Protocol 4.4

know that these are outdated. To make this possible, as long as a fixed search
message m for destID is buffered at u, u.seq[destID] will not change its value.
However, once m has been dropped or delivered, as soon as the next search mes-
sage for destID is initiated, u.seq[destID] will increase. All in all, u initiates a
Probe(source, destID,Next, seq) message and sends this message to the node in
Next closest to u (observe that this is the node whose identifier has the maximum
distance to destID).

Any intermediate node v that receives a Probe(source, destID,Next, seq) mes-
sage first checks whether id(v) = destID. If so, v sends a reference of itself
to source via a ProbeSuccess(destID, dest) message with dest = v. Other-
wise, v removes itself from Next and adds all its (stable or temporary) neigh-
bors to Next whose identifier is between id(u) and destID (according to the
total order on the identifiers). If Next is empty after this step, v responds
to source via a ProbeFail(destID, seq) message. Otherwise, v forwards the
Probe(source, destID,Next, seq) message (with the already described changes
performed to Next) to the node in Next whose identifier has the maximum distance
to destID. If the initiator u of a probe receives a ProbeSuccess(destID, dest)
message, u sends out all (possibly combined) Search(u, destID) messages waiting
at u to dest (thus stopping the probing). If, however, u receives a Probe-
Fail(destID, seq) message, u first checks whether seq = u.seq[destID]: i.e., it
checks whether the received message is a response to the current batch of search
requests. Without this check, a ProbeFail(destID, seq) message belonging to an
earlier batch of buffered messages could cause a currently ongoing probing to be
aborted. If seq = u.seq[destID] is true, u drops all Search(u, destID) messages
waiting at u (thus also stopping the probing). Otherwise, u simply drops the
received ProbeFail(destID, seq) message.

Listing 4.2: The Generic Search protocol
1 InitiateNewSearch(destID)
2 create a new message m = Search(self, destID)
3 if W aitingF or[destID] = ∅ then
4 | seq[destID] := seq[destID] + 1 // seq[destID] is assumed to be -1 if its
5 | // current value is not a positive integer
6 | if there is a next hop w for the search for destID using the fast
7 | search protocol on the stable edges then
8 | | send FastProbe(self, destID) to w
9 // store the message in W aitingF or

10 W aitingF or[destID] := W aitingF or[destID] ∪ {m}
11
12 Timeout // suffix to the existing timeout action of the protocol
13 for every destID such that W aitingF or[destID] 6= ∅ do
14 | Next := {w ∈ Γs ∪ Γt : min(id(self), destID) < id(w) < max(id(self), destID)}
15 | send Probe(self, destID, Next, seq[destID]) to the closest node to self in Next
16
17 Probe(source, destID, Next, seq)
18 if destID = id(self) then
19 | if Next 6= ∅ then // can only occur in initial states
20 | | for all u ∈ Next

59

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

21 | | | send Delegate(u) to self
22 | send ProbeSuccess(destID, self) to source
23 else // destID 6= id(self)
24 | Next := Next \ {self}
25 | ∪{w ∈ Γs ∪ Γt : min(id(self), destID) < id(w) < max(id(self), destID)}
26 | if Next = ∅ then
27 | | send ProbeFail(destID, seq) to source
28 | | send Delegate(source) to self // required to maintain connectivity
29 | else // Next 6= ∅
30 | | u := argmaxv∈Next{id(v)− destID}
31 | | if u is not a neighbor of self then
32 | | | send ImplDelegate(u) to self // required to maintain connectivity
33 | | send ForwardProbe(source, destID, Next, seq) to u
34
35 ProbeSuccess(destID, dest)
36 send all m ∈W aitingF or[destID] to dest
37 W aitingF or[destID] := ∅
38 send Delegate(dest) to self
39
40 ProbeFail(destID, seq)
41 if seq = seq[destID] then
42 | // the message belongs to the current set of buffered search requests for destID
43 | W aitingF or[destID] := ∅
44
45 FastProbe(source, destID)
46 if destID = id(self) then
47 | send ProbeSuccess(destID, self) to source
48 else
49 | if there is a next hop w for the search for destID using the fast search protocol on the
50 | stable edges then
51 | | send FastProbe(self, destID) to w
52 | // otherwise, the fast search is just stopped

Note that the pseudocode in Listing 4.2 contains some additional statements,
which are required for the protocol to operate in accordance to the primitives in
PISF and thereby maintain connectivity in spite of corrupted initial states. They
assume the existence of a message type Delegate(w) taking exactly one (node
reference) parameter that is used to delegate implicit edges until they are either
fused with existing edges or used to establish edges that belong to the topology
(this can be achieved easily, e.g., by sending them via the path that the fast search
protocol for id(w) would take, which is why we do not pay any further attention
to this here).

4.4.2. Definitions and Main Results

As the generic search protocol cannot guarantee to function properly under the
presence of corrupted messages, we define additional invariants that are maintained
throughout the executions of the generic search protocol (that did not start with
corrupted messages). Note that we will use them in conjunction with the invariants
from Definition 4.10, which is why we start with the enumeration at 3.

60

The Generic Search Protocol 4.4

Definition 4.13 (Additional Invariants Concerning the Generic Search Protocol’s
Messages). We define the following invariants in which we require that source and
dest are node references, destID is an identifier, seq is an integer greater than or
equal to 0, and Next is a (possibly empty) set of node references.

3. If there is a Probe(source, destID,Next, seq) message in u.Ch, then
a) u ∈ Next and for every w ∈ Next, min(id(u), destID) ≤ id(w) ≤

max(id(u), destID),
b) R(Next, destID) ⊆ R(source, destID) and
c) if there is a node v such that id(v) = destID and v /∈ R(Next, destID),

then for every admissible state with source.seq[destID] < seq, v /∈
R(source, destID).

4. If there is a FastProbe(src, destID) message in u.Ch, then u ∈ R(src,
destID).

5. If there is a ProbeSuccess(destID, dest) message in u.Ch, then id(dest) =
destID and dest ∈ R(u, destID).

6. If there is a ProbeFail(destID, seq) message in u.Ch, then if v exists such
that id(v) = destID, for every admissible state with u.seq[destID] < seq,
v /∈ R(u, destID).

7. If there is a Search(v, destID) message in u.Ch, then id(u) = destID and
u ∈ R(v, destID).

With these and the aforementioned invariants, we are finally able to give the
definition of an admissible state for our problem:

Definition 4.14 (Admissible State). A state S is called admissible if and only if all
of Invariants 1-2 (c.f. Definition 4.10) as well as Invariants 3-7 (c.f. Definition 4.13)
hold in S.

We will also use the notion of a monotonic-searchability-sufficient (ms-sufficient)
protocol:

Definition 4.15 (Monotonic-Searchability-Sufficient (ms-sufficient)). A protocol
for the self-stabilization of a topology is monotonic-searchability-sufficient (ms-
sufficient) if and only if

1. all interactions between nodes can be decomposed into the primitives in ISF ,

2. it uses the generic search protocol for searching,

3. no Probe(), ProbeSuccess(), ProbeFail(), Search() or FastProbe()
message is sent at any other occasion than the ones specified in the generic
search protocol, and

61

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

4. in every computation of the protocol there is a safe state.

Theorem 4.12 implies the following:

Corollary 4.16. Any conventional protocol A ∈ PIDF that self-stabilizes to a
strongly connected topology T and that fulfills the mcp can be transformed into an
ms-sufficient protocol that self-stabilizes to T as well.

In the rest of this section, we prove the following theorem:

Theorem 4.17. Every ms-sufficient protocol satisfies monotonic searchability
according to Invariants 1-7.

On a side note, the following result follows directly from the description of the
generic search protocol:

Corollary 4.18. Consider an ms-sufficient protocol P that self-stabilizes to a
certain topology T and whose fast search protocol has a running time of at most
T (n). Then, in legitimate states, P answers successful search requests in time
O(T (n)).

4.4.3. Proving That Every Computation Has an Admissible Suffix
As a starting point of the proof of Theorem 4.17, we first prove the following
lemma:

Lemma 4.19. In every computation C of an ms-sufficient protocol, for every
admissible state S in C, every state S′ ≥ S is admissible. Furthermore, every
computation of an ms-sufficient protocol contains an admissible state.

The following sequence of lemmas constitutes the proof of Lemma 4.19. We say
a message m causes a message m′ if the message m′ was sent in an action handling
the receipt of m or a message caused by m.

Lemma 4.20. In every computation of an ms-sufficient protocol, if the first four
invariants hold in a state S, they hold in every state S′ ≥ S. Furthermore, in
every computation of an ms-sufficient protocol, there exists a state in which the
first four invariants hold.

Proof. Consider a state S′′ in which the first two invariants hold. We show that
the following six statements hold in S′′ and every subsequent state:

1. Every Probe() message sent in the Timeout action conforms to Invariant 3.

2. Every FastProbe() message sent in the InitiateNewSearch() action
conforms to Invariant 4.

3. Every Probe() message sent in the action executed on receipt of a Probe()
message conforms to Invariant 3a).

62

The Generic Search Protocol 4.4

4. Every Probe() message sent in the action executed on receipt of a Probe()
message that conforms to Invariant 3b) and Invariant 3c) also conforms to
Invariant 3b) and Invariant 3c).

5. Every FastProbe() message sent in the action executed on receipt of
a FastProbe() message that conforms to Invariant 4 also conforms to
Invariant 4.

6. Every Probe() message violating the third invariant can cause at most a
finite number of Probe() message that violate Invariant 3b) or 3c).

For the first statement, observe that by construction the protocol ensures that ev-
ery Probe(source, destID,Next, seq) sent in Timeout conforms to Invariant 3a)
and 3b) by construction and by Definition 4.5. Note that for every such mes-
sage seq = source.seq[destID] holds. It is easy to check that source.seq[destID]
is monotonically increasing for every node u and every destID. Since by con-
struction R(Next, destID) = R(source, destID) and because of Lemma 4.11,
for every node v, v /∈ R(Next, destID) implies that v /∈ R(source, destID) in
every previous admissible state and, in particular, every admissible state with
source.seq[destID] < seq. For similar reasons and the definition of the fast search
protocol (see Definition 4.2), the second statement also holds.
The third statement follows directly from the protocol.
For the fourth statement, consider an arbitrary Probe(source, destID,Next,

seq) message received by a node w that conforms to Invariant 3b) and Invari-
ant 3c) and that causes the sending of a new Probe(source, destID,Next′, seq)
message (for some set Next′). According to the protocol, R(Next′, destID) =
R(Next, destID) \ {w}, thus R(Next′, destID) ⊆ R(Next, destID) ⊆ R(source,
destID) (the last set relationship is due to Invariant 3b)) and Invariant 3b)
holds for the new message. Now assume that v exists such that id(v) = destID
and v /∈ R(Next′, destID). If w = v, w would not have sent the new mes-
sage, thus we may assume w 6= v. This yields v /∈ R(Next, destID), since
R(Next′, destID) = R(Next, destID) ∪ {w}. By Invariant 3c) of the message
received at w, we have that Invariant 3c) also holds for the message sent from w.

For the fifth statement, consider an arbitrary FastProbe(source, destID) mes-
sage received by a node w that conforms to Invariant 4 and that causes the sending
of a new FastProbe(source, destID) message to some node v. Since v is then
a neighbor of w whose identifier is between id(w) and destID, inclusive, it holds
that v ∈ R(w, destID). By Invariant 4, w ∈ R(source, destID), thus by definition
also v ∈ R(source, destID). By Lemma 4.11, this can never be rendered untrue in
any subsequent state.

For the sixth statement, note that every Probe(source, destID,Next, seq) mes-
sage received at a node v causes at most one new Probe(source, destID,Next′,
seq) message sent by v with the property that maxu′∈Next′ |id(u′) − destID| <
maxu∈Next |id(u)− destID| by construction. Since the number of nodes is finite,

63

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

this implies the Probe(source, destID,Next, seq) message can cause only a finite
number of Probe() message, which finishes the proof of the sixth statement.
For the first claim of the lemma, assume there is a state S such that the first

four invariants hold. Then the first five statements and Lemma 4.11 yield that
they will hold in every state S′ ≥ S.
For the second claim of the lemma, note that a state S′′ in which the first two

invariants hold exists in every computation of anms-sufficient protocol (according to
the definition of an ms-sufficient protocol). The six statements yield that Probe()
or FastProbe() messages initiated in Timeout and messages conforming to
Invariant 3 or 4 can only cause new messages conforming to Invariant 3 or 4,
respectively, and that all other messages will eventually be gone. Thus, there is a
state S′′′ ≥ S′′ such that all messages conform to Invariant 3 and 4.

Lemma 4.21. In every computation of an ms-sufficient protocol, if the first six
invariants hold in a state S, they hold in every state S′ ≥ S. Furthermore, in every
computation of an ms-sufficient protocol, there exists a state in which the first six
invariants hold.

Proof. Consider a state S′′ in which the first four invariants hold. By Lemma 4.20,
they will also hold in every subsequent state. We show that in S′′ and every
subsequent state, no receipt of a Probe() message causes the sending of a Probe-
Success() or ProbeFail() message that violates Invariant 5 or Invariant 6,
respectively. Observe that according to the protocol, no other action causes a node
to send a ProbeSuccess() or ProbeFail() message.
First we show that no receipt of a Probe() or a FastProbe() message can

cause the sending of a ProbeSuccess() message that violates Invariant 5. To be
more specific, consider a node v that receives a Probe(source, destID,Next, seq)
message and this causes v to send a ProbeSuccess(destID′, dest′) message to a
node u. In this case, according to the protocol, id(v) = destID, destID′ = destID,
dest′ = v, and u = sourcemust hold. By Invariant 3a), when v receives the Probe()
message, v ∈ Next and by Invariant 3b), R(Next, destID) ⊆ R(source, destID),
i.e., v ∈ R(source, destID). Thus, the ProbeSuccess() message sent by v
(to source) conforms to Invariant 5. For the other case, assume that a node v
receives a FastProbe(source, destID) message and that this causes v to send a
ProbeSuccess(destID′, dest′) to a node u. In this case, according to the protocol
also id(v) = destID, destID′ = destID, dest′ = v, and u = source must hold. By
Invariant 4, when v receives the FastProbe() message, v ∈ R(source, destID).
Thus, the ProbeSuccess() message sent by v (to source) conforms to Invariant 5
in this case, too.
Second we show that no receipt of a Probe() message can cause the sending

of a ProbeFail() message that violates Invariant 6. Again, consider a node
v that receives a Probe(source, destID,Next, seq) message causing v to send
a ProbeFail(destID′, seq′) message to a node u. According to the protocol
destID′ = destID, seq′ = seq and u = source must hold. Additionally, since

64

The Generic Search Protocol 4.4

Invariant 3a) holds and because the protocol sends a ProbeFail() message,
R(Next, destID) \ {v} = ∅. If there is a node w such that id(w) = destID,
then since Invariant 3c) holds for the Probe(source, destID,Next, seq) message
received by v, for every admissible state u.seq[destID] < seq, w /∈ R(u, destID).
Thus, the ProbeFail() message sent by v conforms to Invariant 6.

For the first claim of the lemma, assume there is a state S such that the first
six invariants hold. By what we showed above, they will also hold in every state
S′ ≥ S.
For the second claim of the lemma, note that a state S′′ as defined above

exists in every computation of an ms-sufficient protocol by Lemma 4.20. Further
note that we showed that no new message can violate Invariant 5 or Invariant 6.
Thus, consider the state S′′′ ≥ S′′ in which all ProbeSuccess() or ProbeFail()
messages that violate Invariant 5 or Invariant 6 and that are in channels in state
S′′ have been received. S′′′ is a state in which the first six invariants hold.

Finally, we can use these results to prove Lemma 4.19, which we restate as
follows:

Lemma 4.19. In every computation C of an ms-sufficient protocol, for every
admissible state S in C, every state S′ ≥ S is admissible. Furthermore, every
computation of an ms-sufficient protocol contains an admissible state.

Proof. Consider a state S′′ in which the first six invariants hold. By Lemma 4.21,
they will also hold in every subsequent state. We show that in S′′ and every
subsequent state, no Search() message that violates Invariant 7 can be sent.
According to the protocol, the only occasion at which a Search(v, destID)

message is sent to a node u is if node v received a ProbeSuccess(destID′, dest)
message with destID′ = destID and u = dest. Invariant 5 yields that id(dest) =
destID′, implying id(u) = destID, and dest ∈ R(v, destID′), implying u ∈
R(v, destID). This implies that every new message conforms to Invariant 7, which
completes the proof of the first claim of the lemma.

For the second claim of the lemma, note that a state S′′ as defined above exists
in every computation of an ms-sufficient protocol by Lemma 4.21. Consider the
state S ≥ S′′ in which all Search() messages violating Invariant 7 that are in
channels in S′′ have been received. S is a state such that all seven invariants hold:
i.e., S is an admissible state.

4.4.4. Proving the Correctness in Admissible States
The following sequence of lemmas gives results that hold in admissible states. They
turn out to be crucial to prove Theorem 4.17. We begin with proving the following
lemma:

Lemma 4.22. In every computation of an ms-sufficient protocol, if a node u has a
Search(u, destID) message buffered at u in an admissible state, then this message
will eventually be delivered or dropped. In the former case, it will be delivered to

65

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

the node w with id(w) = destID (which exists in this case). In the latter case,
either there is no node with identifier destID or all previous Search(u, destID)
messages that were initiated before that message and that were buffered at u during
at least one admissible state have been or will be dropped as well.

Recall that a Search(u, destID) is buffered at u if this message is contained in
u.WaitingFor[destID].
Before we prove Lemma 4.22, we prove another lemma that will turn out very

helpful for that proof:

Lemma 4.23. In every computation of an ms-sufficient protocol, if a node v
initiates a Probe(v, destID,Next, seq) message in an admissible state, then v
eventually receives either a ProbeSuccess(destID, dest) message for some node
dest or a ProbeFail(destID, seq) message.

Proof. For an arbitrary computation of an ms-sufficient protocol, let S be an
arbitrary admissible state. In the following, we use the potential function Ψ(U, ID)
defined as: Ψ(U, ID) :=

∑
u∈U n

|id(u)−ID|, in which n is the total number of nodes.
First of all, note that in SUFFIX(S) if a node u receives a Probe(v, destID,

Next, seq) message such that R(Next, destID)\{u} 6= ∅ then u sends a Probe(v,
destID,Next′, seq) message to some other node such that Ψ(Next′, destID) <
Ψ(Next, destID). This is due to the protocol and because when u receives a
Probe(v, destID,Next, seq) message, u choosesNext′ asNext\{u} augmented by
neighbors whose identifier is between id(u) and distID. Thus, Ψ(Next′, destID) <
Ψ(Next, destID).

Second, the aforementioned and the construction of the protocol give that each
Probe(v, destID,Next′, seq) message that does not cause a ProbeSuccess()
or ProbeFail() message causes a Probe(v, destID,Next′′, seq) message with
Ψ(Next′′, destID) < Ψ(Next′, destID). Besides, by definition, Ψ(Next′, destID)
cannot increase for an existing Probe(v, destID,Next′, seq) message. By induc-
tion and because Ψ is bounded from below, this yields that there must a node w that
does not send a new Probe() message upon receipt of a Probe(v, destID,Next′,
seq) message caused by the original Probe(v, destID,Next, seq) message sent by
v. Instead, according to the protocol, it sends either a ProbeSuccess(destID,w)
message or a ProbeFail(destID, seq) message to v.

Armed with Lemma 4.23, we are ready to prove Lemma 4.22:

Proof. Assume there is an admissible state S and a node u that has a Search(u,
destID) message m buffered at u in S. Furthermore, let seq be the value of
u.seq[destID] in S. Node u initiates a Probe(u, destID,Next, seq) message every
time it executes Timeout. According to Lemma 4.23, u will eventually receive a
ProbeSuccess(destID, dest) or a ProbeFail(destID, seq) message. Note that
u forwards or drops m upon the first receipt of such message after S.
First, consider the case that the first such message that u receives after state

S is a ProbeSuccess(destID, dest) message. Invariant 5 (which holds due to

66

The Generic Search Protocol 4.4

Lemma 4.19) yields id(dest) = destID and m will be sent to dest, according to
the protocol.
Second, consider that the first such message that u receives is a Probe-

Fail(destID, seq) message. According to Invariant 6, either no node v with
id(v) = destID exists (in which case we are finished) or for every admissible state
with u.seq[destID] < seq, v /∈ R(u, destID). Now consider an arbitrary earlier
Search(u, destID) message m′ that was buffered at u during an admissible state.
If m′ is still waiting at u in state S, then m′ will be dropped together with m
when u receives the ProbeFail(destID, seq) message. Otherwise, assume for
contradiction that immediately after some state S′ < S, m′ was sent to a node dest
with id(dest) = destID. Since m′ was buffered at u during at least one admissible
state, by Lemma 4.19, S′ is admissible as well. According to the protocol, the fact
that m′ was sent to dest requires that there was a ProbeSuccess(destID, dest)
message in u.Ch in S′. By Invariant 5, dest ∈ R(u, destID) held in S′. Addi-
tionally, u increased u.seq[destID] when the first Search() message was initiated
after that state, i.e., before S. Since the sequence numbers are monotonically
increasing, S′ is a state with u.seq[destID] < seq. Thus, Invariant 6 of the Probe-
Fail(destID, seq) message implies dest /∈ R(u, destID) in state S′, yielding a
contradiction. This finishes the proof.

Last, and building on Lemma 4.22, we are able to prove the following lemma:

Lemma 4.24. In every computation of an ms-sufficient protocol, for every two
nodes u and v such that v ∈ R(u, id(v)) in some admissible state S, there is a state
S′ ≥ S such that all Search(u, id(v)) messages initiated in S′ and all subsequent
states will be delivered to v.

Proof. Assume v ∈ R(u, id(v)) in an admissible state S. Note that according
to Lemma 4.22, there will be a state S′ ≥ S in which u.WaitingFor[id(v)] is
empty because all Search(u, id(v)) messages buffered at u during S have been
sent to their destination or dropped right before (if there were any). Let seq′
be the value of u.seq[id(v)] in S′. Consider the first Search(u, id(v)) message
initiated after S′. Since InitiateNewSearch(id(v)) is the only action that
adds elements to u.WaitingFor[id(v)], u.WaitingFor[id(v)] = ∅ holds when this
message is initiated. According to the pseudocode (c.f. Listing 4.2), u.seq[id(v)]
will be increased by one at that time: i.e., its new value will be seq′′ = seq +
1. Now consider an arbitrary Search(u, id(v)) message m initiated after S′.
By Lemma 4.22, m will be delivered or dropped. Assume for contradiction
it is dropped. According to the pseudocode (c.f. Listing 4.2), this requires u
to receive a ProbeFail(destID, seq) message with destID = id(v) and seq ≥
u.seq[id(v)]. Note that as argued before at that time u.seq[id(v)] ≥ seq′′ > seq′.
Thus, Invariant 6 for the ProbeFail(destID, seq) yields a contradiction to v ∈
R(u, id(v)) in S. All in all, we have that m is delivered correctly.

Using Lemma 4.19, Lemma 4.22 and Lemma 4.24, we can finally prove Theo-
rem 4.17, which finishes this section. Before proving that theorem, we restate it as

67

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

follows:

Theorem 4.17. Every ms-sufficient protocol satisfies monotonic searchability
according to Invariants 1-7.

Proof. Consider an arbitrary computation C of an ms-sufficient protocol. Accord-
ing to Lemma 4.19 C contains an admissible state and the computation suffix
starting from the first admissible state S solely consists of admissible states. Thus
it remains to prove that the protocol satisfies monotonic searchability in this
computation suffix.

Consider an arbitrary Search(u, destID) message m initiated in a node u after
S that is successfully delivered to the node v with id(v) = destID. Assume
for contradiction that there is another Search(u, destID) message m′ initiated
after m which is dropped. Note that both m and m′ were buffered at u during
at least one admissible state. Lemma 4.22 implies that since m′ is dropped, m
must have been dropped as well, which represents a contradiction. Thus, every
Search(u, destID) initiated after m is delivered as well.

Last, note that by Definition 4.1 in legitimate states (i.e., in the target topology)
for every pair of nodes u and v, v ∈ R(u, id(v)). Thus, Lemma 4.24 yields
that the non-triviality property is also fulfilled, which completes the proof of
Theorem 4.17.

4.5. Examples
In this section, we give some examples of topologies for which a self-stabilizing
protocol that satisfies non-trivial monotonic searchability according to the generic
search protocol can be obtained by combining existing results in the literature with
the results presented in this chapter.1 By Corollary 4.16 and Theorem 4.17, all
that needs to be shown is that the target topology T is feasible, that there is a fast
search protocol ST and that the self-stabilizing protocol for the target topology
fulfills the mcp.

4.5.1. The Line Graph

The line topology is the first topology for which a protocol satisfying non-trivial
monotonic searchability was shown [SSS15]. Now, using the generic approach
described in this chapter and applying it to the self-stabilizing list protocol presented
by Nor, Nesterenko, and Scheideler (called l-Corona in [NNS13]), the non-trivial
monotonic searchability follows as a corollary.
First of all, it is obvious that the linear list is feasible and that there is a fast

routing protocol (which simply forwards the message into the direction of the target
at each step). Second, note that in the protocol in [NNS13] each node has at most

1Note that some of the results we cite have been obtained for a synchronous model. However,
the results easily transfer to the asynchronous model.

68

Examples 4.5

one neighbor in each direction and whenever a node u receives a new reference v, u
keeps the reference if and only if it is closer to its previous neighbor w in the same
direction. In any case, u delegates the non-kept reference to the kept neighbor in
the same direction. Although l-Corona does not have a dedicated Delegate()
message type, there is exactly one type of messages whose single parameter is a
node reference and whenever a reference is removed from a node’s variables, it is
delegated in this type of messages, which thus satisfies the requirements of the
Delegate() message type in Definition 4.6. Thus, this protocol fulfills the mcp.

4.5.2. The SKIP+ Graph
The SKIP+ graph was introduced by Jacob, Richa, Scheideler, Schmid, and
Täubig [Jac+14] as a supergraph of the skip graph to overcome the issue that
the consistency of the original skip graph [AS07] is not locally checkable. We
now briefly recap the formal definition of a SKIP+ graph from [Jac+14] and its
self-stabilizing protocol and then show how to apply the results of this chapter to
that topology.

SKIP+ Graph Formal Definition

Each node v has an identifier v.id and a bit string v.rs associated with it. Both
v.id and v.rs together make up the identity of a node. v.id is unique and otherwise
chosen arbitrarily and there exists a total order on all these values. v.rs is a
random bit string in which each bit is chosen independently and uniformly at
random. Although there is no specific bound on the length of these bit strings,
they only need to be “sufficiently long”, so that the bit strings of every two nodes
differ from each other. If the required length is unknown in advance, the bit strings
could be appended on demand. Note that in practical applications, the random
bit strings can be computed with the help of a pseudo-random hash function from
the id value. We also denote the length-i-prefix of v.rs by prei(v) (pre0(v) is an
empty bit string for every v then). Let ⊥.id := −∞ and >.id := ∞. [Jac+14]
then defines for every node v, every subset W of nodes, every i ≥ 0, and every
x ∈ {0, 1} (◦ means string concatenation):

pred(v,W) = argmaxw∈W∪{⊥}{w.id < v.id},
succ(v,W) = argminw∈W∪{>}{w.id > v.id},
predi(v, x) = pred(v, {w ∈ V |prei+1(w) = prei(v) ◦ x}),
succi(v, x) = succ(v, {w ∈ V |prei+1(w) = prei(v) ◦ x}).

For every node v and every i ≥ 0, rangei(v) is defined as:

rangei(v) = [min{predi(v, 0).id, predi(v, 1).id},max{succi(v, 0).id, succi(v, 1).id}]

Intuitively, ranges at level i are chosen such that they contain at least one level-
(i+ 1)-predecessor with last bit 0 and at least one with last bit 1 as well as at least

69

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

one level-(i + 1)-successor with last bit 0 and at least one with last bit 1. The
neighborhood at level i is defined as Ni(v) := {w ∈ V |prei(w) = prei(v) ∧ w.id ∈
rangei(v)}. The neighborhood of a node v is defined as the union Ni(v) for all
i ≥ 0.

Build-SKIP+

The self-stabilizing protocol for the SKIP+ graph described in [Jac+14] is called
Build−SKIP+ in the following. We define two types of edges: stable edges and
temporary edges. An edge (u, v) is called stable if v.id ∈ rangei(u) for some i.
Otherwise, (u, v) is called temporary. The level of a temporary edge (u, v) is defined
as the length of the longest common prefix of u and v. In the Build−SKIP+
protocol, every node regularly informs all neighbors about itself (in order to
establish reverse edges), determines its stable edges and additionally performs the
following four rules (N l(u) is used to distinguish the local neighborhood of node u
during some state from the ideal neighborhood in the final topology):

1. Range Reduction. Every node u with a stable neighbor v, for every i ≥ 0
and every (not necessarily stable) neighbor w ∈ N l(u) such that w 6= v,
prei(v) = prei(w) and w.id ∈ rangei(v), introduces w to v. Additionally, if
v.id ∈ rangei(w), v also introduces v to w.

2. Forward Edges. Every node u delegates every temporary edge (u, v) to the
stable neighbor w of u that has the largest common prefix with v.rs.

3. Local Closure. Each node u ∈ V for all its neighbors v, w ∈ N l(u) introduces
w to v if and only if its stable neighborhood changes in the following sense:
In contrast to the previous round, either at least one stable edge e = (u, x),
for some x ∈ V became instable, or the lowest level on which e is stable
changed, or u is incident to a new stable edge.

4. Linearize. For every prefix length i, every node u identifies the stable
neighbors v1, . . . , vk with v1.id < v2.id < · · · < vk.id having the prefix
prei(u) ◦ 0 and introduces v2 to v1, v3 to v2, . . . , as well as vk to vk−1. The
analogous is applied to the stable neighbors w1, . . . , wl with w1.id < w2.id <
· · · < wl.id having the prefix prei(u) ◦ 1.

Examples and intuitive descriptions as well as the full analysis of this protocol are
provided in [Jac+14].

Application of Our Results to the SKIP+ Graph

Obviously, the SKIP+ graph is a feasible topology and the search strategy that
always forwards a message via a stable edge that “fixes one bit” of the destination is
a fast search protocol. Thus, all that remains to be shown is that Build−SKIP+
fulfills the mcp with respect to this search protocol. First of all, regarding the first

70

Examples 4.5

sub-property of the mcp, note that there is one (set) variable Ni for each level i
storing the neighborhood at level i. Define γmin

u,Ni
(ANi) as the smallest element in

rangei(v) given the assignment ANi and, accordingly, γmax
u,Ni

(ANi) as the greatest
element in rangei(u). Note in the above protocol description that a node u never
adds a node v to its stable neighborhood at level i if u.id /∈ rangei(u). Furthermore,
a node u removes a node v from its stable neighborhood at level i only if rangei(v)
changed in the same action. By the definition of rangei(v) and the aforementioned,
the lower end of this range can only increase and the upper end of this range can
only decrease. Thus, the first sub-property of the mcp holds for Build−SKIP+.
For the second property, consider the case in which an edge (u, v) is delegated to
some other node w. This only happens in the second rule of Build−SKIP+. In
this case, (u, v) is a temporary edge, (u,w) is a stable edge, and w has the largest
common prefix with v. This implies that min(u.id, v.id) < w.id < max(u.id, v.id).
Thus, the delegation in that step satisfies the requirements of the Delegate()
message type. All in all, Build−SKIP+ fulfills the mcp.
[Jac+14] also argues that routing between any pair of nodes using the above

fast search protocol is possible in time O(logn) with high probability. Thus,
Corollary 4.18 implies the following:

Corollary 4.25. In a stabilized SKIP+ graph consisting of n nodes, successful
search requests are answered in time O(logn) with high probability.

4.5.3. The Linearized De Bruijn Network

The linearized De Bruijn network (LDB) introduced by Richa, Scheideler, and
Stevens [RSS11] is a discretization of a continuous variant of the well-known De
Bruijn graph, in which the identifiers of the n = 2d nodes are bit strings of length
d and each node u is connected to the nodes whose identifiers are obtained by
shifting u’s identifier by one into either direction and padding the remaining bit
with either 1 or 0. The following definition of the LDB is taken from [RSS11]:

Definition 4.26 (The Linearized De Bruijn Network (LDB) [RSS11]). G = (V,E)
is a directed graph where the node set V can be partitioned into the set of real
nodes VR and a set of virtual nodes VV . Each real node v ∈ VR has a real-valued
label in the interval (0, 1). In addition, each v ∈ VR hosts two virtual nodes in
VV : a left virtual node, l(v), with label v

2 and a right virtual node, r(v), with label
v+1

2 . The collection of all real and virtual nodes v ∈ V is arranged in sorted order
of their labels and (v, w) ∈ E if and only if v and w are consecutive in the linear
ordering (linear edges) or w is a virtual node of v (virtual edges).

It is obvious that the LDB is a feasible topology and that there is a fast search
protocol ST (here one can use the same as for the line graph). Unfortunately, the
routing protocol from [RSS11] that has a much better running time does not satisfy
the definition of a fast routing protocol, since a single message is possibly routed
into both the left and the right direction in the course of the routing. An important

71

Chapter 4 MONOTONIC SEARCHABILITY FOR SUPERGRAPHS OF THE LINE

property of the self-stabilizing algorithm for the LDB presented in [RSS11] is that
each node v ∈ V has at most one left and at most one right neighbor and that
whenever such a neighbor is removed, it is replaced by a closer one. Furthermore,
the previous neighbor is delegated to the new one and although the linearization is
not described explicitly in [RSS11], it is not difficult to implement the protocol
such that the required Delegate() message type is used for this.

Of course, one might question the usefulness of the De Bruijn graph if searching
is done without exploiting the list edges. However, one might think of scenarios in
which for part of the messages, monotonic searchability is required, whereas for
the other messages, delivery speed is more important. One would thus be able to
trade speed for reliability by sending the messages via the above protocol instead
of via the standard De Bruijn search protocol.

4.6. A Short Digression: The Bridge-SKIP+ Graph
We now consider a special approach for the SKIP+ graph that allows for efficient
monotonic searchability without using the framework introduced in this chapter.
The result is a simpler protocol, although the resulting graph is only a supergraph
of the SKIP+ graph, called the Bridge−SKIP+ graph. The idea of the self-
stabilizing protocol Build−Bridge−SKIP+ for the Bridge−SKIP+ graph is
the following: Each node u for every level i ≥ 0 and every b ∈ {0, 1} maintains
a search neighbor si,b(u) that it keeps additionally to its (temporary and stable)
neighborhood. Simply put, a node v becomes si,b(u) when the following two
conditions are fulfilled: (i) u does not yet have a search neighbor si,b(u), and (ii) v
is u’s closest neighbor such that prefixi+1(v) = prefixi(u) ◦ b. Once a node has
become si,b(u), the value of si,b(u) remains unchanged. The search protocol then
resembles the bit adaptation strategy with respect to the search edges only. We
assume that nodes search for other nodes via their random bit string. The search
protocol then works as follows2 (si,b(u) = ⊥ means that u does not have a search
neighbor for level i and bit b, and destRS[i+ 1] is the (i+ 1)-th bit of destRS):

Listing 4.3: Bridge−SKIP+−Search
1 InitiateNewSearch(destRS)
2 create a new message m = Search(self, destRS, 0)
3 send m to self
4
5 Search(u, destRS, i)
6 if self.id = destRS then
7 | // success
8 else if si,destRS[i+1](self) 6= ⊥ then
9 | send Search(u, destRS, i + 1) to si,destRS[i+1](self)

10 else
11 | // fail, inform u about the failed message if desired

2In contrast to the search protocol from Section 4.4, the Search() message type has a third
parameter here, which allows us to keep the pseudocode short.

72

A Short Digression: The Bridge-SKIP+ Graph 4.6

We obtain the following theorem:

Theorem 4.27. Build−Bridge−SKIP+ satisfies monotonic searchability ac-
cording to Bridge−SKIP+−Search.

Proof. Note that the fact that si,b(u) for every node u and every i and b changes only
when its previous value was ⊥ directly implies the monotonicity property of mono-
tonic searchability (each successful request from node u to node v takes exactly the
same path in every search). Thus, all that needs to still be shown is the non-triviality
property of Build−Bridge−SKIP+ according to Bridge−SKIP+−Search.
Therefore, consider an arbitrary search Search(u, destRS, i) request initiated

after the underlying SKIP+ graph has stabilized (which it does eventually as
proven in [Jac+14]) and assume this request is dropped in some node v (i.e., it
reaches Line 11) although a node with bit string destRS exists. Let i be the value
of the third parameter of Search() when the message is dropped. By induction
we obtain that prei(v) equals the first i bits of destRS. Furthermore, since the
message is dropped, si,b = ⊥, where b is the (i+ 1)-th bit of destRS. This implies
that v does not have a neighbor w such that prei+1(w) = prei(v) ◦ b. Since we
assumed a node with bit string destRS to exist, there is at least one node w′ such
that prei+1(w′) = prei(v)◦ b in the graph. According to the definition of a SKIP+
graph (see Section 4.5.2), the closest such node w′′ is in rangei(v) and thus in
N(v). Therefore, w′′ would be a search neighbor of v for level i and bit b, which
yields a contradiction. This completes the proof of the lemma.

Note that Bridge−SKIP+−Search fixes one bit in every step and the maximum
required size of the bit strings is O(logn) with high probability (see [Jac+14]).
Furthermore, each node stores at most one search neighbor for every non-trivial
level i, i.e., for every level in which there possibly is a neighbor. It follows from
Chernoff bounds that the number of these levels is O(logn) with high probability
(see, [Jac+14]). Thus, altogether we obtain the following result:

Corollary 4.28. Build−Bridge−SKIP+ satisfies monotonic searchability ac-
cording to Bridge−SKIP+−Search and all search messages are delivered or
dropped within O(logn) steps with high probability. The number of additional edges
of a Bridge−SKIP+ graph (in comparison to the SKIP+ graph consisting of
the same nodes) is O(logn) per node with high probability (i.e., the total number
of edges increases by a factor of O(1) w.h.p.).

73

Monotonic Searchability under Leaving
Nodes

C
H
A
P
T
ER 5

So far, we have considered monotonic searchability in self-stabilizing systems
assuming that the node set is static. Yet if we also allow nodes to leave the system,
the problem becomes much more challenging. In this chapter we thus consider the
problem of monotonic searchability in systems with leaving nodes. To reduce the
complexity, we do not provide a generic solution to this problem here. Instead, as
a starting point, we target the nodes to form the line topology and we will see that
even for a topology as simple as this, the solution will be quite complex.
The main results of this chapter have previously appeared in the following

publication:

Christian Scheideler, Alexander Setzer, and Thim Strothmann.
Towards Establishing Monotonic Searchability in Self-
Stabilizing Data Structures. In: Proceedings of the 19th In-
ternational Conference on Principles of Distributed Systems (OPODIS).
Rennes, France, 2015. [SSS15]

Outline of This Chapter The outline of this chapter is as follows: First, in
Section 5.1, we formally define the problem of monotonic searchability under
leaving nodes. Then, in Section 5.2, we present the Build-List* protocol and the
corresponding search protocol, Search*. In the subsequent sections, we further
show that Build-List* solves the FDP (Section 5.3), self-stabilizes to the line
topology (Section 5.4) and thereby satisfies monotonic searchability (Section 5.5).

5.1. Problem Statement
This chapter considers the same communication model as Chapter 4 (the description
of this model is provided in Section 4.1.1). We consider the problem of forming
a line topology, solving the FDP, and satisfying monotonic searchability. For
this problem, we can apply the same definition of monotonic searchability as in
Chapter 4, with the only difference that monotonic searchability only needs to
hold for pairs of staying nodes. For completeness, we state the adapted definition
here again:
Definition 5.1 (Monotonic Searchability under leaving nodes). A self-stabilizing
protocol P satisfies monotonic searchability according to some search protocol PS if
search requests are routed according to PS and it fulfills the following two properties
for every computation C of P :

75

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

Monotonicity For every pair of nodes v, w that remain staying throughout C
and every Search(v, id(w)) request r initiated in some state S of C, every
Search(v, id(w)) request r′ such that r′ is initiated in a state S′ ≥ S also
succeeds.

Non-Triviality C has a suffix such that in this suffix for every pair of nodes v, w,
Search(v, id(w)) requests will succeed if v and w remain staying throughout
C and there is a path from v to w in the target topology.

Analogous to the notation used in Chapter 4, for three nodes u, v, w we say v is
closer to u than w if and only if |id(v)− id(u)| < |id(w)− id(u)|.

In [For+14] it was shown that in the model considered in this chapter, there
is no distributed protocol that can decide when it is safe for a node u to leave
the system, i.e., whether u’s executing exit would disconnect the network graph.
Therefore, solving the FDP is impossible without any further additions to the
model. The authors solve the issue by introducing an oracle. In general, an oracle
is a predicate that depends on the current system state and the node calling it. In
the context of the FDP, an oracle is supposed to advise a leaving node when it
is safe to execute exit. We use the oracle NIDEC as introduced in [For+14] in
order to solve the FDP:

Definition 5.2 (NIDEC oracle). For an arbitrary node u calling the oracle
NIDEC, NIDEC evaluates to true if and only if:

1. no node v 6= u has a reference to u in its local memory or in a message in
v.Ch and

2. u.Ch is empty.

We note that the FDP deliberately ignores that new nodes can join the network.
However, this abstraction is justified in a self-stabilizing setting, since from an
algorithmic point of view for some node u a new node joining the network is the
same as getting a message from a node that it has never been in contact with.
To sum up, the goal of this chapter is to obtain a protocol that stabilizes to

the list, solves the finite departure problem and satisfies monotonic searchability
according to a corresponding search protocol.

5.2. Protocol Description of Build-List* and Search*
In this section, we describe the self-stabilizing Build-List* protocol and the
corresponding search protocol Search*. To simplify the description, we first
describe the protocol in such a way that we assume only staying nodes to exist
in the system (Section 5.2.1) and then describe the differences that apply when
there are leaving nodes as well (Section 5.2.2). In doing so, we first restrict
ourselves to describing only the parts of the protocol that are relevant for the
topology stabilization. Afterwards, we deal with the parts that belong to the search

76

Protocol Description of Build-List* and Search* 5.2

protocol (Section 5.2.3). At the end of this section, we give the full specification of
Build-List* and Search* (Section 5.2.4).

5.2.1. Protocol Overview Assuming Staying Nodes Only

The general idea used to make convergence to the line topology possible is the
linearization technique introduced in [ORS07]. In a nutshell, it means that each
node always keeps the closest neighbor in each direction and delegates all neighbors
it does not need. However, as in Chapter 4, we need to apply some kind of “Safe
Delegation” technique because normal delegations could replace explicit edges by
paths of explicit and implicit edges preventing search requests from reaching the
target.
Thus, in our protocol, each node u has sets of neighbors Left and Right used

to store neighbors with smaller or greater identifier, respectively. In the following,
for a node u we refer to these sets with the notation Left(u) and Right(u). An
important property of our protocol is that every node w does not delegate any
edge whose endpoint v is stored in Left(w) or Right(w) directly. Instead it first
introduces v to another node u via an Introduce(v, w) message, waits for an
acknowledgement that v’s reference has been added to Left(u) or Right(u) (which
the Linearize(v) message type is used for) and then delegates v to a neighbor
closer to v (which it uses the SingleIntroduce(v) message type for). More
specifically, whenever a node u has multiple right neighbors, it does the following
(the behavior for the left neighbors is completely analogous): Let w1, . . . , w` be
u’s right neighbors with id(wi) < id(wi+1) for all 1 ≤ i < `. In the Timeout
action u introduces wi+1 to wi by sending an Introduce(wi+1, u) message to
wi. The second parameter enables wi to know that it received wi+1’s reference
from u. wi thus stores wi+1’s reference (in Right(wi)), sends a Linearize(wi+1)
message back to u (to acknowledge the receipt of wi+1’s reference) and sends a
SingleIntroduce(u) message to itself (the latter is only to preserve connectivity
in case the message originates from an initial state). Node u now acts upon that
Linearize(wi+1) message by deleting wi+1 from its memory. Since references may
never be thrown away, to preserve connectivity u sends wi+1’s reference to a right
neighbor (in particular, the one with the maximum identifier whose identifier is
still smaller than wi+1’s — observe that this is not necessarily wi anymore). Since
u only removes the explicit edge to wi+1 after it has received the acknowledgement
from wi, u preserves a path of explicit edges between u and wi+1. The other thing
u does in the Timeout action is to send its own reference to the closest neighbors
on each side via a SingleIntroduce(u) message. Aside from this purpose, the
SingleIntroduce(u) action is basically used to delegate a reference of a node u
into one direction (i.e., to the left or to the right) as long as there is a node between
the current node and u in Left or Right. Note that implicit edges are not used
for searches, which is why we do not have to apply the ”Safe Delegation“ principle
for this kind of edges. However, they still need to be delegated (since references
may not be thrown away if connectivity is to be maintained). Further note that

77

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

even though a node may temporarily have more references than required for the
line topology, Build-List* still eventually stabilizes to the line, as superfluous
edges are constantly linearized.

5.2.2. Additional Details for Dealing with Leaving Nodes

After this description of the behavior of Build-List* in a system consisting of
staying nodes only, we now describe the additional behavior of Build-List* also
under the presence of leaving nodes. In contrast to the staying nodes, each leaving
node distinguishes between two different kinds of neighbors: those that it already
had before switching to the leaving mode (which are Left and Right) and those
which it received while being leaving (TempL and TempR).

For the Introduce(), Linearize() and SingleIntroduce() actions, as well
as the ForwardProbe() action, which we will specify for the search protocol
later on, a leaving node u will always save nodes in TempL or TempR in cases
where a staying node saves them in Left or Right, respectively. In its Time-
out action, a leaving node u either introduces all its neighbors to each other
and executes exit if NIDEC is true or it sends ReverseAndLinearizeREQ()
messages to all its neighbors. With these ReverseAndLinearizeREQ() mes-
sages u requests all neighbors to stop holding its reference. It is not advisable
for leaving nodes to send their own reference to other nodes. Therefore, a Re-
verseAndLinearizeREQ(dir) message only contains a value dir ∈ {left, right}
that indicates whether a left or right neighbor should be removed: i.e., u sends a
ReverseAndLinearizeREQ(left) message to all its neighbors to the right and
a ReverseAndLinearizeREQ(right) message to all its neighbors to the left.
If a node v receives a ReverseAndLinearizeREQ(dir) message, there are two
possible scenarios. If v is staying or dir = right, it sends a ReverseAndLin-
earizeACK(v, uniqueV alue) message to all neighbors in the given direction, which
contains its own reference and a uniquely created value for each neighbor (which can
be implemented as easily as by a local counter). These values are also stored by v at
the corresponding node reference in the neighbor set. If, however, v is leaving and
dir = left, v simply ignores the request to reverse its edge. Thereby, leaving nodes
with a higher identifier are given a higher priority for exiting the system. Once
a leaving node u receives a ReverseAndLinearizeACK(v, uniqueV alue) mes-
sage, it responds with a ReverseAndLinearize(nodeList, uniqueV alue) mes-
sage that contains the received unique value (for identification purposes) and
also all its neighbors that are on the opposite of the node in the message (i.e.,
if the received node is to the right of u, u sends all left neighbors and vice
versa). A ReverseAndLinearizeACK(v, uniqueV alue) message is ignored by
a staying node, meaning that it is transformed into a SingleIntroduce(v)
message to itself. Finally, the ReverseAndLinearize(nodeList, uniqueV alue)
message is received by v and v checks if it has a neighbor u with the given
unique value. If this is the case, v either finishes the reversal process by re-
versing the edge (v, u) and saving the newly received neighbors (if v is staying

78

Protocol Description of Build-List* and Search* 5.2

or getting the ReverseAndLinearize(nodeList, uniqueV alue) message from a
right neighbor) or v ignores the message by simply saving all nodes in TempL

(if v is leaving and getting the ReverseAndLinearize(nodeList, uniqueV alue)
message from a left neighbor). In case the unique value does not match, the
ReverseAndLinearize(nodeList, uniqueV alue) message is not a response to
a former ReverseAndLinearizeACK(v, uniqueV alue) message (i.e., it is a
corrupted message originating from the initial state) and thus v only sends a
SingleIntroduce(w) message to itself for every received node w ∈ NodeList in
order to maintain connectivity.

5.2.3. The Search Protocol Search*

After having described the parts of the protocol relevant for topology stabilization,
we now describe the search protocol Search*. In general, this protocol uses the
same probing approach used by the generic search protocol in Chapter 4. Even
more, for staying nodes it behaves completely analogously. Whenever a staying
node u executes the InitiateNewSearch(destID) action (leaving nodes will do
nothing during that action), u creates a new Search(u, destID) message and
starts to periodically initiate ForwardProbe(u, destID, {u}, u.lseq) messages
that it sends to itself. Each ForwardProbe(source, destID,Next, seq) message
contains four parameters, whose meaning is as follows: source is the reference of
the initiator of the message. destID is the identifier of the target being search
for. Next is a set of node references containing nodes the message (or, to be more
precise, a message caused by this message) will visit in the future. seq is a counter
used to distinguish different probing batches, which we will explain more about
later on. Whenever a ForwardProbe(u, destID,Next, seq) message is at a node
w, w removes itself from Next and adds all its neighbors from Left(w) or Right(w)
whose identifier is ”closer“ to destID than w’s but still between w’s identifier and
destID. Then it forwards the ForwardProbe(u, destID,Next, seq) message
to the node in Next whose identifier has the greatest distance to destID. If a
ForwardProbe(u, destID,Next, seq) message arrives at a staying node v with
id(v) = destID, it directly responds with a ProbeSuccess(destID, v) message to
u. Leaving nodes will not send such a message as they do not want to increase the
number of nodes holding their references and because delivering a search request to
these nodes is not necessary according to the problem definition anyway. If, however,
Next is empty at a node w with id(w) 6= destID after w has added all neighbors
to Next according to the aforementioned rule (which were none in this case), the
ForwardProbe() message is answered with a ProbeFail(destID, seq) message.
In any case, as soon as u receives the response, it acts accordingly: If the answer to
a ForwardProbe(u, destID,Next, seq) message is a ProbeFail(destID, seq)
message, it drops the corresponding Search(u, destID) message completely (in
fact, there is an additional detail depending on the value of seq, but this will be
explained in the next paragraph). If the answer is ProbeSuccess(destID, v),
Search(u, destID) messages waiting at u are directly sent to v. In addition to

79

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

the aforementioned, since nodes must not throw away node references, in all of
these functions, nodes will deliberately store or delegate references retrieved via
parameters of messages. Here, staying nodes might even add additional nodes to
Left and Right if they would be closer neighbors than the previous ones on the
”same side“. Leaving nodes, however, will add these nodes only to TempL and
TempR.

To implement the aforementioned probing mechanism, if additional Search(u,
destID) messages are created at u while u is still waiting for an answer to a previ-
ously initiated ForwardProbe(u, destID) message, these requests are buffered at
u (for which the WaitingFor[destID] map is used) and are dropped or delivered
as soon as the ProbeFail(destID, seq) or ProbeSuccess(destID, v) response
arrives at u. This means that search requests to the same destination might be
sent out in batches. Furthermore, note that nodes do not memorize whether
they have already sent ForwardProbe() messages to a certain destination. Due
to corrupted initial states, this knowledge could be wrong and nodes relying on
this knowledge would wait forever. Therefore, nodes periodically send Forward-
Probe() messages during Timeout, and not only once. We now explain the
purpose of the fourth parameter seq of the ForwardProbe() message. Recall
that we make no assumptions on the message delivery speed and that channels
do not guarantee FIFO delivery. Therefore, it is possible that a node u receives a
ProbeFail() message that is actually an answer to a ForwardProbe() message
initiated long ago. Even worse, there might have been successful responses in the
meantime, which caused u to deliver search messages to the destination. Since
dropping messages upon receipt of this ProbeFail() message now would certainly
contradict the definition of monotonic searchability, each node u stores a sequence
number counter lseq. Whenever InitiateNewSearch(destID) is executed by
u and there is no Search(u, destID) that waits for an answer to a Forward-
Probe() message, u increments u.lseq, stores the new u.lseq value in an entry
for v and always attaches the current sequence number (u.lseq) to each For-
wardProbe() message it sends. Negative responses to probes (i.e., ProbeFail()
messages) also contain this sequence number to identify the batch this message
belongs to. Whenever u receives a ProbeFail() message, u checks whether the
sequence number in this message is at least the sequence number stored for destID.
If not, it drops the message, since in that case, the answer belongs to a Forward-
Probe() message sent for an earlier batch of Search(u, destID) messages that
have already been processed.

5.2.4. The Pseudocode of Build-List* and Search*

To keep the pseudocode concise, there is one part of the protocol that is only
relevant to dealing with initial states. We therefore describe this part in words: At
the beginning of each action (before the actual code starts), Build-List* performs
a sanity check for Left, Right, TempL, and TempR and possibly reorders the
references accordingly (such that Left and TempL store only references of nodes

80

Protocol Description of Build-List* and Search* 5.2

with a smaller identifier than the executing node and Right and TempL store only
references of nodes with a greater identifier). Additionally, it ensures that there are
no two identifiers u 6= v such that uniqueV alues[u] = uniqueV alues[v] (otherwise
it assigns a new unique value to one of the two). The effect of this maintenance is
summarized by the following lemma (which is easily obtained by checking that in
the pseudocode nodes add references to Right or TempR only if their identifier is
greater than self and to Left or TempR if the opposite is the case):

Lemma 5.3. In every but the first state of every computation of Build-List*,
for every node v the following holds: ∀x ∈ Left ∪ TempL : id(x) < id(v) and
∀ y ∈ Right ∪ TempR : id(v) < id(y).

Listing 5.1: Build-List* protocol
1 Timeout
2 if mode = staying then
3 | for every destID such that W aitingF or[destID] 6= ∅ do
4 | | send forwardP robe(self, destID, {self}, lseq) to self
5 | let Left = {v1, v2, . . . , vk} with id(vk) < id(vk−1) < · · · < id(v1)
6 | for all vi ∈ Left with 1 ≤ i < k
7 | | send Introduce(vi+1, self) to vi

8 | let Right = {w1, w2, . . . , wl} with id(w1) < id(w2) < · · · < id(wl)
9 | for all wi ∈ Right with 1 ≤ i < l do

10 | | send Introduce(wi+1, self) to wi

11 | send SingleIntroduce(self) to v1
12 | send SingleIntroduce(self) to w1
13 else // mode = leaving
14 | if NIDEC = true then
15 | | for all v ∈ Left ∪Right ∪ T empL ∪ T empR do
16 | | | for all w ∈ Left ∪Right ∪ T empL ∪ T empR do
17 | | | | send SingleIntroduce(w) to v
18 | | | | send SingleIntroduce(v) to w
19 | | exit
20 | else
21 | | for all v ∈ Left ∪ T empL do
22 | | | send ReverseAndLinearizeREQ(right) to v
23 | | for all w ∈ Right ∪ T empR do
24 | | | send ReverseAndLinearizeREQ(left) to w
25
26 Introduce(v, w)
27 if id(v) < id(self) then
28 | if mode = staying then
29 | | Left := Left ∪ {v}
30 | | send Linearize(v) to w
31 | | send SingleIntroduce(w) to self
32 | else // mode = leaving
33 | | if v /∈ Left then
34 | | | T empL := T empL ∪ {v}
35 | | if w /∈ Left then
36 | | | T empL := T empL ∪ {w}
37 else if id(v) > id(self) then
38 | // analogous to the previous case

81

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

39
40 Linearize(v)
41 if id(v) < id(self) then
42 | if mode = staying then
43 | | if Left 6= ∅ then
44 | | | x := argmax{id(x′) : x′ ∈ Left}
45 | | | if id(v) > id(x) then
46 | | | | Left := Left ∪ {v}
47 | | | if id(v) < id(x) then
48 | | | | w := argmin{id(w′) : w′ ∈ Left and id(w′) > id(v)}
49 | | | | Left := Left \ {v}
50 | | | | send SingleIntroduce(v) to w
51 | | else // Left = ∅
52 | | | Left := Left ∪ {v}
53 | else // mode = leaving
54 | | T empL := T empL ∪ {v}
55 else if id(v) > id(self) then
56 | // analogous to the previous case
57
58 SingleIntroduce(u)
59 if id(u) < id(self) then
60 | if Left = ∅ then
61 | | if mode = staying then
62 | | | Left := Left ∪ {u}
63 | | else
64 | | | T empL := T empL ∪ {u}
65 | else
66 | | x := argmax{id(x′) : x′ ∈ Left}
67 | | if id(x) < id(u) then
68 | | | if mode = staying then
69 | | | | Left := Left ∪ {u}
70 | | | else
71 | | | | T empL := T empL ∪ {u}
72 | | else
73 | | | send SingleIntroduce(u) to x
74 else if id(u) > id(self) then
75 | // analogous to the previous case
76
77 ReverseAndLinearizeREQ(dir)
78 if dir = right then
79 | for all v ∈ Right ∪ T empR do
80 | | if uniqueV alues[v] = ⊥ then // i.e.: v does not exist in uniqueValues
81 | | | // assume that generateUniqueValue() creates a unique value
82 | | | uniqueV alues[v] = generateUniqueV alue()
83 | | send ReverseAndLinearizeACK(self, uniqueV alues[v]) to v
84 else if dir = left and mode = staying then
85 | // analogous to the previous case
86
87 ReverseAndLinearizeACK(v, uniqueV alue)
88 if id(v) < id(self) then
89 | if mode = leaving then
90 | | T empL := T empL ∪ {v}
91 | | send ReverseAndLinearize(Right, uniqueV alue) to v
92 | else

82

Protocol Description of Build-List* and Search* 5.2

93 | | send SingleIntroduce(v) to self
94 else if (id(v) > id(self)) then
95 | // analogous to the previous case
96
97 ReverseAndLinearize(nodeList, uniqueV alue)
98 if ∃ v ∈ Left ∪Right ∪ T empL ∪ T empR such that uniqueV alues[v] = uniqueV alue and
99 (id(v) < id(self) and ∀w ∈ nodeList : id(w) < id(v) or

100 id(v) > id(self) and ∀w ∈ nodeList : id(w) > id(v)) then
101 | if mode = staying then
102 | | if id(v) < id(self) then
103 | | | Left := Left ∪ nodeList
104 | | | Left := Left \ {v}
105 | | | send SingleIntroduce(self) to v
106 | | else if id(v) > id(self) then
107 | | | // analogous to the previous case
108 | else // mode = leaving
109 | | if id(v) < id(self) then
110 | | | T empL := T empL ∪ nodeList
111 | | else // id(v) > id(self)
112 | | | if v ∈ Right then
113 | | | | Right := Right ∪ nodeList
114 | | | | Right := Right \ {v}
115 | | | else
116 | | | | T empR := T empR ∪ nodeList
117 | | | | T empR := T empR \ {v}
118 | | | send SingleIntroduce(self) to v
119 else
120 | for all u ∈ nodeList do
121 | | send SingleIntroduce(u) to self

Listing 5.2: Search* protocol
1 InitiateNewSearch(destID)
2 if mode = staying then
3 | create a new message m = Search(self, destID)
4 | if W aitingF or[destID] = ∅ then
5 | | lseq := lseq + 1
6 | | lseq[destID] := lseq // lseq[destID] is assumed to be -1 if its current value is not a
7 | | // positive integer
8 | // Store the messages in W aitingF or
9 | W aitingF or[destID] := W aitingF or[destID] ∪ {m}

10
11 ForwardProbe(source, destID, Next, seq)
12 if destID = id(self) then
13 | if mode = staying then
14 | | if Next 6= ∅ then
15 | | | for all u ∈ Next do
16 | | | | send SingleIntroduce(u) to self
17 | | send ProbeSuccess(destID, self) to source
18 | | send SingleIntroduce(source) to self
19 | else
20 | | send ProbeFail(destID, seq) to source
21 | | for all u ∈ Next do
22 | | | send SingleIntroduce(u) to self

83

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

23 | | send SingleIntroduce(source) to self
24 else
25 | if destID > id(self) then
26 | | Next := Next \ {self} ∪ {w ∈ Right : id(w) ≤ destID}
27 | | if Next = ∅ then
28 | | | send ProbeFail(destID, seq) to source
29 | | | send SingleIntroduce(source) to self
30 | | else
31 | | | u := argmin{id(u) : u ∈ Next}
32 | | | if id(u) < id(self) then
33 | | | | send SingleIntroduce(u) to self
34 | | | else if id(u) < min{id(v) : v ∈ Right} then
35 | | | | if mode = staying then
36 | | | | | Right := Right ∪ {u}
37 | | | | else
38 | | | | | T empR := T empR ∪ {u}
39 | | | send ForwardProbe(source, destID, Next, seq) to u
40 | if destID < id(self) then
41 | | // analogous to the previous case
42
43 ProbeSuccess(destID, dest)
44 if mode = staying then
45 | send all m ∈W aitingF or[destID] to dest
46 | W aitingF or[destID] := ∅
47 send SingleIntroduce(dest) to self
48
49 ProbeFail(destID, seq)
50 if mode = staying then
51 | if seq ≥ lseq[destID] then
52 | | // the message belongs to the current set of buffered search requests for destID
53 | | W aitingF or[destID] := ∅

5.3. Build-List* Solves the FDP
In this section we prove that Build-List* solves the finite departure problem,
which is formalized by the following theorem:

Theorem 5.4. Build-List* is a self-stabilizing solution to the FDP.

The remainder of this section is dedicated to proving this theorem. First of
all, we prove a property that is also called the safety property. Let PNG be the
subgraph of NG induced by the active nodes.

Lemma 5.5. If a computation of Build-List* starts in a state in which PNG
is weakly connected, PNG remains weakly connected in every state of this compu-
tation.

Proof. We prove the lemma by showing that none of the actions of the protocol
disconnects PNG. First of all, note that whenever a node executes exit, NIDEC
was true before. Thus, such an exiting of a node cannot disconnect PNG. Second,

84

Build-List* Solves the FDP 5.3

check in the pseudocode that no action “throws away” a reference received as a
parameter of the message and not already stored in one of the node’s variables.
Either the received reference is added to one of the node’s variables, or a message
containing that reference is sent to the node itself or a neighbor. Third, consider
the only occasions at which a node v is removed from one of the variables of a
node u. This happens in Linearize(), in which case v is delegated to another
neighbor of the executing node, or in ReverseAndLinearize(), in which case u
sends a reference of itself to v: i.e., it applies the reversal primitive on the edge
(u, v). Therefore, none of the actions of Build-List* disconnects PNG.

The main part of this section will consist in proving the following property,
which is also called the liveness property:

Lemma 5.6. For any computation of Build-List* there exists a computation
suffix in which all leaving nodes are inactive.

We establish a sequence of other lemmas to prove this lemma. Before that,
however, we describe the idea of the proof of Lemma 5.6: For simplicity, assume
for a moment that the nodes already form a sorted list. A single leaving node
u whose left and right neighbors are staying can easily exit: u simply asks its
neighbors to reverse their connection to u (meanwhile informing them about
the neighbors in the opposite direction to “bridge” u) and waits until all these
connections have been reversed. As soon as NIDEC is true, u can exit. The
problem becomes more difficult when there is a sequence of leaving nodes in the
list: If the leaving neighbors of a leaving node u neatly reversed their connections
to u, they would send their own references to u. But if u did the same to them, this
would cause an infinite loop. The protocol tackles this issue by giving “priority”
to the leaving nodes with a greater identifier: A leaving node does reverse its
connection to a right leaving node, but not to a left leaving node. At first glance,
it might seem that the rightmost leaving node in the system is the first one
which may exit then. Unfortunately, things are not that easy: The rightmost
leaving node u in the system may have an incoming connection from a leaving
node v which it does not have a connection to. Thus, u then cannot send a
ReverseAndLinearizeREQ() message to v. However, it is crucial that v does
not introduce itself to its neighbors as this would possibly prevent NIDEC from
becoming true at all. Therefore, we apply a trick: We assume for contradiction that
at some point in time, no more nodes will execute exit. It is not difficult to prove
that there is always a state then such that the left neighborhoods of all leaving
nodes are fixed. This insight enables us to reasonably define the “leftmost” leaving
node u∗ that will not be the left neighbor of any leaving node in the remainder of
the computation. The idea of choosing this node is that every leaving node “left
of u∗” will regularly receive a ReverseAndLinearizeREQ() and thus also send
an according ReverseAndLinearizeACK() message to u∗ (if they have u∗ as
a right neighbor), allowing u∗ to ask these nodes to reverse their connection to
u∗. This way, u∗ will eventually get rid of all incoming connections “from the left”.

85

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

We can show that it will also get rid of all incoming connections “from the right”,
which eventually enables u∗ to leave, yielding the desired contradiction.

To simplify the notation we introduce the following convenient definitions:

Definition 5.7 (Incoming / Outgoing Neighbor, Left / Right Neighbor). If in
some state S there is an edge (u, v) then u is called an incoming neighbor of v in
S. Furthermore, to avoid confusion, we may refer to v as the outgoing neighbor
of u.

An (incoming / outgoing) neighbor v of u is called a right (incoming / outgoing)
neighbor if id(v) > id(u), or a left (incoming / outgoing) neighbor if id(v) < id(u).
We refer to the set of left or right neighbors by the left or right neighborhood,
respectively.

In the following, we will consider an arbitrary but fixed computation C and
show that every leaving node will eventually exit. To do so, note that there is
a state S1 in C such that: (i) all nodes that will ever decide to be leaving have
already done so before S1, and (ii) all leaving nodes that will eventually execute
exit are inactive in S1. As explained before, we will establish a contradiction to
the assumption that there is an active leaving node after S1.
We begin with the following lemma that summarizes some basic properties of

Build-List*:

Lemma 5.8. There is a state S2 ≥ S1 such that in SUFFIX(S2):

1. the left neighborhood of every leaving node does not change,

2. there is no ForwardProbe(source, destID,Next, seq) message such that
source is leaving,

3. there is no ProbeSuccess(destID, dest) message such that dest is leaving,
and

4. if there is a ForwardProbe(source, destID,Next, seq) message in v.Ch
then destID ≥ id(v) and for all u ∈ Next, id(u) ≥ id(v), or destID ≤ id(v)
and for all u ∈ Next, id(u) ≤ id(v).

Proof. For the first statement, note that a leaving node does not remove a left
neighbor from its neighborhood unless it executes exit. Since we assume that no
nodes do this after S1, as soon as every leaving node has added every left neighbor
it will ever add to its neighborhood, the left neighborhood of a leaving node does
not change.

Furthermore, note that a leaving node never initiates a ForwardProbe() mes-
sage. Whenever a ForwardProbe(source, destID,Next, seq) message is sent, it
is either initiated, in which case source is equal to the initiator, or it is sent upon
receipt of a ForwardProbe(source′, destID′, Next′, seq′) message, in which case
source = source′. Note that the pseudocode of the ForwardProbe() action
ensures that when a ForwardProbe() message is sent, only references of nodes

86

Build-List* Solves the FDP 5.3

whose identifier is between that of the current node and destID are added to
Next. In the ForwardProbe() action, at most one new ForwardProbe()
message is sent and when this happens it is sent to the node in Next with the
maximum distance to destID. By induction, this implies that each Forward-
Probe(source, destID,Next, seq) initiated at some node causes only a finite
number of ForwardProbe() messages (i.e., they are sent upon receipt of that
message or upon receipt of a message caused by that message). All in all, it can be
seen that eventually there will be no ForwardProbe(source, destID,Next, seq)
message in the system such that source is leaving as such messages will not be
initiated anymore.

For the third statement, notice that ProbeSuccess(destID, dest) is only sent
by the node dest, a leaving node never does this.
For the fourth statement, recall that as we argued in the second paragraph of

this proof, all ForwardProbe() messages initially in the system at the beginning
of the computation will eventually be inactive in some state S. Thus, all we
need to show is that the claim holds for every newly initiated ForwardProbe()
message and every ForwardProbe() message caused by a ForwardProbe()
message initiated by the protocol. For the former, note that every newly initiated
ForwardProbe(source, destID,Next, seq) message by a node u is initiated with
Next = {u}, thus the claim holds. For the latter, assume the claim holds for an
existing ForwardProbe(source, destID,Next, seq) message in v.Ch for some
node v. In the case that destID ≥ id(v), when v sends a new ForwardProbe()
message, it sends a ForwardProbe(source, destID,Next′, seq) message such
that Next′ ⊆ Next \ {u} ∪Right(v) and sends it to the node u with the minimum
identifier in Next′, so the claim holds for the new message as well. In the case
that destID ≤ id(v), the claim holds for the new message for analogous reasons.
Therefore, the fourth statement holds in every state of SUFFIX(S).

All in all, there is a state S2 ≥ S1 as defined in the lemma.

We continue with a basic observation that will turn out to be helpful for our
proof of Lemma 5.6. This observation immediately follows from the pseudocode,
which is why we state it without further justification.

Observation 5.9. A leaving node does not remove a left neighbor from its neigh-
borhood unless it executes exit.

The following lemma will also turn out to be very helpful in various proofs
throughout this section:

Lemma 5.10. There is a state S3 ≥ S2 such that in every state S ≥ S3 if there is
a node u such that ReverseAndLinearize(nodeList, uniqueV alue) ∈ u.Ch and
there is a node v whose reference is contained in Left(u) ∪Right(u) ∪ u.TempL ∪
u.TempR and u.uniqueV alues[v] = uniqueV alue, then v is leaving.

Proof. Let S3 be the first state such that S3 ≥ S2 and all ReverseAndLin-
earizeACK() messages still in the system in S1, all ReverseAndLinearize()

87

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

messages sent upon receipt of a ReverseAndLinearizeACK() message still in the
system in S1 and all ReverseAndLinearize() messages in the system in S1 have
been received. Assume for contradiction that there is a node u in some state S ≥ S3
such that there is a ReverseAndLinearize(nodeList, uniqueV alue) message in
u.Ch and that there is a node v whose reference is contained in Left(u)∪Right(u)∪
u.TempL ∪ u.tempright and u.uniqueV alues[v] = uniqueV alue, but v is staying.
First of all, note that a ReverseAndLinearize(nodeList, uniqueV alue) message
is sent only by a leaving node. Therefore, the message in u.Ch must have been
sent by a node w 6= v. Second, note that a ReverseAndLinearize(nodeList,
uniqueV alue) message is sent to a node u only upon receipt of a ReverseAnd-
LinearizeACK(u, uniqueV alue) message. Note that according to the pseudocode,
whenever a ReverseAndLinearizeACK(u, uniqueV alue) message is sent, the
sender is u itself. Thus, u must have sent a ReverseAndLinearizeACK(v,
uniqueV alue) message to w. Additionally note, however, that when this hap-
pens, u ensures that uniqueV alue = u.uniqueV alues[w]. Since uniqueV alues
are supposed to be unique after S1 (because each node has executed Timeout
at least once and new entries to uniqueV alue are chosen such that they are
unique), uniqueV alue = u.uniqueV alues[w] contradicts to u.uniqueV alues[v] =
uniqueV alue.

The next lemma states that if a node has a staying left neighbor in an infinite
number of states then from some point on it will have one particular staying left
neighbor in every state:

Lemma 5.11. Let v be an arbitrary staying node such that there exists a staying
node u such that u ∈ Left(v) in an infinite number of states. Let w be the node
with the maximum identifier among all these nodes u. Then there is a state S such
that w ∈ Left(v) in every state S′ ≥ S.

Proof. Let v and w be defined as in the lemma and let S be a state such that
S ≥ S3 and that in every state S′ ≥ S v does not have any staying node w′ in
Left(v) with id(w′) > id(w). By the definition of w, such a state exists. Note
that according to the pseudocode, v does not send an Introduce(w, v) message
to a staying node after S. Further note that only staying nodes that receive an
Introduce(w, v) message send a Linearize(w) message to v (i.e., such a message
is not sent at any other occasion). Consider the state S′ ≥ S such that every
Introduce() message still in some message channel in S has been received and
every Linearize() message sent as a response to an Introduce() message still
in some message channel in S has been received as well. By the aforementioned,
there is no Linearize(w) message in v.Ch in any state after S′. Let S′′ ≥ S′ be
the first state after S′ such that w ∈ Left(v) again. Note that according to the
pseudocode, there are exactly two cases in which v removes a neighbor w: One is
that v received a ReverseAndLinearize(nodeList, uniqueV alue) message such
that v.uniqueV alues[w] = uniqueV alue. According to Lemma 5.10, w would
be leaving in this case, which means this case does not apply. The other is

88

Build-List* Solves the FDP 5.3

that v received a Linearize(w) message. This cannot happen after S′. Thus,
w ∈ Left(v) in every state S′′′ ≥ S′′ and the proof is finished.

Note that Lemma 5.11 immediately implies the following corollary:

Corollary 5.12. There is a state S4 ≥ S3 such that for every staying node v,
either v does not have a staying neighbor in Left(v) in any state of SUFFIX(S4),
or v has a staying neighbor w such that w ∈ Left(v) in every state of SUFFIX(S4)
and there is no node w′ such that id(w′) > id(w) and w′ ∈ Left(v) in any state of
SUFFIX(S4).

A key ingredient for the proof of Lemma 5.6 will be the definition of a node u∗:
Let u∗ be the minimum node such that in SUFFIX(S2), (i) u∗ is leaving, and (ii)
u∗ has no right incoming leaving neighbor. Note that such a node always exists
by the definition of S1 and that it is well-defined (and a fixed node) according to
Lemma 5.8.

The next lemma we prove states that u∗ eventually will not have a right incoming
neighbor at all (note that the definition of u∗ only requires u to not have a right
incoming leaving neighbor). It is proven by a non-trivial potential function argument
involving two potential functions.

Lemma 5.13. There is a state S5 ≥ S4 such that u∗ does not have a right incoming
neighbor.

Proof. Since the potential function argument we use to prove the lemma is more
involved than typical approaches, we need to introduce some definitions first.
Let maxintro be the node v with the greatest identifier such that id(v) > id(u∗)
and there is an x such that Introduce(u∗, v) ∈ x.Ch. If there is no such
node, maxintro := u∗. Further, let maxmsgs be the node v with the greatest
identifier such that id(v) > id(u∗) and (v, u∗) ∈ NG. If no such node exists, let
maxmsgs := u∗. Then maxboth is defined as the node with the higher identifier
among maxintro and maxmsgs. In addition to this, we define countintro as the
number of Introduce(u∗, v) messages in the system such that v = maxboth and
countmsgs as the number of edges (v, u∗) ∈ NG such that v := maxboth. The first
potential function we define is Φid := id(maxboth). The second potential function
Φmsg is 0 if maxboth = u∗, or Φmsg := countintro + countmsgs otherwise.

We make use of these potential functions in the following way: First of all,
we prove that Φid never increases and that Φmsg increases only if Φid decreases.
Second, we prove that as long as Φid is greater than id(u∗) (note that it is lower
bounded by that value), either of the two potential functions will decrease in finite
time. These two statements together imply that eventually there will be no right
incoming neighbor of u∗.
We begin with the former. Note that according to the pseudocode and to

Lemma 5.8, the only case in which a staying node v s.t. id(v) > id(u∗) with an
edge to u∗ sends u∗’s reference to a right neighbor w after S2 is when it receives an
Introduce(u∗, w) message. In this case, to be precise, v sends a Linearize(u∗)

89

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

message to w. By definition of Φid and Φmsg, both potentials do not increase in this
case. In addition, note that whenever a staying node w sends an Introduce(u∗, v)
message, then v = w and the recipient is closer to u∗ than w itself. Since w must
have had an edge (w, u∗) prior to that, if this increases Φmsg then Φid decreases at
the same time. Last, note that every leaving node v such that id(v) < id(u∗) never
sends u∗’s reference to a right neighbor unless it leaves (which does not happen in
SUFFIX(S1)). Since no leaving node v such that id(v) > id(u∗) ever has an edge
to u∗ by definition of u∗, we are finished proving that Φid never increases and that
Φmsg increases only if Φid decreases.

To prove that either of Φid and Φmsg decreases in finite time unless Φid = id(u∗)
already, first of all assume that there is a node v such that v = maxboth and that
there is a node x such that Introduce(u∗, v) ∈ x.Ch. In this case, by definition
of maxboth, there is no node w such that id(w) > id(v) and (v, u∗) ∈ NG. Upon
receipt of the Introduce(u∗, v) ∈ x.Ch message, x will send a Linearize(u∗)
message to v. Note that this does not increase Φmsg. Upon receipt of this message,
there are two cases. First, v could have a left neighbor w closer than u∗. In
this case, v will send a SingleIntroduce(u∗) message to w and not keep u∗’s
reference, causing Φmsg to decrease or (if Φmsg would then be 0) causing Φid to
decrease. Second, v might not have such a left neighbor, in which case it adds u∗
to its neighborhood and we arrive at the second case.
Now suppose that there is a node v such that v = maxboth and id(v) > u∗ and

(v, u∗) ∈ NG. Note that v must be staying by the definition of u∗. We consider all
possible types of messages containing u∗ and causing the edge (v, u∗). Suppose
u∗ is a first parameter of an Introduce(a, b) message in v.Ch. In that case,
id(b) ≤ id(v) according to the definition of Φmsg. v would then send u∗’s reference
to b and Φid or Φmsg would directly decrease (if id(b) < id(v) or that message would
be turned into a Linearize(u∗) message that is put into v.Ch (see below)). Now
suppose u∗ is the second parameter of an Introduce(a, b) message in v.Ch. In
that case, v turns the message into a SingleIntroduce(u∗) message (see below).
If u∗ is the parameter of a Linearize() message, either (v, u∗) is turned into an
explicit edge (see below), or SingleIntroduce(u∗) is sent to a left neighbor of v
and the edge is not kept, in which case Φid or Φmsg decrease. If u∗ is contained in
a parameter of a ReverseAndLinearizeACK() or a ReverseAndLinearize()
message, either this message is turned into a SingleIntroduce() message (see
below) or (v, u∗) is turned into an explicit edge (see below). Note that according
to Lemma 5.8, u∗ cannot be contained in a ProbeSuccess() message and it
cannot be the first parameter of a ForwardProbe() message. If u∗ is contained
in the set Next of a ForwardProbe(source, destID,Next, seq) message, then
according to Lemma 5.8, due to u∗ < id(v), destID ≤ id(v) must hold. Accord-
ing to the pseudocode, v will then either send SingleIntroduce(v) to itself
(see below) or send a ForwardProbe(source, destID,Next′, seq) to a node in
Next′ = Next \ {v} ∪ Left(v), i.e., to a left neighbor of v. If u∗ is the parameter
of a SingleIntroduce() message, either (v, u∗) is turned into an explicit edge
(see below) or SingleIntroduce(u∗) is sent to a left neighbor of v and the edge

90

Build-List* Solves the FDP 5.3

is not kept, in which case Φid or Φmsg decrease as well. Last, we consider the case
that (v, u∗) is an explicit edge.
If (v, u∗) is an explicit edge, then during the next execution of Timeout there

are two cases: First, assume v then has a left neighbor closer to v than u∗. If
the neighbor w with the smallest identifier such that id(u∗) < id(w) is leaving, v
would send u∗’s reference to w contradicting the definition of u∗. If w is staying,
according to Corollary 5.12, v will always have a staying left neighbor w′ such that
id(w′) ≥ id(w). During this execution of Timeout, v sends an Introduce(u∗, v)
message to w, which w will respond to with a Linearize(u∗) message to v. Since v
then still has a left neighbor w′′ closer to v than u∗ by the above, v will then remove
u∗ from Left(v) and send a SingleIntroduce(u∗) message to w′′, yielding that
Φid or Φmsg decrease. Second, assume v does not have a left neighbor closer to
v than u∗ during the next execution of Timeout. In this case, v will send a
SingleIntroduce(self) message to u∗, upon whose receipt u∗ will add v to its
right neighborhood. Note that u∗ does not remove a right non-leaving neighbor.
Thus, during u∗’s next execution of Timeout, u∗ will send a ReverseAndLin-
earizeREQ(left) message to v. Either u∗ has been removed from Left(v) in
the meantime, in which case Φid or Φmsg have decreased and we are done, or v
will respond to u∗ with a ReverseAndLinearizeACK(v, uniqueV alue) message
such that v.uniqueV alues[u∗] = uniqueV alue. Upon receipt of that message, u∗
will respond with a ReverseAndLinearize(NodeList, uniqueV alue) message.
When v receives this message, either u∗ is no longer a neighbor of v, in which case
Φid or Φmsg have decreased, or v will reverse its edge to u∗, in which case Φid or
Φmsg will also decrease.

All in all, Φid or Φmsg decreases in finite time. By the aforementioned, this
finishes the proof that u∗ will not have a right incoming neighbor from some state
S5 onwards.

In the remainder of the proof of Lemma 5.6 we prove that u∗ also does not have
any left incoming neighbor. As an intermediate step, we prove the following lemma:

Lemma 5.14. Let L be the set of all leaving nodes v such that id(v) ≤ id(u∗).
There is a state SL ≥ S3 such that after SL whenever a node u sends the reference
of a node v ∈ L to some node w such that id(w) < id(v), then id(u) < id(w) or
Introduce(v, w) ∈ u.Ch in the state before.

Proof. At first, we prove that there is a state S such that for every leaving node
v′ if v′ has a right neighbor v ∈ L, then v /∈ Right(v′) in every state S′ ≥ S (i.e.,
(v′, v) is an implicit edge or v ∈ v′.T empR). Note that a leaving node v′ never
adds a node to Right(v′). Therefore, it is sufficient to show that every v ∈ L
will eventually be removed from Right(v′) for every leaving node v′. Consider an
arbitrary pair of nodes v′ and v such that in some state S′ ≥ S3, v′ is leaving,
v ∈ L and v ∈ Right(v′). Note that then id(v′) < id(v) according to Lemma 5.3,
implying id(v′) < id(u∗). Suppose for contradiction that v is not removed from

91

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

Right(v′) in any later state. According to Lemma 5.8, the fact that id(v′) < id(u∗)
and due to the definition of u∗, v′ has a leaving right incoming neighbor in
every state after S′. At some point in time, during the execution of Timeout,
that node will send a ReverseAndLinearizeREQ(right) message to v′ causing
v′ to send a ReverseAndLinearizeACK(v′, uniqueV alue) message to v such
that uniqueV alue = v′.uniqueV alue[v]. Upon receipt, v will respond with a
ReverseAndLinearize(nodeList, uniqueV alue) message causing v′ to remove
v from Right(v), which represents a contradiction. Thus, there is a state S as
specified above.
Next consider the state SL ≥ S such that all ReverseAndLinearize() mes-

sages still in the incoming channel of any node in S have been received. Note that
the first parameter of every ReverseAndLinearize() message only contains a
node from the set Right of the sending node. Thus, in every state S′ ≥ SL there
will be no ReverseAndLinearize(nodeList, uniqueV alue) message such that
v ∈ nodeList for any v ∈ L. We now argue that after SL, every node u only sends
a reference of a node v ∈ L to a node w such that id(w) < id(v) if u received an
Introduce(v, w) message, or id(u) < id(w).
Observe in the pseudocode in Listing 5.1 that in the Timeout, Linearize(),

and SingleIntroduce() actions, unless a node exits (which cannot happen after
S1), each node u that sends a reference v to a left neighbor w does this only if
id(v) < id(w) < id(u). Furthermore, in the Introduce() action, a node sends a
reference only to another node if that node is the second parameter and in this
case it sends the first parameter to that node. So if u sends v’s reference to w,
it would have received an Introduce(v, w) message before. Next, note that in
the ReverseAndLinearizeREQ() action, a node v may possibly send its own
reference to another node w but if v is leaving then only to the right, i.e., when
id(v) < id(w). If some node u executes the ReverseAndLinearizeACK() action,
then if u is leaving it might send a set of references of nodes with a greater identifier
than u to the first parameter of the ReverseAndLinearizeACK() message. Note
that by definition of SL this set may not contain any v ∈ L. Moreover, in the
ReverseAndLinearize(nodeList, uniqueV alue) action, a leaving node v sends
its own reference to another node w only if id(w) > id(v). Last, note that by
Lemma 5.8, v cannot be contained in a ProbeSuccess() message or as the first
parameter of a ForwardProbe() message. Assume v is contained in the set Next
of a ForwardProbe(source, destID,Next, seq) message in u.Ch for some node u.
If u does not send a new ForwardProbe() message, it sends a ForwardProbe(v)
message to itself, which leads to a case we handled before. Otherwise, according to
the pseudocode, u might send a new ForwardProbe(source, destID,Next′, seq)
message, in which Next′ might contain v. Note that if destID > id(u), by
Lemma 5.8 Next would contain only references of nodes w′ such that id(w′) > id(u)
and, according to the pseudocode, Next′ would only contain nodes from Next
and Right(w) and the new ForwardProbe() message would then be sent to
a node w ∈ Next′ such that id(w) > id(u). Thus, assume destID < id(u).
In this case, by Lemma 5.8, for all nodes w′ ∈ Next, id(w′) < id(u). Note

92

Build-List* Solves the FDP 5.3

that Next′ := Next \ {u} ∪ {w′ ∈ Left(u) : id(w′) ≥ destID} and the new
ForwardProbe() message would be sent to the node w with the maximum
identifier among all nodes in Next′. Thus, since v ∈ Next, then id(v) ≤ id(w). All
in all, the claim of the lemma is proven.

The following lemma states that each staying node u always keeps the closest
right neighbor it ever has (and that it will eventually have an explicit edge to this
node):

Lemma 5.15. For an arbitrary staying node u and an arbitrary state S∗ ≥ S3
let w be the node with the minimum identifier among all nodes w′ such that (i)
id(w′) > id(u), and (ii) there is an edge (u,w′) in some state S ≥ S∗. If w is
staying as well, there is a state S′ ≥ S∗ such that (u,w) will be an explicit edge in
every state S′′ ≥ S′.

Proof. Let u be an arbitrary staying node and let w be defined as in the claim
of the lemma and let S ≥ S∗ be a state such that (u,w) exists in S. As-
sume that w is staying. First of all, note that as soon as (u,w) is an explicit
edge, it is never removed: According to the pseudocode, a staying node u re-
moves a node from Right only if it has a right neighbor closer to itself (see the
Linearize() action), which cannot be the case for w by definition of w, or if
it receives a ReverseAndLinearize(nodeList, uniqueV alue) message such that
u.uniqueV alues[w] = uniqueV alue, which by Lemma 5.10 cannot be for a staying
node w.
Second, note that whenever a staying node u receives a reference of another

node w which is closer than its current closest right neighbor, it either adds this
reference to Right(u) immediately or sends a SingleIntroduce(w) message to
itself upon whose receipt it will add w’s reference to Right(u). Thus, since (u,w)
exists in S, there is a state S′ ≥ S such that (u,w) will be an explicit edge. By
the aforementioned, (u,w) will be an explicit edge in every state S′′ ≥ S′.

The previous two lemmas are actually auxiliary lemmas to prove the next two
lemmas, which together imply that u∗ will not have a left incoming neighbor at
some point. Before we prove them, we introduce the following notion:

Definition 5.16 (Relevant node). A node x such that id(x) < id(u∗) is called
relevant if and only if there is a leaving node v with id(x) < id(v) ≤ id(u∗) and (i)
there is an edge (x, v) in NG, or (ii) there is a node y such that Introduce(v, x) ∈
y.Ch.

The next lemma tells us that a node with an identifier smaller than that of the
“leftmost” relevant node cannot become relevant.

Lemma 5.17. For some arbitrary state S ≥ SL, if S contains a relevant node let
x be the relevant node with the minimum identifier in S. Otherwise, let x = u∗.
In every state S′ ≥ S there is no node z such that id(z) < id(x) and z is relevant.

93

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

Proof. Let S ≥ SL be arbitrary and let x be defined as in the claim of the lemma.
We begin with proving that no node z with an identifier smaller than that of x
will become relevant in any state after S.

Therefore assume there is a node z with id(z) < id(x) that becomes relevant
after S and let z be the first such node. Assume it becomes relevant during
some state S′. We consider the cases how this could have happened. First, note
that a ReverseAndLinearizeACK(z, uniqueV alue) message is only sent by z
itself. So for a ReverseAndLinearizeACK(z, uniqueV alue) message added to
the incoming channel of a leaving node v, z would need to have an edge to v, in
which case (i) would have been true before. But then z would not have become
relevant during S′. Second, note that an Introduce(v, z) message is only sent by
z itself, too. Thus, for the same reasons the occurrence of such a message cannot
cause z to become relevant. Third, assume that for some leaving node v such that
id(v) ≤ id(u∗), an edge (z, v) is established that did not exist before. This means
some node u sent v’s reference to z. Note that id(u) > id(z) by definition of z must
hold (otherwise, (i) would be contradicted). Furthermore, u cannot have received
an Introduce(v, z) message (otherwise (ii) would have been contradicted). This,
however, represents a contradiction to Lemma 5.14. Thus, all in all, z cannot
become relevant and the first claim is proven.

As the last in a sequence of lemmas to show that u∗ will not have an incoming
neighbor at some point in time, we prove that every relevant node will eventually
stop being relevant. In other words, together with the previous lemma, the next
lemma shows that the function denoting the identifier of the “leftmost” relevant
node is monotonically increasing (as long as there is a relevant node).

Lemma 5.18. For some arbitrary state S ≥ SL such that a relevant node exists
in S, let x be the relevant node with the minimum identifier in S. Then there is a
state S′ ≥ S such that x is not relevant in S′.

Proof. Let S ≥ SL be arbitrary such that a relevant node exists in S and let x be
the relevant node with the minimum identifier in S. We show that x will eventually
stop being relevant.
Let φrl be a function that returns the leaving node v with the minimum

identifier such that id(x) < id(v) ≤ id(u∗) and there is an edge (x, v) or an
Introduce(v, x) ∈ y.Ch for some node y in S. Note that according to Lemma 5.14
and the definition of x and Lemma 5.17, no node can introduce a leaving node v′
such that id(v′) < φrl to x. Therefore, φrl is monotonically increasing. We will show
that as long as x remains relevant, φrl will eventually increase, which is sufficient as
φrl is naturally bounded from above. In the following, let v = φrl. During the proof,
we will show that there is a state S′ such that there is no Introduce(v, x) ∈ y.Ch
for any node y in any state S′′ > S′ (*). Note that after S′, no node can send v’s
reference to x again: i.e., as soon as this is the case, the number of implicit edges
(x, v) is monotonically decreasing. Note that since each message will eventually
be received, that number is also strictly monotonically decreasing: i.e., there will

94

Build-List* Solves the FDP 5.3

be a state S′′′ > S′′ such that no implicit edges (x, v) will exist in any state after
S′′′. If the last explicit edge (x, v) is removed at some point after S′′′, we are done
proving that φrl will increase. We continue by showing that if this is not the case, x
will receive a ReverseAndLinearizeREQ(right) message at some point in time
(**). This will cause x to send a ReverseAndLinearizeACK(x, uniqueV alue)
message to v with uniqueV alue = x.uniqueV alues[v]. Upon receipt of that mes-
sage, v will respond to x with a ReverseAndLinearize(nodeList, uniqueV alue)
message, which will cause x to remove the edge (x, v), and we are done proving
that φrl will increase.
We distinguish three cases and will show that (*) and (**) (if necessary) hold

true.
First, assume x is leaving. Note that a leaving node never sends an Introduce()

message with itself as any parameter to any other node. Thus, as soon as all
Introduce(v, x) messages existing in any incoming channels in S have been
received, there will be no more such messages and (*) is proven. Additionally,
since id(x) < id(u∗) by definition, x has a right incoming neighbor throughout
SUFFIX(S3), which will at some point in time after S′′′ send a ReverseAndLin-
earizeREQ(right) message to x, proving (**). We are thus done proving that
φrl will increase in this case.

Second, assume x is staying and v is the node with the minimum identifier that
is a right outgoing neighbor of x in any state S′ ≥ S. Note that according to the
pseudocode, x will not send an Introduce(v, x) message to any node after S
and therefore no such message will ever be created, proving (*). Now assume the
explicit edge (v, x) will never be removed after S′′′. According to the pseudocode,
x will at some point send SingleIntroduce(self) to v after which we know that
v stores x’s reference in v.TempL. By Lemma 5.8, x will always remain a left
neighbor of v and therefore, during some execution of Timeout, v will send a
ReverseAndLinearizeREQ(right) message to x, proving (**). We are thus
done proving that φrl will increase in this case as well.
Third, assume x is staying and that there is a node w′ such that id(x) <

id(w′) < id(v) and that there is a state after S in which there is an edge (x,w′).
Let w be the node with the minimum identifier fulfilling this property. Note
that as argued before, w must be staying, since otherwise x would have a leaving
right neighbor with an identifier smaller than φrl, representing a contradiction.
Therefore, we can apply Lemma 5.15 to obtain that the explicit edge (x,w) exists
forever from some state S′ ≥ S. Note that after S′, according to the pseudocode
if x receives v’s reference, it will not add v to Right(x) anymore. Thus, we show
that v /∈ Right(x) at some point after S′, which then holds in every subsequent
state. Since the explicit edge (x,w) exists throughout SUFFIX(S′), we know that
during Timeout, x will send an Introduce(v, x) to some right neighbor w′ such
that id(x) < id(w′) < id(v). Note that w′ must be staying by the definition of
v. Therefore, according to the pseudocode, w′ will respond with a Linearize(v)
message. Upon receipt of that message, x still has at least one right neighbor
closer to x than v (because the explicit edge (x,w) exists then) and will thus

95

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

remove v from Right(x) according to the pseudocode. As argued before, v will
never be added to Right(x) anymore. Thus, x will never send an Introduce(v, x)
message anymore and as soon as all these messages still existing in the system have
been received, (*) holds. As argued before, all implicit edges (x, v) will eventually
vanish and no such edge can come up anymore. Since we have already proven that
there will not be an explicit edge (x, v) anymore, we are done proving that φrl will
eventually increase.
As argued before, x will eventually stop being relevant, which completes the

proof of this lemma.

Note that Lemma 5.17 and Lemma 5.18 imply the following corollary:

Corollary 5.19. There is a state S such that u∗ does not have a left incoming
neighbor in SUFFIX(S).

This enables us to finally prove Lemma 5.6, which we restate as follows:

Lemma 5.6. For any computation of Build-List* there exists a computation
suffix in which all leaving nodes are inactive.

Proof. Assume for contradiction that there is a leaving node in C that will not exit
at any point in time. Then there exists a node u∗ as defined before. Lemma 5.13
and Corollary 5.19 together imply that there is a state S6 such that u∗ will not
have an incoming neighbor at all. After all messages still in u∗.Ch during S6
have been received, NIDEC will be true for u∗. This means that upon the next
execution of Timeout, u∗ would execute exit. However, u∗ was defined as a node
that had not left before S1 and S1 was defined such that no node executes exit in
SUFFIX(S1). Therefore, we have a contradiction to the assumption that there is
a leaving node in C that will not exit at any point in time.

Lemma 5.5, Lemma 5.6 and the fact that no staying node ever executes exit in
Build-List* yield Theorem 5.4, which finishes this section.

5.4. Build-List* Self-Stabilizes to the Line Topology
In this section we prove that Build-List* self-stabilizes to the line topology.
Therefore, the main theorem of this section is as follows:

Theorem 5.20. Build-List* self-stabilizes to the line topology.

Note that although this theorem also appears in [SSS15], its proof has been
rewritten entirely. Whereas that proof is mainly built upon a result contained in
the first part of [SSS15], which is not contained in this chapter, our proof follows a
new structure and makes use of some lemmas proven in Section 5.3.
The main idea of the proof is as follows: First of all, we consider a fixed

computation again and start our consideration at the point at which all leaving

96

Build-List* Self-Stabilizes to the Line Topology 5.4

nodes have left (which will happen according to Theorem 5.4). With the help of
Corollary 5.12 and Lemma 5.15 from Section 5.3, we show that eventually each
node has at most one neighbor in either direction in ENG and that ENG will
remain unchanged from some point. We then continue by proving several properties
of ENG in such a state: First, we show that ENG is bidirected (meaning that
whenever there is an edge (u, v) in ENG then there is also an edge (v, u)). After
that, we show that ENG is strongly connected (meaning that there is a path
between any pair of nodes in ENG). Using these two results, we can establish
a simple contradiction to the assumption that ENG does not form a line: We
consider two nodes that are neighbors in the line but not in ENG and consider a
shortest path between them (which exists since ENG is strongly connected). This
path cannot go straight into one direction, i.e., only to the right or only to the left.
Instead, at some node it must change its direction. Such a node, however, would
need to have two neighbors in ENG on one side, which represents a contradiction.
For the rest of this section, we consider an arbitrary but fixed computation C

of Build-List* that starts in a state in which PNG is weakly connected. The
following is a corollary of Lemma 5.5 and Lemma 5.6:

Corollary 5.21. There is a state S1 in which all leaving nodes are inactive and
PNG is weakly connected throughout SUFFIX(S1).

This insight allows us to consider this suffix only and thus to ignore the leaving
nodes. We continue with the following lemma:

Lemma 5.22. There is a state S2 ≥ S1 such that throughout SUFFIX(S2), ENG
does not change and each node v has at most a single fixed node in Left(v) and at
most a single fixed node in Right(v).

Proof. From Corollary 5.12, we obtain that there is a state Sl ≥ S1 such that in
SUFFIX(Sl) every node v either has no left neighbor in Left(v) at all or has a
left neighbor u in Left(v) throughout SUFFIX(Sl) such that it will never have a
closer neighbor in Left(v) throughout SUFFIX(Sl). Note that according to the
pseudocode after Sl no node will add any node to Left during the execution of
Linearize(), SingleIntroduce(), or ForwardProbe() anymore. Thus, the
only occasion where a node is added to Left again, is the Introduce() action.
For each node u, let mri(u) := max{w ∈ V : id(w) > id(u) ∧ (∃u′ ∈ V : (w, u′) ∈
ENG ∧id(u) < id(u′) < id(w))∧((w, u) ∈ ENG)∨(∃x ∈ V : Introduce(u, x) ∈
w.Ch))}. Note that whenever Introduce(u, x) messages are sent to a node w
such that id(u) < id(w) then x is the sender, id(x) > id(w), and there was an
explicit edge (x, u) right before and x had at least one neighbor u′ such that
id(u) < id(u′) < id(x) (one such it will always have by Corollary 5.12). Therefore,
id(mri(u)) cannot increase and as soon as mri(u) removes u from Left, it will
not add u to Left again. Hence, we argue that mri(u) removes u from Left at
some point: Note that during Timeout, mri(u) will send Introduce(u,mri(u))
to some left neighbor u′. This node will respond with a Linearize(u) message to

97

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

mri(u). Upon receipt of that message, mri(u) will remove u from Left, so mri(u)
will change and id(mri(u)) will decrease. Note that this proves that every node
v will in some state S′l have either no or a fixed single left neighbor in Left(v)
throughout SUFFIX(S′l).
Similar to the above, from Lemma 5.15 we obtain that there is also a state

Sr ≥ S1 such that in SUFFIX(Sr) every node v either has no left neighbor at all
or has a right neighbor w in Right(v) such that it will never have a closer neighbor
throughout SUFFIX(Sr) and w ∈ Right(v) throughout SUFFIX(Sr). Since the
protocol is completely symmetric for staying nodes, for similar arguments as in
the last case, we obtain that every node v will in some state S′r have either no or a
fixed single right neighbor in Right(v) throughout SUFFIX(S′r).
Therefore, let S2 be an arbitrary state after both S′l and S′r and the lemma is

proven.

We continue by showing some properties of ENG in SUFFIX(S2). The first
is given by the following lemma: We begin with proving that in every state of
SUFFIX(S2), the graph of explicit edges is bidirected, i.e., for every explicit edge
(u, v) ∈ ENG, also (v, u) ∈ ENG:

Lemma 5.23. ENG is bidirected in SUFFIX(S2).

Proof. Assume for contradiction that the claim does not hold: i.e., there is a pair
of nodes in a state of SUFFIX(S2) such that v ∈ Right(u) and u /∈ Left(v), or u ∈
Left(v) and v /∈ Right(u). Suppose the former (the other case is analogous). First
of all, note that during Timeout, u will send a SingleIntroduce(u) message
to v. We know that there must be a node w ∈ Left(v) such that id(w) > id(u),
because otherwise v would add u to Left(v) yielding a contradiction to Lemma 5.22.
Thus, upon receipt of that message, v will send a SingleIntroduce(u) message
to w. Observe in the pseudocode that each intermediate node w′ that does not
store u will send a SingleIntroduce(u) message to a node whose identifier is
between w′ and u. This implies that eventually a node w′′ such that id(u) <
id(w′′) < id(v) will receive a SingleIntroduce(u) message and not send a new
SingleIntroduce(u) message: i.e., it will keep u’s reference in Left(w′′) (since
ENG does not change according to Lemma 5.22, there must have been such an
edge before, by the way). During the next execution of Timeout, w′′ will send a
SingleIntroduce(w′′) message to u. Since id(u) < id(w′′) < id(v), u would add
w′′ to Right(u) yielding the desired contradiction to Lemma 5.22. Thus, ENG is
bidirected in SUFFIX(S2).

Before we can show that ENG is also connected, we prove the following auxiliary
lemma, which is straightforward given Lemma 5.22:

Lemma 5.24. There is a state S3 ≥ S2 such that in SUFFIX(S3) there does not
exist any Introduce(v, w) or Linearize(v) message.

98

Build-List* Self-Stabilizes to the Line Topology 5.4

Proof. Notice that Introduce(v, w) messages are not sent when each node has
at most one left and at most one right explicit neighbor (which is the case in
SUFFIX(S2) according to Lemma 5.22). Besides, Linearize(v) messages are only
sent during the Introduce(v, w) action. Thus, there is a state S3 ≥ S2 such that
in SUFFIX(S3), no Introduce(v, w) and Linearize(v) messages will exist.

The previous lemmas enable us to prove that the graph of explicit edges is
strongly connected in every state of SUFFIX(S2):

Lemma 5.25. ENG is strongly connected in SUFFIX(S2).

Proof. The idea of this proof is to show that there is a state S4 after S3 such that
whenever there is an implicit edge (u, v) in SUFFIX(S4) then there is also an
undirected path via explicit edges from u to v.1 Since NG is weakly connected
throughout SUFFIX(S1) according to Corollary 5.21 and because ENG is bidi-
rected in SUFFIX(S2) according to Lemma 5.23, then ENG must be strongly
connected in SUFFIX(S4). However, since ENG remains unchanged throughout
SUFFIX(S2) (according to Lemma 5.22), this must hold for ENG in every state
of SUFFIX(S2) and the claim follows.
Note that newly initiated ForwardProbe() messages are initiated with the

third parameter Next = {self}. Since according to Lemma 5.22 in SUFFIX(S2)
there is at most one node in Left(v) and in Right(v) for every node v and
since Left(v) and Right(v) do not change anymore, and since the Forward-
Probe() action removes the current node from Next and adds nodes from either
Left or Right to Next and then sends it to a node in Next, every Forward-
Probe(source, destID,Next, seq) message in the channel of a node x caused by
a ForwardProbe() message initiated after S2 has the property that Next = {x}
and there is an explicit edge from source to x. Consider S′ ≥ S3 as a state
in which all ForwardProbe() messages initiated before S2 are inactive. In
every state of SUFFIX(S′) for all implicit edges (u, v) that are caused by For-
wardProbe() messages, there is an undirected path via explicit edges from u
to v. Furthermore, for every ForwardProbe(source, destID,Next, seq) mes-
sage in x.Ch for some node x in SUFFIX(S′), Next = {x}. Since a Probe-
Success(destID, dest) message is sent to a node source only upon receipt of a
ForwardProbe(source, destID,Next, seq) message by the only node x ∈ Next
and such that dest = x, we similarly obtain that there is a state S′′ ≥ S′ such
that in SUFFIX(S′′) for every implicit edge (u, v) caused by ProbeSuccess()
message, there is an undirected path via explicit edges from u to v. Last, note
that SingleIntroduce(u) messages are sent only in the following cases: (i) dur-
ing Timeout, in which case there must be an explicit edge from the sending
node u to the receiving node v, (ii) during Introduce() or Linearize(), which

1In a directed graph G, an undirected path from some node u to some node v is a sequence of
edges (u = w1, w2, w3, . . . , wk = v) such that for every two consecutive nodes wi and wi+1 at
least one of the edges (wi, wi+1) or (wi+1, wi) exist in G.

99

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

does not occur in SUFFIX(S3) according to Lemma 5.24, (iii) during Forward-
Probe() or ProbeSuccess() to the sending node v itself, in which case we know
that there is an undirected path via explicit edges from u to v, or (iv) during
SingleIntroduce(u), which is the case that requires some elaboration. Note
that in case (iv) there is an explicit edge from the sending node v to the receiving
node w. Furthermore, note that the sender v of a SingleIntroduce(u) sends the
message to a node w whose identifier is closer to v than u. This inductively implies
that every SingleIntroduce(u) message in the channel of any node in S′′ will
cause only a finite number of other messages, so there is a state S4 ≥ S′′ such that
in SUFFIX(S4) for every implicit edge (u, v) caused by a SingleIntroduce()
message, there is an undirected path via explicit edges from u to v. Note that
all in all, in SUFFIX(S4) for every implicit edge (u, v) there is also an undirected
path via explicit edges from u to v. As argued at the beginning of this proof, this
implies that ENG is strongly connected in every state of SUFFIX(S2).

After having proven the previous lemmas, we are ready to prove Theorem 5.20,
which we restate as follows:

Theorem 5.20. Build-List* self-stabilizes to the line topology.

Proof. Assume for contradiction that in some state of SUFFIX(S2) there is a pair
of nodes u and v such that u and v are neighbors in the line topology: i.e., there
is no node w such that id(u) < id(w) < id(v) (w.l.o.g. assume id(u) < id(v)),
but u and v are not neighbors in ENG. Since ENG is bidirected and strongly
connected according to Lemma 5.23 and Lemma 5.25, there is a shortest path
P = (u = x1, x2, . . . , xk = v) from u to v via explicit edges such that also
(xi+1, xi) ∈ ENG for every 1 ≤ i < k. Note that since k ≥ 3 there must be a
node xi at which the path “changes its direction”: i.e., id(xi−1) > id(xi) and
id(xi+1) > id(xi), or id(xi−1) < id(xi) and id(xi+1) < id(xi). However, since
ENG is bidirected this would imply that xi has two neighbors in Left or Right,
representing a contradiction to Lemma 5.22. Thus, we obtain that in SUFFIX(S2),
the nodes form a line, which finishes the proof of Theorem 5.20.

5.5. Build-List* Satisfies Monotonic Searchability
As explained in Chapter 4, it is generally not possible for a protocol to uncon-
ditionally satisfy monotonic searchability. Therefore, we again define a set of
invariants that need to hold (and that will hold in every computation eventually)
for monotonic searchability to be possible. Later on we prove that Build-List*
satisfies monotonic searchability according to these invariants. In Section 5.5.1,
we introduce some additional definitions used in this section only and state the
main theorem of this section. We then prove that the invariants will eventually
hold forever in every computation in Section 5.5.2. After that, in Section 5.5.3, we
prove that Build-List* satisfies monotonic searchability in the suffixes consisting
of admissible states only.

100

Build-List* Satisfies Monotonic Searchability 5.5

5.5.1. Definitions and Main Results
Before we define the set of invariants used for Build-List*, we introduce some
additional notation that will aid us throughout this section. We will refer to the
notion of a straight path again, which was introduced in Definition 4.4 in Chapter 4.
Note that the definition of a straight path uses the notion of a search edge. To
apply it to this chapter, we define all explicit edges to be search edges.

Definition 5.26 (Rs(v), R+
s (ID,w), R+

s (ID,U)). We define the following sets:

Rs(v) For an arbitrary node v, Rs(v) consists of all staying nodes x such that
there is a (possibly empty) straight path from v to x.

R+
s (ID,w) For an arbitrary identifier ID and an arbitrary node w, if id(w) > ID

then R+
s (ID,w) := {u ∈ Rs(w) : id(u) ≥ id(w)}, if id(w) < ID, then

R+
s (ID,w) := {u ∈ Rs(w) : id(u) ≤ id(w)} and if id(w) = ID, then

R+
s (ID,w) := Rs(w).

R+
s (ID,U) For an arbitrary identifier ID and an arbitrary set U of node references,

R+
s (ID,U) :=

⋃
u∈U R

+
s (ID, u).

Using these definitions, we can establish the message invariants used for the
definition of an admissible state.

Definition 5.27 (Invariants for Build-List*). We define the following invariants,
in which we require that v, w, source and dest are node references, uniqueV alue
and seq are numbers, nodeList and Next are sets of node references, and destID
is an identifier.

1. If there is an Introduce(v, w) message in u.Ch, then min(id(v), id(w)) <
id(u) < max(id(v), id(w)), and R+

s (id(w), u) ⊆ Rs(w).

2. If there is a Linearize(v) message in w.Ch, then there is a node u such
that min(id(v), id(w)) < id(u) < max(id(v), id(w)), u ∈ Right(w)∪Left(w),
and R+

s (id(w), v) ⊆ Rs(u).

3. If there is a ReverseAndLinearizeACK(v, uniqueV alue) message in
u.Ch, then u 6= v and v.uniqueV alues[u] = uniqueV alue and u is the
only node u′ such that v.uniqueV alues[u′] = uniqueV alue.

4. If there is a ReverseAndLinearize(nodeList, uniqueV alue) message in
u.Ch, then there is exactly one node v such that u.uniqueV alues[v] =
uniqueV alue and v is leaving. Furthermore, if id(v) < id(u) then ∀x ∈
nodeList : id(x) < id(v) and if id(v) > id(u) then ∀x ∈ nodeList : id(x) >
id(v). Moreover, R+

s (id(u), v) = R+
s (id(u), nodeList).

5. If there is a ForwardProbe(source, destID,Next, seq) message in u.Ch,
then

101

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

a) id(source) ≤ id(u) ≤ destID and ∀x ∈ Next : id(x) ≥ id(u) and
u = argminu′∈Next(id(u′)), or destID ≤ id(u) ≤ id(source) and ∀x ∈
Next : id(x) ≤ id(u) and u = argmaxu′∈Next(id(u′)),

b) R+
s (id(source), Next) ⊆ Rs(source),

c) if there is a node v such that id(v) = destID, v is staying and
v /∈ R+

s (id(source), Next), then for every admissible state in which
source.lseq[destID] < seq, v /∈ Rs(source).

6. If there is a ProbeSuccess(destID, dest) message in u.Ch, then id(dest) =
destID and either dest ∈ Rs(u) or dest is leaving.

7. If there is a ProbeFail(destID, seq) message in u.Ch, then either there is
no staying node with identifier destID, or for every admissible state in which
u.lseq[destID] < seq and for the node v with id(v) = destID, v /∈ Rs(u).

8. If there is a Search(v, destID) message in u.Ch and u is staying, then
id(u) = destID and u ∈ Rs(v).

Formally, we define an admissible state as follows:

Definition 5.28 (Admissible State). A state S is called admissible if and only if
all of Invariants 1-8 (c.f. Definition 5.27) hold.

Armed with these definitions, we now formally define the main theorem of this
section, whose proof makes up the rest of this chapter:

Theorem 5.29. Build-List* admissible-message satisfies monotonic searchabil-
ity according to Search*.

5.5.2. Proving that Every Computation Has an Admissible Suffix

The main result of this subsection is formalized by the following lemma:

Lemma 5.30. Every computation C of Build-List* contains a state S such that
every state S′ ≥ S is admissible.

To prove that every computation of Build-List* contains a suffix in which
every state is admissible, similar to Section 4.4.3 in Chapter 4 we first stepwise
prove that the subsequent state of every admissible state is admissible as well.
After that we show that every computation of Build-List* contains an admissible
state.

We begin with the first four invariants for the step-by-step proof:

Lemma 5.31. In every computation of Build-List*, if Invariants 1-4 hold in a
state S, they hold in every state S′ ≥ S.

102

Build-List* Satisfies Monotonic Searchability 5.5

Proof. Assume in a computation of Build-List* there is a state S in which
Invariants 1-4 hold, such that in the (direct) subsequent state S′ one of the Invari-
ants 1-4 does not hold. First of all, check that none of the first four invariants can
be invalidated because some node becomes leaving. Second, note that the first
four invariants cannot become falsified due to a new Introduce(v, w) message:
These messages are only sent by w and only to a node u ∈ Left(w) ∪ Right(w)
between closer to w than v. Third, note that a new Linearize(v) message
is sent by a node u only upon receipt of an Introduce(v, w) message and
only to the node w. Additionally, before sending that message, v is added to
Left(u) or Right(u). According to the first invariant, R+

s (id(w), u) ⊆ Rs(w)
and min(id(v), id(w)) < id(u) < max(id(v), id(w)), implying that R+

s (id(w), v) ⊆
Rs(u). Thus, a newly sent Linearize(v) message also cannot falsify the first
four invariants. Next, note that according to the protocol when a node w sends
a ReverseAndLinearizeACK(v, uniqueV alue) to a node u, then w = v and
it makes sure that uniqueV alue is stored in v.uniquevalues[u] (and we assume
that uniqueV alue is only stored for u). Thus, sending such a message also
cannot invalidate one of the first four invariants. Moreover, note that when
a node v sends a ReverseAndLinearize(nodeList, uniqueV alue) message to
a node u with id(u) < id(v), then v must have received a ReverseAndLin-
earizeACK(u, uniqueV alue) message right before and v must be leaving. Since
Invariant 3 holds in S, this means that u.uniqueV alues[v] = uniqueV alue and v
is the only node such that u.uniqueV alues[v] = uniqueV alue. In addition, when
sending the message, v added all nodes from Left(v) or Right(v) to nodeList,
depending on whether id(v) < id(u) or id(v) > id(u), respectively. Thus, by
Lemma 5.3 in state S′ if id(v) < id(u) then ∀x ∈ nodeList : id(x) < id(v) and if
id(v) > id(u) then ∀x ∈ nodeList : id(x) > id(v). Furthermore, R+

s (id(u), v) =
Rs(id(u), nodeList) holds and v is the only node v′ with u.uniqueV alues[v′] =
uniqueV alue in S′. Besides, note that the R+

s (id(u), v) = Rs(id(u), nodeList) part
of Invariant 4 for a node v cannot be invalidated due to the addition of any node
to the set Right(v) or Left(v) because v is leaving and a leaving node never adds
a member to Right or Left. Any other addition of a node to a set Right(x) or
Left(x) for another node x adds this node to R+

s (id(u), v) and Rs(id(u), nodeList)
at the same time or not at all.
Thus, the only event that can invalidate one of the first four invariants is

the removal of a node y from a set Right(x) or Left(x) for a node x. This
may only happen in a Linearize(y) action executed by a staying node or in
a ReverseAndLinearize(nodeList, uniqueV alue) action. We consider both
actions individually.

First of all, assume a Linearize(y) action is being executed by a staying node
w between S and S′ and thus removed a node y from Right(w) or Left(w). This
can only happen if there was a Linearize(y) message in w.Ch in S for which,
by definition of S, Invariant 2 holds. Thus, there is a node u 6= y with u ∈
Right(w) ∪ Left(w) such that min(id(v), id(w)) < id(u) < max(id(v), id(w)) and
R+

s (id(w), y) ⊆ Rs(u), implying that after the removal of (w, y), R+
s (id(w), y) ⊆

103

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

Rs(w) still holds: i.e., the removal of y has not changed Rs(w), nor any set Rs(x)
for any node x.
Now assume that a ReverseAndLinearize(nodeList, uniqueV alue) action

has been executed in a node u between state S and S′. In this case, the corre-
sponding message must have been in u.Ch in S. Since in S the first four invariants
hold, by the fourth invariant, there must be exactly one node v that is leaving
with u.uniqueV alues[v] = uniqueV alue and R+

s (id(u), v) = R+
s (id(u), nodeList).

W.l.o.g. assume that id(u) < id(v) (note that in case id(u) > id(v) and u is leaving,
no node is removed from or added to Left(u) at all, but in this case, the invariants
still hold, which is what we want to prove anyway). If v /∈ Right(x), no node
is removed from or added to Right(x) at all and the claim follows immediately.
Thus, assume v ∈ Right(x). In this case, u removes v from Right(u) and adds
nodeList to Right(u). Since id(u) < id(v), R+

s (id(u), v) = R+
s (id(u), nodeList),

R+
s (id(u), v) ⊆ Rs(u) before the removal (by definition) and v /∈ Rs(u) (because v

is leaving), no node has been removed from or added to Rs(u) after the action has
been performed, implying that all four invariants still hold.

Before we continue with the next invariant, we show the following lemma that
will turn out to be very helpful. Intuitively, it tells that once a node v can reach
all staying nodes via a straight path that another node x can reach via a straight
path into the same direction, this will hold true in every subsequent state (note
that this holds even if x becomes leaving).

Lemma 5.32. In every computation of Build-List*, if Invariants 1-4 hold in a
state S and for an arbitrary pair of nodes v and x, R+

s (id(v), x) ⊆ Rs(v), then in
every state S′ ≥ S, R+

s (id(v), x) ⊆ Rs(v).

Proof. Assume in an arbitrary computation of Build-List* there is a state S such
that Invariants 1-4 hold and for an arbitrary pair of nodes v and x, R+

s (id(v), x) ⊆
Rs(v), but in the (direct) subsequent state S′, R+

s (id(v), x) ⊆ Rs(v) does not
hold. Without loss of generality, assume id(v) < id(x). Note that this implies
that for all y ∈ R+

s (id(v), x), id(y) ≥ id(x). We consider all possible reasons for
why R+

s (id(v), x) ⊆ Rs(v) does not hold in S′. Obviously, neither the addition
of a node to Rs(v) nor the removal of a node from R+

s (id(v), x) can violate the
claim. Note that if a node z such that id(z) > id(x) is added to R+

s (id(v), x), this
happens because some node y ∈ R+

s (id(v), x) (implying id(y) ≥ id(x)) added z to
Right(y). However, since y ∈ Rs(v) and id(y) > id(v), z is also added to Rs(v)
(by definition of this set). This yields that the only reason for the claim to be
incorrect in S′ is that a (staying) node z ∈ R+

s (id(v), x) was removed from Rs(v)
but not from R+

s (id(v), x). In other words, in S′ there is a straight path from x to
z into the “right direction”, i.e., whose nodes have increasing identifiers, but there
is no straight path from v to z (which, since id(v) < id(x), would also need to go
into the “right direction”). Recall that id(z) > id(x) must hold in this case. We
consider all possible cases for this having happened.

104

Build-List* Satisfies Monotonic Searchability 5.5

First, assume z was removed from Rs(v) because z became leaving. Then z was
also removed from R+

s (id(v), x).
Second, assume that z was removed from Rs(v) due to a Linearize(y) action

at a node w ∈ Rs(v) between S and S′ (note that according to the pseudocode,
this happens only at staying nodes w). Note that since z ∈ R+

s (id(v), x) ⊆ Rs(v)
in S and id(z) > id(x), id(w) > id(v) and id(y) > id(w) must hold in this
case (if id(w) < id(v) or y was not in Right(w) before, then this removal would
be irrelevant since there is a “right direction” path from v to z). Then, by
the second invariant, there was a node u 6= y with u ∈ Right(w) ∪ Left(w)
and R+

s (id(w), y) ⊆ Rs(u), and min(id(y), id(w)) < id(u) < max(id(y), id(w))
in S. Note that this together with the fact that id(w) < id(y) implies that
u ∈ Right(w) and R+

s (id(w), y) ⊆ Rs(w) even without the edge (w, y). Thus, after
y is removed from Right(w), R+

s (id(w), y) ∈ Rs(w) still holds. Since w ∈ Rs(v)
and id(w) > id(v), this implies R+

s (id(v), y) ⊆ Rs(v): i.e., neither y nor any other
node z in Rs(y) was removed from Rs(v).

Third, assume a staying node z ∈ R+
s (id(v), x) was removed from Rs(v) but not

from R+
s (id(v), x), due to a ReverseAndLinearize(nodeList, uniqueID) action

in a node u such that id(u) > id(v), and there is a straight path from v to u, remov-
ing node y from Right(u). In this case, according to Invariant 4, y is the unique
node with u.uniqueV alues[y] = uniqueV alue, y is leaving, and R+

s (id(u), y) =
R+

s (id(u), nodeList). Thus, when y is removed from Right(u) and NodeList is
added to Right(u), no node is removed from Rs(u), implying that no node is re-
moved from Rs(v), because of the straight path from v to u (note that this path can-
not have been destroyed since the ReverseAndLinearize(nodeList, uniqueID)
action is the only action executed between S and S′). Thus, the claim holds in
every case.

Using Lemma 5.32, we can prove the next sequence of lemmas:

Lemma 5.33. In every computation of Build-List*, if Invariants 1-4 hold in
a state S, then there is a state S′ ≥ S such that Invariants 1-5 hold throughout
SUFFIX(S′). Furthermore if Invariants 1-5 hold in some state S′′, they hold in
every state S′′′ ≥ S′′.

Proof. Assume in an arbitrary computation of Build-List* that there is a state
S in which Invariants 1-4 hold. Lemma 5.31 implies that Invariants 1-4 hold
throughout SUFFIX(S). First, we will show that in SUFFIX(S) existing messages
conforming to Invariant 5 will never violate this invariant. Second, we will show
that every new ForwardProbe() message sent during SUFFIX(S) during the
execution of Timeout will conform to Invariant 5. Third, we will show that every
new ForwardProbe() message sent during SUFFIX(S) during the execution of
the ForwardProbe() action upon receipt of a ForwardProbe() message that
conforms to Invariant 5 does not violate Invariant 5. From these observations, it
immediately follows that if Invariants 1-5 hold in some state S′′, they hold in every
state S′′′ ≥ S (note that there is no other occasion than the Timeout and the

105

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

ForwardProbe() action that a ForwardProbe() message is sent). Fourth and
last, to prove the first part of the claim, we argue that every ForwardProbe()
violating Invariant 5 will cause only a finite number of other ForwardProbe()
messages violating Invariant 5, which finishes the proof.
First, assume that there is a ForwardProbe(source, destID,Next, seq) mes-

sage that conforms to Invariant 5 in some state S′ ≥ S. Note that since
source.lseq[destID] is monotonically increasing and because of Lemma 5.32, it
will do so in every state S′ ≥ S.

Second, assume a node u sends a ForwardProbe(source, destID,Next, seq)
message during Timeout after S. According to the pseudocode, u sends the
message to u itself, with u = source and Next = {u}, which is why Invariants 5a)
and 5b) hold for the new message. Also note that since u.lseq[destID] is mono-
tonically increasing and seq = source.lseq[destID] in this state, if there was an
admissible state with source.lseq[destID] < seq with v ∈ Rs(source, destID)
for the node v such that id(v) = destID, then this must have been a previous
state. Note that v ∈ Rs(source) implies R+

s (id(source), v) ⊆ Rs(source). By
Lemma 5.32, R+

s (id(source), v) ⊆ Rs(source) must still hold when the message
is sent, which, if v is staying, implies v ∈ Rs(source, destID). Thus, even Invari-
ant 5c) holds for the new message. So all in all, Invariant 5 holds for the new
message.
Third, assume a node u sends a ForwardProbe(source, destID,Next, seq)

message after S during the execution of the ForwardProbe() action upon receipt
of a ForwardProbe() message that conforms to Invariant 5. Assume id(source) ≤
destID for the other case is analogous. Note that according to this pseudocode, u
must have received a ForwardProbe(source, destID,Next′, seq) message then.
Furthermore, u sends the ForwardProbe(source, destID,Next, seq) message to
the node with the minimum identifier in Next and only if id(u) 6= destID, which
is why Invariant 5a) holds for the new message. Moreover, recall that we assumed
that Invariant 5 held for the ForwardProbe(source, destID,Next′, seq) message
u received. Thus, if there is a v such that id(v) = destID then u 6= v and since
R+

s (id(source), Next) and R+
s (id(source), Next′) only differ in u (since Next =

Next′ \{u}∪Right(u)), Invariant 5c) also holds for the new message. Furthermore,
R+

s (id(source), Next′) ⊆ Rs(source) implies R+
s (id(source), Next) ⊆ Rs(source)

(recall that Next = Next′ \ {u} ∪ Right(u)), yielding the claim of Invariant 5b)
for the new message. So all in all, Invariant 5 holds for the new message.
Fourth, note that according to the pseudocode, during the execution of For-

wardProbe(source, destID,Next′, seq), the executing node v adds nodes from
Right(v) to Next′ and sends the message to the node u with the minimum identifier
among all nodes from the resulting setNext, but only if this identifier is greater than
id(v), or it adds nodes from Left(v) to Next′ and sends the message to the node
with the maximum identifier among all nodes from the resulting set Next′, but only
if this identifier is smaller than id(v). In any case, according to the pseudocode only
nodes whose identifier is between v’s and destID are added. Define range(Next) :=
|maxx{id(x) : x ∈ Next} −minx{id(x) : x ∈ Next}|. Since the new Forward-

106

Build-List* Satisfies Monotonic Searchability 5.5

Probe(source, destID,Next′, seq) message is sent to a node in Next and during
every execution of ForwardProbe() only nodes whose identifier is between
the current node and destID are added to Next, we obtain by induction that
eventually no new ForwardProbe() message is sent upon receipt of a Forward-
Probe() message caused by the ForwardProbe(source, destID,Next′, seq) mes-
sage. Thus, eventually all ForwardProbe() message violating Invariant 5 will
be inactive and the proof is finished.

Lemma 5.34. In every computation of Build-List*, if Invariants 1-5 hold in
a state S, then there is a state S′ ≥ S such that Invariants 1-7 hold throughout
SUFFIX(S′). Furthermore if Invariants 1-7 hold in some state S′′, they hold in
every state S′′′ ≥ S′′.

Proof. Assume in an arbitrary computation of Build-List* that there is a state
S in which Invariants 1-5 hold. Lemma 5.33 implies that Invariants 1-5 hold
throughout SUFFIX(S). We will show that in SUFFIX(S) existing messages
conforming to Invariants 6 and 7 will never violate these invariants. Furthermore,
we will show that all new ProbeSuccess() and ProbeFail() messages sent
during SUFFIX(S) will conform to these two invariants. Thus, for a state S′
such that ProbeSuccess() and ProbeFail() messages violating Invariants 6-7
that exist in S have been received before S′, it holds that Invariants 1-7 hold
throughout SUFFIX(S′). Also, from these observations, it immediately follows
that if Invariants 1-7 hold in some state S′′, they hold in every state S′′′ ≥ S.
First of all, observe that a ProbeSuccess(destID, dest) message can only

violate Invariant 6 if id(dest) 6= destID or dest is staying. Furthermore, a
ProbeFail(destID, seq) message can only violate Invariant 7 if there is a node
v with id(v) = destID and v is staying. Again, by Lemma 5.32 and because
R+

s (id(y), x) ⊆ Rs(y) is equivalent to x ∈ Rs(y) if x is staying, and because
u.lseq[destID] is monotonically increasing for every u and destID, existing mes-
sages conforming to Invariants 6 and 7 in some state S′′ ≥ S cannot violate these
invariants in any later state.

Therefore, we now consider the case of new ProbeSuccess() and ProbeFail()
messages being sent. Assume a new ProbeSuccess(destID, dest) message has
been sent by w to a node u. According to the protocol, this only happens in
a ForwardProbe() action, when a ForwardProbe(source, destID,Next, seq)
message has arrived at w = dest with id(w) = destID, u = source, and w
is staying. Thus, Invariant 5 b) implies dest ∈ Rs(u). For the ProbeFail()
messages, assume a node w sends a ProbeFail(destID, seq) message to a node
u. Note that if there is no staying node with identifier destID, this message
cannot violate Invariant 6. Thus, we assume that there is a staying node v
with id(v) = destID. Furthermore, assume id(w) ≤ destID (the other case
is analogous). According to the protocol, w sends the ProbeFail(destID, seq)
message only during the execution of a ForwardProbe() action caused by a
ForwardProbe(source, destID,Next, seq) that arrived at w if id(w) = destID

107

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

and w is leaving (which implies w = v but contradicts that v is leaving), or if
id(w) 6= destID, u = source, Next \ {w} = ∅, and there is no y in Right(x)
with id(y) ≤ destID. Since we assumed id(w) ≤ destID, Invariant 5a) implies
id(source) < id(w). This implies v /∈ R+

s (id(source), Next). Invariant 5c) then
yields that Invariant 7 holds for the ProbeFail(destID, seq) message.

We are now ready to prove the following result:

Lemma 5.35. In every computation of Build-List*, if Invariants 1-7 hold in
a state S, then there is a state S′ ≥ S such that every state of SUFFIX(S′)
is admissible. Furthermore if some state S′′ is admissible, then every state in
SUFFIX(S′′) is admissible.

Proof. The idea of this proof is similar to that of Lemma 5.34. Assume in an
arbitrary computation of Build-List* there is a state S in which Invariants 1-
7 hold. Lemma 5.34 implies that Invariants 1-7 hold throughout SUFFIX(S).
We will show that in SUFFIX(S) existing Search() messages conforming to
Invariant 8 will never violate this invariant and that every new Search() message
sent during SUFFIX(S) will conform to Invariant 8. Again, from these observations,
it immediately follows that if there is an admissible state S′′, then every state in
SUFFIX(S′′) is admissible.

First, consider there is an existing Search(v, destID) message in u.Ch that
conforms to Invariant 8 in some state S′′ ≥ S but violates Invariant 8 in the state
S′′′ subsequent to S′′. This can only be the case if u /∈ Rs(v) and u is staying in
S′′′. Recall that R+

s (id(v), u) ⊆ Rs(v) is equivalent to u ∈ Rs(v) if u is staying.
Thus, Lemma 5.32 implies u ∈ Rs(v) yielding a contradiction.

Second, assume that a new Search(v, destID) message is sent to a node u
after S. According to the protocol, such a message is only sent by v itself and
upon receipt of a ProbeSuccess(destID, u) message. However, by assumption,
Invariant 6 holds for this message, i.e., id(dest) = destID and dest ∈ Rs(v).
Therefore, Invariant 8 holds for the newly sent Search(v, destID) message.

Now that we have shown that each computation that starts from an admissible
state contains admissible states only, we show that every computation of Build-
List* actually contains an admissible state. This is formalized by the following
lemma:

Lemma 5.36. In every computation of Build-List* there is an admissible state.

Proof. Note that according to Lemma 5.6, every computation of Build-List*
contains a state S1 such that in SUFFIX(S1) all nodes that will eventually
be leaving are inactive and note that these nodes do not perform any actions
once they are inactive. Furthermore, note that according to the protocol a
ReverseAndLinearize(nodeList, uniqueV alue) message is sent only if some
node received a ReverseAndLinearizeACK(v, uniqueV alue) message. More-
over, a ReverseAndLinearizeACK(v, uniqueV alue) message can only be sent

108

Build-List* Satisfies Monotonic Searchability 5.5

if a node receives a ReverseAndLinearizeREQ(dir) message. Such a message
is only sent from a leaving node. However, in SUFFIX(S1), no leaving node can
send a message anymore. Thus, there is a state S2 such that in SUFFIX(S2) the
third and the fourth invariant always hold. Note that according to Lemma 5.24,
there will be a state S3 ≥ S2 such that in SUFFIX(S3) no Introduce(v, w)
and no Linearize(v) messages will exist, implying the first two invariants hold
throughout SUFFIX(S3). Since according to Lemma 5.31 the first four invariants
hold throughout SUFFIX(S3), the sequence of Lemma 5.33, Lemma 5.34 and
Lemma 5.35 implies that there will be an admissible state S4.

Note that Lemma 5.35 and Lemma 5.36 imply the following corollary:

Corollary 5.37. In every computation of Build-List*, there exists a suffix in
which every state is admissible.

5.5.3. Proving the Correctness in Admissible States

In this section, we provide the last missing pieces required for the proof of The-
orem 5.29. The lemmas and proofs of this section do not coincidentally closely
resemble those of Section 4.4.4 from Chapter 4, since the same proof structure can
be applied here. They mostly differ in some details and particularly the notation
that needs to be different here to account for the possibility of leaving nodes. We
begin with the following lemma:

Lemma 5.38. In every computation of Build-List*, if a node v initiates a
ForwardProbe(v, destID,Next, seq) message in an admissible state, then v
eventually receives either a ProbeSuccess(destID, dest) message for some node
dest or a ProbeFail(destID, seq) message.

Proof. For an arbitrary computation of Build-List*, let S be an arbitrary admissi-
ble state. According to Lemma 5.35, every state of SUFFIX(S) is admissible. As in
the proof of Lemma 4.23, we use the potential function Ψ(U, ID) defined as follows:
Ψ(U, ID) :=

∑
u∈U n

|id(u)−ID|, where n is the total number of processes. Here,
we additionally define R+

s (ID1, U, ID2) := {u ∈ R+
s (ID1, U) : min(ID1, ID2) ≤

id(u) ≤ max(ID1, ID2)} for any identifiers ID1, ID2 and set of node references
U . Observe that u ∈ R+

s (id(v), U) for an arbitrary set U and nodes u, v implies
u ∈ R+

s (id(v), U, id(u).
First, note that if in SUFFIX(S) a node u receives a ForwardProbe(v, destID,

Next, seq) message and during the execution of the ForwardProbe() action
executed upon receipt u does not send ProbeSuccess() or ProbeFail() message,
then u sends a ForwardProbe(v, destID,Next′, seq) message to some other
node and Ψ(Next′, destID) < Ψ(Next, destID). This follows from the protocol
and the fact that u chooses Next′ as Next \ {u} augmented by all neighbors whose
identifier is between id(u) and destID: i.e., it only adds neighbors v such that
|id(v)− destID| < |id(u)− destID|. Thus, Ψ(Next′, destID) < Ψ(Next, destID).

109

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

Also note that for every existing ForwardProbe(v, destID,Next′, seq) message,
Ψ(Next′, destID) cannot increase and that Ψ is lower bounded by 0.

Therefore, for an arbitrary ForwardProbe(v, destID,Next, seq) message, we
can inductively obtain that there must a node w that receives a Forward-
Probe(v, destID,Next′, seq) message but that does not send a new Forward-
Probe() message upon receipt of that message. Instead, according to the protocol,
it sends either a ProbeSuccess(destID,w) message or a ProbeFail(destID, seq)
message to v.

Making use of this lemma, we show the following intermediate result. Here,
again, we say a message is buffered at u if for a node u this message is contained
in u.waitingFor[destID].

Lemma 5.39. In every computation of Build-List*, if a staying node u has a
Search(u, destID) message buffered at u in an admissible state, then if u does
not become leaving, this message will eventually be delivered or dropped. In the
former case, it will be delivered to the node w with id(w) = destID (which exists
in this case). In the latter case, either there is no staying node with identifier
destID when the message is dropped or all previous Search(u, destID) messages
that were initiated before that message and that were buffered at u during at least
one admissible state have been or will be dropped as well.

Proof. For an arbitrary computation of Build-List*, let m be an arbitrary
Search(u, destID) message buffered at some staying node u in an admissible
state S. Furthermore, let seq be the value of u.lseq[destID] in S. If u becomes
leaving, the claim trivially holds, so assume u remains staying forever. Recall that
according to Lemma 5.35, every state of SUFFIX(S) is admissible. Due to the
protocol, node u initiates a ForwardProbe(u, destID,Next, seq) message every
time it executes Timeout. According to Lemma 5.38, u will eventually receive a
ProbeSuccess(destID, dest) or a ProbeFail(destID, seq) message. Note that
u forwards or drops m upon the first receipt of such message after S.

First, consider the case that the first such message that u receives after state S
is a ProbeSuccess(destID, dest) message. Invariant 6 yields id(dest) = destID
and m will be sent to dest, according to the protocol.
Second, consider the case that the first such message that u receives after S is

a ProbeFail(destID, seq) message. According to Invariant 7, either no staying
node v with id(v) = destID exists (in which case we are finished) or for every
admissible state with u.lseq[destID] < seq, v /∈ Rs(u). Now consider an arbitrary
earlier Search(u, destID) message m′ that was buffered at u during an admissible
state. If m′ is still waiting at u in state S, then m′ will be dropped together with
m when u receives the ProbeFail(destID, seq) message. Otherwise, assume for
contradiction that immediately after some state S′ < S, m′ was sent to a node dest
with id(dest) = destID. Since m′ was buffered at u during at least one admissible
state, by Lemma 5.35, S′ is admissible as well. According to the protocol, the fact
that m′ was sent to dest requires that there was a ProbeSuccess(destID, dest)

110

Build-List* Satisfies Monotonic Searchability 5.5

message in u.Ch in S′. By Invariant 6, dest was leaving in S′, or dest ∈ Rs(u) in
S′. In the former case, we are done because dest will then also be leaving in every
later step and, in particular, when m is dropped. In the latter case, note that u
increased u.lseq[destID] when the first Search() message was initiated after S′:
i.e., before S. Since the sequence numbers are monotonically increasing, S′ is a
state with u.lseq[destID] < seq. Thus, Invariant 7 of the ProbeFail(destID, seq)
message implies dest /∈ Rs(u) in state S′, yielding a contradiction. This finishes
the proof.

In the following, to simplify the description, we say a node u is always staying
in a computation C if it is staying initially in C and never becomes leaving.

We continue with the following result that represents the last lemma on the way
to prove Theorem 5.29 (which basically uses the same ideas as Lemma 4.24 from
Chapter 4):

Lemma 5.40. In every computation C of Build-List*, for every two always
staying nodes u and v such that v ∈ Rs(u) in some admissible state S, there is
a state S′ ≥ S such that all Search(u, id(v)) messages initiated in S′ and all
subsequent states will be delivered to v.

Proof. For an arbitrary computation of Build-List*, let u and v be two always
staying nodes in C and assume v ∈ Rs(u) in an admissible state S. Note that
according to the pseudocode and Lemma 5.39, there will be a state S′ ≥ S in which
u.WaitingFor[id(v)] is empty because all Search(u, id(v)) messages buffered at u
during S have been sent to their destination or dropped right before (if there were
any). Let seq′ be the value of u.lseq[id(v)] in S′. Consider the first Search(u, id(v))
message initiated after S′. Since InitiateNewSearch(id(v)) is the only action
that adds elements to u.WaitingFor[id(v)], u.WaitingFor[id(v)] = ∅ holds when
this message is initiated. According to the pseudocode (c.f. Listing 5.2), u.lseq[id(v)]
will be increased by one at that time: i.e., its new value will be seq′′ = seq′ + 1.
Now consider an arbitrary Search(u, id(v)) message m initiated after S′. By
Lemma 5.39 m will be delivered or dropped. Assume for contradiction it is
dropped. According to the pseudocode (c.f. Listing 5.2), this requires u to receive
a ProbeFail(destID, seq) message with destID = id(v) and seq ≥ u.lseq[id(v)].
Note that as argued before, at that time u.lseq[id(v)] ≥ seq′′ > seq′. Thus,
Invariant 7 for the ProbeFail(destID, seq) yields a contradiction to v ∈ Rs(u) in
S. All in all, we have that m is delivered correctly.

Armed with these lemmas, the proof of Theorem 5.29 is straightforward. Before
providing its proof, we restate the theorem:

Theorem 5.29. Build-List* admissible-message satisfies monotonic searchabil-
ity according to Search*.

Proof. Consider an arbitrary computation C of Build-List*. Corollary 5.37 yields
that C contains an admissible state and that the computation suffix starting from

111

Chapter 5 MONOTONIC SEARCHABILITY UNDER LEAVING NODES

the first admissible state S solely consists of admissible states. Thus it remains to
be shown that the protocol satisfies monotonic searchability in SUFFIX(S).

Consider an arbitrary Search(u, destID) message m initiated in a node u after
S that is successfully delivered to the node v with id(v) = destID. If u or v become
leaving at some point in time, there is nothing to prove. Thus, assume u and v are
always staying. Assume for contradiction that there is another Search(u, destID)
message m′ initiated after m that is dropped. Note that both m and m′ were
buffered at u during at least one admissible state. Lemma 5.39 implies that since
m′ is dropped, m must have been dropped as well, which represents a contradiction.
Thus, every Search(u, destID) initiated after m is delivered as well.

Last, note that in legal states (i.e., in the line topology) for every pair of staying
nodes u and v, v ∈ Rs(u). Thus, Lemma 5.40 yields that Build-List* fulfills the
non-triviality property, which completes the proof of Theorem 5.29.

112

PA
R
T III

Relays: A New Model for the
Interconnection of Nodes

T he third main part of this thesis introduces the relay model and answers
the following questions: What does a reasonable model not requiring
oracles to solve the finite departure problem look like? How can this model

be implemented in a self-stabilizing fashion, assuming only a reliable link-layer?
To answer these questions we introduce the relay model for the interconnection of
nodes. We describe its application programming interface, propose a pseudo-code
level implementation that assumes only a reliable link-layer and prove that it is
indeed self-stabilizing. To motivate that the proposed model is reasonable, we
show that it is universal in the sense that arbitrary graphs can be transformed
into arbitrary other graphs. Thereby, once again, a set of graph transformation
primitives based on the primitives in IDFR plays a significant role. In addition,
we show that existing protocols for well-established models can be transformed into
the relay model. Furthermore, we show a general approach to transform protocols
such that they solve the FDP in the relay model.

113

The Relay Model and Its Self-Stabilizing
Realization

C
H
A
P
T
ER 6

In this chapter, we describe a novel model for the interconnection of nodes, which
permits a solution to the finite departure problem. The development of this model
was driven by two insights gained from the proof that the FDP is unsolvable in the
standard model without oracles: First, the standard assumption used in overlay
networks research that a node may freely pass knowledge about its neighbors to
any one of its neighbors has the effect that a node v cannot locally decide whether
v is critical for the connectivity of the network or not, simply because v does
not have any control on and thereby potentially incomplete knowledge about its
incoming connections (i.e., the set of nodes having a reference of v). Second, when
assuming asynchronous communication, where messages may have arbitrary finite
delays, a node v may not know whether messages carrying critical connectivity
information are still on their way to v. Our model overcomes these issues by
managing connections through relays. Each node can query each of its relays
whether it still has incoming connections and an outgoing connection is closed only
if all messages sent via the corresponding relay have already been delivered. This
way, the FDP is solvable without the use of oracles, as we will show.

At first glance, one might suspect that our model is a simple implementation of
an oracle used to solve the FDP . However, our model has several advantages that
qualify it to be of broader interest. First of all, as we show, it can be implemented
in a self-stabilizing fashion. Furthermore, it is universal in the sense that one
can transform arbitrary initial graphs into arbitrary final graphs in this model.
Moreover, existing protocols can be transformed such that they can be executed
in the relay model as well. Besides, our model allows nodes to grant and revoke
access rights, which opens up many new possibilities.
The main results of this chapter have previously appeared in the following

publication:

Christian Scheideler and Alexander Setzer. Relays: A New Ap-
proach for the Finite Departure Problem in Overlay Net-
works. In: Proceedings of the 20th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS). Tokyo,
Japan, 2018 [SS18]

Outline of This Chapter We start this chapter in Section 6.1 with a definition
of the communication model used in this part of the thesis and a formal statement
of the problem considered here. After that, in Section 6.2, we describe our new

115

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

interconnection model, called the relay layer, as well as its commands, variables,
internal operation (relying on the reliable link layer only) and properties. In
Section 6.3, we then prove that it actually fulfills these claimed properties. In
Section 6.4, on the basis of the primitives for the manipulation of graphs defined
in Chapter 2, we define a set of relay primitives that we prove to maintain weak
connectivity, to be universal and to allow transferring existing protocols to our
model. Last, in Section 6.5 we present a general approach to solve the FDP with
relays.

6.1. Communication Model and Problem Statement
In this section, we formally define the communication model used in this part
of the thesis (Section 6.1.1). Furthermore, we define the desired properties and
benefits that the relay model should exhibit (Section 6.1.2).

6.1.1. Communication Model

We assume that there is a reliable link layer that transmits messages from nodes
to other nodes on the basis of the identifier of the target node contained in the
message. More specifically, each node specifies a set of system-based variables,
called buffers, containing messages to be sent to other nodes. The identifier of the
respective target node is stored inside the message. We assume that the link layer
may take an arbitrary but finite amount of time to process a message that was put
into one of these variables, but these messages never get lost.
In this model, we say that a message m requests to call an action A at some

node u if m corresponds to A and m has been transmitted to u by the link layer
but has not been processed yet. When A is executed because it was enabled due
to m, we say that m is processed. We assume the link layer makes sure that every
transmitted message will eventually be removed from the buffer it was taken from
after it has been processed by the receiver.

There are no resources available beyond the nodes and the link layer as specified
above (such as shared storage or a gateway), so the nodes rely entirely on themselves
and the link layer in order to handle certain tasks. This implies that there is no
way for two disconnected components of nodes to connect to each other.

We specify more details on how the nodes are interconnected with each other
once we introduce relays in Section 6.2. As in the communication model used in
Part II, we do not allow the presence of connections to nonexistent nodes.

6.1.2. Problem Statement

Since the standard interconnection model considered in the previous two chapters of
this thesis does not permit a solution to the FDP without oracles, the goal of this
chapter is to devise a new interconnection model, called the relay model, in which
a self-stabilizing, local-control protocol can solve the FDP without oracles. The

116

The Relay Layer 6.2

relay model should make as few assumptions as possible, with the only exception
of sourcing out the difficulties involved with message transport to the link layer. In
particular, assuming a reliable link layer, the relay model should be able to recover
from faults in the variables of the nodes in a self-stabilizing fashion. This means
that after a finite amount of time, all operations specified by the interconnection
model are guaranteed to behave in the specified way. In addition to permitting
a solution to the FDP, the relay model should be universal in the sense that it
is possible to transform any weakly-connected topology into any other weakly-
connected topology, which is important to make it a useful interconnection model
for overlay networks. In the course of this, we show that existing protocols for the
standard interconnection model can be transformed into protocols for the relay
model. As we will see, the relay model will also allow nodes to grant and revoke
access rights (i.e., a node can control and restrict its incoming connections), which
offers further widespread applications of the model.

6.2. The Relay Layer
We assume that all connections between nodes happen through relays, which are
managed by a relay layer. Each node v is assumed to interact with its own separate
relay layer RL(v) (so that it is clear which relay is owned by which node) and
RL(v) is required to reside at the same machine as v so that interactions between
v and RL(v) are local. Whenever a message needs to be sent to v, it has to go
through RL(v). Each RL(v) has a globally unique address, in short RID, that
depends on the address of its machine so that messages can be sent to it from any
other relay layer that knows its RID.
In addition to the buffers of the relays that will be specified below, every

relay layer RL(v) has a local buffer RL(v).Buf that is used for the internal
communication between relay layers: Every RL(v).Buf is expected to consist of
pairs (targetRID,message) in which targetRID is the RID of the relay layer
that message is sent to by the link layer. This buffer can only be used for internal
messages: i.e., messages used by the protocol for the operation and self-stabilization
of the relay layer (which we will define later on). Any other type of message in
this buffer will be ignored.

The relay layer of the entire system is the set of relay layers over all of its nodes.

6.2.1. High-Level Description
Before we start with the formal details of the relay layer and its commands, we
give a high-level description of which relays are and how they are interconnected.
The basic concept of a relay is similar to that of a network socket: It is an

endpoint for sending or receiving messages and it is non-transferably owned by
exactly one node. In contrast to a network socket, however, a relay can have both
incoming connections from other relays as well as an outgoing connection to some
relay (some examples of such relay connections are shown in Figure 6.1).

117

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

r′r

(a) Relay r has an outgoing
connection to r′ and no
incoming connection.

rr2

r1

r3

(b) Relay r has three incom-
ing connections (from
relays r1, r2, and r3)
and no outgoing con-
nection.

r

r1

r2

r′

(c) Relay r has two incoming
connections (from relays
r1, and r2) and one out-
going connection (to relay
r′).

Figure 6.1.: Examples of relay connections.

The simplest form of a relay is a sink relay. A sink relay is a relay without any
outgoing connection. It can have any number of incoming connections, including
zero. A sink relay is the only kind of relay that can be created explicitly. To do
this, a node v can call the relay layer command new Relay. RL(v) then creates
a new sink relay r owned by v (we also say that the relay is owned by RL(v),
which is equivalent since there is exactly one relay layer RL(v) for v). Whenever
a message is sent via a sink relay r, RL(v) puts this message into r.Buf . Any
message in r.Buf is then delivered to the node owning r. This alone does not
make a sink relay very useful, since only the node owning r could directly send
a message via r. However, whenever a relay r receives a message via one of its
incoming connections, the relay layer puts the message into r.Buf as well. As
explained before, this has the effect that every message received by a sink relay is
delivered to the node owning that sink relay.
A relay that has an outgoing connection is called a non-sink relay. Note that

a relay cannot have more than one outgoing connection. The endpoint of the
outgoing connection of a non-sink relay is another (sink or non-sink) relay. In
principle, if a message m is sent via a non-sink relay r, it is put into r.Buf , as was
the case for a sink relay. For a non-sink relay r, however, the underlying link layer
delivers m to the endpoint of r’s outgoing connection, r′. As mentioned before,
the relay layer owning r′ acts as though m was directly sent via r′: it puts m into
r′.Buf . If r′ is a sink relay, this means that m will be delivered to the node owning
r′. Otherwise, m will be sent to the endpoint of the outgoing connection of r′.

In a legal system state, each sequence of relay connections is finite, ending with
a sink relay. Thus, every message sent via a relay will eventually be received by
some node. Note that since a relay can have at most one outgoing connection but
an arbitrary number of incoming connections, the connections between relays in
the system form a forest of relay trees (see Figure 6.2 for an example of a relay
tree and an illustration of the following notions). A relay tree T has interesting
properties. The root of T is a unique sink relay r. The node owning r receives
all messages sent by any of the relays in the tree. Therefore, we say that for an

118

The Relay Layer 6.2

r′ r

Figure 6.2.: A relay tree T . r is the root of T and the sink of every relay in T .
The level of r′ in T is two.

arbitrary relay r′ in T , r is the sink of r′. Furthermore, we can define the level of
a relay by its distance to the root: a sink relay has a level of zero, the relays that
share an outgoing connection with r have a level of one, and so on. As a side note,
we mention that for technical reasons, all nodes in T also store the RID of r.

Each relay can be alive or dead. A relay r that is dead is prepared for deletion:
It does not have any incoming connections, nor does it accept any new messages
(i.e., the node owning r could not send any message via r). It continues to exist,
though, as long as r is still needed. This may be for two reasons, one of which is
that there are messages in r.Buf that have not been transmitted by the link layer
yet. The other reason is more technical and will be explained later on. A newly
created relay is initially alive and can become dead only when the node owning it
requests to delete it. A dead relay cannot become alive again.
The relay layer offers some specific commands for relays, in addition to the

delete command we already mentioned. For example, one can check whether the
relay has incoming connections via has-incoming. direct returns whether a relay
is direct, meaning that it is either a sink relay or has an outgoing connection to
a sink relay (i.e., its level is at most one). It is also possible to check whether a
relay is a sink relay via is-sink. To check whether a relay still exists, one can call
dead on a reference for a relay: it returns true if and only if that relay does not
exist anymore or is dead. It is also possible to check whether two relays have an
outgoing connection to the same relay (or are both sink relays) via same-target.
Furthermore, sending a message is achieved via send. We mention that there is
one additional command, merge, which can be used to merge several relays if all of
them have an outgoing connection to the same relay and no incoming connections.
Simply put, this means that the merged relays themselves are removed and a single
new relay is created with the same outgoing connection. This simple description,
however, lacks some important details and does not reveal the full purpose of this
command, which can be understood later on when the full specification of the relay
layer has been presented.
So far, we have described relays, some of their properties and their commands.

For the description, we used the notion of a connection between two relays without
further specifying its meaning. We now close this gap. Recall that the system

119

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

model only specifies connections between nodes. Specifically, a node u is connected
to another node v if and only if u knows v’s identifier. Relay connections, on the
other hand, are maintained by the relay layer and in the following manner: each
relay has a globally-unique identifier (called ID in the following). To achieve this, it
consists of two parts: the RID of the relay layer owning that relay (recall that it is
globally unique) and a locally unique identifier. The fact that the RID of the relay
layer owning a relay r is part of r’s ID has another benefit: it enables relay layers
of other nodes to send messages to r when knowing r’s ID. For every non-sink relay
r, the relay layer stores the ID of the relay that r is connected to in a variable
attached to r. This way, messages put into r.Buf can be transmitted as specified
above. In order to fulfill the desired access-control requirements, connections are
authorized via keys: each non-sink relay stores a key for its outgoing connection
(more precisely, it stores a set of keys, but since the reason for this is not obvious at
this point and to simplify the description, we here assume that there is only a single
key). Moreover, each relay with incoming connections stores a set of “authorized”
keys that may be used to send messages to this relay. When a message is sent via
some relay r to some relay r′, the key that RL(r) stores for the connection of r to
r′ is attached to the message. Upon receipt of the message, RL(r′) checks whether
the key attached to that message is stored in its set of authorized keys. If so, it
puts the message into r′.Buf . Otherwise, it communicates with RL(r) to cause
r to be deleted (messages sent via r would not be able to reach the sink anyway
then). This approach is the key strategy to enable access-control: if a connection
only required the endpoint’s ID, it could still be duplicated and distributed among
many nodes. With the keys in place, although a key could be duplicated as well, a
user could revoke a key that has been compromised (and that is used for an attack,
for example). Since this would still only be reactive, for every incoming connection
of a relay the relay layer stores the RID of the other endpoint of that connection,
along with each key, and accepts messages sent from that RID only.

One important question has not been answered so far: how are relay connections
created? We do not consider this question for the initial setup (this is beyond
the scope of this thesis and should be investigated individually) and assume that
the system starts from a state such that the graph that contains an edge (u, v) if
an only if there is a connection between two relays ru and rv owned by u and v,
respectively, is weakly connected. As we will show in the course of this chapter, in
the non-self-stabilizing setting (in which we assume that the initial state is a legal
state: i.e., there are no corrupted variables and messages) this requirement on the
initial state is enough to be able to transform the system arbitrarily: i.e., to form
any desired forest of relay trees (this is the main contribution of Section 6.4). The
basic idea for the creation of connections is that references to relays can be sent in
messages. As soon as a sink r receives a message with a relay reference to some
relay r′ in it, RL(r) automatically creates a new relay that has r′ as its endpoint
(and the relay layers take care that there are suitable keys for the connections as
well).

This completes the high-level description of the relay layer. Accurate and formal

120

The Relay Layer 6.2

descriptions of the relay layer, as well as the variables, commands and actions are
provided in the next subsections.

6.2.2. Relays and Relay Graphs

We now formally define the variables of a relay. For a node v, RL(v) maintains
the following variables for each relay r:

• r.ID: the globally-unique identifier of relay r (containing the RID of RL(v)
so that messages can be sent to r when knowing its ID),

• r.state: is either alive or dead,

• r.out: stores a (Key, ID) pair, where Key is a set of keys and ID is the ID
of the target of the outgoing connection (if ID = ⊥ then r is a sink relay:
i.e., messages sent to r are forwarded to the node owning r),

• r.level ∈ N0: stores the distance of r (in hops) to the sink relay reached via
its outgoing connection (there is always a unique such sink relay, see below),

• r.sinkRID: stores the RID of the sink of r: i.e., the RID of the relay layer
of the node that will receive messages sent via r,

• r.In: a set of triples of the form (key,RID,⊥) or (key,⊥, r′) for some relay
r′, where key is a globally unique key (depending on the RID of r’s relay
layer), RID specifies the address of the relay layer that can send messages
to r via key, and r′ is a relay via which key was supposed to be forwarded;
depending on the form, key is a confirmed or unconfirmed key,

• r.Buf : stores all messages that the link layer should send to the relay layer
whose RID is contained in r.out.ID if r.out.ID 6= ⊥, or to v if r.out.ID = ⊥.

Note that we assume all buffers (i.e., RL(v).Buf and r.Buf for every relay r) to be
insert-only: i.e., only the link layer can remove a message from them. Furthermore,
we assume all IDs in the system to be valid: i.e., for every ID in the system
the corresponding RID belongs to an existing node (it would be possible to lift
this assumption by introducing another oracle or by giving more power to the
underlying link layer, but this is beyond the scope of this work).
The relay connections can be represented by a relay graph.

Definition 6.1 (Relay Graph). Given any system state S, the relay graph G =
(V,E) of S is a directed graph that is defined as follows: V = R ∪ P , where R is
the set of relays and P is the set of nodes. E = EP ∪ ECh, where EP is the set
of all explicit edges and ECh is the set of all implicit edges. EP contains an edge
(v, w) whenever

1. v ∈ P , w ∈ R, and w is owned by node v,

121

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

r1 r2 vu

(a) Normal visualization of a relay graph
according to the definition.

r1 r2

u v

(b) Simplified visualization: relays are drawn
inside the nodes they are owned by.

Figure 6.3.: Example of a relay graph. u and v are nodes, whereas r1 and r2 are
relays. In later figures, we will use the simplified visualization (right
image) only.

2. v ∈ R, w ∈ R, and relay v has an outgoing connection to relay w (i.e.,
v.out.ID = w.ID), or

3. v ∈ R, w ∈ P , and relay v is a sink relay of node w (i.e., v.out.ID = ⊥).

ECh contains an edge (v, w) whenever v ∈ R, w ∈ R and a reference to w is
contained in the parameter list of a message in v.Buf . Thus, while explicit edges
can be used to send messages, implicit edges cannot be used to send messages yet.

Figure 6.3 shows an example of a relay graph. As we will see, the definition of
legal states will require the relay graph to be cycle-free.

6.2.3. Commands
Whenever a node holds a reference to a relay r, which we denote by r̂, we assume
that it is a “dark” reference: i.e., the variables of the relay cannot be accessed by
the node. However, the reference can be used by the node to call a number of
commands offered by the relay layer (in the following, we assume that all relays
mentioned below are owned by the calling node: i.e., they are or have been created
for it by its relay layer — relays not owned by the calling node will be ignored):

• new Relay: returns a reference to a new sink relay r with a globally unique
identifier r.ID containing RID, r.state = alive, r.out = ({},⊥), r.level = 0,
r.sinkRID = RID, r.In = {}, and r.Buf = {}, where RID is the RID of
the executing relay layer.

• delete r̂: immediately completely removes r if r is a sink relay. Otherwise
it prepares r for deletion, in a sense that the relay layer sets r.In = {}
and r.state = dead. This has the effect that r will not accept any further
messages, but r will still continue to deliver the messages in r.Buf . r is
removed completely by the relay layer once r.Buf is empty and all relay keys
sent via r have been confirmed or deleted (see below).

• merge(R): only executes if for all relays r ∈ R, r.state = alive, r.out.ID is
equal to some common ID, r.level is equal to some common `, r.sinkRID is

122

The Relay Layer 6.2

equal to some common sinkRID, r.In = {}, and for every key ∈ r.out.Key,
there is no other relay r′′ /∈ R owned by the same node such that key ∈
r′′.out.Key. In this case, the relay layer creates a new relay r′ with a new
and globally unique r′.ID, r′.state = alive, and r′.out = (Key, ID) with
Key =

⋃
r∈R r.out.Key, r′.level = `, r′.sinkRID = sinkRID, r′.In = {},

and r′.Buf =
⋃

r∈R r.Buf . Additionally, for all relays r ∈ R, all relays r′′
and all (key,⊥, r) ∈ r′′.In, it replaces (key,⊥, r) by (key,⊥, r′) in r′′.In.
Also, all relays in R are immediately removed completely. A reference to r′
is returned back to the node. If one of the conditions above is not satisfied,
merge does nothing.

• getRelays: returns (references to) the current set of all relays owned by v
that are still alive.

• has-incoming(r̂): returns true if and only if |r.In| > 0.

• direct(r̂): returns true if and only if r.level ≤ 1.

• is-sink(r̂): returns true if and only if r.level = 0.

• dead(r̂): returns true if and only if r does not exist anymore or r.state =
dead.

• same-target(r̂1, r̂2): returns true if and only if r1.out.ID = r2.out.ID.

• send(r̂, action(parameters)): if r is still alive, this adds a message of the form
Transmit((key,RID, r.out.ID), action(parameters′)) for some arbitrary
key ∈ r.out.Key to r.Buf (where RID is the RID of the executing relay
layer and parameters′ is an adapted form of parameters explained below).
The surrounding transmit is used as a wrapper to indicate that this message
is not an internal type of message.

Figure 6.4 gives examples of the uses of these commands.
If a node v executes stop, v becomes inactive and RL(v) immediately deletes

all sink relays and from then on periodically deletes all relays r such that r.In = ∅,
r.Buf = ∅ and all keys sent via r have been confirmed or deleted (i.e., there is
no relay r′ such that (key,⊥, r) ∈ r′.In). RL(v) continues to exist until all relays
have been deleted, after which it shuts down. As we will prove, we highlight that
protocols can prevent relay layers from existing forever by making sure that every
indirect relay (i.e., every relay r such that direct(r̂) = false) is eventually closed.

Note that the fact that merge can be used to merge relays is the reason for why
the variable r.out.Key of a relay r has to be a set instead of only a single value:
The merge could occur in an illegal state at which one of the merged relays may
store a correct key while another one does not. At this point it is not clear which
one to choose.
For convenience, in the following we will use RL(r) to denote the relay layer

that owns a relay r, RID(ID) to denote the RID contained in ID, RID(u) to
denote the RID of RL(u) for a node u and RID(r) to denote the RID of RL(r).

123

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

u
0 f
q

v
1 t
r

w
1 t
p

(a) Initial situation. u owns relay q, v
owns relay r and w owns relay p. By
definition, r and p are direct relays,
whereas q is not.

u
0 f
q

v
1 t
r

0 t
s

w
1 t
p

(b) Situation after v has executed new
Relay. v has an additional (sink)
relay s. By definition, s is a direct
relay.

u
0 f
q

v
1 t
r

1 t
s

w
1 t
p

0 t
s′

(c) Situation after v has executed
Send(r̂, action(ŝ)) for some action
action. RL(w) has created a new re-
lay s′ with an outgoing connection to
s.

u
0 f
q

v
1 t
r

0 t
s

w
1 t
p

0 t
s′

(d) Situation after w has executed delete
ŝ′. s′ is marked as dead, s.In has
been updated (as s no longer has an
incoming connection) and the connec-
tion from s′ to s has been removed.

Figure 6.4.: Example with three nodes u, v, and w. The characters inside a relay r
denote (from left to right) |r.In|, the ID of r and whether r is a direct
relay. The arrows indicate outgoing connections of relays.

6.2.4. Message Processing and Action Handling

All messages that can be sent by a node v are required to be remote method
invocations of the form action(parameters) (otherwise, they will be ignored by
RL(v)). More precisely, a node v calls send(r̂, action(parameters)) to ask RL(v)
to send out a message via r. For simplicity, we assume parameters to consist of a
sequence of objects, some of which are relay references, and all other objects do not
contain any relay reference at all. We assume that each action has a fixed number
of parameters and specifies which of its parameters are relay references. When
send(r̂, action(parameters)) is called for an alive relay r, there are two possibilities:
If r is a sink, i.e., r.out.ID = ⊥, then action(parameters) is put into r.Buf such
that the node owning r will receive action(parameters). Otherwise, RL(r) for every
relay reference ŝ contained in parameters creates a new globally unique key key,
inserts (key,⊥, r) into s.In and replaces ŝ by the quadruple (key, s.ID, s.level +
1, s.sinkRID). We refer to these quadruples by the term relay parameter : the first
entry of which is called its key, the second its id, the third its level and the fourth
its sinkRID. Furthermore, we assume that there is a part of each generated key
that depends on the generating node and can be used to check whether a key key
was generated by a node u, in which case we say key belongs to u. Let the list of
parameters resulting from the replacements be parameters′. Then, RL(r) puts
a Transmit(((r.out.Key,RID(r.ID), r.out.ID), action(parameters′))) message
into r.Buf . The triple (r.out.Key,RID(r.ID), r.out.ID) is also called the header

124

The Relay Layer 6.2

of the message. We also say that a message uses key msgkey if msgkey is an
element of the first entry of that message’s header. The pseudocode of the Send()
action can be found in Listing 6.1.

Listing 6.1: Pseudocode of send
1 send(r̂, action(parameters))
2 if r.state = alive then
3 | if r.out.ID = ⊥ then
4 | | r.Buf := r.Buf ∪ {action(parameters)}
5 | else // r is not a sink relay
6 | | parameters′ := parameters
7 | | let ŝ1,ŝk denote elements of parameters′ that are relay references
8 | | for every i ∈ {1, . . . , k} do
9 | | | create a new globally unique key key

10 | | | si.In := si.In ∪ {(key,⊥, r)}
11 | | | s′i := (key, si.ID, si.level + 1, si.sinkRID)
12 | | | replace ŝi in parameters by s′i
13 | | // let key be arbitrary such that key ∈ r.out.Key
14 | | r.Buf := r.Buf ∪ {Transmit(((r.out.Key, RID(r.ID), r.out.ID),
15 | | action(parameters′)))}

We assume that the link layer for every relay r eventually processes every message
in r.Buf without changing its contents. The link layer makes sure that every
message m′ ∈ r.Buf for a relay r is either processed by the node v owning r, in
case that r.outID = ⊥, or successfully delivered to the node whose relay layer has
the RID contained in r.out.ID. After the link layer has processed a message m′ in
r.Buf for a relay r, it removes m from r.Buf . Recall in the following that relay
layers can also communicate internally by putting (targetRID,message) pairs
into RL.Buf .

As we have seen, the header of a message is chosen in a specific way. The purpose
of this header is to enable the receiving relay layer of a message to check whether
this message was allowed to be sent to that relay. We therefore introduce the
following definition:

Definition 6.2 (Valid message header). A message m of the form ((Keys,
senderRID, outID), action(parameters)) is said to have a valid header for relay
r if and only if

(i) r.ID = outID and

(ii) there is a key ∈ Keys such that (key, senderRID,⊥) ∈ r.In or (key,⊥, r′) ∈
r.In for some relay r′ owned by RL(r) such that r′.sinkRID = senderRID.

When the relay layer of a node w receives a Transmit(m = ((Keys, senderRID,
outID), action(parameters))) message (where m is the message wrapped in the
Transmit() message), it generally does the following: First, it checks whether m
has a valid header for some relay r′. In case the header of m reveals that it was to
be sent to some existing and alive relay r but did not have a valid header for r
anyway, RL(w) replies to the node whose relay layer has RID senderRID with a

125

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

Not-authorized() message. In case the message did not have a valid message
header and there does not exist such a relay, RL(w) replies with an Out-relay-
closed() message. In case of a valid header, if there are invalid keys in Keys,
RL(w) informs the relay layer that sent the message about these. After this, if r′
is not a sink relay, RL(w) then tries to forward the message to the relay that r′
has an outgoing connection to. Otherwise, RL(w) tries to deliver the message to
w. Therefore, it ”unpacks“ the relay parameters contained in parameters: First,
it checks whether these relay parameters belong to the same node (otherwise, m
is obviously corrupted). Then, for every relay parameter p, RL(w) creates a new
relay that has an outgoing connection to the relay whose reference was changed to
p upon send.

While this is the general procedure of RL(w) upon receipt of a Transmit(m =
((Keys, senderRID, outID), action(parameters))) message, there is an additional
detail that needs to be considered here: Recall that when a node v calls Send(r̂,m)
and m contains references to relays, RL(v) replaces these references by relay
parameters containing the necessary information to establish a connection to these
relays. Additionally RL(v) inserts (key,⊥, r) into r′.In for every relay r′ that
was contained in this message. These will be replaced by (key,RID,⊥) after the
message has been received by a node. To prevent (key,⊥, r) entries in .In sets for
which no corresponding messages in the system exist (which would prevent .In from
becoming empty after all other relays have been closed), the relay layers perform
a probing to check whether such a message m with a relay parameter with key
key exists: It sends a message with a Probe(ControlKeys, keySequence) action
invocation via r in which ControlKeys is a set containing key. If on the path
from r to a sink, a relay layer determines that there is a message containing a relay
parameter with key key in the buffer of the next relay on the path, the probing
for key stops. If this is not the case and the sink does not have a relay with key
key, a Probefail() message will be sent in return to inform r’s relay layer about
this. More specifically, we assume Probe(ControlKeys, keySequence) to be a
dedicated action type used only for the relay layers. The first parameter is a set and
the second parameter is a sequence of keys. To prevent any conflicts with protocols
using an action type of the same name, the relay layer could perform a check at the
beginning of the Send() action and rename a conflicting action internally. Since
specifying the details of this in the pseudocode would further complicate it, we
simply assume that no other protocol uses an action called probe. When the first
probe message for some specific relay r is sent, ControlKeys contains all keys key
such that (key,⊥, r) is contained in some set r′.In for any relay r′ owned by the
same node. Whenever the probing finds a message with a key key ∈ ControlKeys,
it removes key from ControlKeys (or stops further forwarding this probe if key
was the last key to be removed from ControlKeys). The sequence keySequence
is appended at each relay to track the path that the probing has taken. This is
required to send back the Probefail() message to the originator of the probe.
Note that the Probefail() message type contains two parameters: the key that
was not found and the sequence of keys that were used to get from the initiator of

126

The Relay Layer 6.2

the Probe() message to the sink. This key sequence is used to find the way back
to the initiator via the same path (in reverse order) that the probe took.

The full pseudocode of the relay layer upon receipt of a Transmit(m) is given
in Listing 6.2. The action handling the Probefail() messages is described in
pseudocode in Listing 6.3. Note that in the following, we use the variable RL to
denote the relay layer that executes this code and the variable P to denote the
corresponding node of that relay layer, i.e., P = w such that RL = RL(w).

Listing 6.2: Pseudocode executed by RL(w) when a message m is received by w
16 Transmit(m = ((Keys, senderRID, outID), action(parameters)))
17 if P owns a relay r′ such that r′.state = alive and m has a valid header for r′ then
18 | if (key,⊥, r′′) ∈ r′.In for some key ∈ Keys and some relay r′′ owned by P such that
19 | r′′.sinkRID = senderRID then
20 | | // first message received via this connection, activate it
21 | | r′.In := r.In \ {(key,⊥, r′′)}
22 | | r′.In := r.In ∪ {(key, senderRID,⊥)}
23 | let F alseKeys be the set of every key ∈ Keys such that there is no (key,⊥, r′′) ∈ r′.In
24 | and no (key, senderRID,⊥) ∈ r′.In
25 | if F alseKeys > 0 then // there were some invalid keys in Keys
26 | | RL.Buf := RL.Buf ∪ {senderRID, Not-authorized(F alseKeys, outID)}
27 | if r′.out.ID = ⊥ then // r’ is a sink relay
28 | | if action(parameters) = Probe(ControlKeys, keySequence) then
29 | | | for every key′ ∈ ControlKeys do
30 | | | | if P does not own a relay r′′ such that key′ ∈ r′′.out.Key then
31 | | | | | let (Keys1, . . . , Keysk) = keySequence
32 | | | | | if there is an RID s. t. (keyk, RID,⊥) ∈ r′.In for some keyk ∈ Keysk then
33 | | | | | | let RID be an arbitrary RID such that (keyk, RID,⊥) ∈ r′.In for some
34 | | | | | | keyk ∈ Keysk

35 | | | | | | RL.Buf := RL.Buf ∪ {(RID, Probefail(key′, (Keys1, . . . , Keysk))}
36 | | else if all IDs of relay parameters of m belong to the same RID then
37 | | | // (otherwise, the message is obviously corrupted)
38 | | | r′.Buf := r′.Buf ∪ {action(parameters)}
39 | | | for each relay parameter (key′, ID′, level′, sRID′) in parameters do
40 | | | | if level′ > 0 and P does not own a relay r′′ such that key′ ∈ r′′.out.Key then
41 | | | | | create a new relay s with:
42 | | | | | | s.ID := newID, where newID is a new, globally unique ID containing
43 | | | | | | the RID of RL(w)
44 | | | | | | s.state := alive,
45 | | | | | | s.out := ({key′}, ID′),
46 | | | | | | s.level := level′,
47 | | | | | | s.sinkRID := sRID′,
48 | | | | | | s.In := ∅, and
49 | | | | | | s.Buf := {Transmit((key′, s.ID, ID′), Probe({}, (key′)))}
50 | | | | | replace (key′, ID′, level′, sRID′) in parameters by ŝ
51 | | | | else
52 | | | | | replace (key′, ID′, level′, sRID′) in parameters by ⊥
53 | else // m needs to be forwarded
54 | | if action(parameters) = Probe(ControlKeys, keySequence) then
55 | | | append r′.out.Key to keySequence
56 | | | for every key′ ∈ ControlKeys do
57 | | | | if there is a message m′ ∈ r′.Buf that contains a relay parameter with
58 | | | | key key′ then

127

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

59 | | | | | remove key′ from ControlKeys
60 | | r′.Buf := r′.Buf ∪ {Transmit(((r′.out.Key, RID(r′.ID), r′.out.ID),
61 | | action(parameters)))}
62 else if P owns a relay r′ such that r′.ID = outID and r′.state = alive then
63 | // m does not have a valid header for r′

64 | RL.Buf := RL.Buf ∪ {senderRID, Not-authorized(Keys, outID)}
65 else if outID contains the RID of RL(w)
66 | // P does not own a relay r′ such that r′.ID = outID and r′.state = alive
67 | RL.Buf := RL.Buf ∪ {senderRID, Out-relay-closed(outID))}

Listing 6.3: Pseudocode executed upon Probefail(key, keySequence)
68 Probefail(key, keySequence)
69 let (Keys1, . . . , Keysk) = keySequence // k = |keySequence|
70 if P owns a relay r such that Keysk ∩ r.out.Key 6= ∅ then
71 | if k > 1 then // needs to be passed on
72 | | if there is an RID such that (keyk−1, RID,⊥) ∈ r.In for some keyk−1 ∈ Keysk−1 then
73 | | | let RID be an arbitrary RID s. t. (keyk−1, RID,⊥) ∈ r.In for some keyk−1 ∈ Keysk−1
74 | | | RL.Buf := RL.Buf ∪ {(RID, Probefail(key, (Keys1, . . . , Keysk−1)))}
75 | else
76 | | if P owns a relay r′ such that (key,⊥, r) ∈ r′.In then
77 | | | r′.In := r′.In \ (key,⊥, r)

When a Not-authorized(Keys, outID) control message is received, the relay
layer considers each key ∈ Keys individually: if there is a non-sink relay r
with r.out.ID = outID and key ∈ r.out.Key, the relay layer removes key from
r.out.Key. If the result of this is that there is no key left in r.out.Key, all elements
(key,⊥, r) are removed from r′.In for every relay r′ and r is deleted. This is
because without any key in r.out.Key, r would not be able to forward any message
received by r anyway and thus r should consequently be deleted. The pseudocode
of the Not-authorized() action is given in Listing 6.4.

Listing 6.4: Pseudocode executed upon Not-authorized(m)
78 Not-authorized(Keys, outID)
79 for every key ∈ Keys do
80 | if there exists a relay r with r.out.ID = outID 6= ⊥ and key ∈ r.out.Key then
81 | | r.out.Key := r.out.Key \ {key}
82 | | if r.out.Key = 0 then // outgoing link of r is broken / closed
83 | | | // remove all "pending" (unconfirmed) relays sent via r
84 | | | for all relays r′ do
85 | | | | for all keys key′ such that (key′,⊥, r) ∈ r′.In do
86 | | | | | r′.In := r′.In \ {(key′,⊥, r)}
87 | | | delete r̂
88 | | | completely remove r

The Timeout action mainly detects and corrects all values that are obviously
corrupted and contradict the definition of a legal state that will be given later. In
addition, for each relay r it serves the following purposes: First, it periodically sends
a Ping(r.ID, r.level, r.sinkRID, key) message to every relay layer whose RID is
contained as the second parameter of a triple (key,RID,⊥) in r.In. This is to give
connected relays r′ with r′.out.ID = ID and key ∈ r′.out.Key the opportunity to

128

The Relay Layer 6.2

correct their level or sinkRID information and also to determine if there are relays
in r.In that do not exist. Second, the Timeout action detects and completely
removes deleted relays that do not need to be kept anymore (e.g., because all of
their messages have been transmitted) and it also shuts down the relay layer if
the node is inactive and all relays of it have been removed completely. When a
dead relay r that is not a sink is removed completely, the action additionally sends
out an In-relay-closed(r.out.Key,RID(r), r.out.ID) message as to inform the
relay layer of the relay with ID r.out.ID that r has been closed. Third, its sends
out the aforementioned Probe() messages. The full pseudocode of this action is
given in Listing 6.5.

Listing 6.5: Pseudocode of the periodically executed Timeout action
89 Timeout
90 for all relays r owned by P do
91 | if r.ID does not contain the RID of P or there is another relay r′ s. t. r′.ID = r.ID then
92 | | delete r̂
93 | | for all relays r′ do
94 | | | for all keys key such that (key,⊥, r) ∈ r′.In do
95 | | | | r′.In := r′.In \ {(key,⊥, r)}
96 | | completely remove r
97 | if r.out.ID = ⊥ then
98 | | r.level = 0
99 | else if r.level < 1 then

100 | | r.level := 1
101 | if r.out is not a pair (Key, ID) such that (i) Key is a set and (ii) ID = ⊥ or ID contains
102 | the RID of some relay layer then
103 | | delete r̂
104 | | for all relays r′ do
105 | | | for all keys key such that (key,⊥, r) ∈ r′.In do
106 | | | | r′.In := r′.In \ {(key,⊥, r)}
107 | | completely remove r
108 | if r.out.ID = ⊥ and r.out.Key 6= ∅ then
109 | | r.out.Key := ∅
110 | if r.out.ID 6= ⊥ and r.out.Key = ∅ then
111 | | delete r̂
112 | | for all relays r′ do
113 | | | for all keys key such that (key,⊥, r) ∈ r′.In do
114 | | | | r′.In := r′.In \ {(key,⊥, r)}
115 | | completely remove r
116 | for all (key, X, Y) ∈ r.In do
117 | | if there is a (key, X ′, Y ′) ∈ r.In such that X ′ 6= X and Y ′ 6= Y
118 | | or there is a (key, X ′, Y ′) ∈ r′.In for some relay r′ 6= r
119 | | or key does not belong to RL then
120 | | | r.In := r.In \ {(key, X, Y)}
121 | for all (key, RID,⊥) ∈ r.In do
122 | | RL.Buf := RL.Buf ∪ {(RID, Ping(r.ID, r.level, r.sinkRID, key))}
123 | for all x ∈ r.In such that x 6= (key, RID,⊥) for any RID RID and x 6= (key,⊥, r′) for any
124 | existing relay r′ such that r′.out.ID 6= ⊥ do
125 | | r.In := r.In \ {x}
126 | if r.state = dead then
127 | | r.In := ∅

129

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

128 | | if r.out.ID = ⊥ then
129 | | | completely remove r
130 | | else if r.Buf = ∅ and P does not own a relay r′ such that (key,⊥, r) ∈ r′.In for some
131 | | key key then
132 | | | | RL.Buf := RL.Buf ∪ {(RID(r.out.ID), In-relay-closed(r.out.Key, RID(P),
133 | | | | r.out.ID))}
134 | | | | completely remove r
135 | if P is inactive and (i) r.out.ID = ⊥ or (ii) r.In = ∅ and r.Buf = ∅ and there is no
136 | relay r′ such that (key,⊥, r) ∈ r′.In for some key key then
137 | | completely remove r
138 | if P owns a relay r′ 6= r s. t. there is a key ∈ r′.out.Key s. t. key ∈ r.out.Key then
139 | | if r′.ID > r.ID then
140 | | | delete r̂
141 | | | for all relays r′′ do
142 | | | | for all keys key such that (key,⊥, r) ∈ r′′.In do
143 | | | | | r′′.In := r′′.In \ {(key,⊥, r)}
144 | | | completely remove r
145 | let keySequence be a sequence consisting of the single element r.out.Key
146 | let ControlKeys be the set of all keys key′ s. t. P owns a relay r′ s. t. (key′,⊥, r) ∈ r′.In
147 | and there is no message in r.Buf containing a relay parameter with key key′

148 | if P is active or r.In 6= ∅ or ControlKeys 6= ∅ then
149 | | r.Buf := r.Buf ∪ {Transmit((r.out.Key, RID(r.ID), r.out.ID), Probe(ControlKeys,
150 | | keySequence))}
151 if P is inactive and P owns no relay then
152 | shut down this relay layer completely

When a relay layer receives a Ping(ID, level, sinkRID, key) message it checks
whether there is a corresponding relay r with r.out.ID = ID and key ∈ r.out.Key.
If there is no such relay, it responds to the relay layer owning the relay with ID ID
with an In-relay-closed() message indicating that there is no such relay with
such a key. Otherwise, if r.level > level + 1, it updates r.level to level + 1 and
r.sinkRID to sinkRID. If r.level < level + 1, it deletes r (in this case correcting
the value would be dangerous as this would allow for cycles in the relay graph).
The pseudocode of the Ping() message is given in Listing 6.6 and the pseudocode
of the In-relay-closed(Keys, senderRID, ID), which basically removes every
entry (key,RID,⊥) from all .In sets such that key ∈ Keys, is given in Listing 6.7.

Listing 6.6: Pseudocode of the Ping() action
153 Ping(ID, level, sinkRID, key)
154 if ID 6= ⊥ then
155 | if P owns a relay r such that r.out.ID = ID and key ∈ r.out.Key do
156 | | r.sinkRID := sinkRID
157 | | if r.level > level + 1 then
158 | | | r.level := level + 1
159 | | if r.level < level + 1 then
160 | | | delete r̂
161 | | | // remove all "pending" (unconfirmed) relays sent via r
162 | | | for all relays r′ do
163 | | | | for all keys key such that (key,⊥, r) ∈ r′.In do
164 | | | | | r′.In := r′.In \ {(key,⊥, r)}
165 | | | completely remove r

130

The Relay Layer 6.2

166 | else
167 | | RL.Buf := RL.Buf ∪ {(RID(ID), In-relay-closed({key}, RID(P), ID))}

Listing 6.7: Pseudocode of the In-relay-closed() action
168 In-relay-closed(Keys, senderRID, ID)
169 for every key ∈ Key do
170 | if P owns a relay r such that r.ID = ID and (key, senderRID,⊥) ∈ r.In then
171 | | r.In := r.In \ {(key, senderRID,⊥)}

When delete r̂ is called, RL(r) sets r.state to dead and sends an Out-relay-
closed(r.ID) message to every relay layer whose RID is the second parameter of
a triple in r.In. Afterwards, it empties r.In so that no message can be received
via r from that point in time. The pseudocode of this is given in Listing 6.8.

Listing 6.8: Pseudocode executed upon delete r̂
172 delete r̂
173 r.state := dead
174 for every (key, RID,⊥) ∈ r.In do
175 | RL.Buf := RL.Buf ∪ {(RID, Out-relay-closed(r.ID))}
176 r.In := ∅
177 if r.out.ID = ⊥
178 | completely remove r

Note that a non-sink relay r is not closed immediately during the execution of
delete r̂. This is for two reasons: First, the complete removal of r is postponed to
allow all messages still in r.Buf to be delivered first. Second, there might still be
relays r′ such that (key,⊥, r) ∈ r′.In for some key key: i.e., a reference of r′ was
sent via r and the key created thereby is still unconfirmed. Would r be removed
immediately, the probing for these entries could not be executed anymore and
(key,⊥, r) would be erroneously removed from r′.In even if the message carrying
the corresponding relay parameter will be delivered later on. As soon as r.Buf is
empty and all relay keys sent via r have been confirmed or deleted (i.e., there is
no longer any relay r′ such that (key,⊥, r) ∈ r′.In), r will be removed completely
upon the execution of Timeout.
When a relay layer receives an Out-relay-closed(ID) message and owns a

non-sink relay r with r.out.ID = ID, it removes all triples (key,⊥, r) from r′.In
for every relay r′ owned by it, calls delete r̂ and completely removes r afterwards.
The pseudocode of this action can be found in Listing 6.9.

Listing 6.9: Pseudocode of the Out-relay-closed() action
179 Out-relay-closed(ID)
180 if ID 6= ⊥ and P owns a relay r such that r.out.ID = ID then
181 | // remove all "pending" (unconfirmed) relays sent via r
182 | for all relays r′ do
183 | | for all keys key such that (key,⊥, r) ∈ r′.In do
184 | | | r′.In := r′.In \ {(key,⊥, r)}
185 | delete r̂
186 | completely remove r

131

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

6.2.5. Additional Terms and Definitions
In order to define legal states for the relay layer, we introduce the notion of a
valid relay. For this definition, for a node u, we say a message m is in tran-
sit to RL(u) if and only if there is a relay layer R in the system such that
(RID(RL(u)),m) ∈ R.Buf or there is a relay r′ owned by R such that m ∈ r′.Buf
and RID(r′.out.ID) = RID(u).

Definition 6.3 (Valid Relay). A relay r is valid if and only if

1. r.state = alive and there is no Out-relay-closed(r.ID) message in the
system,

2. r.ID is globally unique and contains the RID of RL(r),

3. r.out stores a pair (Key, ID) such that Key is a set, and

4. for every key ∈ r.out.Key, there is no relay r′′′ 6= r owned by the same node
such that key ∈ r′′′.out.Key, and either

5. r is a sink, i.e., r.out = ({},⊥), r.level = 0, r.sinkRID = RID(r) and the
node owning r is active or

6. a) r.out.ID 6= ⊥ and there is a valid relay r′ with r′.ID = r.out.ID,
b) r.level = r′.level + 1 > 0 and r.sinkRID = r′.sinkRID, and
c) there is at least one key feasible for r (see below) in r.out.Key, and

7. r.In only consists of triples (key,RID,⊥) with RID 6= ⊥ or (key,⊥, r′′) for
a relay r′′ owned by RL(r) such that r′′.out.ID 6= ⊥,

8. every key key used as a first parameter of a triple in r.In is locally unique
(i.e., it does not appear in any other triple in r.In or r′′.In for any relay
r′′ 6= r) and belongs to the node owning r,

9. there is no Ping(r.ID, level, sinkRID, key) message in the system such that
level 6= r.level or sinkRID 6= r.sinkRID or (key,⊥, r′′) ∈ r.In for any
relay r′′, and

10. for every (key,RID,⊥) ∈ r.In there is no Not-authorized(Keys, r.ID)
message in transit to the relay layer with RID RID such that key ∈ Keys,
and for every (key,⊥, r′′) ∈ r.In there is no Not-authorized(Keys, r.ID)
message in transit to the relay layer with RID r′′.senderRID such that
key ∈ Keys.

Note that for a valid relay, all of Properties 1–4 and Properties 7–10 and one of
Properties 5 and 6 need to hold.

The above definition uses the notion of a feasible key defined as follows:

132

The Relay Layer 6.2

Definition 6.4 (Feasible key). A key key is feasible for a relay r if and only if
key ∈ r.out.Key and there is a relay r′ such that r.out.ID = r′.ID and there is
no In-relay-closed(Keys,RID(r), r.out.ID) message in transit to RL(r′) such
that key ∈ Keys, and

(i) (key,RID(r),⊥) ∈ r′.In or

(ii) (key,⊥, r′′) ∈ r′.In for an out-confirmed (see below) relay r′′ owned by
RL(r′) such that r′′.sinkRID = RID(r) and there is no Probefail(key,
keySequence) message in the system and for the sequence of relays (r1, r2, . . . ,
rk) such that r1 = r′′, ri+1.ID = ri.out.ID for all 1 ≤ i < k and rk.out.ID =
⊥, there is no Probe(ControlKeys, keySequence) message such that key ∈
ControlKeys in r′′′.Buf for any relay r′′′ /∈ {r1, . . . , rk−1}.

The above definition uses the notion of an out-confirmed relay. We now introduce
this term formally. Before this, we have to define a confirmed relay, though:

Definition 6.5 (Confirmed Relay). A relay r is confirmed if and only if

(i) r is valid and

(ii) if r.out.ID 6= ⊥ then there is a confirmed relay r′ such that r.out.ID = r′.ID
and there is a key key feasible for r such that (key,RID(r),⊥) ∈ r′.In.

Equipped with this definition, we define an out-confirmed relay as follows:

Definition 6.6 (Out-confirmed). A relay r is out-confirmed if and only if

(i) Properties 2–4 and Property 6 are satisfied for r,

(ii) the relay r′ such that r.out.ID = r′.ID is confirmed, and

(iii) there is a key key feasible for r such that (key,RID(r),⊥) ∈ r′.In.

Note that whenever Definition 6.5 or Definition 6.6 require a key to be feasi-
ble, this key must be feasible according to the first alternative of Definition 6.4.
Therefore, the notion of a feasible key is well-defined.

For the proofs of correctness, some additional notions will turn out to be helpful.
We start by defining a relay as lingering if certain properties are fulfilled:

Definition 6.7 (Lingering relay). A relay r is called lingering if and only if
r.out.ID 6= ⊥ and:

(i) r.state = alive,

(ii) there is a relay r′ owned by RL(r) such that (key,⊥, r) ∈ r′.In for some key,
or

(iii) r.Buf 6= ∅

133

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

For an intuition behind this definition, observe that lingering relays are not
removed completely when they are deleted. This is postponed to until the relay is
no longer lingering, in which case we say the relay is released:

Definition 6.8 (Releasing a lingering relay). A lingering relay r is released as
soon as for the first time, r.state = dead, there is no relay r′ owned by RL(r) such
that (key,⊥, r) ∈ r′.In for any key and r.Buf = ∅.

Note that it is not possible to send new messages via lingering relays r such that
r.state = dead. However, under certain conditions, messages still in r.Buf can be
delivered. Moreover, for the relays r′ such that (key,⊥, r) ∈ r′.In, r still serves
the purpose for r′ described in Section 6.2.4. To formalize these conditions, we
introduce the following definition:

Definition 6.9 (Lingering-valid relay). A relay r is called lingering-valid if and
only if r is lingering and all but Property 1 and Property 5 of a valid relay hold for
r.

Note that Property 1 may hold for a lingering-valid relay, but is not required to
do so. In particular, every valid relay r such that r.out.ID 6= ⊥ is lingering-valid
as well.

We also introduce the following, quite similar definition that will turn out to be
helpful for the definition of a legal state:

Definition 6.10 (Dead-valid relay). A relay r is called dead-valid if and only if
r.state = dead and all but Property 1 and Property 5 of a valid relay hold for r.

Observe in Definition 6.9 and Definition 6.10 that r.out.ID 6= ⊥ for a lingering-
valid or dead-valid relay r.

We also specify some properties that need to be fulfilled for valid relay parameters
as follows:

Definition 6.11 (Valid relay parameter). A relay parameter (key, ID, level,
sinkRID) contained in a message m in a buffer r.Buf of a relay r is valid
if and only if

1. r is lingering-valid,

2. there is no other relay parameter with key key in the system,

3. ID 6= ⊥ and there is a valid relay r′ with r′.ID = ID in the system,

4. level = r′.level + 1 and sinkRID = r′.sinkRID,

5. (key,⊥, r′′) ∈ r′.In for some lingering-valid relay r′′ owned by the same node
as r′ such that r′′.sinkRID = r.sinkRID and some key key that belongs to
RL(r′),

6. all IDs contained in relay references in m belong to the same RID,

134

The Relay Layer 6.2

7. there is no relay r′′′ in the system such that key ∈ r′′′.out.Key,

8. there is no message m in the system using key key,

9. there is no Probefail(key, keySequence) message in the system for any
keySequence,

10. for every Probe(ControlKeys, keySequence) messagem′ in the system such
that key ∈ ControlKeys, there is a sequence of relays (r1 = r′′, r2, . . . , rk, . . . ,
rs), s ≥ k + 2 such that ri+1.ID = ri.out.ID for all i ∈ {1, . . . , s− 1}, m′ is
stored in rk.Buf , and r = rj for some j ∈ {k + 1, . . . , s− 1},

11. there is no In-relay-closed(Keys,RID, ID) message in the system with
key ∈ Keys,

12. the header of m is (Keys,RID(r.ID), r.out.ID) such that there is a key′ ∈
Keys that is feasible for r, and

13. there is a sequence of relays (r1 = r′′, r2, . . . , rk) such that ri+1.ID =
ri.out.ID for all 1 ≤ i < k, rk = r, and for every rj such that 1 ≤ j < k
there is a key ∈ rj .out.Key such that (key,RID(rj),⊥) ∈ rj+1.In and there
is no In-relay-closed(Keys,RID(rj), rj .out.ID) message in transit to
RL(rj+1) such that key ∈ Keys.

Using the previous definitions, we can define a valid relay graph as follows:

Definition 6.12 (Valid relay graph). A valid relay graph of a system state S
is the subgraph of the relay graph G = (R ∪ P,EP ∪ ECh) of S such that every
r ∈ R such that r.state = alive is valid, every r ∈ R such that r.state = dead is
dead-valid, and every (v, w) ∈ ECh is due to a valid relay parameter.

Given the definition of a valid relay graph, we can define a legal state as follows:

Definition 6.13 (Legal state). A state S is legal if and only if there is no difference
between the relay graph of S and its valid relay graph.

Note that Property 6b) of a valid relay and the fact that r.level ∈ N0 for every
relay r implies the following:

Corollary 6.14. Every valid relay graph is cycle-free.

The definition of a valid relay also implies the following:

Corollary 6.15. For every valid non-sink relay r1, there is a unique relay rk such
that rk.out.ID = ⊥ and there exist r2, . . . , rk−1 such that ri+1.ID = ri.out.ID for
all 1 ≤ i < k. rk is called the sink of r.

135

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

As we will show later on, this leads to that the node owning the sink of a relay
r will be the one that receives messages sent via r. This makes it reasonable to
give it a dedicated name:

Definition 6.16 (Sink node). For a valid non-sink relay r, the node owning the
sink of r is called the sink node of r. For a valid sink relay r, the node owning r
is called the sink node of r.

In general, an application can easily destroy connectivity by deleting relays with
incoming connections (i.e., relays r such that r.In 6= ∅). Since this is usually not
desired, we define an application to be deliberate if it does not do so. More formally:

Definition 6.17 (Deliberate application). An application is deliberate if and only
if it does not delete a relay r′ such that r′.In 6= ∅.

Note that the definition of a deliberate application includes that the application
does not call stop as long as there are sink relays with incoming connections.
Observe that when a relay r ceases to exist, this can be for two reasons: One

is that it had been dead and is now ready to be removed completely. The other
is that it is merged (with other relays) into a new relay r′. To formalize the
semantic relationship between r and r′ in this case, we say that r′ is a successor of
r. Since r′ itself may be merged again, r may have multiple successors in fact. To
conceptualize this and to work with this in the analysis, we introduce the following
definition:

Definition 6.18 (Successor). For two relays r, r′, r′ is called a successor of r if
and only if r′ is the relay resulting from a call of merge(R) such that r ∈ R or
r′ is the relay resulting from a call of merge(R) such that r′′ ∈ R and r′′ is a
successor of r. We denote by s(r) the set of all successors of r including r.

6.2.6. Main Results
We now state the main results concerning the relay layer.

Theorem 6.19. Every dead relay is eventually removed completely.

This result is important because relays are not always removed immediately after
delete has been executed on them. For example, when some other relay reference
has been sent via a relay and not yet received by the sink, the relay continues to
persist.

Theorem 6.20. If for every indirect relay r the application eventually deletes a
successor of r, all relay layers of inactive nodes will eventually be shut down.

This result is worth mentioning because the relay layer of a node that issues stop
is not always shut down immediately. For example, when a node has a non-sink
relay with incoming connections, the relay layer does not shut down before the
incoming connections have been closed.

136

The Relay Layer 6.2

Theorem 6.21. If the application is deliberate, every message sent via a valid
relay r will be received by the sink node of r.

This result proves that the node owning the sink of a relay r receives all messages
sent via r.

Theorem 6.22. If the application is deliberate, in every computation that starts
in a legal state, every state is legal.

In other words, the result of Theorem 6.22 resembles the convergence property
of self-stabilization.

Theorem 6.23. If the application is deliberate and does not send any reference
via a relay that is not valid and for some arbitrary but fixed l ∈ N does not send
the reference of a relay r such that r.level ≥ l, every computation will reach a legal
state.

The result of Theorem 6.23 basically resembles the closure property under certain
reasonable conditions. Putting Theorem 6.22 and Theorem 6.23 together, we obtain
the following corollary:

Corollary 6.24. Every computation such that the application is deliberate and
does not send any reference via a relay that is not valid and for some arbitrary but
fixed l ∈ N does not send the reference of a relay r such that r.level ≥ l contains a
suffix of legal states.

This result states that the relay layer is self-stabilizing under certain reasonable
conditions. Corollary 6.24 also immediately implies the following:

Corollary 6.25. If the application does not issue any commands, starting from
any initial state S the system will reach a state S′ such that S′ and every subsequent
state are legal.

This result states the same as Corollary 6.24 though under stronger conditions.
It is worthwhile to consider this claim on its own because it resembles the classical
definition of self-stabilization in which it is assumed that, starting from the initial
state, no change occurs to the system other than by the self-stabilizing protocol.

Theorem 6.26. In every computation consisting only of legal states, the following
holds for every alive relay w: Whenever has-incoming(ŵ) returns false, then there
is no relay v with an edge (v, w) in the relay graph. Moreover, if the computation
has a suffix in which there is no relay v that has an edge (v, w) to w in the relay
graph and w is not deleted as long as has-incoming(ŵ) is true, there is a state
S such that has-incoming(ŵ) returns false in S and every subsequent state until
w is deleted.

137

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

This result states that has-incoming resembles a kind of a “delayed” NIDEC
oracle (which, as we will see, is sufficient to be able to solve the FDP): If has-
incoming(r̂) returns false, there is no incoming connection to r and no message
could be delivered to r anymore, which resembles that NIDEC is true. On the
other hand, if there is no incoming connection to r, which includes that no message
can be delivered to r anymore (note that if there was some message to be delivered
to r that has not been delivered yet, it would need to be in the buffer of some relay
r′ sharing an edge with r in the relay graph and r′ would be valid or dead-valid
because we assume the computation to consist only of legal states), i.e., NIDEC
is and remains true, then eventually has-incoming(r̂) will return false (unless r
is deleted before).

6.3. Self-Stabilization Proofs
In this section we present the proofs of the theorems mentioned in Section 6.2.5.
Their proofs rely on several lemmas that will be proven throughout this section.
Since the number of lemmas required for all the theorems is quite large, the
section is divided into several subsections. We begin in Section 6.3.1 with some
preliminaries. After that, we provide the proofs necessary for Theorem 6.19 and
Theorem 6.20 in Section 6.3.2. The proof of Theorem 6.22 relies on some of these
results and some additional lemmas that are proven in Section 6.3.3. For the
proof of Theorem 6.22, some additional results are required whose proofs are
provided in Section 6.3.4. Then, in Section 6.3.5, we present the missing proofs
for Theorem 6.23, Corollary 6.24 and Corollary 6.25. Last, in Section 6.3.6, we
provide the proof of Theorem 6.26.

6.3.1. Preliminaries
Here we make some additional definitions that are used for the analysis only.

First of all, building on the definition of a successor of a relay (Definition 6.18),
we define the current successor of a relay in a particular state:
Definition 6.27 (Current successor). For a relay r and a state S, if there is
r′ ∈ s(r) that exists during S, r′ is the current successor of r, denoted by csS(r).
If there is no r′ ∈ s(r) that exists during S, csS(r) = ×. Note that if the state in
question is clear from the context, we may omit S and refer to the current successor
of r by cs(r).

As it turns out, it will be very convenient to be able to refer to the last successor
ls(r) of a relay r defined as follows:
Definition 6.28 (Last successor). For a relay r, the last successor of r, ls(r) is
defined as follows: If s(r) is finite and the relay r′ ∈ s(r) such that s(r′) = {r′}
(i.e., it does not have a successor) is never removed completely, then ls(r) = r′. If
s(r) is finite and the relay r′ ∈ s(r) such that s(r′) = {r′} is removed completely
at some point in time, then ls(r) = ×. Otherwise (if s(r) is infinite), ls(r) = ⊥.

138

Self-Stabilization Proofs 6.3

One can observe that Probe() messages are regularly sent out during Timeout
under certain conditions. Intuitively these conditions are that either the corre-
sponding relay is alive or that something prevents that relay from being removed
completely even though the relay is dead. Since we will often refer to relays that
fulfill these specific conditions, we formally define a relay to be probing when the
following conditions are met:

Definition 6.29 (Probing relay). A relay is probing if and only if:

(i) the node owning r is active,

(ii) r.In 6= ∅, or

(iii) there is a relay r′ owned by RL(r) such that (key,⊥, r) ∈ r′.In for some key
key.

Note that in the following, unless stated differently whenever we refer to a
numbered property for a relay, we mean the property of Definition 6.3. Likewise,
whenever we refer to a numbered property for a relay parameter, we mean the
property of Definition 6.11. Furthermore, when we refer to line numbers, we refer
to the pseudocode given in Listings 6.1 to 6.9.

6.3.2. Proofs for Theorem 6.19 and Theorem 6.20
In order to prove Theorem 6.19 and Theorem 6.20, we proceed as follows: First,
we prove that for every pair of relays r, r′ such that r′.ID = r.out.ID, there is
eventually a confirmed key feasible for r in r′.In or r is removed completely. This
implies that in case r continues to exist, RL(r′) will eventually send corresponding
Ping() messages to RL(r). We exploit this to show that there are no infinite cycles
in relay connections. In fact, we can show that every relay that is not removed
completely in finite time has a sink, which it is connected to via a sequence of
alive relays. Putting these results together, we obtain that Probe() messages will
successfully reach their targets. This is important to show that every dead relay
is removed completely: The only reason for why a dead relay could be prevented
from being removed completely is (besides the fact that its buffer is not yet empty,
which is a matter of time) that it is a relay via which one or more yet unconfirmed
keys were sent. The fact that the probing can be done correctly ensures that these
keys will eventually become confirmed and the dead relay is removed completely.

After we have proven Theorem 6.19 this way, there is only one additional aspect
that needs to be considered for Theorem 6.20: Relays of inactive nodes are not
deleted immediately because the relay layer waits for their In set to become empty
first. This can be proven to always happen if the application does not keep any
indirect relay or its successors alive forever. Equipped with this proof, the claim of
the theorem follows immediately.

Lemma 6.30. For every alive relay r such that there is a relay r′ such that
r′.ID = r.out.ID, the following holds: if ls(r) 6= ×, then r′ is and remains alive

139

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

(and is not merged) and there is a state S such that there is a feasible key key in
csS′(r).out.Key in every state S′ ≥ S and (key,RID(r),⊥) ∈ r′.In in every state
S′ ≥ S.

Proof. Consider an arbitrary alive relay r such that r.out.ID 6= ⊥ and there is a
relay r′ such that r′.ID = r.out.ID. Furthermore assume that ls(r) 6= ×.

First of all, note that no key is ever added to rs.out.Key for any rs ∈ s(r), because
this only happens during the initial creation of a relay (i.e., when a relay is created
due to the receipt of a relay parameter). We now prove that in some state S1, for ev-
ery key ∈ r.out.Key either there is no In-relay-closed(Keys,RID(r), r.out.ID)
message with key ∈ Keys or key /∈ csS1(r).out.Key.
Consider an arbitrary key ∈ r.out.Key and assume that key ∈ cs(r).out.Key

forever (otherwise, we are done). Note that according to the pseudocode, only
RL(r) could send an In-relay-closed(Keys,RID(r), r.out.ID) message with
key ∈ Keys. However, according to the pseudocode, RL(r) only does so if
it completely removes cs(r) immediately thereafter (Line 132) or when cs(r)
does not exist (Line 167), which contradicts ls(r) 6= ×, or if RL(r) receives a
Ping(r.out.ID, level, sinkRID, key) message and key /∈ r.out.Key, which contra-
dicts key ∈ Keys. Thus as soon as all In-relay-closed() messages initially in the
system have been transmitted and processed, no In-relay-closed(Keys,RID(r),
r.out.ID) message with key ∈ Keys will be created.
What we have proven so far is that at state S1, for every key ∈ r.out.Key,

there is no In-relay-closed(Keys,RID(r), r.out.ID) message with key ∈ Keys
and there will never be such a message. Note here and in the following that
cs(r).out.Key can never become empty, because in this case, cs(r) would be
removed completely in Line 88 or Line 115, yielding a contradiction to ls(r) 6= ×.

We now show that r′ is and remains alive and that for every key ∈ cs(r).out.Key,
eventually there will be a triple (key,RID(r),⊥) ∈ r′.In or key /∈ cs(r).out.Key.
Note that in every state, the node owning r must be alive or cs(r).In 6= ∅ or
there is a relay r′′ such that (key,⊥, cs(r)) ∈ r′′.In because otherwise cs(r).Buf
would become empty and cs(r) would be removed completely in Line 137 upon
Timeout. Thus, during the next execution of Timeout, RL(r) will insert a mes-
sage Transmit(((cs(r).out.Key,RID(r.ID), r.out.ID),Probe({ControlKeys},
(cs(r).out.Key)))) into cs(r).Buf (see Line 149). Consider the action executed by
RL(r′) upon receipt of such a message Transmit(((Keys,RID(r.ID), r.out.ID),
Probe({ControlKeys},Keys))): RL(r′) first checks whether this message has
a valid header for r′ (see Line 17). If this is the case, then by Definition 6.2
(key,RID(r),⊥) ∈ r′.In (in which case we are done) or (key,⊥, r′′) ∈ r.In for
some relay r′′ owned by RL(r′) such that r′′.sinkRID = RID(r). In the latter
case, RL(r′) will replace (key,⊥, r′′) by (key,RID(r),⊥), so we are done in this
case as well (see Lines 21–22). Thus assume that the message does not have a valid
header for r′. If r′.state = dead or r′ does not exist, RL(r′) will respond with an
Out-relay-closed(r.out.ID) message (see Line 67) causing cs(r) to be removed
completely (see Line 186), which represents a contradiction. This also proves that

140

Self-Stabilization Proofs 6.3

r′ is and remains alive. Otherwise, Line 64 will be executed in this case, having
the effect that RL(r′) will send a Not-authorized((Keys, r.out.ID) message
to RL(r). Upon receipt of this message, RL(r) will remove every key ∈ Keys
from cs(r).out.Key (see Line 81). All in all, we have now proven that for every
key ∈ cs(r).out.Key, eventually there will be a triple (key,RID(r),⊥) ∈ r′.In
or key /∈ cs(r).out.Key. Since cs(r).out.Key cannot become empty as argued be-
fore and because there cannot be an In-relay-closed(Keys,RID(r), r.out.ID)
message with key ∈ Keys for any key ∈ cs(r).out.Key anymore, the claim of the
lemma follows.

Lemma 6.31. In every cycle of relays (r1, r2, . . . , rk) such that ri.out.ID =
ri+1.ID for every i ∈ {1, 2, . . . , k − 1} and rk.out.ID = r1, there is a relay rl

such that rl will be removed completely.

Proof. Consider an arbitrary cycle of relays (r1, r2, . . . , rk) such that ri.out.ID =
ri+1.ID for every i ∈ {1, 2, . . . , k−1} and rk.out.ID = r1. Assume for contradiction
that none of the relays in this cycle will be removed completely in finite time
(since a relay is also removed completely in the case of a merge, this implies
csS(ri) = ri for every ri in every state S). Lemma 6.30 then implies that eventually
for every relay ri in the cycle, there is at least one key ∈ ri.out.Key such that
(key,RID(ri),⊥) ∈ ri+1.In forever.

First of all note that due to the assignment in Line 100, at some point in
time ri.level ≥ 1 will hold. Second, assume there is an i ∈ {1, 2, . . . , k} such
that r(i−1 mod k)+1.level ≤ r(i mod k)+1.level. Since there is some triple (key,
RID(r(i−1 mod k)+1),⊥) in r(i mod k)+1.In, during Timeout, RL(r(i mod k)+1) will
send a Ping(r(i mod k)+1.ID, r(i mod k)+1.level, r(i mod k)+1.sinkRID, key) message
to RL(r(i−1 mod k)+1). Upon receipt, RL(r(i−1 mod k)+1) will completely remove
r(i−1 mod k)+1 since r(i−1 mod k)+1.level < r(i mod k)+1.level + 1 (see Line 165), yield-
ing a contradiction. However, r(i−1 mod k)+1.level > r(i mod k)+1.level for all i ∈
{1, 2, . . . , k} is a contradiction as well. Thus, such a cycle cannot exist. All in all,
we obtain a contradiction to our assumption that none of the relays in the cycle
will be removed completely in finite time and the claim of the lemma is proven.

Lemma 6.32. For every relay r, ls(r) = × or in every state S, csS(r) is probing.

Proof. Consider an arbitrary relay r. Assume ls(r) 6= × (otherwise we are done).
Now assume for contradiction that there is a state S such that csS(r) is not probing:
i.e., the node owning csS(r) is inactive, csS(r).In = ∅ and there is no relay r′
owned by RL(r) such that (key,⊥, csS(r)) ∈ r′.In for any key key. Note that for
an inactive node, no element is ever added to r′′.In for any relay r′′ owned by
that node. Thus after S there will never be a relay r′ owned by RL(r) such that
(key,⊥, csS(r)) ∈ r′.In for any key key. Furthermore, csS(r).Buf will eventually
become empty and, as a result, csS(r) will be completely removed in Line 137
upon Timeout yielding a contradiction. Thus csS(r) is probing in every state.

141

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

Lemma 6.33. For every relay r such that r.out.ID 6= ⊥ and ls(r) 6= ×, there
is a relay r′ such that r.out.ID = r′.ID, r′ is alive forever and for some state S,
r′.In 6= ∅ in every state S′ ≥ S.

Proof. Consider an arbitrary relay r such that r.out.ID 6= ⊥. Furthermore assume
that ls(r) 6= × (otherwise we are done). Note that by Lemma 6.32, in every
state S, csS(r) is probing. Furthermore, note that during Timeout, cs(r) will be
deleted if cs(r).out.ID does not contain the RID of some relay layer (see Line 103)
or if cs(r).out.Key = ∅ (see Line 111). Furthermore note that during Timeout,
RL(r) will send a Probe() message via cs(r) to RL(r.out.ID). If at any point
in time there is no relay r′ owned by RL(r.out.ID) such that r′.ID = r.out.ID,
RL(r.out.ID) will respond with an Out-relay-closed(r.out.ID) message to r
causing cs(r) to be removed completely (and yielding a contradiction). Otherwise,
there is a relay r′ owned by RL(r.out.ID) such that r′.ID = r.out.ID forever.
Now we can apply Lemma 6.30, which implies that r′ is alive forever and that
there is a state S such that r′.In 6= ∅ in every state S′ ≥ S. This finishes the proof
of the lemma.

Lemma 6.34. For every alive relay r such that r.out.ID 6= ⊥, ls(r) = × or there
is a sequence of alive relays (r1 = r, r2, r3, . . . , rk) such that for all i ∈ {1, . . . , k−1},
ri+1.ID = ri.out.ID and rk.out.ID = ⊥ and for every i ∈ {2, . . . , k}, ri is and
remains alive forever.

Proof. Consider an arbitrary relay r such that r.out.ID 6= ⊥. Furthermore, assume
that ls(r) 6= × (otherwise we are done). Again, Lemma 6.32 implies that cs(r) is
probing in every state. Note that according to Lemma 6.33, r.out.ID = r′.ID for
some relay r′ that is and remains alive forever and for which there is a state S
such that r′.In 6= ∅ in every state S′ ≥ S. Applying Lemma 6.33 inductively, we
obtain a sequence of relays (r = r1, r2 = r′, r3, . . .) such that ri+1.ID = ri.out.ID
for all i ∈ {1, 2, . . . } and these relays continue to be alive forever (*) and there
is a state Sx such that for every i ∈ {2, 3, . . . }, ri.In 6= ∅ in every state S′x ≥ Sx

(**). Now assume for contradiction that the above sequence of relays is infinite.
Since there is only a finite number of relays, the sequence must contain a cycle
in this case. According to (*), all relays in this cycle continue to be alive forever;
according to (**), they cannot be merged. Since an alive relay is never removed
completely before becoming dead first unless it is merged, all of these relays are
not removed completely. However, this represents a contradiction to Lemma 6.31.
Thus, the above sequence of relays must be finite: i.e., there is an index k such
that rk.out.ID = ⊥. All in all, the claim is proven.

Lemma 6.35. For every relay r such that ls(r) 6= ×, for every triple (key,⊥, r′) ∈
r.In in some state S for some key key and some relay r′, there is a state S′ > S
such that there is no (key,⊥, r′′) ∈ csS′(r).In for any relay r′′.

Proof. Consider an arbitrary relay r such that ls(r) 6= ×. Furthermore, consider
an arbitrary triple (key,⊥, r′) ∈ csS(r).In in some state S for some key key and

142

Self-Stabilization Proofs 6.3

some relay r′. Note that whenever a new triple of the form (key,⊥, r′′′) is added
to cs(r).In then there must have existed a triple (key,⊥, r′′) ∈ cs(r).In before
and r′′′ must be the relay resulting from a merge of r′′ and other relays. Thus,
in every state S′, if (key,⊥, r′′) ∈ csS′(r).In, then r′′ = csS′(r′) must hold. Note
that Property 8 will be satisfied for r at some state S0 ≥ S due to Line 120 and
the fact that whenever a new triple is put into r.In either key is uniquely created
(see Line 9) or the first parameter key already existed as the first parameter of
another triple that is removed before (see Lines 21–22 and the merge description).
If ls(r′) = ×, (key,⊥, cs(r′)) will eventually be removed and we are done (it is easy
to check in the pseudocode that at any occasion at which a relay r′′ is removed
completely for reasons other than being merged, all such triples (key,⊥, r′′) are
removed before if they exist). Otherwise, Lemma 6.34 implies that there is a
sequence of alive relays (r1 = r′, r2, r3, . . . , rk) such that for all i ∈ {1, . . . , k − 1},
ri+1.ID = ri.out.ID and rk.out.ID = ⊥ and for all i ∈ {2, . . . , k}, ri continues
to be alive forever. Lemma 6.30 implies that there is a state S1 ≥ S0 such
that for every i ∈ {1, 2, . . . , k − 1} there is a keyi ∈ cs(ri).out.Key such that
(keyi, RID(ri),⊥) ∈ ri+1.In in every state S′1 ≥ S1.

We now show that after some state S2 ≥ S1, there will be no message m that
contains a relay parameter with key key in any ri.Buf for any i ∈ {1, . . . , k − 1}.
Note that after the state S′1 such that all messages still in buffers in S1 have been
transmitted and processed, if for any i ∈ {1, . . . , k − 1} ri.Buf contains a message
m that contains a relay parameter with key key, then this message will eventually
be in ri+1.Buf : Since the message was put into ri.Buf after S1, it must have a
valid header for ri+1. Now since a message containing a relay parameter with a key
key is only created when the message is sent by the application and with a unique
key key and could only be created by RL(r1) because key belongs to RL(r1), as
soon as the message is received by rk (which will happen by induction), there will
not be a message m that contains a relay parameter with key key in any ri.Buf
for all i ∈ {1, . . . , k − 1}.
We now prove the following claim: there is a state S3 ≥ S2 such that (key,⊥,

csS3(r′)) /∈ csS′(r).In or in every state S′3 ≥ S3, there will be no relay r′′ owned
by RL(rk) such that key ∈ r′′.out.Key. Due to the claim we have just proven
and because any new message containing a relay parameter would acquire a new
key for this relay parameter, rk will never receive a message containing a relay
parameter with key key after S2. Thus any relay r′′ ever owned by RL(rk) such
that key ∈ r′′.out.Key must exist during S2. If for such a relay r′′, ls(r′′) = ×, we
are done. Otherwise, Lemma 6.32 implies that in every state S′ csS′(r′′) is probing.
This implies that RL(rk) will put a Transmit((Keys,RID(r′′.ID), r′′.out.ID),
Probe(ControlKeys, keySequence)) message into cs(r′′).Buf such that Keys =
r′′.out.Key. There are two options: If this message m does not have a valid header
for any relay, RL(rk) will receive a Not-authorized(Keys, r′′.out.ID) or an
Out-relay-closed(r′′.out.ID) message as a response and in any case there will
be no relay r′′ owned by RL(rk) such that key ∈ r′′.out.Key afterwards (in the
former case, the key is removed from cs(r′′).out.Key; in the latter case, cs(r′′)

143

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

is removed completely). If m does have a valid header for r, then because of
Property 8 for r (which holds as argued at the beginning of the proof), the relay
that the message had a valid header for must be cs(r). In that case, according to
Line 21, (key,⊥, cs(r′)) will be removed from cs(r).In and the claim is proven.
In the following, we assume that (key,⊥, csS′(r′)) ∈ csS′(r).In in every state

S′ (otherwise the claim of the lemma follows). In that case, as we have just
proven, there is a state S3 ≥ S2 such that in every state S′3 ≥ S3, there will be no
relay r′′ owned by RL(rk) such that key ∈ r′′.out.Key. Observe that as long as
(key,⊥, cs(r′)) ∈ cs(r).In, cs(r′) is probing by definition. Therefore, during some
execution of Timeout after S3, RL(r) will put a Transmit((Keys′, RID(r′.ID),
r′.out.ID),Probe(ControlKeys, (Keys′))) message into cs(r′).Buf such that
key ∈ ControlKeys and Keys′ = cs(r′).out.Key. Recall that for every i ∈
{1, 2, . . . , k − 1} there is a keyi ∈ cs(ri).out.Key such that there is a triple
(key′, RID(ri),⊥) ∈ ri+1.In in every state after S1. Thus, there is at least one
key′ ∈ Keys′ such that (key′, RID(r),⊥) ∈ r2.In.

After S3, for every i ∈ {2, . . . , k− 1}, if RL(ri) receives a Probe(ControlKeys,
(Keys′1,Keys′2, . . . ,Keys′i)) message with a valid header for ri such that key ∈
ControlKeys and keyi ∈ Keys′j for every j ∈ {1, 2, . . . , i− 1} then RL(ri+1) will
eventually receive a Probe(ControlKeys, (Keys′1,Keys′2, . . . ,Keys′i,Keys′i+1))
message with a valid header for ri+1 such that key ∈ ControlKeys and for every j ∈
{1, 2, . . . , i}, key′j ∈ Keys′j . This is due to Lines 54–60 and the fact that there is no
message that contains a relay parameter with key key in any cs(ri).Buf for any i ∈
{1, . . . , k−1} and because S3 ≥ S1. By induction we obtain that RL(rk) will eventu-
ally receive a Probe(ControlKeys, (Keys′1,Keys′2, . . . ,Keys′k−1)) message with
a valid header for rk such that key ∈ ControlKeys and key′j ∈ Keys′j for every j ∈
{1, 2, . . . , k−1}. Since RL(rk) does not own a relay r′′ such that key ∈ r′′.out.Key
after S3, RL(rk) will send a Probefail(key, (Keys′1,Keys′2, . . . ,Keys′k−1)) mes-
sage to RL(rk−1). According to Lines 69–74, upon receipt of this message, RL(rk−1)
will send a Probefail(key, (Keys′1,Keys′2, . . . ,Keys′k−2)) message to RL(rk−2)
and so on, until finally, RL(r) will receive a Probefail(key, (Keys′1)) message
and remove (key,⊥, cs(r′)) from cs(r).In (see Line 77). This represents the desired
contradiction. Thus, there is a state S′ ≥ S such that (key,⊥, csS′(r′) /∈ csS′(r).In)
and as argued at the beginning of the proof, this finishes the proof of the lemma.

Using Lemma 6.35, we can prove Theorem 6.19, which we now restate:

Theorem 6.19. Every dead relay is eventually removed completely.

Proof. Consider an arbitrary dead relay r. Note that since r is dead, it will have
r.In = ∅ in some state S1 (due to Line 127 in the Timeout action) and according
to the pseudocode, no new element is added to r.In after S1. Since r is dead, it
does not accept any incoming messages (see Line 17) and thus does not forward any
messages, nor is it possible to send a new message via r (see Line 2). This implies
two things: First, since all messages contained in r.Buf during S1 eventually have
been transmitted and processed, there is a state S2 ≥ S1 such that r.Buf is empty.

144

Self-Stabilization Proofs 6.3

Second, no new triple (key,⊥, r) ∈ r′.In for any key and any relay r′ can come
into existence. Lemma 6.35 gives that all existing such ones will eventually be
removed (either because rl(r′) = × and the triple is removed upon the complete
removal of cs(r′) or because of the claim of the lemma). Altogether, we obtain
that r will eventually be released. After this, r will be removed completely in
Line 134.

Before we can also prove Theorem 6.20, we prove the following lemma, which
states that relays of an inactive node do not exist forever as long as the application
does not keep a relay or any of its successors alive forever:

Lemma 6.36. If for every indirect relay r there is a rs ∈ s(r) such that rs is
deleted by the application, every relay r owned by an inactive node will be removed
completely in finite time.

Proof. Assume that for every indirect relay r′ there is a r′s ∈ s(r′) such that r′s is
deleted by the application. Consider an arbitrary relay r owned by an inactive node.
If r.out.ID = ⊥, r will be removed completely in Line 137. Thus, in the following
we assume r.out.ID 6= ⊥ and assume that r will not be removed completely in finite
time (otherwise we are done). Our first goal is to show that r.In will eventually
be empty.

Note that for every relay r′ owned by an inactive node, each element is added to
r′.In only if it is of the form (key,RID,⊥) and if it replaces a triple (key,⊥, r′′) in
r′.In for some relay r′′ owned by RL(r′) (see Lines 21–22). Thus, Lemma 6.35 gives
that eventually there will be no (key,⊥, r′′) in r.In for any key key and any relay
r′′ and no new elements will be added to r.In (note that since the node owning r
is inactive, csS(r) = r in every state S after the node has become inactive). The
Timeout action ensures that from this point in time on, all elements in r.In are
of the form (key,RID,⊥) for some RID. We now show that all of these triples
will eventually be removed from r.In.

Consider an arbitrary triple (key,RID,⊥) ∈ r.In. Note that during Timeout,
RL(r) regularly sends a Ping(r.ID, r.level, r.sinkRID, key) message to the relay
layer RL′ with RID RID. According to the protocol, RL′ checks whether it has a
relay r′ with r′.out.ID = r.ID. If not, according to the pseudocode (see Line 167),
RL′ sends an In-relay-closed(key,RID, r.ID) message to RL(r), causing r to
remove (key,RID,⊥) from r.In and we are done. Otherwise, note that since
r.out.ID 6= ⊥, r′ must be indirect by definition. Thus, even if r′ is alive, there
is a r′s ∈ s(r′) such that r′s will be deleted at some point in time. Theorem 6.19
yields that r′s will also be removed completely at some point in time. After this
has happened, RL′ will respond to the next Ping(r.ID, r.level, r.sinkRID, key)
message after this with an In-relay-closed(key,RID, r.ID) message to RL(r),
causing r to remove (key,RID,⊥) from r.In.

All in all, we have proven that r.In will be empty at some state S and in every
subsequent state. Thus, as soon as all messages still in r.Buf during S have been

145

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

transmitted and processed, the check in Line 135 will eventually evaluate to true
and r will be removed completely in Line 137.

We can now prove Theorem 6.20, which we recap as follows:

Theorem 6.20. If for every indirect relay r the application eventually deletes a
successor of r, all relay layers of inactive nodes will eventually be shut down.

Proof. Assume that for every indirect relay r the application eventually deletes a
successor of r. Consider an arbitrary inactive node P . Note that every relay owned
by P will be removed completely in finite time by Lemma 6.36. Thus, during some
execution of Timeout, the relay layer of P will shut down completely in Line 152.
Since P was chosen arbitrarily, this finishes the proof of the theorem.

6.3.3. Additional proofs for Theorem 6.21
Since we need multiple additional lemmas to prove Theorem 6.21, we further
separate this subsection into three parts. Each part is finished when some significant
result, called a milestone, has been proven. These milestones are as follows:

• Milestone 1: If the application is deliberate, every out-confirmed lingering
relay r remains out-confirmed as long as r is lingering unless it is merged.
If an out-confirmed relay is merged while it is out-confirmed, the resulting
relay is out-confirmed as well. (Lemma 6.46)

• Milestone 2: If the application is deliberate, every valid relay r remains
valid as long as it is not deleted or merged with other relays. If it is merged,
the resulting relay is valid. (Lemma 6.50)

• Milestone 3: If the application is deliberate, every message sent via a valid
relay r will be received by the sink node of r. (Theorem 6.21)

The motivation for these milestones is as follows: The final goal of this section
is to prove that a message m sent via a valid relay r is correctly received by its
sink node (Milestone 3). One major ingredient for this proof is that every relay
r′ on the path from r to its sink is valid as long as m has not passed r′ yet. To
prove this, we need a part of the claim of Milestone 2, namely that a valid relay
remains valid unless it is deleted or merged (note that Milestone 2 is formulated in
a more general way as we will rely on this lemma later on as well). The general
idea to prove this is to show for every property of a valid relay r that it remains
satisfied as long as r is not deleted or merged. Since Property 6 relies on another
relay (the next relay on the path to the sink), we need to prove this via induction
on the level of a relay. This is still not sufficient yet, though: Property 6c) (for the
unconfirmed keys) has a possible dependency on relays owned by the same relay
layer as r that might even have a higher level than r. Fortunately, these relays do
not need to be valid but only out-confirmed (simply put, it is irrelevant whether
there is something wrong with their .In sets). Thus, in Milestone 1 we show that
these relays are out-confirmed as long as they are relevant for a key to be feasible.

146

Self-Stabilization Proofs 6.3

Milestone 1 Proofs

For Milestone 1, the first goal is to show that for many of the properties of a
valid relay, once they hold, they hold forever, although for some of them we need
to make some additional assumptions (this is because if for a pair of relays r, r′,
r′.ID = r.out.ID and r′ is not valid, it might, for example, cause r.level to be
changed which would then cause an existing Ping() message sent by r to have
a level value different from r.level, thus invalidating Property 9). After that, we
show that in a deliberate application, when a subset of the properties hold for a
relay r, then no internal calls of delete r̂ occur: i.e., r can be deleted only when
the application requests that. Subsequently, making use of these results we prove
that every confirmed relay remains confirmed as long as its .In set is not empty,
which will be relevant to prove that an out-confirmed relay remains out-confirmed
while it is lingering, which constitutes the first part of the claim of Milestone 1
(the second part of which can be proven directly).

We begin with a series of properties that remain valid once they are without
any further conditions:

Lemma 6.37. If any of the following properties holds for a relay r, this property
continues to hold as long as r exists (i.e., until r is removed completely or forever if
this does not happen): Property 2, Property 3, Property 4, Property 5, Property 7,
Property 8 and Property 10.

Proof. We prove the claim for each of the properties individually. Consider an
arbitrary relay r such that Property 2 holds for r. Note that r.ID is never changed
for any existing relay. Thus, Property 2 continues to hold.
Now consider an arbitrary relay r such that Property 3 holds for r. Note that

the form of r.out is never changed for any existing relay. Thus Property 3 continues
to hold.

Next consider an arbitrary relay r such that Property 4 holds for r. Note that a
new key is added to r′.out.Key for any relay r′ only when the relay is created (see
Line 45) and only if there is no other relay r′′ with key ∈ r′′.out.Key (see Line 40).
Thus, Property 4 continues to hold.

Next consider an arbitrary relay r such that Property 5 holds for r. This implies
that r is a sink relay. Note that r.out is never changed for a sink relay with
r.out.Key = ∅. Additionally, check that r.level is changed only if r.out.ID = ⊥
and r.level 6= 0 or if r.out.ID 6= ⊥. Furthermore, r.sinkRID is changed only if
r.out.ID = ⊥ and r.sinkRID 6= sinkRID(r) or r.out.ID 6= ⊥. Should the node
owning r become inactive (i.e., it executes stop) then by definition, r would be
deleted immediately. Furthermore, note that should the node owning r become
inactive, r would immediately be removed completely. Thus, as long as r exists,
Property 5 continues to hold.
Consider an arbitrary relay r such that Property 7 holds for r. Note that if

(key,RID,⊥) is added to r.In then RID 6= ⊥. Furthermore, note that when a
new (key,⊥, r′′) is added to r.In, then r′′ is owned by RL(r) and this only happens

147

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

in one of the following two cases: The first is that a relay reference is sent via r′′
by the application and r′′ is a non-sink relay. In this case, Property 7 continues
to hold. The second is that an existing (key,⊥, r′′′) is replaced by (key,⊥, r′′)
because r′′′ is merged into the new relay r′′. If Property 7 held before, it will also
hold after this. Note that according to the pseudocode if r′′ is removed completely,
every triple (key,⊥, r′′) is also removed from r.In. Since there are no other types
of elements added to r.In than the above mentioned, Property 7 continues to be
fulfilled.
Now consider an arbitrary relay r such that Property 8 holds for r. Note that

the only occasion at which a key becomes the first parameter of an element in r.In
that has not been a first parameter of an element in r.In before, is in Line 10 in
which key has just been generated as a locally unique key belonging to RID(r).
Thus, Property 8 continues to be fulfilled.

Last consider an arbitrary relay r such that Property 10 holds for r. Check in the
pseudocode that the only occasion at which a Not-authorized(Keys, r.ID) mes-
sage is sent is in Line 64, in which case a messagem with header (Keys, senderRID,
r.ID) was received by RL(r) and did not have a valid header for r, i.e., for no
key ∈ Keys, (key, senderRID,⊥ ∈ r.In or (key,⊥, r′) ∈ r.In for some relay r′.
Furthermore, note that whenever a new key key is added as the first parameter of a
triple to r.In, key has just been created as a globally unique key. Thus, adding an
element to r.In also does not violate Property 10. All in all, Property 10 continues
to hold for r.

Lemma 6.38. For every relay r such that there is a relay r′ such that (i) r′.ID =
r.out.ID, (ii) r′ is and remains valid, and (iii) Property 6b) holds for r, Property 6b)
continues to hold for r as long as r exists.

Proof. We prove the following claim by induction on the level of a relay: for every
relay r, if (i) r.out.ID = ⊥ and r is and remains valid or (ii) r.out.ID = r′ for
some relay r′ and r′ is and remains valid and Property 6b) holds for r, r.level
and r.sinkRID do not change. We prove the claim by induction on the level of a
relay. Note that since r.level ∈ N0 for every relay r, the induction base is given by
r.level = 0.
Consider an arbitrary relay r that fulfills the above conditions and such that

r.level = 0. Note that if r.out.ID = r′ for some valid relay r′ and Property 6b) holds
for r, r.level > 0 follows, which represents a contradiction. Thus, if r.level = 0,
r.out.ID = ⊥ must hold. In that case, according to the assumption, r is and
remains valid, so Property 5 will continue to hold and r.level and r.sinkRID will
remain the same.
Now consider an arbitrary relay r such that r.level > 1 and assume the claim

holds for every relay r′ such that r′.level < r.level. By the above argument, we are
then in case (ii): i.e., r.out.ID = r′ for some relay r′ and r′ is and remains valid and
Property 6b) holds for r. By the induction hypothesis, r′.level and r′.sinkRID
do not change. Assume for contradiction that r.level or r.sinkRID are changed.

148

Self-Stabilization Proofs 6.3

This can only happen if RL(r) receives a Ping(ID, level, sinkRID, key) message
with ID = r.out.ID and r.level 6= level + 1 or r.sinkRID 6= sinkRID, which
would contradict either Property 9 for r′ or Property 6b) for r. Thus, r.level and
r.sinkRID are never changed. This finishes the induction.

The claim of the lemma now follows immediately from the claim we just proved.

Lemma 6.39. For every relay r such that Property 8 and Property 9 hold for r
and (i) Property 5 holds for r or (ii) Property 6a) holds and continues to hold for r
and Property 6b) holds for r, Property 9 continues to hold for r as long as r exists.

Proof. Consider an arbitrary relay r such that Property 8 and Property 9 hold for
r and Property 5 holds for r or Property 6a) holds and continues to hold for r
and Property 6b) holds for r. Note that Property 8 continues to hold according to
Lemma 6.37.

We first consider the case r.out.ID = ⊥. By assumption in this case, Property 5
holds for r. Lemma 6.37 implies that this property will continue to hold. Thus
r.level = 0 and r.sinkRID = RID(r) holds and will continue to hold. Now note
that a Ping(r.ID, level, sinkRID, key) message is sent only during Timeout
and only with level = r.level and sinkRID = r.sinkRID and key such that
(key,RID,⊥) ∈ r.In. By Property 8 the latter prevents (key,⊥, r′′) ∈ r.In to
hold. Thus, no Ping() message contradicting Property 9 is sent.
Now consider the case r.out.ID 6= ⊥. By assumption, there is a relay r′ such

that r′.ID = r.out.ID and r′ is and remains valid and Property 6b) holds for r.
Note that according to Lemma 6.38, Property 6b) continues to hold for r. From
the proof of that lemma, we know that r′.level and r′.sinkRID are not changed
then. Again, observe that a Ping(r.ID, level, sinkRID, key) message is sent only
during Timeout and only with level = r.level and sinkRID = r.sinkRID and
key such that (key,RID,⊥) ∈ r.In. Again, by Property 8 the latter prevents
(key,⊥, r′′) ∈ r.In to hold. Thus, no Ping() message contradicting Property 9 is
sent in this case as well.

We now prove a lemma that implies that the internal calls of delete r̂ according
to the pseudocode do not occur on relays satisfying certain conditions when the
application is deliberate:

Lemma 6.40. If the application is deliberate then for every alive relay r such that
(i) Properties 2–4 hold for r and (ii) r.out.ID = ⊥ or Property 6 holds for r, then
delete r is only called when r is deleted by the application.

Proof. Assume that the application is deliberate. Let r be an alive relay such that
Properties 2–4 hold for r and r.out.ID = ⊥ or Property 6 holds for r. We check
all lines that contain a call of delete:

1. Line 87: If this line is executed, this means that the relay layer owning r
has received a Not-authorized(Keys, outID) message with r.out.ID =

149

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

outID 6= ⊥ and r.out.Key ⊆ Keys. Note that since r.out.ID 6= ⊥, Prop-
erty 6 holds for r in this case: i.e., there is a valid relay r′ such that
r′.ID = r.out.ID. Due to Property 6c) and the fact that Property 10 holds
for r′ (since r′ is valid), we have a contradiction, so this call of delete cannot
occur.

2. Line 92: If this line is executed, Property 2 for r must have been violated,
yielding a contradiction.

3. Line 103: If this line is executed, Property 3 must have been violated or
r.out.ID 6= ⊥ and there is no relay r′ such that r′.ID = r.out.ID, yielding a
contradiction.

4. Line 111: If this line is executed, Property 6c) must have been violated,
yielding a contradiction (note again that out-confirmed relays also satisfy
this property).

5. Line 140: If this line is executed, Property 4 must have been violated before,
yielding a contradiction.

6. Line 160: If this line is executed, r.out.ID 6= ⊥ and Property 6b) for r or
Property 9 for the relay r′ with r′.ID = r.out.ID must have been violated,
yielding a contradiction to the fact that r′ is valid (implied by Property 6a).

7. Line 185: If this line is executed, r.out.ID 6= ⊥ and Property 1 for the relay
r′ with r′.ID = r.out.ID must have been violated, yielding a contradiction
to the fact that r′ is valid (which is implied by Property 6a).

All in all, r is never deleted unless it is deleted by the application. This finishes
the proof.

Observe that Lemma 6.37, Lemma 6.39 and Lemma 6.40 directly imply the
following corollary:

Corollary 6.41. If the application is deliberate, every confirmed sink relay r
remains confirmed unless it is deleted by the application.

Before we can prove a similar result for general confirmed relays, we need to
prove the following claim:

Lemma 6.42. For every out-confirmed lingering relay r the following holds: as
long as r exists, the relay r′ such that r′.ID = r.out.ID remains confirmed, r
remains lingering, and r remains out-confirmed.

Proof. Consider an arbitrary out-confirmed relay r and assume that relay r′ such
that r′.ID = r.out.ID remains confirmed and that r is and remains lingering. Note
that Property 2, Property 3 and Property 4 continue to hold for r according to
Lemma 6.37. By assumption, Property 6a) continues to hold. Furthermore, note

150

Self-Stabilization Proofs 6.3

that Property 6b) continues to hold as long as r is alive according to Lemma 6.38.
Thus, all that needs to be shown is that there continues to be a key ∈ r.out.Key such
that there is no In-relay-closed(Keys,RID(r), r.out.ID) message in transit to
RL(r′) such that key ∈ Keys and (key,RID(r),⊥) ∈ r′.In (note that this also
implies Property 6c).

First of all, check that a key is removed from r.out.Key only if RL(r) receives a
Not-authorized(Keys, r.out.ID) message with key ∈ Keys. However, due to
Property 10 for r′, such a message cannot be sent for any (key,RID(r),⊥) ∈ r′.In.

Second, note that an In-relay-closed(key,RID(r), r.out.ID) message is sent
by RL(r) only and only at two occasions: in Line 132, which is executed only
if r is dead, there is no relay r′′ such that (key,⊥, r) ∈ r′′.In, and r.Buf = ∅,
which cannot be the case according to the assumption that r is lingering; or in
Line 167 if RL(r) received a Ping(r.out.ID, level, sinkRID, key) message such
that key /∈ r.out.Key. Thus, for every existing key ∈ r.out.Key, no In-relay-
closed(key,RID(r), r.out.ID) message will be created.
Now consider the case that the last triple (key,RID(r),⊥) ∈ r′.In such that

key ∈ r.out.Key and there is no In-relay-closed(Keys,RID(r), r.out.ID) mes-
sage in transit to RL(r′) is removed from r′.In. According to the pseudocode and
the fact that r′ is confirmed, such a triple is only removed when RL(r′) receives
an In-relay-closed(Keys,RID(r)) message with key ∈ Keys, which would
represent a contradiction. Thus, r remains out-confirmed.

Now we can prove that every confirmed relay (and not only the confirmed sink
relays) remains confirmed as long as certain conditions are fulfilled:

Lemma 6.43. If the application is deliberate, every confirmed relay r remains
confirmed as long as r.In 6= ∅ and r is not deleted by the application.

Proof. For this proof, assume that the application is deliberate. We prove the claim
by induction on the level of a relay (i.e., for a relay r its value of r.level). Note that
due to Property 5, Property 6b) and the fact that for every relay r′, r′.level ∈ N0,
for every confirmed relay r, r.level = 0 if and only if r.out.ID = ⊥. Furthermore,
for every confirmed relay r, if r.level 6= 0 then r.level > 0 and r.out.ID = r′.ID
for some confirmed relay r′ such that r′.level = r.level − 1.
The induction base is given by Corollary 6.41. Thus, consider an arbitrary

confirmed relay r such that r.level > 0 and assume that the claim holds for all
relays of level r.level − 1. Furthermore, assume that r is not deleted by the
application and that r.In 6= ∅ (otherwise, we are done). This implies that r
cannot be merged (since r.In = ∅ is a requirement for a merge). Note that
Lemma 6.40 implies that r is not deleted at all, which means that r cannot be
removed completely as long as r.In 6= ∅ (observe in the pseudocode that a non-sink
relay r′ is never removed completely as long as r′.In 6= ∅ and r′ is alive). Let r′ be
the relay such that r′.ID = r.out.ID. First of all, assume for contradiction that r′
is deleted when r is still confirmed. By definition of a confirmed relay r′.In 6= ∅ at
that point in time. Since the application is deliberate, it did not delete r′ then.

151

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

According to Lemma 6.40 (which can be applied because if r′.out.ID 6= ⊥, r′ is
out-confirmed by definition), r′ cannot have been deleted at all then, yielding the
desired contradiction. Second, assume for contradiction that r′ is merged while
r is still confirmed. Again, by definition of a confirmed relay r′.In 6= ∅ at that
point in time. Thus r′ cannot have been merged. Thus, in the following by the
induction hypothesis and the fact that r′.level = r.level − 1, we obtain that r′
remains confirmed forever. Thus we can apply Lemma 6.42 (recall that every alive
relay is lingering by definition and that every confirmed relay is out-confirmed
as well), implying that as long as r fulfills the above prerequisites, r fulfills the
definition of an out-confirmed relay. Together with Lemma 6.37, Lemma 6.38 and
Lemma 6.39, we obtain that r remains confirmed as long as r fulfills the above
prerequisites.

Lemma 6.44. For every relay r the following holds: as long as r is (i) lingering-
valid or (ii) lingering and out-confirmed, r is not removed completely unless it is
merged.

Proof. Consider an arbitrary relay r that is lingering-valid or lingering and out-
confirmed and assume that r will not be merged. We consider all occasions at
which a relay is removed completely:

1. When a relay is merged, but this does not happen to r by assumption.

2. In Line 88, in which case r.out.Key = ∅, contradicting the assumption that
r is lingering-valid or out-confirmed (c.f. Property 6c).

3. In Line 96 in which case Property 2 would have been violated.

4. In Line 107, in which case Property 3 would have been violated or there
would be no relay r′ such that r′.ID = r.out.ID.

5. In Line 115, in which case r.out.Key = ∅, contradicting the assumption that
r is lingering-valid or out-confirmed (c.f. Property 6c).

6. In Line 129, but this would require r.out.ID = ⊥ (due to the check in
Line 128).

7. In Line 134, but for this line to be executed r.state 6= alive must hold (due
to the check in Line 126), r.Buf = ∅ must hold and there must not be a
relay r′ owned by RL(r) such that (key,⊥, r) ∈ r′.In (the last two facts are
due to the check in Lines 130–131). This contradicts the assumption that r
is lingering.

8. In Line 137, but the preceding check makes sure that this line is not executed
on a lingering relay.

9. In Line 144, but in this case Property 4 would have been violated.

152

Self-Stabilization Proofs 6.3

10. In Line 165, but this cannot be the case, due to Property 6b) and the fact that
Property 9 must hold for the relay r′ such that r′.ID = r.out.ID according
to the fact that r is lingering-valid or out-confirmed.

11. In Line 178, but this line is only executed for sink relays, so it cannot affect
r as r is lingering.

12. In Line 186, but in this case Property 1 would have been violated for the
relay r′ such that r′.ID = r.out.ID, which would contradict the fact that r
is lingering-valid or out-confirmed.

All in all, r is not removed completely.

Lemma 6.45. Whenever a relay r is merged, then the resulting relay r′ satisfies
Properties 1–4 and Properties 7–10. If any of Property 6a), Property 6b) or
Property 6c) held for r before the merge, the corresponding properties also hold for
r′ after the merge.

Proof. Consider an arbitrary relay r and assume r is merged into some new relay r′.
Note that r′.ID is a new and globally unique ID and that r′.state = alive. Thus
Property 1 holds for the resulting relay r′. Furthermore, r′.out = (Key, ID) and for
every key ∈ r′.out.Key there is no relay r′′ 6= r′ owned by the same node such that
key ∈ r′′.out.Key, because otherwise the merge would not have taken place and
because all relays that are merged together are completely removed immediately
after that. Therefore, Properties2–4 hold for r′. Property 7, Property 8 and
Property 10 of a valid relay follow from the fact that r′.In = ∅. Property 9
of a valid relay holds for r also because r′.ID was chosen globally uniquely.
Since r′.out.ID = r.out.ID, Property 6a) holds for r′ if it held for r. Since
r′.level = r.level and r′.sinkRID = r.sinkdRID, the same applies to Property 6b).
Since r.out.Key ⊆ r′.out.Key, Property 6c) holds for r′ if it held for r. This finishes
the proof of the lemma.

Lemma 6.46. If the application is deliberate, every out-confirmed lingering relay
r remains out-confirmed as long as r is lingering unless it is merged. If an
out-confirmed relay is merged while it is out-confirmed, the resulting relay is out-
confirmed as well.

Proof. Assume that the application is deliberate. Consider an arbitrary out-
confirmed lingering relay r. We begin with the first part of the claim. Note that
as long as r is lingering and not merged, it is not removed completely according to
Lemma 6.44. Note that the relay r′ such that r′.ID = r.out.ID must be confirmed
initially by definition.

Assume for contradiction that r′ ceases to be confirmed at a point in time right
before which r was still out-confirmed. Note that as long as r is out-confirmed,
r′.In 6= ∅ by definition. Thus the fact that the application is deliberate and
Lemma 6.40 imply that r′ cannot have ceased to be confirmed by being deleted.

153

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

Then, however, Lemma 6.43 implies that r′ cannot have ceased to be confirmed
at all, yielding a contradiction. So when r ceases to be out-confirmed, r′ was still
confirmed right before.

Now assume that r ceases to be out-confirmed at a point in time at which r′ was
still confirmed right before. Furthermore, assume that r is still lingering at that
time. Then, Lemma 6.42 implies that r cannot have ceased to be out-confirmed.
Thus, all in all, r remains out-confirmed as long as it is lingering.

We now prove the second part of the claim: Consider an arbitrary out-confirmed
relay r that is merged into a new relay r′. Lemma 6.45 implies that Properties 2–4
and Property 6 hold for r as well. Even more, since r′.out.ID is equal to r.out.ID
before the merge, the relay r′′ such that r′.out.ID = r′′.ID is confirmed. Since
r′′.In is unaffected by the merge and since r.out.Key ⊆ r′.out.Key, there is also a
key feasible for r′ such that (key,RID(r′),⊥) ∈ r′′.In (since r was out-confirmed).
Altogether r′ is out-confirmed as well.

Milestone 2 Proofs

To prove that valid relays and their successors remain valid unless they are deleted,
we first prove that feasible keys remain feasible as long as certain conditions are
fulfilled, which is required for Property 6c). We then briefly prove that Property 1
continues to hold for an alive relay, which completes the set of “if Property X is
satisfied, it will continue to be satisfied” proofs required to carry out the induction
that proves the main claim of Milestone 2: that every valid relay remains valid as
long as it is not deleted and that any merge of a valid relay results in a valid relay.
As mentioned, we begin with a result about feasible keys:

Lemma 6.47. If the application is deliberate then every key key that is feasible for
a relay r such that Properties 2–4, Property 6a) and Property 6b) hold for r remains
feasible for r as long as: (i) r exists, (ii) the relay r′ such that r′.ID = r.out.ID
is valid, and (iii) r is lingering.

Proof. Assume that the application is deliberate. Consider an arbitrary relay r
such that Properties 2–4, Property 6a) and Property 6b) hold for r. Furthermore,
assume in the following that r is not removed completely, that the relay r′ such
that r′.ID = r.out.ID remains valid and that r is lingering (as soon as this is
not the case, there is nothing to be proven any more). Note that Properties 2–4
continue to be satisfied then according to Lemma 6.37. Furthermore, consider an
arbitrary key key that is feasible for r.
First of all check that key could be removed from r.out.Key only if RL(r)

receives a Not-authorized(Keys, r.out.ID) message with key ∈ Keys. Since
key is feasible for r, such a message cannot have existed, due to Property 10 for r′
and the fact that r′ is valid.
Next, note that an In-relay-closed(key,RID(r), r.out.ID) message could

only be sent by RL(r) and only if r is dead, there is no relay r′′ such that

154

Self-Stabilization Proofs 6.3

(key,⊥, r) ∈ r′′.In, and r.Buf = ∅ (see Line 132), which cannot be the case accord-
ing to the assumption that r is lingering, or if RL(r) received a Ping(ID, level,
sinkRID, key) message and key /∈ r.out.Key (see Line 167), which would represent
a contradiction. Thus, no In-relay-closed(key,RID(r), r.out.ID) message will
be created.
Now assume that (key,RID(r),⊥) ∈ r′.In (i.e., key is a confirmed key). Note

that this triple is removed from r′.In only when RL(r′) receives a message
In-relay-closed(Keys,RID(r), r′.ID) with key ∈ Keys. Thus, in this case
key remains feasible.

Last, assume that key is feasible according to the second case of the definition of
a feasible key. In this case, (key,⊥, r′′) ∈ r′.In for some out-confirmed r′′ such that
r′′.sinkRID = RID(r). Note that since r′′ is lingering by definition, it remains
out-confirmed according to Lemma 6.46 as long as it is not merged (in which
case the triple would be removed, which is considered below). We first show that
no Probefail() or Probe() messages contradicting the definition are created.
Note that any Probefail(key, keySequence) message is sent only upon receipt
of a Probe(ControlKeys, keqSequence) message such that key ∈ ControlKeys
received by a sink relay rs and only if RL(rs) does not own a relay r′s such
that key ∈ r′s.out.Key (see Line 35). Due to the fact that for the sequence of
relays (r1 = r′′, r2, . . . , rk) such that ri+1.ID = ri.out.ID for all 1 ≤ i < k and
rk.out.ID = ⊥ there is no Probe(ControlKeys, keySequence) message such that
key ∈ ControlKeys in r′′′.Buf for any relay r′′′ /∈ {r1, . . . , rk−1} by assumption,
the only sink relay that could receive such a message is rk. Due to the fact
that r′′ is out-confirmed, Property 6b) and the fact that r′′.sinkRID = RID(r),
RL(rk) = RL(r), a Probefail(key, keySequence) message thus cannot be created.
Next, note that a Probe(ControlKeys, keySequence) message is created only
either by RL(r′′) and put into r′′.Buf (see Line 149) or when a non-sink relay
receives a Probe(ControlKeys′, keySequence) message such that ControlKeys ⊆
ControlKeys′ (see Line 60). By the above assumption, again, this can only be a
relay ri for 2 ≤ k−1, which is confirmed by the assumption that r′′ is out-confirmed.
Hence the new Probe(ControlKeys, keySequence) message is put into ri.Buf ,
thus not contradicting the definition of a feasible key. Last assume that (key,⊥, r′′)
is removed from r′.In. According to the pseudocode there are four possibilities
for this: in the first case, the triple is replaced by a triple (key,RID,⊥) such that
RID = r′′.sinkRID = RID(r) (see Lines 19–22), in which case key remains to be
feasible. The second case is that RL(r′) receives a Probefail(key, keySequence)
message, which cannot have existed before if key was feasible before. The third
case is that r′′ is merged into some relay r′′′, in which case (key,⊥, r′′) is replaced
by (key,⊥, r′′′) in r′.In. According to Lemma 6.46, since r′′ was out-confirmed
by the definition of key, r′′′ is out-confirmed as well and the property continues
to hold. The fourth case is that r′′ is removed completely for reasons other than
being merged, but this cannot be the case according to Lemma 6.44 and the fact
that r′′ is lingering and out-confirmed.
All in all, in any possible case, key remains feasible as long as (i) r exists, (ii)

155

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

the relay r′ such that r′.ID = r.out.ID is valid, and (iii) r is lingering.

Lemma 6.48. For every relay r such that Property 1 holds for r, Property 1
continues to hold for r as long as r is alive.

Proof. Consider an arbitrary relay r such that Property 1 holds for r. Note that
there are two occasions at which an Out-relay-closed(r.ID) message is sent:
in Line 67 and in Line 175. In both cases, the relay with ID r.ID either does not
exist or is dead. Thus, as long as r is not deleted, Property 1 continues to hold.

Lemma 6.37, Lemma 6.39, Lemma 6.40, Lemma 6.45 and Lemma 6.48 together
directly imply the following corollary:

Corollary 6.49. Every valid sink relay r remains valid unless it is deleted by the
application.

Lemma 6.50. If the application is deliberate, every valid relay r remains valid
as long as it is not deleted by the application or merged with other relays. If it is
merged, the resulting relay is valid.

Proof. For this proof, assume that the application is deliberate. Note that the fact
that when a valid relay is merged the resulting relay is valid follows directly from
Lemma 6.45. Thus, all that needs to be proven is that every valid relay r remains
valid as long as it is not deleted or merged with other relays.

We prove this claim by induction on the level of a relay (i.e., for a relay r its value
of r.level). Note that due to Property 5, Property 6a), Property 6b) and the fact
that r′.level ∈ N0 for every relay r′, for every valid relay r, r.level = 0 if and only if
r.out.ID = ⊥. Furthermore, for every valid relay r, if r.level 6= 0 then r.level > 0
and r.out.ID = r′.ID for some valid relay r′ such that r′.level = r.level − 1.

The induction base is given by Corollary 6.49. Thus, consider an arbitrary valid
relay r such that r.level > 0 and assume that the claim holds for all relays of level
r.level− 1. Note that if r is deleted by the application while it is still valid, we are
done. Thus, assume in the following that r is not deleted by the application, which
by Lemma 6.40 implies that r is not deleted at all. Furthermore, note that if r is
merged while it is still valid, the resulting relay is valid according to Lemma 6.45.
Thus, we consider all possible causes for r to cease being valid without being
deleted or merged. Property 1 cannot become unfulfilled as long as r is alive
according to Lemma 6.48. Furthermore, Properties 2–4, Property 7, Property 8
and Property 10 cannot become unfulfilled at all as long as r exists according to
Lemma 6.37. Note that as long as r′ is not deleted or merged, r′ remains valid by
the induction hypothesis and the fact that r′.level = r.level− 1. As long as this is
the case, Property 6a) remains fulfilled, Property 6b) continues to hold according
to Lemma 6.38, and Property 9 continues to hold true according to Lemma 6.39
(note that r is not removed completely according to the pseudocode if it is neither
deleted nor merged). Property 6c) is then satisfied due to Lemma 6.47 (note that
r is lingering as long as it is alive). All in all, if r stops being valid, r′ must have

156

Self-Stabilization Proofs 6.3

been deleted or merged first. Thus, assume that r′ is deleted or merged when r
is still valid. According to Property 6c), r′.In 6= ∅ while r is valid. This implies
that r′ cannot be merged as long as r is valid. Since the application is deliberate,
r′ cannot be deleted by the application. Recall that r′ remains valid as long as it
is not deleted. Hence, we can apply Lemma 6.40, yielding that r′ is not deleted
at all. Thus, r′ remains valid and (as argued before) r also remains valid. This
finishes the induction step.
All in all, we obtain the claim of the lemma.

Milestone 3 Proofs

For Milestone 3 we want to show that messages sent via valid relays are correctly
delivered to their sink nodes. Note that the fact that valid relays remain valid, as
we proved in Milestone 2, is not sufficient yet for the following reason: So far, we
considered that the application is deliberate, i.e., it does not delete a relay with
incoming connections. As soon as a relay no longer has any incoming connections,
however, it may freely be deleted. This could have the effect that even though
a message m is put into the buffer of a valid relay r, r is deleted before m has
been transmitted and processed. To formally verify that the message is delivered
correctly to the sink anyway, we prove that r will remain to be lingering-valid as
long as m is still in its buffer. After that, we conclude with the main result of
Milestone 3 and this section.

As a first step to prove that lingering-valid relays remain lingering-valid as long
as they exist, we prove that under certain conditions, some of the properties of a
valid relay required for a lingering-valid relay continue to be satisfied for a relay r
even if r does not necessarily stay alive.

Lemma 6.51. If the application is deliberate, for every relay r such that Prop-
erties 2–4, Property 6a) and Property 6b) hold for r, the following holds: as long
as r exists, the relay r′ such that r′.ID = r.out.ID is valid and r is lingering, the
above properties continue to hold for r.

Proof. Assume that the application is deliberate. Consider an arbitrary relay r
such that Properties 2–4, Property 6a), and Property 6b) hold for r. This implies
that r is not a sink: i.e., there is a relay r′ such that r.out.ID = r′.ID 6= ⊥.
Furthermore, assume in the following that r will not be removed completely, the
relay r′ such that r′.ID = r.out.ID remains valid, and that r is lingering (as
soon as this is not the case, there is nothing to be proven any more). Note that
Properties 2–4 then continue to hold according to Lemma 6.37. Since r.out.ID is
never changed, r.out.ID 6= ⊥ will hold forever. This implies that as long as r′ is
valid, Property 6a) continues to hold. Lemma 6.38 implies that also Property 6b)
continues to hold.

Note that Lemma 6.47 and Lemma 6.51 imply the following corollary:

157

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

Corollary 6.52. If the application is deliberate, for every relay r such that Prop-
erties 2–4 and Property 6 hold for r, the following holds: as long as r exists, the
relay r′ such that r′.ID = r.out.ID remains valid, r is lingering, and Property 6
continues to hold for r.

Lemma 6.53. If the application is deliberate, every lingering-valid relay remains
lingering-valid unless it is released or merged with other relays. If it is merged
before it is released, the resulting relay is valid.

Proof. Assume that the application is deliberate. Consider an arbitrary lingering-
valid relay r. We first show that as long as r is not released or merged, r remains
lingering-valid. Thus assume for now that r is not released or merged. Note that
if r is removed completely, it is released right before and we are done in this
case. Thus assume that r is not removed completely. Lemma 6.37 implies that
Properties 2, 3, 4, 7, 8 and 10 remain valid for r. Since Property 6 holds for r, there
is a valid relay r′ such that r′.ID = r.out.ID. Property 6c) particularly implies that
r′.In 6= ∅. Thus, r′ cannot be merged as long as r is lingering-valid. Together with
Lemma 6.50, we obtain that r′ remains valid as long as r is lingering-valid. Next,
Corollary 6.52 implies that Property 6 remains valid for r. Therefore, Lemma 6.39
can be applied, yielding that Property 9 remains valid for r. All in all, r remains
lingering-valid.

Now assume that r is merged before it is released. This implies that r.alive = true
and r.In = ∅ (otherwise r could not be merged). Thus Property 1 holds for the
resulting relay r′ (note that its ID is newly created). Note that Properties 2–4
follow from the way the merge command works. Property 6 must hold for r′ since
it held for r. Property 7 and Property 8 of a valid relay follow from the fact that
r′.In = ∅. Property 9 of a valid relay holds for r because r′.ID was chosen globally
uniquely. Last, Property 10 holds because r′.In = ∅. Thus, r′ is a valid relay.

This finishes the proof of the lemma.

Equipped with all these results, we are ready to prove Theorem 6.21, which we
recall as follows:

Theorem 6.21. If the application is deliberate, every message sent via a valid
relay r will be received by the sink node of r.

Proof. Assume the application is deliberate and consider an arbitrary valid relay r
and an arbitrary message m such that send(r̂, m) is called on RL(r). Observe
that the fact that r is valid implies that there is a sequence of valid relays
(r = r1, r2, . . . , rk) such that ri+1.ID = ri.out.ID for all i ∈ {1, . . . , k − 1},
rk.out.ID = ⊥, and RID(rk) = r.sinkRID. The assumption that the application
is deliberate and Lemma 6.53 imply for every i ∈ {1, 2, . . . , k−1} that ri+1 continues
to exist and to be valid as long as ri is lingering because cs(ri) then also remains
valid or lingering-valid. Thus ri+1.In 6= ∅, implying that ri+1 cannot be merged
(*). We now show that if RL(ri) puts m into ri.Buf for any i ∈ {1, . . . , k − 1},
it will be received with a valid header by RL(ri+1). Since m is initially put into

158

Self-Stabilization Proofs 6.3

r1.Buf and because RL(rk) will forward m to the node owning rk if it receives
the message with a valid header for rk, this is sufficient to prove the theorem.

Let i ∈ {1, . . . , k−1} be arbitrary but fixed. Assume RL(ri) puts m into ri.Buf .
According to the pseudocode (c.f. Line 14 and Line 60), the header used for this
message is (Keys,RID(ri.ID), ri.out.ID), in which Keys = ri.out.Key. Due to
Property 6 for ri, (Keys,RID(ri.ID), ri.out.ID) is initially a valid message header.
Thus, all we still need to prove is that it remains valid until it is received. Note
that ri must be alive when m′ := Transmit((Keys,RID(ri.ID), ri.out.ID),m)
is put into ri.Buf and as long as m′ ∈ ri.Buf , ri is lingering. According to (*),
ri+1 continues to exist and to be valid as long as the message has not been received
by RL(ri+1). This allows us to apply Lemma 6.47, yielding that every feasible
key in Keys remains feasible until m′ is received. Since there was at least one
feasible key in Keys when the message was sent due to Property 6c) for ri, m will
be received with a valid header by RL(ri+1) and the proof is complete.

6.3.4. Additional Proofs for Theorem 6.22

In this subsection, we provide some additional lemmas and their proofs that are
required to prove the closure property of self-stabilization. First of all, we prove
that dead-valid relays remain dead-valid until they are removed completely. After
that we obtain that every valid deleted relay immediately becomes a dead-valid
relay (unless it is removed immediately). We then show that relays created from
valid relay parameters are valid relays and that relay parameters created from a
valid relay and sent via a valid relay are valid and remain as such until they reach
the sink. Putting all these pieces together, we obtain that computations starting
in legal states consist of legal states only.
We begin with proving the following lemma, which is proven very similarly to

Lemma 6.53:

Lemma 6.54. If the application is deliberate, every dead-valid relay remains
dead-valid as long as it exists.

Proof. Assume that the application is deliberate. Consider an arbitrary dead-valid
relay r. Lemma 6.37 implies that Properties 2, 3, 4, 7, 8 and 10 remain valid for r.
Since Property 6 holds for r, there is a valid relay r′ such that r′.ID = r.out.ID.
Property 6c) particularly implies that r′.In 6= ∅. Thus, r′ cannot be merged and
Lemma 6.50 together with the fact that the application is deliberate yields that r′
remains being valid. Next, Corollary 6.52 implies that Property 6 remains valid
for r. Therefore, Lemma 6.39 can be applied, yielding that Property 9 remains
valid for r. All in all, r remains dead-valid.

From the pseudocode and Lemma 6.54, we immediately obtain the following
corollary:

159

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

Corollary 6.55. If a valid relay r is deleted by the application, then it is removed
completely immediately or immediately becomes dead-valid and remains dead-valid
until it is removed completely.

Lemma 6.56. If the application is deliberate, each relay created from a valid relay
parameter is a valid relay.

Proof. Assume a relay r is created from a valid relay parameter (key, ID, level,
sinkRID). This happens when the message m = ((Keys, senderRID, outID),
action(parameters)) containing the valid relay parameter is received by a relay
layer RL(outID) such that the relay with ID outID is a sink. Note that r is
created with r.state = alive, a globally unique r.ID, a pair r.out = (Key, ID)
such that Key is a set and empty r.In. Thus, Properties 1–3 and Properties 7–10
are satisfied. Property 4 is ensured by Line 40. What remains to be shown is that
Property 6 is satisfied as well.
Note that r is created such that r.out.ID = ID and that by Property 3 of a

valid relay parameter the relay r′ with r′.ID = r.out.ID is valid: i.e., Property 6a)
holds true.

According to Property 4 of a valid relay parameter and the fact that r′.level ≥ 0
according to Property 3 of a valid relay parameter, Property 6b) of a valid relay
holds as well.

For Property 6c) of a valid relay, first note that before the relay parameter was
received, the corresponding message was stored in rs.Buf for a relay rs before and
rs.out.ID = outID due to Property 12. By Property 1 of a valid relay parameter,
rs was lingering-valid, thus rs.sinkRID = RID(outID) by Property 6b) of a valid
relay. Thus, according to Property 5 of a valid relay parameter, (key,⊥, r′′) ∈ r′.In
for some lingering-valid relay r′′ and r′′.sinkRID = RID(outID). We now prove
that r′′ is also out-confirmed: When m is received by r, for every key′ ∈ Key
such that (key′,⊥, r′′′) ∈ r.In for some relay r′′′ is replaced by (key,RID(rs),⊥).
Since there was at least one key key′ feasible for rs in Keys (which implies
key′ ∈ rs.out.Key by definition), afterwards (key′, RID(rs),⊥) holds. This implies
that rs is confirmed. Together with Property 13 of a valid relay parameter, we
inductively obtain that r′′ is out-confirmed as well. Since upon creation of the
relay r, key is put into r.out.Key, Property 6c) of a valid relay holds for r.

Lemma 6.57. If the application is deliberate, each relay parameter created from a
valid relay r by sending a message containing a reference of r via a valid relay is a
valid relay parameter. Furthermore, every valid relay parameter is either received
by a sink and turned into a relay or remains valid.

Proof. Note that every relay parameter is created with a unique key (which
satisfies Property 2) and with ID = r′.ID where r′ is the relay from which the
relay parameter is created. Thus, if that relay r′ is valid, Property 3 holds. Since
we assume the relay parameter is sent via a valid relay, Property 1 initially holds
for every relay parameter, too. For Property 4 to Property 6, also check the way a

160

Self-Stabilization Proofs 6.3

relay parameter is created. For Property 5, additionally check the fact that the
relay r′′ via which the relay parameter is sent is valid by the assumption that
the application is deliberate and that it must be a non-sink relay (otherwise no
relay parameter would be created). For Property 7 to Property 11, note that since
key is uniquely created, no such message or relay can exist at that point in time.
Property 12 is also implied by the way a relay parameter is created and the fact
that it is sent via a valid relay (which, in particular, satisfies Property 6c)). For
Property 13 note that the sequence specified there is empty since the newly created
message is initially put into r′′.Buf .
We now check that every valid relay parameter (key, ID, level, sinkRID) con-

tained in a message m in a buffer r.Buf remains valid as long as m has not
been transmitted and processed. In the following, let r′ be the relay such that
r′.ID = ID. As long as r is not merged, Property 1 remains valid due to
Lemma 6.53 and the fact that as long as m ∈ r.Buf , r.Buf 6= ∅. If r is merged
when Property 1 is fulfilled, then the resulting relay rn is valid according to 6.53
and the same applies to rn then. Property 2 again follows from the fact that relay
parameters are created with a unique key. For Property 3, first of all note that relay
parameters are never changed. In addition, note that according to Lemma 6.50 the
relay r′ such that r′.ID = ID remains valid unless it is deleted by the application
or merged, which does not happen because according to Property 5, r′.In 6= ∅ and
because the application is deliberate. The fact that relay parameters are never
changed also implies Property 4. Let us now assume that Property 5 becomes
false. Note that as long as (key,⊥, r′′) ∈ r′.In, r′′ remains being lingering. Thus
Lemma 6.53 implies that r′′ remains being lingering-valid. Note that the sinkRID
is never changed for a lingering-valid relay (due to Property 9 of a valid relay and
the pseudocode). So in this case, Property 5 continues to hold. Therefore, assume
that a triple (key,⊥, r′′) for some key key and some lingering-valid relay r′′ owned
by the same node as r′ is removed from r′.In. According to the pseudocode, this
happens at the following occasions:

1. In Line 21, in which case r′ receives a message using key key, which contradicts
Property 8.

2. In Line 77, but this requires the existence of a Probefail(key, keySequence)
message for some keySequence contradicting Property 9.

3. In Line 86, in which case prior to the removal of the triple from r′.In
a Not-authorized(Keys, outID) message such that r′′.out.Key ⊆ Keys
must have been in transit to RL(r′). Since r′′ is lingering-valid, this contra-
dicts Property 6c) for r′′ together with Property 10 for the relay r′′′ such
that r′′′.ID = r′′.out.ID.

4. In Line 106, which is executed only if Property 3 is violated for r′, which
would contradict Property 3.

161

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

5. In Line 143, which is executed only if Property 4 is violated for r′, which
would contradict Property 3.

6. In Line 120, but that line is executed only if Property 8 of r′ is violated,
which cannot be the case according to Property 3 of the relay parameter we
consider.

7. In Line 125, but that line is executed only if r′′ does not exist or is a sink
relay, which contradicts Property 5.

8. In Line 127, but that line is executed only if r′ is dead, which contradicts r′
being valid.

9. In Line 164, but if that line is executed Property 9 must have been violated
for r′′, contradicting the fact that r′′ is a lingering-valid relay.

10. In Line 184, but this requires an Out-relay-closed(r′′.out.ID) message to
be received which contradicts the fact that r′′ is lingering-valid and Property 1
for the relay r′′′ such that r′′.out.ID = r′′′.ID.

11. When delete r′ is called: this does not occur, due to Lemma 6.40 (note that
r′ is valid by Property 3), the fact that r′.In 6= ∅ and the assumption that
the application is deliberate.

12. When r′′ is merged into some new relay r′′′. But then (key,⊥, r′′) is replaced
by (key,⊥, r′′′) and r′′′ is lingering-valid as well according to Lemma 6.45.

For Property 6 note that the relay references inside a message are never changed. For
Property 7 note that this could become violated only if r′′′ is created from a relay pa-
rameter with key key. This, however, would contradict Property 2. For Property 8
note that whenever the key of a message is set, it is set to a key from s.out.Key for a
relay s, which cannot be key due to Property 7. For Property 9 note that whenever
an existing Probefail(key, keySequence) message is received and thereby causes a
new Probefail(key, keySequence′) message, only keySequence is truncated from
the end to obtain keySequence′. Thus, the only occasion at which Property 9 might
become false is when a Probefail(key, keySequence) message is newly created
(not as a result of a former such message). This only happens at a sink s upon re-
ceipt of a Probe(ControlKeys, keySequence) message with key ∈ ControlKeys.
However, this requires this Probe() message to have been in r′′′.Buf for some relay
r′′′ with r′′′.out.ID = s.ID, which contradicts Property 10 since s.out.ID = ⊥. For
Property 10 check that every newly created Probe(ControlKeys, keySequence)
message does not violate this property, due to the way these messages are created
and the fact that for key ∈ ControlKeys they are sent via r′′ only and r′′ is
lingering-valid. Thus, assume a Probe() message mp is delivered from a buffer
ri.Buf to the relay layer with RID RID(ri.out.ID). There, for the relay ri+1
with ri+1.ID = ri.out.ID, ri+1.out.Key is appended to keySequence. If there is
a message containing a relay parameter with a key contained in ControlKeys

162

Self-Stabilization Proofs 6.3

(i.e., m according to Property 2), this key is removed from ControlKeys. So ei-
ther the resulting Probe(ControlKeys′, keySequence′) message m′p does not have
key ∈ ControlKeys′ (and thus cannot contradict Property 10) or it otherwise also
fulfills the requirements of Property 10. For Property 11 check both cases in which
an In-relay-closed(Keys,RID, ID) message with key ∈ Keys is sent. The first
is in Line 132, which requires a relay r′′′ with key ∈ r′′′.out.Key contradicting Prop-
erty 7. The second is in Line 167, which requires a Ping(ID, level, sinkRID, key)
message. Property 5 for the valid relay parameter we consider implies that there
is some lingering-valid relay r′′ such that (key,⊥, r′′) ∈ r′.In. Property 9 for
the relay r′ then implies that there cannot be a Ping(r′.ID, level, sinkRID, key)
message for any level and any sinkRID. Since r′.ID = ID (by definition of r′),
a Ping(ID, level, sinkRID, key) message cannot have existed and thus Line 167
is not executed. Property 12 is implied by the fact that messages inside buffers
are not changed (they are only removed once they have been transmitted and
processed) and that r is lingering-valid and Lemma 6.47. Last, for Property 13
notice that r′′ is lingering-valid according to Property 5 and that every other relay
in the sequence specified in Property 13 is lingering-valid as well (these are even
valid according to the definition of r′′ being lingering-valid, which implies that they
are alive). Thus, all these relays remain lingering-valid according to Lemma 6.53
(note that they are replaced by the resulting relay when they are merged). Fur-
thermore, note that for a fixed relay ri in the sequence, according to the pseu-
docode, only RL(ri) could send an In-relay-closed(Keys,RID(ri), ri.out.ID)
message with key ∈ Keys. However, according to the pseudocode, a message
In-relay-closed(Keys,RID(ri), ri.out.ID) with key ∈ Keys can be sent only
if RL(ri) receives a Ping(ri.out.ID, level, sinkRID, key) message for some level
and sinkRID and key /∈ ri.out.Key, so no such message is ever sent. Now
check that a valid relay ri+1 removes an element (key,RID(ri),⊥) from ri+1.In
only if it receives an In-relay-closed(Keys,RID(ri), ri.out.ID) message with
key ∈ Keys, so the property continues to hold.

Next assume a message m containing a valid relay reference is transmitted from
r.Buf to the node whose relay layer has the RID contained in r.out.ID and let s
be the relay with s.ID = r.out.ID. Note that due to Property 12, this message
must have a valid header for s. There are two options then: If s is a sink, due to
Property 6, the corresponding message is not discarded by the protocol executed
when the message is received (see Line 36). Thus according to the pseudocode and
the fact that Property 4, Property 6 and Property 7 hold, the relay parameter
will be turned into a relay (see Lines 36–50). If s is not a sink, i.e., s.out.ID 6= ⊥,
a message m′′ that only differs from m in its header is put into s.Buf and only
Property 1, Property 12 and Property 13 can be invalid for the new message if they
held for the old one. For Property 1 note that since r is lingering-valid, s is valid
due to Property 6a) for r and lingering due to Property 6c) for r: i.e., s is lingering-
valid as well. For Property 12 note that according to the pseudocode, when m′′ is
created, it is created with header (Keys,RID(s.ID), s.out.ID) where Keys equals
s.out.Key at that point in time. Since s is lingering-valid according to Property 1,

163

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

there is a feasible key in s.out.Key at that point in time (due to Property 6c)
for s) and thus Keys contains a key that is feasible for r. For Property 13 first
of all recall that Property 12 held for m in r.Buf . Let (Keys, r.ID, sr.out.ID)
be the header of m. When m is received by s, for every key′ ∈ Key such that
(key′,⊥, r′′′) ∈ s.In for some relay r′′′ is replaced by (key,RID(r),⊥). Since there
was at least one key key′ feasible for r in Key (which implies key′ ∈ r.out.Key by
definition), afterwards (key′, RID(r),⊥) holds. Thus Property 13 also holds for
the new sequence, which is the previous sequence appended by s (note that the
other relays in the sequence cannot cause the property to become untrue as argued
before).

We are now ready to prove the closure property, as formalized by Theorem 6.22,
which we recap here:

Theorem 6.22. If the application is deliberate, in every computation that starts
in a legal state, every state is legal.

Proof. The idea of the proof is the following: First, we argue that every valid relay
that is not deleted by the application remains valid or is merged into a valid relay
and that every dead-valid relay remains dead-valid unless it is removed completely.
Second, we argue that every valid relay that is deleted by the application becomes
a dead-valid relay. Third, we argue that every valid relay parameter remains valid
unless it is received by a sink. Fourth, we prove that every new relay parameter is
a valid relay parameter. Last, we show that every additionally created relay is a
valid relay from the beginning. Altogether, this proves that the succeeding state of
every legal state is legal as well.
The claim that that every valid relay that is not deleted by the application

remains valid or is merged into a valid relay is directly implied by Lemma 6.50. The
fact that every dead-valid relay remains dead-valid unless it is removed completely
is stated by Lemma 6.54.

The second claim follows from Corollary 6.55. Note that the third claim follows
from Lemma 6.57.
To see that every new relay reference is valid relay reference, first of all note

that in a legal state, every new relay reference can only be created from a valid
relay and only sent via a valid relay. To this end, Lemma 6.57 can be applied for
every new relay parameter, yielding that the new relay parameter is valid.
To see that every additional relay is a valid relay from the beginning, first of

all note that every sink relay that is newly created (via new Relay) is created
as a valid relay by construction. Every non-sink relay newly created is created
upon receipt of a relay parameter (which must be a valid relay parameter in a legal
state). Lemma 6.56 gives that the resulting relay is valid then.

As argued before, this finishes the proof of the theorem.

164

Self-Stabilization Proofs 6.3

6.3.5. Additional Proofs for Theorem 6.23

In the last subsection of this section we prove Theorem 6.23, which basically implies
the convergence property of self-stabilization. This, together with the previous
results yields the completion of the self-stabilization proof. We begin with proving
that every alive relay that fulfills certain conditions will eventually be deleted or
become valid. After that, we stepwise prove that every of these conditions will
eventually be fulfilled for every relay that is not removed completely. Putting this
together, we obtain that every initially existing relay will eventually have become
valid or gotten deleted. Note that we have already proven that valid relays remain
valid. Thus, the next step is to show that all newly created relays are valid as
well. Since we know that relays created from valid relay parameters become valid
relays, we prove that every invalid relay parameter will cease to exist in finite
time. Unfortunately this is not yet enough to prove that eventually there will be
no invalid relay parameters. Even if we restrict the application to send references
only via valid relays, the application could possibly send the reference of an invalid
relay and thus cause new invalid relay parameters. The way out is to prove by
induction on the level of the relays and to prove that for every i, all relays of level
up to i are eventually valid. This works because a new relay must have a higher
level than the relay it was created from. So as soon as all relays up to level ` are
valid, no new non-valid relays of level at most ` can emerge. In the end, when we
restrict the application to not send the reference of a relay that exceeds a certain
level at all, we obtain the desired claim of Theorem 6.23.

The first result states that a relay for which the following conditions are satisfied
will eventually be valid:

Lemma 6.58. If the application is deliberate, for every alive relay r such that in
some state S (i) Properties 2–4 hold for r or r will be merged after S, (ii) every
rs ∈ s(r) will not be deleted, and (iii) either r.out.ID = ⊥ or Property 6 holds for
every s(r) in every state after S, there is a state S′ such that csS′′(r) is valid in
every state S′′ ≥ S′.

Proof. Assume that the application is deliberate. Consider an arbitrary alive relay
r such that in some state S Properties 2–4 hold for r or r will be merged after S,
every r will not be deleted in finite time, rs ∈ s(r) will not be deleted, and either
r.out.ID = ⊥ or Property 6 holds for every s(r) in every state after S.

First of all, note that cs′S(r).state = alive in every state S′ after S by assumption.
Note that as soon as Property 1 holds for some cs(r), it holds as long as this relay
exists (i.e., until it is merged) according to Lemma 6.48. Furthermore, note that
when r is merged, Property 1 holds for the resulting relay according to Lemma 6.45.
Thus, all that needs to be proven is that if r will not be merged, Property 1
eventually holds for r. According to the pseudocode, only RL(r) could send an
Out-relay-closed(r.ID) message but does not do so when r exists and is alive.
Thus, as soon as all Out-relay-closed(r.ID) messages initially in the system
have been transmitted and processed, Property 1 holds for r.

165

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

Second, note that if r will not be merged after S, Properties 2–4 hold for r by
assumption and continue to hold for r by Lemma 6.37. Otherwise, according to
Lemma 6.45, as soon as r is merged, they hold for cs(r) and every rs ∈ s(cs(r))
according to Lemma 6.37 and Lemma 6.45.

Furthermore, if r.out.ID = ⊥, Property 5 for cs(r) will be satisfied after the next
execution of Timeout due to Line 98 and Line 109 and the fact that in case the
node owning cs(r) is inactive, cs(r) would be removed completely upon Timeout
(see Line 137). This property will also be satisfied forever due to Lemma 6.37
and Lemma 6.45. Otherwise, Property 6 holds by assumption in S and every
subsequent state.

For the remaining properties, note that they hold after every merge according to
Lemma 6.45. Furthermore, they continue to hold as soon as they hold according
to Lemma 6.37 and Lemma 6.39. Thus, it is sufficient to show that they eventually
hold for r if r will not be merged.

We consider Property 7. First of all, observe that whenever an element is added
to r.In, this is either of the form (key,RID,⊥) with RID 6= ⊥ (see Line 22) or
of the form (key,⊥, r′′) for some non-sink relay r′′ owned by RL(r). In addition,
the Timeout action in Line 125 ensures that after its first execution, r.In only
contains triples of the form (key,RID,⊥) with RID 6= ⊥ or (key,⊥, r′′) for some
non-sink relay r′′ owned by RL(r). Last assume that for a triple (key,⊥, r′′) ∈ r.In
such that r′′ is a non-sink relay, r′′ is completely removed. Check in the pseudocode
all occasions at which a relay r′′ is completely removed: except for three occasions,
whenever a relay r′′ is removed, all triples (key,⊥, r′′) are removed from r′.In for
every other relay r′. The first exception to this is in Line 129, in which case r′′
is a sink relay. The second exception is in Line 134, in which case the check in
Lines 130–131 ensures that no such triple (key,⊥, r′′) exists in r.In. The third
exception is in Line 137, in which case due to the check in Lines 135–136 either r′′
is a sink relay or r.In = ∅. Thus, Property 7 holds eventually and forever.
Note that Property 8 is satisfied by Line 120 and the fact that whenever a

new triple is put into cs(r).In either key is uniquely created (see Line 9) or the
first parameter key already existed as the first parameter of another triple that is
removed before (see Lines 21–22).
For Property 9 check that any Ping() message with first parameter r.ID is

sent only by RL(r) as Ping(r.ID, r.level, r.sinkRID, key) and only such that
(key,RID,⊥) ∈ r.In for some RID (this happens in Line 122). If r.out.ID = ⊥,
then as soon as Property 5) holds, it will hold forever implying that r.level and
r.sinkRID will never change. Otherwise, by assumption, Property 6 holds for r,
which implies (in particular due to Property 6a) and Property 6b)) that r.level
and r.sinkRID will never change. Thus as soon as r.level and r.sinkRID do not
change any more and all Ping() messages with first parameter r.ID existing at
this point in time have been transmitted and processed, Property 9 holds and
holds forever.

To see that Property 10 will eventually become true, check in the pseudocode that
a Not-authorized(Keys, r.ID) message is sent only in Line 64 and only by RL(r)

166

Self-Stabilization Proofs 6.3

and only if RL(r) received a message m with header (Keys, senderRID, r.ID)
and the message is sent only to the relay layer with RID senderRID. Fur-
thermore, for this line to be executed, m does not have a valid header for r:
i.e., there is no (key, senderRID,⊥) ∈ r.In and no (key,⊥, r′) ∈ r.In such that
r′.sinkRID = senderRID. Thus a Not-authorized(Keys, r.ID) message vio-
lating the requirements of Property 10 is never sent out and as soon as all of these
messages initially in the system have been transmitted and processed, Property 10
will hold forever.

All in all, after some state, r will be valid and remain valid forever.

Lemma 6.59. Every relay r that does not satisfy Property 2, Property 3 or
Property 4 will be removed completely in finite time or Properties 2–4 will eventually
hold for r.

Proof. Consider an arbitrary relay r. Assume that r is not removed completely in
finite time (otherwise, we are done).

If Property 2 is violated for r, Line 96 ensures that r will be removed completely
or a conflicting relay with the same ID will be removed completely such that the
property holds afterwards. If Property 3 is violated for r, Line 107 ensures that r
will be removed completely.

We now prove that Property 4 will hold eventually and forever. Therefore,
check that in case the property is violated for r, Line 144 of the Timeout action
makes sure it becomes satisfied (either by completely removing r, which would
represent a contradiction, or by completely removing the other relay r′ such that
r′.out.Key ∩ r.out.Key 6= ∅). Furthermore, note that the only occasion at which a
key key is added to r′′′.out.Key for a relay r′′′ owned by the same node as r is in
Line 45, in which due to Line 40 key /∈ r.out.Key holds. Thus, once Property 4
holds, it will hold forever.

Note that the fact that sink relays cannot become merged, Lemma 6.58 and
Lemma 6.59 directly imply the following corollary:

Corollary 6.60. If the application is deliberate, for every alive sink relay r that
is not deleted there is a state S such that r is valid in every state S′ ≥ S.

We now aim at a similar result for the non-sink relays (i.e., the relays r such
that r.out.ID 6= ⊥).

Lemma 6.61. If the application is deliberate, for every relay r such that Prop-
erty 6a) holds for r, ls(r) = × or there is a state S such that Property 6 holds for
csS′(r) in every state S′ ≥ S.

Proof. In the following, we assume that the application is deliberate. Consider an
arbitrary relay r such that Property 6a) holds for r and assume that ls(r) 6= ×
(otherwise we are done). Note that Lemma 6.59, Lemma 6.45 and Lemma 6.37
imply that in some state S1 and every subsequent state, Properties 2–4 will hold
for csS1(r). In the following, let r′ be the relay such that r′.ID = r.out.ID.

167

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

First of all, Lemma 6.30 directly implies that there is a state S2 after S1 such
that in every state S′2 ≥ S2 Property 6c) holds for csS′2

(r) and that r′ will not be
deleted or merged. Thus, according to Lemma 6.50 and the fact that r′′.out.ID is
never changed for any existing relay r′′, Property 6a) holds for csS′(r) for every
S′ ≥ S2.

For Property 6b), note that Lemma 6.30 additionally implies that in every state
S′ ≥ S2 there will be a tuple (key,RID(r),⊥) ∈ r′.In for at least one key ∈
csS′(r).out.Key. Then, during Timeout, RL(r′) will send a Ping(r′.ID, r′.level,
r′.sink, key) message to RL(r) (see Line 122). Upon receipt of this message, RL(r)
will either completely remove cs(r) (which would represent a contradiction) or
update the values of cs(r) such that Property 6b) is fulfilled for cs(r) (note that
r′.level ≥ 0 since r′ is a valid relay). Let S3 be the state such that this has
happened already. Since Property 9 holds and continues to hold for r′, as r.level
and r.sinkRID are changed only due to the receipt of a Ping() message, and
because of Lemma 6.45, Property 6b) holds for csS′(r) in every S′ ≥ S3.
All in all, we obtain the claim of the lemma.

Lemma 6.62. If the application is deliberate, for every alive relay r such that
Property 6a) holds for r, there is some rs ∈ s(r) that will be deleted or there is a
state S such that csS′(r) is valid in every state S′ ≥ S.

Proof. In the following, we assume that the application is deliberate. Consider an
arbitrary alive relay r such that Property 6a) holds for r and assume that there is
no rs ∈ s(r) that will be deleted (otherwise we are done). Note that there is a state
S1 such that Property 2, Property 3 and Property 4 hold for csS′1

in every state
S′1 ≥ S1 according to Lemma 6.37, Lemma 6.59 and Lemma 6.45. Furthermore,
Lemma 6.61 implies that there is a state S2 such that Property 6 holds for csS′2

(r)
in every state S′2 ≥ S2 (note that ls(r) = × would require some rs ∈ s(r) that
would be deleted). Thus we can apply Lemma 6.58 yielding that there is a state
S3 such that csS′3

(r) is valid in every state S′3 ≥ S3.

Lemma 6.63. If the application is deliberate, for every alive relay r such that
r.out.ID 6= ⊥, there is some rs ∈ s(r) that will be deleted or there is a state S
such that csS′(r) is valid in every state S′ ≥ S.

Proof. Consider an arbitrary alive relay r such that r.out.ID 6= ⊥ and assume
that there is no rs ∈ s(r) that will be deleted (otherwise we are done), which
also implies that ls(r) 6= × (note that unless it is merged, an alive relay is never
removed completely without being deleted first).
According to Lemma 6.34, there is a sequence of relays (r1 = r, r2, r3, . . . , rk)

such that for all i ∈ {1, . . . , k − 1}, ri+1.ID = ri.out.ID, rk.out.ID = ⊥, and all
relays ri for i ∈ {2, . . . , k} are and remain alive forever. We now prove the claim
of the lemma via induction on i (starting with i = k).
For the induction base, note that cs(rk) = rk in every state because rk is a

sink relay. As argued before, rk will not be deleted, which is why we can apply

168

Self-Stabilization Proofs 6.3

Corollary 6.60. This yields that there is a state Sk such that csS′
k
(rk) will be

valid in every state S′k ≥ Sk. Thus, for cs(rk−1), Property 6a) holds in finite time
and forever. Lemma 6.62 yields that there is a state Sk−1 such that csS′

k−1
(rk−1)

is valid in every state S′k−1 ≥ Sk−1 (again, recall that rk−1 will not be deleted
according to the aforementioned).
Now consider an arbitrary i ∈ {1, . . . , k − 2} and assume there is a state Si+1

such that csS′i+1
(ri+1) is valid in every state S′i+1 ≥ Si+1. Again, we can apply

Lemma 6.62 to obtain that there is a state Si such that cs′Si
(ri) is valid in every

state S′i ≥ Si. This finishes the induction.
All in all, there is a state S such that csS′(r) will be valid every state S′ ≥ S

and the claim of the lemma is proven.

Note that Corollary 6.60 and Lemma 6.63 imply the following corollary:

Corollary 6.64. If the application is deliberate, for every alive relay r, there is
some rs ∈ s(r) that will be deleted or there is a state S such that csS′(r) is valid
in every state S′ ≥ S.

Lemma 6.65. For every relay parameter (key, ID, level, sinkRID) contained in
a message m in a buffer r.Buf of a relay r in some state S there is a state S′ > S
such that (key, ID, level, sinkRID) does not exist in S′.

Proof. Consider an arbitrary relay parameter (key, ID, level, sinkRID) contained
in a message m1 in a buffer r1.Buf of a relay r in some state S. Let the header of
m1 be (Keys, senderRID, outID). Note that m1 will be received in some state
by the relay layer whose ID is contained in outID. According to the pseudocode,
there are three options then: First, if (Keys, senderRID, outID) is not a valid
header for the relay with ID outID or such a relay does not exist, the message
is discarded. Second, if there is a sink relay with ID outID and m has a valid
header for that relay, the relay parameter is discarded (if the message contains relay
parameters that belong to different RIDs) or “unpacked” into a relay (as described
in Section 6.2.4) and no longer exists afterwards. Third, if m has a valid header
for a non-sink relay r2, a new message m2 containing (key, ID, level, sinkRID) is
put into r2.Buf . We now argue that the third case cannot occur infinitely often
for (key, ID, level, sinkRID).

Let (r1, r2, . . .) be the resulting sequence of relays. Assume for contradiction that
this sequence is infinite. Note that since r.out.ID is never changed for any existing
relay and since ri.out.ID = ri+1.ID must hold for every i ∈ {1, 2, . . . }, every relay
in the above sequence must exist during S. In particular, this implies cs(ri) = ×
or cs(ri) = ri for every i ∈ {1, 2, . . . } in every state. Since the number of relays is
finite, there must be a cycle ri, ri+1, . . . , rj = ri in the above sequence of relays.
According to Lemma 6.31, one of the relays in the cycle will be removed completely,
yielding that the relay parameter is eventually discarded. This completes the proof
of the lemma.

169

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

Lemma 6.66. In every computation C, there is a state S0 such that every alive
relay r such that r.level = 0 is valid.

Proof. First of all, note that according to Lemma 6.50, every existing valid relay
remains valid or is merged into some valid relay, or it is deleted by the application
(in which case the relay is not alive afterwards). Second note that any new relay r
such that r.level = 0 must be a sink relay created via new Relay. Observe that
due to the way the variables are set for a new relay sink relay created via new
Relay, every new such relay is a valid relay by construction. Last, we see that
every alive relay r such that r.level = 0 will become a valid relay or be deleted
in finite time according to Corollary 6.64. Thus, all in all, eventually every alive
relay r such that r.level = 0 is valid and the claim of the lemma follows.

Lemma 6.67. If the application is deliberate and does not send any reference via
a relay that is not valid, the following holds for every fixed l ∈ N0: If there is a
state Sl such that in every state S′l ≥ Sl, every alive relay r such that r.level ≤ l is
valid, then there is a state Sl+1 such that in every state S′l+1 ≥ Sl+1, every alive
relay r such that r.level ≤ l + 1 is valid.

Proof. Let l ∈ N0 be some fixed number. Consider an arbitrary computation C
such that the application is deliberate and does not send any reference via a relay
that is not valid. Furthermore, assume there is a state Sl such that in every state
S′l ≥ Sl every alive relay r such that r.level ≤ l is valid. Recall in the following
that according to Lemma 6.50, every existing valid relay remains valid or is merged
into a valid relay, unless it is deleted by the application (in which case it is not alive
anymore afterwards). We prove the claim in four steps: First, we show that every
relay parameter (key, ID, level, sinkRID) such that level ≤ l + 1 created after Sl

is a valid relay parameter. Second, we show that every invalid relay parameter
(key, ID, level, sinkRID) such that level ≤ l + 1 will vanish in finite time. These
two insights imply that there is a state S′l such that in every state after S′l every
relay parameter (key, ID, level, sinkRID) such that level ≤ l + 1 is valid. As a
third step, we show that every new relay r such that r.level = l + 1 created after
S′l is a valid relay. Last, we show that every invalid relay r such that r.level = l+ 1
alive in S′l will be deleted or become valid in finite time. This implies that there
is a state Sl+1 such that in every state S′l+1 ≥ Sl+1 every alive relay r such that
r.level ≤ l + 1 is valid.
For first step, note that whenever a relay parameter (key, ID, level, sinkRID)

is created, it is created from an alive relay r such that r.level = level − 1. Thus,
after Sl, the relay that every relay parameter (key, ID, level, sinkRID) such that
level ≤ l+ 1 is created from is valid and we can apply Lemma 6.57, which together
with the assumption that the application does not send any reference via a relay
that is not valid yields that (key, ID, level, sinkRID) is valid.
For the second step, note that according to what we have just shown, every

invalid relay parameter existing in the system must have been created before Sl.
Every such relay parameter will vanish in finite time according to Lemma 6.65.

170

Self-Stabilization Proofs 6.3

Thus, we obtain that there is a state S′l such that in every state after S′l every
relay parameter (key, ID, level, sinkRID) such that level ≤ l + 1 is valid.
For the third step, consider an arbitrary relay r such that r.level = l + 1 that

is created after S′l. According to the pseudocode, since r.level > 0, it can only
be created due to the receipt of a relay parameter (key, ID, level, sinkRID) for
some key, ID and sinkRID and level = r.level. Since r.level = l + 1, this relay
parameter must have been a valid one. Thus, Lemma 6.57 can be applied again,
yielding that r is a valid relay.

For the fourth step, the claim that every invalid relay r such that r.level = l + 1
alive in S′l will be deleted or become valid in finite time is directly implied by
Corollary 6.64. As argued before, this finishes the proof of the lemma.

Note that Lemma 6.66 and Lemma 6.67 imply the following corollary:

Corollary 6.68. If the application is deliberate and does not send any reference
via a relay that is not valid, then for every fixed l ∈ N0, there is a state Sl such
that in every state S′l ≥ Sl, every alive relay r such that r.level ≤ l is valid.

We now prove Theorem 6.23, which we restate as follows:

Theorem 6.23. If the application is deliberate and does not send any reference
via a relay that is not valid and for some arbitrary but fixed l ∈ N does not send
the reference of a relay r such that r.level ≥ l, every computation will reach a legal
state.

Proof. Consider an arbitrary computation C such that the application is deliberate
and does not send any reference via a relay that is not valid and for some arbitrary
but fixed l ∈ N does not send the reference of a relay r such that r.level ≥ l. The
main claim we need to show in this proof is that there is a state S such that in every
state S′ ≥ S, every alive relay r is valid. Once we have proven this, we can apply
Lemma 6.40 and Corollary 6.55 to obtain that after S, every relay that becomes
a dead relay (i.e., a relay was an alive relay and is deleted) is either removed
completely immediately or becomes dead-valid. Since we know from Lemma 6.54
that every dead-valid relay remains dead-valid unless it is removed completely, the
last missing piece of the proof is that that every dead relay existing in S that is not
dead-valid will be removed in finite time. This, however, is given by Theorem 6.19.
All in all, we obtain that C reaches a legal state.

As described before, we now prove that there is a state S such that in every
state S′ ≥ S, every alive relay r is valid. Corollary 6.68 states that there is a state
Sl such that in every state S′l ≥ Sl, every alive relay r such that r.level ≤ l is valid.
Note that whenever a relay parameter (key, ID, level, sinkRID) is created, it is
created from an alive relay r such that r.level = level − 1. Thus, in the whole
computation, no relay parameter (key, ID, level, sinkRID) such that level > l is
created. This implies that after all relay parameters initially in the system have
vanished (which they will do according to Lemma 6.65), no new relay r such that
r.level > l can be created at all. Let k be the maximum value of r.level for any

171

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

existing relay r (which is well-defined then). Then throughout C, for every relay r,
r.level ≤ m for m := max l, k. Thus, Corollary 6.68 yields that there is a state Sm

such that in every state S′m ≥ Sm, every alive relay r is valid and the proof of the
above claim is finished.

6.3.6. Proof of Theorem 6.26

The proof of Theorem 6.26 consists of three parts that are represented by the
following three lemmas:

Lemma 6.69. In every legal state, for every relay r, if has-incoming(r̂) returns
false, then there is no relay r′ with an edge (r′, r) in the relay graph.

Proof. Consider an arbitrary legal state S and an arbitrary relay r. Assume for
contradiction that in S has-incoming(r̂) returns false and there is a relay r′ with
an edge (r′, r) in the relay graph. Since S is a legal state r′ must be valid or
dead-valid. In any case, Property 6 holds for r′. In particular, Property 6c) implies
that r.In 6= ∅. This contradicts the assumption that has-incoming(r̂) returns
false.

Lemma 6.70. For every relay r, |r.In| does not increase as long as r’s reference
is not sent in a message.

Proof. Observe in the pseudocode that in all lines other than Line 10, in which the
reference of a relay is sent in a message, whenever r.In of some relay r is modified,
either only elements are removed from it or one element is added but another is
removed beforehand. Thus, the claim follows.

Lemma 6.71. In every computation consisting of only legal states, for every relay
r for which there is a state S such that r is alive during S and after S there is
no edge (r′, r) in the relay graph for any relay r′, the following holds: if r is not
deleted when r.In 6= ∅, there is a state S′ ≥ S such that r.In = ∅.

Proof. In the following, we assume that the application is deliberate. Consider
an arbitrary computation consisting of only legal states and an arbitrary relay r
for which there is a state S such that r is alive during S and after S there is no
edge (r′, r) in the relay graph for any relay r′. Furthermore, assume that r is not
deleted when r.In 6= ∅ (otherwise, there is nothing to be shown).

Note that the reference of r cannot be sent in a message after S as in this case,
a new implicit edge (r′, r) would be formed in the relay graph for the relay r′ via
which the reference of r is sent, yielding a contradiction. Therefore, Lemma 6.70
implies that |r.ID| is monotonically decreasing after S.

Observe in the pseudocode that in all lines other than Line 10, in which a message
containing a reference of r would be sent, only elements of the form (key,RID,⊥)
are added to r.In. All other elements will vanish over time according to Lemma 6.35.
Note that this lemma assumes ls(r) 6= ×. But if r has a successor, then r.In = ∅

172

Universal Relay Primitives 6.4

must have held before r was merged and the claim follows. Otherwise, if r is
removed completely, then it must have been deleted before, for a valid relay is
never removed completely without being deleted first. In this case, r.In = ∅ held
when r was deleted by assumption and the claim follows. Thus, all that remains to
be shown is that every element of the form (key,RID,⊥) will vanish from r.In.

Note that during Timeout, RL(r) sends a Ping(r.ID, r.level, r.sinkRID, key)
message to the relay layer with RID RID for every (key,RID,⊥) ∈ r.In (see
Line 122). Every relay layer that receives this message does not have a relay r′ with
r′.out.ID = r.ID (because otherwise there would be an edge (r′, r) in the relay
graph) and thus sends an In-relay-closed({key}, RID, r.ID) message back to
RL(r) (see Line 167). Upon receipt, RL(r) removes (key,RID,⊥) from r.In (see
Line 171).
All in all, r.In is eventually empty and the claim follows.

These three lemmas allow us to prove Theorem 6.26, which we restate here:

Theorem 6.26. In every computation consisting only of legal states, the following
holds for every alive relay w: Whenever has-incoming(ŵ) returns false, then there
is no relay v with an edge (v, w) in the relay graph. Moreover, if the computation
has a suffix in which there is no relay v that has an edge (v, w) to w in the relay
graph and w is not deleted as long as has-incoming(ŵ) is true, there is a state
S such that has-incoming(ŵ) returns false in S and every subsequent state until
w is deleted.

Proof. The first part of the claim follows directly from Lemma 6.69. For the second
part, note that the fact that there is a state S as defined in the claim follows from
Lemma 6.71. The fact that has-incoming(ŵ) continues to return false until w
is deleted follows from Lemma 6.70 and the fact that a message containing w’s
reference would cause an implicit edge with endpoint w in the relay graph. This
finishes the proof.

6.4. Universal Relay Primitives

We introduce three primitives for the manipulation of edges of a relay graph and
show that they are universal: i.e., by using them it is possible to get from any
arbitrary weakly connected valid relay graph consisting of alive relays only to any
other weakly connected valid relay graph consisting of alive relays only involving
the same set of nodes. The primitives we present are an adaptation of the node
primitives by Koutsopoulos et al. [KSS17] defined in Chapter 2. Our proofs will
rely on the universality of those primitives.

For convenience, in the following for two distinct nodes u and v, we say a node
u has a relay r to another node v if v is the sink node of r and u stores r̂ in one of
its variables or there is a message in transit to u that will cause such a reference
to be created upon receipt.

173

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

u

r

s
v
q

w
p

u

r

s
v
q

s′

w
p

(a) Left: Initial situation for Relay Introduction. Right: After u has sent ŝ to v (via r).

u
r′

r

v
q

u

r′′

v
q

(b) Left: Initial situation for Relay Fusion. Right: After u has executed merge({r, r′}).

u

r

s
v
q

w
p

u
s

v
q

s′

w
p

(c) Left: Initial situation for Relay Reversal. Right: After u has sent ŝ to v (via r) and
deleted r.

Figure 6.5.: Visualization of the primitives in IFR.

The set IFR of relay primitives consists of the following primitives (examples
of which are presented in Figure 6.5):

Relay Introduction Assume a node u has a relay r to a node v and another relay
s to a node w. Then u may send ŝ to v (via r).

Relay Fusion Assume a node u has two different relays r and r′ such that the
return value of same-target(r̂, r̂′) is true. Then u may merge the two relays.

Relay Reversal Assume a node u has two different relays r and s such that
has-incoming(r̂) = false. Then u may send ŝ via r and subsequently delete
r.

We now show that these relay primitives maintain weak connectivity (Sec-
tion 6.4.1), that they are sufficient to transform arbitrary graphs consisting of the
same nodes into each other (Section 6.4.2) and that with their help it is possible
to transform protocols for the standard interconnection model into protocols for
the relay model (Section 6.4.3).

6.4.1. Maintenance of Weak Connectivity with IFR

The first result concerning the relay primitives in IFR we just introduced is that,
similar to the original primitives for nodes, they preserve weak connectivity of the
valid relay graph. This is formalized by the following theorem:

174

Universal Relay Primitives 6.4

Theorem 6.72. IFR preserves weak connectivity: i.e., if any of the primitives is
applied to a weakly connected valid relay graph G consisting of alive relays only,
then the resulting graph G′ is also weakly connected.

Proof. First, note that Relay Introduction does not delete any relay, thus its
application cannot harm the connectivity of the relay graph. Second, observe that
Relay Fusion only merges redundant relays. Last, Relay Reversal preserves weak
connectivity because although u deletes a connection to the sink node v of r, the
message sent causes an edge from a relay owned by v to s (and thus there is an
undirected path from u to v), see Figure 6.5(c)).

6.4.2. Universality of IFR
We now want to prove that the three relay primitives in IFR are universal,
meaning that arbitrary relay graphs can be transformed into arbitrary other relay
graphs (as long as all relays are alive initially and in the end). This is, more
precisely, stated by the following theorem:

Theorem 6.73. The primitives in IFR are universal in a sense that one can get
from any weakly connected valid relay graph G = (V,E) consisting of alive relays
only to any other weakly connected valid relay graph G′ = (V,E′) consisting of
alive relays only, where w.l.o.g. E and E′ consist solely of explicit edges.

The proof of Theorem 6.73 will use the universality of the (node) primitives
Introduction, Delegation, Fusion, and Reversal (see Chapter 2). The idea is to
emulate these primitives by the above relay primitives in order to reduce the
universality of the relay primitives to the universality of the node primitives.
Before we start with the proofs, we introduce a set of necessary definitions:

Definition 6.74 (Simple Relay Graph). A simple relay graph is a valid relay
graph G = (P ∪R,E) such that all edges in E are explicit and all relays in R are
direct relays and alive and that every sink relay in R has exactly one incoming
connection.

Definition 6.75 (Corresponding Process Graph). For a simple relay graph G,
we define the corresponding node graph as the multigraph Λ(G) = (P,E′) whose
vertices are the nodes only and whose edge set contains an edge (u, v) with u, v ∈ P
for every edge (u′, v′) in G such that u′, v′ ∈ R and u′ is owned by u and v′ is
owned by v.

Note that there is a one-to-one relationship between a simple relay graph and
its corresponding node graph: i.e., given a node graph GP , there is a (except for
isomorphism) unique relay graph GR with Λ(GR) = GP .

Definition 6.76 (Emulation of node primitives). A set of relay primitives RP
emulates a node primitive p if for every simple relay graph GR and every possible
application of p to Λ(GR), for each resulting node graph G′P there is a simple relay

175

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

graph G′R with Λ(G′R) = G′P that can be obtained from GR by applying primitives
from RP only.

Now that we have this definition, we can state the following lemma about the
possibility to emulate the four node primitives by the relay primitives in IFR.

Lemma 6.77. IFR emulates each of the node primitives Introduction, Delegation,
Fusion, and Reversal.

Proof. The proof strategy is the same for every of the four primitives: Let GR be
an arbitrary simple relay graph. Further, let GP = Λ(GR). We will then consider
an arbitrary application of the particular primitive to GP and denote the resulting
graph by G′P . After that, we show that by applying primitives from IFR to GR,
it is possible to obtain a graph G′R with Λ(G′R) = G′P . Thus, in the following we
will use these variable names.

We start with the Introduction primitive. Applying the Introduction primitive
means that for some node u with references of two other nodes v and w in GP , u
sends a message to v containing a reference of w and keeps the reference. Thus, in
the resulting graph G′P , there is an additional edge (v, w). In GR, let u send its
relay to v to w, which resembles a Relay Introduction. Subsequently, let w create
a new relay, send this via the received relay and then close the received relay. This
then resembles a Relay Reversal. In the resulting relay graph G′R, all that has
changed in comparison to GR is that v now has an additional direct relay to w.
Thus, in Λ(G′R) all that has changed in comparison to Λ(GR) is that there is an
additional edge (v, w), thus this graph is isomorphic to G′P .

Next, we deal with the Delegation primitive. Applying the Delegation primitive
means that for some node u with references to two nodes v and w in GP such
that u, v and w are all different, u sends a message to v containing a reference a
reference of w and deletes the reference of w. Thus, the resulting graph G′P differs
from GP in that there is an additional edge (v, w) and the edge (u,w) is removed.
In GR, let u send its relay to v to w and delete the relay to w. This resembles a
Relay Reversal. After that, let w create a new relay, send this via the received
relay, and close the received relay. Then this resembles a Relay Reversal, again. In
the resulting relay graph G′R, all that has changed in comparison to GR is that v
now has an additional direct relay to w and that u no longer has its relay to w.
Thus Λ(G′R) = G′P , again.

For the Fusion primitive, it is obvious that Relay Fusion emulates the node
primitive Fusion.

Last, applying the Reversal primitive means that some node u that has a reference
of some other node v sends a reference of itself to v and deletes its reference of
v. In the relay graph, u would create a new relay, send it via the relay to v and
subsequently delete its relay to v, which resembles a Relay Reversal. This finishes
the proof.

Applying Lemma 6.77 we can finally prove Theorem 6.73, which we recap as
follows:

176

Universal Relay Primitives 6.4

Theorem 6.73. The primitives in IFR are universal in a sense that one can get
from any weakly connected valid relay graph G = (V,E) consisting of alive relays
only to any other weakly connected valid relay graph G′ = (V,E′) consisting of
alive relays only, where w.l.o.g. E and E′ consist solely of explicit edges.

Proof. The idea of the proof is the following: Consider an arbitrary relay graph
G = (R ∪ P,E) consisting of alive relays only and assume that G is weakly
connected. First, we show how to transform G into a simple relay graph G1 over
the same nodes that is weakly connected as well. The universality of the node
primitives from [KSS17] and Lemma 6.77 imply that it is possible to transform
this graph into another simple relay graph G2 with Λ(G2) = (P,E2) by using the
primitives in IFR, which is defined such that (w, v) ∈ E2 if and only if in G′ there
is an edge (r, s) such that r is stored by v and s is stored by w. Last, we show
how to transform G2 into a graph isomorphic to G′, which finishes the proof. An
example of the graphs used here is shown in Figure 6.6.
To transform G into G1, we proceed as follows. As long as there is still an

indirect relay r stored by any node v with has-incoming(r̂) = false, v applies Relay
Reversal as follows: v creates a new relay r′, sends this relay via r and subsequently
closes r. This strictly decreases the number of indirect relays in every iteration.
Note that as soon as there is no indirect relay r with has-incoming(r̂) = false
anymore, there cannot be any indirect relay at all (recall that there cannot be any
cycles in the sequences of relay connections). Note that by Theorem 6.72, since
we applied Relay Reversal only, the resulting graph G1 is still weakly connected.
Furthermore, G1 is a simple relay graph. Thus, as described above, it is possible
to transform this graph into a graph G2 as described above.
To transform G2 into G′, consider an arbitrary sink relay s in G′ and let T be

the subgraph of G′ that contains all relays r with sink relay s. Note that T is a tree.
Thus, for an arbitrary relay r in T , define childrenT (r) as the set of relays q with
an edge (q, r) in T . Similarly, for an arbitrary relay r 6= s in T , define parentT (r)
as the relay q for which there is an edge (r, q) in T . Denote by LT (i) the set of
relays at level i of T . An example of these notions can be seen in Figure 6.7. By
the definition of G2, every node storing a relay r of T (in G′) stores (in G2) a direct
relay to each node storing a relay r′ ∈ childrenT (r) (in G′). First of all, the node
storing s (the root of T) in G′ creates a new relay s′ (which in the end will be the
equivalent of s). Then, it sends s′ to each node storing a relay r ∈ childrenT (s′)
(in G′) and closes each of the relays to a node storing a relay r ∈ childrenT (s′) (in
G′), i.e., the relays via which the relay was sent, thus performing a Relay Reversal.
This way, every node storing a relay r in LT (1) (in G′) receives a relay r′ whose
endpoint is equivalent to parentT (r′). Then, for every ascending level i ≥ 1, every
node storing a relay r in LT (i) sends the relay it received via a relay of T to each of
the nodes storing relays in childrenT (r) and closes the relays via which it sent this
relay, thus performing a Relay Reversal, too. Similarly, every node storing a relay
in LT (i+ 1) receives a relay r whose endpoint is equivalent to parentT (r′). In the
end, we obtain the desired tree T . Since s and thus also T was chosen arbitrarily

177

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

(a) Initial graph G. (b) Intermediate graph G1.

(c) Graph CGP (G1). (d) Graph CPG(G2).

(e) Intermediate graph G2. (f) Final graph G′.

Figure 6.6.: Graphs used in the proof of Theorem 6.73. G is supposed to be
transformed into G′.

r1

r2
s

r3

r4

Figure 6.7.: Example of some notions introduced in the proof of Theorem 6.73.
The depicted relay tree T is rooted at s, children(s) = {r1, r2},
parent(r2) = s and LT (2) = {r3, r4}.

178

Solving the FDP with Relays 6.5

and since there is no edge in G2 that is not removed in the transformation, this
finishes the proof.

6.4.3. Using IFR to Adapt Classical Protocols to the Relay Model
One of the benefits of the relay model is that a wide range of protocols designed
for the standard interconnection model (e.g., [Gal+14; Jac+14; Jac+12; ORS07;
SR05]) can be adapted to the relay model. In [SSS16] it was shown that a wide
range of protocols for static strongly-connected topologies that preserve weak
connectivity can be transformed such that the interaction between nodes can be
decomposed into the primitives Introduction, Delegation, and Fusion (Theorem 1
of that work). Lemma 6.77 of this chapter yields that these primitives can be
emulated by the relay primitives in IFR such that the resulting graph consists of
direct relays only. Putting this together, the aforementioned class of protocols can
be adapted to the relay model.

6.5. Solving the FDP with Relays
We now describe a general framework to solve the finite departure problem in
the relay model. With general we mean that our framework can be applied to a
wide range of protocols that self-stabilize to a topology. First, we formalize some
prerequisites in Section 6.5.1. After that, we describe in Section 6.5.2 the general
idea of our framework. A more detailed description and the pseudocode of our
protocol are then given in Section 6.5.3. Last, in Section 6.5.4 we prove that the
protocol solves the finite departure problem and eventually does not affect the
execution of the original protocol.

6.5.1. Prerequisites
To build the desired framework, we formalize the operations and treatments of
variables of protocols that stabilize a topology in the relay model. We assume
that the protocol that is being transformed, also called the original protocol in the
following, satisfies the following three assumptions:
Single-sink assumption Every node u owns exactly one relay that eventually is

the only sink relay owned by u and the only relay owned by u with incoming
connections, and this relay is denoted by u.in.

Self-introduction assumption Every node u during every execution of Timeout
sends u.in via every direct relay stored by u.

Direct relay assumption The target topology does not contain indirect relays, and
indirect relays are reversed whenever they exist (i.e., during Timeout if
their reference is stored in the variable of a node or before the end of an
action if they are created due to a message calling that action). Furthermore,
references of indirect relays are never sent.

179

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

We argue that these assumptions are natural for protocols for self-stabilizing
topologies and can easily be fulfilled by existing protocols adapted from the
common interconnection model (see Section 6.4.3). The single-sink assumption is
not a restriction. Regarding the self-introduction assumption, note that in general
self-introduction is necessary for convergence, as otherwise nodes with no incoming
connections would not be integrated into the network. As to the direct relay
assumption, note that for every relay r created due to the receipt of a message,
has-incoming(r̂) = false by definition. Thus, directly deleting r is always possible.
Furthermore, any protocol that would store or send the reference of an indirect
relay could be transformed such that it first replaces the indirect relay r by a direct
relay r to the same sink node whose reference it can then send. Thus, the third
assumption does not represent a limitation either.
Our framework will introduce new actions that, without loss of generality, we

assume to be distinct from the existing actions of the original protocol P (the latter
we refer to as the protocol actions). An exception to this is the Timeout action
of our protocol, which may contain the Timeout action of P as a subroutine.
Furthermore, for each protocol action A we define a Replace_A() action that is
run instead of A and may include a call of A (denoted by A()) or not (in the latter
case, the original action A is never executed). We refer to those parameters of A
that are relay references by r1, . . . , rk (and assume that all additional parameters
will be implicitly attached to the call of A where that occurs). Since nodes do
not have a direct access to the relays, but only deal with references of relays, we
will omit the distinction between relays and their references in the following. We
also introduce the following notion: When in the following we say that a node
u performs a reversal on a relay r owned by u, this means u sends u.in via r
contained in a message of an arbitrary type specified by the original protocol
(if there is no message with only one parameter, the additional parameters may
be filled arbitrarily except for with relays other than r) and deletes r right after
that. This resembles the relay reversal primitive and is needed to have a general
procedure to get rid of indirect relays.

6.5.2. Intuitive Approach Description

In this subsection we describe the major ideas and ingredients of our protocol.
First of all, in order to get rid of indirect relays, every node periodically applies a

relay reversal on every indirect relay that has no incoming connection. Because of
the direct relay assumption (which implies that the protocol will not permanently
keep indirect relays), this procedure eventually causes all indirect relays to be gone.
Second, each leaving node u will determine a staying node, called u’s anchor,

which, once found, u keeps an outgoing connection to until it leaves the system.
This anchor will be used for the reversal of relays that u wants to get rid of.

Third, each leaving node will attempt to get rid of all other non-sink relays (i.e.,
all but the one to the anchor). This can be achieved easily via a relay reversal. As
soon as the non-sink relay r in question does not have any incoming connections

180

Solving the FDP with Relays 6.5

anymore (which will be the case at some point according to the first part), the
leaving node sends the reference of its relay to the anchor via r and subsequently
deletes the respective non-sink relay.
Fourth, each leaving node will try to get rid of all incoming connections. Note

that, according to the above, eventually no leaving node will have incoming
connections from a leaving node. Staying nodes with a connection to a leaving
node u, however, periodically introduce themselves to u according to the self-
introduction assumption. Such a node u can use this to ask the respective staying
nodes to reverse their connections to u. Of course, this requires u to send out
references of its sink relays for this purpose, but we ensure that the corresponding
actions called at the receiving nodes cause these relays (and the ones to be closed if
they still exist) to be closed immediately. Aside from this exception, every leaving
node does not accept new connections to it.

All in all, leaving nodes will eventually have no relays with incoming connections
and only a single relay with an outgoing connection (to the anchor) and will thus
be able to safely leave the system.

6.5.3. Detailed Description and Pseudocode
In this section, we give a brief summary of the purpose of the variables and actions
used in our protocol. The full pseudocode is then presented in Listing 6.10 (for
staying nodes) and Listing 6.11 (for leaving nodes).
Each node u maintains the following variables:

u.in Reference to the unique sink relay of u.

u.N Pseudo-variable that serves as a union of all variables of u that store relays in
the original protocol (except for u.in). In our protocol, the only write access
to this set will be to remove elements from it (meaning that the original
protocol variable is set to an undefined value, ⊥).

u.D Set of relays that u wants to get rid of. Relays are added to this set if
they still have incoming connections when they are supposed to be reversed.
u regularly checks whether there is a relay in u.D that has no incoming
connection anymore and, if so, performs a relay reversal on that relay.

u.a-out Non-sink relay to the anchor of u (purposefully, only leaving nodes have
a value 6= ⊥ for this variable).

u.a-in Sink relay used to check whether the anchor is leaving or not (purposefully,
only leaving nodes have a value 6= ⊥ for this variable). As we will explain
later, u.In cannot be used for this purpose.

Of course, there may be additional variables from the original protocol, which we
do not consider here. Furthermore, we assume all of the above variable names
(except for u.in) to be distinct from the original protocol variable names (which
can easily be achieved by renaming).

181

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

We continue by explaining the purpose of the various actions for staying and
leaving nodes (and, correspondingly, the message types used for our framework).
The full pseudocode of the protocol is then provided in Listing 6.10 (for staying
nodes) and Listing 6.11 (for leaving nodes). The actions (and message types) and
their purposes are:

Timeout At the beginning of Timeout, a set of invariants for the variables
is established (displayed in the comments in Lines 3–16 and Lines 44–60).
The protocol will maintain these invariants: i.e., these lines only have an
effect during the first run of Timeout. After that, to get rid of these relays
the executing node performs a reversal on every relay stored in D that
has no incoming connection (Lines 18–20 and Lines 62–65). Note that for
leaving nodes this is done by sending an Ask-to-reverse() message with
parameter in. After that, leaving nodes will perform stop if the necessary
conditions are fulfilled (see Lines 66–67). If this is not the case and if they
have an anchor, they send one or two messages (depending on the value of
has-incoming(a-in)) to the anchor, whose purpose is described below.

Replace_A() Staying nodes simply normally execute action A. Leaving nodes
do not participate in the original protocol (as they are leaving anyway) and
thus instead perform a reversal on all parameters of this action by sending
an Ask-to-reverse(in) message (in order to get rid of these references
without harming weak connectivity).

Ask-to-reverse(out) An Ask-to-reverse() message is only sent by leaving
nodes. It indicates to the receiving node u that it should not store any
relay with a connection to relay out. Upon receipt, u removes all references
of relays to which this applies from N or from a-out (they remain stored in D
to keep weak connectivity, but this is only temporary because, as mentioned
before, the protocol eventually gets rid of the elements in D). A staying
node will reverse out with a Reverse(in) message to out. The behavior
of a leaving node depends on whether it has an anchor (i.e., on whether
a-out 6= ⊥). If so, it will try to help the sink node of out to find an anchor by
sending a-out to out in a Reverse() message. Otherwise, it will just send
an Ask-to-reverse(in) message to out, thereby telling the sink relay of
out that it is leaving. This may cause a message cycle which is, however,
interrupted as soon as one of the two nodes gets an anchor.

Ask-to-reverse-anchor(out) Simply put, a leaving node u sends an Ask-to-
reverse-anchor(u.in) message to ask its anchor whether it is leaving or
staying. The answer is given by the response: Staying nodes respond with a
Reverse() message to indicate that the anchor is staying and leaving nodes
respond with an Ask-to-reverse() message to indicate that the anchor
should be removed.

182

Solving the FDP with Relays 6.5

Notify-anchor() The Notify-anchor() action is necessary to handle a special
case that may arise from initial states. It has no effect on staying nodes.
Leaving nodes regularly send this message to their anchor during Timeout.
We will explain the full purpose of this action below.

Reverse(out) In general, this message type is used to introduce a staying node
to a leaving node such that the latter can obtain an anchor. To fulfill this
purpose, the protocol sends this message only with a parameter whose sink
is staying (see Line 30 and Line 34) or believed to be staying (as it is the
anchor of the sending node, see Line 89).

The reason why during Timeout a leaving node u sends an Ask-to-reverse-
anchor(a-in) message to their anchor only if u.a-in has no incoming connections is
as follows: If u did not check that has-incoming(u.a-in) is false, u could continuously
increase the number of messages containing a relay to u.a-in, which could prohibit
u from leaving (even if all other conditions were fulfilled). This is also why the
variable u.a-in is necessary and not simply u.in may be used. There may be other
connections to in that would only vanish after u has found an anchor that is
staying. Thus has-incoming(u.in) = false may never be reached before u has a
staying anchor. On the other hand, Ask-to-reverse-anchor() is exactly sent
to determine whether the supposed anchor is leaving. Without this message being
sent, u might continue to store a leaving node in u.a-out.

We also left open why every leaving node u sends a Notify-anchor() message
to its anchor during Timeout if u has one: i.e., to the sink node v of a-out if
a-out 6= ⊥ (c.f. Line 71). This is necessary because of the following special case:
Due to the initial system state, it could be that v is leaving and the sink of
u.a-out is v.a-in. Even worse, v.a-out may have sink u.a-in, in which case it could
happen that none of the has-incoming(u.a-in) and has-incoming(v.a-in) would ever
become false (recall that the Ask-to-reverse-anchor() message is only sent
if has-incoming(a-in) = false). Thus, the Notify-anchor() message sent by u
informs v of this situation such that it can renew its a-in variable (c.f. Lines 97–99).

To simplify the pseudocode, we assume that the cleanup procedure of Timeout
(the lines that deal with initial states) is executed before the execution of each
action. Furthermore, we assume that every message for which a relay parameter
out is specified in the pseudocode is ignored if out is not a relay parameter.

Listing 6.10: Pseudocode for staying nodes
1 Timeout
2 // Lines 3-16 deal with initial states
3 for all r ∈ getRelays such that r /∈ N ∪D ∪ {in, a-out, a-in} do
4 | D := D ∪ {r}
5 if not is-sink(in) then // make sure in is a sink relay
6 | D := D ∪ {in}
7 | in := new Relay
8 for all r ∈ N such that direct(r) = false // make sure all relays in N are direct
9 | N := N \ {r}

183

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

10 | D := D ∪ {r}
11 if a-in 6= ⊥ then // make sure a-in is undefined
12 | D := D ∪ {a-in}
13 | a-in := ⊥
14 if a-out 6= ⊥ then // make sure a-out is undefined
15 | D := D ∪ {a-out}
16 | a-out := ⊥
17
18 for all r ∈ D such that incoming(r) = 0 do
19 | D := D \ {r}
20 | # perform a reversal on r (thereby deleting r)
21 # perform Timeout of the original protocol
22
23 Replace_A(r1, . . . , rk)
24 A(r1, . . . , rk) // execute action normally
25
26 Ask-to-reverse(out)
27 for all v ∈ N such that same-target(out, v) do
28 | N := N \ {v}
29 | D := D ∪ {v}
30 Send(out, Reverse(in))
31 delete out
32
33 Ask-to-reverse-anchor(out)
34 Send(out, Reverse(in))
35 delete out
36
37 Notify-anchor()
38 // do nothing
39
40 Reverse(out)
41 # perform a reversal on out (thereby deleting out)

Listing 6.11: Pseudocode for leaving nodes
42 Timeout
43 // Lines 44-60 deal with initial states
44 for all r ∈ getRelays such that r /∈ N ∪D ∪ {in, a-out, a-in} do
45 | D := D ∪ {r}
46 if not is-sink(in) then // make sure in is a sink relay
47 | D := D ∪ {in}
48 | in := New Relay()
49 for all r ∈ N do // make sure N is empty
50 | N := N \ {r}
51 | D := D ∪ {r}
52 if not is-sink(a-in) then // make sure a-in is a sink relay
53 | D := D ∪ {a-in}
54 | a-in := new Relay
55 if a-in = ⊥ then // make sure a-in exists
56 | a-in = New Relay
57 if a-out 6= ⊥ then // make sure direct(a-out) and has-incoming(a-out) = false if exists
58 | if has-incoming(a-out) > true or direct(a-out) = false or is-sink(a-out) = true then
59 | | D := D ∪ {a-out}
60 | | a-out := ⊥

184

Solving the FDP with Relays 6.5

61
62 for all r ∈ D such that incoming(r) = 0 do
63 | Send(r, Ask-to-reverse(in))
64 | D := D \ {r}
65 | delete r
66 if D = ∅ and has-incoming(in) = false and has-incoming(a-in) = false then
67 | | stop // since the only connection is to a-out, it is safe to leave
68 if a-out 6= ⊥ then
69 | if has-incoming(a-in) = false then
70 | | Send(a-out, Ask-to-reverse-anchor(a-in))
71 | Send(a-out, Notify-anchor())
72
73 Replace_A(r1, . . . , rk)
74 for all i ∈ {1, . . . , k} do
75 | let r be the relay via which the message calling this action was received
76 | Send(ri, Ask-to-reverse(r))
77 | delete ri

78
79 Ask-to-reverse(out)
80 if a-out = ⊥ then // ask out for its anchor
81 | Send(out, Ask-to-reverse(in))
82 | delete out
83 else
84 | if same-target(out, a-out) then // anchor wants to leave
85 | | r′ := {merge{out, a-out}}
86 | | a-out := ⊥
87 | | Send(r′, Ask-to-reverse(in))
88 | else // let out know the anchor
89 | | Send(out, Reverse(a-out))
90 | | delete out
91
92 Ask-to-reverse-anchor(out)
93 let r be the relay via which the message calling this action was received
94 Send(out, Ask-to-reverse(r))
95 delete out
96
97 Notify-anchor()
98 D := D ∪ {a-in}
99 a-in := new Relay

100
101 Reverse(out)
102 if a-out = ⊥ then
103 | if direct(out) then // add out directly
104 | | a-out := out
105 | else // ask out to send a direct relay
106 | | Send(out, Ask-to-reverse(in))
107 | | delete out
108 else
109 | if same-target(out, a-out) then
110 | | a-out := merge{out, a-out}
111 | else // reverse out with the help of the anchor
112 | | Send(out, Ask-to-reverse(a-out))
113 | | delete out

185

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

6.5.4. Analysis

To show that our protocol represents a self-stabilizing solution to the FDP, we
have to prove that the protocol never disconnects the set of active nodes, that
all leaving nodes eventually become inactive and that all staying nodes remain
active. In addition, we show that our transformation approach does not affect the
behavior of the original protocol as soon as all leaving nodes are inactive. These
goals are formalized by the following three theorems:

Theorem 6.78. Let Ga(S) be the relay graph induced by the set of active nodes
and the relays owned by these nodes in state S. If in every computation C of the
original protocol that starts from a weakly-connected graph of active nodes, Ga(S)
remains weakly connected in every state S ∈ C, then the same holds for every
computation of the transformed protocol.

Theorem 6.79. In every computation of the transformed protocol in which there
is at least one staying node, every leaving node will eventually be inactive and every
staying node will always remain active.

Theorem 6.80. In every computation C of the transformed protocol, there is
a state S such that every leaving node is inactive, every staying node is active
and there is a computation C ′ of the original protocol starting from S such that
C ′ = SUFFIXC(S).

The rest of this section consists in proving the correctness of these three theorems.

Proof of Theorem 6.78 - Connectivity

We first prove that the connectivity of the active nodes is not harmed by our
framework, which is stated by Theorem 6.78. This theorem is restated in the
following:

Theorem 6.78. Let Ga(S) be the relay graph induced by the set of active nodes
and the relays owned by these nodes in state S. If in every computation C of the
original protocol that starts from a weakly-connected graph of active nodes, Ga(S)
remains weakly connected in every state S ∈ C, then the same holds for every
computation of the transformed protocol.

Proof. The main idea of the proof of this theorem is that a node executes stop only
if it has at most one outgoing relay connection and no incoming relay connection.
This way, the becoming inactive of a node does not harm the connectivity of the
remaining graph. In addition, we show that the delete command is used only
during the application of one of the relay primitives from IFR, which preserve
weak connectivity (see Section 6.4). Therefore, an execution of this command
cannot disconnect the graph of active nodes either.

186

Solving the FDP with Relays 6.5

Note that the only occasion at which an active node u stops is during Timeout
in Line 67 and that this line is only executed if u is leaving. In this case, Lines 44–45
have been executed before, yielding that all relays are stored in one of the variables
of u. Furthermore, Lines 49–51 have been executed, yielding N = ∅. Moreover,
Lines 46–48 and Lines 52–54 have been executed, which ensures that in and a-in
are sink relays. Additionally, due to the conditions of Line 66, u has no relay with
an incoming connection (otherwise the has-incoming commands would not return
false). Altogether, u is connected with at most one node (via u.a-out), thus the
stopping of u will not disconnect the node graph.

Observe in the pseudocode that whenever a node u deletes a relay r, then either
r is a sink relay or, prior to deleting r, u sends a message via r that contains
as one parameter the reference of a relay r′ stored by u (i.e., u applies the relay
reversal primitive). This way, there is still a (not necessarily directed) path in the
relay graph from u to the sink node of r. Thus, as long as none of the actions of
the original protocol disconnect the graph, the same holds for the transformed
protocol.

Proof of Theorem 6.79 - Finite Departure

The proof of Theorem 6.79, which basically states that the transformed protocol
will allow every leaving node to become inactive, is the most elaborate. It consists
of a series of lemmas. Thus, we first describe the idea of the proof on a high level.
For this description, and for the analysis of the theorem, we introduce the notion
of a simplified relay graph:

Definition 6.81 (Simplified Relay Graph). A simplified relay graph G = (V, S(E))
of a relay graph G = (V,E) contains the same set of nodes and the following set of
edges:

1. for every explicit edge (u, v) ∈ E there is an explicit edge in S(E),

2. for every implicit edge (w, v) ∈ E that is due to a reference of a relay owned
by a node v contained in a message in the buffer of some relay r, there is an
implicit edge (u, v) ∈ S(E), where u is the sink node of r.

Simply put, in a simplified relay graph the intermediate hops of a message are
ignored and each implicit edge is outgoing from the node that will receive the
message containing a relay parameter. In legal computation suffixes, these nodes
will eventually receive the reference anyway, which is why this definition is helpful.

We now continue with the description of the proof idea: For every computation
C we find a sequence of states such that ever more desired properties (which
are specified in the following) are fulfilled. We define a leaving node u to be an
anchored node if a-out is a direct relay whose sink node is staying. The sink node
of u.a-out is u’s anchor. Note that initially there may not be any anchored node at
all. Furthermore, we say a leaving node u is a towed node if u is not anchored but u
has a staying neighbor in the simplified relay graph. Moreover, we define a leaving

187

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

node u to be a semi-towed node if u is neither anchored nor towed but u has an
anchored neighbor. Note that by the assumption that there is at least one staying
node and by Theorem 6.78, there is always at least one towed or semi-towed node
as long as there is a non-anchored leaving node. The proof strategy is to show
that every towed node will eventually become an anchored node and that every
semi-towed node will eventually become a towed node. Inductively, this yields that
all active leaving nodes will be anchored at some point in time. From then on, we
show that leaving nodes will get rid of both their sink and their non-sink relays
(except for the ones stored in in and in a-out) and all incoming connections until
they finally only have a non-sink relay to their anchor, in which case they will
execute stop. A more specific explanation of the proof structure is given by the
lemmas below.

In the following, we will consider an arbitrary but fixed computation and define a
series of states according to this computation. Let S0 be an arbitrary state in which
the relay layer is in a legal state. Recall that according to Lemma Theorem 6.22
this will be the case throughout SUFFIX(S0). Furthermore, let S1 ≥ S0 be a
state such that all messages in relay buffers during S0 have been received by the
sink node and each node has executed the Timeout action at least once after S0.
Throughout the rest of this section, we will say a message m in the buffer of some
relay r is received as soon as it is delivered to the sink node of r.

The following is easy to show:

Lemma 6.82. In SUFFIX(S1), the following invariants hold:

1. for every node u, every relay owned by u is alive and stored in either u.N ,
u.D, u.in, u.a-out, or u.a-in,

2. for every node u, u.in is a sink relay,

3. for every node u and every r ∈ u.N , r is direct,

4. for every staying node u, u.a-in = ⊥, u.a-out = ⊥,

5. for every leaving node u, u.a-in 6= ⊥, and

6. for every leaving node u, has-incoming(u.a-out) = false, direct(u.a-out),
u.N = ∅, u.a-in is a sink relay and if u.a-out 6= ⊥ then u.a-out is a non-sink
relay.

The proof directly follows from the pseudocode at the beginning of the Timeout
action (Lines 3–16 and Lines 44–60), the direct relay assumption, the fact that
none of the other lines ever violates any of these invariants, and the fact that the
protocol deletes a relay only if has-incoming yields false on this relay (which is
implicitly the case when the relay was received in a message). Check that all lines
marked as dealing with initial states are not executed in SUFFIX(S1). Thus, in
the following we will ignore these lines. For convenience, for a relay r we define
sn(r) as the sink node of r.

188

Solving the FDP with Relays 6.5

Lemma 6.83. In SUFFIX(S1), whenever a node u sets u.a-out to a new value
different from ⊥, sn(u.a-out) is staying.

Proof. Note that a-out is only set to a new value other than ⊥ in Line 104 and in
Line 110 upon receipt of a Reverse(out) message with direct(out) = true (recall
that in the second case, direct(a-out) = true according to Lemma 6.82 and the
semantics of same-target) and only such that afterwards sn(u.a-out) = sn(out).
The only occasions at which Reverse(out) is sent such that out is a direct relay in
the receiving node are in Line 30 and Line 34, which are only executed by staying
nodes (note that although a Reverse() message is also sent in Line 89, since a-out
is not a sink relay according to Lemma 6.82 the resulting relay is an indirect relay).
Thus, by the definition of S1, for every Reverse(out) message in SUFFIX(S1)
such that direct(out) = true, sn(out) is staying and the lemma follows.

Lemma 6.84. There is a state S2 ≥ S1 such that in SUFFIX(S2) no node u
has a relay r ∈ u.N such that sn(r) is leaving.

Proof. First, assume that there is a node u that adds a relay rv such that sn(rv)
is leaving to u.N in SUFFIX(S1). By the direct relay assumption and the
pseudocode (note that none of the additional actions we provide adds a relay to the
set N), this requires that a message of the original protocol containing rv and sent
by sn(rv) during the execution of an action of the original protocol was received
by u. However, the Replace_A() function would have prohibited the execution
of such an action if sn(rv) is leaving (see Lines 73–77). Thus, in SUFFIX(S1),
no node u adds a relay r to u.N such that sn(r) is leaving.
Second, we show that every relay r ∈ u.N for some node u such that sn(r) is

leaving will be removed from u.N in finite time. Consider a node u such that
r ∈ u.N for some relay r whose sink node v is leaving. According to Lemma 6.82,
u must be staying (leaving nodes do not store anything in N) and r is direct. By
the self-introduction assumption, u will send a message containing a reference to
u.in to v. Upon receipt, v will send an Ask-to-reverse(rv) message such that
rv is the endpoint of r to u (Line 76). Due to Lines 27–29, u will remove all relays
to rv from N (including r).
Both parts of this proof together yield that there will be a state S2 ≥ S1 such

that no node u stores a relay to a leaving node in u.N and no node will ever do so
in SUFFIX(S2).

Lemma 6.85. If a node u stores a non-sink relay r in u.D in some state S, then
there will be a state S′ ≥ S such that r has been deleted.

Proof. Assume there is a non-sink relay r stored by node u in u.D in some state S.
Let Source(r) be the set that contains all relays r′ such that has-incoming(r′) =
false and such that there is a directed path via relays to r in the relay graph
(intuitively, Source(r) contains the leaves of the relay subtree rooted at r). To
simplify the description, we let Source(r) also contain all relays r′ fulfilling the
above conditions that will be created upon receipt of a message because of a relay

189

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

reference contained in that message. We define the following potential function Φr:
Φr :=

∑
r′∈Source(r)(r′.level = r.level). We will show that Φr never increases and,

as long as Φr > 0, it will always decrease in finite time.
First of all, note that every relay in Source(r) is an indirect relay. Thus, no node

v stores a relay from Source(r) in v.N according to Lemma 6.82. Furthermore, for
the same reason, no relay from Source(r) is stored in v.N for any node v. One can
check in the pseudocode that in the actions added by the transformation only the
references of direct or sink relays are sent in a message. Since the actions of the
original protocol only access the relays in v.N , we obtain that Φr never increases.
To show that Φr will decrease in finite time as long as Φr > 0, consider an

arbitrary node v that owns a relay r′ ∈ Source(r) or that will receive a message
upon whose receipt r′ ∈ Source(r) will be created. We now show that v will
delete r′. If r′ is the parameter of a message received by v, r′ will be deleted upon
receipt of this message due to the direct relay assumption and the pseudocode.
Otherwise, r′ must be stored in v.D because of Lemma 6.82 and the fact that
direct(r′) = false. Then, during Timeout, v will delete r′ either in Line 20 or
Line 65 (depending on whether v is staying or leaving). Thus, r′ will be completely
deleted and Φr will decrease in finite time (note that even if an additional relay
r′′ belongs to Source(r) after the deletion because has-incoming(r′′) has become
false, the level of r′′ must be smaller than the level of r′).

Thus, Φr will eventually be zero, and u will delete r during Timeout in Line 20
or Line 65 (depending on whether u is staying or leaving).

Lemma 6.86. There is a state S3 ≥ S2 such that in SUFFIX(S3) for every
leaving node u no node will store a relay whose sink is u.a-in (in any of its
variables), and there is no active node v such that v.a-out 6= ⊥ and the sink node
of v.a-out is leaving.

Proof. Consider an arbitrary leaving node u and define the potential Φu as the
number of variables (over all nodes) that store a relay whose sink is u.a-in. We
first show that Φu is monotonically decreasing and then prove that it decreases in
finite time as long as Φu > 0.
Note that in SUFFIX(S2) no node v adds a relay whose sink node is leaving

to v.D: Whenever in the pseudocode a relay r is added to v.D in SUFFIX(S2)
(in which the lines to deal with the initial states are not executed), it has been in
v.N before or it was v.a-in before. In the former case, the sink of r cannot have
been leaving according to Lemma 6.84; in the latter case, the relay is a sink relay
according to Lemma 6.82. Thus, Lemma 6.85 implies that eventually no node v
will store a relay to u.a-in in v.D for any leaving node u. Therefore, eventually
the only relay to u.a-in that is stored in a variable of a node v must be stored in
v.a-out (and v must thus be a leaving node). Note that any node v only adds a
relay r to v.a-out if it receives a Reverse(r) message such that direct(r) = true
(see Line 104). Such a message can have been sent by the owner of r only. However,
a Reverse() message is sent by a leaving node only in Line 89, with a parameter

190

Solving the FDP with Relays 6.5

that is a reference to a non-sink relay according to Lemma 6.82. Thus and since
corrupted messages originally in the system have been received in S1 already, Φu

is monotonically decreasing.
Recall that we have shown that every node v storing a relay with sink u.a-in

stores this relay in v.a-out. During Timeout, v will send a Notify-anchor()
message to u (see Line 71), causing u to renew u.a-in (Line 99) after which Φu = 0
trivially holds. Since Φu is monotonically decreasing, there cannot be any node
that stores a variable with a relay whose sink is u.a-in after that point in time.
Since u was chosen arbitrarily, there is a state S′2 ≥ S2 such that in SUFFIX(S′2)
for every leaving node u no node will store a relay whose sink is u.a-in.
Note that in the above we only showed that there will be no explicit edge

with u.a-in as an endpoint in the relay graph in SUFFIX(S′2). As a next
step, we will prove that for every active leaving node v that never gets inac-
tive, has-incoming(v.a-in) = false in an infinite number of states. This will be
used to prove the second part of the lemma. In the following, we say a relay r is un-
desired if and only if r’s sink is u.a-in for any node u. A message is undesired if and
only if it contains a parameter of an undesired relay. Note that due to Lemma 6.84,
there is a state S′′2 ≥ S′2 such that no leaving node will receive a message of
the original protocol: i.e., the action Replace_A() will not be executed during
SUFFIX(S′′2) by leaving nodes. Furthermore, note that the Ask-to-reverse-
anchor() message is sent only via relay that is stored by the sender. Thus, there
is a state S′′′2 ≥ S′′2 such that no leaving node v will receive an Ask-to-reverse-
anchor() message via v.a-in in SUFFIX(S′′′2). We can combine these two facts
to obtain that in SUFFIX(S′′′2) no undesired Ask-to-reverse(r) message is sent
(*). Therefore, check in the pseudocode that the only places where an undesired
Ask-to-reverse() message is sent is in the Replace_A() action of a leaving
node (Line 76) and when an Ask-to-reverse-anchor() (Line 94) message was
received via v.a-in. From Lemma 6.84 we know that no staying node sends an
undesired message in SUFFIX(S′′′2). Furthermore, from (*) we know that no un-
desired Ask-to-reverse() message is sent in SUFFIX(S′′′2). It follows from the
pseudocode that the only undesired message that could be sent in SUFFIX(S′′′2)
is an Ask-to-reverse-anchor() message that is sent in Line 70. This line,
however, is executed by a node v only if has-incoming(v.a-in) = false. Since this
is the only occasion at which an Ask-to-reverse(r) message such that r’s sink is
v.a-in is sent in SUFFIX(S′′′2), has-incoming(v.a-in) = false holds in an infinite
number of states (it always holds when the existing Ask-to-reverse(v.a-in)
message has been received until v’s next execution of Timeout).

To finish the proof of the second part of the lemma’s claim, consider an arbitrary
but fixed active node v such that v.a-out is a direct non-sink relay to some relay r′
owned by a leaving node. Note that v must be leaving according to Lemma 6.82. As
we have shown before, at some state has-incoming(v.a-in) = false will hold. We
also proved that v does not send a reference of v.a-in except for in the Timeout
action. Thus, upon the next execution of Timeout, has-incoming(v.a-in) =
false still holds and v sends an Ask-to-reverse-anchor(v.a-in) message to

191

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

sn(v.a-out) due to Line 70. Upon receipt of this message, sn(v.a-out) will send
Ask-to-reverse(r) to v such that r is the sink of v.a-out due to Line 94. Upon
receipt, this message will cause v to set v.a-out to ⊥ (Line 86). This yields a
contradiction. Together with Lemma 6.83, we obtain that there is a state S3 as
specified in the lemma.

Lemma 6.87. There is a state S4 ≥ S3 such that in SUFFIX(S4) no node will
change the value of a-out to ⊥ or change the value of a-in.

Proof. Define S4 ≥ S3 as the state in which all Ask-to-reverse() and all
Notify-anchor() messages in buffers in S3 have been received.

For the first claim of the lemma, consider an arbitrary node u such a.a-out 6= ⊥.
Observe in the pseudocode that in SUFFIX(S1) the only occasion at which u could
possibly set u.a-out to ⊥ is in Line 86 upon receipt of an Ask-to-reverse(out)
message such that same-target(out, u.a-out) = true. We now show that such a
message cannot exist in SUFFIX(S4). Observe in the pseudocode that staying
nodes never send any Ask-to-reverse() message. Since every relay reference
contained in a message must be a reference to a relay owned by the sender, in
SUFFIX(S4) there thus cannot be any Ask-to-reverse(out) message in any
buffer such that out is a reference to a relay owned by a staying node. Lemma 6.86
implies that the relay that u.a-out is connected to is owned by a staying node
v in SUFFIX(S3). Thus, same-target(out, u.a-out) must always be false when
Ask-to-reverse(out) is executed during SUFFIX(S4) and the claim is proven.

For the second claim, consider an arbitrary node u such that u.a-in 6= ⊥. Observe
in the pseudocode that in SUFFIX(S1) the only occasion at which u could possibly
change the value of u.a-in is in Line 99. This line is executed only if u received
a Notify-anchor() message. We now show that such a message cannot exist
in SUFFIX(S4). Due to the definition of S4, every Notify-anchor() message
existing in any state of SUFFIX(S4) must have been sent in SUFFIX(S3). Note
that according to the pseudocode such a message is only sent in Line 71 and only
to v.a-out, where v is the sending node. According to Lemma 6.86, v.a-out is
owned by a staying node in SUFFIX(S3), thus no such message can be sent to
u in SUFFIX(S3). Therefore, no such message exists in SUFFIX(S4) and the
claim is proven.

Note that the fact that a leaving node u never adds a relay to u.D except for in
Line 98, where it subsequently changes the value of u.a-in, and Lemma 6.87 imply:

Corollary 6.88. There is a state Sx ≥ S4 such that in SUFFIX(Sx), for every
active leaving node u, u.D = ∅.

Lemma 6.89. There is a state S5 ≥ Sx such that in SUFFIX(S5) there will
be no Reverse() message or message of the original protocol that contains a
reference of a relay whose sink node is leaving. Additionally, in SUFFIX(S5), no
node stores a relay r such that the sink node of r is leaving.

192

Solving the FDP with Relays 6.5

Proof. Define S′x ≥ Sx as the state in which all Reverse() messages and all
messages of the original protocol that were in a relay buffer in S4 have been received.
We first show that in SUFFIX(S′x) there will be no Reverse() message and no
message of the original protocol containing a reference to a relay r owned by a
leaving node.
First, assume for contradiction that in SUFFIX(Sx) a Reverse(r) message

is delivered to a leaving node u. However, in the pseudocode any Reverse()
message is sent either with parameter a-out, whose sink node is staying due to
Lemma 6.86, or with parameter in and by a staying node. Second, note that
no leaving node sends a message of the original protocol (since leaving nodes do
not execute the original protocol actions). Whenever a staying node u, however,
sends a message of the original protocol, any reference to a relay contained in
the parameter list of that message must be a reference to a relay in u.N ∪ {u.in}.
According to Lemma 6.84, the sink nodes of all such references are staying then.

The fact that no node stores a relay to a leaving node in a-out follows from
Lemma 6.86 and the fact that no node u stores a relay to a leaving node in u.N
follows from Lemma 6.84. Due to Lemma 6.85, all that remains to be shown is
that no node u will ever add a relay rv to a leaving node to u.D. To this end,
we go through all different cases where a relay is added to D. Lines 3–16 and
Lines 44–60, are never executed in SUFFIX(S1) according to Lemma 6.82. In
Line 29, a relay r is only added to D if it was previously stored in N , which cannot
be the case for a relay such that sn(r) is leaving according to Lemma 6.84. Last,
Line 98 is executed only if u is leaving and upon receipt of a Notify-anchor()
message, which is only sent by a node w in Line 71 to sn(w.a-out). If such a
Notify-anchor() message is received in SUFFIX(S′x), it must have been sent
in SUFFIX(Sx). According to Lemma 6.86, the sink node of w.a-out must have
been staying at that time, which implies that the message cannot have been sent
via a relay whose sink node is u. Thus, eventually for every relay u, u.D will not
contain any relay whose sink node is leaving. All in all, since for every node u
there are no other relays with outgoing connection than a-out, those in u.N and
those in u.D after S1, the proof of the claim is finished.

Lemma 6.90. For each leaving node u that is towed in a state S ≥ S5, there is
state S′ ≥ S such that u is anchored in S′.

Proof. Consider an arbitrary node u that is towed in some state S ≥ S5. We show
that u will become anchored in SUFFIX(S5). Since u is towed in state S, u must
have a staying neighbor v in the simplified relay graph in S. This means that there
is a (possibly implicit) edge (v, u) or an edge (u, v) in the simplified relay graph in
S. We consider the two cases individually.

For the first case, assume that v has an edge in the simplified relay graph to u.
According to Lemma 6.89 this edge must be implicit and it must be due to an
Ask-to-reverse(r) message or an Ask-to-reverse-anchor(r) message such
that r is owned by u. In both cases, since v is staying, it will send a Reverse(v.in)

193

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

message to r (check Lines 30 and 34). Upon receipt, u will update a-out to the
received message and thus become anchored.
For the second case, assume that u has an edge in the simplified relay graph

to v. According to Lemma 6.82 and Corollary 6.88; the fact that a-out is empty
(otherwise, u would be anchored according to Lemma 6.86), this edge must be
implicit. If the implicit edge is due to a message of the original protocol or due
to an Ask-to-reverse-anchor() message, u will send an Ask-to-reverse(r)
message such that r is owned by u to v in Line 76 or Line 94. If the implicit edge
is due to an Ask-to-reverse() message, u will send an Ask-to-reverse(u.in)
message to v in Line 81. Last, if the implicit edge is due to a Reverse(out)
message then if direct(out) = true, u will set a-out to out in Line 104 or send
an Ask-to-reverse(u.in) message to v in Line 106. Thus, in any case, either u
becomes anchored immediately, or we end up in the first case for which we have
already proven that it leads to u becoming anchored. Thus, the proof of the lemma
is finished.

Lemma 6.91. For each leaving node u that is semi-towed in a state S ≥ S5, there
is a state S′ ≥ S such that u is towed in S′.

Proof. Consider an arbitrary node u that is semi-towed in some state S ≥ S5. We
show that u will become towed in SUFFIX(S5). Since u is semi-towed in state
S, u must have an anchored leaving neighbor v in the simplified relay graph in S.
This means that there is a (possibly implicit) edge (v, u) or an edge (u, v) in the
simplified relay graph in S. We consider the two cases individually.
First of all, assume that v has an edge in the simplified relay graph to u.

According to Lemma 6.89 this edge must be implicit and it must be due to an
Ask-to-reverse(r) message (*) or an Ask-to-reverse-anchor(r) message
such that r is owned by u. In the former case, upon receipt of the message v sends
a Reverse(v.a-out) message to u (see Line 89) because same-target(v.a-out, r)
must be false according to Lemma 6.86. This causes u to be towed afterwards.
In the latter case, v sends an Ask-to-reverse(r′) message to u such that r′ is
owned by v (see Line 94). Upon receipt of this message, u sends an Ask-to-
reverse(u.in) message to v and we end up in a case we already considered (see
(*)).

Second, assume that u has an edge in the simplified relay graph to v. Again,
according to Lemma 6.89 this edge must be implicit and it must be due to an
Ask-to-reverse(r) message or an Ask-to-reverse-anchor(r) message such
that r is owned by v. In both cases, u will respond with an Ask-to-reverse(r)
message such that r is owned by u (see Lines 81 and 94) and we are in a case we
already considered again (see (*)). Thus we obtain the claim of the lemma.

Lemma 6.90, Lemma 6.91, the fact that there cannot remain a leaving node that
is neither anchored nor towed due to Theorem 6.78 and the assumption that at
least one node is staying yield the following corollary:

194

Solving the FDP with Relays 6.5

Corollary 6.92. There is a state S6 ≥ S5 such that every active leaving node is
anchored in every state of SUFFIX(S6).

Lemma 6.93. There is a state S8 ≥ S7 such that in SUFFIX(S8) for every
leaving node u there is at most one incoming connection to u.a-in, which is due to
an Ask-to-reverse-anchor(u.a-in) message in u.a-out.Buf , and there is no
incoming connection to u.in.

Proof. Consider an arbitrary but fixed leaving node u with has-incoming(u.in) =
true in S7. Note that according to Lemma 6.89 any incoming connection to a relay
owned by u may only be due to an Ask-to-reverse(ru) message with sn(ru) = u
or an Ask-to-reverse-anchor(ru) message with sn(ru) = u.
First, note that in SUFFIX(S7), no Ask-to-reverse(ru) message such that

sn(ru) = u is created (Line 63 is not executed due to Corollary 6.88, Lines 81
and 106 are not executed due to Corollary 6.92, and Line 112 creates an Ask-to-
reverse() message whose parameter is a relay to a staying node by Lemma 6.86).
Furthermore, whenever an Ask-to-reverse(ru) message such that sn(ru) = u is
received, ru is not sent in another message but deleted in either Line 31, Line 82
or Line 90 (note that Line 85 cannot be executed because same-target(ru, a-out)
must be false since a-out must be direct according to Lemma 6.82 and owned by
a staying node according to Lemma 6.86). Thus, there is a state S′7 such that in
SUFFIX(S′7), there will be no Ask-to-reverse(ru) message with sn(ru) = u.

Second, note that in SUFFIX(S7), an Ask-to-reverse-anchor(ru) message
with sn(ru) = u is created only if has-incoming(u.a-in) = false and only with
parameter u.a-in and only sent to the sink node of u.a-out (see Lines 68–70 and
Lemma 6.86). Furthermore, for every Ask-to-reverse-anchor(ru) message
with sn(ru) = u in any buffer, when the corresponding action is executed, ru is
not sent in another message but deleted in Line 95. Thus, there is a state S′′7 ≥ S7
such that in SUFFIX(S′′7) there will always be at most one Ask-to-reverse-
anchor(ru) message with sn(ru) = u, which is in the message channel of a staying
node and the endpoint of ru must be u.a-in.

Let S8 be the latter of the two states S′7 and S′′7 . Then S8 fulfills the requirements
of the lemma.

Lemma 6.94. There is a state S9 ≥ S8 such that every leaving node is inactive
in S9.

Proof. Consider an arbitrary leaving node u in SUFFIX(S8). Note that stop is
executed in Line 67 in Timeout as soon as the conditions of Line 66 are fulfilled.
Thus, according to Corollary 6.88 and Lemma 6.93, the only reason for stop not
to be executed by u is that has-incoming(u.a-in) = true all the time, which must
be due to an Ask-to-reverse-anchor(ru) message such that sn(ru) = u in the
message channel of the node v with v = sn(u.a-out), which is staying according to
Lemma 6.86. Upon receipt of that message, that node will send a Reverse(v.in)
message to u.a-in and delete ru (see Line 34). Upon receipt, the Reverse(v.in)

195

Chapter 6 THE RELAY MODEL AND ITS SELF-STABILIZING REALIZATION

message will cause u to merge the relay created due to the message receipt with
u.a-out (Line 110). Thus, u does not have any incoming connection afterwards
and the only outgoing connection is stored in u.a-out. Upon the next execution of
Timeout, the conditions of Line 66 are fulfilled and u will execute stop.

Since u was chosen arbitrarily, every leaving node will eventually execute stop
and there is a state S9 as specified in the lemma.

From Lemma 6.94 and the fact that no staying node ever executes stop, we
immediately obtain Theorem 6.79, restated as follows:

Theorem 6.79. In every computation of the transformed protocol in which there
is at least one staying node, every leaving node will eventually be inactive and every
staying node will always remain active.

Proof of Theorem 6.80 - Eventual Original Protocol Behavior

Building on the analysis of Theorem 6.79, one can easily show that in every
computation there is a state after which the transformed protocol behaves exactly
as the original one: i.e., the overall stabilization to a certain topology is not harmed
by the transformation. This is formalized by Theorem 6.80, which we restate as
follows:

Theorem 6.80. In every computation C of the transformed protocol, there is
a state S such that every leaving node is inactive, every staying node is active
and there is a computation C ′ of the original protocol starting from S such that
C ′ = SUFFIXC(S).

Proof. First of all, note that the only additional variable of a staying node intro-
duced by the transformation of the protocol is D, which will be empty for every
node at some state S10 ≥ S9 according to Lemma 6.85 and the direct relay assump-
tion (note that since no node permanently stores an indirect relay, it will never
be moved to D during Timeout). Furthermore, Replace_A() behaves exactly
as A after S9. Among the other actions introduced by the transformation, none
of them is called during Timeout after S9, because no node is leaving anymore.
For staying nodes, each of the other actions introduced by the transformation does
not cause any other than a Reverse() message and this message does not cause
any other message. Thus, after all these messages still in the system have been
received, a state as desired in the Theorem is reached.

196

PA
R
T IV

Conclusion

197

Applications and Open Research Questions

C
H
A
P
T
ER 7

In each of the main chapters of this thesis, local graph transformation primitives
played an important role. In Chapter 3, we investigated the complexity of trans-
forming graphs with a minimum number of applications of primitives from IDF
or IDFR. In Chapter 4, an adapted set of graph transformation primitives, ISF
turned out to be helpful to enable monotonic searchability. In Chapter 5, although
not mentioned explicitly, the given protocol manipulated edges only according
to the primitives of IDF to obtain a solution to the FDP in conjunction with
monotonic searchability. Last, in Chapter 6 the set IFR of graph transformation
primitives for the relay model was shown to emulate each of the primitives in
IDFR, which helped to prove the universality of the relay model and to transform
existing protocols to the relay model.
In this chapter, we discuss further possible applications of the results of this

thesis and summarize ideas for future research.

NP-Hardness and Approximability of Local Graph Transformations

Due to the importance of local graph transformations, which this thesis has high-
lighted, the problem of transforming graphs by a minimum number of primitive
applications is an interesting theoretical question on its own. However, in the
context of so-called supervised overlay networks, there is also an interesting im-
mediate application of the problem posed in Chapter 3. In a supervised overlay
network there is a dedicated, trusted node called supervisor. This node controls
all network adaptations but otherwise is not involved in the functionality of the
overlay network (such as serving search requests), which is handled in a peer-to-
peer manner. This has the advantage that even if the supervisor is down, the
overlay network is still functional. Of course, a malicious supervisor would pose a
significant problem for an overlay network, since it could easily launch Sybil attacks
(i.e., flood the overlay network with fake or adversarial nodes) or Eclipse attacks
(i.e., isolate nodes from other nodes in the overlay network). It is thus crucial
to limit the power of a supervisor in order to prevent such attacks. A possible
approach to do this is to restrict the supervisor such that every command issued
to the nodes must resemble an application of a primitive in IDF or IDFR. This
way, the supervisor can still transform every weakly connected topology into any
other (weakly) connected topology (since the primitives are universal), but cannot
disconnect the network (since the primitives preserve weak connectivity). With
a slight additional assumption, the supervisor also cannot introduce new nodes
into the network: The assumption we make is that all connections are authorized,

199

Chapter 7 APPLICATIONS AND OPEN RESEARCH QUESTIONS

meaning that both endpoints are aware of the other endpoint of this connection. If,
for an edge (u, v) that is supposed to be transformed into (v, u) by an application
of the reversal primitive, v verifies that u actually was the previous endpoint of the
former edge, then the primitives cannot be used to introduce new nodes into the
network. In such a setting it is certainly desirable to transform topologies with a
minimum number of primitive applications, since this reduces the communication
work of the supervisor as well as the overall communication among the nodes.

Of course, this description makes some assumptions that may be too strong
in practical scenarios. Most notably, we assumed that only the server could act
maliciously but that the participants of the network are honest and correct: i.e.,
they refuse any graph transformation commands beyond the four primitives. What,
however, if some participants also behave in a malicious manner? Is it still possible
to avoid Sybil or Eclipse attacks? This is an open question that might be considered
in future research. At first glance, it seems that in this case the only measure that
would help is to form quorums of nodes that are sufficiently large so that at least
one node in each quorum is honest.

Even from a purely theoretical view, our results give rise to additional questions:
For example, does the NP-hardness apply to any set of local graph transformation
primitives, or is there a set of local graph transformation primitives that can
transform arbitrary initial graphs much faster into arbitrary final graphs than the
set considered in this thesis? Furthermore, is it possible to obtain decentralized
versions of the approximation algorithms presented in Chapter 3 and, if so, what
is their competitiveness when compared to the centralized ones? Moreover, given
that for practical purposes it might be reasonable to assume that the desired
topology is subject to change, is it possible to obtain good online algorithms for
the local graph transformation problem? Besides these considerations, it would
be interesting to study variants of the problem. Given the supervised overlay
network setting, for example, it is reasonable to assume that independent primitive
applications could be performed in parallel. Of course, one could simply apply as
many primitives as possible from a sequence of applications computed by one of
the approximation algorithms in Chapter 3 in each step to speed up the overall
transformation. Yet, it would be worth investigating whether shorter sequences
are polynomially computable for this problem variant.

Monotonic Searchability for Supergraphs of the Line and Monotonic
Searchability under Leaving Nodes

Being able to search reliably during the stabilization phase in self-stabilizing
systems is an important feature, especially because it is generally impossible to
locally determine the point in time when the system has stabilized. In fact, what
we called search in this work generally describes sending messages to another
node to which a direct connection does not exist. Hence, monotonic searchability
naturally has many applications in distributed systems and overlay networks and
is one of the most basic problems in this field.

200

Applications and Open Research Questions 7.0

The same applies to the finite departure problem. In large distributed systems,
a high turnover is not the exception but the norm. Whereas the arrival of a new
node does not need to be considered explicitly for self-stabilizing topologies (since
according to the definition of self-stabilization, the node will be integrated by
the self-stabilizing protocol), taking account of node departures is much more
involved. This has to do with the fact that the overall system’s behavior must not
be compromised due to one or more nodes leaving.

Although our results of Chapter 4 solve the problem of monotonic searchability
for a wide range of topologies, there are certain aspects that have not been studied
yet. For example, we did not consider the additional cost of convergence (i.e., the
amount of additional messages to be sent), nor the impact of our methods on the
convergence time of the topology. Additionally, while our generic search protocol
enables us to search existing nodes in legal states with a low dilation, searching for
a non-existing node can still cause a message to travel Ω(n) hops, even in legal
states. Whether this is provably necessary or could be improved is still an open
question.
As mentioned before, we deliberately restricted our considerations regarding

monotonic searchability under node departures in Chapter 5 to the line topology,
since this turned out to be very complex already. Anyway, it would be interesting
to investigate whether a general approach for the conjunction of the two problems
can also be obtained and what this would look like.

The Relay Model and Its Self-Stabilizing Realization

Although the original goal of the development of the relay model introduced in
Chapter 6 was to have a reasonable model that permits a solution to the FDP
without oracles, it has numerous additional advantages that make it useful in a
large number of applications.

For instance, observe that the relay model offers facilities for admission control
that the traditional interconnection model does not offer: In the standard model,
possessing a reference to another node u admits a node to send a message to u,
and u is unable to revoke this right. In the relay model, in contrast, each node
is able to delete a relay and thus revoke the right to send a message to this relay.
Even worse in the standard model, a reference can be copied and introduced to
other nodes without the permission of u. Although it is also possible to forward
a relay reference in the relay model, such an action only establishes an indirect
connection. To create a direct relay connection, a permission from u would still be
required. This has a huge advantage in the scenario of distributed denial-of-service
attacks if we assume that the attacker has no access to the relay layer (which
may be reasonable if the relay layer is implemented using secure hardware): If an
attacker v forwards a relay reference r̂ to other nodes in order to attack the sink
node of r, the bandwidth of the attack is not the sum of the individual bandwidths
of all participating nodes, but limited by the bandwidth of v. Thus, forwarding
the relays does not yield any advantage for the attack.

201

Chapter 7 APPLICATIONS AND OPEN RESEARCH QUESTIONS

The relay model may also be useful in the area of anonymous communication.
This is due to the fact that nodes can create multiple relays as pseudonyms.
Whereas in the original model each node was uniquely defined by its reference
that was even propagated to the application layer, in the relay model applications
only know locally valid references. Although applications can check whether two
relays have the same next target, it is not possible for them to determine whether
the sink node of two relays with different next targets is equal. Therefore, a node
could use different sink relays for different purposes in the network and no other
nodes would be able to link this node’s activities. This way, anonymity would be
achieved.

An important open research question is how to realize the relay layer in practice.
One possibility is to use so-called middleboxes that are placed between the computer
and the network and run the relay layer. Due to being a dedicated piece of hardware,
these middleboxes could be secured effectively and the implementation of the relay
layer could be as minimalistic and verified as possible. An additional benefit of
this solution is that the relay layer of a computer could continue to run even if
the computer crashes or experiences a power failure (for the latter the middlebox
could be equipped with a battery). Despite being very secure and failsafe, this
approach has the downside of being very costly since it requires every computer in
the network to be equipped with a middlebox running the relay layer. For this
reason, it might also be worthwhile investigating possibilities to implement the
relay layer using existing hardware at the price of giving weaker security guarantees.
One possible such approach is to rely on secure enclaves offered by modern central
processing units. An example of this is Intel’s Software Guard Extensions (SGX).
Unfortunately, this technique cannot prevent an attacker who gained control over
the operating system from dropping packages received via the network card. It is
thus an interesting open research question whether or to which extent cryptographic
methods can help to limit the power of an attacker in this approach.

202

Bibliography

[AAB04] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized
Steiner problem. In: Theoretical Computer Science 324.2-3 (2004),
pp. 313–324. doi: 10.1016/j.tcs.2004.05.021.

[AKR95] Ajit Agrawal, Philip N. Klein, and R. Ravi. When Trees Collide:
An Approximation Algorithm for the Generalized Steiner
Problem on Networks. In: SIAM Journal on Computing 24.3 (1995),
pp. 440–456. doi: 10.1137/S0097539792236237.

[And+01] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert
Morris. Resilient Overlay Networks. In: Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP). Banff,
Alberta, Canada, 2001, pp. 131–145. doi: 10.1145/502034.502048.

[And+99] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann,
Hans-Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy Schürr, and
Gabriele Taentzer. Graph Transformation for Specification and
Programming. In: Science of Computer Programming 34.1 (1999),
pp. 1–54. doi: 10.1016/S0167-6423(98)00023-9.

[AS07] James Aspnes and Gauri Shah. Skip graphs. In: ACM Transactions
on Algorithms 3.4 (2007), pp. 37:1–37:25. doi: 10.1145/1290672.
1290674.

[ASK18] Saadia Albane, Hachem Slimani, and Hamamache Kheddouci. Graph
grammars according to the type of input and manipulated
data: A survey. In: Computer Science Review 28 (2018), pp. 178–203.
doi: 10.1016/j.cosrev.2018.04.001.

[AW07] James Aspnes and Yinghua Wu. O(logn)-Time Overlay Network
Construction from Graphs with Out-Degree 1. In: Proceedings
of the 11th International Conference on Principles of Distributed Sys-
tems (OPODIS). Guadeloupe, French West Indies, 2007, pp. 286–300.
doi: 10.1007/978-3-540-77096-1_21.

[BC97] Piotr Berman and Chris Coulston.On-Line Algorithms for Steiner
Tree Problems (Extended Abstract). In: Proceedings of the 29th
Annual ACM Symposium on the Theory of Computing (STOC). El
Paso, Texas, USA, 1997, pp. 344–353. doi: 10.1145/258533.258618.

203

https://doi.org/10.1016/j.tcs.2004.05.021
https://doi.org/10.1137/S0097539792236237
https://doi.org/10.1145/502034.502048
https://doi.org/10.1016/S0167-6423(98)00023-9
https://doi.org/10.1145/1290672.1290674
https://doi.org/10.1145/1290672.1290674
https://doi.org/10.1016/j.cosrev.2018.04.001
https://doi.org/10.1007/978-3-540-77096-1_21
https://doi.org/10.1145/258533.258618

Bibliography

[Ben+18] Markus Benter, Till Knollmann, Friedhelm Meyer auf der Heide,
Alexander Setzer, and Jannik Sundermeier. A Peer-to-Peer Based
Cloud Storage Supporting Orthogonal Range Queries of Ar-
bitrary Dimension. In: Revised Selected Papers of the 4th Interna-
tional Symposium on Algorithmic Aspects of Cloud Computing (AL-
GOCLOUD). Helsinki, Finland, 2018, pp. 46–58. doi: 10.1007/978-
3-030-19759-9_4.

[BGP13] Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmaraju. Building
self-stabilizing overlay networks with the transitive closure
framework. In: Theoretical Computer Science 512 (2013), pp. 2–14.
doi: 10.1016/j.tcs.2013.02.021.

[Bui+07] Alain Bui, Ajoy Kumar Datta, Franck Petit, and Vincent Villain.
Snap-stabilization and PIF in tree networks. In: Distributed
Computing 20.1 (2007), pp. 3–19. doi: 10.1007/s00446-007-0030-4.

[Coo71] Stephen A. Cook. The Complexity of Theorem-proving Proce-
dures. In: Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing (STOC). Shaker Heights, Ohio, USA, 1971, pp. 151–158.
doi: 10.1145/800157.805047.

[Cor+12] Andreas Cord-Landwehr, Martina Hüllmann, Peter Kling, and Alexan-
der Setzer. Basic Network Creation Games with Communica-
tion Interests. In: Proceedings of the 5th International Symposium on
Algorithmic Game Theory (SAGT). Barcelona, Spain, 2012, pp. 72–83.
doi: 10.1007/978-3-642-33996-7_7.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detec-
tors for Reliable Distributed Systems. In: Journal of the ACM
43.2 (1996), pp. 225–267. doi: 10.1145/226643.226647.

[Del+07] Nelly Delessy, Eduardo B. Fernandez, Maria M. Larrondo-Petrie, and
Jie Wu.Patterns for Access Control in Distributed Systems. In:
Proceedings of the 14th Conference on Pattern Languages of Programs.
Monticello, Illinois, USA, 2007, pp. 3:1–3:11. doi: 10.1145/1772070.
1772074.

[Del+10] Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko, and Sébastien
Tixeuil. Snap-stabilization in message-passing systems. In:
Journal of Parallel and Distributed Computing 70.12 (2010), pp. 1220–
1230. doi: 10.1016/j.jpdc.2010.04.002.

[DH97] Shlomi Dolev and Ted Herman. Superstabilizing Protocols for
Dynamic Distributed Systems. In: Chicago Journal of Theoretical
Computer Science 1997 (1997). doi: 10.4086/cjtcs.1997.004.

[Dij74] Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Dis-
tributed Control. In: Communications of the ACM 17.11 (1974),
pp. 643–644. doi: 10.1145/361179.361202.

204

https://doi.org/10.1007/978-3-030-19759-9_4
https://doi.org/10.1007/978-3-030-19759-9_4
https://doi.org/10.1016/j.tcs.2013.02.021
https://doi.org/10.1007/s00446-007-0030-4
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-33996-7_7
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/1772070.1772074
https://doi.org/10.1145/1772070.1772074
https://doi.org/10.1016/j.jpdc.2010.04.002
https://doi.org/10.4086/cjtcs.1997.004
https://doi.org/10.1145/361179.361202

Bibliography

[DK08] Shlomi Dolev and Ronen I. Kat. HyperTree for self-stabilizing
peer-to-peer systems. In: Distributed Computing 20.5 (2008),
pp. 375–388. doi: 10.1007/s00446-007-0038-9.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
Second-Generation Onion Router. In: Proceedings of the 13th
USENIX Security Symposium (USENIX). San Diego, California, USA,
2004, pp. 303–320.

[Dol+11] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien
Tixeuil. Stabilizing data-link over non-FIFO channels with op-
timal fault-resilience. In: Information Processing Letters 111.18
(2011), pp. 912–920. doi: 10.1016/j.ipl.2011.06.010.

[Dol+12] Shlomi Dolev, Ariel Hanemann, Elad Michael Schiller, and Shan-
tanu Sharma. Self-stabilizing End-to-End Communication in
(Bounded Capacity, Omitting, Duplicating and non-FIFO)
Dynamic Networks. In: Proceedings of the 14th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS). Toronto, Ontario, Canada, 2012, pp. 133–147. doi: 10.1007/
978-3-642-33536-5_14.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000. doi: 10.7551/
mitpress/6156.001.0001.

[DT13] Shlomi Dolev and Nir Tzachar. Spanders: Distributed spanning
expanders. In: Science of Computer Programming 78.5 (2013),
pp. 544–555. doi: 10.1016/j.scico.2012.10.001.

[Ehr+99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz
Rozenberg, eds. Handbook of Graph Grammars and Comput-
ing by Graph Transformations, Volume 3: Concurrency, Par-
allelism, and Distribution. World Scientific, 1999. doi: 10.1142/
4181.

[ESS14a] Martina Eikel, Christian Scheideler, and Alexander Setzer. Minimum
Linear Arrangement of Series-Parallel Graphs. In: Revised Se-
lected Papers of the 12th International Workshop on Approximation
and Online Algorithms (WAOA). Wrocław, Poland, 2014, pp. 168–180.
doi: 10.1007/978-3-319-18263-6_15.

[ESS14b] Martina Eikel, Christian Scheideler, and Alexander Setzer. RoBuSt:
A Crash-Failure-Resistant Distributed Storage System. In:
Proceedings of the 18th International Conference on Principles of Dis-
tributed Systems (OPODIS). Cortina d’Ampezzo, Italy, 2014, pp. 107–
122. doi: 10.1007/978-3-319-14472-6_8.

205

https://doi.org/10.1007/s00446-007-0038-9
https://doi.org/10.1016/j.ipl.2011.06.010
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.7551/mitpress/6156.001.0001
https://doi.org/10.7551/mitpress/6156.001.0001
https://doi.org/10.1016/j.scico.2012.10.001
https://doi.org/10.1142/4181
https://doi.org/10.1142/4181
https://doi.org/10.1007/978-3-319-18263-6_15
https://doi.org/10.1007/978-3-319-14472-6_8

Bibliography

[FKS18] Michael Feldmann, Christina Kolb, and Christian Scheideler. Self-
stabilizing Overlays for High-Dimensional Monotonic Search-
ability. In: Proceedings of the 20th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS). Tokyo,
Japan, 2018, pp. 16–31. doi: 10.1007/978-3-030-03232-6_2.

[For+14] Dianne Foreback, Andreas Koutsopoulos, Mikhail Nesterenko, Chris-
tian Scheideler, and Thim Strothmann. On Stabilizing Departures
in Overlay Networks. In: Proceedings of the 16th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS). Paderborn, Germany, 2014, pp. 48–62. doi: 10.1007/978-3-
319-11764-5_4.

[FSS18] Michael Feldmann, Christian Scheideler, and Alexander Setzer.
Skueue: A Scalable and Sequentially Consistent Distributed
Queue. In: Proceedings of the 32nd IEEE International Parallel
and Distributed Processing Symposium (IPDPS). Vancouver, British
Columbia, Canada, 2018, pp. 1040–1049. doi: 10.1109/IPDPS.2018.
00113.

[FSS20] Michael Feldmann, Christian Scheideler, and Stefan Schmid. Survey
on Algorithms for Self-Stabilizing Overlay Networks. In: ACM
Computing Surveys (2020). doi: 10.1145/3397190.

[Gal+14] Dominik Gall, Riko Jacob, Andréa W. Richa, Christian Scheideler, Ste-
fan Schmid, and Hanjo Täubig. A Note on the Parallel Runtime
of Self-Stabilizing Graph Linearization. In: Theory of Computing
Systems 55.1 (2014), pp. 110–135. doi: 10.1007/s00224-013-9504-x.

[GK15] Anupam Gupta and Amit Kumar. Greedy Algorithms for Steiner
Forest. In: Proceedings of the 47th Annual ACM Symposium on Theory
of Computing (STOC). Portland, Oregon, USA, 2015, pp. 871–878.
doi: 10.1145/2746539.2746590.

[Gro+18] Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel
R. Schmidt, Melanie Schmidt, and José Verschae. A Local-Search
Algorithm for Steiner Forest. In: Proceedings of the 9th Innova-
tions in Theoretical Computer Science Conference (ITCS). Cambridge,
Massachusetts, USA, 2018, pp. 31:1–31:17. doi: 10.4230/LIPIcs.
ITCS.2018.31.

[GSS18] Thorsten Götte, Christian Scheideler, and Alexander Setzer. On
Underlay-Aware Self-Stabilizing Overlay Networks. In: Pro-
ceedings of the 20th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS). Tokyo, Japan, 2018, pp. 50–
64. doi: 10.1007/978-3-030-03232-6_4.

206

https://doi.org/10.1007/978-3-030-03232-6_2
https://doi.org/10.1007/978-3-319-11764-5_4
https://doi.org/10.1007/978-3-319-11764-5_4
https://doi.org/10.1109/IPDPS.2018.00113
https://doi.org/10.1109/IPDPS.2018.00113
https://doi.org/10.1145/3397190
https://doi.org/10.1007/s00224-013-9504-x
https://doi.org/10.1145/2746539.2746590
https://doi.org/10.4230/LIPIcs.ITCS.2018.31
https://doi.org/10.4230/LIPIcs.ITCS.2018.31
https://doi.org/10.1007/978-3-030-03232-6_4

Bibliography

[GW95] Michel X. Goemans and David P. Williamson. A General Approxi-
mation Technique for Constrained Forest Problems. In: SIAM
Journal on Computing 24.2 (1995), pp. 296–317. doi: 10 . 1137 /
S0097539793242618.

[Hec06] Reiko Heckel.Graph Transformation in a Nutshell. In: Electronic
Notes in Theoretical Computer Science 148.1 (2006), pp. 187–198. doi:
10.1016/j.entcs.2005.12.018.

[HFK06] Vincent C. Hu, David Ferraiolo, and D. Richard Kuhn. Assessment
of access control systems. US Department of Commerce, National
Institute of Standards and Technology, 2006.

[Hun+05] Galen Hunt, James R. Larus, Martín Abadi, Mark Aiken, Paul Barham,
Manuel Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick
Murphy, et al. An overview of the Singularity project. Technical Report
MSR-TR-2005-135, Microsoft Research, 2005.

[Jac+12] Riko Jacob, Stephan Ritscher, Christian Scheideler, and Stefan Schmid.
Towards higher-dimensional topological self-stabilization: A
distributed algorithm for Delaunay graphs. In: Theoretical Com-
puter Science 457 (2012), pp. 137–148. doi: 10.1016/j.tcs.2012.07.
029.

[Jac+14] Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid,
and Hanjo Täubig. SKIP+: A Self-Stabilizing Skip Graph. In:
Journal of the ACM 61.6 (2014), pp. 36:1–36:26. doi: 10 . 1145 /
2629695.

[Jai01] Kamal Jain.A Factor 2 Approximation Algorithm for the Gen-
eralized Steiner Network Problem. In: Combinatorica 21.1 (2001),
pp. 39–60. doi: 10.1007/s004930170004.

[JM10] Colette Johnen and Fouzi Mekhaldi. Robust Self-stabilizing Con-
struction of Bounded Size Weight-Based Clusters. In: Proceed-
ings (Part I) of the 16th European Conference on Parallel Processing
(Euro-Par). Ischia, Italy, 2010, pp. 535–546. doi: 10.1007/978-3-
642-15277-1_51.

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Prob-
lems. In: Proceedings of a Symposium on the Complexity of Computer
Computations. New York, USA, 1972, pp. 85–103. doi: 10.1007/978-
1-4684-2001-2_9.

[KKS12] Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Schei-
deler. A Self-Stabilization Process for Small-World Networks.
In: Proceedings of the 26th IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Shanghai, China, 2012, pp. 1261–
1271. doi: 10.1109/IPDPS.2012.115.

207

https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1016/j.entcs.2005.12.018
https://doi.org/10.1016/j.tcs.2012.07.029
https://doi.org/10.1016/j.tcs.2012.07.029
https://doi.org/10.1145/2629695
https://doi.org/10.1145/2629695
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/978-3-642-15277-1_51
https://doi.org/10.1007/978-3-642-15277-1_51
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/IPDPS.2012.115

Bibliography

[KKS14] Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Schei-
deler. Re-Chord: A Self-stabilizing Chord Overlay Network.
In: Theory of Computing Systems 55.3 (2014), pp. 591–612. doi:
10.1007/s00224-012-9431-2.

[KM05] Hervé Kerivin and Ali Ridha Mahjoub. Design of Survivable Net-
works: A survey. In: Networks 46.1 (2005), pp. 1–21. doi: 10.1002/
net.20072.

[KM06] Hirotsugu Kakugawa and Toshimitsu Masuzawa. A self-stabilizing
minimal dominating set algorithm with safe convergence. In:
Proceedings of the 20th International Parallel and Distributed Process-
ing Symposium (IPDPS). Rhodes Island, Greece, 2006. doi: 10.1109/
IPDPS.2006.1639550.

[KMD17] Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. Access con-
trol and the Resource Description Framework: A survey. In:
Semantic Web 8.2 (2017), pp. 311–352. doi: 10.3233/SW-160236.

[Kos09] Hristo Koshutanski. A Survey on Distributed Access Control
Systems for Web Business Processes. In: International Journal
of Network Security 9.1 (2009), pp. 61–69.

[Kru+10] Lachezar Krumov, Immanuel Schweizer, Dirk Bradler, and Thorsten
Strufe. Leveraging Network Motifs for the Adaptation of
Structured Peer-to-Peer-Networks. In: Proceedings of the Global
Communications Conference 2010 (GLOBECOM). Miami, Florida,
USA, 2010, pp. 1–5. doi: 10.1109/GLOCOM.2010.5683139.

[KSS17] Andreas Koutsopoulos, Christian Scheideler, and Thim Strothmann.
Towards a universal approach for the finite departure prob-
lem in overlay networks. In: Information and Computation 255
(2017), pp. 408–424. doi: 10.1016/j.ic.2016.12.006.

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems.
In: Problemy Peredachi Informatsii 9.3 (1973), pp. 115–116.

[Lin94] Chih-Long Lin.Hardness of Approximating Graph Transforma-
tion Problem. In: Proceedings of the 5th International Symposium on
Algorithms and Computation (ISAAC). Beijing, China, 1994, pp. 74–82.
doi: 10.1007/3-540-58325-4_168.

[Liu+06] Xiaomei Liu, Li Xiao, Andrew Kreling, and Yunhao Liu. Optimizing
overlay topology by reducing cut vertices. In: Proceedings of
the 16th International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV). Newport, Rhode
Island, USA, 2006, pp. 17:1–17:6. doi: 10.1145/1378191.1378213.

[LMM10] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori.Usage control
in computer security: A survey. In: Computer Science Review 4.2
(2010), pp. 81–99. doi: 10.1016/j.cosrev.2010.02.002.

208

https://doi.org/10.1007/s00224-012-9431-2
https://doi.org/10.1002/net.20072
https://doi.org/10.1002/net.20072
https://doi.org/10.1109/IPDPS.2006.1639550
https://doi.org/10.1109/IPDPS.2006.1639550
https://doi.org/10.3233/SW-160236
https://doi.org/10.1109/GLOCOM.2010.5683139
https://doi.org/10.1016/j.ic.2016.12.006
https://doi.org/10.1007/3-540-58325-4_168
https://doi.org/10.1145/1378191.1378213
https://doi.org/10.1016/j.cosrev.2010.02.002

Bibliography

[LSS19] Linghui Luo, Christian Scheideler, and Thim Strothmann. MUL-
TISKIPGRAPH: A Self-Stabilizing Overlay Network that
Maintains Monotonic Searchability. In: Proceedings of the 33rd
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). Rio de Janeiro, Brazil, 2019, pp. 845–854. doi: 10.1109/
IPDPS.2019.00093.

[Mil+08] Stefan Miltchev, Jonathan M. Smith, Vassilis Prevelakis, Angelos D.
Keromytis, and Sotiris Ioannidis. Decentralized access control in
distributed file systems. In: ACM Computing Surveys 40.3 (2008),
pp. 10:1–10:30. doi: 10.1145/1380584.1380588.

[NNS13] Rizal Mohd Nor, Mikhail Nesterenko, and Christian Scheideler.
Corona: A stabilizing deterministic message-passing skip
list. In: Theoretical Computer Science 512 (2013), pp. 119–129. doi:
10.1016/j.tcs.2012.08.029.

[NNT13] Rizal Mohd Nor, Mikhail Nesterenko, and Sébastien Tixeuil. Lineariz-
ing Peer-to-Peer Systems with Oracles. In: Proceedings of the
15th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS). Osaka, Japan, 2013, pp. 221–236. doi:
10.1007/978-3-319-03089-0_16.

[ORS07] Melih Onus, Andréa W. Richa, and Christian Scheideler. Lineariza-
tion: Locally Self-Stabilizing Sorting in Graphs. In: Proceed-
ings of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX). New Orleans, Louisiana, USA, 2007, pp. 99–108. doi:
10.1137/1.9781611972870.10.

[Roz97] Grzegorz Rozenberg, ed. Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Founda-
tions. World Scientific, 1997. doi: 10.1142/3303.

[RSS11] Andréa W. Richa, Christian Scheideler, and Phillip Stevens. Self-
Stabilizing De Bruijn Networks. In: Proceedings of the 13th In-
ternational Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS). Grenoble, France, 2011, pp. 416–430. doi:
10.1007/978-3-642-24550-3_31.

[RSS18] Peter Robinson, Christian Scheideler, and Alexander Setzer. Breaking
the Ω̃(

√
n) Barrier: Fast Consensus under a Late Adversary.

In: Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures (SPAA). Vienna, Austria, 2018, pp. 173–182. doi:
10.1145/3210377.3210399.

[SR05] Ayman Shaker and Douglas S. Reeves. Self-Stabilizing Structured
Ring Topology P2P Systems. In: Proceedings of the 5th IEEE
International Conference on Peer-to-Peer Computing (P2P). Konstanz,
Germany, 2005, pp. 39–46. doi: 10.1109/P2P.2005.34.

209

https://doi.org/10.1109/IPDPS.2019.00093
https://doi.org/10.1109/IPDPS.2019.00093
https://doi.org/10.1145/1380584.1380588
https://doi.org/10.1016/j.tcs.2012.08.029
https://doi.org/10.1007/978-3-319-03089-0_16
https://doi.org/10.1137/1.9781611972870.10
https://doi.org/10.1142/3303
https://doi.org/10.1007/978-3-642-24550-3_31
https://doi.org/10.1145/3210377.3210399
https://doi.org/10.1109/P2P.2005.34

Bibliography

[SS18] Christian Scheideler and Alexander Setzer. Relays: A New Ap-
proach for the Finite Departure Problem in Overlay Net-
works. In: Proceedings of the 20th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS). Tokyo,
Japan, 2018, pp. 239–253. doi: 10.1007/978-3-030-03232-6_16.

[SS19] Christian Scheideler and Alexander Setzer. On the Complexity
of Local Graph Transformations. In: Proceedings of the 46th In-
ternational Colloquium on Automata, Languages, and Programming
(ICALP). Patras, Greece, 2019, pp. 150:1–150:14. doi: 10 . 4230 /
LIPIcs.ICALP.2019.150.

[SSS15] Christian Scheideler, Alexander Setzer, and Thim Strothmann.
Towards Establishing Monotonic Searchability in Self-
Stabilizing Data Structures. In: Proceedings of the 19th Interna-
tional Conference on Principles of Distributed Systems (OPODIS).
Rennes, France, 2015, pp. 24:1–24:17. doi: 10.4230/LIPIcs.OPODIS.
2015.24.

[SSS16] Christian Scheideler, Alexander Setzer, and Thim Strothmann. To-
wards a Universal Approach for Monotonic Searchability in
Self-stabilizing Overlay Networks. In: Proceedings of the 30th
International Symposium on Distributed Computing (DISC). Paris,
France, 2016, pp. 71–84. doi: 10.1007/978-3-662-53426-7_6.

[Ste+16] Michael Stein, Alexander Frömmgen, Roland Kluge, Frank Löf-
fler, Andy Schürr, Alejandro P. Buchmann, and Max Mühlhäuser.
TARL: modeling topology adaptations for networking ap-
plications. In: Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS@ICSE). Austin, Texas, USA, 2016, pp. 57–63. doi:
10.1145/2897053.2897061.

[SWK69] K. Steiglitz, P. Weiner, and D. Kleitman. The Design of Minimum-
Cost Survivable Networks. In: IEEE Transactions on Circuit The-
ory 16.4 (1969), pp. 455–460. doi: 10.1109/TCT.1969.1083004.

[Wob+07] Ted Wobber, Aydan Yumerefendi, Martín Abadi, Andrew Birrell, and
Daniel R. Simon. Authorizing Applications in Singularity. In:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (EuroSys). Lisbon, Portugal, 2007, pp. 355–368.
doi: 10.1145/1272996.1273033.

[YT10] Yukiko Yamauchi and Sébastien Tixeuil. Monotonic Stabilization.
In: Proceedings of the 14th International Conference on Principles of
Distributed Systems (OPODIS). Tozeur, Tunisia, 2010, pp. 475–490.
doi: 10.1007/978-3-642-17653-1_34.

210

https://doi.org/10.1007/978-3-030-03232-6_16
https://doi.org/10.4230/LIPIcs.ICALP.2019.150
https://doi.org/10.4230/LIPIcs.ICALP.2019.150
https://doi.org/10.4230/LIPIcs.OPODIS.2015.24
https://doi.org/10.4230/LIPIcs.OPODIS.2015.24
https://doi.org/10.1007/978-3-662-53426-7_6
https://doi.org/10.1145/2897053.2897061
https://doi.org/10.1109/TCT.1969.1083004
https://doi.org/10.1145/1272996.1273033
https://doi.org/10.1007/978-3-642-17653-1_34

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Four Basic Graph Transformation Primitives
	Motivation
	Related Work
	List of Own Publications
	Contribution and Outline of the Thesis

	Preliminaries
	Model Overview
	Further Known Results and Additional Terminology
	Formal Problem Definitions
	Pseudocode Explanation

	The Complexity of Local Graph Transformations
	NP-Hardness and Approximability of Local Graph Transformations
	Problem Statement
	NP-hardness Results
	Approximation Algorithms

	Monotonic Searchability in Self-Stabilizing Topologies
	Monotonic Searchability for Supergraphs of the Line
	Communication Model and Problem Statement
	Primitives for Monotonic Searchability
	Transforming Classical Protocols
	The Generic Search Protocol
	Examples
	A Short Digression: The Bridge-SKIP+ Graph

	Monotonic Searchability under Leaving Nodes
	Problem Statement
	Protocol Description of Build-List* and Search*
	Build-List* Solves the FDP
	Build-List* Self-Stabilizes to the Line Topology
	Build-List* Satisfies Monotonic Searchability

	Relays: A New Interconnection Model for Overlay Networks
	The Relay Model and Its Self-Stabilizing Realization
	Communication Model and Problem Statement
	The Relay Layer
	Self-Stabilization Proofs
	Universal Relay Primitives
	Solving the FDP with Relays

	Conclusion
	Applications and Open Research Questions

	Bibliography

