
Full Semantics Preservation
in Model Transformation

by

Maria Semenyak
maria.semenyak@upb.de

PhD Thesis
in partial fulfilment of the requirements for the degree of

doctor rerum naturalium (Dr. rer. nat.)
supervised by

Prof. Dr. Gregor Engels

co-supervised by
Prof. Dr. Heike Wehrheim

Prof. Dr. Leena Suhl

Paderborn, August 24, 2011

Abstract

Model transformations play a key role in automated software development processes,
where the modern trend is directed towards specification of software with an abstract
model and its step-wise transformation into code. It is important that the code
meets the initial specification. Therefore, the question for a model transformation
is whether the transformed model fulfills the behavioural properties of the initial
model.

In this thesis, a method is presented for proving that a specified model transfor-
mation is semantically correct in the sense that it preserves all behavioural proper-
ties of a source model. The method is introduced within the model-driven architec-
ture approach, where syntax of a modelling language is defined by a meta-model.
A meta-model is specified by means of object-oriented approaches, which based on
the diagrams that are basically graphs, sometimes attributed with textual infor-
mation. This allows a meta-model to be considered as a graph. Then, the model
transformation is defined with the triple graph grammar technique.

We deal with languages, the behavioural semantics of which can be formally
specified by means of graph transformation systems too. Therefore, the graph
transformations are used twice in this thesis: for model transformation and for be-
havioural semantics specification. An application of a graph transformation system
to a graph that stands for a model results a Labelled Transition System (LTS)
generation. An LTS represents a set of all possible transition sequences, which is
supposed to describe behaviour of the system.

A temporal logic called ACTL (an Action-based version of CTL∗), is used to
specify the behavioural properties of a model on an LTS. Full preservation of be-
havioural properties means that an LTS generated for any source model and the
LTS generated for the corresponding target model cannot be distinguished by the
truth value of ACTL formulas. When the same ACTL properties hold for two LTSs,
then the LTSs are called ACTL equivalent.

The method introduced in this thesis is based on establishing an equivalence
relation over LTSs called weak bisimulation, which is a standard concept from con-
currency theory, normally used to compare executions and to decide whether they
are indeed equivalent or not. In this thesis, it is shown that weak bisimulation on
LTSs implies ACTL equivalence. Then, showing the behaviour preservation dur-
ing model transformation requires establishing a weak bisimulation on the LTSs of
source and target models.

As a summary, the method provides the guidelines how to specify the modelling
languages and model transformation in order it could be possible to show that the
specified model transformation is semantically correct. The method also explains
how to define an equivalence relation over LTSs and to carry out the proof that the

defined equivalence relation is a weak bisimulation. Additionally, we explain how
the behavioural properties of a source model can be interpreted for a target language
by usage of the triple graph grammar transformation and the weak bisimulation.

In addition, the method is validated by a case study, where we define a model
transformation between two modelling languages: Calculus of Communication Sys-
tems (CCS) and Petri nets. The main goal of the case study is to show how to proof
that the defined model transformation is semantics preserving and to illustrate the
specification of sample behavioural properties for the CCS and their interpretation
for the Petri nets language.

Zusammenfassung

Modelltransformationen spielen eine Schlüsselrolle in automatisierten Software-
Entwicklungsprozessen. Der moderne Trend geht in Richtung Spezifikation der Soft-
ware mit einem abstrakten Modell und dessen schrittweiser Verwandlung zum Pro-
grammiercode. Es ist sehr wichtig, dass der Programmiercode der ursprünglichen
Spezifikation entspricht. Deswegen ist eine wichtige Frage einer solchen Modell-
transformation, ob das transformierte Modell die Verhaltenseigenschaften des Aus-
gangsmodells erfüllt.

In dieser Doktorarbeit wird eine neue Methode für die Spezifikation von einer
Modelltransformation entwickelt und es wird gezeigt, dass die zu Grunde gelegte
Modelltransformation korrekt ist. Dabei bedeutet Korrektheit, dass die Verhalten-
seigenschaften bei der Modelltransformation erhalten bleiben. Die Methode wird in
dem Ansatz der modellgetriebenen Architektur eingeführt, wo ein Metamodell für
modellierende Sprachen definiert wird. Ein Metamodell ist spezifiziert anhand ob-
jektorientierter Ansätze, wo die Diagramme auf Graphen basieren und sind manch-
mal mit textuellen Informationen angereichert. Von daher kann ein Metamodell
auch als ein Graph bezeichnet werden. Die Modelltransformation ist dann anhand
von Triple Graph Grammatik definiert.

In dieser Doktorarbeit werden Sprachen benutzt, die Verhaltenssemantik bein-
halten, welche wiederum mit der Graph Transformation System Methode definiert
sein kann. Hierin wird die Graph Transformation zweimal verwendet: Spezifikatio-
nen für Modelltransformation und für Verhaltenssemantik. Als Ergebnis der An-
wendung der Graph Transformationen zu dem Graph, der ein Modell bezeichnet,
wird ein Labelled Transition System (LTS) erzeugt. Ein LTS vertritt einen Satz
von allen möglichen Transitionsfolgen, die das Systemverhalten beschreiben sollen.

Eine temporale Logik, die ACTL (Aktionbasierte Logik von CTL∗) genannt
wird, wird verwendet, um die Verhaltenseigenschaften des Modells in ein LTS zu
spezifizieren. Vollständige Erhaltung der Verhaltenseigenschaften bedeutet, dass
ein LTS, welches für jede Instanz von Modell erzeugt wurde, und weiteres LTS,
generiert für ein korrespondierendes Zielmodell, können nicht unterschieden werden
durch den Wahrheitswert von ACTL Formeln. Wenn beide LTS die gleichen ACTL
Eigenschaften aufweisen, dann werden diese LTSs ACTL äquivalent genannt.

Die Methode basiert auf dem Ansatz einer Äquivalenzbeziehung (schwache
Bisimulation) über LTS, welche das Standardkonzept in der concurrency Theorie
ist. Normalerweise benutzt man diese Äquivalenzbeziehung um Berechnungen zu
vergleichen und zu entscheiden, ob sie tatsächlich äquivalent sind oder nicht. In
dieser Doktorarbeit wird gezeigt, dass schwache Bisimulation auf LTS die ACTL
Äquivalenz impliziert. Um die Erhaltung der Verhaltenseigenschaften während der
Modelltransformationen zu reifen, ist es erforderlich der schwache Bisimulation auf

LTS von Anfangs- und Ausgangsmodellen zu erstellen.
Zusammenfassend bietet die Methode eine Leitlinie, wie Modellierungssprachen

und Modelltransformationen spezifiziert werden können, damit es möglich ist zu
zeigen, dass spezifizierte Modelltransformation semantisch korrekt ist. Sie führt
einen Beweis aus der zeigt, dass die definierte Äquivalenz eine schwache Bisimulation
ist. Zusätzlich wird erklärt wie die Verhaltenseigenschaften eines Ausgangsmodell
für eine Zielsprache interpretiert werden können durch die Benutzung von Triple
Graph Grammatik Transformation und der schwache Bisimulation.

Ferner wurde die Methode mit einer Fallstudie bestätigt, wo eine Modelltrans-
formation zwischen zwei Modellsprachen definiert wurde: Calculus of Communica-
tion Systems (CCS) und Petri Netze. Das Hauptziel der Fallstudie ist, zu zeigen,
wie man beweist, dass die definierte Modelltransformationen das Semantikverhalten
beibehält. Sie illustriert die Spezifikation der Verhaltenseigenschaften für CCS und
die Interpretation bezüglich der Petri-Netz-Sprache.

Acknowledgements

My way to this PhD was very long and excited. It was accompanied with my move
to Germany, very unfamiliar and full of surprises country with mystery people. In
that early ages I was afraid of nothing and was open to all forthcoming adventures
and challenges. Luckily, there were many of them. Some of them made me quite sad
sometimes, but now I remember all gathered experience with a smile. If somebody
will propose to repeat these long path, I would certainly agree!

Among the numerous people, which accompanied me during last years, firstly
I would like to thank Prof. Dr. Gregor Engels for choosing me among the other
candidates and thereof giving me a chance to work in his working group. Being
a very busy professor, Prof. Dr. Gregor Engels still managed to find a time to
supervise me. Another important person is Prof. Dr. Heike Wehrheim, who invested
time in working with me. Furthermore, I would like to thank Prof. Dr. Leena Suhl
Prof. Dr. Kleine Büning, Dr. Theodor Lettmann for joining the board of examiners.

I am very grateful to the International Graduate School (IGS) for financial
support of my studies. I am especially thankful to Prof. Dr. Eckhard Steffen
(Director of IGS), who came in Novosibirsk to tell students about this program
personally. My special thank is for the IGS team for the organization of different
events, which gave me a chance to know the other PhD students and the area where
they are specialized closer.

In the first two years of my studies I was involved in a project, where I worked
with very interesting people, such as Prof. Dr. Heike Wehrheim, Prof. Arend
Rensink, Christian Soltenborn, Prof Dr. Barbara König and Mathias Hülsbusch. I
thank all of them for interesting scientific ideas, for introducing me their style of
work and communication. During this time I have got a lot of experience working
on the research topic.

For sure, I would like to mention my colleagues, both former and present. Be-
sides providing critical views on my work, they introduced me a German culture and
German traditions. In particular, I would like to thank Dr. Martin Assman, Dr.
Alexander Förster, Christian Soltenborn, Dr. Joel Greenyer and my Pakistani col-
league Zille Huma for a strong support, when I arrived in Germany. A very special
thank is for our technician, Friedhelm Wegener, and secretary, Beatrix Wiechers,
which make my stay in Germany pleasant. In this part it is appropriate to thank
my assistants Erik Bonner and Wilfried Bröckelmann for investing their time for
correcting my English and German respectively.

During my stay in Paderborn I became close to many people, who turn to
be very reliable friends. They kept me confident (which is really important in my
case). Special thanks to Mariana Reyes, Natalia Akchurina and Valentina Avrutova.
Although I visited Russia only few times during my studies in Germany, I have still

very good friends there, which stay close after passing so many years. Last years
they supported me in a distance and, for some reasons, always believe in me, among
them Elena (Un) Kim, Irina (Golovina) Molodih and Irina Posrednikova.

Finally, this work would not have been possible without unlimited support and
encouragment from my partner Erik, who came unexpectedly in my life and since
then makes me happy every day. A special thank to my family, for being always
somewhere nearby.

Short contents

Short contents · viii

Contents · ix

1 Motivation and Overview · 1

2 Problem Statement · 11

3 Foundations of Graph Transformations · 35

4 Equivalence Relation on LTS · 59

5 Method for Semantics Preserving Model Transformation · 81

6 Case Study: Model Transformation of CCS into Petri Nets · 103

7 Conclusion · 183

Bibliography · 189

List of Figures · 204

viii

Contents

Short contents viii

Contents ix

1 Motivation and Overview 1
1.1 Role of Models in Software Development 3
1.2 Model-Based Software Development Process 5
1.3 Correctness of Model Transformation 6
1.4 Objective of this Thesis . 8
1.5 Solution Idea . 8
1.6 Structure of this Thesis . 10

2 Problem Statement 11
2.1 Model-Driven Architecture Approach 11
2.2 Requirements for Model Transformation 15
2.3 Survey of Techniques for Semantics Preserving

Model Transformations . 16
2.3.1 Overview of Specific Approaches 16
2.3.2 Discussion . 21
2.3.3 Conclusion from the Survey 22

2.4 Concept of our Method . 22
2.4.1 Syntax Definition . 23
2.4.2 Behavioural Semantics Definition 29
2.4.3 Semantics Preserving Model Transformation 32

2.5 Summary . 34

3 Foundations of Graph Transformations 35
3.1 Graphs . 36

3.1.1 Graphs and Typed Graphs 36
3.1.2 Type Restriction . 38
3.1.3 Attributed Graphs . 39

ix

x CONTENTS

3.2 Graphs as a Tool for Syntax Definition 41
3.3 Graph Transformations . 44

3.3.1 Introduction . 44
3.3.2 Basic Definitions for Graph Transformations 45
3.3.3 Injective and Non-injective Matches 46
3.3.4 Important Notation . 47
3.3.5 Universal Quantification 48
3.3.6 Graph Transformations for Attributed Graphs 50

3.4 Behavioural Semantics Based on Graph Transformations 51
3.5 Model Transformation Based on Graph Transformations 54
3.6 Graph Transformation Tool . 56
3.7 Summary . 57

4 Equivalence Relation on LTS 59
4.1 General Approach . 59
4.2 Transition Systems . 63
4.3 Bisimulation as Type of Behavioral Equivalence 65
4.4 Properties Specification over LTS 67

4.4.1 Why ACTL . 68
4.4.2 Syntax of ACTL . 68
4.4.3 Semantics of ACTL . 69
4.4.4 Behavioural Properties Specification with ACTL 70

4.5 ACTL Equivalence and Weak Bisimulation 74
4.5.1 ACTL Equivalence . 74
4.5.2 Preservation of ACTL Formulas by Weak Bisimulation . 74
4.5.3 Additional Theorem about ACTL Formulas Preservation 78

4.6 Summary . 79

5 Method for Semantics Preserving Model Transformation 81
5.1 Problem Definition . 82
5.2 Proposed Solution . 83
5.3 Method . 85

5.3.1 Language Syntax (Step 1) 85
5.3.2 Language Semantics (Step 2) 86
5.3.3 Mapping over the Rule Systems (Step 3) 87
5.3.4 Model Transformation (Step 4) 88
5.3.5 Establishment of Weak Bisimulation (Step 5) 89
5.3.6 Summary . 96

5.4 Interpretation of Behavioural Properties 96
5.5 Summary . 101

6 Case Study: Model Transformation of CCS into Petri Nets 103

CONTENTS xi

6.1 CCS Language (Steps 1-2) . 106
6.1.1 Original Syntax and Semantics 106
6.1.2 From EBNF to Meta-Model 108
6.1.3 From Interleaving Operational Semantics to Semantics

Defined by Graph Transformations 112
6.1.4 Semantics Preservation 122

6.2 Petri Nets (Steps 1-2) . 139
6.2.1 Syntax . 139
6.2.2 Semantics . 140

6.3 Mapping over the Rule Systems (Step 3) 142
6.4 Model Transformation Specification (Step 4) 144

6.4.1 TGG Model Transformation 144
6.4.2 Mapping of Well-Formed CCS Graphs to Petri Nets . . 145
6.4.3 Graph Transformation System 148
6.4.4 Auxiliary Notation for CCS Graphs 157
6.4.5 Important Observations about CCS Graphs 161

6.5 Correctness of Model Transformation (Step 5) 163
6.5.1 Auxiliary Notation for Corresponding Nodes 163
6.5.2 Important Observations about Corresponding Structure 164
6.5.3 Definition and Proving of Weak Bisimulation 167

6.6 Properties Interpretation for Petri Nets 177
6.6.1 System Design . 177
6.6.2 Properties Specification 180
6.6.3 Properties Interpretation 181

6.7 Summary . 182

7 Conclusion 183
7.1 Contribution of this Thesis . 183
7.2 Analysis of the Method . 184

7.2.1 Restrictions . 184
7.2.2 Model Transformation 184
7.2.3 Proof Statement . 185
7.2.4 Proof Algorithm . 185

7.3 Discussion of the method . 185
7.4 Overview of Publications . 186
7.5 Future Research . 187

Bibliography 189

List of Figures 204

CHAPTER 1
Motivation and Overview

Software development is one of the serious growth areas in the IT industry. The
important aspect of this area is to find a concept which effectively delivers the broad
range of customer requirements and industrial demands into a qualitative solution.
The rapid progress of the IT industry led to the point where technologies became
very complex. Satisfying customer demands and delivering qualitative solution have
turned a software development into a difficult process.

A qualitative solution is defined very broadly, but the main characteristics are
that it must correspond to the modern standards, and be cheap and reliable. To
reach these characteristics analysis of customer demands prior to implementation
is required. Analysis helps to create a better view of a system before it is imple-
mented. Analysis on the earlier stages of software development process assumes the
specification of a system with a formal model and its verification. It has been shown
[McC04] that a bug found in the early stages (such as requirements specification
or design) is cheaper in terms of money, effort and time, to fix than the same bug
found later on in the process.

The goal of the verification process within the software development process is
formally proving the correctness of a design model with respect to a certain formal
property. There are different verification methods. In one such mehtod a design
model has an underlying formal model and the software properties are specified
with a formal language, e.g. with a Computation Tree Logic [BCG88], according to
customer requirements. Then the properties are verified against the formal model.

Before we go deep into detail, we provide a small case-study of a software de-
velopment process based on the famous V-Model development method [VMO] (see
Figure 1.1). This method proposes a sequential process for system design and verifi-
cation and consists of several stages. The process starts with a definition of concrete

1

2 CHAPTER 1. MOTIVATION AND OVERVIEW

Figure 1.1: The V-Model development method

requirements derived from customer demands. The next stage is an outline design
model of the system on an abstract level, which is followed by a detailed design
model. On each step the design is verified. The reason for this is that verifica-
tion of the design model is mostly cheaper than verification and validation of an
implemented system. The implementation stage in which code is generated is not
the last, because there is a need to check if the system works as the customer re-
quired. Therefore, the software is verified against primary design. The final step is
an acceptance verification, where the customers demands are verified. In case the
customer is not satisfied, the process of system design is repeated.

In multi-stage software development process a design model is not always spec-
ified within one modelling language. In order to ensure that a model on the next
stage fulfills the same properties as its predecessor, the properties must be inter-
preted and then verified (see Figure 1.2).

Among the variety of requirements specified for the system, there are some that
describe the behaviour of the system. For example, “the program must always termi-
nate” is a requirement concerning the behaviour. Specified properties that describe
such requirements are called behavioural properties. To verify the behavioural prop-
erty we need formal behavioural semantics, which describe the meaning of a design
model. In this thesis we use executable behavioural semantics. That means we can
get a formal model of behaviour which displays the transitions. Then behavioural
properties could be verified towards a formal behavioural model.

Verification of models brings a lot of advantages to the software development
process, however the progress has not held yet. The modern tendency is towards
automation of the software development process, where an automated model trans-

1.1. ROLE OF MODELS IN SOFTWARE DEVELOPMENT 3

Figure 1.2: Idea of model transformation verification (green circle with an exclama-
tion mark)

formation plays an important role. The task of partial or full model transformation
is a conversion of a source model into a target model (see Figure 1.2 the exclamation
mark). This helps to reduce the costs and make the software development process
more reliable. The next step on the way to full automation is verification of model
transformation instead of verification of a target model.

This thesis addresses the idea of specification of model transformation between
two stages of the software development process and ensuring its correctness, in
the sense that behavioural properties are preserved during model transformation.
The advantage is that firstly, there could be a lot of work done automatically, and
secondly, there is no need to verify a design model on the next stage.

1.1 Role of Models in Software Development
Software development tends to be complex not only in the sense of technology
complexity, but also because of its interdisciplinary nature, i.e stakeholders with
different backgrounds are involved. In order to reach a common understanding
about a problem, there is a need to describe a problem using terms that are familiar
to people who work in the domain of the problem, rather then in terms only familiar
to IT experts.

Among existing concepts of information representation, models are widely used
for elaborate tasks. Models are attractive because they allow a problem to be pre-
cisely described in a way that avoids going into technological detail. Thus, models
are normally more willingly accepted by domain experts than programming lan-
guages for example. Being defined as simple constructions, mostly with graphical
interface, models can be written in formal notation and be involved in formal proofs.
There are existing common standards that are used by domain experts and devel-
opers.

4 CHAPTER 1. MOTIVATION AND OVERVIEW

Figure 1.3: Incremental abstraction of programming languages (reproduced from
[GPR06])

Models are brought to the software development process because they are a
promising tool for overcoming the current problems of the software development
process. One such problem is the dominance of technical issues. Since a variety of
technologies are involved in software development, an overview of the main processes
is hard to get without a simplified view. Another important issue concerns the
necessity having different views of the system, such as internal and external parts
of the projects.

For sure, models are not the only tool that should be used to overcome the
problems addressed above, it is still possible to use the concepts based on textual
descriptions. However, the general direction in which development of software lan-
guages is changing indicates a tendency towards increasing programming languages
abstraction [GPR06]. In the past, the abstraction level from machine code was
raised to higher level languages and to object oriented languages (Figure 1.3). Ac-
cording to the current trends, model-based languages are likely to be the next level
of abstraction [Béz05].

Today, models are involved in the integral part of software development process
design and its analysis. A growing collection of methods, techniques and theory for
modelling help to find the solution for complicated tasks. In this thesis we show that

1.2. MODEL-BASED SOFTWARE DEVELOPMENT PROCESS 5

Figure 1.4: Automated Model Transformation (AMT) in the MDA approach

models are a formal tool for software development design, which can be correctly
turned into a less abstract language.

1.2 Model-Based Software Development Process
Automation plays an increasingly important role in the world economy. Engineers
try to combine automated devices with mathematical tools to create complex sys-
tems for a rapidly expanding range of applications and human activities. An auto-
mated development process of a software development system entails many advan-
tages, such as reduction of human interaction in technical issues, a cut in expendi-
ture, time saving and concentration on the tasks requiring subjective understanding
high-level tasks such as exploring problem domains.

Among the existing proposals for automated software development process so-
lutions, the Model-Driven Architecture (MDA) [MDA, KWB03] approach is one of
the favorite. The MDA approach is a model-based approach, which provides a set
of guidelines for the structuring of specifications, which are expressed as models.
The benefit of MDA is that it separates application knowledge from implementation
technology by performing two different models for platform independent and plat-
form dependent layers. Therefore, the potential for porting of a model to different
platforms is high (see Figure 1.4).

The main idea of the MDA is to perform full or partial automated transforma-
tion of specification into code. This means that the designer must only provide a
specification of a Platform Independent Model (PIM) on the abstract level, then a
Platform Specific Model (PSM) and executable code can be automatically gener-
ated. In context of the MDA, model transformation is a set of rules that together
describe how source models are transformed into target models, where a target
model could also be code.

There are two types of model transformation in the MDA: horizontal and vertical
model transformations [Chr04, RPH+03]. The former are used to restructure a
model in order to transform a model to a more technical level, therefore affecting
two levels of abstraction. The latter, by contrast, keeps the models on the same

6 CHAPTER 1. MOTIVATION AND OVERVIEW

level of abstraction. They are used to refine or to abstract a model during forward
or reverse engineering.

The main problem of the automated MDA approach today is a big semantic
gap between the business requirements and execution code. The division of the
software development process into task units according MDA concepts still leaves
a big gap between PIM and PIM, or PIM and PSM. Unlike a transformation,
e.g., a transformation from PSM to code (since PSM is very close to code), inter-
model transformation are not easy to realize. In the following, simple example
demonstrates this problem.

Model transformation definition assumes the existence of a mapping between
elements of transformed models. On the intuitive level mapping is defined for the
elements that perform similar behaviour. The thing is that even if the mapping is
set for some elements, the correctness of model transformation is not guaranteed.
For example, one could assume that the Token element of the UML Activity dia-
grams [UMLb] could be mapped to the program counter if the model transformation
between the UML Activities and programming language is needed. The assumption
will be only partially correct, because UML Activity specification allows existence
of several Token elements during run-time, however the existence of two similar
program counters would have another meaning.

The problem of semantic gap between modelling languages could be solved to
a considerable extent by specifying model transformation in a special way. The
specification of model transformation must be possible to verify, which means to
ensure that it preserves a class of properties.

In this thesis we propose a solution for specification of model transformation and
ensuring that the specified model transformation is correct. Thus, we emphasize two
stages in the software development process (Figure 1.5). These stages are performed
by two actors. Firstly, a model transformation expert, who is well informed about
PIM and PSM specification languages, specifies a model transformation. Secondly,
a quality assurance expert in verification technologies performs a formal proof of its
correctness.

1.3 Correctness of Model Transformation
A model transformation is called correct when the transformed model still fulfills
the properties of the source model (see Figure 1.6). For example, if a source model
guarantees that a program must terminate, then the target model must always
guarantee this property too.

Formal verification methods help to ensure the correctness of model transfor-
mation. The necessity of formal verification methods is growing each day due to
the size of software systems and complexity of error detection. The primary ideas
of these methods is to prevent deviation of software from its expected behavior.

1.3. CORRECTNESS OF MODEL TRANSFORMATION 7

Figure 1.5: Automated model transformation and its verification

Figure 1.6: The main question for an automated model transformation

Although, the MDA approach concept helps to overcome many problems related
to the software development process, the MDA does not give a precise answer on
how to ensure that a model transformation is correct regarding the preservation of
behavioral properties. This fact motivates people to find a solution on their own.

So far, there has not been a great deal of investigating into verification techniques
that could give a guarantee about preservation of behaviour properties, in particular
in those cases where the source and target languages are different. There exist
several approaches in the area of compiler [Gle03, NL97], where a compiler has a
role of model transformation and the correctness of going from code to a lower level
code is ensured. Since model to code transformations are different to inter-model
transformations due to the different nature of compiler and modelling languages,
the techniques used in compilers are not directly applicable in our case.

This thesis provides a solution for specification of model transformation between

8 CHAPTER 1. MOTIVATION AND OVERVIEW

modelling languages and ensuring its correctness in the sense of behavioural prop-
erties preservation. We consider a strong criteria of correctness: preservation of all
behavioural properties for all models defined by some language.

1.4 Objective of this Thesis
The objective of this thesis is to supply a method for the specification of model
transformation and ensuring that the specified model transformation is correct in the
sense that it preserves behavioural properties. The method must fit the standards of
modern modelling languages equipped with formal behavioural semantics. It must
give a guarantee of correctness for a preservation of a broad class of behavioural
properties. The method must be well adopted within some community.

The method must be in particular illustrated on a concrete example of exist-
ing languages: Calculus of Communication Systems (CCS) [Mil95] and Petri nets
[Rei85]. The languages fit the idea of horizontal model transformation in the MDA
approach. Both languages are used for model specification on a platform indepen-
dent level. The CCS language is used for modelling concurrency, and Petri nets are
widely used to simulate nondeterministic computation. The main requirement for
the case study is to apply our method and additionally illustrate the preservation
of behavioural properties for the target model.

1.5 Solution Idea
In this thesis we propose a solution for ensuring behaviour preservation during
model transformation. The solution consists of the following steps:

(I) Formal specification of source and target models,
(II) Formal specification of model transformation,
(III) Comparison of behavioural models and proving that the behavioural proper-

ties of a source model are preserved during model transformation.

For formal specifications (I) and (II), we decided to use graph transformation
rules [BH02, Roz97], because the graph transformation approach has a number
of advantages. First of all, graph transformation rules are specified completely
formally; this is important for our final goal of proving that our transformation is
behaviour preserving. Second, due to their visual appearance, graph transformation
rules are relatively easy to understand. Moreover, due to the availability of tools
for graph transformation rules, the transformation is executable.

We specify syntax of the modelling languages by means of graphs and the be-
havioural semantics by means of graph transformation rules. In this case, graph
transformation rules describe the changes of a model. The specification of syntax
with graph allows to specify model transformation with graph transformation rules.

1.5. SOLUTION IDEA 9

Figure 1.7: General idea for solution

Behavioural semantics specified by means of graph transformation rules generate
a transition system by step-wise application to a source graph. A transition sys-
tem then serves as a domain for comparison of the behavioural semantics, i.e. a
transition system is a basis for step (III).

A transition system is a perfect common domain for comparison of different
modelling languages with formal behavioural semantics (see Figure 2.15). This
is because after a transition system is generated, both models fulfill (or do not
fulfill) the same observable properties at the same abstraction level. Establishing
an equivalence relation over the transition systems leads to preservation of some
class of properties.

In this thesis we are going to study branching-time behaviour over transition
system. Weak bisimulation [BK08] is one such equivalence relation. It aims to
identify transition systems with the equivalent branching structures, and which can
simulate each other in a stepwise manner. Roughly speaking, a transition system
TS1 can simulate transition system TS2, if every step of TS1 can be matched by one
(or more) steps in TS2. Weak bisimulation denotes the possibility of mutual step-
wise simulation. Since weak bisimulation is one of the most discriminating notions
of behavioural equivalence (essentially preserving all properties in any reasonable
temporal logic), we call this full semantic preservation.

In this thesis we also explain how behavioural properties can be specified over the
transition system. For this, we use a temporal logic, where graph transformation
rules play a role of atomic propositions. Then we use the weak bisimulation to
interpret the properties of a source model for a target model.

10 CHAPTER 1. MOTIVATION AND OVERVIEW

1.6 Structure of this Thesis
The core of this thesis is the introduction of a method for proving the correctness
of model transformation, which fulfills the above stated requirements. The presen-
tation includes an explanation of the involved techniques.

In Chapter 2, we provide an in-depth introduction to the MDA architecture with
a definition of the problem we try to solve. We specify formal problem statement
and give a reader an idea how we are going to solve it.

Chapter 3 explains the basic notions of graph transformation. Additionally,
there is a discussion of application area of graph transformation, such as definition of
abstract syntax for modelling languages, as well area for description of behavioural
semantics and model transformation by means of graph transformation.

In Chapter 4 we elaborate the ideas of behavioural properties verification. The
goal of this chapter is to establish a connection between (1) the class of properties,
which hold for some transition system, and (2) an equivalence relation over tran-
sition systems. By showing that (2) implies (1), we achieve the objective of our
method.

Our method for specification of model transformation and ensuring its correct-
ness is explained in Chapter 5. The method is illustrated on two sample languages.
Additionally, it is shown how some properties of a source model could be interpreted
for a target model.

The applicability of the proposed method is demonstrated in Chapter 6, which
contains elaborate case study targeting model transformation between two real lan-
guages: CCS and Petri nets.

Chapter 7 concludes this thesis. It provides a summary of the presented ap-
proach, gives a critical look at the proposed method and draws perspectives for
future work.

CHAPTER 2
Problem Statement

The focus of this thesis is the behaviour preserving model transformation within the
Model-Driven Architecture (MDA) [MDA, PM07] approach, which is a promising
model-based approach for application design and implementation of software sys-
tems. This chapter provides an in-depth introduction to this topic, elaborating on
statements made in Chapter 1.

We start with a description of the MDA approach, in which we indicate a prob-
lem connected with reliability of model transformation (Section 2.1). To increase
the reliability we propose to ensure the preservation of behavioural properties during
model transformation. We specify the requirements for behaviour preserving model
transformation in Section 2.2. Based on these requirements, we present a survey of
existing approaches in Section 2.3. Because non of the existing approaches fulfill all
our requirements, we investigate a method for ensuring the behavioural semantics
correctness of model transformation (Section 2.4).

2.1 Model-Driven Architecture Approach
The MDA standard is suggested by the Object Management Group (OMG)1. It en-
courages efficient use of models in the software development process and is becoming
widely referenced in the industry.

The MDA specification provides a solution for a wide range of problems con-
nected with the software development process. The main difference from the tra-

1OMG specification is based on an ANSI/IEEE standard 1471 [GPR06], the shorten form of
‘Recommended Practice for Architecture Description of Software-Intensive Systems‘. In 2007 this
standard was adopted by ISO/IEC JTC1/SC7 as ISO/IEC 42010:2007, ‘Systems and Software
Engineering - Recommended practice for architectural description of software-intensive systems‘.

11

12 CHAPTER 2. PROBLEM STATEMENT

Figure 2.1: A standard approach for software development vs. the MDA approach

ditional software development cycle is that the MDA approach supports software
development on a model-based basis, where each stage is a different level of ab-
straction. These levels fit into two categories: platform independent and platform
specific. The OMG defines a Platform Specific Model (PSM) as a model that either
has a platform neutral character (e.g., object oriented programming, component
based development) [GPR06], is implemented within the concepts that involve a
specific technology of a certain standard (e.g., Common Object Request Broker Ar-
chitecture, CORBA, Java Enterprise Edition, Java EE), or is implemented for tech-
nology with specific concepts of one particular manufacturer (e.g., Microsoft.NET,
IBM WebSphere, Java EE). The idea of MDA is to separate a platform indepen-
dent level from platform specific details and thus remain as close as possible to the
problem domain.

A Platform Independent Model (PIM) is specified without platform specific
details, thereby remaining as close as possible to the problem domain. On different
stages of abstraction (see Figure 2.1) PIM is extended with platform specific details
and finally turning into PSM. Thus, by using MDA, it is expected that the final
solution will closely address the original problem domain.

By introducing PIM and PSM to the software development process, the MDA
approach provides two main advantages. Firstly, the MDA simplifies migration
of applications to new platforms by systematic abstraction from technical aspects.
The same PIM can be automatically transformed into multiple PSMs for different
platforms (see Figure 2.2). Therefore, everything specified at the PIM level is
completely portable. Secondly, shifting the focus from code to PIM directs attention
to solving the business problem. This results in a system that better fits with the
needs of the end user.

2.1. MODEL-DRIVEN ARCHITECTURE APPROACH 13

Figure 2.2: Vertical and Horizontal Model Transformations (VMT and HMT, re-
spectively) in the MDA approach

The model-based software development suggested by the MDA can be described
as follows. In the first stages of the MDA specification, the design model of a system
is made on an abstract or a platform independent level. In the next stages, the PIM
could be refined (PIM to PIM transformation in Figure 2.2), but finally the PIM
evolves into a PSM. In the final stage, the code implementation is performed.

The main idea of the MDA approach is to automate the software development
process. Therefore, model transformation plays an important role. A model trans-
formation in the context of MDA is a formal model which defines how a source
model could be transformed into a target model by means of rules. As can be
seen in Figure 2.3, which depicts a fragment of the MDA meta-model for its main
concepts, a model transformation defines the changes between PIM and PSM, PIM
and PIM, PSM and PSM.

The concepts of stage-by-stage transformation described above for the software
development process are not simple to implement. Unlike transformation from,
e.g., PSM to code, the large semantic gap between modelling languages makes
inter-model transformation a complex task. PIM and PSM normally are described
within completely different domains and concepts. Even two PIM languages could
differ a lot, which complicates the process of transformation. However, even when
it is possible to define a model transformation, there is no standard method in
the MDA specification to ensure the source model was transformed correctly. Cor-
rectness can be understood in many senses, such as syntactical correctness, static
semantical correctness, behavioural correctness and others. The problem of the big
semantic gap between modelling languages could be solved to a considerable extent,
by showing preservation of some class of properties [EMHL03].

In this thesis, we specify a method for defining of a model transformation be-

14 CHAPTER 2. PROBLEM STATEMENT

Figure 2.3: Fragment of the MDA central concepts

tween two different languages, and for ensuring the preservation of behavioural prop-
erties during model transformation.

The behavioural properties describe behaviour of a system and deal with notions
such as necessity, possibility end eventually. An example of a behavioural property
is a safety property, which is characterized as ”nothing bad should happen”. The
mutual exclusion property [BK08] – always at most one process is in its critical
section – is a typical safety property, or the traverse-to-completion property [Boc04],
which characterizes the completion of one of the input pins. In approach [MCG04]
such properties are also characterized as mathematical properties:

“If the transformation language or tool has a mathematical underpin-
ning, it may be possible, under certain circumstances, to prove theoret-
ical properties of the transformation such as termination, soundness,
completeness, (syntactic and semantic) correctness, etc.”

With our thesis we extend the MDA approach with the concept of verification,
i.e. showing the correctness of model transformations with respect to a formal
specification using formal methods. In Figure 2.4 we add a behavioural property
and a software requirement to the main concepts. A behavioural property represents
a software requirement, which is described by domain. The behavioural property
holds for a model. By verifying that behavioural properties hold for both source
and target models we guarantee behavioural semantics preservation during model
transformation.

2.2. REQUIREMENTS FOR MODEL TRANSFORMATION 15

Figure 2.4: Extended MDA concepts

2.2 Requirements for Model Transformation
We consider the behavioural semantics preservation during model transformation
to be a particularly important requirement. Formally, it means that we have two
modelling languages: a source language L1 and a target language L2. Let M1 be a
source model of L1 andM2 be a target model of L2 such thatM2 is a result of model
transformation applied to M1. We want that for a behavioural property, formalized
as ϕ, and its interpretation χ in the language L2, the following statement holds:

M1 |= ϕ ⇒ M2 |= χ(ϕ) (2.1)

here M |= ϕ denotes that ϕ holds for M . In addition to this, we want to specify
three additional requirements on ϕ.

1. The statement must hold for any property ϕ formalized within a language Σ.
2. The language Σ must be expressive enough to specify a wide range of be-

havioural properties.
3. The statement must hold for any model M1 of L1.

Note that the behavioural property ϕ is specified in the source language L1. There-
fore, it must be also explained the interpretation of the behavioural property ϕ for
the target model, i.e. the meaning of function χ.

In terms of the given notation we provide a definition of a model transformation
which fully preserves semantics (in the context of this thesis, we mean behavioural
semantics).

16 CHAPTER 2. PROBLEM STATEMENT

Definition 1 (Full semantics preservation in model transformation). Let MT be a
model transformation, which transforms M1 into M2. We say further, that MT is
a model transformation which fully preserves semantics iff Statement 2.1 holds for
(1) any model M1 of the source language L1, and
(2) every behavioural property ϕ that holds for M1.

We also require that the model transformation satisfies the following properties:

Syntactical correctness The model transformation translates correct models of
the source language into correct models of the target language (here correct-
ness means that a model is consistet with its meta-model).

Definedness The model transformation is applicable to every model of the source
language.

Uniqueness The model transformation defines a unique target model from a given
source model.

Bidirectional transformations To transform the source model into a target
model, and the inverse transformation to transform the target model into
source model.

Understandability The technique for specification of model transformation
should be intuitive and efficient to use, the same as the technique for the
proof of its correctness.

Adequacy The technique for the definition of model transformation must be suf-
ficiently well adopted within some community.

2.3 Survey of Techniques for Semantics Preserving
Model Transformations

In this section we provide an overview of approaches that propose a solution for
semantics preserving model transformation. We discuss the most important ones in
detail before presenting a conclusion.

2.3.1 Overview of Specific Approaches

At present there are a number of solutions for model transformation [CH06, CH03].
We consider those that preserve behavioural semantics. A Basic Distinction (BD)
can be made between approaches which
(a) aim for a general behaviour preserving model transformation technique (i.e.

goaled to finding a universal solution),
(b) approaches from the area of compiler correctness,
(c) approaches for a special kind of model transformation called refactoring,
(d) approaches which pursue specific goals (e.g., verifying some particular be-

havioural properties, dealing with some particular models),

2.3. SURVEY OF TECHNIQUES FOR SEMANTICS PRESERVING
MODEL TRANSFORMATIONS 17

(e) approaches dedicated to testing of model transformations.
There are many papers, which pursue the (b), (c), (d), (e) goals, however there

is little done among (a). Many approaches are focused on their respective goals and
can not be expected to yield a universal solution. We give an overview comparison
of approaches in this section.

We propose three characteristics for the classification of related work. The first
characteristic, denoted as purpose, concerns the main distinctions (a)–(e) between
approaches and specifies in general an idea of an approach.

Another important characteristic is a chosen mechanism. Mechanism should
be interpreted here in a broad sense. It includes techniques, languages, methods,
and so on. For example, the modern modelling language, the Unified Modelling
Language (UML) [UMLb], could be expressed with different well-established for-
malisms. The graph transformation approach [Roz97, EEKR99, BCE+99] is one of
them. It includes formalism and a set of techniques applicable to model transfor-
mation [GGZ+05, EEPT06b]. Thereby, the problem of correctness during model
transformations could be better studied within some formal approach.

An implementation is a relevant characteristic for a model transformation. This
characteristic aims the languages, to which the approach was applied. Mostly, it
is a case study, which involves real languages and model transformation between
them. The characteristic is important, since some specific features of languages, the
complexity and other important things could be observed.

We provide a summary of concrete approaches in Table 2.1. For each approach
we list its authors, a purpose, a mechanism and an implementation example. In
the first column we also mention a letter, which is related to the main distinction
criteria (a)-(e) described in the first paragraph of this section.

18 CHAPTER 2. PROBLEM STATEMENT

Table 2.1: Overview of approaches for a semantics preserving
model transformation

BD Authors Purpose Mechanism Implementation

(a) S.Glesner,
J.Leitner
[GGL+06,
Lei06]

The correct-
ness of model
transformation
specification us-
ing a theorem
prover

Triple graph
grammar
rules, Is-
abelle/HOL
(High Order
Logic)

Model transfor-
mation between
Specification
and Descrip-
tion Language
(SDL) and
Programmable
Logic Controller
(PLC)

(a) B.König,
M.Hülsbusch
[HKH10,
EK04,
RKE07]

The correct-
ness of model
transformation
specification by
establishing a
proof

Graph trans-
formations
with borrowed
context

Model trans-
formation of
sample toy
languages

(b) S.Glesner
[Gle03]

Program checking
to ensure the cor-
rectness of com-
piler implementa-
tions

Program
checking with
certificates

Code generator
based on graphs

(b) G.C.Necula,
S.P.Rahul
[NR01]

Program checking
with certificates

High-order
logic pro-
grams, high-
order logic
interpreter

Java source pro-
grams compiled
into Proof-
Carrying Code
(PCC)

2.3. SURVEY OF TECHNIQUES FOR SEMANTICS PRESERVING
MODEL TRANSFORMATIONS 19

Table 2.1: Overview of approaches for a semantics preserving
model transformation

BD Authors Purpose Mechanism Implementation

(c) G.Karsai,
A.
Narayanan
[NK08,
KN06]

Behavioural
equivalence of
the Statechart
model and the
EHA model
with respect to
reachability

Graph trans-
formation
rules im-
plemented in
GReAT[BNvBK06]

Model trans-
formation of
Statecharts
into Extended
Hierarchical Au-
tomata (EHA)

(c) P.Barbosa,
F.Ramalho,
J.Figueiredo,
A.Júnior,
A.Costa,
L.Gomes
[BRF+09]

Verification
whether the
model transfor-
mation preserves
some properties
like soundness

ATL: A model
transformation
tool [JABK08]

Model transfor-
mation of Petri
net model into
Petri net sub-
models

(c) L.Baresi,
K.Ehrig,
R.Heckel
[BEH06]

Verification of
model transfor-
mation

Graph trans-
formations,
the AGG tool

A case study
with BPEL

(c) M.Proietti,
A.Pettorossi
[PP91]

To ensure that
the transformed
programs are
equivalent to the
initial ones, when
evaluated by a
Prolog interpreter
or compiler

Logical theory Prolog programs

20 CHAPTER 2. PROBLEM STATEMENT

Table 2.1: Overview of approaches for a semantics preserving
model transformation

BD Authors Purpose Mechanism Implementation

(d) Dániel
Varró
[Var02,
Var04,
EEL+05]

Model transfor-
mation which
are syntacti-
cally correct,
the behavioural
semantic prop-
erties could be
proven by theo-
rem provers and
model checker

Graph trans-
formation
rules in VIA-
TRA

The static as-
pects of UML
models into
stochastic Petri
Nets, Trans-
forming UML
Statecharts
into Extended
Hierarchical
Automaton

(d) K.Lano,
S.K.Rahimi
[LR10]

Specification of
model transfor-
mation using
constraints and
their verification

UML-RSDS
for model
transformation

Model transfor-
mation of UML
into relational
database schema

(e) S.
Weißleder
[Wei09]

Semantic-
preserving test
model trans-
formation for
interchangeable
coverage criteria

Formal frame-
work for cover-
age criteria

Model transfor-
mation of State
machine into
System Under
Test (SUT)

(e) V.Chimisliu,
C.Schwarzl,
B.Peischl
[CSP09]

Semantic pre-
serving model
transformation,
which allows
coverage-based
test case genera-
tion

The descrip-
tion rules
are defined
with Extended
Backus Nauer
Form, the
behavioural
domain is an
input-output
labelled tran-
sition system

Model transfor-
mation of UML
Statecharts into
LOTOS

2.3. SURVEY OF TECHNIQUES FOR SEMANTICS PRESERVING
MODEL TRANSFORMATIONS 21

2.3.2 Discussion

The idea to ensure semantics preservation for a model transformation between mod-
els of different types is not new. Approach [GGL+06] presents a mechanised proof
of semantics preservation. The syntax of modelling languages within the approach
is specified by means of graph transformations. The specification is later trans-
lated into Isabelle/HOL. Unfortunately, the behavioural semantics is not given as a
certain formalism, but implemented in Isabelle/HOL directly. The question arises
if it is possible to transform correctly a given behavioural semantics into the Is-
abelle/HOL notation. The approach also misses explicit definition of the version of
bisimularity, therefore a class of preserved properties is hard to define. The proof
itself faced some problems since it was not trivial to represent graph transformations
within Isabelle/HOL. Approach [Str08] explains more about not trivial definition of
a match within Isabelle/HOL. Approach [GGL+06] was illustrated on an example of
SDL automata and PLC-code. The trivial semantics of source and target languages
throws a doubt about applicability of the method to a general case.

Another approach [EK04, HKR+10a] to ensure semantics preservation between
any given model of a source language and a resulting model of a target language was
developed in parallel with this thesis. The approach relies on modelling languages
specified by means of graph transformations and involves the technique called bor-
rowed context, that is different to the standard application of graph transformations.
The method requires an additional theory on top of the knowledge about graph
transformations and tricky changes of the original specification for a behaviour of
the models.

There is a lot of work done in the area of program checking [Gle03, NR01, NL97,
CCN06, CEI+05, MCBE06, KH08]. In the context of this area the source model is
a program, the compiler plays the role of a model transformation [AU77]. The idea
is to show that the program written in higher programming languages is correctly
translated into native machine code. The modern methods for correctness of the
compiler specification involve automated theorem provers [HV91], that brings the
compilers to a considerable confidential level. However, the methods are hardly im-
plemented for abstract modelling languages, because of the big gap between modern
modelling languages, e.g. UML, and machine code.

A special area of behavioural semantics preservation during model transforma-
tion is refactoring, when there is a need for re-implementing existing functionality
with a slightly different notation. There are some interesting approaches, for ex-
ample [NK08]. It gives an interesting idea for using graph transformations for a
model transformation, which involves using cross-links in order to show the trace
equivalence. The cross-links are special associations to link the elements of a source

22 CHAPTER 2. PROBLEM STATEMENT

model to the elements of a target model. The relation over the models is built
during the transformation and then it could be traced using the associations.

There are many other approaches in refactoring area [vKCKB05, MTR05,
GSMD03, RW07], however we present only some examples, mainly when graph
transformations are used. We included the example from the area of logic pro-
gramming, when approach [PP91] ensures that the transformation rules preserve
the semantics for Prolog programs, but the method is based on a concrete example
of the Prolog language and it is not clear how to extend it to modelling languages.

The problem of behavioural properties preservation could be solved by verifying
some concrete source and target models. For example, approach [Var04] assures the
syntactical correctness of the transformed models and propose to use a method of
model checking for verification of behavioural properties.

Testing of model transformation [Wei09, CSP09, SCDP07, CDSS02] is based on
the coverage criteria. They normally refer to a metric, which will give an idea about
how well the system was exercised by some test cases. Unfortunately, testing allows
only to check a finite number of cases and fails to ensure behavioural semantics
preservation in general.

In our survey we considered only approaches, which involve a preservation of
behavioural semantics during model transformation. There are different types of se-
mantics, i.e. denotational [Gor79], institutional and so on. The algebraic techniques
provide a tooling to define meta-models and the institutional semantics [BM10],
which specifies the satisfaction relation between models and sentences. Approach
[BKMW09] shows the institutional semantics preservation during model transfor-
mation. There were also tries to connect algebraic techniques with graph grammars
[BCM02, CFR08]. To show that some notions, as for example history preserving
bisimulation, is also decidable for graph grammars. However, these approaches stay
on a theoretical level and it is not straightforward how to apply them to the real
languages.

2.3.3 Conclusion from the Survey

We can conclude from our survey that there is no existing standard approach to
semantics preserving model transformation which completely meets our require-
ments. In particular, meeting the requirements understandability, as well as finding
a general solution, are difficult to achieve.

2.4 Concept of our Method
Summarizing the interesting ideas from the survey we want to introduce the main
concepts of our solution, which is a method that fits the idea of the MDA approach
and satisfies the requirements specified in Section 2.2. The method consists of the
following steps:

2.4. CONCEPT OF OUR METHOD 23

(I) A specification of modelling languages L1 and L2.
(II) A specification of model transformation MT over M1 ×M2.
(III) A method for showing that for all behavioural properties ϕ formalized within

a language Σ and their interpretation χ(ϕ) the following statement holds:

M1 |= ϕ ⇒ M2 |= χ(ϕ) (2.2)

The definition of modelling languages is the essential part of model transformations.
The ability to show properties preservation is closely connected with two factors: a
formalism for modelling languages and the way a model transformation are speci-
fied. Therefore, we dedicate the first two parts of this section to a widely accepted
standard for syntax definition, as well as fundamental concepts of behavioural se-
mantics definition that we use in our solution, i.e. (I). After that, we discuss the
ideas of our solution for (II) and (III).

“A well-defined language is a language with well-defined form (syntax),
and meaning (semantics), which is suitable for automated interpretation
by a computer.”[MDA]

2.4.1 Syntax Definition

Syntax of the language defines the appearance and the structure of the sentences. It
has nothing to do with the meaning of the structures which it defines. To describe
syntax of a language formally means to describe formally concrete and abstract
syntax.

The main difference is that concrete syntax defines precisely the syntactic struc-
ture according to some formal grammar, and abstract syntax in opposite avoids
some details (for instance, grouping parentheses are implicit in the tree structure)
in order to provide more abstract rules to describe the syntactical structure. The
syntax is ’abstract’ in the sense that it does not represent every detail that appears
in the concrete syntax. In this thesis we work only with an abstract syntax.

The MDA approach suggests using a meta-model proposed by the Meta Object
Facility (MOF) [MOF] and the Object Constraint Language (OCL) expressions
[OMG] to define an abstract syntax. Prior to this notation, there were other mod-
elling techniques, such as set theory, Backus-Naur-Form (BNF), natural languages
to define a language syntax. These techniques made a significant effect in the devel-
opment of the meta-model approach and the OCL notation. [MMAB+08] provides
a row of examples claiming that the traditional mathematical techniques may be
equally expressed using meta-models and OCL. We shortly introduce some tech-
niques in Table 2.2 on the example of the definition of an abstract syntax for one
modelling language, called Petri nets [Rei85]. Natural language is one of the first
modelling techniques to specify an abstract syntax. This technique uses descriptive
rules, that prescribe how the sentences could be built. In set theory mathematical

24 CHAPTER 2. PROBLEM STATEMENT

Table 2.2: Example of abstract syntax definition for Petri nets with different lan-
guages

formulas identify the structure of languages. BNF, that represents a set of derivation
rules or grammars [Cho57], is used to describe a syntax of languages from program-
ming theory. These three described techniques are predominantly text based. The
meta-model notation is in opposite designed for visual languages.

“In BNF, the syntax is presented in an entirely text based format and
although complete and theoretically fit for purpose, it presents a possi-
ble conceptual barrier to the ease of understanding for a typical human
reader. Further, BNF is overly specific regarding the nature of the syn-
tax whereas the graphical based format of UML primarily introduces the
abstract concepts in an easily accessible and pictorial manner. Recent
works such as [WK05, AP04] explore the relationships between BNF
based definitions of syntax and metamodels.” [MMAB+08]

The meta-modelling concept is currently highly accepted for the definition of
abstract syntax of modelling languages. The meta-modelling notation resembles
the notation of UML Class Diagram [UMLb] a lot, however it is mistakenly to
believe they define the same thing, because the meta-model standard is prescribed
for a definition of abstract syntax and a class diagram can specify a concrete syntax
too.

The meta-model approach is beneficial when it comes to definition of complex

2.4. CONCEPT OF OUR METHOD 25

modelling languages, consisting of several individual models. In comparison for
example to Backus-Naur-Form, when introducing a new element or combining two
different models into one requires a lot of changes and considerable extend of original
definitions, the meta-model approach allows easily model the introduced operations
into one meta-model. This feature is particularly useful for the specification of
model transformations between two different languages. The approach allows to
model completely different structures in one model.

Further, we explain the meta-model in details. The MOF-based meta-model
approach has a layered structure. Each layer specifies the level of model abstraction.
Figure 2.5 provides an overview of the OMG four-layer structure. The example is
provided for a Petri net partial specification and illustrates the main concepts. On
the topmost layer (M3) the MOF is located. It provides the construction elements
and rules that could be used for the definition of a language is meta-model. The
example of such constructs is an element Class. The usage of the element Class is
displayed on the UML layer (M2), where a fragment for the definition of the UML
meta-model is presented. There are three elements Attribute, Class and Instance
that supposed to be the constructs for the bottom layer. The element Class on the
meta-model layer is different to the MOF element Class and is connected with it
by «instanceOf» relation, that could cause misunderstanding due to the instance
issues within the one layer and within different layers. The user model layer (M1)
expresses the elements of the problem domain. The bottom layer (M0) contains the
objects that model supposes to represent. In our example there are the run-time
elements.

In spite of all mentioned benefits and a big acceptance, the meta-model ap-
proach has some shortcomings, too. In the following, we discuss them and bypass
solutions shortly, in order to avoid misunderstanding and introduce the proposed
solutions to the user. One of the drawbacks is connected with an instantiation of
the meta-model. The four-layer construction could be hardly understood due to
the similar constructions of the bottom three layers of the hierarchy. The concept
of instantiation through the layers and instantiation on the User model layer could
cause misunderstanding. There are some suggestions, that are used in this thesis
to handle the problem of instantiation.
• The MOF suggests to use meta-model concept with “as few as 2 levels and as

many levels as users define”.
• The approach [AK03] separates the dimension of meta-modelling, giving rise
to two distinct forms of instantiation. One dimension is concerned with lan-
guage definition and makes use of linguistic instantiation. The other dimen-
sion is concerned with the domain definition and thus uses ontological instan-
tiation. The linguistic instantiation is used by the modelling tools builders.
The ontological instantiation is used by domain experts. However, the MOF
language and its derivatives recognize only the linguistic instantiation. The

26 CHAPTER 2. PROBLEM STATEMENT

Figure 2.5: Illustration of the four layer structure of the UML/MOF framework
(reproduced from [OMG])

ontological instance-of relation may be defined, but it would be just an
ordinary UML association.
• The research [AK01] proposes a row of methods for modelling the multiple
modeling layers.

Example 2.4.1 (Abstract syntax for the Petri nets language). In the following,
we present an example of an abstract syntax definition of the Petri nets language.
Instead of representing the four layer structure (the M2 and the M3 layers are the
same as in Figure 2.5), we introduce only a meta-model.

Syntax of Petri nets is originally defined as a tuple N = 〈S, T, I〉, where S is a
nonempty finite set of places, T ⊆ NS

+ ×Act×NS
+ is a finite set of transitions, NS

+
denotes a multiset of places including at least one element, Act is a set of labels,
I ⊆ S is a set of initial places.

To implement such a structure with a meta-model, we do the following. For each
set we define a separate element type: Place-type element for set S, Transition-type
element for set T , Initial-type element for set I. Since transitions are defined as a
product over set S and set of labels Act, we specify an attribute for a Transition-
type element, which value corresponds to an element from Act, and we use the
associations of types source and target to implement the mapping function × of the

2.4. CONCEPT OF OUR METHOD 27

product. To specify that set I is a subset of S in the type graph, we use an association
of type Initial. We assume that each Transition-type element is always connected to
at least one Place-type element with a source edge and to at least one Place-node
with a target-edge. Therefore, each Transition-type element has at least one input
Place-type element and at least one output Place-type element. If a Place-node is
connected to an Initial-type element, it means that the place is from the set I. We
present a type graph of Petri nets in Figure 2.6 in the left.

Figure 2.6: Meta-model that represents an abstract syntax model of Petri nets

We continue with constructing an ontological instance for the specified meta-
model, that is a Petri net which describes a functionality of a simple vending ma-
chine. The vending machine can perform only several actions: it collects money,
provides a choice between juice and water, delivers a chosen drink. The Petri net
that describes the vending machine is an object diagram (see Figure 2.7 in the left).

The Petri net, which describes a structure of the vending machine, could be also
illustrated differently. The representation is easily for human understanding, when
the Petri net is depicted in the original graphical notation (see Figure 2.7 in the
right). The dark rectangles represent Transition-elements, which are labelled with the

Figure 2.7: Instance of the meta-model, which describes the vending machine, in
the left and the same Petri net in the original graphical notation in the right

28 CHAPTER 2. PROBLEM STATEMENT

correspondent actions that the vending machine can perform. The circles represent
Place-elements. The initial place is marked with an edge that has no source. The
directed arcs describe which places are pre- and/or postconditions places for which
transitions (signified by arrows).

In this thesis we do not use the meta-modelling approach directly. Instead, we
implement the meta-modelling concept with a help of graphs. Graphs is a conve-
nient tool, because meta-models, i.e. class diagrams, could be treated as labelled
graphs [BHM09, Roz97]. Then, the graph transformation rules could be used for
the specification of a model transformation [SK08]. This approach is a common one
for a definition of model transformation [FKS07] and has a number of advantages.
First of all, the graph representation brings the research to another level of abstrac-
tion. The expression of models with a formal notation allows to study the structure
of models with a theoretical approach. Besides, a graph is a promising tool with
a strong fundamental background that allows to show additional features within
a formal theory, in particular to analyse new properties of modelling languages.
Moreover, due to the availability of GTR tools, a model transformation based on
graph transformations is executable. The formal definition of graph transformation
theory will be presented in Chapter 3.

Later we consider that a graph represents an abstract syntax of our language.
The task of this graph is to specify the structure of other graphs, which are elements
of the language (see Figure 2.8). We specify how one graph complies with the other
in the next chapter.

Figure 2.8: Main concepts of language structure defined with graphs

Summary: We require an abstract syntax of the languages L1 and L2 be defin-
able with the meta-modelling approach. Abstract syntax defines the structure of a
modelling language and is called “abstract” in the sense that it does not represent
every detail that appears in concrete syntax. In this thesis, we do not work with
a meta-model directly, instead we involve graph transformation theory that brings
the research to another level of abstraction. Graph theory allows implementation
the meta-modelling layer structure and other important concepts. Since we work
only with abstract syntax in this thesis, under the word ‘syntax’ we assume abstract
syntax.

2.4. CONCEPT OF OUR METHOD 29

2.4.2 Behavioural Semantics Definition

While the area of syntax is thoroughly studied and there exist the common stan-
dards for syntax definition, the area of semantics is not so well developed and the
approaches broadly differ. There is still a big discussion and big confusion around
the definition of semantics [har04, Mos01]. The reason for this is that semantic
features are much more difficult to define and to describe.

There are many ways for semantics specification [BKMW09, BM10, SS71]. How-
ever, since we decided to define an abstract syntax with a graph, it is reasonable to
specify the behavioural semantics by means of graph transformations.

The semantics based on graph transformation rule is related to operational se-
mantics [Pad82, Plo04, Plo81, CHM00], that means that the rules describe how
elements change. The rule consists of preconditions, which have to be met for a
rule to apply, and postconditions that describe how the elements should be changed.
The state in operational semantics involves abstract syntax structure. Each rule is
supposed to transform one state into another.

The graph transformation rule bases on the same principle. It consists of two
patterns: a pattern L for preconditions and a pattern R for postconditions. The
condition, described with the pattern L, must match a graph structure. If the
match succeeds, then the matched structure is replaced with the pattern R (see
Figure 2.9). Graph transformation rules define the changes of graphs.

Figure 2.9: Graph transformation rule overview

Further, we explain how to specify the semantic domain by means of graphs.
The graph responsible for an abstract syntax (or syntax graph) consists of static ele-
ments, which describe the structure, but not behaviour. The syntax graph could be
extended with dynamic elements, which are related to the behaviour of a model. The
extended graph is called run-time graph (see Figure 2.10), which specifies semantic
domain. Graph transformation rules define the changes of the run-time graph. We
say that graph transformation rules are defined over the run-time graph. However,
the graph transformation rules are applied to the instances of the run-time graph.

Graph transformation rules compose a graph transformation system, which fully
describes behavioural semantics (the language has no other behaviour except those,
which is described within a graph transformation system). A result of the applica-
tion of graph transformation rules from graph transformation system to a graph is
a Labelled Transition System (LTS), which consists of states and transitions. The

30 CHAPTER 2. PROBLEM STATEMENT

Figure 2.10: Behavioural semantics defined by graph transformations

graphs typed over the run-time graph are the states and graph transformation rules
define the transitions, which are labelled with the names of rules (see Figure 2.10).

We have a special interest on an LTS, because an LTS is a perfect common
domain for comparison of behavioural semantics of different modelling languages
at abstract level. The comparison could be established by performing a binary
relation between states, i.e. between rum-time graphs in our case. This topic will
be discussed in detail in Chapter 4.

The idea to define a behavioural semantics for modelling languages by means of
graph transformation is not new. For example, the Dynamic Meta-Modeling (DMM)
approach [HHS01] involves the described technology. Jan Hendrik Hausmann in his
thesis [Hau05] specified the method how to define behavioural semantics for visual
languages and performed a case study for UML 2.0 Activities [UMLa]. Jochen
Küster proposed a behavioural semantics by means of graph transformations for
State Charts Diagrams [K0̈4, EHK01], as well as Sabine Kuske [Kus01]. Arend
Rensink implemented the behavioural semantics by means of graph transformation
for the TAAL language (a textual Java-like programming language) [KKR06].

Being very convenient for the application to visual and programming languages,
the graph transformations are carefully studied within scientific communities from
theoretical perspective [CHM00, CFR08]. Such questions as termination and spe-
cific properties of confluence were answered in [EEKR99]. [Cou09] presents the
graph grammars expressed in specialized logics such as monadic second order logic.
There are automated approaches based on model checking [Var02]. The verification
of structural properties is the main focus of [Str08]. The are many others interest-
ing examples, which let the impression that the graph transformation tool is in the
interest of studies and a well-accepted mechanism.

Example 2.4.2 (Behavioural semantics definition for the Petri nets language). We
return to our example of the Perti net language and give an idea, what it means
to define a behavioural semantics by means of graph transformations. Since we did

2.4. CONCEPT OF OUR METHOD 31

Figure 2.11: Run-time meta-model for Petri nets

not define graphs and graph transformation rules formally, our example gives a very
brief overview. We use a meta-model notation for a run-time graph and our pattern
(Figure 2.9) for a graph transformation rule.

The behaviour of Petri net is defined by a token flow, which could be placed only
at places. A place marked as initial indicates the presence of tokens before graph
transformation rules were applied. Depending on the direction of arcs (source and
target labels of binding edges) there are input and output places for a transition.
A transition may fire tokens, if there is a token in each input place, then the token
are copied in each output place and removed from input places.

To define a semantic domain for Petri nets, we firstly extend a meta-model
from Figure 2.6 with Token-class, which has an association with Place-class. See
the result on Figure 2.11, the element, which describes the behaviour, is colored as
green.

We present a graph transformation rule, denoted as pnMoveToken, in a textual
form. It consists of two patterns pnMoveToken = 〈L,R〉. The first pattern L defines
the conditions which must hold for a graph in order the rule has a match. It says
that there exist a transition Trans, such that all input places for a Trans have token
and there must be at least one output place. The pattern R defines how the pattern
L must look like after the rule application. It says that all output places connected
with a single transition Trans must a have token. The input places stay without
changes. It says nothing about tokens for output places, that means that they must
be removed by the rule.

Figure 2.12: Textual interpretation of the graph transformation rule MoveToken

If we consider the already examined instance, which an assumption that one place
is marked as initial (see Figure 2.7 in the left), then after step-wise application of

32 CHAPTER 2. PROBLEM STATEMENT

Figure 2.13: Example of a labelled transition system in the left and a Petri net from
the state s0 in the right

our rule to this instance, we can generate an LTS. It consists of states (s0, s1, s2,
s3), which are graphs. For example, a corresponding Petri net for a graph from
the state s0 is depicted in Figure 2.13 in the right. The transitions in the LTS are
labelled with the name of the graph transformation rule name.

Summary: In our approach we require the languages L1 and L2 be equipped with
behavioural semantics specified by means of graph transformation rules. The main
advantage of such a specification is the possibility to generate an LTS. Then two
different languages could be compared through their behavioural semantic models,
i.e. LTSs.

2.4.3 Semantics Preserving Model Transformation

Now we introduce the main concepts of our solution for specification of model
transformation and ensuring its correctness.

We consider a model as a graph and therefore specify our model transformation
by means of graph transformations, too. Thereof, we use graph transformations in
this thesis twice: once for behavioural semantics definition and then for a model
transformation specification. The scenario of our model transformation is explained
in Figure 2.14. The languages are defined by meta-models, which describe the in-
stances. The model transformation is specified with respect to the meta-models.
The specification of model transformation is implemented by a transformation en-
gine, which takes a source model as an input and returns a target model. There are
some remarks for the scenario:

• A model transformation specified with respect to the meta-models guarantees
transformation be applicable to every model of the source language.
• The usage of graph transformation tools makes our model transformation un-
derstandable, which increase the chances of widespread adoption. In addition,
the model transformation is both formally defined and executable.

2.4. CONCEPT OF OUR METHOD 33

Figure 2.14: Idea for a model transformation implementation

• Our transformation is also bidirectional, which means that it transforms the
source model into a target model, and the inverse transformation is also pos-
sible. The important idea is to keep correspondences between the equivalent
elements until the end of transformations. This will help us prove behavioural
preservation.

We deal with languages whose behavioural semantics could be formally specified
by means of a graph transformation system. As mentioned in the previous subsec-
tion the graph transformation system gives rise to an LTS, in which transitions
represent applications of graph transformation rules (see Figure 2.15). Then, an
LTS could be considered as the underlying common domain for the source and tar-
get languages. On the generated LTS we can compare the behaviour of the source
and target languages.

However, there is an obvious problem: the labels in the LTSs generated by
different graph transformation systems are not the same (transitions in LTSs are
labelled with graph transformation rule names from different systems). To solve this
problem, we analyse the graph transformation systems and map equivalent rules to
each other, i.e. rules, which perform similar behaviour. Then, the corresponding
labels of LTSs which are mapped become observable, in the sense that it is possible
to observe the actions from a point of view from the opposite LTS. All other labels
become invisible. After the labels of LTSs are mapped to a common domain, it
is possible to establish an equivalence relation over the LTS and show that the
ordering of corresponding methods is the same.

We want to establish an equivalence relation for any instance of a source meta-
model. This means that the proof needs to be performed once and then the cor-
rectness of model transformation for each particular instance is guaranteed.

Remind that our original goal is to show the preservation of behavioural prop-
erties. This can be formalized in the following way. If Q(G1) is an LTS generated
for a source graph G1, and Q(G2) is an LTS generated for a source graph G2, then
for every property ϕ and its interpretation χ for the target language the following
statement holds:

34 CHAPTER 2. PROBLEM STATEMENT

Figure 2.15: Solution idea for behavioural preserving Model Transformation (MT)

Q(G1) |= ϕ ⇒ Q(G2) |= χ(ϕ) (2.3)

There are different languages for specifying properties ϕ for LTS [Hol95, Sti95,
Lar88], however the language with temporal operators, such as CTL∗ (Computation
Tree Logic) [BCG88] is one of the most expressive [NFGR93] due to its ability to
deal with notions such as necessity, possibility, eventuality, etc. CTL∗ has been
recognized as a suitable formalism for specifying properties of concurrent systems
[EH86, BAPM83]. In this thesis we study the connections between equivalence
relation over the LTSs and the preservation of properties specified with action-based
version of CTL∗.

Among different equivalence relations over the LTSs, we are interested in a
weak bisimulation [San95]. The reason for this is that it firstly allows to take into
account the invisible steps. Secondly, it is possible to establish a connection between
weak bisimulation and CTL∗ properties. By establishing such a connection, the
equivalence over the LTSs will imply Statement 2.3.

Weak bisimulation, which is defined over the instances of run-time models, al-
lows to establish a connection between corresponding elements and run-time prop-
erties, which these elements exhibit. Therefore, in order to interpret the behavioural
properties of the source language L1 for the target language L2, we use the weak
bisimulation and correspondences, generated by a model transformation.

2.5 Summary
In this chapter we defined the requirements for semantics preserving model trans-
formation within the MDA approach. We presented a survey of related work and
concluded that there is no existing approach that completely meets our criteria.
Then, we described our idea for the solution, which is a method that consists of a
language specification, a model transformation specification itself and a method to
ensure behavioural semantics preservation.

CHAPTER 3
Foundations of Graph

Transformations

Graph transformation theory is the basis of our approach, because we use graphs
for syntax definition of a modelling language and graph transformations for two
purposes: specification of behavioural semantics and model transformation (see
Figure 3.1).

Figure 3.1: Discussion topic of this chapter

In graph transformation theory, a meta-model (which represents the syntax of
a modelling language) and its instances are considered as graphs. A graph consists
of nodes and edges, where a node stands for a class or an object and edges for

35

36 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

connections between them. A typing concept allows to specify meta-models and
their instances.

Graph transformation rules describe changes of a graph G by specifying pre-
and postconditions. A precondition is a graph L, which must have a match to
some subgraph G1 of the original graph G. A postcondition is specified as a graph
R, which replaces the subgraph G1 in G. Therefore, behaviour of a model can be
formalized as a set of graph transformation rules being applied to the graph that
represents this model.

A model transformation can be also specified with graph transformations. In
this case, a graph transformation rule formalizes the process of graph construction
(syntactical part). The triple graph grammar technique used in this thesis allows to
create the structure of a source graph and the corresponding structure of a target
graph simultaneously. Moreover, this technique allows to keep correspondences
between the corresponding nodes of source and target models, that is used later for
ensuring behavioural correctness of the model transformation.

Graphs are an expressive, visual and mathematically precise formalism for mod-
elling. Easily applied in area of visual modelling, the technique of graph transfor-
mations received the recognition of a comprehensive and reliable framework.

We proceed as follows. We turn to the main theoretical notions of graph in Sec-
tions 3.1. In Section 3.2, we explain the compatibility of the typing concept with the
MOF concept. We provide a theoretical notion of graph transformations in Section
3.3. Specification of behavioural semantics by means of graph transformations is
explained in Section 3.4. Section 3.5 introduces a triple graph grammar technique
for a model transformation specification. The graph transformation tool used for
implementation of graph transformations in this thesis is shown in Section 3.6.

3.1 Graphs

3.1.1 Graphs and Typed Graphs

Definition 2 (Graph). A graph is a tuple G = 〈V,E, src, tgt, labV , labE〉 with a
nonempty set of labels Sym, where V is a finite set of nodes, E a finite set of edges,
src, tgt : E→ V are source and target functions defined for each edge from the set
E, labV : V → SymV is a vertex (node) labelling function and labE : E→ SymE is an
edge labelling function. We always assume V ∩ E = ∅.

For a given graph G, we use VG, EG etc. to denote its components. Note that
there is a straightforward (component-wise) definition of union and intersection over
graphs, with respect to their components.

We assume that the source, target or labelling functions are consistent. This
means that a function always maps a particular argument to the same value.

3.1. GRAPHS 37

Figure 3.2: Morphism functions

Now we need to know how the graphs could be related to each other. For this
purpose we define morphisms as a structure-preserving mapping between graphs.

Definition 3 (Morphism). Given two graphs G,H, a morphism f : G→ H is a
pair of functions (fV : VG→ VH , fE : EG→ EH) from the nodes and edges of G to
those of H, respectively, which are consistent with respect to the source and target
functions of G and H in the sense that srcH ◦ fE = fV ◦ srcG, tgtH ◦ fE = fV ◦ tgtG,
labV,H ◦ fV = labV,G, labE,H ◦ fE = labE,G (Figure 3.2). If both fV and fE are
injective (bijective), we call f injective (bijective).

A bijective morphism is often called an isomorphism. Therefore, if there exists
an isomorphism from G to H, we call them isomorphic.

The next step is to define how the graphs could be structured. A frequently used
notion of graph structuring is obtained by typing graphs over a fixed type graph.

Definition 4 (Typing). Given two graphs G,T , G is said to be typed over T if
there exists a morphism t : G→ T .
A typed graph is a graph G together with such a morphism.
Given two graphs G,H typed over the same type graph (using morphisms tG and
tH), a typed graph morphism f : G→ H is a morphism that preserves the typing;
i.e., such that tG = tH ◦ f .

Example 3.1.1 (Type and typed graphs). We provide a small example of a type
graph T and a typed graph G. Figure 3.3 depicts the graphical representation of
graph. We describe the graph textually. Consider the following type graph
T = 〈VT , ET , srcT , tgtT , labV,T , labE,T 〉 with:

VT = {v1, v2}, ET = {e1},

srcT : e1 7→ v1, tgtT : e1 7→ v2,

labE,T : e1 7→ X, labV,T : v1 7→ A, labV,T : v2 7→ B.

As you see, the textual definition of a graph takes much more space and attention
then graphical definition. We shorten the textual definition of a typed graph

38 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

G = 〈VG, EG, srcG, tgtG, labV,G, labE,G〉, because it is not the main part of the ex-
ample.

VG = {v3, v4, v5}, EG = {e4, e5, e6},
.

labE,G : e4 7→ x1, labE,G : e5 7→ x2, labE,G : e6 7→ x3.
labV,G : v3 7→ a1, labV,G : v4 7→ a2, labV,G : v5 7→ b1.

The goal of the example is to illustrate that it is important to ensure that all nodes
and edges of the graph G typed over the graph T :

tG : VG 7→ VT , tG : EG 7→ ET ,

Figure 3.3: Example of a type graph T and a typed graph G

3.1.2 Type Restriction

Besides imposing some structural constraints over graphs, typing also provides an
easy way to restrict to subgraphs:

Definition 5 (Type restriction). Let T,U be graphs such that U ⊆ T , and let G be
an arbitrary graph typed over T via t : G→ T . The restriction of G to U , denoted
πU (G), is defined as the graph H such that
• VH = {v ∈ VG | ∃t(v) ∈ VU}, EH = {e ∈ EG | ∃t(e) ∈ EU},
• srcH = srcG �EH , tgtH = tgtG �EH , labH,E = labG,E �EH and labH,V =

labG,V �VH .

Example 3.1.2 (Restriction). We consider the graphs T and G from the previous
example and a graph U from Figure 3.4. The graph U consists of one node of the
type A. We show the restriction of G to U . For this, we choice only those nodes
and edges, which have a type node or edge in U . As a result we get a graph with
two nodes labelled as a1 and a2 (see Figure 3.4).

3.1. GRAPHS 39

Figure 3.4: Example of a type graph U and a restriction of the typed graph G to U

3.1.3 Attributed Graphs

The graphs become a particularly expressive formalism when attributes are allowed.
There is a number of approaches for attributed graphs [Kas06, EEPT06c, HKT02].
We do not go into detail, because the theory of attributed graphs demands a multi-
tude of algebraic definitions and this is not our primary goal. Therefore, we provide
only a very brief explanation in order to give an idea of how an attributed graph is
defined, referring the reader to the related work [EEPT06a] for more details.

In order to support graph attribution we need to introduce data type signatures,
which later could include information about types of attributes and operations on
those types.

Definition 6 (Signature). A signature is a tuple SIG = 〈s1, . . . , sn; op1, . . . , opm〉
consists of sorts si (1 ≤ i ≤ n) and operation symbols opj (1 ≤ j ≤ m)

We will define an attribute graph on the example of the following signature:
SIG = 〈int,+〉, where there is only one operation of summation.

Below, we specify an algebra signature, as

DSIG = 〈int,+; arg0, arg1, result〉

where + : int× int× int is the sort representing the summation operation, and
arg0, arg1, result are projections. If we consider the tuples 〈1, 2, 3〉 and 〈2, 5, 7〉
then the projections for DSIG would look as follows:

arg0(〈1, 2, 3〉) = 1 arg1(〈1, 2, 3〉) = 2 result(〈1, 2, 3〉) = 3

arg0(〈2, 5, 7〉) = 2 arg1(〈2, 5, 7〉) = 5 result(〈2, 5, 7〉) = 7

DSIG is an algebra, because the properties of algebra, such as the existence of
an identity element and inverse element and properties of associativity and commu-
tativity hold.

We define an E-graph, in which we distinguish between two kinds of vertices,
called graph and data vertices, and three different kinds of edges used for represen-
tation of E-graphs.

40 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

Definition 7 (E-graph). An E-graphG = 〈V1, V2, E1, E2, E3, srcj , tgtj , labVi , labEj 〉,
where i = 1, 2 and j = 1, 2, 3, V1 and V2 called graph and data nodes respectively,
E1 and E2 called graph and node attribute respectively, E3 defines the edges
between data nodes,

source and target functions
- src1 : E1 → V1, src2 : E2 → V1, src3 : E3 → V2,
- tgt1 : E1 → V1, tgt2 : E2 → V2, tgt3 : E3 → V2.
labelling functions:
- labV1 : V1 → Sym1, labV2 : V2 → Sym2,
- labE1 : E1 → Sym3, labE2 : E2 → Sym4, labE3 : E3 → Sym5.

An E-graph morphism f : G1 → G2 is a tuple 〈fV1 , fV2 , fE1 , fE2〉 with fVi : G1,Vi →
G2,Vi and fEi : G1,Ei → G2,Ei for i = 1, 2 such that f commutes with all sources
and target functions.

Components of an E-graph with an additional explanation are illustrated in Figure
3.5.

Figure 3.5: Components of an E-graph

In the following, the graphs are replaced by E-graphs in order to allow node at-
tribution. An attributed graph is then a structure, which consists of an E-graph
and a set of values that represent all possible values available on attributes values
according to some algebra.

Definition 8 (Attributed graph). Consider a data structure DSIG =
〈int,+; arg0, arg1, result〉 and a E-graph G. An attributed graph AG = 〈G,D〉,
where D is a DSIG-algebra such that]s∈SDs = dom(labV2), here S is a set of sorts
of DSIG, and dom(labE3) = {arg0, arg1, result}.

The data nodes are connected via edges from E2 to normal nodes. For each data
type s there is a domainDs containing all possible values of that data type. Instance
graphs will contain these values in nodes from V2 and connect them to normal nodes.
The structure from V2 and E3 could be considered as a bipartite graph, in which the
labels for the nodes representing the instance of algebra operation + (denoted also
as add) form one set and the nodes representing the constant data values from the
other disjoint set. The edges from E3 have the same directions, namely from the
set of algebra operations to the set of constant data values.

3.2. GRAPHS AS A TOOL FOR SYNTAX DEFINITION 41

Figure 3.6 shows an example with a bipartite graph. The nodes with values 1,
2, 3, 5 and 7 are the nodes from the set V2, they denote the attributes of some
nodes from V1 (the latter are not depicted in the Figure). The algebra operation
add is represented as a separate node with three outgoing edges, which stand for
two arguments and the result of the summation operation.

Figure 3.6: Bipartitional graph

In this thesis, in addition to DSIG, we use the following algebra signatures:

DSIGlt = 〈int,<; arg0, arg1, result〉

where <: int× int× boolean is the sort representing “less than” operation,

DSIGconcat = 〈string, ∗; arg0, arg1, result〉

where ∗ : string× string× string is the sort representing concatenation operation.

DSIGtoString = 〈int, string, toString; arg0, arg1, result〉

where toString : int × string is the sort representing an operation, which turns
integer values into strings.

3.2 Graphs as a Tool for Syntax Definition
In this section, we explain how graph theory could be used for the description of
abstract syntax. We claim that the MOF concept represented in Chapter 2 (Section
2.4.1) can be substituted with the typing concept.

A graph language represents language constructs such as graphs and edges. It
is not tied to a specific application domain, but may be used for arbitrary mod-
elling languages. In our case graph language uses directed, edge labelled graphs as
underlying data model. Below, we discuss how these graph constructions could be
used for the definition of an abstract syntax.

42 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

The type graph introduced in the previous section specifies the abstract syntax
of a graph language. We denote the relation between a type graph and a graph
language as “is represented by”. The task of a type graph is to express the specific
typed graphs. Then a typed graph “complies” to a single type graph, where a type
graph may have multiple compliant typed graphs. The task of the type graph is to
specify the structure of typed graphs, which are elements of a graph language (see
Figure 3.7). A graph language is a set of typed graphs, we denote the relation as “is
element of”. The described definition is very similar to the MOF concept [SCF+05],
if a type graph is considered a meta-model and a typed graph a model.

Figure 3.7: Relations between main concepts of graph language structure

Later we denote T st a type graph, which describes the abstract syntax of a
language. The index st stands for static in the sense that the graph T st describes
the static structure of a graph, which is not changed during the application of
behavioural semantics.

Example 3.2.1 (Abstract syntax of Petri nets). We continue with the running
example of Petri nets from the previous chapter. We define an abstract syntax with
a type graph (the meta-model for Petri nets syntax was already introduced in Chapter
2 Section 2.4, therefore we only construct its equivalent graph structure here). See
the result in Figure 3.8. All graphs of the Petri net graph language must be typed
over the graph T st

PN .

Figure 3.8: The type graph T st
PN , which describes the abstract syntax of Petri nets

The typing concept could be used for a syntax description with a four layer
structure of the MOF framework (see Chapter 2 Section 2.4.1). Here, we consider
only three layers to define a graph structure with the MOF concept.

Figure 3.9 illustrates the idea of compatibility of the typing concept and the
MOF. The layer structure is preserved, however models are defined by graphs. On

3.2. GRAPHS AS A TOOL FOR SYNTAX DEFINITION 43

Figure 3.9: Illustration of a graph language definition with the three layer structure
of UML/MOF framework

the top layer, there is a type graph T3, which defines the Element. At the layer M2
we specify a type graph T2, which includes the nodes Node, Edge and Label. The
graph T2 defines a graph structure in general. The type graph T2 is in-turn typed
over the type graph T3.

Graphs in layer M1 define the concepts of a graph language. If the top two
layers specify a part of abstract syntax of any graph language, a type graph T
specifies a conceptual part of abstract syntax of a concrete language. We will latter
use only graph T (or T st) for the description of abstract syntax. The graph G is a
typed graph, which is typed over T2, or a linguistic instance of T . At the same time
G complies T , and is an ontological instance of T (see [AGK09] for more details).
In Figure 3.9 there are different relationship types to express elements of a typed
graph. Each element of a typed graph is “typed over” a type graph T and is an
“instance of” a type graph T2.

After we specified syntax with a graph, we turn to the definition of behavioural
semantics by graph transformations.

44 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

3.3 Graph Transformations

3.3.1 Introduction

The technique of graph transformations1 is base of our method, because we use it for
specification of behavioural semantics and for definition of model transformation.
In this section, we provide important formal definitions.

To give a reader an idea of a graph transformation rule, we start with an ex-
ample of well-known Chomsky grammars [Cho57], which has a lot in common with
graph transformations. A grammar defines a formal language, which is a (usually
infinite) set of finite-length sequences of symbols that may be constructed by ap-
plying production rules to another sequence of symbols. Symbols could be of two
types: terminals (unchangeable symbol) and nonterminals (symbol to be changed).
The initial sequence contains a nonterminal. A rule may be applied to a sequence
of symbols by replacing nonterminals with those symbols that appear on the right-
hand side. A sequence of rule applications is called a derivation. Such a grammar
defines the formal language: all words consisting solely of terminal symbols which
can be reached by a derivation from the start symbol.

The grammars below describe the construction of natural numbers. The lan-
guage of this grammar is the set of all words, which a natural number can present.
We use two nonterminals (NaturalNumber and Digit) and terminal symbols (‘0‘
. . . ‘9‘) for our definition:

NaturalNumber ::= NaturalNumber Digit | Digit
Digit ::= ‘0‘|‘1‘|‘2‘|‘3‘|‘4‘|‘5‘|‘6‘|‘7‘|‘8‘|‘9‘

Graph transformation has a similar concept [PR69]. Alike grammars, graph
transformations describe the construction of graphs. However there is no distinguish
between terminals and nonterminals. All possible patterns of graph components are
nonterminals for a graph transformation rule.

“Similarly to Chomsky grammars, in the string case it is also possible
to distinguish between terminal and nonterminal symbols for the produc-
tion in grammars. In the case of nonterminals, the language would be
restricted to graphs with terminal symbols only.” [EEPT06a]

The graph transformation rule p = 〈L,R,N〉 is a tuple of graphs L, R and N (see
Figure 3.10). The graph L is a pattern which specifies preconditions. It is similar
to the left-hand side part of a Chomsky grammar. If the pattern L was found
in a graph, then it is replaced with a pattern R, which is by turn similar to the
right-hand side of a Chomsky grammar. The pattern N specifies the absence of a
structure and is an extension of left-hand side pattern L.

1The research area of graph transformation dates back to the 1970s. Today there are several
topics of intense theoretical research, which overview is given in Volumes 1, 2 and 3 of the Handbook
of Graph Grammars and Computing by Graph Transformations [Roz97, EEKR99, BCE+99].

3.3. GRAPH TRANSFORMATIONS 45

Figure 3.10: Rule-based modification of graphs

3.3.2 Basic Definitions for Graph Transformations

Further, we formally describe changes on graphs step by step. A graph transforma-
tion rule describes the change of a graph by means of a left-hand side, right-hand
side of a rule (for marking the presence of certain structures) and negative applica-
tion condition (to denote the absence of a structure).

Definition 9 (Graph transformation rule). A graph transformation rule is a tuple
p = 〈L,R,N〉, consisting of a left-hand side (LHS) graph L, a right-hand (RHS)
graph R and a graph N , which is a negative application condition (NAC).

The elements in both left and right-hand side graphs are called interface of the
rule: I = L ∩ R (in the example in Figure 3.11 the interface consists of the node
labelled A).

In order to apply a graph transformation rule to a graph, we need to define a
condition under the occurrence of LHS could be found in the start graph (also called
the host graph). We say that a transformation rule r = 〈L,R,N〉 is applicable to
a graph G, if there exists an injective match m : L→ G such that for no N ∈ N
there exists a match n : N→G with m = n �L (i.e., a negative application condition
is satisfied), and moreover, the dangling edge condition holds.

Definition 10 (Dangling edge condition). For all e ∈ EG,

src(e) ∈ m(VL \ VI) or tgt(e) ∈ m(VL \ VI)

implies e ∈ m(EL \ VI).

This condition can be understood by realising that the elements of G that are in
m(L), but not in m(I) are scheduled to be deleted by the rule, whereas the elements
in m(I) are preserved. The condition then implies that if a node is deleted, then so
are all its incident edges.

Given such a match m, the application of r to G is defined by extending m
to L ∪ R, by choosing distinct “fresh” nodes and edges (outside VG and EG,
respectively) as images for VR \ VL and ER \ EL and adding those to G. This
extension results in a morphism m̄ : (L ∪R)→ C for some extended graph C ⊇ G.
Now let H be given by

VH = VC \m(VL \ VR), EH = EC \m(EL \ ER)

46 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

Figure 3.11: Basic graph transformation rule concept

together with the obvious restriction of srcC , tgtC and labC to EH . H is called the
target of the rule application; we write G −r,m−−→ H to denote that m is a valid match
on host graph G, giving rise to target graph H, and G −r→ H to denote that there
is a match m such that G −r,m−−→ H. Note that H is not uniquely defined, due to
the freedom in choosing the fresh images for VR \ VL and ER \ EL; however, it is
well-defined up to isomorphism. From now on we assume that the fresh images are
chosen in some deterministic fashion, so that H is in fact fixed.

There are other definitions of graph transformation rules in the literature. The
one used here is the one for single-pushout rewriting (SPO-rewriting) [LE90, Löw93,
EHK+97]. Another wide-spread approach is the double-pushout approach (DPO)
[CMR+97, Sch05]. The theoretical differences mainly relate to the handling of
dangling edges (edges, for which either a source function of target function is not
defined). If the rule application removes a node, but not an incoming or outgoing
edge, then a question arises what happens with such edges. Under DPO approach,
such a rule application is prohibited while SPO approach calls for an implicit dele-
tion of the dangling edges. The example in Figure 3.11 demonstrates the difference.
Under the DPO approach, the rule application would not be possible, because two
edges which are labelled as x are not in the match. Under SPO, however it is
implicitly deleted.

3.3.3 Injective and Non-injective Matches

Injective matching plays an important role in the process of a graph transformation
rule application, because there are two different options for the conditions, under
which a rule can be applied. Without mentioning these options, the rule can have
two different interpretations.

In the case of injective match it is supposed that each element has a match to a
different element in a host graph. In the case of a non-injective match, two separate
nodes (of the same type) in an LHS pattern can be matched to one single node. For
example, if the interface of a rule is as shown in Figure 3.12, the interface pattern

3.3. GRAPH TRANSFORMATIONS 47

has a match in case of non-injective match. If the property of a match is set as
injective, then there is no match for the same interface pattern.

Figure 3.12: Difference between injective and non-injective matches

This must be taken into account during the definition of graph transformation
rules, since they could appear different. To convert one rule into another, one
can add explicit injectivity constrains (as NACs) to rules when necessary (see the
Figure 3.13, “=” label for an edge means that the nodes must be matched to the
same node).

In this thesis we use non-injective match.

3.3.4 Important Notation

Up to this point, we used the notation for a graph transformation rule presented
by explicitly showing the LHS and RHS graphs. However, it is also possible to
represent a graph transformation rule by merging them into one graph. Throughout
the remainder of this thesis, we use the latter, one-graph approach. This implies
that nodes and edges must be annotated according to their function within the rule.
There are 4 types of elements:

• Nodes and edges which remain unchanged are depicted with black, solid, thin
lines.

Figure 3.13: Sample rule with injective matching and modified rule of the solution
with non-injective matching

48 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

• Nodes and edges created by the rule are depicted with green, solid, fat lines.
• Nodes and edges deleted by the rule are depicted with blue, dashed, thin lines.
• Nodes and edges which must not exist in the host graph for the rule to match
are depicted with red, dashed, fat lines.

Figure 3.14 depicts the graph transformation rule from Figure 3.11 using the new
notation.

Figure 3.14: Notation for a graph transformation rule

3.3.5 Universal Quantification

Elements in the LHS pattern of a graph transformation rule have by default an
existential quantification (∃), i.e. the elements in the pattern need to find one
corresponding match in the host graph. However, there are situations in which
universal quantification is necessary. For example, in the graph transformation rule
for the behavioural semantics of Petri nets (see Chapter 2, Subsection 2.4.2) the
LHS pattern must find all input places for the transition and assure that they have
a token. For this, the Universal Quantification Structure (UQS) in the LHS of the
rule must match all elements in the host graph, which fulfill the given constraints.
In Figure 3.15, the UQS matches the Place-nodes, each one of them is connected
with a Token-node and one single Transition-node. The host graph is shown in the
original graphical Petri nets notation for simplicity.

Figure 3.15: Example of the match of universally quantified elements

There are different approaches, which could be used to express UQS in graph
transformations [Tae96, Sch91, JETE04]. We use the approach of Arend Rensink
[Ren04b]. It studies graph predicates in which a graph is extended by several

3.3. GRAPH TRANSFORMATIONS 49

layers, each forming a logical negation of the one above it. The UQS structure
is based on the logical statement that negation of existential quantification yields
universal quantification. The example in Figure 3.16 specifies the condition that
∃y : next(x, y) ∨ ∀z : (next(x, z)⇒ z = y).

Figure 3.16: Example of a graph predicate (taken from [Ren04b])

We use special notation for the specification of universal and existential quan-
tification, which consists of auxiliary nodes. These nodes are part of the rule and
are connected using “in” – labelled edges. The quantifier nodes and in-edges must
form a forest, i.e., a set of trees within a rule; in other words, it is not allowed that
a quantifier node is “in” two distinct other quantifier nodes, or that there is a cycle
of quantifier nodes. Moreover, existential and universal nodes must alternate, and
the root nodes must be universal. In addition, there is always an implicit top-level
existential node, with implicit in-edges from all the explicit (universal) root nodes.

The quantifier nodes are specified once more using special prefixes:
• forall (∀): specifies a universal level, i.e. in a match of the entire rule, the

sub-rule at such a level can be matched arbitrarily often (including zero times).
• exists (∃): specifies an existential level, i.e. in every match of the entire rule,
the sub-rule at such a level is matched exactly once.

The following is an example of universal and existential quantification structures
(leaving out the actual rule).

Figure 3.17: An example of a quantifier structure

The structure in Figure 3.17 corresponds to the quantifier structure of a pred-
icate formula, where the branching stands either for conjunction (in the case of
universal levels), or for disjunction (in the case of existential). The figure reflects
the predicate structure:

∃(∀∃ ∧ ∀)

50 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

Every nesting level, represented by a quantifier node, contains a sub-rule. The
containment relation is encoded by “at”-labelled edges from every node in the sub-
rule to the corresponding quantifier node.

As a simple example, Rule (a) in Figure 3.18 will result in the removal of
all Token-labelled nodes of all Place of a given (implicitly existential quantified)
Transition. Rule (b) is a slightly more complicated variant, which picks exactly one
Token of every Place that has at least one Token (for more information see User
Manual for the Groove Tool Set [GRO]).

(a) (b)

Figure 3.18: Illustration of two sample rules with a quantifier structure

3.3.6 Graph Transformations for Attributed Graphs

We have already explained the formalization of attributed graphs in Subsection
3.1.3. In this subsection we explain how we transform attributed graphs by means
of an example, focusing on how to change attribute values. We are mainly inspired
by [Kas06], where the method called the method of signatures is used to transform
attributed graphs.

Let us assume that we have an attributed graph. It could be depicted in two
ways. The first variant is the notation close to the standard UML notation (see
Figure 3.19 in the left). The second variant is to illustrate it as a graph, in which
each data node or attribute node is represented by a single node, labelled with its
type of value and value itself (see Figure 3.19 in the right).

Figure 3.19: The UML notation for an attributed node (in the left) and a graphical
representation for the same attributed node (in the right)

3.4. BEHAVIOURAL SEMANTICS BASED ON GRAPH
TRANSFORMATIONS 51

Figure 3.20: The rule for adding a new Transition-node with an integer value that
is one time more than the value of some existing Transition-node

Specifying the transformation of attributed graphs basically consists of two
parts: specifying (1) graph structure changes and (2) attribute value changes. The
first part was already performed in Subsection 3.3.2. Here, we focus on the second
part. A graph transformation rule for attributed graphs consists of auxiliary nodes:
nodes representing the instance of an algebra operation and data nodes. Node that
these nodes being in the interface of a rule (i.e. in L ∩ R) must not have a match.
Only in case of a data node is connected with a structure node, the data node must
have a match to some node in a host graph.

Figure 3.20 shows a graph transformation rule, which creates a new Transition-
node with an attribute, which integer value is to the one unit bigger than an at-
tribute value of already existing Transition-node. The LHS pattern consists of a
Transition-node, connected with a data node and the following auxiliary nodes: a
nodes representing the instance of the algebra operation +, a data node with the
integer value 1 and a data node that stands for the result of the algebra operation
+. The required match consists of the Transition-node and its data value. The RHS
pattern has additional Transition-node, which is connected with the data node that
stands for the result of the algebra operation +.

3.4 Behavioural Semantics Based on Graph
Transformations

In this thesis we use graph transformations to specify behavioural semantics of a
modelling language. The syntax of a modelling language is specified as a graph T st.
A model of this modelling language is an element from a set of graphs typed over T st

(see Subsection 3.2). Then, in order to specify behaviour of the model, we extend the
type graph T st with additional elements, which attach a special meaning for static
elements by being connected with them. The extended graph T rt is considered
a semantic domain of a modelling language. The graph transformation rules are
specified over T rt in a such way that do not affect elements typed over T st, but only

52 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

those nodes and edges, which specify a behaviour. The set of graph transformation
rules which fully describe the behaviour of a system (it is assumed that there is
no other behaviour except those, which is specified by these rules) form a graph
graph transformation system. When applied to a graph, a graph transformation
system gives rise to a labelled transition system, which summarizes all sequences
of possible executions. A labelled transition system is considered as a behavioural
model, which can be compared and analysed.

We continue with an example of definition of a run-time graph for the Petri nets
language. We then formalize the graph transformation system. Finally, we formally
define a labelled transition system.

Example 3.4.1 (Run-time type graph for Petri nets). Behaviour of Petri nets is
defined by a token flow. An element called token flows through the net being fired
by transitions and makes stops in places. To specify a run-time type graph for Petri
nets, we extend a type graph from Example 3.2.1 with a Token-node, which can be
connected with a Place-node from T st. Figure 3.21 depicts the run-time graph T rt

for Petri nets.

Figure 3.21: The run-time graph T rt for Petri nets

The graph transformation rules form a graph transformation system, which
defines the behavioural semantics of a language.

Definition 11 (Graph transformation system). Let T rt be a run-time graph. A
graph transformation system is a partial mapping RS : Sym ⇀ Rule, where Rule is
a set of graph transformation rules typed over T rt and Sym is a universe of names.

Execution of a graph transformation system means a stepwise application of
graph transformation rules from Rule to some typed (over T st) graph. The graph
transformation rule systems give rise to a labelled transition system summarizing
all sequences of these executions.

Definition 12 (Labelled transition system). A Labelled Transition System (LTS)
is a structure Q = 〈S,−→, ι, L〉, where S is a set of states and −→ ⊆ S × L × S is a
set of transitions labelled over some set of labels L. Furthermore ι ∈ S is the start
state.

The intuitive behaviour of LTS can be described as follows. The LTS starts in
some initial state ι and evolves according to the transition −→. If s is the current

3.4. BEHAVIOURAL SEMANTICS BASED ON GRAPH
TRANSFORMATIONS 53

Figure 3.22: The pnInitial rule

Figure 3.23: The pnMoveToken rule

state, then a transition s −α→ s′ is selected nondeterministically. Then the action α
is performed and the LTS evolves from the state s into the state s′. This selection
procedure is repeated in the state s′ and evolves infinitely or finishes once at a state
that has no outgoing transitions.

In our case, states of LTSs are typed graphs. The transitions are associated
with graph transformation rules and are labelled with the graph transformation
rule names.

Example 3.4.2 (Graph transformation rule system for behavioural semantics of
Petri nets). We define the behavioural semantics of Petri nets by means of graph
transformations. Since we have already the run-time graph T rt (see Example 3.4.1),
we need to specify the behaviour of tokens with graph transformation rules over T rt.
Note that the graph transformation rules must not change the syntactic structure
of a graph, but only move a Token-node. The first rule we specify is a pnInitial
rule (Figure 3.22), which creates Token-nodes for all Place-nodes that are marked
as initial. The pnMoveToken rule (see Figure 3.23) allows a Transition-node to fire
Token-nodes. If a Transition-node fires, one token is consumed from each input
Place-node and moved to all the output Place-nodes. If there is at least one Place-
node that does not connected with a Token-node then this rule cannot match the
Transition-node and therefore the Transition-node cannot fire.

We define a rule system as a partial mapping RSPN : Sym ⇀ Rule, where Rule
is a set of graph transformation rules and Sym is a universe of rule names. We let
dom(RSPN) = {pnInitial, pnMoveToken} be the names of semantic rules in the rule
system for the Petri nets (see Figures 3.22 and 3.23).

54 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

Figure 3.24: Three types of model transformations

3.5 Model Transformation Based on Graph
Transformations

Since we consider modelling languages as graph languages, a model transformation
could be specified by means of graph transformations.

We distinguish three types of graph transformations (see Figure 3.24). Endoge-
nous transformations destroy the source graph while building the target graph.
Exogenous transformations build a target graph by keeping a source graph, the
result of such transformations is a graph, which contains both source and target
graphs. The Triple Graph Grammar (TGG) transformations [K0̈5, GK10, GK07]
build two graphs simultaneously. The TGG transformations take an empty graph
as an input and generate a source and a target graph as output.

The main idea of the TGG technique is that graphs are separated into three
subgraphs, each being typed over its own type graph (see Figure 3.25). Two of these
subgraphs evolve simultaneously while the third keeps correspondences between
them. This correspondence node represents the third graph in TGG. As opposed
to traditional transformation where the source model is given and then the source
model is replaced by the target model, TGG transformations build the models
simultaneously, matching each part of the source model to the target one. This

3.5. MODEL TRANSFORMATION BASED ON GRAPH
TRANSFORMATIONS 55

allows to keep correspondences between transformed elements and to prove certain
properties of the corresponding graphs.

Figure 3.25: Graphs used in TGG technique

In the following, we formally define a model transformation based on the TGG
technique. Let TGG rules build a graph typed over a type graph, that is a tuple
T st = T st

SM ×TCM ×T st
TM , where T st

SM and T st
TM are the type graphs that correspond

to a source model and a target model respectively. Let Gst denote a set of graphs
obtained by applying the TGG rules on an empty start graph and a graph G ∈ Gst

is an output graph of the TGG rules. Note that graph G contains a source graph
GST and a target graph GTM . To obtain the actual translation, we restrict Gst to
the type graphs T st

SM and T st
TM . Using Definition 5 of type graph restriction, the

model transformation MT is defined as follows:

Definition 13 (Model transformations). Let GSM be a source graph and GTM be
a target graph. We call MT (GSM , GTM) a model transformation, if it generates a
graph G ∈ Gst such that GSM = πT st

SM
(G) and GTM = πT st

TM
(G).

Example 3.5.1 (Example of a model transformation by means of TGG). We use
a small example from the refactoring area to demonstrate a model transformation
specified by means of TGG rules. The TGG technique does not suit well the refac-
toring area, however this example emphasizes the difference of TGG technique to
the traditional transformation. We transform Petri nets into coloured Petri nets
[JK09, Jen97]. We use a very simplified definition of coloured Petri nets: they are
defined similar to Petri nets, except each place in coloured Petri net has an inscrip-
tion, which determines the set of token colours that the tokens in that place are
allowed to have. The set of possible token colours is specified by means of a integer
type.

We specify a type graph for coloured Petri nets by using the type graph of Petri
nets. We add the prefix C to the names of nodes, since the type graph of Petri nets
and the type graph of coloured Petri nets must be combined in one graph and the
names of nodes must be unique. Places in coloured Petri nets have an additional
value attribute of type integer. The correspondence graph consists of two nodes of

56 CHAPTER 3. FOUNDATIONS OF GRAPH TRANSFORMATIONS

CN1 and CN2 types which specify the correspondences between the source and the
target model. See the result in Figure 3.26.

Figure 3.26: Type graph for the TGG transformations

We present one sample TGG rule defined over T st
SM ×TCM ×T st

TM , which creates
a Place-node marked as initial and a corresponding structure of coloured Petri nets
(Figure 3.27).

Figure 3.27: Sample TGG rule

3.6 Graph Transformation Tool
There is a number of tools to define model transformation and behavioural semantics
by means of graph transformations (e.g. AGG [EEPT06b], ATL [JABK08], TGG
[K0̈5] tools). Our main criteria for the tool are the following:

• Formal specification of graph transformations.
• Specification of graph transformation rules in terms of SPO approach.
• Support for attributed graphs.
• Possibility to implement TGG transformations.
• Examples of implemented language semantics.

We chose the Groove tool [Ren04a] for specification of our behaviour semantics
and model transformation, since the tool satisfies our criteria. In follow, we detail
our reasons for this choice.

Groove is a powerful tool, because despite the basic graph transformation fea-
tures like creation and deletion of nodes and edges, Groove support some more

3.7. SUMMARY 57

Figure 3.28: Screenshot of the tool Groove

advanced concepts. First, Groove supports attributed graphs. Secondly, a power-
ful notion of UQS is implemented in Groove. Third, it is possible to define graph
transformations in TGG style as well.

Additionally, we had already an experience with the Groove tool [EKR+08],
when we used the behavioural semantics of UML Activity diagrams and TAAL
language, which are implemented in Groove, in order to implement a model trans-
formation between these languages. Since we had a successful experience, it was an
obvious choice to use this tool for us further.

Figure 3.28 shows a screenshot of Groove. In the left side, the names of the
transformation rules can be seen. The big compartment in the right shows the
graph transformation rule for moving the Token-node in Petri nets. in the right
column, there is a list of used labels (from SymV and SymE). In the bottom left
corner, there is a list of possible start graphs.

3.7 Summary
This chapter provides the notions of graph and graph transformations, which we
are going to use throughout the remainder of this thesis. It was also explained
how graphs could be used for the definition of an abstract syntax. The graph
transformations by turn could be used for the definition of behavioural semantics
and a model transformation specification as well.

CHAPTER 4
Equivalence Relation on

LTS

The notion of Labelled Transition System (LTS) was already introduced in Chapter
3 as a model that describes behaviour of a system. In this chapter, we are interested
in an equivalence relation over LTSs, because it is closely connected with our original
goal: to show the behavioural properties preservation during model transformation.
Behavioural properties are specified over LTSs by means of a formal language, as
for example CTL∗ (a superset of linear temporal logic and Computational Temporal
Logic [CGP99, BC87, GM93]). A single property, such as “a program must always
terminate”, could be written as a CTL∗ formula AF (FinalState), where AF stands
for “always in the future” and FinalState is the name of a graph transformation
rule, which performs a step in an LTS that leads to a final state. If and only if
formulas specified over CTL∗ hold for two LTSs, then these LTSs are called CTL∗
equivalent [Hol95]. Then, if we establish a connection between CTL∗ equivalence
and equivalence relation over LTSs, we can achieve our original goal by comparison
of two LTSs (see Figure 4.1).

4.1 General Approach
In this section we want to answer three questions, which we present and discuss
further.
� Question 1: How to specify a behavioural property formally?
We want to specify behavioural properties over LTS with a formal language. How-
ever, we must take into account that we deal with modelling languages, which are

59

60 CHAPTER 4. EQUIVALENCE RELATION ON LTS

Figure 4.1: Discussion topic of this chapter

specified by means of graph transformations. It means that models are graphs and
semantics of the models is described by a graph transformation system, which is
applied to a certain graph. Each applied graph transformation rule, also called “se-
mantic rule”, is an action. Then, an LTS for a graph is a set of all possible action
sequences. Thus, for each action there is a labelled transition in the generated LTS,
where each label corresponds to a graph transformation rule name.

There are two choices to specify behavioural properties over an LTS with due
regard for its peculiarities. It is possible to specify properties either over the states
or over the transitions of LTS. Since the states in our LTS are graphs – a complicated
structure, which includes typing and references, – a state-based logic over our LTS
is harder to specify, than a transition-based or action-based logic, which is based on
logic over the labels of transitions that are the names of semantic rules. Therefore,
we use an action-based version of the branching time logic CTL∗, which is called
ACTL [NFGR93]. According to [NV90], ACTL has the same expressive power as
CTL∗.
� Question 2: How to specify an equivalence relation over LTSs?
A model transformation is defined over the syntax of modelling languages. We
want to check whether the defined model transformation preserves a behavioural
semantics. Therefore, we compare the behaviour of two modelling languages. For
this, we define a mapping function over the names of graph transformation rules
(Figure 4.2). It could be possible that some graph transformation rules perform a
behaviour that could not be translated into another language. Such graph transfor-
mation rules stay unmapped and later perform invisible actions in LTS. Thus, we
compare a part of behaviour, which can be translated into another language.

Owing to the mapping function, which maps some graph transformation rule
to invisible actions, we can specify two major problems that arise during the com-
parison of behavioural models (in our case LTSs) of different languages. The first

4.1. GENERAL APPROACH 61

Figure 4.2: Comparison of behavioural models is based on the mapping function
defined over the names of graph transformation rules

problem relates to disjoint label sets of LTSs. Transitions in LTS are labelled with
the names of behavioural semantic rules (or graph transformation rules). In order to
compare two LTSs one needs to match the transitions of these LTSs, which perform
the similar behaviour. Since different languages are defined by completely differ-
ent graph transformation systems, the LTSs of different languages have different
labels. Secondly, part of behaviour could not be translated into another modelling
language. Then, a variety of transitions could not be matched.

The problems described above could be solved by establishing a mapping func-
tion over the label sets of both LTSs in a similar way that a mapping over the names
of graph transformation rules is defined. It means that labels of transitions, which
correspond to actions that describe similar behaviour, are mapped to a common
label. Actions, which could not be translated into another language, become invis-
ible and their correspondent labels are mapped to the label called “tau”. Thus, we
compare not original LTSs, but their corresponding mapped structures.

In general we perform an abstraction of original LTSs that is based on definition
of a label set, which both LTSs are mapped to. Figure 4.3 explains the principle
of the abstraction. Q1 = Q(G1) is an LTS generated for a graph G1, which is from
source language. Q2 = Q(G2) is an LTS generated for a graph G2, which is a result
of a model transformation between source and target modelling languages. Q1 and
Q2 are defined over the label sets L1 and L2, respectively. The label sets L1 and L2
are both mapped to a common set L = τ ∪ V isible, which consists of an element τ
and a set labels that correspond to some visible action. Then, the LTSs Q′1 and Q′2,
which are the result of the mapping, can be compared, i.e. the equivalence relation
could be established.
� Question 3: How to prove that equivalence relation implies ACTL equivalence?

62 CHAPTER 4. EQUIVALENCE RELATION ON LTS

Figure 4.3: Comparison of LTSs on the level of abstraction

The notion of bisimulation equivalence (also called observational equivalence) is one
of the best known notions of equivalences over LTSs [PdRV95]. Intuitively, two
systems are bisimilar, if they can perform the same sequences of actions to reach
bisimulation equivalent states. Bisimulation equivalence is called strong, when all
labels of LTS are considered visible (i.e. no labels are hidden from observation), and
weak, when some actions are ignored or considered to be internal and thus invisible.
It is easier to establish a weak bisimulation relation, than e.g. strong, on LTSs
of two different languages, because there could be some transitions which have no
equivalent transitions in another language.

A bisimulation equivalence relation is closely connected with ACTL equivalence.
There is some work done in the direction of implementation of the connection be-
tween bisimulation and CTL∗ [BCG88]. That is a very strong hint for the solution
how to establish a connection between weak bisimulation and ACTL equivalence.
Then, a weak bisimilarity of two LTSs implies our original goal, i.e. behavioural
properties preservation during model transformation:

Q(G1) |= ϕ ⇒ Q(G2) |= χ(ϕ)

Here, a behavioural property ϕ is specified with the ACTL in the language L1. χ is
an interpretation of ϕ for the language L2. Due to the fact that we compare LTSs
on the level of abstraction (Figure 4.3), the LTSs are labelled over the same set.
Therefore, there is no need for interpretation of a property ϕ on the abstraction
level. The goal of this chapter to show how to prove the following statement for
any behavioural property ϕ:

Q′(G1) |= ϕ ⇒ Q′(G2) |= ϕ (4.1)

4.2. TRANSITION SYSTEMS 63

The interpretation of properties (i.e. the meaning of function χ) is explained in
the next chapter in detail.

We proceed as follows. This chapter repeats the definition of LTS (Section 4.2),
then we discuss the notion of weak bisimulation equivalence between two LTSs
(Section 4.3). We introduce ACTL over states of an LTS in Section 4.4. In par-
ticular we explain how to specify a property for a graph transformation language
by means of ACTL. Finally, we show that weak bisimulation equivalence implies
ACTL equivalence in Section 4.5.

4.2 Transition Systems
In this section, we repeat the definition of LTS, which was introduced in Chapter 3 as
a structure that describes the behaviour of a model. An LTS is basically a directed
graph, where nodes represent states and edges model transitions. A state describes
the system at a certain execution state of graph transformation system. A transition
represents an action being performed to change a state of the system. Transitions
are labelled over the set of graph transformation rule names. A transition could be
marked as invisible, denoted as τ . This means that this transition corresponds to
an invisible action.

Definition 14 (Labelled Transition System). An L-labelled transition system (LTS)
is a structure Q = 〈S,−→, ι, L〉, where S is a set of states and −→ ⊆ S × L × S is a
set of transitions labelled over some set of labels L. Furthermore ι ∈ S is the start
state.

Notes:
• LTS is called finite, if S is finite.
• An invisible action τ is assumed to be in L.
• For convenience, we write s −α→ s′ to denote a transition in LTS, or (s, α, s′).
• For a given LTS Q, we use SQ, −→Q, etc. to denote its components.

Example 4.2.1 (Example of an LTS). We consider a simple example of a Petri net
model (the Petri nets language was introduced in a previous chapter). The Petri net
in Figure 4.4 (left) models a preliminary design of a beverage vending machine. The
machine can except payment and deliver water. The Petri net transition with an
attribute pay denotes the insertion of coins, while the transition d_water denotes
delivery of a drink.

The behaviour of the Petri nets is defined by a token flow that means that a Token
flows through the Petri nets transitions and could be put only in places. When it
passes a transition a single action occurs. Such behaviour is described with a graph
transformation system, which consists of two graph transformation rules: pnMove-
Token and pnInitial, which are depicted in Figure 4.5. An LTS generated for a

64 CHAPTER 4. EQUIVALENCE RELATION ON LTS

Figure 4.4: Example of a Petri net (in the left) and a corresponding LTS (in the
right)

Initial MoveToken

Figure 4.5: Graph transformation rules pnInitial and pnMoveToken from a graph
transformation system RSPN

graph, which models the beverage vending machine described above, is presented in
Figure 4.4 (in the right).

The states of the LTS are represented as squares with names depicted inside.
The transitions of the LTS are the labelled edges, which correspond to actions, i.e.
graph transformation rules applied to the graph. The transition label represents the
name of a graph transformation rule (pnMoveToken or pnInitial). The initial state
is indicated by having a bold border and denoted as s1. The state space of our LTS
consists of S = {s1, s2, s3}. The initial state is ι = s1. An example transition is:

s2 −pnMoveToken−−−−−−−−→ s3

4.3. BISIMULATION AS TYPE OF BEHAVIORAL EQUIVALENCE 65

4.3 Bisimulation as Type of Behavioral Equivalence
Consider two LTSs Q1 and Q2 with different sets of labels L1 and L2, respectively.
To compare these LTSs we define a suitable mapping of the sets L1 and L2 to a
common set L. This mapping defines labels, which correspond to the graph trans-
formation rules that perform similar behaviour. There are could be also labels that
have no correspondences, such labels correspond to invisible actions (i.e. transitions
hidden from observation or not translated into another language) and are denoted
as τ . Thus, we do not compare the original LTSs, but rather their corresponding
mapped structures.

Further, we define a mapping function on sets of labels. The set of labels con-
sists of labels of two types: (1) labels which correspond to a graph transformation
rule that performs an invisible aciton, (2) labels which correspond to a graph trans-
formation rule that performs a visible aciton. The mapping function defined below
maps labels of the first type to τ and labels of the second type to an element different
to τ .

Definition 15 (Function for visible and invisible labels). Let α ∈ LQ be a label of
transition in Q, then the function ̂ : LQ → L is as follows:

• α̂ = τ , if α is a label of transition, which corresponds to an invisible action,
• α̂ = α, if α is a label of transition, which corresponds to a visible action.

For states s, s′ ∈ S and a label α, to denote a sequence of transitions s −τ→∗−α→−τ→∗ s′,
we write s =α⇒ s′. We also use =ε⇒, which stands for −τ→∗.

Bisimulation equivalence aims to identify LTSs with the same branching struc-
ture, and which thus can simulate or mimic each other in a stepwise manner.
Roughly, a transition system Q1 can simulate transition system Q2 if every step
of Q1 can be matched with one or more steps in Q2. We firstly introduce the weak
bisimulation relation as a binary relation over the set of states. Then we define
two weak bisimilar LTSs. Bisimulation is defined as the largest relation satisfying
certain properties.

Definition 16 (Weak bisimulation). Let α ∈ LQ1 and β ∈ LQ2 be transition labels
in the LTSs Q1 and Q2, respectively. Weak bisimulation is a relation over the set
of states, i.e. ≈ ⊆ S1 × S2, here S1 = SQ1 and S2 = SQ2 , such that ∀s1 ∈ S1 and
∀s2 ∈ S2 whenever s1 ≈ s2 means that
• If s1 −α→ s′1, then ∃s′2 ∈ S2 with s2 =̂α⇒ s′2 such that s′1 ≈ s′2;
• If s2 −β→ s′2, then ∃s′1 ∈ S1 with s1 =̂β⇒ s′1 such that s′1 ≈ s′2.
States s1 and s2 are called weak bisimilar states if s1 ≈ s2.

It means that every outgoing transition of s1 must be matched with an outgo-
ing sequence of transition of s2, and vice versa. Figure 4.6 summarises these two
conditions.

66 CHAPTER 4. EQUIVALENCE RELATION ON LTS

s1

α
��

≈ s2 s1

α
��

≈ s2

α̂
��

s′1 can be complemented to s′1 ≈ s′2

——————————————————-

s1 ≈ s2

β
��

s1

β̂
��

≈ s2

β
��

s′2 can be complemented to s′1 ≈ s′2

Figure 4.6: Conditions of weak bisimulation (reproduced from [BK08])

Note that we consider that for all labels α ∈ LQ1 either α̂ = τ or there exists
β ∈ LQ2 such that α̂ = β̂. The riverse is stated for all labels β ∈ LQ2 , too.

Definition 17 (Weak bisimilar LTSs). Two labelled transition systems Q1 and Q2
are weak bisimilar, iff there exists a weak bisimularity ≈ such that

(1) ι1 ≈ ι2
(2) ∀s1 ∈ S1, ∃s2 ∈ S2 such that s1 ≈ s2,
(3) ∀s2 ∈ S2, ∃s1 ∈ S1 such that s1 ≈ s2.

Condition (1) asserts that every initial state of Q1 is related to an initial state
of Q2, and vice versa. Condition (2) states that every state from Q1 must be in a
weak bisimulation with at least one state from Q2; the reverse is stated by (3).

The diagram a), b), c) shown in Figure 4.7 summarizes the structure of weak
bisimilar states. These diagrams denote instances of weak bisimilar LTSs. We have
used the triangles to indicate weak bisimilar LTSs (i.e. Q0 ≈ Q1 ≈ Q2 ≈ Q3) that
include a state placed on top of the triangle. In the diagram a) there are two states
s0 and s1 that are in a weak bisimulation with a state s2, because all states reachable
from s0 are also reachable from s1. In diagram c) the states s3 and s4 are also weak
bisimilar with the state s2 (transition labelled as τ steps are not considered, since
they do not break the conditions for weak bisimilarity).

Example 4.3.1 (Not bisimilar LTSs). Let consider three LTSs, see Figure 4.8,
depicting Q1 in the left, Q2 in the middle and Q3 in the right. It follows that Q1
and Q2 are not weak bisimilar, since the state s1 in Q1 can not be simulated by a
state in Q2. This can be seen as follows. The only candidate for simulating state
s1 is the state s4. However, s1 can not simulate all transitions of s4 in Q2: the
possibility for b is missing. Thus, Q1 6≈ Q2. Q1 and Q3 are not weak bisimilar due
to the same reason.

4.4. PROPERTIES SPECIFICATION OVER LTS 67

Figure 4.7: Diagrams a), b), c) denote three LTSs that are mutually weak bisimilar

Figure 4.8: An example of labelled transition systems, here Q1 and Q2 are NOT
weak bisimilar, Q2 and Q3 are weak bisimilar

Please note that the LTSs Q2 and Q3 are weak bisimilar, because the state s8
in Q3 can be simulated by the state s4 in Q2. All the other states are obviously in
a weak bisimulation with at least on state from Q2. The reverse statement for the
states of Q2 holds, too.

4.4 Properties Specification over LTS
In this section, we explain how to specify behavioural properties over a modelling
language. For this we use a behavioural model, i.e. an LTS, and a formal language
that could specify a wide range of properties over an LTS by means of formulas.
Since we deal with special LTS, where states are graphs and transitions correspond
to graph transformation rules, we searched for a formal language adjusted for the
specification of properties for our LTS. We explain our choice, which is an action-
based logic, called ACTL. Further in this section, we define the syntax of ACTL.
After we provide a satisfaction relation for ACTL formulas, we explain how to spec-
ify a property with ACTL over a language, defined by means of graph transformation
rules, and how to verify this property against an LTS.

68 CHAPTER 4. EQUIVALENCE RELATION ON LTS

4.4.1 Why ACTL

We deal with special LTSs, where states are graphs and transitions are labelled
with names of graph transformation rules (see Section 3.4). Therefore, we can
either specify behavioural propertied over the states or over the transitions. For
this, there are exists two types of formal languages, which allow to specify formulas
over LTSs: action-based and state-based. Action-based logic specifies formulas over
the transition labels of LTSs and state-based logic specifies formulas over the state
labels. Graph, which is a state in our LTS, is not a suitable construction to be a
label, since it consists of complicated types. Therefore, we use transition labels to
specify the behavioural properties over LTS.

Since we are interested in an action-based logic, we have a choice between two
well-known logics: Hennessy-Milner Logic (HML) and active-based version of CTL∗,
called ACTL. We are interested in a more expressive one, because it allows to specify
a wide range of behavioural properties. It is also important the existence of model
checkers, which allow to verify the formulas.

In compliance with our demands ACTL has more advantages to HML. We found
that, firstly, there is a bigger alternative of model checkers to verify CTL∗ formulas
(state-based version of ACTL) than HML formulas, such as EMC [CES86], or a CTL
model checker for graph transformation systems implemented in Groove [KR06]
(there, an LTS is transformed into a Kripke structure, then the properties are
specified by CTL∗ over a Kripke structure). Secondly, in some approaches it is
mentioned that HML is not expressive enough:

“ . . . we have logics, like Hennessy-Milner logic, that are not sufficiently
expressive . . . , that require using fixed pointers and lack directness in
describing systems properties (see e.g. [Lar88]).” [NFGR93]

Thereby, our choice was the ACTL logic.

4.4.2 Syntax of ACTL

This subsection describes the syntactic rules according to which formulas in ACTL
can be constructed. Before we start to explain the syntax, we introduce the relevant
notion that have been used to interpret ACTL formulas on an LTS.

Definition 18 (Notation for LTS). Let Q = 〈S,−→, ι, L〉 be an LTS, then
− A nonempty (finite or infinite) sequence π = (s0, α0, s1)(s1, α1, s1) . . ., where
(si, αi, si+1) (a transition in LTS) with i ≥ 0, is called a path from s0. πi will denote
the suffix of π starting at si. We write L(πi) to denote a label αi of transition
(si, αi, si+1).
− If a path is infinite or it can not be extended anymore because it ends in a state
without outgoing transitions, it is called a fullpath.

4.4. PROPERTIES SPECIFICATION OVER LTS 69

− A run from s ∈ S is a pair ρ = (s, π), where π is a path from s; we write
first(ρ)= s and path(ρ)= π.
− A maximal run is a run whose second element is a fullpath. We write maxrun(s)
for the set of maximal runs from s.
− We let π range over paths and ρ, σ, . . . over runs.

Definition 19 (ACTL formula). Let AP be the set of atomic proposition names.
A formula is either:
• a if a ∈ AP;
• if f and g are formulas, then ¬f and f ∧ g are formulas;
• f is a formula, then ∃f is a formula;
• if f and g are formulas, then f U g (“until”) is a formula;
• if f is a formula, then Xf (“nexttime”) is a formula.

Moreover, we specify additional operators:

• true states for ¬(a ∧ ¬a), where a ∈ AP,
• false states for ¬true,
• f ∨ g states for ¬(¬f ∧ ¬g),
• ∀f states for ¬∃¬f ,
• Ff states for true U f ,
• Gf states for ¬F¬f .

4.4.3 Semantics of ACTL

ACTL formulas are interpreted over runs, which are defined as a pair of a state and
a path of an LTS. Formally, given an LTS Q, the semantics of ACTL formulas is
defined by a satisfaction relation (denoted by |=). For the formulas, |= is a relation
between a run with a maximal path fragment in Q and formulas. We write ρ |= f .
The intended interpretation is: ρ |= f if and only if run ρ satisfies the formula f .

Definition 20 (Satisfaction relation for ACTL). Let a ∈ AP be an atomic propo-
sition, Q = 〈S,−→, ι, L〉 be an LTS, f and g be ACTL formulas. The satisfaction
relation by a run ρ = (s1, π) is defined inductively by:
• ρ |= a iff ∃k ≥ 1 such that ∀i : 1 ≤ i < k (si, τ, si+1) (transitions are labelled

as “tau”) and a ∈ L(πk),
• ρ |= ¬f iff not ρ |= f ,
• ρ |= f ∧ g iff ρ |= f and ρ |= g,
• ρ |= ∃f iff there exists a run θ ∈ maxrun(first(ρ)) such that θ |= f ,
• ρ |= f U g iff ∃k ≥ 1 such that (sk, π) |= g and ∀i : 1 ≤ i < k (si, π) |= f ,
• ρ |= Xf iff ∃k ≥ 2 such that (sk, π) |= f , ∀i : 1 ≤ i < k − 1 (si, τ, si+1) and
τ 6∈ L(πk−1).

70 CHAPTER 4. EQUIVALENCE RELATION ON LTS

The LTS Q satisfies ACTL formula ϕ if and only if ϕ holds in all runs from
initial states of Q:

Q |= ϕ if and only if ∀ρ : first(ρ) = ιQ ρ |= ϕ

Thereby, the operators introduced before can be interpreted as follows:

• Q |= ∃f - f is satisfied by some run ρ = (s1, π),
• Q |= ∀f - f is satisfied by all runs ρ = (s1, π),
• Q |= Ff - f is satisfied by some runs sometimes in the “future”,
• Q |= Gf - f is satisfied by all runs from now and forever or globally,
• Q |= f U g - there exists a run ρ, where there is a state along a path s1, g is

satisfied by some run ρ1 = (s1, π), and for all states si prior to the state s1
(in the run ρ) f is satisfied by all runs ρ2 = (si, πi),
• Q |= Xf - there exists a run ρ, where there is a state along a path sk, f is

satisfied by some run ρ1 = (sk, π), for all states si prior to the state sk−1 the
transitions are labelled as τ , i.e. τ ∈ L(πi), and τ 6∈ L(πk−1).

4.4.4 Behavioural Properties Specification with ACTL

In this subsection, we explain how to specify a behavioural property with an ACTL
formula. An explanation is supported with an example of a behavioural property
and demonstration how the formula could be verified. Prior to this, we briefly
review the process of behavioural semantics specification for graph languages.

Elements of a graph language are graphs G. Behavioural semantics of a graph
language is specified by a rule system RS, which is a set of graph transformation
rules defined over a graph G (see Chapter 3). A change of a graph G is specified by a
graph transformation rule, which consists of three patterns: p = 〈Np, Lp, Rp〉, where
Np is a negative application condition, the set Lp∩Rp specifies a match for p, the sets
Lp\Rp and Rp\Lp describe elements to be deleted and to be created, respectively.
The rule p is applicable to a graph G0, if Lp is matched to some subgraph of G0
such that there is no pattern Np in this match. The rule p turns the graph G0
into graph G1, be replacing a matched subgraph of G0 with a pattern Rp. A graph
transformation system generates an LTS, where transitions are labelled with the
names of graph transformation rules from RS, e.g. an example of a transition in
an LTS is G0 −p→ G1.

Now we want to use a graph transformation rule not only as a structure, which
specifies the changes on graphs, but also as a structure that constitutes structural
properties. For this, we consider a left-hand side pattern Lp and a negative appli-
cation condition Np of a graph transformation rule p. They specify the conditions
for a graph structure G0. Similarly, the right-hand side pattern Rp specifies the
conditions for a graph structure G1. For example, if we consider the graph trans-
formation rule p = pnInitial (see the example with a beverage machine in Section

4.4. PROPERTIES SPECIFICATION OVER LTS 71

4.2), the right-hand side pattern of this rule specifies that a Place-node marked as
initial must be connected with a Token-node. It could be also interpreted as a be-
havioural property, which says that the system is activated. Thereof, the pnInitial
rule could be considered as a structural property that describes a state during the
semantics execution. Thus, a graph transformation rule is considered further not
only an action, but it also constitutes a structural property of a graph. In the follow,
we explain how to specify a required behavioural property with a help of a graph
transformation rule.

The behavioural property is technically specified with an ACTL formula over
a set of graph transformation rule names. It means that a graph transformation
rule describes a state and the ACTL operators specify the conditions on this state.
Let us consider again the example of a beverage vending machine from Section 4.2.
We want to ensure that the dynamic element called Token is always created. For
this, we use the pnInitial rule as a structural property. With a help of the ACTL
operators we specify that this property always holds in the future:

∀F (pnInitial)

It can be also possible that a required property is not specified by any of the graph
transformation rules from RS, as for example, the statement that the vending
machine always delivers a drink after a payment was done. It is even more likely that
a graph transformation rule describes a flow of a node through some structure, where
concrete labels, as for example attributes or the node names, are not specified and
therefore not depicted in the defined LTS, except the names of graph transformation
rules from RS. In our example, if we consider a transition s1 −pnMoveToken−−−−−−−−→ s2, it is
not clear to which Transition-node (concerns a Petri net model) the pnMoveToken
rule was applied, i.e. to the Transition-node with the attribute d_water or the
attribute pay.

The problem discussed above can be solved if we specify additional graph trans-
formation rules as a structural property instead of an action. It means that the left-
hand and right-hand sides of a graph transformation rule are identical (Lp = Rp).
Such rules have no structural effect on any state, but then they are depicted in an
LTS as a loop transition, i.e. a transition of type (si → si), and do not affect the
weak bisimulation.

Thereby, by specifying additional graph transformation rules we extend the origi-
nal rule system RS. After our extension it is denoted as RS+ and consists of graph
transformation rules from RS, which describe the behaviour of the system, and
graph transformation rules, which do not delete and do not create any nodes in a
graph.

After we specified all required structural properties, we specify behavioural prop-
erties over the transitions of an LTS by an ACTL formula. It means that the names
of graph transformation rules are used as atomic propositions. The diagram in

72 CHAPTER 4. EQUIVALENCE RELATION ON LTS

Figure 4.9: Diagram that shows how a behavioural property is specified for a graph
language

Figure 4.9 summarizes the idea how a behavioural property is specified for a graph
language.

Example 4.4.1 (Behavioural properties for a beverage vending machine). We il-
lustrate two behavioural properties for a beverage vending machine, which accepts
payments, provides a choice of a drink (water or juice) and delivers a chosen drink.
We model this system with the Petri nets language. A model for the beverage vend-
ing machine is presented in Figure 4.11 in the left. We want to assure (1) that a
system always delivers a drink after a payment was done, (2) that the system never
delivers both drinks (water and juice).

There are two graph transformation rules for the description of the Petri nets
behavioural semantics (Initial and MoveToken from Figure 4.5), which do not
specify the desirable properties. These graph transformation rules specify only flow
of a Token-node through a Transition-node without mentioning its attributes values.
Thus, an attribute of a Transition-node is not depicted in a resulted LTS, that makes
impossible to specify the required properties. However, we can extend a rule system
RSPN with graph transformation rules, which specify the desirable properties.

We define three GTR, where Lp and Rp are identical. Such graph transformation
rules (see Figure 4.10) specify structural properties in the form of the rule. The
graph transformation rule, denoted as pay, says that the payment is accomplished.
The rule g_juice specifies that the system is ready to deliver a juice. The rule
g_water says that the system is ready to deliver a water.

Then, the properties (1) and (2) can be specified as:

∀F (payU(g_juice ∨ g_water)) (4.2)

∀G¬(g_juice ∧ g_water) (4.3)

Property 4.2 is a liveness property specifying that specific actions, i.e. delivery of
a water or a juice, must be reachable, after the payment was accomplished. Property

4.4. PROPERTIES SPECIFICATION OVER LTS 73

pay g_juice g_water

Figure 4.10: Graph transformation rules pay, g_juice and g_water, where graph
structure is used not as a rule, but as a structural property

Figure 4.11: A graph which models the vending machine (in the left) and an LTS
generated by an extended rule system (in the right)

4.3 is a safety property, specifying that the system may not contain a state, in which
the delivery of both drinks is available.

We generate an LTS for the graph (from Figure 4.11 in the left) with the extended
rule system, where dom(RS+) = {MoveToken, Initial, pay, g_juice, g_water}.
The result is depicted in Figure 4.11 in the right. The states s3, s4, s5 have loop
transitions, i.e. transition of type (si, α, si), for some i ≥ 0. These transitions are
produced by the extended rules (pay, g_juice, g_water), which do not change a
graph.

The formula 4.2 is valid for initial state since all paths starting in this place have

74 CHAPTER 4. EQUIVALENCE RELATION ON LTS

a direct successor state that satisfies pay and all paths, followed after the transition
pay, contain either g_juice or g_water.

The formula 4.3 holds in s1, as there is no path that reaches a state, from which
g_juice or g_water hold simultaneously.

4.5 ACTL Equivalence and Weak Bisimulation
This section considers the equivalence relation induced by the action-based logic
ACTL, as well as performs a key theorem of this chapter about preservation of
ACTL formulas by weak bisimulation.

Note that we consider the LTSs relabelled according to the function from Def-
inition 15. Therefore, the LTSs are defined over the same label sets further in this
section. The goal of this section is to show the connection of Equation 4.1 and weak
bisimulation on the level of abstraction (see Figure 4.3).

4.5.1 ACTL Equivalence

Runs, which are defined as a pair of a state and a path in an LTS, are equivalent
with respect to a logic whenever these runs cannot be distinguished by the truth
value of any formulas of the logic. Stated differently, whenever there is a formula in
the logic that holds in one run, but not in the other, these runs are not equivalent.

Definition 21 (ACTL equivalence). Let Q1 and Q2 be LTSs over AP

1. Runs ρ1 and ρ2 in Q1 and Q2, respectively, are ACTL equivalent, denoted
ρ1 ∼ ρ2 if

ρ1 |= ϕ iff ρ2 |= ϕ for all ACTL formulas ϕ over AP

2. Q1 and Q2 are ACTL equivalent, denoted Q1 ∼ Q2, if

Q1 |= ϕ iff Q2 |= ϕ for all ACTL formulas ϕ over AP

Runs ρ1 and ρ2 are ACTL equivalent if there does not exist an ACTL formula
that holds in ρ1 and not in ρ2, or, vice versa, holds in ρ1, but not in ρ2.

LTSs Q1 and Q2 are ACTL equivalent if there does not exist an ACTL formula
that holds in ρ1 such that first(ρ1) = ιQ1 and not in any ρ2 such that first(ρ2) =
ιQ2 .

4.5.2 Preservation of ACTL Formulas by Weak Bisimulation

Before we present a key theorem of this chapter about preservation of ACTL for-
mulas by weak bisimulation, let us firstly to define weak bisimilar paths, which we
call also corresponding paths.

4.5. ACTL EQUIVALENCE AND WEAK BISIMULATION 75

Paths π1 and π2 are corresponding paths if both paths can be divided into
segments (separate subpaths)

sjr,1, sjr+1,1, sjr+2,1, . . . , sjr+1,1,

and

skr,1, skr+1,1, skr+2,1, . . . , skr+1,1,

respectively, that consist of mutually weak bisimilar states, i.e. any two
states s1 and s2, such that s1 ∈ {sjr,1, sjr+1,1, sjr+2,1, . . . , sjr+1,1} and s2 ∈
{skr,1, skr+1,1, skr+2,1, . . . , skr+1,1}, are weak bisimilar.

Definition 22 (Corresponding paths). Let Q1, Q2 be weak bisimilar LTSs

1. Two infinite paths π1 ∈ Q1 and π2 ∈ Q2 such that

π1 = (s0,1, α0,1, s1,1)(s1,1, α1,1, s2,1) . . .

π1 = (s0,2, α0,2, s1,2)(s1,2, α1,2, s2,2) . . .

π1 and π2 are called corresponding paths, i.e.

π1 ≈ π2

iff there exist two infinite sequences of indices 0 = j0 < j1 < j2 < . . . and
0 = k0 < k1 < k2 < . . . with sj,1 ≈ sk,2 for all jr−1 ≤ j < jr, kr−1 ≤ k < kr
with r = 1, 2,

2. Two finite paths π1 ∈ Q1 and π2 ∈ Q2 such that

π1 = (s0,1, α0,1, s1,1) . . . (sj,1, αj,1, sj+1,1)

π1 = (s0,2, α0,2, s1,2) . . . (sk,2, αk,2, sk+1,2)

π1 and π2 are called corresponding paths, i.e.

π1 ≈ π2

iff there exist two finite sequences of indices 0 = j0 < j1 < . . . < jl = K1+1
and 0 = k0 < k1 < . . . < kl = K2 + 1 with sj,1 ≈ sk,2 for all jr−1 ≤ j < jr,
kr−1 ≤ k < kr with r = 1, 2,

Now we want to prove that if two states are weak bisimilar, i.e. s1 ≈ s2, then
for every path starting from s1 there exists a corresponding path starting from s2,
and for every path starting from s2 there exists a corresponding path starting from
s1.

76 CHAPTER 4. EQUIVALENCE RELATION ON LTS

Lemma 4.5.1. Let Q1 = 〈S1,−→1, ι1, L1〉 and Q2 = 〈S2,−→2, ι2, L2〉 be weak
bisimilar LTSs and s1 ∈ S1 and s2 ∈ S2. If s1 ≈ s2 then ∀π1 ∈ Paths(s1)
∃π2 ∈ Paths(s2) : π1 ≈ π2.

Here, Path(s) denotes the set of maximal paths π with first(π) = s.

Before we start proving, we define a terminal state.

Definition 23 (Terminal state). Let Q be an LTS and
Post(s, α) = {s′ ∈ S|(s, α, s′)}. A state s is called terminal state if a set Post(s)
defined as Post(s) =

⋃
α∈AP Post(s, α) is empty.

Proof. Let π1 = (s0,1, α0,1, s1,1)(s1,1, α1,1, s2,1) . . . be a path from Path(s1).
We define a corresponding path π2 starting in s2, where the transition
(si,1, αi, si+1,1), here ∃s′2 : si,1 ≈ s′2 and si+1,1 6≈ s′2, are matched by transitions
(si,2, τ, ui,1) . . . (ui,ni , αi, si+1,2) such that si+1,1 ≈ si+1,2 and for all k : 1 ≤ k ≤ ni
si,1 ≈ ui,k.

The proof is by induction on i. For each case we distinguish between si being
terminal state or not.

Basic of induction i = 0. If s1 is a terminal state, it follows di-
rectly from s1 ≈ s2 that either s2 is a terminal too, or there exists a path
(s2, τ, u0,1)(u0,1, τ, u0,2) Thus, the path π2 consists of either one state s2 or
a path fragment (s2, τ, u0,1)(u0,1, τ, u0,2) If s1 is not a terminal state, it follows
from s1 ≈ s2 that the transition (s1, α0, s1,1) can be matched by a transition

(s2, τ, u0,1)(u0,1, τ, u0,2) . . . (u0,n0 , α0, s1,2) (4.4)

such that s1,1 ≈ s1,2. This yields the path fragment 4.4 be the path π2.
Now i > 0 and we assume that the path fragment from s2 is already constructed:

(s0,2, τ, u0,1)(u0,1, τ, u0,2) . . . (u0,n0 , α0, s1,2)

(s1,2, τ, u1,1)(u1,1, τ, u1,2) . . . (u1,n1 , α1, s2,2) . . . (ui−1,ni−1 , αi−1, si,2) (4.5)

and si,1 ≈ si,2. If si,1 is a terminal state, then there exists a path fragment

(si,2, τ, ui,1)(ui,1, τ, ui,2) . . . (4.6)

Thereof, the path π2, which is a result of concatenating the path fragment 4.5
from s0,2 to si,2 and the path fragment 4.6, fullfills the desired condition.

In the following, we assume that si,1 is not a terminal state, which means that
π1 does not end in the state si,1. There are two cases:

4.5. ACTL EQUIVALENCE AND WEAK BISIMULATION 77

1. (si,1, α, si+1,1) (visible step from si,1). Due to si,1 ≈ si,2 there exists a path
fragment

(si,2, τ, ui,1) . . . (ui,ni , αi, si+1,2) (4.7)

such that si+1,1 ≈ si+1,2 and si,1 ≈ ui,1 ≈ . . . ≈ ui,ni . Concatenating the
path 4.5 with the path fragment 4.7 yields a path fragment that fulfilles the
desired conditions.

2. (si,1, τ, si+1,1) (invisible step from si,1). Then si+1,1 ≈ si,2 and we repeat our
reasoning for the state si+1 (the index for si+1 is considered to be i again, but
the state si,2 is still the same with the same index).

The resulting path fragment π2 is a corresponding path to π1.

In the following, we perform a key theorem, which states that the same ACTL
formulas hold for two weak bisimilar LTSs.

Theorem 4.5.2. Let Q1 and Q2 be two weak bisimilar LTSs. Then Q1 and Q2 are
ACTL equivalent.

Proof. Let s1 = ιQ1 and s2 = ιQ2 be initial states with s1 ≈ s2 and let ϕ be an
ACTL formula. Let Q1 |= ϕ, we need to show that Q2 |= ϕ.

Q1 |= ϕ means that ∀ρ1 from Q1 such that first(ρ1) = s1, ρ1 |= ϕ. Due to
the definition of weak bisimilar LTSs, we have s1 ≈ s2. Due to Lemma 4.5.1 for
every path π1 from s1 there exists a corresponding path π2 from s2, and vice versa.
Therefore, if we show that a formula ϕ is satisfied by two runs ρ1 = (s1, π1) and
ρ2 = (s2, π2), we show that ∀ρ2 from Q2 such that first(ρ2) = s2, ρ2 |= ϕ.
Further, we prove by induction on the structure of ϕ that ρ1 |= ϕ ⇔ ρ2 |= ϕ

Basis of induction: ϕ = A, where A ∈AP. By the definition of ≈, ρ1 |= A iff
∃k : k ≥ 1 such that ∀i : 1 ≤ i < k (si, τ, si+1), i.e. first k transitions are labelled
as “tau” in the path π1, and A ∈ L(πk). Due to definition of weak bisimilar states,
there exists a state s′2 ∈ S2 such that s2 =α⇒ s′2. It means that ρ2 |= A.
Further we consider several cases:

• ϕ = ¬f such that ρ1 |= ¬f iff not ρ1 |= f , this is by induction hypothesis
equivalent to not ρ2 |= f , which in turn is equivalent to ρ2 |= ¬f .
• ϕ = f ∧ g that means ρ1 |= f and ρ1 |= g, this is by induction hypothesis is

equivalent to ρ2 |= f and ρ2 |= g, that implies ρ2 |= f ∧ g.
• ϕ = ∃f . Suppose that ρ1 |= ∃f , then there is a path, π1 starting with s1

such that (s1, π1) |= f . By Lemma 4.5.1, there is a corresponding path π2
in Q2 starting with s2. By induction hypothesis, (s1, π1) |= f iff (s2, π2) |=
f . Therefore, (s1, π1) |= ∃f implies (s2, π2) |= ∃f . The other direction is
symmetric.

78 CHAPTER 4. EQUIVALENCE RELATION ON LTS

• ϕ = f U g. Suppose that ρ1 |= f U g. By the definition of the until operator,
there is a k such that (sk,1, πk1) |= g (here, the first bottom index means an
ordinal number of a state in a path, the second bottom index, which is either 1
or 2, means that a state belongs to the LTS Q1 or Q2, the upper index means
an index of a state, where it starts from) and for all 1 ≤ j < k, (sj,1, πj1) |= f .
Since π1 and π2 correspond, so do for πj1 and πj2 for any j. Therefore, by the
inductive hypothesis, (sm,2, πm2) |= g and (sj,2, πj2) |= f for all 1 ≤ j < m.
Therefore, ρ2 |= ϕ. We can use the same argument for the other direction.
• ϕ = Xf . Suppose that ρ1 |= Xf . By the definition of the nexttime operator,
∃k ≥ 2 such that (sk,1, π1) |= f , ∀i : 1 ≤ i < k − 1 (si,1, τ, si+1,1) and
τ 6∈ L(πk−1

1). Due to s1,1 ≈ s1,2 and s1,1 =α⇒ sk,1, there exists sm,2 ∈ S2 with
s1,2 =α⇒ sm,2 such that sk,1 ≈ sm,2. Since π1 and π2 are corresponding paths,
it means that the paths can be divided into segments of weak bisimilar states,
where sk,1 ≈ sm,2. Therefore, by inductive hypothesis if (sk,1, π1) |= f , so
(sm,2, π2) |= f , i.e. ρ2 |= Xf .

4.5.3 Additional Theorem about ACTL Formulas Preservation

In this subsection we want to prove an additional fact that is latter used for interpre-
tation of properties. We consider two sets Set1 ⊆ S1 and Set2 ⊆ S2, which consist
of mutually weak bisimilar states (S1 and S2 are sets of states in weak bisimilar
LTSs Q1 and Q2). Both sets Set1 and Set2 are maximal, i.e. there exists no state
s 6∈ S1 such that s ≈ s2 ∈ S2 (the same statement holds for any state s from the set
S2). We want to prove that if we add a loop transition with label κ 6∈ L for every
state from S1 and S2, i.e. a transition of type (si, κ, si), then the extended LTSs
stay weak bisimilar.

In the following, we define formally weak bisimilar sets of states.

Definition 24 (Weak bisimilar sets). Let Qi = 〈Si,−→i, ιi, L〉, for i = 1, 2, be two
weak bisimilar LTSs, i.e. Q1 ≈ Q2. Sets Set1 and Set2 are weak bisimilar sets if for
every s1 ∈ Set1 and every s2 ∈ Set2 the following three statements hold:

(1) s1 ≈ s2,
(2) there exists no state s : s ∈ S1 and s 6∈ Set1 such that s1 ≈ s2,
(3) there exists no state s : s ∈ S2 and s 6∈ Set2 such that s1 ≈ s2.

An optimal algorithm for building weak bisimilar sets is out of scope of this
thesis. Here, we assume that when a state s in the LTSs Q1 (Q2) is chosen, all
states in the LTSs Q2 (Q1) are analysed, if an analysed state is bisimilar with the
chosen state s, it is appended to the set Set2 (Set1). Then the states of the LTS Q1
(Q2) are analysed. If a state from Q1 (Q2) is weak bisimilar with any state from
the set Set2 (Set1), then it is appended to the set Set1.

4.6. SUMMARY 79

Note that if we have two weak bisimilar LTSs Qi = 〈Si,−→i, ιi, L〉, for i = 1, 2,
then for every state in one of these LTSs there exist nonempty weak bisimilar sets
Set1 ⊆ S1 and Set2 ⊆ S2. The fact directly follows from the definition of weak
bisimilar LTSs.

In the following theorem we want to show that if we add an additional loop
transition to every state from weak bisimilar sets Set1 and Set2, then the extended
LTSs stay weak bisimilar.

Theorem 4.5.3. Let Qi = 〈Si,−→i, ιi, L〉, for i = 1, 2, be two weak bisimilar LTSs,
i.e. Q1 ≈ Q2. Let Set1 and Set2 be weak bisimilar sets of states (Set1 ⊆ S1 and
Set2 ⊆ S2). If we extend the set of labels with a label κ, i.e. L′ = L ∪ {κ} (κ 6∈ L),
and the set of loop transitions such that

−→′1 = −→1 ∪
∑

(si,1, κ, si,1)

and
−→′2 = −→2 ∪

∑
(sj,2, κ, sj,2)

for all si,1 ∈ Set1 and all sj,2 ∈ Set2. Then the extended LTSs Q′1 = 〈S1,−→′1, ι1, L′〉
and Q′2 = 〈S2,−→′2, ι2, L′〉 are weak bisimilar.

Proof. We need to show that the conditions of Definition 17 hold for Q′1 and Q′2.
Due to the fact that Q1 ≈ Q2, the conditions hold for every state s1 ∈ S1 and
s2 ∈ S2 with a transition with a label α ∈ L. Then we need to consider transitions
with a label κ ∈ L′ (κ 6∈ L). Let s1 be a state from S1 and there exists a transition
(s1, k1, s1) (the proof for the case s2 ∈ S2 is similar). Due to the fact that there
exist two weak bisimilar sets of states Set1 and Set2 in Q1 and Q2, respectively,
such that s1 ∈ Set1, and the fact that ∀sj ∈ Set2 ∃(sj , k, sj), the conditions of
Definition 17 hold for a random state s1 ∈ S2.

4.6 Summary
In this chapter, we defined the weak bisimulation over LTSs. Then, we introduced
an action-based logic, called ACTL, which is an equivalent to a state-based logic
CTL∗. We explained how to specify and verify behavioural properties with ACTL
for a graph language. Finally, we proved that weak bisimulation implies ACTL
equivalence, i.e.

if Q1 ≈ Q2 then ∀ϕ ∈ ACTL follows that Q1 |= ϕ iff Q2 |= ϕ

It means that if we define a model transformation over two modelling languages, for
models of which it is possible to generate an LTS, then we can check a behavioural
correctness (of the model transformation) by comparison of respective LTSs. If it is

80 CHAPTER 4. EQUIVALENCE RELATION ON LTS

possible to establish a weak bisimulation over an LTS generated for every possible
source model and an LTS generated for a target model, which is a result of a model
transformation, it means that the model transformation preserves all behavioural
properties (specified with ACTL) of a source model. The weak bisimulation must
be then defined over states of LTSs. Recall that in our case we deal with languages
defined by graph transformations, it means that a state in an LTS is a graph. In
the next chapter we introduce a method, which provides instructions how to define
an equivalence relation over all possible graphs typed over run-time graphs and to
prove that the defined equivalence relation is a weak bisimulation. Such method
guarantees the preservation of behavioural properties specified with ACTL.

CHAPTER 5
Method for Semantics

Preserving Model
Transformation

We consider the property of semantics preservation to be particularly important
for model transformation. The semantics preservation in the context of this thesis
means that a generated target model has the same behaviour as a source model.
The same behaviour means that a target model has the same behavioural properties
as a source model. In this chapter, we introduce a method1 to ensure that every
target model has the same behaviour as the original source model (see Figure 5.1)
and interpretation of behavioural properties for the transformed model.

Figure 5.1: Semantics preserving model transformation

1The method is explained on the example of the model transformation and the proof of its
correctness with two simple (self-defined) languages. The example of model transformation and
the proof are originally taken from [HKR+10b]

81

82
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

The problem of semantics preservation of model transformation is not solved in
the MDA approach, where model transformation plays an important role for the
software development process (see Chapter 2). The MDA relies on the stepwise de-
velopment process where the platform independent model is transformed either into
a platform specific model or into another model at the same abstraction layer. The
correctness of model transformation is crucial for MDA, because it is important not
to change or misinterpret the initial requirements during the software development
process.

In this chapter, we describe a method that ensures the full behavioural semantics
preservation of model transformation in the context of MDA. “Full” means that the
method ensures the behaviour preservation not only for a single model, but for any
model. The advantage of using our method is that the behavioural preservation is
proven once for model transformation and then the behavioural preservation holds
for every target model automatically, when this model transformation is applied.

The method deals with languages, the behavioural semantics of which can be
formally specified by means of graph transformation systems (see Chapter 3). The
graph transformation systems give rise to a transition system modelling its exe-
cution. This in turn allows to apply standard concepts from concurrency theory
[HM85] which let us decide whether the transition systems are indeed equivalent or
not. Our aim is eventually to show an equivalence called weak bisimilation between
the transition systems of a source model and a target model. The weak bisimulation
implies the preservation of behavioural properties (see Chapter 4).

5.1 Problem Definition
We try to solve the problem of behavioral semantics preservation for model trans-
formation. We use graph transformations as a formalism to specify the modelling
languages and a model transformation. Therefore, we consider modelling languages
as graph languages, i.e. sets of graphs, and the models are the graphs themselves.
The model transformation is a rule system which consists of graph transformation
rules. Formally, there are two graph languages L1 and L2. A Labelled Transition
System (LTS) is a model that describes the behavioural semantics of a graph lan-
guage, which will henceforth be denoted as Q(G), where G is a graph of a graph
language L. We want to specify a model transformation of a graph G1 of L1 into a
graph G2 of L2. We want that for a behavioural property, formalized as ϕ, and its
interpretation χ in the language L2 the following statement holds:

Q(G1) |= ϕ ⇒ Q(G2) |= χ(ϕ)
In addition, we require:
• the model transformation to be applicable to every model of the source lan-
guage,

5.2. PROPOSED SOLUTION 83

• the proof of behaviour preservation during model transformation must hold
for every model of the source language,
• it must be possible to specify the property ϕ by means of ACTL (see Chapter

4, Section 4.4).
• the meaning of the function χmust be explained, i.e. the way how behavioural

property ϕ, which is specified for G1 in L1, is interpreted for G2 in L2.

We proceed as follows. Firstly, we give an introduction to our method, where
we define the requirements for modelling languages and explain how the criteria
for behavioural preservation could be shown. Then, we use sample languages to
illustrate how to specify model transformation in terms of graph transformations.
Thereafter, we show how to establish the weak bisimilar relation between the tran-
sition system of any source model and that of the target model resulting from its
transformations. Later, we discuss the method results. The final section contains
an analysis of the method.

5.2 Proposed Solution
We propose a method to ensure the behavioural preservation during a model trans-
formation. Our method includes the language restrictions that we intend to work
with, a specification of model transformation and the establishment of an equiva-
lence criteria that guarantees the behavioural preservation during model transfor-
mations. Further, we describe individually each step of the solution, which is also
depicted on Figure 5.2 as an enriched number.

Step 1 The first step of our method is the definition of the abstract syntax (later
syntax) for the modelling languages. According to the MDA approach the
syntax of a modelling language is defined with a meta-model. Since we de-
cided on a graph transformation (see Chapter 3), we require the syntax of a
modelling language be defined with a type graph (see Chapter 3, Section 3.1).

Step 2 We work only with languages for which the behavioural semantics is de-
fined. On the second step we require the behavioural semantics be formally
specified by means of graph transformation rules over a run-time type graph
(see Chapter 3, Section 3.3).

Step 3 The non-trivial mapping between the graph transformation rules is needed
in order to show the correctness of model transformation with respect to
behavioural preservation. The mapping is based on the knowledge of the
behaviour semantics, i.e., some graph transformation rules describe the same
behaviour of elements that are typed over the run-time type graphs. By
this assuming, the corresponding graph transformation rules (the rules that
describe similar behaviour) are mapped. Thus, some rules perform the steps in
the source transition system that have a match in the target transition system
and vice versa. We say that the mapped rules perform observable steps in the

84
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

Figure 5.2: Overview of the proposed solution, which includes restrictions on the
languages (1)-(3), a specification of model transformation (4) and a criteria for the
behavioural correctness of model transformation (5)

LTS. Unmapped rules fulfill internal steps, in the sense that the rules could
not be seen from the other label transition system, since they have no match.
Due to the transition set of LTSs is generated by the graph transformation
rules and labelled over the rule names set, the mapping allows to compare two
different LTSs.

Step 4 In the fourth step of our method we require the existence of a non-trivial
mapping between syntactic elements of the source and the target languages.
This mapping is essential for establishing a model transformation, because
the model transformation themselves specify the transformation of syntax.
We also require the model transformation to be done in a TGG style (see
Chapter 3, Section 3.5). The TGG rules are defined over a type graph, which
consists of the type graphs (defined in step 1) and a graph which points
on the corresponding syntactic elements. The TGG rules must keep these
correspondences.

Step 5 In the fifth step we want to show the correctness of the model transfor-
mation. For this, we compare the LTSs generated by application of graph
transformation rules (defined in step 2) to the models received as a result of
the model transformation (defined in step 4). We compare the LTSs with re-
spect to the mapping (defined in step 3). We establish the equivalence relation

5.3. METHOD 85

T st
A T st

B

Figure 5.3: Syntactic (st) type graphs for graph languages A and B

over the LTSs and prove that this relation is a weak bisimulation.

If there are languages with the specified restrictions in steps (1)-(3) then we can
define a model transformation and ensure their correctness.

5.3 Method
The model transformation and the proof of its correctness is shown in an exam-
ple with two simple (self-defined) languages. Firstly, we specify the syntax of the
languages with a type graph (from Chapter 3, Section 3.2 we know that a type
graph functions as a meta-model and typed graphs are models) and a behavioural
semantics of languages with graph transformations (Chapter 3, Section 3.4). After
this, we define a mapping function that specifies the corresponding semantic rules.
Later, we construct the model transformations between the two languages. Finally,
we show how to establish equivalence criteria over the LTSs.

The steps performed in this section are the steps (1)-(5) of the method described
above to show behaviour preservation of model transformation.

5.3.1 Language Syntax (Step 1)

Our running example consists of two distinct, very simple graph languages denoted
A and B. Figure 5.3 shows type graphs for the languages, denoted T st

A and T st
B ,

respectively. They describe the typing of the syntactic parts of our two languages.
The type graphs themselves impose only a weak structure: not all graphs that

can be typed over the A- and B-type graphs are considered to be part of the lan-
guages. Instead, we impose the following further constraints on the syntactic struc-
ture:

Language A consists of next-connected S-labelled nodes (statements). There
should be a single S-node with a start-edge to itself (we say also a start-loop), from
which all other nodes are reachable (via paths of next-edges). Furthermore, no
next-loops are allowed.

86
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

Figure 5.4: Example graphs of languages A (in the left) and B (in the right)

T rt
A T rt

B

Figure 5.5: Run-time(rt) type graphs for graph languages A and B

Language B consists of bipartite graphs of A- (action) and C-labelled (connector)
nodes. Every C-node has exactly one incoming conn-edge and exactly one outgoing
act-edge; the opposite nodes of those edges must be distinct. Like A-graphs, B-
graphs have exactly one node with a start-self-edge, from which all other nodes are
reachable (via paths of conn- and act-edges).
Small example graphs of instances of languagesA and B are shown in Figure 5.4. We
use Gst

A (Gst
B) to denote the set of all well-formed (syntactic) A-graphs (B-graphs).

5.3.2 Language Semantics (Step 2)

We specify the behavioural semantics by means of graph transformation rules. This
means that the graphs will represent run-time states. As we will see, this will involve
auxiliary node and edge types that do not occur in the language type graphs. Figure
5.5 shows extended type graphs T rt

A and T rt
B that include these run-time types. For

A, a T-node (of which there can be at most one) models a thread, through a single
program counter (pc-labelled edge). For B, we use token- and offer-loops which play
a similar role; details will become clear below. Similar to the syntactic part, we
use Grt

A (Grt
B) to denote the set of well-formed (run-time) A-graphs (B-graphs). The

semantics of A- and B-models is defined in Figure 5.6.
The graph transformation rule systems is as defined in Definition 11. We let

dom(RSA) = {initA,movePC} and dom(RSB) = {initB, createO,moveT} be the

5.3. METHOD 87

initA movePC

initB createO moveT

Figure 5.6: Behavioural semantics rules for A (initA and movePC) and B (initB,
createO and moveT)

names in the rule systems for the A- and B-models (see Figure 5.6). Intuitively,
the init-rules perform an initialisation of the run-time system, setting the program
counter to the start statement (in A) or putting a token onto a start action (in B).
Rule movePC simply moves the program counter to the next statement, createO
moves an offer to a C-node and moveT moves the token. The semantics of A- and
B-graphs is completely fixed by these rules, giving rise to an LTS (Chapter 3 Section
3.4) summarizing all these executions.

5.3.3 Mapping over the Rule Systems (Step 3)

Our objective is to compare the LTSs of graphs of languages A and B. In Section
5.3.4 we will define model transformation MT ⊆ Gst

A × Gst
B translating A-graphs to

B-graphs. We aim at proving this model transformation to be behavioural semantics
preserving, in the sense that the LTSs of source and target models are always weak
bisimilar.

However, there is an obvious problem: the LTSs of A- and B-graphs do not
have the same labels, in fact dom(RSA) ∩ dom(RSB) = ∅. Nevertheless, there is
a clear intuition which rules correspond to each other: on the one hand the two
initialisation rules, and on the other hand the rules movePC and createO. The
reason for taking the latter two as corresponding is that both rules decide on where

88
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

control is moving. The rule moveT has no matching counterpart in the A-language,
it can be seen as an internal step of the B-language, completing a step initiated
by createO. These observations give rise to the following mappings defined on the
labels (i.e., the rule names) to a common set of names.

mapA : initA 7→ init, movePC 7→ move

mapB : initB 7→ init, createO 7→ move, moveT 7→ τ

Let be a set Sym = {init,move, τ} a common set of names for the rules from
dom(RSA) and dom(RSB), here τ stays for the internal steps. We call such a
mapping
map : dom(RS)→ Sym (for a given rule system RS) non-trivial if it does not map
every rule name to τ .

In order to provide a definition of semantics preserving model transformations,
we define a mapping map also over the LTSs: map : P(Q)→P(Q), where P(Q) is
a universe of LTSs. The mapping functions as following, let Q be an LTS, such
that Q = 〈S,−→, i, L〉, then map(Q) = 〈S,−→′, i, L′〉, where −→′ = {(s,map(l), s′) |
(s, l, s′) ∈→} and L′ = {map(l) | l ∈ L}.

Our ultimate goal is to show that our model transformation MT is semantics
preserving, it means that for a behavioural property, formalized as ϕ, and its inter-
pretation χ in the B-language the following statement holds:

Q(GA) |= ϕ ⇒ Q(GB) |= χ(ϕ) (5.1)

However, we present a method that allows to assure a more stronger statement:

mapA(Q(GA)) ≈ mapB(Q(GB)) (5.2)

here GA ∈ GstA , GB ∈ GstB with MT (GA, GB) ⊆ GstA × GstB . The mapping functions
mapA : dom(RSA)→ Sym and mapB : dom(RSB)→ Sym are non-trivial functions.
≈ denotes weak bisimulation.

The important fact is that Condition 6.1 implies Condition 5.1 (see Chapter
4 for more information). Later we call our model transformation MT semantics
preserving, if Condition 6.1 holds.

5.3.4 Model Transformation (Step 4)

Our model transformation needs to translate A-models into B-models. We use
triple graph grammars (TGGs) (see Chapter 3, Section 3.5) which are well-suited
for defining model transformation. The idea of TGG is that the graphs can be
separated into three subgraphs, each being typed over its own type graph. Two

5.3. METHOD 89

Figure 5.7: Type graph T st
AB for TGG graph rules

of these subgraphs evolve simultaneously while the third keeps correspondences
between them.

For our example, we have the two type graphs T st
A and T st

B which – for forming a
type graph for TGGs – are conjoined and augmented with one new correspondence
G-node (the glue) (see Figure 5.7). This combined type graph is denoted T st

AB.
The TGG style is different to any other style of model transformation. In con-

trast to a transformation, when the source model is given in the beginning and is
then gradually transformed, TGG rules build two models simultaneously, relating
each part of the source model to the target one.

There is no deletion in our TGG transformations and no particular constraints.
Therefore, when the needed source model is built, the model transformation con-
struction terminates. The output is a model which consists of three models: a
source model, a corresponding model and a target model. This allows to keep cor-
respondences between transformed elements and to prove certain properties of the
corresponding graphs. The TGG rules for the A to B transformation are given in
Figure 5.8.

These rules incrementally build combined A and B-graphs. Initially, only the
upper rule in Figure 5.8 can be applied and its application constructs a graph
with one S- and one A-node connected via one correspondence node. The middle
rule allows to create further S, A and C-nodes together with their correspondences,
and the lower rule simultaneously generates new next-edges between S-nodes and
connections between A-nodes via C nodes, however only for corresponding S- and
A-nodes. We let Gst

AB denote the set of graphs obtained by applying the three TGG
rules on an empty start graph. To obtain the translation at the end, we need to
project the final graph onto the type graphs of A and B. Using the definition of
projection as given in Chapter 3, Section 3.1, the model transformationMTA2B thus
works as follows: Given anA-graphGA and a B-graphGB, we haveMTA2B(GA, GB)
exactly if there is some GAB ∈ Gst

AB such that GA = πT st
A

(GAB) and GB = πT st
B

(GAB).

5.3.5 Establishment of Weak Bisimulation (Step 5)

We want to show that the previously defined model transformation MTA2B are
semantics preserving. For this, we compare the LTSs that are generated by the
rule systems RSA and RSB by establishing a relation R over them. We consider

90
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

Figure 5.8: TGG transformation rules, which define model transformation MTA2B

the mappings mapA and mapB. By proving that the defined relation R is a weak
bisimulation, we prove the correctness of the model transformation MTA2B with
respect to behaviour preservation.

We start by short summarizing the results achieved in steps (1)-(4) and make
some observations concerning the correspondences generated by TGG rules and the
graph transformation rules that describe the behavioural semantics of the A- and
B-languages. This preparatory reasoning helps us to define the relation R and to
prove that the defined relation is a weak bisimulation.

In Section 5.3.4 we defined model transformation MTA2B that build a graph
GAB ∈ GstAB, which consists of the graph GA, the graph GB and the correspondences
between them. We apply the graph transformation rules (defined in Figure 5.6)
from the rule systems RSA and RSB to the separate graphs GA = πT st

A
(GAB) and

GB = πT st
B

(GAB). There are two essential observations that can be made. The first
is that the graph transformation rules from the rule systems RSA and RSB do not
change the syntactic structure of graphs. The second is that although the graph
transformation rules are applied to the separate models, we still take in account
the correspondences generated by model transformation MTA2B. We proceed with
formalizing these observations.

Notation To write down formally our reasoning, we start by defining some no-
tation. To formulate structural correspondences, we introduce the following
notation. For an S-node vS and an A-node vA, we write corr(vS , vA) if there is
a G-node vG and a left-edge from vS to vG and a right-edge from vG to vA. For
an edge e labelled label going from a node v to v′, we simply write label(v, v′).

5.3. METHOD 91

We also use these as predicates.

First observation Both for A- and B-models, the graph transformation rules from
RSA and RSB keep the syntactic structure of a model, except for start-edges:
all S-nodes and next-edges, and all A,C-nodes and conn, act-edges stay the
same.

We formalize our first observation that the syntactic structure of graphs stays
the same (except for start edges) when the graph transformation rules are applied.

Proposition 5.3.1. Let GA ∈ Grt
A be an A-graph. If GA −r→ G′A for some r ∈ RSA

then πTs
A\start(GA) = πTs

A\start(G′A), where T\start is the type T without the start-
edge.
A corresponding property holds for B.

A number of further observations show that (1) corresponding nodes either both or
none have start-edges, and (2) next-edges between S-nodes will generate connections
via C-nodes between corresponding A-nodes and vice versa.

Second observation Correspondences between nodes in A-models and B-models
are kept during application of behavioural semantic rules. Predicate corr as
well as 5.3.1 and properties (1) and (2) can thus also be applied to separate
A and B-graphs.

We continue further with the formalization of the second observation. We start with
the result, which shows that correspondences between S and A-nodes are unique.
Here, ∃! stands for “there exists exactly one”.

Proposition 5.3.2. Let G ∈ GAB, vS an S-node and vA an A-node in G. Then the
following two properties hold:

(A) ∃!v of type A such that corr(vS , v), and
(B) ∃!v of type S such that corr(v, vA).

The following propositions illustrate some additional correspondences (proper-
ties (1)-(2)) which can be shown by induction on the application of the TGG rules.
The first concerns start-edges:

Proposition 5.3.3. Let G ∈ GAB, vS an S-node, vA an A-node and let corr(vS , vA).
Then

vS has a start-edge iff vA has a start-edge.

Moreover, there is exactly one start-edge on the A- and one on the B-side. The next
correspondence properties hold between next-edges and connections via C-nodes.

Proposition 5.3.4. Let G ∈ GAB, vS an S-node, vA an A-node and let corr(vS , vA).

92
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

• If there is a C-node vC , such that conn(vA, vC), then there is an S-node v′S
and an A-node v′A such that next(vS , v′S), act(vC , v′A) and corr(v′S , v′A).
• If there is an S-node v′S such that next(vS , v′S), then there is a C-node vC and
an A-node vA such that conn(vA, vC), act(vC , v′A) and corr(v′S , v′A).

The formulated propositions are crucial parts of our proof that the model trans-
formationsMTA2B are semantics preserving. The propositions also help us to define
the conditions on the syntactic structure of graphs in a relation R.

On the next step we define the relation R (defining ≈) over the states of two
LTSs, i.e., over the states of Q(G0

A) and Q(G0
B), which are generated by application

of the graph transformation rules (defined in Section 5.3.2) from the rule systems
RSA and RSB to the graphs GA = πT st

A
(GAB) and GB = πT st

B
(GAB), respectively.

Since the states of our LTSs are graphs, the relation R is defined over the well-
formed run-time graphs R ⊆ Grt

A ×Grt
B . We want that the relation R consists of the

pairs of graphs GA and GB that denote the weak bisimilar states of the compared
LTSs (see the definition of weak bisimulation in Chapter 4). Thus, if (GA, GB) ∈ R,
then the behaviour of the graph GA after we apply the rules from RSA is similar
to the behaviour of the graph GB after the application of the corresponding rules
from RSB, we allow also an application of the rules which perform internal steps.

In order to construct R we are guided by Propositions 5.3.1 and 5.3.3 and ad-
ditional considerations about run-time properties on the corresponding nodes. The
example of a run-time property is, if A-node and S-node are corresponding nodes
then they are activated within their behavioural semantics systems simultaneously,
e.g. there must be a pc-edge for the S-node and a token-edge for the A-node. So,
we define all pairs of A- and B-graphs:

(1) The A and B-graphs follow the syntactic structure (except for start) generated
by the TGG rules (see Proposition 5.3.1).

(2) The A and B-graphs have start-edges only on corresponding nodes (see Propo-
sition 5.3.3).

(3) The A and B-graphs must exhibit run-time properties only on corresponding
nodes. Figure 5.9 further illustrates condition (3). We have two possibilites
for run-time elements in matching states: either the pc-edge is on an S-node
and the token is on the corresponding A-node and no further offers exist (on
the left), or the pc-edge is on a node for which the corresponding A-node has
no token yet, but an offer has already been created and is ready to move the
token to the A-node by means of the invisible step moveT (on the right).

(4) The condition (4) must obey well-formedness criteria for run-time elements.

We formalize our observations.

5.3. METHOD 93

Figure 5.9: Illustration of condition (3): Left (i), right (ii)

R = {(GA, GB) ∈ Grt
A × Grt

B | ∃GAB
(1) (πTs

A\start(GA) = πTs
A\start(GAB)) ∧ (πTs

B\start(GB) = πTs
B\start(GAB)),

(2) ∀ S-nodes vS in GA, A-nodes vA in GB s.t. corr(vS , vA):
start(vS) iff start(vA),

(3) ∀ S-nodes vS in GA, A-nodes vA in GB s.t. corr(vS , vA): ∃vT with pc(vT , vS) iff
(i) token(vA) ∧ ∀vC s.t. conn(vA, vC) : ¬offer(vC) or
(ii) ¬token(vA) ∧ ∃vC , v′A : token(v′A) ∧ offer(vC) ∧

conn(v′A, vc) ∧ act(vC , vA),
(4) ∃vT , vS : pc(vT , vS) ⇐⇒ ¬∃v′S : start(v′S) and
∃vA : token(vA) ⇐⇒ ¬∃v′A : start(v′A) and
¬∃vA : start(vA) =⇒ ∃!v′A : token(v′A) and
∀vC : offer(vC) =⇒ ∃vA : token(vA) ∧ conn(vA, vC)and
¬∃vS : start(vS) =⇒ ∃!v′S s.t. ∃vT : pc(vT , v′S)

We want to show that the relation R is a weak bisimulation by proving that
the states of transition systems can mimic each other moves. The proof uses the
propositions and the uniqueness of predicate corr (Proposition 5.3.1, exactly one
S-node related to one A-node).

Theorem 5.3.5. Given MTA2B (as defined in Figure 5.8) and the relation R
(defined in this subsection). Let G0

A, G0
B be an A- and a B-graph such that

MTA2B(G0
A, G

0
B). Then the relation R is a weak bisimulation ≈, i.e.

mapA(Q(G0
A)) ≈ mapB(Q(G0

B))

Proof. of Theorem 5.3.5. Taking the relation R, we need to show the property
of mutual simulation. We start with the requirement of initial states being in
the relation. The initial states of the LTSs are G0

A and G0
B and they satisfy the

conditions of R since they are directly generated by projection from the combined

94
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

Figure 5.10: The idea of our inductive proof

graph (condition (1)), 5.3.3 guarantees (2) and they have no run-time elements such
as tokens, offers or program counters, so condition (3) is trivially satisfied, and (4)
follows from the TGG rules.

Now assume (GA, GB) ∈ R and GA −r1−→ G′A. As we are looking at the LTSs with
labels renamed according to mapA and mapB, r1 (the label of the transition) in
principle is either init, move or τ . We need to show that there is some G′B such that
GB =̂r1=⇒ G′B with (G′A, G′B) ∈ R (see Figure 5.10). However, as we are interested in
the particular semantic rule applied during the step, we will instead directly look
at the original LTSs and show that mapA and mapB map rule names to the same
label.

r1 = initA: Let 〈L1, I1, R1,N1〉 be the rule for initA in Figure 5.6. If r1 is applicable
in GA, we have a match m1 : L1 → GA, i.e., a node vS such that start(vS).
From this we construct a match m2 : L2 → GB for the rule r2 = initB (both
being mapped to init by mapA and mapB) being defined as 〈L2, I2, R2,N2〉.
The matchm2 maps the A-node in L2 to the due to Proposition 5.3.2 uniquely
existing A-node vA in GB such that corr(vS , vA). By condition (2) of R we
get start(vA). Thus r2 is applicable in GB. Once the rules are applied, we
have a graph G′A with one new T-node vT with pc(vT , vS) minus the (only)
start-edge start(vS), and a similar construction for GB. The pair (G′A, G′B) is
in R since (1) the syntactic structure without start edges is kept (Proposition
5.3.1); the pair (vS , vA) satisfies (2) since both start-edges are deleted, all
other pairs satisfy (2) since they are unchanged; (3) is met because we have
∃vT : pc(vT , vS) ∧ token(vA) and no offers are created, and since by (4) we
know that no offers have been existing before; and (4) is met since the two
start-edges have been deleted and for them exactly one pc- and one token-edge
has been created (and no offers).

r1 = movePC: Since r1 is applicable in GA, we have nodes vS , v′S , vT in GA s.t.
pc(vT , vS)∧next(vS , v′S). By (1) and Proposition 5.3.2 there are unique nodes

5.3. METHOD 95

vA, v
′
A in GB s.t. corr(vS , vA) and corr(v′S , v′A). By (1) and Proposition 5.3.4

there exists vC s.t. conn(vA, vC) ∧ act(vC , v′A). By (3) there are now two
possible cases:

1. token(vA) ∧ ∀vC s.t. conn(vA, vc) : ¬offer(vC).
Thus rule r2 = createO matches on vA and vC (and both r1 and r2
are mapped to move). In the resulting graph G′A the pc-edge from vT
to vS has been deleted and one from vT to v′S created. G′B has a new
offer-edge on vC . (G′A, G′B) ∈ R since (1) syntactic structure is kept, (2)
no start edges are touched, (3) both pairs (vS , vA) and (v′S , v′A) satisfy
the condition, the others are unchanged, and (4) since no start edges
are created and the new offer sits on a node following node possessing a
token.

2. ¬token(vA)∧∃vC , v′A : token(v′A)∧ offer(vC)∧ conn(v′A, vC)∧ act(vC , vA).
Then the invisible rule moveT (being mapped to τ) is applicable in GB
leading to a graph G′′B in which token(vA) holds. Moreover, by (4) and
rule moveT we know that for all v′C s.t. conn(vA, v′C) we have ¬offer(v′C).
Now we reached the first case again and proceed like that. In summary,
we get in the renamed LTS

GB −τ→ G′′B −move−−→ G′B, i.e. GB =m̂ove==⇒ G′B

and furthermore (G′A, G′B) ∈ R.
Reverse direction: assume GB −r2−→ G′B. We need to show that there is some G′A such
that GA =̂r2=⇒ G′A and (G′A, G′B) ∈ R. Again, we argue on the level of LTSs before
renaming.
r2 = initB: Similar to initA.
r2 = createO: Since r2 is applicable in GB there are nodes vA, vC : token(vA) ∧

conn(vA, vC) ∧ ∀v′C s.t. conn(vA, v′C) : ¬offer(vC). By (1) and Proposition
5.3.2 there is a unique node vS s.t. corr(vS , vA). By (3) ∃vT : pc(vT , vS). By
(1) and Proposition 5.3.4 ∃v′A, v′S s.t. next(vS , v′S)∧ act(vC , v′A)∧ corr(v′S , v′A).
Hence rule movePC (mapped to move like createO) is applicable in GA. The
rest follows from a reasoning similar to case movePC.

r2 = moveT: In this case, we have an invisible step on the B-side. If r2 is applicable
in GB, then ∃vA, vC , v′A : token(vA)∧offer(vc)∧ conn(vA, vC)∧ act(vC , v′A). By
(1) and Proposition 5.3.2 ∃vS , v′S : corr(vS , vA)∧corr(v′S , v′A). By Proposition
5.3.2 and 5.3.4 we get next(vS , v′S). By (4) we get ¬token(v′A). By (3) we
have ∃vT : pc(vT , v′S) and thus by (4) ¬∃vT : pc(vT , vS). Applying rule r2
leads to a graph G′B in which token(v′A) and ¬offer(vC) ∧ ¬token(vA) holds.
Because of (4) (the only possible offer was on v′C) we know that ∀v′C s.t.
conn(v′A, v′C) : ¬offer(v′C). The pair (GA, G′B) is thus in R and furthermore
GA =̂τ⇒ GA which completes the proof.

96
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

5.3.6 Summary

In this section we performed a five step method, which allows to assure the correct-
ness of model transformation in the sense of behavioural preservation. The method
was illustrated on two self-defined simple languages. Figure 5.11 summarizes this
section, by presenting the sequence of steps we made. Firstly, we defined the syntax
of two languages with type graphs. In the next step, we defined semantics of two
languages by means of graph transformations. Thirdly, we mapped the rule systems
to a single universe. Fourthly, we specified model transformation for the languages
with TGG rules. Finally, we showed how to prove the correctness of the model
transformation by establishing a weak bisimulation over the states of LTSs: the
first LTS is generated for a source graph, by application of graph transformation
rules that define semantics for the source language, and the second LTS is generated
for a target graph, which is a result of the model transformation.

Figure 5.11: Summary of the method

5.4 Interpretation of Behavioural Properties
The presented method shows (1) how to specify a model transformation
MTA2B(GA, GB), which transforms a graph GA into a graph GB, (2) how to define
a relation over the well-formed run-time graphs R ⊆ Grt

A×Grt
B , which form the states

in LTSs Q(GA) and Q(GB), (3) how to prove that the defined relation is a weak
bisimulation, i.e.

Q(GA) ≈ Q(GB)

From the previous chapter, we conclude that weak bisimulation on LTSs implies the
preservation of behavioural properties, i.e.

Q(GA) |= ϕ ⇒ Q(GB) |= χ(ϕ)

here, ϕ is an ACTL formula specified over the labels of transitions in an LTS with
AP = dom(RSA). The function χ is an interpretation of ϕ over the target language,
i.e. over an LTS with AP = dom(RSB).

Recall that the TGG rules MTA2B specify how to transform syntactic structure
of a graph GA into a graph GB. The relation R uses the correspondences, which
are generated by MTA2B, to specify (1) conditions on a syntactic structure of the

5.4. INTERPRETATION OF BEHAVIOURAL PROPERTIES 97

graphs during the semantic execution and (2) all possible pairs of the source and
target graph structures, which exhibit run-time properties on corresponding nodes.
The goal of this section is to specify the interpretation function χ : ΦA 7→ ΦB, where
ΦA is a set of all behavioural properties ϕA of a model (specified as a graph GA),
ΦB is a set of all behavioural properties ϕB of a model (specified as a graph GA).
In the follow, we explain a scenario of behavioural properties interpretation (or the
meaning of function χ).

A behavioural property is specified with an ACTL formula, where the set of
atomic propositions is an extended rule system RS+, as explained in Section 4.4.
To interpret a behavioural property of the source model, we use the weak bisimu-
lation R as an interlink, because it is defined over the well-formed run-time graphs
and specifies the connection of all the possible run-time instances (see the diagram
below).

Grt
A Roo // Grt

B

dom(RS+
A)

OO

?−→ dom(RS+
B)

OO

Property +3 ϕ

OO

?−→ χ(ϕ)

OO

Propertyks

Here, the (standard type) arrows denote the relation “specified over”. The main
question is how to interpret the set of atomic propositions and an ACTL formula
for the target language.
The process of properties interpretation is described as follows:

(1) At first, a behavioural property must be specified according to Section 4.4. For
this, we either (a) use one or more transformation rules rA from the graph trans-
formation rule system RSA that specifies the behaviour of the source language,
or (b) specify one or more graph transformation rules rA, where the left-hand
and a right-hand sides coincide. In the case (b), the rule system is extended
with rA and is denoted by RS+

A. Then, a behavioural property can be specified
as an ACTL formula over AP = dom(RS+

A).
(2) We consider further two cases introduced earlier. Case (a), when rA ∈ RSA.

Then in order to interpret this case for the target B-language, it is required
to use the mappings mapA and mapB. These mappings were defined over the
graph transformation rules in order to map the rules from RSA and RSB,
which perform similar behaviour (see Step 3 of our method). The rule rA must
be mapped to one or more graph transformation rules rB from the rule system
RSB. If the rule rA is mapped to an invisible step, then the property it specifies

98
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

can not be interpreted into another language. Otherwise, continue with step
(5).

Now consider case (b), when rA /∈ RSA. Then the rule rA consists of one
or more nodes and specifies the conditions on a graph structure that could be
also written down as a logical statement condA.

(3) R is defined as a set of conditions on the run-time structures. Since the rule rA
can be considered the condition condA which describes a property of a source
run-time structure, the interpretation of the rule rA is done by analysis of the
correspondences in the TGG graph and the conditions of R. For example, if
the rule rA states that there must be a connection between S-node and T-node,
then there exists a corresponding A-node. The condition (3) in the relation R
defines two cases for the corresponding S- and A-nodes. There are two options
for the corresponding node vA (when the corresponding S-node is connected
with a T-node):

(i) token(vA) ∧ ∀vC s.t. conn(vA, vC) : ¬offer(vC) or
(ii) ¬token(vA) ∧ ∃vC , v′A : token(v′A) ∧ offer(vC) ∧

conn(v′A, vc) ∧ act(vC , vA),
These two options can be formalized as a graph structure, which was already

demonstrated in Figure 5.9. By restriction of such structure on the target meta-
model, we receive two graph patterns r1

B and r2
B, which are the interpretation

of rA in the target B-language.
(4) The rule system RSB is extended with one ore more graph transformation rules

rB, where left-hand and right-hand sides coincide. In the example used above,
the rule system RSB is extended with the graphs r1

B and r2
B.

(5) The formula ϕ is interpreted for the LTS Q(GB) over the new set of atomic
propositions AP = dom(RS+

B). In case the rule rA has two or more corre-
sponding graph structures, it is replaced in an ACTL formula with r1

B∨r2
B∨

We illustrate the interpretation of properties during model transformation by
performing an example, where we consider a concrete graph of the A-language,
which is transformed into a graph of the B-language. We specify a sample liveness
property and a sample safety property for the A-language, then we describe how
the properties are interpreted for the transformed B-language to demonstrate the
results.

Example 5.4.1 (Properties interpretation). We consider a TGG graph GAB which
is a product of the TGG rules from Figure 5.8. The graph is depicted in Figure 5.12.
The graph GAB consists of three subgraphs, two of which are the graph GA and GB
typed over the type graphs T stA and T stB , respectively. The graph GA (see Figure
5.4 in the left) is a source graph and the graph GB (see Figure 5.4 in the right) is
a target graph. The corresponding graph, which consists of G-nodes, connects the
S-nodes and the A-nodes in GAB.

5.4. INTERPRETATION OF BEHAVIOURAL PROPERTIES 99

Figure 5.12: The TGG graph GAB

executeS3 executeS2

execute1A3 execute2A3 execute1A2 execute2A2

Figure 5.13: Graph transformation rules which extend the original rule systems

We already know that the LTSs generated by the semantic rules being applied to
the graphs GA and GB are weak bisimilar. Now we want to verify concrete properties
of the source language A, to interpret it for the language B and show that they hold.

One property is a liveness property specifying that the state representing the pc-
edge flowing through the node s3 must be reachable infinitely often. To write it
down formally, we do some preparatory steps (see Section 4.4 for more details).
At first, we notice that no rule from RSA allows to specify the flow of dynamic
elements throw particular nodes. Therefore, we enrich the rule system RSA with
an additional rule executeS3, that does not change a graph during the semantics
execution. The rule executeS3 requires the existence of a S-node s3 and the T-node,
which is connected with s3 by a pc-edge (see Figure 5.13 in the top).

The second property we want to verify is that the nodes s2 and s3 are never
connected with the pc-edge simultaneously. The definition of the property executeS2

100
CHAPTER 5. METHOD FOR SEMANTICS PRESERVING MODEL

TRANSFORMATION

Figure 5.14: The LTS for GA in the left and the LTS for GB in the right

is similar to the definition of the property executeS3 (see the result on Figure 5.13
in the top). The property executeS2 is a safety property.

The LTS for the graph GA generated by the extended rule system RS+
A, where

dom(RS+
A) = dom(RSA) ∪ {executeS2, executeS3}, is presented in Figure 5.14

in the left. There are four states. The transitions with the labels executeS2
and executeS3 are generated by the graph transformation rules executeS2 and
executeS3 which play the role of invariant. The transitions do not modify the
graph, therefore they are loop transitions.

We specify the properties by means of ACTL:

ϕ1 = ∀G(∃F (executeS3))

ϕ2 = ∀G¬(executeS3 ∧ executeS2)

Formula ϕ1 holds in every state, as in any state of any of its paths it is possible
to reach the state s3. Formula ϕ2 is valid for all states too, because for any path
from each state there is no state, where executeS3 and executeS2 are both globally
valid.

In the next step we interpret the defined properties for the B-language. We start
with the property ϕ1. It specifies the conditions on the graph structure, which could
be written down as follows: ∃vS = s3 : pc(vT , s3). The node a3 is a corresponding
node for s3, i.e. conn(s3, a3). According to the conditions for the relation R (see
Section 5.3.3), there are two conditions for the node a3. The first one is that a3
must have a self edge of token-type and there must be a C-node, such that the C-node
is connected to a3 with a conn-edge and it has a self edge of offer-type (see Figure

5.5. SUMMARY 101

5.13). The second one is that if there exists a A-node and a C-node, such that there
is a conn-node between them and there exists an act-node between the C-node and
a3, then the A-node and the C-node must have self edges of token-type and offer-type,
respectively (see Figure 5.13 in the right). We extend the rule system RSB with two
graph transformation rules execute1A3 and execute2A3, which do not change the
graph and assure that the described conditions hold on a certain step of semantic
execution.

To interpret the property ϕ2 we examine again the relation R and the corre-
sponding node a2. Similar to the property ϕ1, we extend the rule system RSB with
two graph transformation rules execute1A2 and execute2A2 (see Figure 5.13). The
interpreted properties with respect to the mapping are the following:

χ(ϕ1) = ∀G(∃F (execute1A3 ∨ execute2A3))

χ(ϕ2) = ∀G¬((execute1A2 ∨ execute2A2) ∧ (execute1A3 ∨ execute2A3))

Further, we generate an LTS for the graph GB (see the results in Figure 5.14 in the
right). The LTS (Q(GB)) satisfies both properties χ(ϕ1) and χ(ϕ2).

5.5 Summary
In this chapter we presented a method which establishes a weak bisimulation over
the states of the LTSs, generated for any source graph and target graph, where the
later is a result from a model transformation. The method was applied to a concrete
example of two toy graph languages, A and B. It was shown that for any graph GA
of A-language and a graph GB of B-language resulting from its transformations, the
LTSs are weak bisimilar with respect to the mapping of the behavioural semantics
rules. We explained how to interpret the method results, i.e. the behavioural
properties preservation during a model transformation.

CHAPTER 6
Case Study: Model

Transformation of CCS
into Petri Nets

In this chapter we provide a case study in order to show that the method presented in
the previous chapter is applicable to real languages. The idea of the case study is to
specify a model transformation between two languages, Calculus of Communication
Systems (CCS) [Mil95] and Petri nets [Rei85] (see Figure 6.1). We use our method
(see Figure 5.11) to specify the languages and the model transformation by means
of graph transformations and to prove the behaviour preservation during the model
transformation.

Figure 6.1: General idea of this chapter: model transformation between CCS and
Petri nets

There is a number of reasons for this particular choice of languages for the case
study. Firstly, we decided to apply our method to two real languages, between
which the behaviour is already studied. This allows us to study the applicability of
our method. The connection between the CCS language and Petri nets has been
studied earlier [Old86, CMPS82] and the weak bisimulation relation for the lan-
guages was already proven [Gol88]. Another important reason for our choice is that

103

104
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

the languages are comparatively less complicated than modelling and programming
languages, such as UML or Java [EHSW99]. Thirdly, the languages are equipped
with a formal standard semantics.

The chosen languages fit to the MDA idea about vertical model transformation
(see Chapter 1), which are done with the purpose of improving the quality of models
at a particular level of abstraction. Both languages are used for model specification
on a platform independent level. The CCS language is used for modelling concur-
rency, and Petri nets are widely used to simulate nondeterministic computation.
With our method we show that it is possible to define a model transformation be-
tween these two languages by means of graph transformations and show that this
transformation preserves behavioural properties.

Our transformation is mainly based on [GM84, Gol88], where the authors con-
sider a restricted CCS language. The first restriction is related to the fact that
the CCS language is Turing powerful and finite Petri nets are not. The second
restriction is related to a problem of implementing a choice operator in Petri nets.
We show that the second restriction is not needed, by implementing the behaviour
semantics by means of graph transformations. Similar to [Gol88] we are interested
in a transformation of CCS into finite Petri nets. In opposite to [Gol88] we do not
deviate from a usual definition of Perti nets.

The model transformation between CCS and Petri nets involve several stages
(see Figure 6.2). Beside the model transformations (Stage 3), the syntax of both
models needs to be defined with a type graph and the formal semantics must be
specified with graph transformations in order that our method could be applied. For
this we perform Stage 1, when the original syntax of CCS defined with extended
Backus-Naur Form (EBNF) [Ove97] is transformed into meta-model notation and
then the meta-model is transformed into a Type Graph (TG). The CCS semantics
originally defined by the Interleaving Operational Semantics (IOS) [DNM88] is also
transformed into a semantics based on Graph Transformation Rules (GTRs). We
prove that the new notation has the same behavioural semantics by comparison of
LTSs.

The original definition of the Petri net language is not provided by means of
graph transformations, but within Set Theory (ST) and the behavioural semantics is
defined with a usage of a function, called Marking (M). However, there are examples
in the literature [BEMS08, MEE10], where the Petri nets language is defined with
graphs and graph transformations and there is a standard graphical representation
of Petri nets, which is very similar to a graph representation. Therefore, we do not
present a proof of behaviour preservation similar to CCS, instead we introduce the
Petri nets language by means of graph transformations with formal explanations of
implementing the original specification (Stage 2).

So, there are three stages in this chapter. The first stage is the definition of
syntax and semantics of CCS with graph transformations. The second stage is
representing the Petri nets language by means of graph transformations. The third

105

Figure 6.2: Several stages of transformations: the first stage of transformations
- the original syntax of CCS defined with EBNF is transformed into a TG and
the IOS into the semantics based on GTRs, the second stage of transformations –
the original syntax of Petri nets defined with ST is interpreted as a TG and the
semantics based on a usage of a Marking (M) function is implemented with GTRs,
the third stage of transformations is a model transformation, which is represented
within the same notation

stage is the model transformation between the CCS language and the Petri nets
language. The semantic preservation is proven in first and third stages.

We proceed as follows. This chapter is organized as a case study of our five step
method (Figure 6.3). Sections 6.1 and 6.2 include Steps 1-2 of our method. The
former section covers the earlier described Stage 1. The latter section specifies the
Petri net language by means of graph transformations, i.e. Stage 2. Furthermore,
we proceed with Stage 3. We provide a step 3 of our method: mapping of graph
transformation rules from rule systems which define the semantics of the languages
(Section 6.3). The transformations from CCS into Petri nets (Step 4) are presented
in Section 6.4. In Section 6.5 we show Step 5: the behavioural preservation during
model transformations. We conclude this chapter by an illustration of the results
of our method by verification of some properties on a concrete example in Section
6.6.

Figure 6.3: Connection between stages and steps of the method

106
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

6.1 CCS Language (Steps 1-2)
In this section, we provide Steps 1-2 of our method, i.e. the definition of the syntax
and the semantics of the CCS language by means of graph transformations. Since
the original definition is different, we provide a step-wise approach, or we also say
that we perform substeps. As a first substep (see Figure 6.4), we introduce the CCS
original syntax defined with the EBNF and the CCS semantics given in the IOS
style. In the second substep, we transform the EBNF into a type graph. Then, we
extend a type graph to a run-time graph and we define the graph transformation
rules over the run-time graph. Finally, we prove that the newly defined graph
transformations describe the same behaviour as the original IOS. Therefore, there
are intermediate substeps in this section, beside the definition of the CCS language
with graph transformations.

Figure 6.4: Overview of this section

6.1.1 Original Syntax and Semantics

We start with a small example. Let us consider a system: a banking system webpage
(see the interface of a webpage in Figure 6.5). We suppose that a visitor can login
to online-banking, for this he needs to provide a username and a password, we
denote these events as c and d, respectively. The visitor can also find the nearest
office by providing an address and pressing the button “Find our offices”, we denote
these events as a and b, respectively. One natural way to define the banking system
webpage, as a CCS process P , is in terms of its interaction with the environment at
its four ports (a, b, c, d), as follows:

P = a.b.nil + c.nil | d.nil

This means that you can either, for example, login in a system, for this you
must provide a username and a password (what to provide firstly is not specified),
or you can find an office, then you need to provide an address and then to press the
button “Find our offices”. Note that the system behaviour will not let you do both
operations, you need to decide either you want to proceed with online-banking or
you want to know the office.

In our example, we illustrated an event (e.g. a), a sequence of events (a.b.nil),
a choice of events (a.nil + b.nil), events executed in parallel (c.nil | d.nil). Beside

6.1. CCS LANGUAGE (STEPS 1-2) 107

Figure 6.5: An example of a web page interface

these operators, there is also a recursion (µx.a.x). We do not consider relabelling
and restriction [Mil95] and therefore restrict the original CCS language. Now it will
be easier to understand the syntax of the CCS language. It is originally given in
terms of grammar rules. Below is the EBNF grammar of the CCS language:

<P> ::= nil | <V> | <E>.<P> | <P>+<P> |
<P> ‖ <P> | µ <V>.<P>

<E> ::= a | b | c . . . (1)
<V> ::= x | y | z . . .
Here E stands for the action name from the set Act, with the following structure:

Act := Λ ∪ {τ}; Λ := ∆ ∪ ∆̄, where ∆ is a set of names, ∆̄ := {ā|a ∈ ∆} and the
mapping a 7→ ā is a bijection. We call a an action and ā a co-action. V is a set of
variables, which is used for the recursion.

The intuitive meaning of the non-terminals is as follows. nil is not able to
perform any action, a. < P > performs a and then behaves like < P >. It also
means that the event a occurs. In < P > || < P > (later denoted as
< P > | < P >, note that the processes could be different), the processes < P >
are executed concurrently; complementary actions may be performed jointly as a
τ -action. < P > + < P > behaves like one of the processes < P >. Operators
+ and | are associative and communicative, therefore the order of components is
irrelevant. µx. < P > declares a variable x, a recursive invocation happens, when
x occurs in < P > without µ. All mentioned operators have a priority, and high
priority operators are evaluated before lower priority ones. Operators of the same
priority are evaluated from left to right. The order for all operators from higher
priority to low priority is: (), |, +, µ and ., where the last two operators have the
same priority.

To define a notion of behavioural semantics, we use the notion of Labelled
Transition System (LTS) defined in Chapter 4. Thus, we have a structure Q =
〈S,→, ι, Act〉, which stands for LTS. Here, S is a set of states. In our case the states
are the CCS processes, i.e. the words of the CCS language. a−→ ⊆ S × Act× S is a
transition relation, where each transition → is labelled over the set Act. ι is a set
of initial states. In IOS there exists an LTS for each process P .

The CCS behavioural semantics consists of the definition of each transition

108
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

relation a−→ over Act. Further, we explain how a transition → is defined. For this,
we introduce a set of inference rules, which are used for justification of a transition,
i.e. the transition could be inferred by the set of rules. Then, an LTS for a process
P is defined by all justified transitions.

Prefixing a.P
a−→ P

CompositionI P
a−→P ′

P |Q
a−→P ′|Q

Q
a−→Q′

P |Q
a−→P |Q′

CompositionII P
a−→P ′Q

ā−→Q′

P |Q
τ−→P ′|Q′

Summation P
a−→P ′

P+Q
a−→P ′

Q
a−→Q′

P+Q
a−→Q′

Recursion P [µxP/x]
a−→P ′

µxP
a−→P ′

where P [µxP/x] denotes the term resulting from the substitution of all free occur-
rences of x in P by µxP .

We say that our set of rules is complete; by this we mean that there are no
transitions except those which can be inferred or deduced by the rules.

We return to our example, we want to illustrate how an LTS could be received
for a process P = a.b.nil + c.nil | d.nil. For this, we consider a transition.

a.b.nil + c.nil | d.nil −d→ c.nil | nil

We need to show or justify that this transition could be inferred by the previously
defined rules. We can now set out the justification for a transition of a CCS process
in the form of an inference diagram, in which we annotate each inference with the
name of the IOS rule which justifies it. The justification is given as follows:

d.nil −d→ nil
Prefixing

c.nil | d.nil −d→ c.nil | nil
CompositionI

a.b.nil + c.nil | d.nil −d→ c.nil | nil
Summation

At first, we applied the Summation rule, then the CompositionI rule and the
Prefixing rule. If we unify all possible transitions for the process P (we omit the
justification process for each single transition), then we get the LTS as it is shown
in Figure 6.6.

6.1.2 From EBNF to Meta-Model

In this subsection, we want to define the CCS syntax with a type graph. For this
we firstly transform the EBNF form into a meta-model. Then, we define a type

6.1. CCS LANGUAGE (STEPS 1-2) 109

P = a.b.nil + c.nil|d.nil
a

vv
d
��

c
))

b.nil

b
��

nil|c.nil

c

��

d.nil|nil

d
��

nil nil|nil nil|nil

Figure 6.6: Transition system generated by IOS for the process P = a.b.nil+ c.nil |
d.nil

Figure 6.7: Meta-model for the syntax of the CCS language

graph for the received meta-model.
We use the research [WK05] to transform the EBNF grammar of the CCS lan-

guage into a meta-model. The purpose of this research is to transform the textual
definitions of EBNF into a format, that can be processed by model engineering tools.
The transformation is based on the following rules. The left-hand side of a produc-
tion rule is transformed to a class. The elements of the right-hand side are connected
to the left-hand side class by a containment association with role-names to indicate
the subprocesses, events and variables and contain the constraints. To simplify the
instances of meta-model, we include the inheritance relation between the classes
which correspond to a process P and the classes which correspond to the right-hand
side of a first production rule. Non-terminals turn into attributes. For simplicity
reasons, we define three different attributes for events from set Act = ∆∪ ∆̄ ∪ {τ},
each subset of Act has a unique attribute. See the result in Figure 6.7.

In our research we do not use the meta-model directly, rather we encode it into
a graph structure. Class and object diagrams can be treated as (labelled) graphs
(see Chapter 3). Therefore, we use later type graph T st

CCS (see Figure 6.8), received
by direct translation of the meta-model.

110
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.8: Type graph T st
CSS

We want to take into account the constraints on the associations during the
transformation of meta-model into a type graph. For this we impose the constraints
on the syntactic graph structure. The type graph must impose only a weak struc-
ture: not all graphs that can be typed over T st

CSS are considered to be parts of the
language. We define the constraints by specifying the well-formed graphs. Then, the
CCS language defined by the type graph T st

CSS consists of only well-formed graphs.
Well-formedness is inductively defined (similar approaches to well-formedness can
be found in [PKT73, EKR+08]). For this, we introduce the concept of building
blocks. Every building block is a Process-node (see Figure 6.9 in the top left corner)
and corresponds to the first left-hand side of a production rule from EBNF grammar
(see Subsection 6.1.1). For the right-hand side of a production rule we define the
following patterns:

• A Nil-node itself constitutes a building block (see Figure 6.9A) and corresponds
to a process nil.
• A Summation-node, followed by two Process-nodes, is a building block (see
Figure 6.9B) and corresponds to a process P1 + P2

1.
• A Composition-node, followed by two Process-nodes, is a building block (see

Figure 6.9C).
• A Sequence-node, followed by an Event-node and a Process-node, is a building
block (see Figure 6.9D) and corresponds to a process E.P . An event a ∈ Act
corresponds to an attribute value of the Event-node.
• A Recursion-node, followed by a Variable-node and a Process-node, is a building
block (see Figure 6.9E) and corresponds to a process µV.P .
• A Variable-node itself constitutes a building block (see Figure 6.9F) and cor-
responds to a process V .

An example of a well-formed typed graph over T st
CSS is depicted in Figure 6.10.

Since each well-formed construction is defined by EBNF, then we can map each
process to a well-formed CCS graph. We say later that there is a corresponding
graph GP for the process P . A corresponding graph for the process P [µxP/x],
which means that all occurrences of a variable x in P are replaced with P (a part

1Instead of writing < P1 > + < P2 > we skip the parenthesis and write P1 + P2 further.

6.1. CCS LANGUAGE (STEPS 1-2) 111

Figure 6.9: Definition of well-formed CCS graphs

Figure 6.10: The CCS graph for the process P = a.b.nil + c.nil | d.nil

of the inference rule Recursion), is a graph GP , where each structure is mapped as
it is defined by a well-formed construction.

Note that a CCS typed graph represents always a tree, the intermediate nodes of
which are Process-nodes; Event-nodes, Nil-nodes and Variable-nodes are leaves. All
nodes that inherit the Process-nodes are the roots of some subtrees in the instance
model. These subtrees correspond to subprocesses of the process P (subprocess is
defined below).

Definition 25 (Subprocess). Let P be a CCS process, then P ′ is a subprocess of
P (denoted later also as P � P ′), if

(a) P ′ is defined by EBNF grammar (1), and
(b) P is defined by EBNF grammar (1), where at least one of the components

(i.e. < P >) is P ′.

Note that each process x is always a subprocess of some process µx.P . Similarly,
a graph Gx (which is a Variable-node) is always a leaf node of a graph Gµx.P .

We use Gst
CCS to denote the set of all well-formed (syntactic) CCS graphs.

112
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.11: The idea to implement behavioural semantics by means of graph trans-
formations: a transition system generated for the original CCS process must be weak
bisimilar with a transition system generated for the corresponding graph

6.1.3 From Interleaving Operational Semantics to Semantics
Defined by Graph Transformations

After we defined the CCS syntax with a type graph, we continue with the definition
of the CCS semantics by means of graph transformations. Later in Subsection 6.1.4
we prove that our definition of behavioural semantics is correct. The content of this
and the next subsections is Step 2 of our method.

Let Q1 be an LTS generated for a process P by IOS semantics (denoted later
as Q1(P)). Let GP be a corresponding graph for process P . An LTS generated
for GP with graph transformation rules (defined later for the behavioural semantics
of the CCS language) is denoted as Q2(GP). In this subsection we want to define
these graph transformation rules correctly in the sense that Q1(P) and Q2(GP) are
weak bisimilar (see Figure 6.11). The idea is to define the graph transformation
rules for each IOS rule in a such way that a justification of each transition in Q1 be
equivalent to a process of application of the graph transformation rules.

The task to define the behavioural semantics of the CCS language with GTRs is
not a simple one, because the IOS and the GTR techniques have different underlying
principles. The main difference between the two semantics is that IOS rules are not
always part of the transition system. The IOS rules such as Prefixing, Summation,
CompositionI, CompositionII and Recursion serve only to justify a transition without
being displayed by the transition system. The transition system generated by GTRs,
on the contrary, allows to track every GTR being applied.

We illustrate the difference on a running example. For this, we show how in-
ference rules of IOS affect a choice of a transition in LTS without being part of it.
We generate an LTS for the process P = a.b.nil+ c.nil | d.nil. The LTS is depicted
in Figure 6.6. Here, the states are marked by intermediate processes, which will
be simplified on the next step, and the transitions are labelled with the event that

6.1. CCS LANGUAGE (STEPS 1-2) 113

Figure 6.12: Run-time graph T rt
CSS for the CCS model

occurs. The initial state is labelled with the original process P . The transition
P −a→ P ′ is possible if it is justified. The inference diagram for the transition is
performed below.

a.b.nil −a→ b.nil
Prefixing

a.b.nil + c.nil | d.nil −a→ b.nil
Summation

According to IOS, inference rule Summation must be applied to P , which reasons
about a choice of subprocesses. The rule for Summation can be read as follows: if
any one summand Ej of the sum

∑
i∈I has an action, then the whole sum also

has that action. Being not part of a transition system, but only reasoning about
a transition, the Summation rule represents an invisible choice of the path in the
transition system. Finally, we apply the Prefixing rule, which leads to the true
statement. This means that transition −a→ is possible from the state P .

To implement the IOS with graph transformations, we do the following. Rather
than deletion of a syntactic structure, we use a pointer - a special node of type
Current, which flows through a CCS graph, and on each step it points to a subtree,
which has a corresponding process. The process of moving of a Current-node is
similar to a justification process, when process P is simplified by inference rules
on each step. Since we want to separate the cases for moving a Current-node from
Summation-node, Composition-node and Recursion-node, we use an auxiliary pointer,
a Mark-node. It helps to keep the LTSs Q1 and Q2 weak bisimilar, by separating
the cases P1 +P2 and P1|P2, and avoiding a loop of invisible steps, e.g. for a process
a.nil + µx.x.

In order to define the behavioural semantics by means of graph transformation
rules we build a run-time graph by enhancing the type graph T st

CCS (from Figure
6.8) with nodes of the Current and Mark types. For better understanding we also
add a name to each Process-node, to identify a subprocess each node corresponds
to. The run-time graph T rt

CCS is presented in Figure 6.12.

114
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.13 illustrates the typed graph for the process P = a.b.nil+ c.nil | d.nil
with dynamic elements. The Current-node is connected with the Process-node, which
corresponds to the process P = a.b.nil + c.nil | d.nil.

Figure 6.13: Typed graph for the CCS process P = a.b.nil + c.nil|d.nil

During the application of graph transformation rules, we want that the Current-
node flows through the tree structured typed graph. The Current-node starts from
the root node of a tree and flows in the direction to one of the leaves, possibly being
duplicated. In case of recursion, the Current-node is moved from a leaf, which is a
Variable-node, to a certain Recursion-node, which is connected with a Variable-node
with the same attribute as the already mentioned Variable-node. If there exists an
edge between a Current-node and a Process-node, denoted P1 (Note: all nodes of
Sequence, Composition, Summation, Recursion and Nil-types are also nodes of the
Process-type), we say that the Current-node points to a Process-node or to a process
P1. The dynamic element Mark keeps the track of Current-node, thereby giving a
special meaning to each Current-node.

We agree to use a special convention in order to distinguish the original CCS
process and the CCS process defined as a graph. According to the EBNF, each
process could be written as P = P1 + P2, P = P1 | P2, Therefore, we can
write PP1+P2 , PP1|P2 , . . . , to denote an original process, and GP1+P2 , GP1|P2 , . . . ,
to denote its corresponding graph, which emphasizes a syntactic structure. Let us
consider a graph Ga.P1 ⊆ G, which is a corresponding graph for a process a.P1.
If there exists a single Current-node in a graph G, which points to a root node of
Ga.P1 , then Grt

a.P1
= G. It is obvious that there exists a subgraph GP1 ∈ Ga.P1 ,

which is a corresponding graph for P1. If the Current-node was moved to a root
node of GP1 , then we write G = Grt

P1
and say that the rule turned graph Grt

a.P1
into

Grt
P1

or transition Grt
a.P1
→ Grt

P1
takes place.

It is evident, there is an additional state in the graph transformation system,
in which the Current-node has been moved and duplicated, but the corresponding
process has not been simplified. This happens after the Current-node flows through
the Summation-nodes and Composition-nodes. We denote these intermediate states
as Grt

P1∨P2
and Grt

P1∧P2
respectively (see Figure 6.14). Operator ∧ has higher priority

6.1. CCS LANGUAGE (STEPS 1-2) 115

than operator ∨.
Figure 6.14: Pattern for graphs, which represent additional states that do not have
a corresponding process

We consider the process P = a.b.nil+c.nil |d.nil and a corresponding graph GP .
If we apply the graph transformation rules to this graph, we could get a state when
there are three Current-nodes, which point at the subprocesses P1 = a.b.nil, P2 =
c.nil and P3 = d.nil and the corresponding graph is denoted as Grt

a.b.nil∨c.nil∧d.nil.
The label transition system generated by the graph transformation system for the
graph Ga.b.nil+c.nil|d.nil is shown below:

Ga.b.nil+c.nil|d.nil

ccsInitial
��

Grt
a.b.nil+c.nil|d.nil

ccsSummation

��
Grt
a.b.nil∨c.nil|d.nil

ccsSequence

xx ccsComposition))
Grt
b.nil

ccsSequence

��

Grt
a.b.nil∨c.nil∧d.nil

ccsSequence

uu ccsSequence ((
Grt
nil Grt

nil∧d.nil

ccsSequence

��

Grt
c.nil∧nil

ccsSequence

��
Grt
nil∧nil Grt

nil∧nil

The original IOS requires a justification of each transition, thereby simplify-
ing the part of a process on each step of semantic execution. The GTRs do not
change the syntactic part of the graph (elements typed over the T st

CSS), instead

116
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

the Current-node and Mark-node may change their position, fork or withdraw. The
idea of simplification is that Current-node points at a Process-node which is the
root of a subtree that corresponds to a certain subprocess. Therefore, we can de-
fine corresponding structures over the processes and graphs. In Table 6.1 there is
an abbreviation for a process on each step of its simplification, its corresponding
graph structure and the notation for a graph structure. Figure 6.15 illustrates the
additional patterns for CCS graphs.

Table 6.1: CCS processes and their corresponding graph structures

We use Grt
CCS to denote the sets of all well-formed (run-time) CCS graphs typed

over T rt
CCS .

Finally, we present the graph transformation rules, which specify the behaviour
of the CCS language by moving Current- and Mark-nodes. Each rule corresponds to

6.1. CCS LANGUAGE (STEPS 1-2) 117

Figure 6.15: Additional pattern for a graph and corresponding notation

Table 6.2: The names of graph transformation rules for the CCS behavioural se-
mantics and their corresponding rules from IOS semantics

Graph transformation rule name Corresponding IOS inference rule

ccsInitial None

ccsSequence Prefixing a.P
a−→ P

ccsCoAction CompositionII P
a−→P ′Q

ā−→Q′

P |Q
τ−→P ′|Q′

ccsSummation Summation P
a−→P ′

P+Q
a−→P ′

Q
a−→Q′

P+Q
a−→Q′

ccsComposition CompositionI P
a−→P ′

P |Q
a−→P ′|Q

Q
a−→Q′

P |Q
a−→P |Q′

ccsVariableDeclaration
Recursion P [µxP/x]

a−→P ′

µxP
a−→P ′

ccsRecursion

one or two IOS rules (see Table 6.1.3), except the first one, which creates Current-
and Mark-nodes for the syntax graph. The recursion is specified by two rules. The
first moves a Current-node through the node, which corresponds to a prefix µ. The
second rule accomplishes a substitution of a variable into a CCS process.

The rules are specified over the run-time graph T rt
CCS and are presented in Fig-

ures 6.16-6.23. We define a semantic rule system as a partial mapping RSCCS :
SymCCS → RuleCCS , where RuleCCS is a set of graph transformation rules from
Figures 6.16-6.23, SymCCS = {ccsInitial, ccsSequence, ccsCoAction, ccsSummation,
ccsComposition, ccsVariableDeclaration, ccsRecursion} be the names in the rule sys-
tem for the CCS graph. All of these rules affect the dynamic elements, but keep

118
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.16: The ccsInitial rule (creates first dynamic elements in a static CCS
graph)

Figure 6.17: The ccsSequence rule template (moves a Current-node from a graph
Ga.P to a graph GP)

the original structure. In the follow, each rule is separately explained.
The ccsInitial rule (see Figure 6.16) creates a Current-node and a Mark-node for

a Process-node, which has no incoming subprocess edges, i.e. it is a root node.
Figure 6.17 illustrates a rule, which we call ccsSequence template. It is similar

to IOS Prefixing rule, because it needs a match for a graph Grt
a.P and it moves a

Current-node from the graph Ga.P to the graph GP . However, the rule depicted in
Figure 6.17 does not indicate which Event-node it is applied to. Since we want to
separate the cases, when the rule is applied to different graphs, e.g. to graphs Grt

a.P

and Grt
b.P , here a and b are different events names, the rule must include an attribute

value of the Event-node. For this, the template from Figure 6.17 must be extended
with an attribute node, which has a specific value (specification of the event a). The
name of the extended rule is derived from a prefix ccsSequence juxtaposed with an
attribute value of the Event-node.

Figure 6.18 depicts the ccsSequenceBig rule, which is a result of the extension of
the ccsSequence template. The Event-node is now with a specific attribute, which
value is big. In the following we explain the ccsSequence template in detail.

The ccsSequence template requires the existence of a Sequence-node with two
child nodes, one of them of a Process type, and a Current-node, which is connected
with the Sequence-node. The rule creates a Current-node and a Mark-node such that
there is an edge between the newly created Current-node and the Process-node and
an edge between the newly created Current-node and the newly created Mark-node.
In addition, the rule deletes the initial Current-node, the initial Mark-node and all
Current-nodes that have a connection to the initial Mark-node. It allows to delete

6.1. CCS LANGUAGE (STEPS 1-2) 119

Figure 6.18: The ccsSequenceBig rule (moves a Current-node from a graph Gbig.P to
a graph GP) is an extension of the ccsSequence template with the attribute node
for the Event-node with the value big

all Current-nodes created after application of the ccsSummation rule. Therefore, the
ccsSequence rule makes a choice of a subprocess instead of the ccsSummation rule.
It is expected that the ccsSequence rule performs the following transition:

Grt
a.P

a−→ Grt
P

The ccsCoAction template (Figure 6.19) describes very similar transition step to
a transition a.P1 | ā.P2 −τ→ P1 | P2 from the original semantics, because it moves a
Current-node from the graph Grt

a.P1|ā.P2
to the graph Grt

P1|P2
. The template reminds

the ccsSequence template, the difference is that the ccsCoAction template requires
two Sequence-nodes instead of one. Additional condition is the following. One
of the Sequence-nodes has a child Event-node with a name-attribute and a child
Event-node with a co-name-attribute. The value of these attributes is the same.
Moreover, for each Sequence-node there is a Current-node. There exists a Mark-
node which connects these Current-nodes. It is expected that the ccsCoAction rule
performs the following transition:

Grt
a.P1|ā.P2

tau−−→ Grt
P1∨P2

Note that the ccsCoAction template must be also extended (similarly to the
ccsSequence template) with attributes values for the Event-node. The final rule
must be added to a graph transformation system with an appropriate name (which
is derived from a prefix ccsCoAction juxtaposed with an attribute value of the Event-
node.).

Throughout the rest of this thesis, ccsSequence and ccsCoAction stand
for any of the extended rules from the correspondent template.

The ccsSummation rule (Figure 6.20) is the most interesting among implemented
rules. Rather than performing a choice (according to a description of the operator
“+”) the rule duplicates Current-node for two child nodes of a root node of the graph

120
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.19: The ccsCoAction template (moves a Current-node from a graph
Grt
a.P1|ā.P2

to a graph Grt
P1|P2

)

Grt
P1+P2

. Such an implementation allows to keep the weak bisimilar behaviour. So,
if the rule matches the graph Grt

P1+P2
, the ccsSummation rule does not move a

Current-node to a particular child Process-node, instead it moves the Current-node
to both Process-nodes. Therefore, the choice is deferred for the ccsSequence rule. It
is expected that the ccsSummation rule performs the following transition:

Grt
P1+P2

τ−→ Grt
P1∨P2

The ccsComposition rule is similar to the original IOS CompositionI rule (Figure
6.21). The rule needs a match for a graph Grt

P1|P2
and then it duplicates Current-

node and a Mark-node for two child nodes of a root node. In contrast to the
ccsSummation rule, the CompositionI rule creates two Current-nodes with different
Mark-nodes, which keep the connections of an original Mark-node. Then, if the
ccsSequence rule is applied to one of the subprocesses, the second subprocess will
be still executed. It is expected that the CompositionI rule performs the following
transition:

Grt
P1|P2

τ−→ Grt
P1∧P2

The ccsVariableDeclaration rule (Figure 6.22) is equivalent to the simplification of
a process µx.P to a process P . If we interpret this process for a graph, then the rule
moves a Current-node from Grt

µx.P to Grt
P . However the ccsVariableDeclaration rule

6.1. CCS LANGUAGE (STEPS 1-2) 121

Figure 6.20: The ccsSummation rule (duplicates a Current-node for child Process-
nodes)

Figure 6.21: The ccsComposition rule (creates two Current-node with different Mark-
nodes, the nearly created Mark-nodes keep the connections of an original Mark-node)

additionally keeps the connection to a node, where the variable x was firstly met or
declared, i.e. there is a connection from a Recursion-node to a Variable-node. Being
kept during the rule applications, this connection is used for recursion implementa-
tion. The connection is realized by a Mark-node and an edge to the Variable-node.
It is expected that the ccsVariableDeclaration rule performs the following transition:

Grt
µx.P

τ−→ Grt
P

The ccsRecursion rule performs a recursive step. For the original IOS semantics,
it means a substitution of a variable x with a process P , i.e. P [µxP/x]. If a Current-
node reaches a Variable-node, the rule moves the Current-node to the place, where
the variable was declared (by the ccsVariableDeclaration rule). It is realized due to

122
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.22: The ccsVariableDeclaration rule (moves a Current-node from Grt
µx.P to

Grt
P and additionally keeps the connection to a node, where the variable x was

declared)

Figure 6.23: The ccsRecursion rule (performs a recursive step)

a connection of a Mark-node with a Variable-node at the moment of its declaration.
The connection is kept during the semantics execution. It is expected that the
ccsRecursion rule performs the following transition:

Grt
x

τ−→ Grt
P

6.1.4 Semantics Preservation

To be sure that the rule system RSCCS describes the same behaviour as the original
semantics, we use the equivalence over an LTS generated by the original IOS and
an LTS generated by the graph transformation system. In this subsection we want
to show that an LTS generated for any process P is weak bisimilar (see Chapter 4)
to an LTS generated for the graph GP .

Let Q1 be an LTS such that Q1 = 〈S,−→, i, Act〉 with a set of labels Act =
{a, b, c, . . .}, where Act is some set of names. An LTS generated for the process P
by IOS is denoted as Q1(P). Let Q2 be an LTS such that Q1 = 〈S,−→, i, L〉 with a set
of labels L = {ccsInitial, ccsSequence, ccsCoAction, ccsSummation, ccsComposition,
ccsVariableDeclaration, ccsRecursion}, where elements of the set L are the names
of the graph transformation rules from RSCCS . Note that here, ccsSequence and
ccsCoAction stand for sets, which consist of all possible extensions from the respec-
tive templates for each label from Act. An LTS generated for the graph GP by the

6.1. CCS LANGUAGE (STEPS 1-2) 123

graph transformation rules is denoted as Q2(GP). Our task is to compare Q1(P)
and Q2(GP) and to show that they are weak bisimilar.

There is an obvious problem: the LTSs do not have the same labels. Moreover,
an LTS generated by IOS is labelled with event names. To map the labelling sets
we do the following. We use a common name for every transition in an LTS and
write Event for each transition −a→ in order to establish correspondence between LTSs
transitions. We also map the labels from an LTS generated by graph transformation
rules to be compared to a common set of names. Since each graph transformation
rule has a corresponding inference rule, we provide a mapping based on an inference
diagram, where the inference rules are applied in a random order, however Prefixing
rule and CompositionII rule for concurrent step are always at the end. This obser-
vation allows us to map each rule to an invisible step except the last ones of an
inference process:

map1: ∀a ∈ Act\τ a 7→ EventA,

τ ∈ Act τ 7→ EventTau,

map2: ∀a ∈ Act\τ ccsSequenceA 7→ EventA

∀a ∈ Act\τ ccsCoActionA 7→ EventTau,

ccsSummation 7→ τ

ccsComposition 7→ τ ,

ccsRecursion 7→ τ ,

ccsVariableDeclaration 7→ τ ,

ccsInitial 7→ τ .
Here, Act\τ is a set Act without τ .
Note that EventA is a different label for every a ∈ Act (e.g. for b ∈ Act b 7→
EventB). Therefore, it is implied that for every label a ∈ Act there exist a separate
ccsSequenceA rule and a separate ccsCoActionA rule. Therefore, the function 7→
maps not all events to the same label Event, but each label to a different rule from
the CCS semantic system. It means that the event a 7→ EventA and ccsSequenceA
7→ EventA, τ 7→ EventTau (here, τ ∈ Act) and ccsCoActionA 7→ EventTau.

Let be Sym = {Event, τ} a common set of names for the rules from dom(RSCCS)
and Act, here τ stays for the internal step. We call such mappings map1 : Act →

124
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Sym and map1 : dom(RSCCS) → Sym non-trivial, if it does not map every rule
name to τ .

We also define the mappings over LTSs, which affect only labelling sets according
to the mapping defined above. So, map : P(Q)→ P(Q), where P(Q) is a universe
of transition systems, if Q = 〈S,−→, i, L〉, then map(Q) = 〈S,−→, i, L′〉, where l′ =
map(l), l ∈ L, l′ ∈ L′.

To show the behavioural preservation, i.e. the preservation of behavioural prop-
erties, we need to show the weak bisimulation for LTSs Q1 and Q2 with respect
to the defined mappings: map1(Q1(P)) ≈ map2(Q2(GP)). This will imply the
behavioural preservation (see Chapter 4).

Further, we define an equivalence relation RCCS (i.e. ≈) over the states of the
LTSs Q1(P) and Q2(QP) and prove that the defined relation is a weak bisimulation.
At first, we introduce some notation and observations about CCS processes and
corresponding graphs, which will help us to define the relation RCCS .

Auxiliary notation

We start with notation. For Label-node (a node of a Label type) we write vLabel.
We shorten the names of some types to the first three-four letters, like for example
Summation we write shortly vSum. For an edge e labelled label going from a node v
to v′, we simply write label(v, v′). We also use these as predicates.

We define the notation for the nodes that could be connected with Current-node
and Mark-node during the semantic execution:

current(vProc), if there exists a Current-node vCurr and a Process-node vProc such
that current(vCurr, vProc).

mark(vCurr), if there exists a Mark-node vMark and a Current-node vCurr such that
current(vMark, vCurr).

Additionally, we provide the notation for Process-nodes. Since a CCS graph has
a tree structure, then we define the notation for a root element and leaves. For a
Process-node v, we write:

root(v), if ¬∃ Process-node v0 s.t. subprocess(v0, v) .
leaf(v), if ¬∃ Process-node v′ s.t. subprocess(v, v′).

Since there are the cases, when there could be more than one Current-node in a
run-time graph, we need precisely to define its index. We formalize the notion for
the index of CCS graphs typed over T rt

CCS .

Proposition 6.1.1. Let GP1 and GP2 ∈ Gst
CCS be well-formed CCS graphs and

Grt ∈ Grt
CCS be a run-time typed over T rt

CCS graph, such as GP1, GP2 ⊆ Grt. Let also
v1
Proc and v2

Proc be root nodes in the tree-structured graphs GP1 and GP2, respectively.
For every couple of Current-nodes v1

Curr, v
2
Curr ∈ Grt such that current(v1

Curr, v
1
Proc)

6.1. CCS LANGUAGE (STEPS 1-2) 125

Figure 6.24: A corresponding run-time graph for the process P = a.b.nil + c.nil |
d.nil, which demonstrates the definition of a corresponding graph index

and current(v2
Curr, v

2
Proc) one of the following conditions hold, which is a result of

the graph index:
• if there exists a Mark-node vMark such that mark(vMark, v

1
Curr) and

mark(vMark, v
2
Curr), then we write Grt

P1∨P2
⊆ Grt.

• if there exist two Mark-nodes v1
Mark and v2

Mark such that mark(v1
Mark, v

1
Curr)

and mark(v2
Mark, v

2
Curr), then we write Grt

P1∧P2
⊆ Grt.

The notation for three and more Current-nodes is defined by the induction, on
the assumption that the conditions described above hold for any couple of Current-
nodes.

We provide again an example for the graph Grt
a.b.nil∨c.nil∧d.nil in Figure 6.24 which

corresponds to process P = a.b.nil + c.nil | d.nil. There are three grey triangles
which emphasize subgraphs Ga.b.nil, Gc.nil, Gd.nil. The root nodes of these graphs
are connected with Current-nodes which are by turn connected to Mark-nodes. The
index of the graph Grt

a.b.nil∨c.nil∧d.nil was received after analyzing the graph and the
conditions described above.

Observations

To provide later a proof we need some observations about the syntactic structure
of CCS graphs. We continue with observations concerning the correspondences
between CCS process and CCS graphs. The proof results from the definition of
well-formed CCS graphs. A number of further results show that for each CCS
process there exists a corresponding CCS graph and vice versa.

Proposition 6.1.2. Let P be a CCS process then there exists a corresponding graph
GP ∈ Rst

CCS, s.t if there exists another corresponding graph G′ ∈ Rst
CCS then Q(G) ≈

Q(G′).

126
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

(Seq) Let P = a.P1 and Ga.P1 be a corresponding graph such that a Sequence-
node is a root node with an attribute value “a” in the tree structured graph Ga.P1.
Then the Sequence-node has a child Process-node, which is a root of a tree structured
subgraph GP1 (a corresponding graph for the process P1).

(Sum) Let P = P1 + P2 and GP1+P2 be a corresponding graph such that a
Summation-node is a root node in the tree structured graph GP1+P2. Then the
Summation-node has two child Process-nodes which are roots of tree structured sub-
graphs GP1 and GP2 (corresponding graphs for the processed P1 and P2, respectively).

(Com) Let P = P1 | P2 and GP1|P2 be a corresponding graph such that a
Composition-node is a root node in the tree structured graph GP1|P2. Then the
Composition-node has two child Process-nodes which are roots of tree structured
subgraphs GP1 and GP2 (corresponding graphs for the processed P1 and P2, respec-
tively).

(Nil) Let P = nil and Gnil be a corresponding graph such that a Nil-node is a
root (and also a leaf) node in the tree structured graph Gnil. Then the Nil-node has
no child nodes.

(Rec) Let P = µx.P1 and Gµx.P1 be a corresponding graph such that a Recursion-
node is a root node in the tree structured graph Gµx.P1. Then the Recursion-node
has a child Process-node which is a root of a tree structured subgraph GP1 (a corre-
sponding graph for the processed P1).

(Var) Let P = x and Gx be a corresponding graph such that a Variable-node is a
root (and also a leaf) node in the tree structured graph Gx. Then the Variable-node
has no child nodes.

Proof. Although a corresponding graph for a process P could have different syntac-
tic representations (e.g. there are exists two corresponding graphs G(P1+P2)+P3 and
GP1+(P2+P3) for a process P = P1 + P2 + P3), the behavioural model specified as
an LTS has the same meaning. It means that the LTSs generated for different cor-
responding graphs of process P are weak bisimilar. Let consider graphs GP1+P2+P3

and GP1|P2|P3 , they could have two different syntactic structures, as it is shown
below, where a tree structure of two possible graphs is represented.

op

{{ ##

op

{{ ##
P1 op

{{

op

~~ ##

P3

P2 P3 P1 P2

Case1 Case2

6.1. CCS LANGUAGE (STEPS 1-2) 127

here, the operators + and | are denoted as op.
If we apply RSCCS to both syntactic structures, the LTSs generated for

both graphs are weak bisimilar. The implementation of the ccsSummation and
ccsComposition rules makes it possible to perform an invisible steps in an LTS,
which do not affect the weak bisimulation. As you can see on the example of cor-
responding graph for the process P = P1 + P2 + P3, there are two LTSs:

Grt
P1+(P2+P3)

τ

��

Grt
(P1+P2)+P3

τ

��
Grt
P1∨(P2+P3)

P1

yy
τ

��

Grt
(P1+P2)∨P3

τ

��

P3

%%
Grt
P ′1

Grt
P1∨(P2∨P3)

P1

zz
P2

��

P3

$$

≈ Grt
(P1∨P2)∨P3

P1

zz
P2

��

P3

$$

GP ′3

Grt
P ′1

Grt
P ′2

Grt
P ′3

Grt
P ′1

Grt
P ′2

Grt
P ′3

here, a transition labelled as τ correspond to the applied ccsSummation rule. The
transition labels P1, P2, P3 mean that the transition is dependent from the inner
structure of the corresponding grapps. The following states are weak bisimilar:

Grt
P1+(P2+P3) ≈ G

rt
(P1+P2)+P3

≈ Grt
P1∨(P2+P3) ≈ G

rt
(P1+P2)∨P3

≈ Grt
P1∨(P2∨P3) ≈ G

rt
(P1∨P2)∨P3

The proof of the adjustment for the graph structures follows by analysis of a
well-formed patterns definition.

Proposition 6.1.3. Let G ∈ Gst
CCS be a well-formed CCS graph, then there exists

a CCS process P , such that the graph G = GP is a corresponding graph for the
process P .

(Seq) Let vSeq be a Sequence-node with an attribute value “a” and vProc be a
Process-node in G ∈ Grt

CCS, s.t. root(vSeq) and subprocess(vSeq, vProc), then there
exists a process P = a.P1, s.t G = Ga.P1 and vProc is a root of the tree structured
subgraph GP1 (a corresponding graph for the process P1).

(Sum) Let vSum be a Summation-node and v1
Proc, v2

Proc be Process-nodes in G,
s.t. root(vSum) and subprocess(vSum, v1

Proc)∧ subprocess(vSum, v2
Proc), then there

exists a process P = P1 + P2, s.t. G = GP1+P2 and v1
Proc,v2

Proc are roots of the tree
structured subgraphs GP1 and GP2 (corresponding graphs for the processed P1 and
P2 respectively).

128
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

(Com) Let vCom be a Composition-node and v1
Proc, v2

Proc be Process-nodes in G,
s.t. root(vCom) and subprocess(vCom, v1

Proc)∧ subprocess(vCom, v2
Proc), then there

exists a process P = P1 | P2, s.t. G = GP1|P2 and v1
Proc, v2

Proc are roots of the tree
structured subgraphs GP1 and GP2 (corresponding graphs for the processed P1 and
P2 respectively).

(Nil) Let vNil be a Nil-node in G, s.t. root(vNil), then there exists a process
P = nil, s.t. G = Gnil.

(Rec) Let vRec be a Recursion-node and vProc be a Process-node in G, s.t.
root(vRec) and subprocess(vRec, vProc), then there exists a process P = µx.P1, s.t.
G = Gµx.P1 is a corresponding graph for a process P and GP1 is a corresponding
graph for the processes P1 and P1[µxP1/x].

(Var) Let vV ar be a Variable-node in G, s.t. root(vV ar), then there exists a
process P = P [µxP/x] with a corresponding graph GP , where root(vProc), G ⊆ GP
and there exists a Recursion-node vRec, which is connected with a Variable-node (
i.e. variable(vRec, vV ar)) that has the same attribute value as vV ar.

Proof. Every process P is defined by the EBNF grammar, which was fully trans-
formed into a well-formed CCS graph structure. Therefore, for each process P there
exists a well-formed CCS graph. The proof for the adjusments follows by analysis
of a well-formed patterns definition.

Equivalence relation

After we defined the auxiliary notation and provided some observations, we have all
necessary tools to define an equivalence relation RCCS over the states of the LTSs
Q1 and Q2. Recall, that the states of the LTS Q1 consist of processes P defined
by the EBNF grammar and transitions → are defined by the rules of inference (see
Subsection 6.1.1 for more details). The states of the LTS Q2 are graphs Grt ∈ Grt

CCS

and transitions are defined with the rule system RSCCS . Therefore, we define a
relation RCCS over processes P and well-formed CCS graphs.

We use the previously defined notation for the processes and corresponding
graphs. Additionally, we use a notion of different levels of subprocesses in respect
to operators. This notation allows us to specify RSCCS inductively. We say that
a subprocess P ′ is from the first level of a process P , if P ′ is connected with other
subprocesses of P only by + and |. For example, the processes a.b.nil, c.nil, d.nil
are the only subprocesses from the first level of the process P = a.b.nil+c.nil |d.nil.
We say that subprocess P ′′ is from the second level of process P , if P ′′ is connected
with other subprocesses of P only by µV. and maybe by + and |. For example, the
processes µy.a.y + x, a.y and x are the only subprocesses from the second level of
the process P = µx.(µy.a.y + x).

6.1. CCS LANGUAGE (STEPS 1-2) 129

We say that process P and graph G are in the relation RCCS , if (0) G = GP ∈
Gst
CCS is a corresponding graph for a process P , or for all subprocesses from the first

level of P the following conditions hold:

1. a.P1 ⊆ P ⇔ ∃Ga.P1 s.t. Ga.P1 is a corresponding graph for Pa.P1 , Ga.P1 ⊆ G
and Grt

a.P1
⊆ G,

2. P1 + P2 ⊆ P ⇔ One of the following conditions hold:
[2a] ∃GP1+P2 s.t. GP1+P2 is a corresponding graph for PP1+P2 , GP1+P2 ⊆ G

and Grt
P1+P2

⊆ G,
[2b] ∃GP1+P2 s.t. GP1+P2 is a corresponding graph for PP1+P2 , GP1+P2 ⊆ G

and Grt
P1∨P2

⊆ G,
3. P1 | P2 ⊆ P ⇔ One of the following conditions hold:

[3a] ∃GP1|P2 s.t. GP1|P2 is a corresponding graph for PP1|P2 , GP1|P2 ⊆ G
and Grt

P1|P2
⊆ G,

[3b] ∃GP1|P2 s.t. GP1|P2 is a corresponding graph for PP1|P2 , GP1|P2 ⊆ G
and Grt

P1∧P2
⊆ G,

4. nil ⊆ P ⇔ ∃Gnil s.t. Gnil is a corresponding graph for Pnil, Gnil ⊆ G and
Grt
nil ⊆ G,

5. One of the following conditions hold:
[5a] µx.P1 ⊆ P ⇔ ∃Gµx.P1 s.t. Gµx.P1 is a corresponding graph for Pµx.P1 ,

Gµx.P1 ⊆ G and Grt
µx.P1

⊆ G,
[5b] P1 ⊆ P , where P1 is a subprocess of the second level⇔ ∃GP1 s.t. GP1

is a corresponding graph for PP1 , GP1 ⊆ G and Grt
P1
⊆ G,

[5c] P1 ⊆ P , where P1 is a subprocess of the second level, then for all
subprocesses for the first level of P1 conditions (1)-(6) hold ⇔ ∃GP1 - a cor-
responding graph for P1, Grt

P1
and all the conditions (1)-(6) hold for Grt

P1
.

6. x ⊆ P ⇔ ∃Gx s.t. Gx is a corresponding graph for Px, Gx ⊆ G and Grt
x ⊆ G.

For example, if we have a process P = P1 + P2 | P3, then the graph Grt
P1∨P2∧P3

is in
relation with P , the same as the graphs Grt

P1∨P2|P3
and Grt

P1+P2|P3
.

The relation RCCS contains all pairs of CCS processes which are produced from
the EBNF form and corresponding graphs, which structure was defined in Table 6.1
and in Figure 6.14.

Theorem 6.1.4. Given relation RCCS (defined in above). Let P be a CCS process
and GP be a corresponding CCS graph. Then relation RCCS is a weak bisimulation
(≈), i.e.

map1(Q1(P)) ≈ map2(Q2(GP))

Proof. of the Theorem 6.1.4 We need to show the property of mutual simulation
for relation RCCS . For this, we provide a proof by induction, where the basis of
induction is the requirement of initial states being in the relation. The initial states
of the LTSs are the process P0 and a corresponding graph GP0 ∈ Gst

CCS . They satisfy
the condition (1) for RCCS .

130
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

The assumption in the inductive step is that the statement holds for some sub-
process P of a process P0 and a subgraph GP of a graph GP0 , i.e. we assume
(P,G) ∈ RCCS . To perform an inductive step, we prove the statement for the tran-
sition P r−→ P ′, which is justified by the inference rules (see Section 6.1.1). We need
to show that there is some G′ such that G =̂r⇒ G′ with (P ′, G′) ∈ RCCS .

The proof is based on the analysis of the syntactic structure of P . According
to the EBNF grammar for CCS processes and the inference rules, the syntactic
structure of process P is either P1 +P2, P1|P2, µx.P , P [µx.P/x], a.P1, or a.P1|ā.P2.
Then the inference process can be described as follows: to the initial process P we
apply the rules of inference, which step-by-step simplify it by replacing it with one of
the subprocesses until one of the subprocesses is either a.P or a.P1 | ā.P2 (otherwise
the transition is not possible). We show that the inference process for the process
P could be matched to the process of the GTR application to a graph GP , as the
result we always get a weak bisimilar transition step. For this, we consider P as
initial process. which is replaced on the next steps by its subprocesses. We write
P � P1 + P2 that means that the process P has a subprocess P1 + P2 wot which
one of the inference rules will be applied as a next step.

Remark 1. In respect to the definition of RCCS the graph G is either GP or Grt
P .

In the first case we can obviously apply only the ccsInitial rule (see Figure 6.16),
which performs an invisible step in a transition system, and we have graph Grt

P ,
which is in relation RCCS with P . Therefore, we consider later that G = Grt

P .

Remark 2. If a graph GP ∈ G is a corresponding graph for a process P and
there exists the only Current-node, which points to a root node of the graph GP ,
i.e. G = Grt

P , then (P,Grt
P) ∈ RCCS . According to the definition of the CCS process

by the EBNF grammar, the structure of the process P is predefined. The proof
follows by induction on the inner structure of P . For example, if P = a.P1 then
a corresponding graph is Ga.P1 . If there is a Current-node, then we have a graph
Grt
a.P1

. The condition (1) holds for G and P . Since there are no other Current-nodes,
the rest conditions of RCCS hold for the process P and the graph G.

A short summary of the idea for the inductive proof is presented below. Arrows
with solid lines represent transitions in LTSs Q(P) (in the left) and Q(GP) (in
the right), dotted line connects a process and a graph, which are in relation RCCS
(denoted as R in the Figure). There are some explanations in the right concerning
a dotted line.

6.1. CCS LANGUAGE (STEPS 1-2) 131

P0

��

R

R

Gst
P0

τ

��

- basis for induction

. . .

��

Grt
P0

��

- Remark 1

. . .

��

. . .

��
P

r

��

R
Grt
P

r

��

- inductive assumption

P ′
R

Grt
P ′ - we show the existence of Grt

P ′

As we are looking at the LTSs with labels renamed according map1 and map2,
in principle r ∈ Act and map1(r) = Event. However, as we are interested in the
particular semantic rule applied during the step, we will look at the original LTSs
and show that map1 and map2 map rule names to the same label.
The proof proceeds depending on the syntactic structure of process P :

Case P � P1 + P2. Due to our assumption that (P,G) ∈ RCCS , G includes the
corresponding graph for the process P1 + P2. Then according to (2), G includes
either Grt

P1∨P2
or Grt

P1+P2
. In the first case the proof proceeds by the induction on

the inner structure of P1 or P2. In the second case we proceed with arguing that the
ccsSummation rule can be applied and that the resulted graph is still in the relation.

By Proposition 6.1.2 (Sum) there exists a graph GP1+P2 , which is a correspond-
ing graph for P and there are subgraphs GP1 , GP2 ⊆ GP1+P2 , which are correspond-
ing graphs for the subprocesses P1 and P2, respectively. By (2a) and Remark 1
there exists a Current-node in G, which points to the subgraph GP1+P2 .

We can construct a match for the ccsSummation rule in Grt
P1+P2

graph (see Figure
6.20 and Table 6.1). In the resulting graph G′, the Current-node vCurr is deleted and
two Current-nodes are created: v1

Curr and v2
Curr such that current(v1

Curr, v
1
Proc) and

current(v2
Curr, v

2
Proc). The resulting graph G′ includes Grt

P1∨P2
(see Figure 6.14).

The condition (2b) holds for the resulting graph and the process P instead of (2a).
All other conditions were not changed. Therefore, the resulted graph G′ is in the
relation with the process P � P1 + P2 and we have a τ -transition:

G −τ→ G′, where Grt
P1+P2 ⊆ G,G

rt
P1∨P2 ⊆ G

′

Thereby, the inference rule Summation being applied to the process P1 + P2 is
equivalent to the application of the ccsSummation rule to a corresponding graph
GP1+P2 .

132
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

The next step proceeds by the induction on the inner structure of P1 or P2. We
have P1 + P2 −r→ P ′, assume that P ′ is a subprocess of P1. Therefore, according to
the inference rule Summation we consider a process P1. The next reasoning comes
to the cases, when P1 is either P11 + P12, P11 | P12, µx.P11, P [µx.P/x], a.P11, or
a.P11 | ā.P12.

Case P � P1 | P2. Due to our assumption that (P,G) ∈ RCCS , G includes a
corresponding graph for the process P1 | P2. Then according to (3), G includes
either Grt

P1∧P2
or Grt

P1|P2
. In the first case the proof proceeds by the induction on

the inner structure of P1 or P2. In the second case we proceed with arguing that
the ccsComposition rule can be applied and that the resulted graph is still in the
relation.

By Proposition 6.1.2 (Com) there exists a graph GP1|P2 , which is a corresponding
for P1 | P2 and there are subgraphs GP1 , GP2 ⊆ GP1|P2 , which are corresponding
graphs for the subprocesses P1 and P2, respectively. By (3a) and Remark 1 there
exists a Current-node in G, which points to the subgraph GP1|P2 .

We can construct a match for the ccsComposition rule in Grt
P1|P2

graph (see Figure
6.21 and Table 6.1). In the resulting graph G′, the Current-node vCurr is deleted and
two Current-nodes are created: v1

Curr and v2
Curr such that current(v1

Curr, v
1
Proc) and

current(v2
Curr, v

2
Proc). The resulting graph G′ includes Grt

P1∧P2
(see Figure 6.14).

The condition (3b) holds for G′ and the process P instead of (3a). All other condi-
tions of RCCS were not changed. Therefore, G′ is in the relation with the process
P = PP1|P2 and we have a τ -transition:

G −τ→ G′, where Grt
P1|P2

⊆ G,Grt
P1∧P2 ⊆ G

′

Thereby, the inference rule CompositionI being applied to the process P1 | P2 is
equivalent to the application of the ccsComposition rule to a corresponding graph
GP1|P2 .

The next step proceeds by the induction on the inner structures of P1 and P2.
According to the inference rule Composition we consider both processes P1 and P2.
The next reasoning comes to the cases, when the processes have one of the following
graph structures: P11 + P12, P11 | P12, µx.P11, x, a.P11, or a.P11 | ā.P12.

Cases P � µx.P1 and x. Due to our assumption that (P,G) ∈ RCCS , G includes
the corresponding graph for the process µx.P1. Then according to (5), G includes
Grt
µx.P1

.
By Proposition 6.1.2 (Rec) there exists a graph Gµx.P1 , which is a corresponding

graph for P and there is a subgraph GP1 ⊆ Gµx.P1 , which is a corresponding graph
for the subprocess P1. By (5) and Remark 1 there exists a Current-node in G, which
points to the root node vRec of a subgraph Gµx.P1 , i.e. Grt

µx.P1
⊆ G.

We can construct a match for the ccsVariableDeclaration rule in the
graph Grt

µx.P1
(see Figure 6.22). In the resulting graph G′, the Current-node

6.1. CCS LANGUAGE (STEPS 1-2) 133

vCurr is moved to the next Process-node such that current(v1
Curr, vProc) and

subprocess(vRec, vProc). The resulting graph G′ consists of Grt
P1
, where the graph

GP1 is a corresponding process P1[µx.P1/x]. Due to Remark 2 and that the other
conditions for the relation RCCS did not change, we have (P ′, G′) ∈ RCCS .
We have a τ -transition:

G −τ→ G′, where Grt
µx.P1 ⊆ G,G

rt
P1 ⊆ G

′

If in the corresponding process P = µx.P1 after the inference rule Recursion
was applied, all occurences of x in the process P were replaced with P , then there
is no variable x in P . However, the semantics of the corresponding CCS graph is
different. There is a case, when a Current-node points to the Variable-node, i.e. we
have a graph Grt

x . We explain further why the inference rule Recursion is equivalent
to the ccsVariableDeclaration and ccsRecursion rules.

The substitution part, i.e. P1[µx.P1/x], happens, when a Current-node reaches a
Variable-node. Then, the Current-node is moved to the root node of the graph GP1 .
For this, we apply the ccsRecursion rule. Therefore another τ -transition happens.

Thereby, the inference rule Recursion being applied to the process P = µx.P1 is
equivalent to the application of the ccsVariableDeclaration rule and the ccsRecursion
rule to a corresponding graph GP .

The next step proceeds by the induction on the inner structure of P1. The
next reasoning comes to the cases, when the process has one of the following graph
structures:P11 + P12, P11 | P12, µx.P11, x, a.P11, or a.P11 | ā.P12.

Case P � a.P1. Due to our assumption (P,G) ∈ RCCS , G includes a corresponding
graph for the process a.P1. By Proposition 6.1.2 (Seq) Ga.P1 is a corresponding
graph for a.P1 and a subgraph GP1 is a corresponding graph for P1. By (1) and
Remark 1 there exists a Current-node in G such that Grt

a.P1
⊆ G. Thereby, we can

build a match for the ccsSequenceA rule (see Figure 6.17 and Table 6.1).
Let vSeq be a root node of Ga.P1 and vProc be a root node of GP1 . Then in the

resulting graph G′ we have current(vCurr, vProc). However, the ccsSequenceA rule
has additional conditions on some other nodes that can be in match. These Mark
and Current-nodes satisfy the following conditions:

∀vMark, ṽCurr : mark(vMark, vCurr) ∧mark(vMark, ṽCurr)

If such nodes exist, then the rule deletes these nodes, i.e. vMark and ṽCurr. Further,
we analyse how the deleted nodes affect the conditions of RCCS .

Note that a case when two or more Current-nodes are connected to a single Mark-
node is possible only, when the ccsSummation rule was applied before and after that
no ccsSequenceA and no ccsCoActionA rules were applied (since these rules remove
vCurr and ṽMark). Due to Proposition 6.1.1 the graph G has several subgraphs Grt

P̄1
,

Grt
P̄2
, Grt

P̄3
, . . . , which correspond to one of the subprocesses from the first level of

134
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

the process P = P̄1 + P̄2 + P̄3 + We illustrtate the graph G schematicly with
its emhasized subprocesses, where a root Process-node is connected with a Current-
node. A common thing for all subgraphs is that all Current-nodes are connected
with a single Mark-node (see the result in Figure 6.25).

Figure 6.25: A schematically drawn CCS graph GP̄1∨P̄2∨.... Here, the black squares
are Process-nodes, white squares are Current-nodes, triangles are the subgraphs Grt

P̄1
,

Grt
P̄2
, Grt

P̄3
, with a root node marked as a black square

So, we deal with a graph Grt
P̄1∨P̄2∨...

, where (let assume) P̄1 = a.P1. It means
that the original process is P � a.P1 + P̄2 + P̄3 + . . . and it is in relation with the
graph G ⊇ Grt

P̄1∨P̄2∨P̄3...
. Then there is a transition in Q1(P):

P −EventA−−−−→ P ′, where P � a.P1 + P̄2 + P̄3 + . . . P1, P
′ � P1

In the graph G we built a match for the ccsSequenceA rule. It we remember that
map2(ccsSequenceA) = EventA we have a transition:

G −EventA−−−−→ G′, where Grt
a.P1∨P̄2∨P̄3...

⊆ G,GP1 ⊆ G′

Thereby, the inference rule Prefixing is equivalent to the application of the
ccsSequenceA rule to a corresponding graph GP . The resulted process and the
resulted graph are corresponding. Additionally, the Current-nodes point to the root
element. Then according to Remark 2 and the fact that all the other conditions of
RCCS did not change, the (P1, GP1) ∈ RCCS .

Case P � a.P1 | ā.P2 is similar to the previous case. Here, we assume that the
CompositionII inference rule was applied to the process a.P1 | ā.P2 during the justifi-
cation process (for sure the Prefixing rule was applied twice at the ende). We want
to show that it is equivalent to the application of the ccsCoActionA rule.

Due to our assumption (P,G) ∈ RCCS , G includes a corresponding graph for the
process a.P1 | ā.P2. By Proposition 6.1.2 (Com) and (Seq) Ga.P1|ā.P2 is a correspond-
ing graph for a.P1 | ā.P2 and subgraphs Ga.P1 , Gā.P2 , GP1 and GP2 are corresponding

6.1. CCS LANGUAGE (STEPS 1-2) 135

graphs for a.P1, ā.P2, P1 and P2, respectively. By (3) and Remark 1 there exists a
Current-node in G such that Grt

a.P1|ā.P2
⊆ G. Thereby, we can build a match for the

ccsCoActionA rule (see Figure 6.19 and Table 6.1).
Let v1

Seq and v2
Seq be root nodes of Ga.P1 and Gā.P2 , respectively; v1

Proc and v2
Proc

be root nodes of GP1 and GP2 , respectively. Then in the resulting graph G′ we have
current(v1

Curr, v
1
Proc) and current(v2

Curr, v
2
Proc). However, the ccsCoActionA rule

has additional conditions on some other nodes that can be in match. These Mark
and Current-nodes satisfy the following conditions:

∀vMark, ṽCurr : mark(vMark, v
1
Curr) ∧mark(vMark, ṽCurr) ∨

or

∀vMark, ṽCurr : mark(vMark, v
2
Curr) ∧mark(vMark, ṽCurr)

If such nodes exist, then the rule deletes these nodes, i.e. vMark and ṽCurr. Further,
we analyse how the deleted nodes affect the conditions of RCCS . The existence
of such nodes means that the ccsSummation rule was applied before to the graph
G and then no ccsSequenceA or ccsCoActionA rules were applied after. Due to
Proposition 6.1.1 we deal with a graph of a type Grt

(P1+P̄1)∧(P2+P̄2)+P̄3
. If we apply

the ccsCoActionA rule and remember that map(ccsCoActionA) = EventTau, we have
a transition:

G −EventTau−−−−−−→ G′, where Grt
(P1+P̄1)∧(P2+P̄2)+P̄3

⊆ G,Grt
P1∧P2 ⊆ G

′

in the LTS Q1(P), we have a transition:

P −EventTau−−−−−→ P ′, where P � a.P1 | ā.P2 + P̄2 + P̄3 + . . . , P ′ � P1 | P2.

The resulting graph Grt
P1∧P2

is in the relation with the process P1 | P2 due to
(3b). Thereby, the inference rule CompositionII is equivalent to the application of
the ccsCoActionA rule to a corresponding graph GP . The resulted process and the
resulted graph are corresponding. Additionally, the Current-nodes point to the root
elements. Then according to Remark 2 and the fact that the rest conditions of
RCCS did not change, the (P ′, G′P ′) ∈ RCCS .

For the reverse direction we assume again that some process P and a correspond-
ing graph G are in the relation RCCS . We prove that for any transition G −r→ G′,
there is some process P ′ such that P r̂=⇒ P ′ with (P ′, G′) ∈ RCCS .

r = ccsSummation, then we have an invisible transition on the CCS graph-side.
The transition G −ccsSummation−−−−−−−−→ G′ means that there exists a subgraph Grt

P1+P2
⊆ G.

136
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Due to Proposition 6.1.3 (Sum) and our assumption that (P,G) ∈ RCCS , there
exists a corresponding subprocess of the first or second level P1 + P2 ≺ P for
Grt
P1+P2

(see Figure 6.20 and Table 6.1). In the resulting graph G′, there is a
subgraph Grt

P1∨P2
⊆ G′. Therefore, the condition (2b) holds instead of (2a) for the

resulting graph G′ and the process P . All the other conditions did not change.
Thus (P,G′) is in RCCS and P =̂τ⇒ P .

r = ccsComposition, then we have an invisible transition on the CCS graph-side.
The transition G −ccsComposition−−−−−−−−→ G′ means that there exists a subgraph Grt

P1|P2
⊆ G.

Due to Proposition 6.1.3 (Com) and our assumption that (P,G) ∈ RCCS , there
exists a corresponding subprocess of the first or second level P1 | P2 ≺ P for Grt

P1|P2
(see Figure 6.21 and Table 6.1). In the resulting graph G′, there is a subgraph
Grt
P1∧P2

⊆ G′. Therefore, the condition (2b) holds instead of (2a) for the resulting
graph G′ and the process P . All the other conditions did not change. Thus (P,G′)
is in RCCS and P =̂τ⇒ P .

r = ccsVariableDeclaration, then we have an invisible transition on the CCS
graph-side and on the CCS process side. The transition G −ccsVariableDeclaration−−−−−−−−−−−−−→ G′

means that there exists a subgraph Grt
µx.P1

⊆ G. Due to Proposition 6.1.3 (Rec) and
our assumption that (P,G) ∈ RCCS , there exists a corresponding subprocess of the
first or second level µx.P1 ≺ P for Grt

µx.P1
(see Figure 6.22 and Table 6.1). It means

that we can apply the inference rules Summation, CompositionI or Recursion, which
do not lead to a completed transition in the LTS, but simplify the process P to a
process P1[µx.P1/x], which corresponds to a graph GP1 . Note that in the resulting
graph G′, there is a subgraph Grt

P1
⊆ G′. Therefore, the condition (5b) holds for the

resulting graph G′P1
and the process P1. The proof that all the other conditions hold

is by induction on the inner structure of the process P1. Thus (P1[µx.P1/x], G′P1
)

is in RCCS and P =̂τ⇒ P1.

r = ccsRecursion, then we have an invisible transition on the CCS graph-side.
The transition G −ccsRecursion−−−−−−−→ G′ means that there exists a subgraph Grt

x ⊆ G. Due
to Proposition 6.1.3 (Rec) and our assumption that (P,G) ∈ RCCS , there exists
a corresponding subprocess of the first or second level x ≺ P for a graph Grt

x (see
Figure 6.23 and Table 6.1). Since we consider CCS processes, where x is always
a subgraph of some process µx.P1, then there exists a process P1[µxP/x], which
corresponds to a graph GP1 . The graph Gx is a subgraph of GP1 . The ccsRecursion
rule moves a Current-node to the graph GP1 . In the resulting graph G′, there is a
subgraph Grt

P1
⊆ G′. Therefore, conditions (5b) holds for the resulting graph G′ and

the process P [µxP/x]. The proof that all the other conditions hold is by induction
on the inner structure of the process P1. Thus (P,G′) is in RCCS and P =̂τ⇒ P .

6.1. CCS LANGUAGE (STEPS 1-2) 137

r = ccsSequenceA, then there exists a subgraph Grt
a.P1
⊆ G and Grt

P1
⊆ G′. Due

to Proposition 6.1.3 (Seq) and our assumption that (P,G) ∈ RCCS , there exists a
corresponding process of the first or second level a.P1 ≺ P for a graph Grt

a.P1
(see

Figure 6.17 and Table 6.1). However, the applied ccsSequenceA rule can also delete
additional Current- and Mark-nodes ṽCurr, vMark such that if vSeq is a root node of
a graph Grt

a.P1
and vCurr : current(vSeq, vCurr) then

∀ṽiCurr, vMark : mark(vMark, vCurr) ∧mark(vMark, ṽ
i
Curr)

If such nodes exist, then a graph G according to Proposition 6.1.1 has a sub-
graph Grt

a.P1∨P̄1∨P̄2∨...
, where viProc is a root Process-node of some graphs GPi ,

i.e. current(ṽiCurr, viProc). Due to Proposition 6.1.3 (Sum) and our assump-
tion that (P,G) ∈ RCCS , there exists a subprocess of the first or second level
a.P1 + P̄1 + P̄2 + It is also not excluded that there are other subprocesses of the
first and second levels of P . However, we can apply the inference rules Summation,
CompositionI and Recursion, leading to the subprocess a.P1 and not completed tran-
sition in the LTS. Only at the end the inference rule Prefixing can be applied, that
leads to a transition P −a→ P1 being justified. The resulted process P ′ corresponds
to the graph G′P1

and we know a Current-node points to the root of this graph, i.e.
Grt
P1
. Therefore, we have (P ′, G′) ∈ RCCS .

r = ccsCoActionA, then there exists a subgraph Grt
a.P1|ā.P2

⊆ G and Grt
P1|P2

⊆ G′.
Due to Proposition 6.1.3 (Com) and (Seq) and our assumption that (P,G) ∈ RCCS ,
there exists a corresponding process of the first or second level a.P1 | ā.P2 ≺ P for
Grt
a.P1

(see Figure 6.19 and Table 6.1). However, the applied ccsCoActionA rule
can also delete additional Current- and Mark-nodes such that if v1

Seq and v2
Seq are

root nodes of graphs Grt
a.P1

and Grt
ā.P1

, respectively, v1
Curr : current(v1

Curr, v
1
Seq) and

v2
Curr : current(v2

Curr, v
2
Seq) then

∀ṽ1
Curr, v

1
Mark : mark(v1

Mark, v
1
Curr) ∧mark(v1

Mark, ṽ
1
Curr)

and

∀ṽ2
Curr, v

2
Mark : mark(v2

Mark, v
2
Curr) ∧mark(v2

Mark, ṽ
2
Curr)

If such nodes exist, then a graph G according to Proposition 6.1.1 has a subgraph
Grt

(a.P1∨P̄1∨...)|(ā.P2∨P̄2∨...)∨P̄1∨P̄2∨...
. Due to Proposition 6.1.3 (Sum) and our assump-

tion that (P,G) ∈ RCCS , there exists a subprocess of the first level (a.P1 + P̄1 +
. . .) | (ā.P2 + P̄2 + . . .) + P̄1 + P̄2 + It is also not excluded that there are
other subprocesses on the first and second levels of P . However, we can apply the
inference rules Summation, CompositionI and Recursion, leading to the subprocess
(a.P1 + P̄1 + . . .) | (ā.P2 + P̄2 + . . .). Only then the rule CompositionII, and again
Summation. At the end the inference rule Prefixing can be applied, that leads to

138
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

a transition P −τ→ P1 being justified. Since τ ∈ Act, then we have a transition
P −EventTau−−−−−→ P1. The resulted process P ′ corresponds to the graph G′P1

and we
know a Current-node points to the root of this graph, i.e. Grt

P1
. Therefore, we have

(P ′, G′) ∈ RCCS .

6.2. PETRI NETS (STEPS 1-2) 139

6.2 Petri Nets (Steps 1-2)
Recall that in Section 6.1 we defined the CCS language, which defines source graphs
for model transformation. In this section, we define our target language (Steps 1-2
of our method). To be more precise, we define the syntax and behavioural semantics
of the Petri nets language by means of graph transformations.

Petri nets are used in practice for description of communication protocols, which
ensure reliable transmission between hosts. Petri nets describe how packages could
be sent and received. A Petri net consists of a set of places and a set of transitions,
the latter are defined over the places in such way that each transition has at least
one input place and one output place. Transitions represent transmission of some
data. Places are used to represent states of a modelled system. A marking function
is defined for each place. If the value of this function is greater than zero, it means
that the place contains a package. The transmission of data is defined by changing
the markings on each step [JK09].

The original definition of Petri nets is given within set theory and the behavioural
semantics is defined by the use of a marking function. In this section we specify the
Petri nets language according to the requirements of our method (Figure 5.2), i.e.
by means of graph transformations (see Figure 6.26).

Figure 6.26: The goal of this section is to define the Petri nets language with a
Type Graph (TG) and Graph Transformation Rules (GTRs)

We start with a basic definition of Petri nets, from which we construct a type
graph. Then, we specify behavioural semantics by means of graph transformations.

6.2.1 Syntax

We consider a standard definition of Petri nets [Kot78].

Definition 26 (Petri nets). A Petri net is a tuple N = 〈S, T, I〉, where S is a
nonempty finite set of places, T ⊆ NS

+ ×Act×NS
+ is a finite set of transitions, NS

+
denotes a multiset of places including at least one element, Act is a set of labels,
I ⊆ S is a set of initial places.

140
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.27: Type graph T st
PN for Petri nets

To implement such a structure with a type graph, we do the following. For each
set we define a separate node: a Place-node for the set S, a Transition-node for the
set T , an Initial-node for the set I. Since transitions are defined as a product over
the set S and set of labels Act, we specify an attribute for a Transition-node, which
value corresponds to an element from Act, and we use the edges of types source and
target to implement the mapping function × of the product. To specify that the set
I is a subset of S in the type graph, we use an edge of a type Initial. We assume that
each Transition-node is always connected to at least one Place-node with a source
edge and to at least one Place-node with a target-edge. Therefore, each Transition-
node has at least one input Place-node and at least one output Place-node. If a
Place-node is connected to an Initial-node, it means that the place is from the set I.
We present a type graph of Petri nets in Figure 6.27.

6.2.2 Semantics

The behavioural semantics of Petri nets is originally defined by the use of a marking
function M : S → N ∪ {0}, which marks each place as a natural number or zero.
Each transition is defined as a triple (preset, label, postset). The preset of a tran-
sition is denoted by •t, the label by l(t) ∈ Act and the postset by t•. A preset and
a postset stand for the number of input and output places, respectively. Then, the
behaviour of a Petri net is defined by changing values of a marking function. The
change is accomplished with two rules, which firstly check if a transition is enabled
by M and then define a new marking for the input and output states.

Definition 27 (Behavioural semantics of Petri nets). Let N = 〈S, T, I〉 be a Petri
net, M , M ′ are markings. Then a step from M to M ′ occurs for a transition t ∈ T
iff

1. for all s ∈ S, M(s) ≥ •t(s) (the condition which enables the transition t),
2. for all s ∈ S, M ′(s) = M(s)− •t(s) + t • (s) (the marking is changed from M

to M ′).

To implement the behavioural semantics of Petri nets, we use a Token-node to
denote a marking function M . Zero or more Token-nodes can be connected with a
Place-node. See the run-time graph T rt

PN in Figure 6.28, which is the type graph T st
PN

extended with a Token-node. We consider the initial marking of Place-nodes. For
this we define the graph transformation rule, called pnInitial, which creates exactly
one Token-node for each Place-node which is labelled as initial (see Figure 6.29).

6.2. PETRI NETS (STEPS 1-2) 141

Figure 6.28: Run-time graph T rt
PN for Petri nets

Figure 6.29: The pnInitial rule (creates exactly one Token-node for each Place-node
which is labelled as initial)

In order to implement conditions (1)-(2) from Definition 27, we define a graph
transformation rule pnMoveToken. The pnMoveToken rule checks (1), i.e. if a
Transition-node is enabled. To be more precise, each input Place-node must be
connected with a Token-node. If a match is found, the pnMoveToken rule performs
the change of a marking. The rule removes one Token-node for every input Place-
node and creates exactly one Token-node for every output Place-node (see Figure
6.30).

We also want to know the attribute value of a Transition-node the rule was
applied to. Therefore, we consider the rule from Figure 6.30 as a template, which
is extended each time for each attribute value of a Transition-node. An example
of the extension is presented in Figure 6.31 and is called pnMoveTokenBig rule (an
attribute value is always added to pnMoveToken). In the pnMoveTokenBig rule the
Transition-node is extended with an attribute value big. Throughout the remainder
of this thesis, pnMoveToken stands for any of the extended rules from this template.

We define a semantic rule system as a partial mapping RSPN : SymPN ⇀
RulePN , where RulePN is a set of graph transformation rules from Figures 6.29 and
6.30, SymPN = {pnInitial, pnMoveToken} is a set of semantic rule names for the
Petri nets graphs. Note that here, pnMoveToken stands for a set, which consists of
all possible extensions from the respective template for each label from Act.

For later, we use additional notation for Place-nodes:

initial(vPlace), if there exists an Initial-node vInit and a Place-node vPlace such that
current(vInit, vPlace).

token(vPlace), if there exists a Token-node vTok and a Place-node vPlace such that
tokens(vTok, vPlace).

We use Gst
PN and Grt

PN to denote the set of all well-formed syntactic and semantics
Petri nets graphs, respectively.

142
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.30: A template for the pnMoveToken rule (removes one Token-node from
each input Place-node, creates one Token-node for each output Place-node)

Figure 6.31: The pnMoveTokenBig rule (removes one Token-node from each input
Place-node, creates one Token-node for each output Place-node) is an extension of
the pnMoveToken template with the attribute node for the Transition-node with the
value big

6.3 Mapping over the Rule Systems (Step 3)
Our objective is to compare two LTSs: the first LTS is generated for a graph GCCS
of the CCS language (denoted later as Q(GCCS)), the second LTS is generated for a
graph GPN of the Petri net language (denoted later as Q(GPN)). Graphs GCCS and
GPN are received as a result of a model transformation MTCCS2PN ⊆ Gst

CCS ×Gst
PN

(defined formally in Section 6.4) translating CCS-graphs into Petri nets graphs. We
aim at proving this model transformation to be behaviour preserving, in the sense
that the LTSs of source and target models are always weak bisimilar. However,
there is an obvious problem: the LTSs do not have the same labels. Therefore, in
this section we define a mapping on the labels (i.e. rule names) to a common set of
names.

Although, dom(RSCCS) ∩ dom(RSPN) = ∅, by providing a short analysis, we
can find out, which rules correspond to each other. An Event-node and a Transition-
node have obviously the same meaning, because they originally denote a process
that takes place. Therefore, we map the rules, which keep control over the dynamic
elements, when the latter flow through the nodes which have the same meaning.
These rules are the ccsSequenceA rule and the pnMoveTokenA rule, the ccsCoActionA
rule and the pnMoveTokenTauA rule. The ccsInitial and pnInitial rules denote a
creation of dynamic elements in the syntactic graph, therefore we map these rules

6.3. MAPPING OVER THE RULE SYSTEMS (STEP 3) 143

to each other too. The rest rules do not provide any changes over Event- and
Transition-nodes, thus, they do not have a counterpart and are seen as internal
steps. These observations give rise to the following non-trivial mapping (i.e. not all
rules are mapped to an invisible step) defined on the labels of LTSs to a common
set of names Sym = {Action, Initial, τ}:

mapCCS : ∀a ∈ Act\τ ccsSequenceA 7→ ActionA,

∀a ∈ Act\τ ccsCoActionA 7→ ActionTauA,

ccsInitial 7→ Initial,

ccsSummation 7→ τ ,

ccsComposition 7→ τ ,

ccsRecursion 7→ τ ,

ccsVariableDeclaration 7→ τ .

mapPN : pnInitial 7→ Initial,

∀a ∈ Act\τ pnMoveTokenA 7→ ActionA,

∀a ∈ Act\τ pnMoveTokenTauA 7→ ActionTauA.
There are two important notes:

1. Here, it is implied that for every rule ccsSequenceA received as a result of
the extension of the ccsSequence template there exists a corresponding rule
pnMoveTokenA, recieved as a result of the extension of the pnMoveToken tem-
plate (the ccsSequenceA rule is applied to the Event-node with the attribute
value a, the pnMoveTokenA rule is applied to the Transition-node with the at-
tribute value a). Therefore, the mapping is defined for every attribute value
a (A).

2. The pnMoveTokenTauA rule implements a parallel execution of the event a
and its co-event ā. The meaning of the parallel execution in Petri nets is
explained in the next section.

The mapping mapCCS and mapPN are defined on the LTSs, by mapping only
the label sets to Sym. Then, our objective could be formalized as the following
statement to be shown:

144
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

mapCCS(Q(GCCS)) ≈ mapPN (Q(GPN)) (6.1)

here GCCS ∈ Gst
CCS , GPN ∈ Gst

PN with MTCCS2PN (GCCS , GPN) ⊆ Gst
CCS × Gst

PN .
The mappings mapCCS : dom(RSCCS)→Sym and mapPN : dom(RSPN)→Sym are
non-trivial functions, i.e. they do not map all names of semantic rules to one label.
≈ denotes weak bisimulation.

6.4 Model Transformation Specification (Step 4)
In this section we define a model transformation MTCCS2PN ⊆ Gst

CCS ×Gst
PN trans-

lating CCS graphs into Petri net graphs. The definition includes the explanation
of the Triple Graph Grammar (TGG) technique that we use, the idea of mapping,
graph transformations itself. We proceed as follows. The idea of the TGG tech-
nique is already introduced in Chapter 3, we explain how we use it for our case in
Subsection 6.4.1. The mapping within the model transformation is formally defined
in Subsection 6.4.2. The graph transformation system for the model transformation
between CCS and Petri nets is specified in Subsection 6.4.3.

6.4.1 TGG Model Transformation

In order to show the correctness of a model transformation, it is crucial to keep
correspondences between nodes of source and target models during model transfor-
mation. It allows later to reason about properties of transformed models. Therefore,
we use the TGG technique.

The main idea of the TGG technique is that graphs are separated into three
subgraphs, each being typed over its own type graph. One graph is normally typed
over the source type graph and another is typed over the target type graph. Two
of these subgraphs evolve simultaneously while the third keeps correspondences
between them. In our case we have the type graph T st

CCS for the CCS syntax and
the type graph T st

PN for the Petri nets syntax, which are conjoined with one new
correspondence node. The correspondence node is connected to the nodes, which
have the same meaning, i.e. Event-nodes and Transition-nodes. This correspondence
node represents the third graph in TGG (see Figure 6.32).

As opposed to traditional transformation where the source model is given and
then the source model is replaced by the target model, TGG transformations build
the models simultaneously, matching each part of the source model to the target
one. This allows to keep correspondences between transformed elements and to
prove certain properties of the corresponding graphs.

In our model transformation we use Building Blocks (BBs) – additional elements,
– that have similar meaning to CCS subprocesses and subnets in the Petri nets
language. BBs evolve into the full process or net by a partial substitution on each

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 145

Figure 6.32: Type graph T st
CCS × TCN × T st

PN for TGG transformation

step of a certain construction. Full substitution of BB happens on the final steps
when we transform CCS BBs into CCS events and Petri net BBs into transitions.
As the deletion of elements in the original TGG is prohibited, the substitution
process is represented by adding a special marker Terminated, that could also mean
that BB is no longer active. Each CCS BB is connected with a Petri net BB via
a correspondence node. This connection extends to transitions of Petri nets and
events of CCS language, i.e. to Transition- and Event-nodes.

Since we use the new nodes during the model transformation, we extend our
type graphs. We introduce a BB_CCS-node which has all properties of the Process-
node (see Figure 6.32). A BB_CCS-node has a self Terminated-edge. ProcessChain is
another auxiliary node that helps to build a root node of the CCS tree. The Petri net
type graph T st

PN is extended with a BB_PN-node, which inherits a Transition-node.
Similar to a BB_CCS-node, a BB_PN-node has a self Terminated-edge. The type
graph TCN consists of only one CN-node or a corresponding node which connects
either BB_CCS- and BB_PN-nodes or Event- and Transition-nodes.

So, the TGG rules MTCCS2PN build combined CCS and Petri nets graphs.
We let Gst

CCS2PN to denote the set of graphs obtained by applying the TGG
rules MTCCS2PN on an empty start graph. To receive the final translation, we
need to project the graph GCCS2PN ∈ Gst

CCS2PN onto the CCS and the Petri
nets type graphs. We use the definition of projection defined in Chapter 3, Sec-
tion 3.1 to specify the model transformations MTCCS2PN : Given a CCS graph
GCCS and a Petri net graph GPN , we have MTCCS2PN (GCCS , GPN) exactly if
there is some GCCS2PN ∈ Gst

CCS2PN such that GCCS = πT st
CCS(GCCS2PN) and

GPN = πT st
PN (GCCS2PN).

6.4.2 Mapping of Well-Formed CCS Graphs to Petri Nets

The model transformation of CCS into Petri nets is based on a mapping of syntactic
elements from the type graphs. The basic mapping is based on the assumption that

146
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

an Event-node and a Transition-node have the same meaning. Then, the mapping
is defined for each well-formed construction of CCS graphs (see Figure 6.9).

To define a corresponding Petri net construction we use the extended Petri nets
type graph with BBs nodes (see Figure 6.33), which was already explained in the
previous subsection.

Figure 6.33: Extended type graph for Petri nets

We inductively define further patterns of Petri nets graphs. For this, we provide
a mapping between each defined case of a well-formed CCS graph to a Petri net
pattern except recursion, which is defined separately. We start with a mapping of
a CCS BB to a Petri net BB. The latter consists of two Place-nodes and a node
of the type BB_PN that has exactly two incoming edges: one connecting it to the
Arc-node by source-edge and another connecting it to the Arc-node by a target-edge
(see Figure 6.34 in the top left corner). Then we define four cases (see Figure 6.34),
each of them is labelled with a letter, which corresponds to a label of a well-formed
CCS graph from Figure 6.9:

• Case A: nil process is mapped to an empty Petri net, which is represented
as a Place-node (see Figure 6.34A).
• Case B: P1 + P2 is mapped to a Petri net, which represents a choice. Such

structure consists of a Place-node followed by two BBs (see Figure 6.34B).
• Case C: P1 |P2 is mapped to a Petri net, which represents a parallel compo-
sition. Such structure consists of two BBs (see Figure 6.34C).
• Case D: a.P1 is mapped to a Petri net, which represents a sequence. Such
structure consists of a Place-node, followed by a Transition-node, another
Place-node and finally a BB (see Figure 6.34D).

Cases A-D define a special class of Petri nets, called synchronisation free Petri
nets [Val94], i.e. each transition has at most one incoming edge. Such class of nets
represents CCS processes with unboundedly growing parallelism.

We extend the class of synchronisation free Petri nets with the definition of
co-event (i.e. event ā ∈ ∆̄). As we mentioned earlier each Event-node corresponds
to a Transition-node. However, if there are two Transition-nodes in Petri net, which
represent events a and ā, then there is a special transition, which has input and
output nodes of the transitions a and ā (see Figure 6.35).

We introduce a new graph transformation rule pnMoveTokenTauA (see Figure
6.36), which moves a token through the transition with an attribute value τ .

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 147

Figure 6.34: Definition of well-formed Petri nets graphs

Figure 6.35: Definition of a co-event in Petri nets

We proceed with the definition of recursion for the defined Petri nets. The
recursion is an interesting case, which requires additional explanation. We have
two cases for a definition of recursion. The reason for this is that composition in
Petri nets is represented differently, depending if a net forms a connected net or
two separate nets (see case C from Figure 6.34). Therefore, there are two cases for
recursion. In the first case, recursion is defined by a mapping of a place to a certain
place, where recursive loop starts (i.e a process a.µx.b.x). In the second case, there
is a need to forward all target edges to initial places (i.e a process µx.(a.x | b.nil)).

Definition 28 (Recursion). Let N = 〈S, T, I〉 be a Petri net, then the recursion in
N is a subnet, which is a loop Petri net, starting in place s ∈ S and proceeding with
a connected subnet until transition t = (N s′

+ , l(t), N s′′
+), where l(t) is a label for t.

The recursion is defined by changing the set of output places for each transition t̃,
which has an output place from set N s′′

+ :

t̃ := (N s̃′
+ , l(t̃), N s̃′′

+ ∪N s
+)

148
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.36: The pnMoveTokenTauA rule

Definition 29 (RecursionI). Let N = 〈S, T, I〉 be a Petri net, then the recursion
followed by transition t = (N s′

+ , l(t), N s′′
+), where l(t) is a label for t, is defined by

changing the set of output places for each transition t̃, which has an output place
from set N s′′

+ :
t̃ := (N s̃′

+ , l(t̃), N s̃′′
+ ∪ I)

6.4.3 Graph Transformation System

We had to implement the mapping described in the previous subsection. For this,
we defined graph transformation rules, which specify our transformation system
MTCCS2PN . The rules mainly carry out four tasks: (1) creation of a skeleton
for transformation in an empty graph, (2) implementation of a mapping between
well-formed patterns described earlier (see Figure 6.34), (3) creation of Event-nodes
from sets {τ} and ∆̄ and corresponding transitions in Petri nets, and finally (4)
implementation of recursion.

We need one rule for performing task (1). The next four rules implement task
(2). These rules evolve BB by its “replacement” with patterns for well-formed CCS
graph and Petri nets graphs. The next two rules carry out task (3). Recursion,
i.e. task (4), is defined with three rules, one of which creates process µx.P , and
the other two implement Definitions 28–29. Table 6.4.3 summarizes these rules and
briefly states their task within the transformation process.
Note. Since the task of each rule is to build a well-formed construction of a CCS
graph and a Petri net graph (see Figures 6.9 and 6.34) we add some additional
information. In Table 6.4.3 we mention a letter of the CCS well-formed graph case
(see Figure 6.9) and a letter of the Petri nets well-formed graph case (see Figure
6.34) in the brackets. For example, (A↔ A) means that a rule builds the structure

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 149

Figure 6.37: The tggInitial rule (creates a skeleton, i.e. the first BBs: a BB_CCS-
node and a BB_PN-node)

of the process nil, which is case A in Figure 6.9, and a structure of the empty Petri
net, which is case A in Figure 6.34.

In the following, we discuss each rule in detail.

The tggInitial rule

The tggInitial rule (see Figure 6.37) is executed always at first. It creates in an empty
graph a skeleton for the transformation, i.e. two corresponding BBs: a BB_CCS-
node and a BB_PN-node. In addition, the rule creates an auxiliary ProcessChain-
node in a CCS graph. In a Petri nets graph, the tggInitial rule creates a Place-node
connected with an Initial-node, which is an input place for a newly created BB_PN-
node, and an outcome Place-node. Finally, a corresponding CN-node is created
which joins the BB_CCS and BB_PN-node.

The tggEmpty rule

The tggEmpty rule turns two corresponding BBs into a structure, which corresponds
to the process nil (see Figures 6.9A and 6.34A). The rule adds a self-edge Terminated
for a BB_CCS-node (the edge did not exists before), and creates a Nil-node, with
the label Process that means that the Nil-node inherits a Process-node. Then the
tggEmpty rule requires also the existence of a corresponding BB_PN-node (there
exists a CN-node which connects BB_CCS- and BB_PN-nodes). The rule creates a
self edge Terminated for a BB_PN-node.

150
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Table 6.3: Transformation rules and their tasks

Rule name Task

tggInitial Creates a skeleton, i.e. the first BBs: a BB_CCS-node and
a BB_PN-node.

tggEmpty Turns a CCS BB into a structure, which corresponds to
CCS process nil, and a Petri net BB into a structure, which
consists of a single Place-node (A ↔ A).

tggSummation Creates a CCS graph, which corresponds to pattern B for a
well-formed CCS process (P1+P2), and pattern B for a Petri
net graph, where the token could flow through two different
paths (B ↔ B).

tggComposition Creates a CCS graph, which corresponds to pattern C for a
well-formed CCS process (P1 |P2), and pattern C for a Petri
net graph (C ↔ C).

tggSequence Creates a CCS graph, which corresponds to pattern D for a
well-formed CCS process (a.P1), and pattern D for a Petri
net graph, where a transition follows a BB (D ↔ D).

tggSequenceCoAction Creates a co-event in CCS graph and a corresponding transi-
tion in Petri net with an extra transition, which corresponds
to τ .

tggVariableDeclaration Creates a CCS graph, which corresponds to CCS process
µx.P1 (E ↔ ∅ (but due to corresponding nodes the spot for
recursion is traced)).

tggRecursion Creates a CCS graph, which corresponds to CCS process x,
and a recursive Petri net, by creating an edge to a certain
Place-node (F ↔ Definition 28).

tggRecursionI Creates a CCS graph, which corresponds to CCS process x,
and a recursive Petri net, by creating edges to Place-nodes
marked as initial (F ↔ Definition 29).

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 151

Figure 6.38: The tggEmpty rule (turns a CCS BB into a structure, which corresponds
to the CCS process nil, and a Petri net BB into a structure, which consists of a
single Place-node)

Important note

Note that later the node label {?y[ProcessChain, Process]} means that the node
could be either a ProcessChain- or a Process-node.

The edge label ?x means that whenever a label for the incoming edge to the
BB_CCS-node is, the label for the edge marked as ‘new’ and ?x must be the same.

The tggSummation rule

The tggSummation rule builds a structure of the CCS well-formed graph, which
corresponds to the CCS process P1 +P2. For this, the rule needs a match, which is
a corresponding BB_CCS-node and a BB_PN-node without any Terminated-label.
The rules creates a Summation-node, which is also labelled as Process, with two
child BB_CCS-nodes. Then, in the target model, the rule creates two BB_PN-
nodes, which are corresponding to the newly created BB_CCS-nodes. The input
Place-node for the BB_PN-node in a match, is also the input Place-node for the
newly created BB_PN-nodes.

The tggComposition rule

The tggComposition rule turns two corresponding BBs into a structure, which corre-
sponds to the process P1 |P2. For this purpose, the rule requires a match that con-
sists of two corresponding BB_CCS- and BB_PN-nodes, which have no Terminated-
labels. The rule adds these labels to these BB_CCS- and BB_PN-nodes. In a CCS
graph it also creates a Composition-node with two following BB_CCS-nodes. The
Composition-node has the incoming edge from the same node as the BB_CCS-node
in a match. This allows to keep a tree structure.

The construction in a Petri net graph is the following. The rule creates a struc-
ture shown in Figure 6.34C, which is two separate well-formed patterns. If the
BB_PN-node in a match has either preceding or following Transition-nodes or Place-
nodes marked as initial, then the newly created BB_PN-nodes have these preceding
and following nodes too.

152
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.39: The tggSummation rule (creates a CCS graph, which corresponds to
the CCS process P1 + P2, and a Petri net, where a token could flow through two
different paths)

The tggSequence rule

The tggSequence rule converts a CCS BB into a graph, which corresponds to the
process a.P1, and a PN BB into a transition with a following BB, i.e. the structure
from Figure 6.34D. For this purpose, the rule creates a self Terminated-edges for
the corresponding BB_CCS- and BB_PN-nodes (the edges did not exist before). In
addition, the rule creates a Sequence-node, with the Process-label, which means that
the Sequence-node inherits a Process-node. Then the rule creates two child nodes
for the Sequence-node: an Event-node and a BB_CCS-node. The Event-node has
an attribute name, which value is calculated during the rule application. Here, the
attribute type is not a string, but an integer. This allows to create a unique name
for each event. The rule says that there must not exist a node with an attribute
name, which value is bigger then a value of some one particular node. Therefore,
the attribute with the highest value is found. The tggSequence rule adds the integer
“1" to the highest existing attribute value in a graph – that is how the newly created
Event-node gets its unique attribute value.

In addition, the tggSequence rule creates a Transition-node, which has a common
input Place-node in with the BB_PN-node in the match. The Transition-node is a
corresponding node for the newly created Event-node. Therefore, there exists a
CN-node, which connects them. The rule creates a chain of nodes: a Place-node,
and another BB_PN-node. The chain of nodes is closed with an existing Place-
node, which is an outgoing for the existing BB_PN-node. The two newly created
BB_CCS- and BB_CCS-nodes are connected with a CN-node.

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 153

Figure 6.40: The tggComposition rule (creates a CCS graph, which corresponds to
pattern C for the well-formed CCS process P1 | P2, and the pattern C for a Petri
net graph)

The tggSequenceCoAction rule

The tggSequenceCoAction rule builds a structure of the CCS well-formed graph,
which corresponds to the CCS process a.P1 | ā.P2, and a Petri net structure, which is
depicted in Figure 6.35. For this, the rule requires a match, which is a corresponding
BB_CCS-node and a BB_PN-node without a Terminated-label, beside this, the
match consists of an Event-node and a Transition-node, which are connected by a
CN-node. The rule creates a Sequence-node (which is also labelled as Process) with a
child Event-node, which has an attribute co-action with a value of the existing node
name attribute. The Sequence-node has a second child node of the type BB_CCS
and is connected with a predecessor of the BB_CCS-node in the match that allows
to keep a tree structure of a tree.

The rule also creates two Transition-nodes: one is the corresponding for the
Event-node (i.e. the event ā) and is followed by a PN BB, another Event-node cor-
responds to a tau-event (it has a special meaning that the events a and ā happen
simultaneously). The former Transition-node has the same attribute value as the
corresponding Event-node, but with the prefix “co”. The later Transition-node shares
input and outgoing Place-nodes with the other two Transition-nodes (one the former
and another form the match) and has an attribute with the name ‘tau‘. The quan-

154
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.41: The tggSequence rule (creates a CCS graph, which corresponds to the
CCS process a.P1, and a Petri net transition, which follows a BB)

tifies could be read as follows: for all Place-nodes followed by the Transition-node in
the match, the newly created Transition-node, which corresponds to a tau-event, is
also connected with these Place-nodes.

The tggVariableDeclaration rule

The tggVariableDeclaration rule turns a CCS BB into a structure which corresponds
to the process µx.P1 and does not change the Petri net graph (it is supposed that a
correspondence CN-node keeps a track of the future start for a recursive loop). As
usually, the rule requires a match with corresponding BB_CCS- and BB_PN-nodes
without Terminated-labels. The BB_CCS-node gets a Terminated-label, instead a
tree structure with a root node, which precedes the BB_CCS-node, is created. This
structure consists of a Variable-node with an unique attribute value. The Variable-
node has a child BB_CCS-node, which plays further a role of a corresponding node
for the BB_PN-node. Another child node of the Variable-node is a Mu-node, which
denotes a beginning of the recursive loop.

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 155

Figure 6.42: The tggSequenceCoAction rule (creates a co-event in a CCS graph and
a corresponding transition in a Petri net with an extra transition, which corresponds
to τ , which means that an event and a co-event are executed simultaneously)

The tggRecursion rule

The tggRecursion rule creates a recursive structure, which was defined in Definition
28. For this, the rule requires a match of two pairs of corresponding BB_CCS-
and BB_PN-nodes: first pair with Terminated-label, the second – without. The
BB_CCS-node from the first pair must be connected with a Recursion-node, which
is by turn connected with a Variable-node. The rule creates another Variable-node,
which has the same attribute value as the existing one, and it is connected with
the same predecessor as the BB_CCS-node from the second pair. A recursive loop
in Petri nets is implemented by creation of the target-edge from all Transition- and
BB_PN-nodes, which precedes the BB_PN-node from the second pair, to the Place-
nodes, which precedes the BB_PN-node from the first pair.

The tggRecursionI rule

The tggRecursionI rule creates a recursive structure, which was defined in Defini-
tion 29. For this, the rule requires a match of a pair of corresponding BB_CCS-

156
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.43: The tggVariableDeclaration rule (creates a CCS graph, which corre-
sponds to the CCS process µx.P1)

Figure 6.44: The tggRecursion rule (creates a CCS graph, which corresponds to CCS
process x, and a recursive Petri net from Definition 28)

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 157

Figure 6.45: The tggRecursionI rule (creates a CCS graph, which corresponds to
CCS process x, and a recursive Petri net from Definition 29)

and BB_PN-nodes without a Terminated-label. Additionally, the rule requires the
existence of a Recursion-node with a child Variable-node and a child BB_CCS-node.
The later must be a corresponding node for some BB_PN-node, which has an input
Place-node marked as initial. The rule creates a Variable-node with the same at-
tribute value as the Variable-node in the match. Then the rule creates a target-edge
between the BB_PN- or Transition-node, which precedes the BB_PN-node in the
match, and all Place-nodes marked as initial.

6.4.4 Auxiliary Notation for CCS Graphs

We introduce some notation for the structure of CCS graphs, which are built by the
TGG rules from MTCCS2PN . Since the CCS graph has always a tree structure (the
fact is easily proven by the induction of the TGG rules), where a Process-node vProc
is a root element and each node except the root node has a Process-node as a parent
node, we can define the conditions on the paths of Process-nodes in a CCS graph.
The idea is to separate paths in a such way, that each path either encloses only one
Sequence-node, or encloses a leaf node of a tree. Recall that a Sequence-node is also
a Process-node.

We specify three types of paths. The first condition condA is for the paths,
where the first node in a path is either a root of the whole graph or a follower of
a Sequence-node, the last node is of a Sequence type and all the others have the
types different to Sequence. The only exception is when the first node of a path is
a Sequence-node, then the path consists of one node. The second condition condB
is for the paths, where the first node is connected to a Sequence-node (which is

158
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

a predecessor), the last node is a leaf of a tree and a Nil-node. Finally, the third
condition condC is for the paths, where the last node is a leaf, there is no node in
the path is of a Sequence type, the first node is either a root of a tree or there is
a Recursion-node in a path, which declares a variable with the same attribute as a
leaf Variable-node.

(condA) We say that condA holds for the sequence of Process-nodes
{vi}Ni=1 = {v1, . . . , vN}, denoted as condA({vi}Ni=1), if for all i:

subprocess(vi, vi+1)
∧

vN is a Sequence-node
∧

((∃ Sequence-node v0 such that subprocess(v0, v1)) ∨ root(v1))
∧

∀vi ∈ {v2, . . . , vN−1} vi is not of the Sequence type
∧

(if v1 is a Sequence-node then N = 1)

(condB) We say that condB holds for the sequence of Process-nodes
{vi}Ni=1 = {v1, . . . , vN}, denoted as condB({vi}Ni=1), if for all i:

subprocess(vi, vi+1)
∧

∃ a Sequence-node v0 such that subprocess(v0, v1)
∧

leaf(vN = vNil)
∧

∀vi ∈ {v1, . . . , vN} vi is not of the Sequence type

(condC) We say that condC holds for the sequence of Process-nodes
{vi}Ni=1 = {v1, . . . , vN}, denoted as condC({vi}Ni=1), if for all i:

subprocess(vi, vi+1)
∧

∀vi ∈ {v1, . . . , vN} vi is not of the Sequence type
∧

(root(v1)∨

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 159

Figure 6.46: The CCS graph for the process P = µx(a.τ.nil + µy.y|b.x)

(∃j, vRec, v′V ar : vj = vRec∧prefix(vRec, v′V ar)∧pName(v′V ar) = name(vN)))
∧

leaf(vN)

Remark. We cosider the paths {vi}Ni=1, where

1. vV ar = vN ,
2. ∃vSeq : subprocess(vSeq, v1),
3. ∀vi ∈ {v1, . . . , vN}, vi is not of a Sequence type,
4. 6 ∃j, vRec : vj = vRec ∧ prefix(vRec, v′V ar) ∧ pName(vV ar) = name(vN),

then the path {vi}Ni=1 satisfies the same conditions as a path {ṽi}Ni=1, where ∃j, ṽRec :
ṽj = ṽRec ∧ prefix(ṽRec, v′V ar) ∧ (name(v′V ar) = pName(vN)).
Note that we consider paths with no repeated nodes.

We illustrate the defined conditions on a sample of a CCS graph. Figure 6.46
illustrates the CCS graph for the process P = µx(a.τ.nil + µy.y|b.x). Here, the
condition condA holds for the paths {v1, v2, v3}, {v4}, {v1, v2, v6, v9}. The path
{v5} satisfies the condition condB. There is the path {v1, v2, v6, v7, v8} for which
the condition condC holds. Further, the paths {v10, v1, v2, v3} and {v10, v1, v2, v6, v9}
satisfy condA. Finally, the path {v10, v1, v2, v6, v7, v8} satisfies the condition condC.

The next proposition claims that every Process-node in any CCS graph, is a
part of a path, which satisfies one of the three conditions, i.e. either condA, condB,
or condC.

Proposition 6.4.1. Let GCCS ∈ Grt
CCS, vProc be a Process-node in GCCS. Then

there exists at least one path {vi}Ni=1 and a number j : 1 ≤ j ≤ N such that
vj = vProc and one of the conditions holds for this path:

160
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

(A) condA({vi}Ni=1),
(B) condB({vi}Ni=1),
(C) condC({vi}Ni=1).

Proof. Let us consider only Process-nodes in a general structure of a CCS graph.
Due to the TGG rules MTCCS2PN , each Process-node has either one or two child
Process-nodes, except leaves of the tree, and one predecessor Process-node. We
analyse a random Process-node vProc and show that according to the TGG rules
MTCCS2PN the proof statement holds for this node.

The diagram below shows an example of a tree structure of Process-nodes.

vProc

��
vProc

zz $$
vProc vProc

zz $$
. . .

zz $$

vProc

$$
vProc vProc

$$

vProc

vProc

Note that any vProc is either vSeq, vSum, vCom, vRec, vNil, or vV ar. Further, we
consider that v0

Proc is vProc, denoted later as v0
Proc := vProc. Depending on the type

of vProc as it is mentioned earlier, we examine a follower or predecessor of vProc
(the examined node is denoted as vProc). We use also boolean variables flagV and
flagV with initial values flagV := false and flagR := false for the case with a
recursion.

We analyse each case separately.

1. v0
Proc = vSeq, then the Process-node belongs to the path condA,

2. v0
Proc = vSum or vCom, then we analyse a follower of v0

Proc denoted as vProc,
3. v0

Proc = vRec, then we analyse a follower of v0
Proc denoted as vProc and

flagR := true,
4. v0

Proc = vV ar, then we analyse a predecessor of v0
Proc denoted as vProc and

flagV := true,
5. v0

Proc = vNil, then we analyse a predecessor of v0
Proc denoted as vProc.

6.4. MODEL TRANSFORMATION SPECIFICATION (STEP 4) 161

Note that if vProc is a follower of v0
Proc then subprocess(v0

Proc, vProc), if vProc is a
predecessor of v0

Proc then subprocess(vProc, v0
Proc).

Analysis of a follower:

1. vProc = vSeq, then v0
Proc is from the path condA.

2. vProc = vSum, then analyse a follower of vSum.
3. vProc = vCom, then analyse a follower of vCom.
4. vProc = vRec, then analyse a follower of vRec and flagR := true.
5. vProc = vV ar, if flagR = true (the corresponding vRec was analysed), then the

path belongs to condC, otherwise analyse a predecessor of v0
Proc and flagV :=

true.
6. vProc = vNil, then analyse a predecessor of v0

Proc.

Analysis of a predecessor:

1. vProc = vSeq, if flagV = true, then analyse a follower of corresponding
Recursion-node vRec, else v0

Proc is from the path condB.
2. vProc = vSum, if vSum is a root of a tree, then v0

Proc is from the path condC,
otherwise we analyse a predecessor of vProc.

3. vCom, if vCom is a root of a tree, then v0
Proc is from the path condC, otherwise

we analyse a predecessor of vProc.
4. vRec, if vRec is a root of a tree or flagV = true, then v0

Proc is from the path
condC, otherwise we analyse a predecessor of vRec.

5. vV ar is impossible,
6. vNil is impossible.

The algorithm always terminates, because the only possible loop is a path with
vV ar, which has a marker in case we meet the node a second time.
Remark. We consider only one follower, although there could be two (in cases
vSum and vComp), it means that we choose a particular path, the second path could
satisfy another condition.

6.4.5 Important Observations about CCS Graphs

For proving the correctness of the model transformation MTCCS2PN we need some
observations about the structure of CCS graphs which are built by the TGG rules
from MTCCS2PN . The following propositions are based on simple observations
about the way the TGG rules are applied.

The following proposition tells that that each Event-node in a CCS graph has
an adjacent Process-node, which has an adjacent Process-node too.

Proposition 6.4.2. Let GCCS ∈ Gst
CCS, vEvent be an Event-node in GCCS. Then

∃!vProc and v′Proc such that event(vProc, vEvent) and subprocess(vProc, v′Proc).

162
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Proof. The tggSequence and tggSequenceCoAction rules are the only rules that cre-
ate a Sequence-node in a CCS graph. This node is connected with a Process-node,
which has by turn a child BB_CCS-node. The other rules from MTCCS2PN do not
change this structure, instead build another child node of the Process-type for the
Sequence-node.

The next two propositions state that the nodes in a path of Process-nodes, which
satisfies the conditions condA, condB, condC, are of certain type.

Proposition 6.4.3. Let {vi}Ni=1 be a path of Process-nodes such that
condA({vi}Ni=1), then vi ∈ {v1, . . . , vN−1} is either a Summation-, Composition - ,
Recursion- or Variable-node, and vN is a Sequence-node.

Proposition 6.4.4. Let {vi}Ni=1 be a path of Process-nodes such that condB({vi}Ni=1)
or condC({vi}Ni=1), then vi ∈ {v1, . . . , vN−1} is either a Summation-node, or a
Composition-node, or a Recursion-node, and vN is a Nil-node.

Proof. The rules fromMTCCS2PN build a tree structure from Process-nodes. It can
be easily proven by considering every rule fromMTCCS2PN . Then Propositions and
follows by the definition of conditions condA, condB and condC.

The next proposition is a single observation about adjacent nodes of Summation-,
Composition-, Recursion- and Variable-nodes.

Proposition 6.4.5. Let GCCS ∈ Gst
CCS,

(A) let v be either a Summation-node or a Composition-node in GCCS, then
∃!v1

Proc and v2
Proc : subprocess(v, v1

Proc) ∧ subprocess(v, v2
Proc).

(B) let v be a Recursion-node in GCCS, then ∃!vProc : subprocess(v, vProc).
(C) let v be a Variable-node in GCCS, then ∃!vProc, vRec :

subprocess(vRec, vProc)∧ prefix(vRec, v′V ar)∧ pName(v) = name(v′V ar).

Proof. The proof is a consequence of the tggSummation, tggComposition and
tggVariableDeclaration rules and the fact that the other rules do not change this
structure.

The following observation concerns a run-time graph, it says that during the se-
mantics rules are applied a Current-node is always connected with a Mark-node.

Proposition 6.4.6. Let GCCS ∈ Grt
CCS, v is a Current-node in GCCS, then ∃vMark :

mark(v).

6.5. CORRECTNESS OF MODEL TRANSFORMATION (STEP 5) 163

6.5 Correctness of Model Transformation (Step 5)
In this section we want to show that the model transformation MTCCS2PN is be-
haviour preserving. Recall that semantics preserving in the context of this thesis
means the behaviour preservation. Let Q(GCCS) be a transition system which is a
result of application of semantic rules from RSCCS to the graph GCCS ∈ Gst

CCS . Let
GPN ∈ Gst

PN be a Petri net graph such as MTCCS2PN (GCCS , GPN) and Q(GPN)
be a transition system generated for the graph GPN by applying the semantic rules
from RSPN . The semantics preservation means that for every behavioural prop-
erty ϕ in the CCS language and its interpretation χ for the Petri net language. The
following statement holds:

Q(GCCS) |= ϕ ⇒ Q(GPN) |= χ(ϕ) (6.2)

We show a statement, which implies 6.2, i.e. that Q(GCCS) and Q(GPN) are weakly
bisimilar in respect to the mappings mapCCS and mapPN :

mapCCS(Q(GCCS)) ≈ mapPN (Q(GPN)) (6.3)

here the mappingsmapCCS andmapPN are defined in Section 6.3. However, we still
need to define the relation RCCS2PN (i.e. the relation ≈). We start by introducing
some notation and important observations, which concern correspondences created
during model transformations MTCCS2PN . The observations will help us to specify
the relation RCCS2PN .

6.5.1 Auxiliary Notation for Corresponding Nodes

We continue with notation for corresponding nodes in a TGG graph GCCS2PN . For
Event-node vEvent and a Transition-node vTrans, we write cn(vEvent, vTrans) if there
is a CN-node vcn and a left-edge from vCN to vEvent and a right-edge from vCN to
vTrans.

The TGG rules generate correspondences between Event- and Transition-nodes,
i.e. cn(vEvent, vTrans). Further, we define the notation for Process- and Place-nodes
which could be related due the connection with corresponding Event-nodes and
Transition-nodes.
(cn1) We write cn1(vProc, vPlace) for Process- and Place-nodes, if there exists an

Event-node vEvent such that event(vProc, vEvent), and there exists a Transition-
node vTrans such that source(vTrans, vPlace), and cn(vEvent, vTrans).

(cn2) We write cn2(vProc, vPlace) for Process- and Place-nodes, if there exist a
Process-node v′Proc and an Event-node vEvent such that event(v′Proc, vEvent) ∧
subrocess(v′Proc, vProc), and there exists a Transition-node vTrans such that
target(vTrans, vPlace), and cn(vEvent, vTrans).

164
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.47: Relevant correspondences: cn, cn1 and cn2

Figure 6.47 illustrates the relevant correspondences that are crucial parts of our
proof. The correspondence cn is defined over Event-nodes and Transition-nodes by
a CN-node, which is built by the TGG rules. The correspondences cn1 and cn2 are
defined over the Process- and Place-nodes.

6.5.2 Important Observations about Corresponding Structure

For the proof we firstly provide some observations about the correspondences gener-
ated by the TGG rules, despite the fact that the semantics rules are applied on the
individual models. In addition, we use the observation that the syntactic structure
is kept when the semantics rules are applied to a CCS graph.
First observation Both for well-formed CCS and Petri nets graphs, the semantics

rules keep the syntactic structure of a graph, i.e. all Process- and Event-nodes,
all Transition-, Place- and Initial-nodes stay the same.

We formalize the first observation that the syntactic structure of graphs stays the
same when semantic rules are applied.

Proposition 6.5.1. Let GCCS ∈ Grt
CCS be a CCS graph. If GCCS −r→ G′CCS for some

r ∈ RSCCS then πTst
CCS\dyn(GCCS) = πTst

CCS\dyn(G′CCS), where dyn = {Current,Mark}
is a set of dynamic elements, i.e. Current- and Mark-nodes, and T\dyn is the type
T without the dyn-elements.
A corresponding property holds for a Petri net graph.

The next observation shows that correspondences between Event and Transition are
unique.

Proposition 6.5.2. Let G ∈ GCCS2PN , vEvent an Event-node and vTrans a
Transition-node in G. Then the following two properties hold:

(A) ∃!v of the Event type such that cn(v, vTrans) and tName(vTrans) = name(v)
(the same attribute values),

(B) ∃!v of the Transition type such that cn(vEvent, v) and tName(v) =
name(vEvent) (the same attribute values).

Proof. The tggSequence and tggSequenceCoAction rules are the only rules in
MTCCS2PN , which create the required structure in G. Since the other rules from
MTCCS2PN do not affect it, the proposition is proven.

6.5. CORRECTNESS OF MODEL TRANSFORMATION (STEP 5) 165

Second observation Correspondences between nodes in CCS models and Petri
nets models are kept during application of the semantic rules. Predicates cn,
cn1, cn2 as well as Proposition 6.5.2 can thus also be applied to separate CCS
and Petri nets graphs.

Further propositions are about the structure of corresponding nodes and the adja-
cent nodes. The following proposition illustrates the existence of correspondences
for each Place-node.

Proposition 6.5.3. Let GPN = πTst
PN

(GPN2CCS) GCCS = πTst
CCS

(GPN2CCS), vPlace
be a Place-node in GPN . Then one of the following properties hold:

(A) ∃! Process-node v ∈ GCCS such that cn1(v, vPlace),
(B) ∃! Process-node v ∈ GCCS such that cn2(v, vPlace) and ¬∃ vProc :

cn1(vProc, vPlace),
(C) ∃! Process-node v ∈ GCCS such that (v ∈ {vi}Ni=1) ∧ condC({vi}Ni=1)∧

(¬∃vProc : cn1(v, vPlace)∨ cn2(v, vPlace)).

Proof. The proposition is easily proven since each Transition-node has a corre-
sponding Event-node (Proposition 6.5.2). Then each Place is connected to a
Transition-node, it means that there exists an edge either source(vPlace, vTrans) or
target(vPlace, vTrans). To fulfil conditions cn1 and cn2 we need Proposition 6.4.2
which says that there are always two Process-nodes for an Event-node. If there are
no Transition- and Event-nodes in the graphs GPN , GCCS , then there are paths in
the GCCS , where there are no Sequence-nodes and therefore the condition condC
holds.

We continue with observations concerning correspondences. We formalize the
observation about the existence of correspondences for Process-nodes.

Proposition 6.5.4. Let GPN , GCCS ⊂ Grt
PN2CCS, then for each Process-node vProc

in GCCS one of the following properties hold:
(A) if vProc belongs to the path {vi}Ni=1 such that ∃j : vProc = vj and the condi-

tion condA({vi}Ni=1) holds. Then, there exists a Place-node vPlace ∈ GPN such that
cn1(vN , vPlace),

(B) if vProc belongs to the path {vi}Ni=1 such that ∃j : vProc = vj and the condition
condB({vi}Ni=1) holds. Then, there exists a Place-node vPlace ∈ GPN such that
cn2(v1, vPlace),

(C) if vProc belongs to the path {vi}Ni=1 such that ∃j : vProc = vj and the condition
condC({vi}Ni=1) holds. Then, there exists a Place-node vPlace ∈ GPN such that either
initial(vPlace) or cn2(v1, vPlace).

The following two propositions concern a Process-node, which is a root of a tree
structured CCS graph, and a Place-node marked as initial.

166
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Proposition 6.5.5. Let GCCS ∈ GCCS2PN , vProc a Process-node s.t root(vProc) in
G. Then the one of the following two properties hold:

(A) ∀{vi}Ni=1 – a sequence of Process-nodes such that (v1 = vProc) ∧
condA({vi}Ni=1) ∃v of the Place type such that cn1(vN , v) ∧ initial(vPlace),

(B) ∀{vi}Ni=1 – a sequence of Process-nodes such that (v1 = vProc) ∧
condC({vi}Ni=1) ∃v of the Place type such that initial(vPlace).

There are no other Place-nodes marked as initial except those, which are de-
scribed in (A) and (B).

Proposition 6.5.6. Let GPN ∈ GCCS2PN , vPlace a Place-node such that
initial(vPlace) in G. Then the following two properties hold:

(A)∃{vi}Ni=1 – a sequence of Process-nodes such that (v1 = vProc)∧
condA({vi}Ni=1)∧ cn1(vN , vPlace)∧ root(v1),

(B)∃{vi}Ni=1 – a sequence of Process-nodes such that (v1 = vProc) ∧
condC({vi}Ni=1)∧ root(v1).

The next proposition tells that if there exists a path between two Event-nodes then
there exists a path between the corresponding Place-nodes. Note that the case (B)
considers a recursion.

Proposition 6.5.7. Let GPN ∈ GCCS2PN , vEvent, v′Event be Event-nodes in GCCS
and vTrans, v′Trans be Transition-nodes in GPN such that cn(vEvent, vTrans) and
cn(v′Event, v′Trans).

(A) If ∃{vi}Ni=1 – a path of Process-nodes such that event(vN , v′Event) and there
is a node vSeq : subprocess(vSeq, v1)∧ event(vSeq, vEvent) or

(B) If there are two paths of Process-nodes: (1) {v1
i }Ni=1 such that there is some

node v1
Seq : subprocess(v1

Seq, v
1
1)∧ event(v1

Seq, vEvent)∧ v1
N = v1

V ar, (2) {v2
i }Ni=1 such

that (v2
Seq = v2

N)∧ event(v2
Seq, v

′
Event)∧ condA and there exists a Recursion-node

vRec = v2
j such that prefix(vRec, v2

V ar)∧ name(v2
V ar) = pName(v1

V ar), then
∃! vPlace – a Place-node such that target(vTrans, vPlace) and source(v′Trans, vPlace).

The following proposition is the reverse statement for Proposition 6.5.7.

Proposition 6.5.8. Let GPN ∈ GCCS2PN , vEvent, v′Event in GCCS and vTrans,
v′Trans in GPN such that cn(vEvent, vTrans) and cn(v′Event, v′Trans). If ∃vPlace such
that target(vTrans, vPlace) and source(v′Trans, vPlace) then one of the following state-
ments hold:

(A) ∃! path {vi}Ni=1 such that condA({vi}Ni=1) ∧ cn1(v1, vPlace) ∧ cn2(vN , vPlace),
or

(B) ∃ two paths: (1) {v1
i }Ni=1 such that vN = vV ar and ∃v1

Seq :
subprocess(v1

Seq, v
1
1), event(v1

Seq, vEvent); (2) {v2
i }Ni=1 such that condA({v2

i }Ni=1) ∧
cn2(v1, vPlace) ∧ vN = vV ar).

6.5. CORRECTNESS OF MODEL TRANSFORMATION (STEP 5) 167

6.5.3 Definition and Proving of Weak Bisimulation

We summarize the results of this section and previous observations in order to define
the relation RCCS2PN , which consists of syntactic and semantic restrictions on the
graphs Grt

CCS and Grt
PN .

Proposition 6.5.1 helps us to specify the condition (1) on a syntactic structure
of the graphs. It says that the projection of graphs on the static type graphs is
always the same during the application of the semantic rules.

To specify the conditions for run-time properties on corresponding nodes, we
reason as follows. Since only Process-nodes could be connected with Current-nodes
during the semantic rules application and due to Proposition 6.4.1 every Process-
node belongs to one of the paths condA, condB, condC, then we can specify the
restrictions on the run-time structure, by defining a location of a Current-node in
a CCS graph. Due to the fact that only places can carry tokens, i.e. Place-nodes
could be connected with Token-nodes, and Proposition 6.5.3 about the connection
of Place-nodes and Process-nodes, we can specify three conditions on the run-time
structure of a graph Grt

PN . So we have the conditions (2)-(4) for run-time properties.
For the proof we construct the relation RCCS2PN between the states of the CCS

LTS and the Petri net LTS.

RCCS2PN = (GCCS , GPN) ∈ Grt
CCS × Grt

PN | ∃GCCS2PN

(1)(πTst
CCS\dyn(GCCS) = πTst

CCS\dyn(GCCS2PN)) ∧
(πTst

PN\dyn(GPN) = πTst
PN\dyn(GCCS2PN)),

where dyn ∈ {vCurr, vMark, vTok} and T \ dyn is T without dyn,
(2) ∀vPlace ∈ GPN , {vi}Ni=1 ∈ GCCS such that
condA({vi}Ni=1) ∧ cn1(vN , vPlace) then
∃j : current(vj)⇔ token(vPlace),
(3) ∀vPlace ∈ GPN , {vi}Ni=1 ∈ GCCS such that
condB({vi}Ni=1) ∧ cn2(v1, vPlace) then
∃j : current(vj)⇔ token(vPlace),
(4) ∀vPlace ∈ GPN , {vi}Ni=1 ∈ GCCS such that
(4a) initial(vPlace) ∧ root(v1) ∧ condC({vi}Ni=1) or
(4b) condC({vi}Ni=1) ∧ cn2(v1, vPlace) then
∃j : current(vj)⇔ token(vPlace).

The relation contains all pairs of CCS and Petri nets pairs which (1) in their
syntactic structure follow the structure generated by the TGG rules, (2)-(4) exhibit
run-time properties.

168
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Theorem 6.5.9. Given MTCCS2PN (as defined in Figures 6.37-6.45) and the re-
lation RCCS2PN . Let GCCS and GPN be a CCS graph and a Petri net graph,
respectively, such that MTCCS2PN (GCCS , GPN). Then the relation RCCS2PN (≈)
is a weak bisimulation , i.e.

mapCCS(Q(GCCS)) ≈ mapPN (Q(GPN))

All presented propositions are essential for the showing that the relation
RCCS2PN given earlier in this section indeed defines a weak bisimulation.

Proof. of Theorem 6.5.9. Taking the relation RCCS2PN , we need to show the prop-
erty of mutual simulation. We start with the requirement of initial states being in
the relation. The initial states of the LTSs are G0

CCS and G0
PN and they satisfy

the conditions of RCCS2PN since they are directly generated by projection from
the combined graph (condition (1)), since there are no run-time elements such as
Current, Mark and Token, so conditions (2)-(5) are trivially satisfied.

Now assume (GCCS , GPN) ∈ RCCS2PN and GCCS −r1−→ G′CCS . As we are looking
at the LTSs with labels renamed according to mapCCS and mapPN , r1 (the label of
the transition) in principle is either Initial, Action or τ . We need to show that there
is some G′PN such that GPN =̂r1=⇒ G′PN with (G′CCS , G′PN) ∈ RCCS2PN . However,
as we are interested in the particular semantic rule applied during the step, we will
instead directly look at the original LTSs and show that mapCCS and mapPN map
rule names to the same label.

r1 = ccsInitial. Let 〈L1, R1,N1〉 be the ccsInitial rule (see Figure 6.16). If r1 is ap-
plicable in GCCS , we have a match m1 : L1 → GCCS , i.e., a node vProc such
that root(vProc). Due to Proposition 6.4.1 there exists a path of Process-nodes
{vn}Nn=1 such that v1 = vProc and either the condition condA or condC hold
for {vi}Ni=1. Due to Proposition 6.5.5 for every root node there exists a Place-
node marked as initial. Therefore in the graph Grt

PN we have at least one
Place-node vPlace,i, here i ≥ 1.
From this, we construct a match m2 : L2 → GPN for the rule r2 = pnInitial
(both being mapped to Initial by mapCCS and mapPN) being defined as
〈L2, R2,N2〉. The match m2 maps all Place-nodes vPlace,i (for i > 0) marked
as initial in L2, i.e. initial(vPlace,i).
Thus, pnInitial is applicable in GPN . Once the rules are applied, we have a
graph G′CCS with one Current-node such that current(vProc) and a graph G′PN
with Token-nodes such that token(vPlace,i) and initial(vPlace,i) (for i > 0).
The pair (G′CCS , G′PN) is in RCCS2PN since (1) the syntactic structure is kept
(see Proposition 6.5.1), depending on the condition of the path the node vProc
belongs to. If vProc belings to a path condA, then vN = vSeq. Due to Propo-
sition 6.5.5(A) there exists an initial place vPlace, such that cn1(vN , vPlace).
Since all places marked as initial have a connection to a Token-node then the

6.5. CORRECTNESS OF MODEL TRANSFORMATION (STEP 5) 169

pair of the graphs (G′CCS , G′PN) satisfies (2). Similarly, if vProc belongs to the
path condC (due to Proposition 6.5.5(B)) then the condition (4) holds; the
condition (3) is unchanged.

r1 = ccsSummation. In this case, we have an invisible step on the CCS-side. If r1
(see Figure 6.20) is applicable toGCCS , then there are nodes vSum, v1

Proc, v2
Proc

such that current(vSum) ∧subprocess(vSum, v1
Proc)∧ subprocess(vSum, v2

Proc).
Further we consider two paths {v1

i }
N1
i=1 and {v2

i }
N2
i=1, such that ∃j1, j2 :

v1
j1 = v2

j2 = vSum, then obviously v1
Proc = v1

j1+1 and v2
Proc = v2

j2+1.
Applying the rule r1 leads to a graph G′CCS where current(v1

Proc) ∧
current(v2

Proc)∧¬current(vSum).
By (2)-(4) there exists a Place-node vPlace in GPN such that token(vPlace).
By Proposition 6.5.4 three cases are possible, depending on which condition
the paths {v1

i }Ni=1 and {v2
i }Ni=1 satisfy.

1. The condition condA holds for both paths, then due to our as-
sumption that (GCCS , GPN) ∈ RCCS , we have cn1(v1

N1
, vPlace)

and cn1(v2
N2
, vPlace). Then (2) holds, because current(v1

j1+1)∧
current(v2

j2+1)∧ token(vPlace), it means that in both paths condA for
every Process-node, which is connected with a Current-node, there exists
a Place-node connected with a Token-node (the Current-node was du-
plicated for each path, therefore the conditions still hold after the rule
being applied). The reverse statement (2) for a Place-node holds too.
Conditions (3) and (4) are unchangeable in this case. (1) holds since
the syntactic structure was not change, when the ccsSummation rule was
applied.

2. The condition condC holds for both paths, then due to Proposition
6.5.5 we have initial(vPlace). Then (4) holds since current(v1

j1+1)∧
current(v2

j2+1)∧ token(vPlace) (the Current-node was duplicated for each
path, therefore the conditions still hold after the rule being applied). (2)
and (3) are unchangeable. (1) holds since the syntactic structure was not
change, when the ccsSummation rule was applied.

3. The case, when one of the paths satisfies the condition condA and another
– the condition condC, is a mixture of the previous two cases.

4. The condition condB holds for both paths, then cn2(v1
1, vPlace) and

cn2(v2
1, vPlace). (3) holds since the Current-nodes were moved within

the paths condB, where on both paths there exists a Process-node which
has a corresponding Place-node connected with a Token-node. The re-
verse statement holds also for the Place-node vPlace. (1),(2) and (4) are
unchangeable.

5. The case when one of the paths satisfies the condition condA and another
the condition condB, is a mixture of the first and second cases .

6. The case when one of the paths satisfies the condition condB and another
the condition condC, is a mixture of the second and fourth cases.

170
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

The pair (G′CCS , GPN) is thus in RCCS2PN and furthermore GPN −τ→ G′PN ,
which completes the proof for this case.

r1 = ccsComposition. In this case, we have an invisible step on the CCS-side. The
proof is similar to the case r1 = ccsSummation.

r1 = ccsSequenceA. Since r1 (see Figure 6.17) is applicable to a graph GCCS , then
there is a match, which consists of the following nodes: vEvent, vSeq, vProc,
vCurr and vMark, and the following conditions hold:

subprocess(vSeq, vProc) ∧ current(vCurr, vSeq)∧

mark(vMark, vCurr) ∧ event(vSeq, vEvent) ∧ name(vEvent) = a

It means that there exists a path {vi}Ni=1 such that vN = vSeq and the con-
dition condA holds. Due to Proposition 6.5.4 (A) there exists vPlace in GPN
such that cn1(vSeq, vPlace). Due to our assumption (2) all vPlace such that
cn1(vSeq, vPlace) have connection with some Token-node token(vPlace). Due
to Proposition 6.5.2 there exists a corresponding Transition-node vTrans such
that cn(vEvent, vTrans). and tName(vTrans = a). According to the definition
of the Petri nets structure, for every Transition-node there exists at least one
output Place-node v′Place (see Section 6.2). Therefore, we can build a match
for the rule pnMoveTokenA, which moves a Token-node from all input Place-
nodes vPlace to all output nodes v′Place.
Note that cn2(vProc, v′Place) and in the resulted graphsG′CCS andG′PN we have
current(vProc) and token(v′Place). Whenever path the Process-node vProc be-
longs to, the path satisfies one of the conditions condA, condB or condC, then
the conditions (2), (3), (4b) hold for vProc and v′Place in the graphs G′CCS and
G′PN .
However, we must also consider that it could be Process- and Current-nodes
ṽCurr and ṽProc in the match for the ccsSequenceA-rule. These nodes satisfy
the following conditions:

current(ṽCurr, ṽProc) ∧mark(vMark, ṽCurr)

The ccsSequenceA-rule deletes such nodes. We prove further that this deletion
still keepes the resulted graphs G′CCS and G′PN in the relation.
Due to Proposition 6.4.1 for each node ṽProc there exists a path {ṽi}Ni=1.
If there are m number of these nodes, we write that for a node ṽProc,m
there is a path {ṽi}Nmi=1,m. There exists a common Mark-node vMark such that
mark(vCurr)∧mark(ṽCurr,m), that could be caused only by the ccsSummation
rule (see Figure 6.17) applied before to the graph GCCS . This means
that there are Summation-nodes ṽSum,m on every path {ṽi}Nmi=1,m such that
∃j1 < N1, . . . , jm < Nm, . . .∀m : (ṽjm,m = ṽSum,m).
The node vMark and adjacent Current-nodes could be removed only by the

6.5. CORRECTNESS OF MODEL TRANSFORMATION (STEP 5) 171

ccsSequenceA or by ccsCoActionA rule. Since the rules from RSCCS move
the Current-nodes from the root to the leaves, it means that no ccsSequenceA
no ccsCoActionA rules were applicable to the nodes v ∈ {ṽji,m, . . . , ṽProc,m}.
Therefore, these nodes v are either Summation-, Composition-, Recursion- or
Variable-nodes, but not a Sequence-node.

ṽSum,1 = ṽj1,1
...

ww

...

((
ṽProc,1 ṽSum,2 = ṽj2,2

...

vv

...

((
ṽProc,2 vSeq = vN

Due to Proposition 6.5.4 there are three cases for each node ṽProc,m. We
consider one ṽProc,m, because the proof for the other nodes is the same, and
three possible cases for this node.
• ṽProc ∈ condA({ṽi}Ni=1), i.e. we have the case (A) of Proposition 6.5.4,
that means that there exist ṽPlace : cn1(ṽN , ṽPlace)∧ token(ṽPlace) and
vTrans : cn(ṽEvent, ṽTrans) ∧ source(ṽTrans, ṽPlace). When the Current-
nodes were moved through the paths {ṽi}Ni=1,m, the Token-node was
not moved, because the invisible rules ccsComposition, ccsSummation,
ccsVariableDeclaration or ccsRecursion were applied. So after the
ccsSequenceA rule deletes the nodes ṽCurr, the pnMoveTokenA deletes
Token-nodes from the Place-node ṽPlace. Thus, the conditions (1)-(4)
hold for the Place-nodes ṽPlace and the Process-node ṽProc, since the
nodes are no longer connected with dynamic elements.

• ṽProc ∈ condB({ṽi}Ni=1), i.e. we have the case (B) of Proposition 6.5.4,
that means that there exists a Place-node ṽPlace : cn2(ṽ1, vPlace), but
ṽ1 = v1. It means that after the ccsSequenceA rule deletes the node ṽCurr
from ṽCurr, the pnMoveTokenA deletes Token-nodes from the Place-node
ṽPlace. Thus, the conditions (1)-(4) hold for the Place-nodes ṽPlace and
the Process-node ṽProc, since the nodes are no longer connected with
dynamic elements.

• ṽProc ∈ condC({ṽi}Ni=1), is similar to the case condB.
Thus,

GPN −
̂pnMoveTokenA−−−−−−−−→ G′PN

and furthermore (G′CCS , G′PN) ∈ RCCS2PN .
r1 = ccsCoActionA. The proof is similar to the case r1 = ccsSequenceA.

172
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

r1 = ccsRecursion. In this case, we have an invisible step on the CCS-side. If the rule
is applicable, then a Current-node is moved from a Variable-node to the Process-
node vProc such that ∃vRec : subprocess(vRec, vProc)∧ prefix(vProc, v′V ar)∧
name(v′V ar) = pName(vV ar). vV ar is a part of the paths that the Process-
node vProc belongs to.

r1 = ccsVariableDeclaration. In this case, we have an invisible step on the CCS-
side. The rule moves a Current-node from a Recursion-node vRec to the next
Process-node vProc, such that subprocess(vRec, vProc). According to the TGG
rules from MTCCS2PN there is the only one Process-node for each Recursion-
node such that subprocess(vRec, vProc). The ccsVariableDeclaration rule moves
a Current-node along the same paths, where the conditions of the relation
RCCS2PN hold for Process-nodes from that path. Since the Petri nets graph
GPN is unchangeable, the graph G′CCS is still in the relation with the graph
GPN .

Reverse direction: assume GPN −r2−→ G′PN . We need to show that there
is some G′CCS such that GCCS =̂r2=⇒ G′CCS and (G′CCS , G′PN) ∈ RCCStoPN .
Again, we argue on the level of LTSs before renaming.

r2 = pnInitial. Let 〈L1, R1,N1〉 be the pnInitial rule (see Figure 6.29). If r1 is appli-
cable in GPN , we have a match m1 : L1 → GPN , where there is at least one
Place-node vPlace,i such that initial(vPlace,i), where i ≥ 1. Due to Proposi-
tion 6.5.6 there exists a path of Process-nodes {vn}Nn=1 such that v1 = vProc
and either the condition condA or condC hold for {vi}Ni=1. Additionally, for a
Process-node v1 is a root node of a graph GCCS . Therefore we can construct
a match in the graph GPN for the ccsInitial rule defined as 〈L2, R2,N2〉 (both
being mapped to Initial by mapCCS and mapPN).
This match m2 : L2 → GPN maps a root Process-node vProc such that
root(vProc).
Thus, ccsInitial is applicable in GCCS . Once the rule is applied, we have a
graph G′CCS with one Current-node such that current(vProc) and a graph
G′PN with Token-nodes such that token(vPlace,i) and initial(vPlace,i).
The pair (G′CCS , G′PN) is in RCCS2PN since depending on what property in
Proposition 6.5.6 holds for vPlace ((A) or (B) or both), the nodes either satify
conditions (2) and (4); (1) the syntactic structure is kept (see Proposition
6.5.1), the condition (3) is unchanged.

r2 = pnMoveTokenA. Since the pnMoveTokenA rule is applicable in GPN , then there
are the following nodes in the graph GPN : vTrans and the nodes vPlace,i
and v′Place,j , where i, j ≥ 1, in GPN such that for all i, j, token(vPlace,i) ∧
source(vTrans, vPlace,i)∧ target(vTrans, vPlace,j)∧ tName(vTrans) = a.
Due to Proposition 6.5.2 there is a unique node vEvent in GCCS such that
cn(vEvent, vTrans) and name(vEvent) = a.

6.5. CORRECTNESS OF MODEL TRANSFORMATION (STEP 5) 173

By Proposition 6.4.2 there are nodes vProc and v′Proc such that ∀i, j we have
cn1(vProc, vPlace,i)∧ cn2(v′Proc, v′Place,j).
Due to our assumption that (GPN , GCCS) ∈ RCCS2PN the condition (2)
holds that means that ∃j : vj ∈ {vi}Ni=1∧ current(vj)∧ condA({vi}Ni=1)∧
cn2(vN , vPlace,i). Then either j = N that means that vj is a Sequence-node
(case (I) below) or j 6= N then by Proposition 6.4.5 vj is either a Summation-,
Composition-, Recursion- or Variable-node (cases (II)-(V)). Hereby, five possible
cases are considered below:
(I) vj = vN is a Sequence-node. Then due to the facts current(vN), the

tggSequence rule (see Figure 6.17) and Proposition 6.4.6 we can build
a match for the ccsSequenceA rule. It could be also possible that in
graph GCCS there are additional nodes, such that the application of the
ccsCoActionA rule (see Figure 6.19) is possible. We consider further both
cases.
• The ccsSequenceA rule is applicable, then the rule deletes Current-
node pointing to the Sequence-node and creates another Current-node
for the Process-node v′Proc. Due to Proposition 6.4.1 v′Proc belongs
to one or more paths, which satisfy to one of the following condi-
tions: condA, condB, condC. (A) v′Proc ∈ condA({v′i}Ni=1), then there
exists vSeq = vN . Then there is an Event-node v′Event such that
event(vSeq, vEvent). By Proposition 6.5.2 there exists a Transition-
node v′Trans. Due to Proposition 6.5.7 there is the only Place-node
v′Place such that source(vTrans, v′Place) and target(v′Trans, v′Place).
Then the condition (2) obviously hold, (1) is unchangeable and
the satisfaction of conditions (3)-(4) depends on if the node v′Proc
belongs to the other paths. (B) v′Proc ∈ condB({v′i}Ni=1) then
cn2(v′Proc, v′Place), current(v′Proc) and token(v′Place) that means that
(3) holds, (1) is unchangeable and the satisfaction of conditions (3)-
(4) depends on if the node v′Proc belongs to the other paths. (C)
v′Proc ∈ condC({v′i}Ni=1) then cn2(v′Proc, v′Place),current(v′Proc) and
token(v′Place) that means that (4b) holds, (1) is unchangeable and
the satisfaction of conditions (2)-(3) depends on if the node v′Proc
belongs to the other paths.
However there could be other Current-nodes in the match for the
ccsSequenceA rule, which will be deleted. We analyse if the graph
G′CCS is still in the relation with the graph G′PN . The Current-nodes
from the match for the ccsSequenceA rule are the following:
∃k ≥ 0, ṽCurr,k : mark(vMark, ṽCurr,k)∧ current(ṽCurr,k, ṽProc,k)∧
mark(vMark, vCurr). Due to Proposition 6.4.1 the Process-nodes
ṽProc,k, where k ≥ 0, belong to the paths {ṽ′i}Ni=1,k. The com-
mon Mark-node for the nodes vCurr and ṽCurr,k is possible if there
are Summation-nodes ṽSum,k on every path {ṽ′i}Ni=1,k such that

174
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

∃j1, j2, . . .∀k : (ṽjm,k = ṽSum,k) (see also case (II)).
The node vMark and adjacent Current-nodes could be removed from
the path only by the ccsSequenceA or ccsCoActionA rules. Since
the rules from RSCCS move the Current-nodes from the root to the
leaves, no ccsSequenceA no ccsCoActionA rules were applicable to the
nodes v ∈ {ṽjm,k, . . . , ṽProc,k}. Therefore, these nodes v are either
Summation-, Composition-, Recursion- or Variable-nodes, but not a
Sequence-node.
Depending on what path the nodes ṽProc,k} belong to, we explain
why the conditions (1)-(4) still hold for the resulting graphs G′CCS
and G′PN .
a) ṽ′Proc,k ∈ condA({ṽi}Nki=1,k). It means that there exists ṽSeq = ṽN

and ṽSum,1 = ṽm = vl. Since vi and vj , where l < i < N and
m < j < Nk, then the corresponding Petri net structure is as it
is shown below.

ṽSum,k

{{ ��

⊙
zz %%

vSeq ṽProc,k

��

⇒ @ vTrans A

��

@ ṽTrans,k A

��
ṽSeq,1 © ©

The Transition-node vTrans fires the token, when the
pnMoveTokenA rule is applied. The Current-node is also re-
moved from the node ṽProc,k, when the ccsSequenceA rule
was applied. It means that the Current-node was removed
from the path ṽ′Proc,k and the Token-node was deleted from
vPlace : cn1(ṽProc,k, vPlace). It means that (2) holds and the
other conditions are unchangeable.

b) ṽ′Proc,k ∈ condB({ṽi}Ni=1,k). It means that there exists ṽNil = ṽN
and ṽSum,1 = ṽm = vl. Since vi and vj , where l < i < N and
m < j < Nk, are not Sequence-node then the corresponding

6.5. CORRECTNESS OF MODEL TRANSFORMATION (STEP 5) 175

Petri net structure is as it is shown below.

v′Seq

��

@ v′Trans A

��
ṽSum,k

{{ $$

⊙
��

vSeq ṽProc,k

��

⇒ @ vTrans A

��
ṽNil,k ©

The Transition-node vTrans fires the token, when the
pnMoveTokenA rule is applied. The Current-node is also re-
moved from the node ṽProc,k, when the ccsSequenceA rule
was applied. It means that the Current-node was removed
from the path ṽ′Proc,k and the Token-node was deleted from
vPlace : cn2(ṽ1,k, vPlace). It means that (3) holds and the other
conditions are unchangable.

c) ṽ′Proc,k ∈ condC({ṽi}Nki=1,k). It means that there exists either
ṽV ar = ṽNk and ṽRec = ṽj , where 0 < j < Nk, or ṽNil = ṽNk .
It also means that we have ṽSum,1 = ṽm = vl. Since vi and vj ,
where l < i < N and m < j < Nk, are not Sequence-nodes, then
the corresponding CCS graph (two cases are possible) and Petri
net structures are as it is shown below.

ṽSum,k

{{ ��

ṽ1,k

��
vSeq ṽRec,k

��

ṽSum,k

{{ ��

⊙
��

ṽProc,k

��

vSeq ṽProc,k

��

⇒ @ vTrans A

��
ṽV ar,k ṽNil ©

The Transition-node vTrans fires the token, when the
pnMoveTokenA rule is applied. The Current-node is also re-
moved from the node ṽProc,k, when the ccsSequenceA rule
was applied. It means that the Current-node was removed
from the path ṽ′Proc,k and the Token-node was deleted from

176
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

vPlace : cn2(ṽ1,k, vPlace). It means that (3) holds and the other
conditions are unchangable.
In summary, we get in the renamed LTS

GCCS =
̂ccsSequenceA========⇒ G′CCS

• The ccsCoActionA rule is applicable. The proof is similar to the
previous case.

(II) j 6= N and vj is a Summation-node. Then due to Proposition
6.4.5(A) and Proposition 6.4.6 it is possible to build a match for
the ccsSummation rule, which is mapped to the invisible step. That
leads to a graph G′′CCS in which there are two Process-nodes vj+1 and
v′j+1 such that subprocess(vj , vj+1), subprocess(vj , v′j+1), current(vj+1)
and current(v′j+1). In addition, there exist the following dynamic
nodes vMark, vCurr and v′Curr such that mark(vMark, vCurr) and
mark(vMark, v

′
Curr).

Due to Proposition 6.4.1 there are paths for each of the Process-nodes
vj+1 and v′j+1, these paths have the same properties as the paths that
the Process-node vj belongs to. Therefore the conditions (1)-(4) are un-
changeable in this case and (G′CCS , GPN) ∈ RCCS2PN .
If j + 1 6= N then we consider the cases (II)-(V) again, otherwise (I). In
summary, we get in the renamed LTS the invisible step:

GCCS −τ→ G′CCS

(III) j 6= N and vj is a Composition-node. Due to Propositions 6.4.5(A) and
6.4.6 we can build a match for the ccsComposition rule, which is invisible.
Then the proof procedes similar to the previous case (II).

(IV) j 6= N and vj is a Recursion-node. Due to Proposition 6.4.5(B) we
can build a match for the ccsVariableDeclaration rule, which is invisible.
It means that there is a Recursion-node vRec such that current(vRec).
Due to Proposition 6.4.5(B) there is a Process-node vProc such that
process(vRec, vProc). In a resulted graph G′′CCS the Current-node was
moved from vRec to vProc, i.e. current(vProc) holds.
Due to Proposition 6.4.1 there are paths for the Recursion-node vRec
for which the conditions (1)-(4) hold (because of our assumption that
(GCCS , GPN) ∈ RCCS2PN). The Process-node vProc belongs to the same
paths as vRec. Since the Petri net graph stays unchangable, the condi-
tions (1)-(4) hold for the graphs G′CCS and GPN . If j + 1 6= N then we
consider the cases (II)-(V) again, otherwise (I). In summary, we get in
the renamed LTS the invisible step:

GCCS −τ→ G′CCS

6.6. PROPERTIES INTERPRETATION FOR PETRI NETS 177

(V) j 6= N and vj is a Variable-node. Due to Proposition 6.4.5(C) there ex-
ists a Recursion-node vRec such that prefix(vRec, v′V ar)∧ pName(vV ar) =
name(v′V ar). Let us assume that the nodes vRec and vV ar belong to the
same path {vi}Ni=1, it means that ∃k : vk = vRec, vN = vV ar and the
nodes vi, where k < i < N , are not Sequence-nodes. Then {vi}Ni=1 satis-
fies the condition condC, it is not possible, because vV ar is from the path
that satisfies the condition condA.
There exists also a Sequence-node vSeq such that subprocess(vSeq, v1) (be-
cause otherwise v1 is a root node, that is not possible). It means when the
ccsSequenceA-rule was applied to vSeq the edge mark(vMark, v

′
V ar) was

deleted and after application of rules ccsSummation and ccsComposition
(application of other rules is not possible) the edge was not restored. It
means that we can build a match for the ccsRecursion rule in the graph
GCCS .
The ccsRecursion rule moves a Current-node to a Process-node vProc :
subprocess(vRec, vProc), which belongs to the same paths as the node
vV ar. Since the graph GPN during the application of the ccsRecursion
rule is unchangable, the conditions (1)-(4) still hold for the graphs G′CCS
and GPN . In summary, we get in the renamed LTS the invisible step:

GCCS −τ→ G′CCS

If j + 1 6= N then we consider the cases (II)-(V) again, otherwise (I).
r2 = pnMoveTokenTauA. The proof is similar to the previous case.

6.6 Properties Interpretation for Petri Nets
In this section we illustrate the behavioural properties preservation. For this we
consider a concrete example of a vending machine for selling chocolates (Figure
6.48), which we design with the CCS language. Then we use our transformation
to receive a Petri net graph. We use two sample behavioural properties, which we
verify against the source model, interpret them for the target language and, finally,
verify them against the target language.

6.6.1 System Design

Our vending machine for selling chocolates has a few options. It sells two types of
chocolates: a big chocolate, which costs two euro coin and a small one, which costs
one euro coin. Note that only these coins can be used. When the payment is done,
one of the buttons is pressed: ‘big‘ in case two euro coin was given and ‘small‘ in
case one euro coin was given. We define the vending machine, denoted as V , with

178
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.48: Picture of a machine for selling chocolates

the CCS language in terms of its interaction with the environment at its five ports
(twoC, oneC, big, small, colB, colS), as follows:

V = µx (twoC.big.colB.x+ oneC.small.colS.x)

This means, for example, that to buy a big chocolate you must put in a two euro
coin, press the button marked ‘big’, and collect your chocolate from the collect slot.
There is also an option to buy a small chocolate, for this you must put in a one euro
coin, press the button marked ‘small’, and collect a chocolate from the collect slot.
After a chocolate was collected, the process could be repeated from the beginning.

Figure 6.49 depicts a corresponding CCS graph for the process V , denotedGVCCS .
To construct this graph we used patterns for well-formed CCS graphs defined in
Subsection 6.1.2. The process V and its subprocesses could be considered as follows:

6.6. PROPERTIES INTERPRETATION FOR PETRI NETS 179

Figure 6.49: The CCS graph for the process V , denoted GVCCS

V = µx(P) - Recursion pattern (E)

P = P1 + P2 - Summation pattern (B)

P1 = 2ec.P3 P2 = 1ec.P4 - Sequence pattern (D)

P3 = big.P5 P4 = small.P6 - Sequence pattern (D)

P5 = colB.P7 P6 = colS.P8 - Sequence pattern (D)

P7 = x P8 = x - Variable pattern (F)

and then each subprocess is turned into a corresponding graph structure.
The Petri net graph in Figure 6.50 is a result of our model trans-

formation MTCCS2PN (GVCCS , GVPN). Note that we build the CCS and the
Petri net graphs simultaneously. We applied step-by-step the following rules:
tggInitial, tggVariableDeclaration, tggSummation, tggSequence (6 times) and, finally,
tggRecursionI (two times) in order to build a structure of the graph GVCCS . Then,
we projected the result graph on a Petri net meta-model T st

PN .

180
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

Figure 6.50: The Petri net graph for the process V , denoted GVPN

6.6.2 Properties Specification

On the next step we want to specify two behavioural properties for the source model.
The first one is that the vending machine does not make any loss. Therefore, the
first sample property states that the vending machine never gives a big chocolate
after it receives one euro coin. We use the names of the graph transformation rules
from the CCS semantics RSCCS in order to specify the required property. Using
the ACTL logic we specify the behavioural property with a following formula:

∀G¬(ccsSequenceOneC U ccsSequenceBig U ccsSequenceColB) (6.4)

The second behavioural property, we want to verify, states that the vending
machine delivers a chocolate each time after it receives a coin. We specify it using
the ACTL logic with a following formula:

∀(true U ccsSequenceTwoC U ccsSequenceBig U ccsSequenceColB)∨

(true U ccsSequenceOneC U ccsSequenceSmall U ccsSequenceColS) (6.5)

An LTS for the CCS graph generated by the semantic system RSCCS is illus-
trated in Figure 6.51 in the left.

We verify Formulas (6.4) and (6.5) against the LTS Q(GVCCS). Formula (6.4)
holds in the state s0, as for all paths starting in s0, there is no run that satis-
fies the formula (ccsSequenceOneC U ccsSequenceBig U ccsSequenceColB). For-
mula (6.4) holds in the state s0, as there is always a run that satisfies one of
the formulas: (true U ccsSequenceTwoC U ccsSequenceBig U ccsSequenceColB) or
(true U ccsSequenceOneC U ccsSequenceSmall U ccsSequenceColS).

6.6. PROPERTIES INTERPRETATION FOR PETRI NETS 181

Figure 6.51: LTS Q(GVCCS) for the CCS graph generated by the rule system RSCCS
in the left and LTS Q(GVPN) for the Petri nets graph generated by the rule system
RSPN in the right

6.6.3 Properties Interpretation

In the previous section we showed already that ∀GCCS and ∀GPN such that
MT (GCCS , GPN)

Q(GCCS) ≈ Q(GPN)

In Chapter 4 we showed that weak bisimulation implies ACTL equivalence, it means
that for any ACTL formula ϕ follows:

Q(GCCS) |= ϕ ⇒ Q(GPN) |= χ(ϕ)

Now we want to illustrate, how to interpret (i.e. the meaning of the function χ) the
specified behavioural properties for the Petri net language.

We follow the instructions proposed in Chapter 5 Section 5.4. The properties
are specified with the graph transformation rules from the rule system RSCCS . The
rules from RSCCS are mapped to the rules from RSPN (see Section 6.3). According
to that mapping we have:

ccsSequenceOneC 7→ pnMoveTokenOneC

182
CHAPTER 6. CASE STUDY: MODEL TRANSFORMATION OF CCS INTO

PETRI NETS

ccsSequenceTwoC 7→ pnMoveTokenTwoC

ccsSequenceBig 7→ pnMoveTokenBig

ccsSequenceSmall 7→ pnMoveTokenSmall

ccsSequenceColS 7→ pnMoveTokenColS

ccsSequenceColB 7→ pnMoveTokenColB

We generate an LTS for the graph GVPN with the rule system RSPN . The result
is depicted in Figure 6.51 (in the right).

Finally, we can specify the behavioural properties (introduced in Subsection
6.6.2) over the Petri nets language with the following ACTL formulas:

∀G¬(pnMoveTokenOneC U pnMoveTokenBig U pnMoveTokenColB) (6.6)

∀(true U pnMoveTokenTwoC U pnMoveTokenBig U pnMoveTokenColB)∨

(true U pnMoveTokenOneC U pnMoveTokenSmall U pnMoveTokenColS) (6.7)

We verify Formulas (6.6) and (6.7) against the LTS Q(GVPN). Formula (6.4)
holds in the state s0, as for all paths starting in s0, there is no run that satisfies
the formula (pnMoveTokenOneC U pnMoveTokenBig U pnMoveTokenColB). For-
mula (6.4) holds in the state s0, as there is always a run that satisfies one of the
formulas: (true U pnMoveTokenTwoC U pnMoveTokenBig U pnMoveTokenColB) or
(true U pnMoveTokenOneC U pnMoveTokenSmall U pnMoveTokenColS).

6.7 Summary
In the presented case study the idea was to specify a model transformation between
the CCS and Petri nets languages. We used our method to specify the languages
and the model transformation between them. We used graph transformations for
this purpose. Then, we proved the behaviour preservation during the model trans-
formation. At the end we illustrated how the behavioural properties can be specified
over the source language and be interpreted for the target language.

CHAPTER 7
Conclusion

In this chapter we summarize this thesis (Section 7.1), the main contribution of
which is a method for proving that a model transformation is semantics preserving.
The analysis of the method is presented in Section 7.2. A critical look at the
achievements and open questions are discussed in Section 7.3. A brief overview of
related publications is mentioned in Section 7.4. Finally, Section 7.5 draws future
research directions.

7.1 Contribution of this Thesis
The main contribution of this thesis is a five-step method for proving that a model
transformation is semantics preserving. In the first two steps, the method gives
guidelines on how languages with behavioural semantics must be specified in order
to make it possible to define a correct model transformation between them. Cor-
rectness in this thesis means preservation of behavioural properties during model
transformation, and behavioural semantics of a language is specified by means of
operational rules. In the third step, the method provides suggestions on how to
define a mapping between the operational rules. In the fourth step, the method
describes how to specify a model transformation. In the fifth step, the method ex-
plains how to define a relation over the LTSs that is generated for source and target
models. Finally, the method shows how to prove that the defined relation is a weak
bisimulation.

The second contribution of the thesis is a formal explanation of why weak bisim-
ulation relation implies behavioural properties preservation during the model trans-
formation. For this we performed a proof that the weak bisimulation relation implies
ACTL equivalence and illustrated how the ACTL logic allows to specify behavioural

183

184 CHAPTER 7. CONCLUSION

properties for a language defined by means of graph transformations. The most in-
teresting detail in this contribution is the interpretation of behavioural properties
for the target model.

Finally, the third contribution is a case study, where we defined the model
transformation between the CCS language and the Petri nets language and proved
that the defined model transformation is semantics preserving. Due to the fact that
the method is based on graph transformations, we not only applied our method to
the concrete modelling languages between which the behaviour was already studied,
but also specified the model transformation with less restrictions on the languages.

7.2 Analysis of the Method
Our method embraces a wide range of different areas, which require a separate dis-
cussion. Thus, in this section, we analyse (a) the restrictions on modelling languages
in model transformation, (b) the model transformation specification suggested in
this thesis, (c) the proof statement for behavioural preserving model transformation,
(d) a proposed algorithm within the method to establish weak bisimulation.

7.2.1 Restrictions

There are no strict restrictions on the languages for a model transformation, except
that it must be possible to define the syntax of the languages with meta-model and
behavioural semantics – by means of graph transformations. Therefore, the method
is applicable to a wide range of languages with operational formal semantics.

The method has an additional requirement that is the existence of two non-trivial
mapping: between syntactic elements and between semantical rules. This means
that the modelling languages must have something in common that is possible to
specify, firstly, a syntactical mapping between one or more syntactic elements and,
secondly, to identify one or more operational rules from each graph transformation
system which perform similar behaviour.

7.2.2 Model Transformation

Additional properties of the model transformation specification proposed in this
thesis are discussed in the following.
(Syntactical correctness) The model transformation maps correct models of the
source language into correct models of the target language with regards to its speci-
fication languages and previously defined syntactical mapping that is guaranteed by
the definition of the model transformation over the source and target meta-models.
(Uniqueness) The fact that a model transformation defines a unique target model
for a given source model is guaranteed by a syntactical mapping, which maps dif-

7.3. DISCUSSION OF THE METHOD 185

ferent elements from source model to different elements of target model. Here,
difference means the difference of types.
(Definedness) The fact that is applicable to every model of the source language
is true, because the model transformation is specified over the source and target
meta-models and engages all elements from both meta-models.
(Understandability) The method is understandable, because it is based on a well-
established formalism - graph transformations, - which, firstly, has a visual notation.
Secondly, it is one of the popular techniques for capturing model transformations
[Var08]. Thirdly, the involved graph notation is very close to the often used UML
Class diagram notation that makes graphs easier to understand.

7.2.3 Proof Statement

The method allows to ensure a strong statement, i.e. the preservation of all be-
havioural properties specified with the ACTL for any instance of a source model
and a target model, which is a result of its model transformation. This statement
is strong, because, firstly, the ACTL language is expressive enough to specify many
important properties, such as liveness, safety, fairness and so on. It has the same
expressive power as CTL∗. Secondly, the usage of the method allows to prove the
statement once, then the statement about behavioural preservation holds for any
transformed instance.

7.2.4 Proof Algorithm

The algorithm for proving that a defined relation is a weak bisimulation is performed
in a form of implementation description. Nevertheless, this does not prevent us to
estimate its complexity.
(Complexity) The complexity of the performed method is dependent on the sizes
of graph transformation systems (which describe the behavioural semantics), since
we need to consider n + m cases, where the numbers n and m are the amount of
rules in graph transformation systems for the source and target modelling languages.
Additionally, the method is strongly dependent on the complexity of the languages,
because the correspondences generated by the Triple Graph Grammar (TGG) rules
are involved in the proof. These correspondences are based on the syntactic mapping
of the source and target languages. The remaining elements are still considered in
the proof.

7.3 Discussion of the method

We give an examination of the proposed method by analytical questioning.

186 CHAPTER 7. CONCLUSION

� To which extent the problem of semantic gap between modelling languages is
solved?

Semantics of a language has a very broad meaning. In this thesis we con-
sidered behavioural semantics, i.e. semantics which prescribes behaviour for each
syntactic expression. Then, the behavioural properties are specified over the for-
mal behavioural model. The chosen specification language is powerful enough to
specify a wide range of behavioural properties. Thus, the proposed method in this
thesis allows to ensure a full preservation of behavioural properties specified over a
particular language. However, there are a lot of properties, such as, for example,
non-functional properties [LSPS05, GL03], which are not considered in this thesis.
� Is the graph transformation really the best mechanism for the specification of a
model transformation?

The graph transformation technique has a lot of advantages. It is a trustworthy
visual formalism, which has gained popularity in recent years. However, there are
still some drawbacks. One of them is that the various techniques for graph trans-
formations are not necessarily compatible with each other. Nevertheless, this fact
does not affect the applicability of the proposed method, because the main proof is
based on comparison of LTSs, which could be generated by all graph transformation
techniques. Another drawback is that current tool support is not yet sufficiently
mature for industrial use. However, there are working groups (e.g. the Fujaba team
[FUJ]), which work in this direction.
� What are the strengths and weaknesses of the method?

The method is a candidate for solving the problem of big semantic gap in the
MDA approach, whose basic idea is to translate an abstract platform-independent
model into platform-specific model.

The main weakness of the method that the proof is not automated.

7.4 Overview of Publications
The idea of transforming two real languages - UML Activity Diagrams and TAAL
(a Java like language) [EKR+08] - was the starting point for studying behaviour
preservation of model transformation.

Proving general correctness of model transformation, i.e. showing that any tar-
get model exhibits the same behaviour as its source model, is an extremely complex
task. This initially hindered us from working on large transformation systems (such
as the one between UML Activity Diagrams and TAAL mentioned above), so we
started with a small transformation between toy languages [HKR+10a].

7.5. FUTURE RESEARCH 187

7.5 Future Research
There are mainly three directions for future work. The first is connected with
encoding of graph transformations into a formal logic. The second direction implies
the usage of the method for more complex languages. The third assumes the usage of
the case study in the area of refactoring. In the following, we explain each direction
in detail.

Our method is based on a proof that a defined relation is a weak bisimulation.
This proof is done manually. The ability to control its correctness is not very
high. However, the theorem provers, such as Isabelle [NPW02, GH98], propose
a solution to specify the given data with high-order logic and, then, to perform
a proof automatically. In such cases, the model transformation and meta-models
specifications are input data, the observations about the structure of corresponding
nodes and the equivalence relation definition are axioms. Then, the process of
proving is a standard inference process.

However, the usage of theorem provers involves encoding of graph transforma-
tions into a formal logic, which is not obvious. Moreover, the connection between
graph transformations and formal logic is not quite studied. There are a lot of open
questions. The important one is an encoding of application of graph transforma-
tion rule. The proposed methods [Str08, TH09, Pen09] are still far from agreed on
to represent a graph as well as transformation rule. Another important question
is whether the graph transformation theory completely embedded into the logic
theory, still requires a lot of work in order to be answered.

Another direction for future work is an application of the method to a model
transformation between relatively complex languages, such as the UML Activity
Diagram and the TAAL programming language. The main complication here is
that the languages have many elements that are difficult or impossible to map.
Therefore, there is a big question as to which extent the proof solves the problem
of behavioural preservation during the model transformation between these given
languages.

The third direction for future research assumes the usage of the languages from
our case study. The CCS language and the Petri net language have a lot in common
with some languages used in industry, such as, for example, the Business Process
Modelling Language (BPML) and the UML Activity Diagram, respectively. There-
fore, the relation between the BPML and Activity diagrams could be studied us-
ing our example with respect to a behavioural semantics preservation. The way
the model transformation is defined especially allows to study bidirectional model
transformation [Ste08].

Bibliography

[AGK09] C. Atkinson, M. Gutheil, and Bastian Kennel. A flexible infrastruc-
ture for multilevel language engineering. The IEEE Transactions on
Software Engineering Journal, 35(6):742–755, 2009.

[AK01] C. Atkinson and T. Kühne. The essence of multilevel metamodeling.
In Martin Gogolla and Cris Kobryn, editors, Proceedings of the 4th
International Conference on the Modeling Languages, Concepts, and
Tools, volume 2185 of LNCS, pages 19–33. Springer-Verlag, 2001.

[AK03] C. Atkinson and T. Kühne. Model-driven development: A metamod-
eling foundation. The IEEE Software Journal, 20(5):36–41, 2003.

[AP04] M. Alanen and I. Porres. A relation between context-free grammars
and meta object facility metamodels. Technical Report 606, TUCS -
Turku Centre for Computer Science, Turku, Finland, March 2004.

[AU77] A. V. Aho and J. D. Ullman. Principles of Compiler Design. pub-AW,
pub-AW:adr, 1977.

[BAPM83] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching
time. The Acta Informatica Journal, 20:207–226, 1983.

[BC87] M. C. Browne and E. M. Clarke. Characterizing Kripke structures in
temporal logic. Proceedings of the International Joint Conference on
Theory and Practice of Software Development, pages 256–270, 1987.

[BCE+99] P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and
F. Rossi. Handbook of Graph Grammars and Computing By Graph
Transformation: Volume III, Foundations. World Scientific Publish-
ing Co., 1999.

[BCG88] M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite
Kripke structures in propositional temporal logic. Journal in Theo-
retical Computer Science, 59(1-2):115–131, 1988.

[BCM02] P. Baldan, A. Corradini, and U. Montanari. Bisimulation equivalences
for graph grammars. In Wilfried Brauer, Hartmut Ehrig, Juhani

189

190 BIBLIOGRAPHY

Karhumäki, and Arto Salomaa, editors, Formal and Natural Com-
puting, volume 2300 of Lecture Notes in Computer Science, pages
158–190. Springer-Verlag, 2002.

[BEH06] L. Baresi, K. Ehrig, and R. Heckel. Verification of model transforma-
tions: A case study with BPEL. In Ugo Montanari, Donald Sannella,
and Roberto Bruni, editors, TGC, volume 4661 of Lecture Notes in
Computer Science, pages 183–199. Springer-Verlag, 2006.

[BEMS08] E. Biermann, C. Ermel, T. Modica, and P. Sylopp. Implementing
Petri net transformations using graph transformation tools. Journal
in Electronic Communication of the European Association of Software
Science and Technology (ECEASST), 14, 2008.

[Béz05] J. Bézivin. On the unification power of models. The Software and
System Modeling Journal, 4(2):171–188, 2005.

[BH02] L. Baresi and R. Heckel. Tutorial introduction to graph transforma-
tion: A software engineering perspective. Journal: Lecture Notes In
Computer Science, 2002.

[BHM09] A. Boronat, R. Heckel, and J. Meseguer. Rewriting logic semantics
and verification of model transformations. Proceedings of the 12th In-
ternational Conference on Fundamental Approaches to Software En-
gineering: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, pages 18 – 33, 2009.

[BK08] C. Baier and J. P. Katoen. Principles of Model Checking. The MIT
Press, 2008.

[BKMW09] A. Boronat, A. Knapp, J. Meseguer, and M. Wirsing. What is a
multi-modeling language? In Recent Trends in Algebraic Development
Techniques, pages 71–87, Berlin, Heidelberg, 2009. Springer-Verlag.

[BM10] A. Boronat and J. Meseguer. An algebraic semantics for MOF. Jour-
nal in Formal Aspects of Computing, 22(3-4):269–296, 2010.

[BNvBK06] D. Balasubramanian, A. Narayanan, C. P. van Buskirk, and G. Karsai.
The graph rewriting and transformation language: GReAT. The Eu-
ropean Association of Software Science and Technology (ECEASST)
Journal, 1, 2006.

[Boc04] C. Bock. UML 2 activity and action models, Part 4: Object nodes.
Journal of Object Technology, 3(1):27–41, 2004.

[BRF+09] P. Barbosa, F. Ramalho, J. Figueiredo, A. Júnior, A. Costa, and
L. Gomes. Checking semantics equivalence of MDA transforma-
tions in concurrent systems. Journal of Universal Computer Science,
15(11):2196–2224, 2009.

BIBLIOGRAPHY 191

[CCN06] B. Y. E. Chang, A. J. Chlipala, and G. C. Necula. A framework for
certified program analysis and its applications to mobile-code safety.
In E. Allen Emerson and Kedar S. Namjoshi, editors, Proceedings
of the Verification, Model Checking, and Abstract Interpretation, 7th
International Conference, VMCAI, volume 3855 of Lecture Notes in
Computer Science, pages 174–189. Springer-Verlag, 2006.

[CDSS02] M. Conrad, H. Dörr, I. Stürmer, and A. Schürr. Graph transforma-
tions for model-based testing. In Martin Glinz and Günther Müller-
Luschnat, editors, Modellierung, volume 12 of LNI, pages 39–50. GI,
2002.

[CEI+05] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. C. Necula. JVer: A
Java verifier. In Kousha Etessami and Sriram K. Rajamani, editors,
Proceedings of the Computer Aided Verification, 17th International
Conference, CAV, volume 3576 of Lecture Notes in Computer Science,
pages 144–147. Springer-Verlag, 2005.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8:244–
263, 1986.

[CFR08] A. Corradini, L. Foss, and L. Ribeiro. Graph transformation with
dependencies for the specification of interactive systems. In Andrea
Corradini and Ugo Montanari, editors,WADT, volume 5486 of Lecture
Notes in Computer Science, pages 102–118. Springer-Verlag, 2008.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 1999.

[CH03] K. Czarnecki and S. Helsen. Classification of model transformation
approaches. OOPSLA 03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model transfor-
mation approaches. IBM System Journal, 2006.

[CHM00] A. Corradini, R. Heckel, and U. Montanari. Graphical operational
semantics. In Proceedings of ICALP2000 Workshop on Graph Trans-
formation and Visual Modelling Techniques, 2000.

[Cho57] N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.
[Chr04] A. Christoph. Describing horizontal model transformations with

graph rewriting rules. In Uwe Aßmann, Mehmet Aksit, and Arend
Rensink, editors, Proceedings of the conference on Model Driven Ar-
chitecture: Foundations and Applications (MDAFA), volume 3599 of

192 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 93–107. Springer-Verlag,
2004.

[CMPS82] F. De Cindio, G. De Michelis, L. Pomello, and C. Simone. Milner’s
communicating systmes and Petri nets. In Anastasia Pagnoni and
Grzegorz Rozenberg, editors, Proceedings of the European Workshop
on Applications and Theory of Petri Nets, volume 66 of Informatik-
Fachberichte, pages 40–59. Springer-Verlag, 1982.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Löwe. Algebraic approaches to graph transformation - Part I:
Basic concepts and double pushout approach. In Handbook of Graph
Grammars [han97], pages 163–246.

[Cou09] B. Courcelle. Monadic second-order logic for graphs: Algorithmic and
language theoretical applications. In Adrian Horia Dediu, Armand-
Mihai Ionescu, and Carlos Martín-Vide, editors, Proceedings of the
4th International Conference on Language and Automata Theory and
Applications (LATA), volume 5457 of Lecture Notes in Computer Sci-
ence, pages 19–22. Springer-Verlag, 2009.

[CSP09] V. Chimisliu, C. Schwarzl, and B. Peischl. From UML Statecharts
to LOTOS: A semantics preserving model transformation. In By-
oungju Choi, editor, Proceedings of the 9th International Conference
on Quality Software (QSIC), pages 173–178. IEEE Computer Society,
2009.

[DNM88] P. Degano, R. De Nicola, and U. Montanari. A distributed operational
semantics for CCS based on condition/event systems. The Acta In-
formatica Journal, 26:59–91, 1988.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of
Graph Grammars and Computing By Graph Transformation: Volume
II, Foundations. World Scientific Publishing Co., 1999.

[EEL+05] H. Ehrig, K. Ehrig, J. De Lara, G. Taentzer, D. Varró, and S. Varró-
Gyapay. Termination criteria for graph transformation. Proceedings of
the International Conference on Fundamental Approaches to Software
Engineering (FASE), 3442:49–63, 2005.

[EEPT06a] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of
Algebraic Graph Transformation. Springer-Verlag, Berlin Heidelberg,
2006.

[EEPT06b] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Implementation
of Typed Attributed Graph Transformation by AGG. Springer-Verlag,
Berlin Heidelberg, 2006.

BIBLIOGRAPHY 193

[EEPT06c] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamental theory for typed attributed graphs and graph transfor-
mation based on adhesive HLR categories. The Fundamenta Infor-
maticae (Fundam. Inf.) Journal, 74:31–61, 2006.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never”
revisited: on branching versus linear time temporal logic. Journal
of the Association for Computing Machinery (ACM), 33(1):151–178,
1986.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic approaches to graph transformation - Part
II: Single pushout approach and comparison with double pushout ap-
proach. In Handbook of Graph Grammars [han97], pages 247–312.

[EHK01] G. Engels, R. Heckel, and J. M. Küster. Rule-based specifcation of
behavioral consistency based on the uml meta-model. Proceedings of
the 4th International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, pages 272 – 286, 2001.

[EHRT08] Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele
Taentzer, editors. Graph Transformations, 4th International Con-
ference, ICGT 2008, Leicester, United Kingdom, September 7-13,
2008. Proceedings, volume 5214 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2008.

[EHSW99] G. Engels, R. Hücking, S. Sauer, and A. Wagner. UML collabora-
tion diagrams and their transformation to java. In Proceedings of the
2nd International Conference on the Unified Modeling Language: be-
yond the standard, UML ’99, pages 473–488, Berlin, Heidelberg, 1999.
Springer-Verlag.

[EK04] H. Ehrig and B. König. Deriving bisimulation congruences in the
DPO approach to graph rewriting. Proceeding of International Con-
ference on Foundations Of Software Science And Computation Struc-
tures (FoSSaCS ’04), 2004.

[EKR+08] G. Engels, A. Kleppe, A. Rensink, M. Semenyak, C. Soltenborn, and
H. Wehrheim. From UML Activities to TAAL - towards behaviour-
preserving model transformations. In ECMDA-FA ’08: Proceedings
of the 4th European conference on Model Driven Architecture, pages
94–109, Berlin, Heidelberg, 2008. Springer-Verlag.

[EMHL03] G. Engels, J. M.Küster, R. Heckel, and M. Lohmann. Model-based
verification and validation of properties. Electronic Notes in Theoret-
ical Computer Science, 82:133–150, 2003.

194 BIBLIOGRAPHY

[FKS07] K. Felix, A. Königs, and A. Schürr. Model transformation in the large.
In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering, ESEC-FSE 2007, pages 285–294,
New York, NY, USA, 2007. ACM.

[FUJ] Fujaba Tool Suite 4, University of Paderborn Software Engineering.
http://www.fujaba.de.

[GGL+06] H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner. To-
wards verified model to code transformations. In Proceedings of the
3rd Workshop on Model design and Validation (MoDeV2a ’06): Per-
spectives on Integrating MDA and V&V, ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems.
ACM/IEEE, 2006.

[GGZ+05] L. Grunske, L. Geiger, A. Zündorf, N. V. Eetvelde, P. V. Gorp, and
D. Varró. Using graph transformation for practical model driven soft-
ware engineering. Journal of Model-driven Software Development,
pages 91–119, 2005.

[GH98] D. Griffioen and M. Huisman. A comparison of PVS and Is-
abelle/HOL. Journal in Theorem Proving in Higher Order Logics,
number 1479 in Lecture Notes Computer Science:123–142, 1998.

[GK07] J. Greenyer and E. Kindler. Reconciling TGGs with QVT. In Gre-
gor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors,
Proceedings of the 10th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), volume 4735 of Lecture
Notes in Computer Science, pages 16–30. Springer-Verlag, 2007.

[GK10] J. Greenyer and E. Kindler. Comparing relational model transfor-
mation technologies: implementing query/view/transformation with
triple graph grammars. The Software and Systems Modeling (SoSyM)
Journal, 9(1):21–46, 2010.

[GL03] L. Grunske and E. Lück. Application of behavior-preserving transfor-
mations to improve non-functional properties of an architecture speci-
fication. In Walter Dosch and Roger Y. Lee, editors, Proceedings of the
ACIS Fourth International Conference on Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD 03), October 16-18, 2003, Lübeck, Germany, pages 439–445.
ACIS, 2003.

[Gle03] S. Glesner. Using program checking to ensure the correctness of com-
piler implementations. Journal of Universal Computer Science (UCS),
9(3):191–222, 2003.

BIBLIOGRAPHY 195

[GM84] U. Goltz and A. Mycroft. On the relationship of CCS and Petri
nets. Proceedings of the 11th Colloquium on Automata, Languages
and Programming, pages 196–208, 1984.

[GM93] M. Girkar and R. Moll. O(n3) algorithm for bisimulation equivalence
w.r.t CTL* without the next-time operator between Kripke struc-
tures. Technical report, CiteSeerX - Scientific Literature Digital Li-
brary and Search Engine (United States), Amherst, MA, USA, 1993.

[Gol88] U. Goltz. On representing CCS programs by finite Petri nets. In
Michal Chytil, Ladislav Janiga, and Václav Koubek, editors, Proceed-
ings of the International Symposium on Mathematical Foundations of
Computer Science (MFCS ’88), volume 324 of Lecture Notes in Com-
puter Science, pages 339–350. Springer-Verlag, 1988.

[Gor79] M. J. C. Gordon. The Denotational Description of Programming Lan-
guages: An Introduction. Springer-Verlag New York, Inc., 1979.

[GPR06] V. Gruhn, D. Pieper, and C. Röttgers. MDA: Effektives Software-
Engineering mit UML 2 und Eclipse. Springer-Verlag, Berlin, 2006.

[GRO] GRaphs for Object-Oriented VErification (GROOVE) Tool.
http://groove.cs.utwente.nl/.

[GSMD03] P. V. Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards automat-
ing source-consistent UML refactoring. In Perdita Stevens, Jon Whit-
tle, and Grady Booch, editors, UML, volume 2863 of Lecture Notes in
Computer Science, pages 144–158. Springer-Verlag, 2003.

[han97] Handbook of Graph Grammars and Computing By Graph Transforma-
tion: Volume I, Foundations. World Scientific Publishing Co., 1997.

[har04] Meaningful Modeling: What’s the Semantics of "Semantics"?, vol-
ume 37. IEEE Computer Society, 2004.

[Hau05] J. H. Hausmann. Dynamic Meta Modelling. PhD thesis, University
of Paderborn, 2005.

[HHS01] J. H. Hausmann, R. Heckel, and S. Sauer. Towards dynamic meta
modeling of UML extensions: An extensible semantics for UML Se-
quence diagrams. In Proceedings of the International Symposium
on Human-Centric Computing Languages and Environments (HCC),
pages 80–87. IEEE Computer Society, 2001.

[HKH10] F. Hermann, B. König, and M. Hülsbusch. Specification and veri-
fication of model transformations. Proceedings of the International
Colloquium on Graph and Model Transformation, 2010.

196 BIBLIOGRAPHY

[HKR+10a] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn,
and H. Wehrheim. Full semantics preservation in model transforma-
tion - a comparison of proof techniques. Technical Report TR-CTIT-
10-09, University of Twente, Enschede, February 2010.

[HKR+10b] Mathias Hülsbusch, Barbara König, Arend Rensink, Maria Semenyak,
Christian Soltenborn, and Heike Wehrheim. Full semantics preserva-
tion in model transformation - a comparison of proof techniques. In
S. Merz D. M’ery, editor, Proceedings of the 8th International Con-
ference on Integrated Formal Methods (IFM 2010), LNCS, pages 183–
198, Berlin/Heidelberg, 2010. Springer.

[HKT02] R. Heckel, J. Malte Küster, and G. Taentzer. Confluence of typed
attributed graph transformation systems. In Andrea Corradini, Hart-
mut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors,
Graph Transformation, First International Conference, ICGT 2002,
Barcelona, Spain, October 7-12, 2002, Proceedings, volume 2505 of
Lecture Notes in Computer Science, pages 161–176. Springer-Verlag,
2002.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the Association for Computing Machinery
(ACM), 32(1):137–161, 1985.

[Hol95] M. Hollenberg. Hennessy-Milner classes and process algebra. In Pro-
ceedings of the Workshop on Modal Logic and Process Algebra, pages
187–216. CSLI Publications, 1995.

[HV91] J. Y. Halpern and M. Y. Vardi. Model checking vs. theorem proving:
a manifesto. Artificial Intelligence and Mathematical Theory of Com-
putation: papers in honor of John McCarthy, pages 151–176, 1991.

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model trans-
formation tool. Journal: Science of computer programming, 72(1-
2):31–39, June 2008.

[Jen97] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and
practical use. Springer-Verlag New York, Inc., 1997.

[JETE04] J. De L. Jaramillo, C. Ermel, G. Taentzer, and K. Ehrig. Parallel
graph transformation for model simulation applied to timed transition
Petri nets. Electronic Notes in Theoretical Computer Science, 109:17–
29, 2004.

[JK09] K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer-Verlag New York, Inc.,
2009.

BIBLIOGRAPHY 197

[K0̈4] J. Küster. Consistency Management of Object-Oriented Behavioral
Models. PhD thesis, University of Paderborn, 2004.

[K0̈5] A. König. Model transformation with triple graph grammars. In
Proceedings of the Workshop on Model Transformations in Practice,
2005.

[Kas06] H. Kastenberg. Towards attributed graphs in Groove: Work
in progress. Electronic Notes in Theoretical Computer Science,
154(2):47–54, 2006.

[KH08] R. Kastner and T. Huffmire. Threats and challenges in reconfigurable
hardware security. In Toomas P. Plaks, editor, Proceedings of the 2008
International Conference on Engineering of Reconfigurable Systems &
Algorithms, ERSA, pages 334–345. The CSREA Press, 2008.

[KKR06] H. Kastenberg, A. Kleppe, and A. Rensink. Defining object-oriented
execution semantics using graph transformations. Proceedings of the
IFIP International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS), 4037:186–201, 2006.

[KN06] G. Karsai and A. Narayanan. Towards verification of model trans-
formations via goal-directed certification. In Manfred Broy, Ingolf H.
Krüger, and Michael Meisinger, editors, Proceedings of the Second
Automotive Software Workshop on Model-Driven Development of Re-
liable Automotive Services (ASWSD), volume 4922 of Lecture Notes
in Computer Science, pages 67–83. Springer-Verlag, 2006.

[Kot78] V. E. Kotov. An algebra for parallelism based on Petri nets. In Józef
Winkowski, editor, Proceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Science (MFCS), volume 64 of Lecture
Notes in Computer Science, pages 39–55. Springer-Verlag, 1978.

[KR06] H. Kastenberg and A. Rensink. Model checking dynamic states in
GROOVE. Proceeding of the 13th International Workshop on Model
Checking Software (SPIN 2006), 3925:299–305, 2006.

[Kus01] S. Kuske. A formal semantics of uml state machines based on struc-
tured graph transformation. In ’ ’01: Proceedings of the 4th In-
ternational Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, pages 241–256, London, UK, 2001.
Springer-Verlag.

[KWB03] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture - Practice and Promise. Addison-Wesley, 2003.

[Lar88] K. G. Larsen. Proof system for Hennessy-Milner logic with recursion.
In Max Dauchet and Maurice Nivat, editors, Proceedings of the 13th
Colloquium on Trees in Algebra and Programming (CAP), volume

198 BIBLIOGRAPHY

299 of Lecture Notes in Computer Science, pages 215–230. Springer-
Verlag, 1988.

[LE90] M. Löwe and H. Ehrig. Algebraic approach to graph transforma-
tion based on single pushout derivations. In Rolf H. Möhring, editor,
Proceedings of the 16rd International Workshop on Graph-Theoretic
Concepts in Computer Science (WG ’90), volume 484 of Lecture Notes
in Computer Science, pages 338–353. Springer-Verlag, 1990.

[Lei06] J. Leitner. Verifikation von Modelltransformationen basierend auf
Triple Graph Grammatiken. diploma thesis. Universität Karlsruhe,
2006.

[Löw93] M. Löwe. Algebraic approach to single-pushout graph transformation.
Theoretical Computer Science, 109(1&2):181–224, 1993.

[LR10] K. Lano and S. K. Rahimi. Specification and verification of model
transformations using uml-rsds. In Dominique Méry and Stephan
Merz, editors, Proceedings of the 8th International Conference on
Integrated formal methods, volume 6396 of IFM’10, pages 199–214.
Springer-Verlag, 2010.

[LSPS05] D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. Functional
and non-functional properties in a family of embedded operating sys-
tems. In WORDS, pages 413–420. IEEE Computer Society, 2005.

[MCBE06] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Eén. Improve-
ments to combinational equivalence checking. In Soha Hassoun, edi-
tor, Proceedings of the International Conference on Computer-Aided
Design (ICCAD’06), pages 836–843. ACM, 2006.

[McC04] S. McConnell. Code Complete, Second Edition. The Microsoft Press,
Redmond, WA, USA, 2004.

[MCG04] T. Mens, K. Czarnecki, and P. V. Gorp. Discussion - a taxon-
omy of model transformations. In Jean Bézivin and Reiko Heckel,
editors, Language Engineering for Model-Driven Software Develop-
ment, volume 04101 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2004.

[MDA] Object Management Group: MDA Guide Version 1.0.1.
www.omg.org/docs/omg/03-06-01.pdf.

[MEE10] M. Maximova, H. Ehrig, and C. Ermel. Formal relationship between
Petri net and graph transformation systems based on functor between
M-adhesive categories. 4th International Workshop on Petri Nets and
Graph Transformation, 2010.

BIBLIOGRAPHY 199

[Mil95] R. Milner. Communication and Concurrency. Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire, UK, 1995.

[MMAB+08] K. D. McDonald-Maier, D. H. Akehurst, B. Bordbar, W. Gareth, and
J. Howells. Maths vs. (meta)modelling - are we reinventing the wheel?
In José Cordeiro, Boris Shishkov, Alpesh Ranchordas, and Markus
Helfert, editors, Proceedings of the Third International Conference
on Software and Data Technologies (ICSOFT), pages 313–322. The
INSTICC Press, 2008.

[MOF] Meta Object Facility (MOF) 2.0 Core Specification, 2003.
http://www.omg.org/spec/mof/2.0/pdf/.

[Mos01] P. D. Mosses. The varieties of programming language semantics. In
Dines Bjørner, Manfred Broy, and Alexandre V. Zamulin, editors,
Proceedings of the Ershov Memorial Conference on Perspectives of
System Informatics, volume 2244 of Lecture Notes in Computer Sci-
ence, pages 165–190. Springer-Verlag, 2001.

[MTR05] T. Mens, G. Taentzer, and O. Runge. Detecting structural refactor-
ing conflicts using critical pair analysis. Electronic Notes Theoretical
Computer Science, 127(3):113–128, 2005.

[NFGR93] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action-based
framework for verifying logical and behavioural properties of concur-
rent systems. Journal in Computer Networks and ISDN Systems,
25(7):761–778, 1993.

[NK08] A. Narayanan and G. Karsai. Towards verifying model transforma-
tions. Electronic Notes Theoretical Computer Science, 211:191–200,
2008.

[NL97] G. C. Necula and P. Lee. Research on proof-carrying code for
untrusted-code security. In Proceedings of the IEEE Symposium on
Security and Privacy, page 204. IEEE Computer Society, 1997.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[NR01] G. C. Necula and S. P. Rahul. Oracle-based checking of untrusted soft-
ware. In Proceedings of the Symposium on Principles of Programming
Languages (POPL), pages 142–154, 2001.

[NV90] R. De Nicola and F. W. Vaandrager. Action versus state based logics
for transition systems. In Irène Guessarian, editor, Proceedings of
the LITP Spring School on Theoretical Computer Science, Semantics
of Systems of Concurrent Processes, volume 469 of Lecture Notes in
Computer Science, pages 407–419. Springer-Verlag, 1990.

200 BIBLIOGRAPHY

[Old86] Ernst-Rüdiger Olderog. Operational petri net semantics for CCSP.
In G. Rozenberg, editor, Proceedings of the European Workshop on
Applications and Theory of Petri Nets, volume 266 of Lecture Notes
in Computer Science, pages 196–223. Springer-Verlag, 1986.

[OMG] The Object Management Group. http://www.omg.org/.
[Ove97] P. Overell. Augmented BNF for Syntax Specifications: ABNF. The

RFC Editor, United States, 1997.
[Pad82] P. Padawitz. Graph grammars and operational semantics. Journal in

Theoretical Computer Science, 19:117–141, 1982.
[PdRV95] A. Ponse, M. de Rijke, and Y. Venema. Modal logic and process

algebra: A bisimulation perspective. Stanford: CSLI Publications,
1995.

[Pen09] Karl-Heinz Pennemann. Development of correct graph transformation
systems. PhD thesis, Oldenburg, 2009.

[PKT73] W. W. Peterson, T. Kasami, and N. Tokura. On the capabilities of
while, repeat, and exit statements. Journal of Communications of the
ACM (JACM), 16(8):503–512, 1973.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Tech-
nical report, Technical Report Lecture Notes DAIMI FN-19, Depart-
ment of Computer Science, University of Aarhus, 1981.

[Plo04] Gordon D. Plotkin. The origins of structural operational semantics.
Journal of Logic and Algebraic Programming, 60-61:3–15, 2004.

[PM07] O. Pastor and J. C. Molina. Model-Driven Architecture in Practice:
A Software Production Environment Based on Conceptual Modeling.
Springer-Verlag, Berlin, 2007.

[PP91] M. Proietti and A. Pettorossi. Semantics preserving transformation
rules for Prolog. Journal: SIGPLAN Notices, 26:274–284, May 1991.

[PR69] J. L. Pfaltz and A. Rosenfeld. Web grammars. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI),
pages 609–620, 1969.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Series. Springer-
Verlag, 1985.

[Ren04a] A. Rensink. The GROOVE simulator: A tool for state space genera-
tion. Applications of Graph Transformations with Industrial Relevance
(AGTIVE), 3062:479–485, 2004.

[Ren04b] A. Rensink. Representing first-order logic using graphs. In H. Ehrig,
G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors, Proceedings

BIBLIOGRAPHY 201

of the International Conference on Graph Transformations (ICGT),
volume 3256 of Lecture Notes in Computer Science, pages 319–335,
Berlin, 2004. Springer-Verlag.

[RKE07] G. Rangel, B. König, and H. Ehrig. Bisimulation verification for the
DPO approach with borrowed contexts. Proceeding of the Sixth In-
ternational Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2007), 2007.

[Roz97] G. Rozenberg. Handbook of Graph Grammars and Computing By
Graph Transformation: Volume I, Foundations. World Scientific Pub-
lishing Co., 1997.

[RPH+03] D. Ramljak, J. Puksec, D. Huljenic, M. Koncar, and D. Simic. Build-
ing enterprise information system using model driven architecture on
J2EE platform. In Proceedings of the 7th International Conference on
TELecommunications (ConTEL), volume 2, pages 521–526, 2003.

[RW07] T. Ruhroth and H. Wehrheim. Refactoring object-oriented specifi-
cations with data and processes. In Marcello M. Bonsangue and
Einar Broch Johnsen, editors, Proceedings of the IFIP International
Conference on Formal Methods for Open Object-based Distributed Sys-
tems (FMOODS), volume 4468 of Lecture Notes in Computer Science,
pages 236–251. Springer-Verlag, 2007.

[San95] Davide Sangiorgi. On the proof method for bisimulation (extended
abstract). In Jirí Wiedermann and Petr Hájek, editors, Proceedings
of the 20th International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 969 of Lecture Notes in Computer
Science, pages 479–488. Springer-Verlag, 1995.

[SCDP07] I. Stürmer, M. Conrad, H. Dörr, and P. Pepper. Systematic test-
ing of model-based code generators. IEEE Transactions on Software
Engineering, 33(9):622–634, 2007.

[SCF+05] J. S. Sottet, G. Calvary, J. M. Favre, J. Coutaz, A. Demeure, and
L. Balme. Towards model driven engineering of plastic user interfaces.
In Jean-Michel Bruel, editor, Proceedings of the Satellite Events at the
MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer
Science, pages 191–200. Springer-Verlag, 2005.

[Sch91] A. Schürr. Operational Specifications with Programmed Graph Rewrit-
ing Systems. PhD thesis, RWTH Aachen, 1991.

[Sch05] H. J. Schneider. Changing labels in the double-pushout approach
can be treated categorically. In Hans-Jörg Kreowski, Ugo Montanari,
Fernando Orejas, Grzegorz Rozenberg, and Gabriele Taentzer, editors,
Formal Methods in Software and Systems Modeling, volume 3393 of

202 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 134–149. Springer-Verlag,
2005.

[SK08] A. Schürr and F. Klar. 15 years of triple graph grammars. In Ehrig
et al. [EHRT08], pages 411–425.

[SS71] D. Scott and C. Strachey. Towards a mathematical semantics for
computer languages. In Proceedings of the Symposium on Computers
and Automata, pages 19–46, 1971.

[Ste08] P. Stevens. Towards an algebraic theory of bidirectional transforma-
tions. In Ehrig et al. [EHRT08], pages 1–17.

[Sti95] C. Stirling. Modal and temporal logics for processes. In Faron Moller
and Graham M. Birtwistle, editors, Proceedings of the Banff Higher
Order Workshop, volume 1043 of Lecture Notes in Computer Science,
pages 149–237. Springer-Verlag, 1995.

[Str08] M. Strecker. Modeling and verifying graph transformations in
proof assistants. Electronic Notes Theoretical Computer Science,
203(1):135–148, 2008.

[Tae96] G. Taentzer. Parallel and Distributed Graph Transformation: Formal
Description and Application to Communication-Based Systems. PhD
thesis, TU Berlin, 1996.

[TH09] P. Torrini and R. Heckel. Towards an embedding of graph trans-
formation in intuitionistic linear logic. In Filippo Bonchi, Davide
Grohmann, Paola Spoletini, and Emilio Tuosto, editors, Proceedings
of the 2nd Interaction and Concurrency Experience: Structured Inter-
actions (ICE), volume 12 of EPTCS, pages 99–115, 2009.

[UMLa] Object Management Group. Unified Modeling Language, Super-
structure v2.0, 2003. http://www.omg.org/cgi-bin/doc?formal/05-07-
04.pdf.

[UMLb] Object Management Group. Unified Modeling Language, Super-
structure v2.2, 2003. http://www.omg.org/cgi-bin/doc?formal/09-02-
03.pdf.

[Val94] R. Valette, editor. A Term Representation of P/T systems, vol-
ume 815 of Lecture Notes in Computer Science. Springer-Verlag,
1994. http://csd.informatik.uni-oldenburg.de/pub/Papers/
cd94-ea.ps.gz An extended abstract is available on-line.

[Var02] D. Varró. Towards automated formal verification of visual modeling
languages by model checking. SoSyM Journal, Special Section on
Graph Tranformation and Visual Modeling Techniques, 2002.

http://csd.informatik.uni-oldenburg.de/pub/Papers/cd94-ea.ps.gz
http://csd.informatik.uni-oldenburg.de/pub/Papers/cd94-ea.ps.gz

BIBLIOGRAPHY 203

[Var04] D. Varró. Automated formal verification of visual modeling languages
by model checking. The Software and System Modeling Journal,
3(2):85–113, 2004.

[Var08] G. Varró. Advanced Techniques for the Implementation of Model
Transformation Systems. PhD thesis, Budapest University of Tech-
nology and Economics, April 2008.

[vKCKB05] M. van Kempen, M. Chaudron, D. Kourie, and A. Boake. Towards
proving preservation of behaviour of refactoring of UML models.
In Proceedings of the 2005 annual research conference of the South
African Institute of Computer Scientists and Information Technolo-
gists on IT research in developing countries (SAICSIT ’05:), pages
252–259, Republic of South Africa, 2005. South African Institute for
Computer Scientists and Information Technologists.

[VMO] V-Modell Homepage der IABG mbh. http://www.v-modell.iabg.de/.
[Wei09] S. Weißleder. Semantic-preserving test model transformations

for interchangeable coverage criteria. In Holger Giese, Michaela
Huhn, Ulrich Nickel, and Bernhard Schätz, editors, Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung Eingebetteter Systeme
V, Schloss Dagstuhl, Germany, volume 2009-01 of Informatik-Bericht,
pages 26–35. TU Braunschweig, Institut für Software Systems Engi-
neering, 2009.

[WK05] M. Wimmer and G. Kramler. Bridging grammarware and model-
ware. Proceedings of the 4th Workshop in Software Model Engineering
(WiSME ’05), 2005.

List of Figures

1.1 The V-Model development method 2
1.2 Idea of model transformation verification (green circle with an ex-

clamation mark) . 3
1.3 Incremental abstraction of programming languages (reproduced from

[GPR06]) . 4
1.4 Automated Model Transformation (AMT) in the MDA approach . . 5
1.5 Automated model transformation and its verification 7
1.6 The main question for an automated model transformation 7
1.7 General idea for solution . 9

2.1 A standard approach for software development vs. the MDA approach 12
2.2 Vertical and Horizontal Model Transformations (VMT and HMT,

respectively) in the MDA approach 13
2.3 Fragment of the MDA central concepts 14
2.4 Extended MDA concepts . 15
2.5 Illustration of the four layer structure of the UML/MOF framework

(reproduced from [OMG]) . 26
2.6 Meta-model that represents an abstract syntax model of Petri nets . 27
2.7 Instance of the meta-model, which describes the vending machine,

in the left and the same Petri net in the original graphical notation
in the right . 27

2.8 Main concepts of language structure defined with graphs 28
2.9 Graph transformation rule overview 29
2.10 Behavioural semantics defined by graph transformations 30
2.11 Run-time meta-model for Petri nets 31
2.12 Textual interpretation of the graph transformation rule MoveToken 31
2.13 Example of a labelled transition system in the left and a Petri net

from the state s0 in the right . 32
2.14 Idea for a model transformation implementation 33
2.15 Solution idea for behavioural preserving Model Transformation (MT) 34

204

LIST OF FIGURES 205

3.1 Discussion topic of this chapter . 35
3.2 Morphism functions . 37
3.3 Example of a type graph T and a typed graph G 38
3.4 Example of a type graph U and a restriction of the typed graph G

to U . 39
3.5 Components of an E-graph . 40
3.6 Bipartitional graph . 41
3.7 Relations between main concepts of graph language structure 42
3.8 The type graph T st

PN , which describes the abstract syntax of Petri nets 42
3.9 Illustration of a graph language definition with the three layer struc-

ture of UML/MOF framework . 43
3.10 Rule-based modification of graphs 45
3.11 Basic graph transformation rule concept 46
3.12 Difference between injective and non-injective matches 47
3.13 Sample rule with injective matching and modified rule of the solution

with non-injective matching . 47
3.14 Notation for a graph transformation rule 48
3.15 Example of the match of universally quantified elements 48
3.16 Example of a graph predicate (taken from [Ren04b]) 49
3.17 An example of a quantifier structure 49
3.18 Illustration of two sample rules with a quantifier structure 50
3.19 The UML notation for an attributed node (in the left) and a graph-

ical representation for the same attributed node (in the right) 50
3.20 The rule for adding a new Transition-node with an integer value that

is one time more than the value of some existing Transition-node . . 51
3.21 The run-time graph T rt for Petri nets 52
3.22 The pnInitial rule . 53
3.23 The pnMoveToken rule . 53
3.24 Three types of model transformations 54
3.25 Graphs used in TGG technique . 55
3.26 Type graph for the TGG transformations 56
3.27 Sample TGG rule . 56
3.28 Screenshot of the tool Groove . 57

4.1 Discussion topic of this chapter . 60
4.2 Comparison of behavioural models is based on the mapping function

defined over the names of graph transformation rules 61
4.3 Comparison of LTSs on the level of abstraction 62
4.4 Example of a Petri net (in the left) and a corresponding LTS (in the

right) . 64
4.5 Graph transformation rules pnInitial and pnMoveToken from a

graph transformation system RSPN 64

206 LIST OF FIGURES

4.6 Conditions of weak bisimulation (reproduced from [BK08]) 66
4.7 Diagrams a), b), c) denote three LTSs that are mutually weak bisimilar 67
4.8 An example of labelled transition systems, here Q1 and Q2 are NOT

weak bisimilar, Q2 and Q3 are weak bisimilar 67
4.9 Diagram that shows how a behavioural property is specified for a

graph language . 72
4.10 Graph transformation rules pay, g_juice and g_water, where graph

structure is used not as a rule, but as a structural property 73
4.11 A graph which models the vending machine (in the left) and an LTS

generated by an extended rule system (in the right) 73

5.1 Semantics preserving model transformation 81
5.2 Overview of the proposed solution, which includes restrictions on the

languages (1)-(3), a specification of model transformation (4) and a
criteria for the behavioural correctness of model transformation (5) . 84

5.3 Syntactic (st) type graphs for graph languages A and B 85
5.4 Example graphs of languages A (in the left) and B (in the right) . . 86
5.5 Run-time(rt) type graphs for graph languages A and B 86
5.6 Behavioural semantics rules for A (initA and movePC) and B (initB,

createO and moveT) . 87
5.7 Type graph T st

AB for TGG graph rules 89
5.8 TGG transformation rules, which define model transformation MTA2B 90
5.9 Illustration of condition (3): Left (i), right (ii) 93
5.10 The idea of our inductive proof . 94
5.11 Summary of the method . 96
5.12 The TGG graph GAB . 99
5.13 Graph transformation rules which extend the original rule systems . 99
5.14 The LTS for GA in the left and the LTS for GB in the right 100

6.1 General idea of this chapter: model transformation between CCS
and Petri nets . 103

6.2 Several stages of transformations: the first stage of transformations
- the original syntax of CCS defined with EBNF is transformed into
a TG and the IOS into the semantics based on GTRs, the second
stage of transformations – the original syntax of Petri nets defined
with ST is interpreted as a TG and the semantics based on a usage of
a Marking (M) function is implemented with GTRs, the third stage
of transformations is a model transformation, which is represented
within the same notation . 105

6.3 Connection between stages and steps of the method 105
6.4 Overview of this section . 106
6.5 An example of a web page interface 107

LIST OF FIGURES 207

6.6 Transition system generated by IOS for the process P = a.b.nil +
c.nil | d.nil . 109

6.7 Meta-model for the syntax of the CCS language 109
6.8 Type graph T st

CSS . 110
6.9 Definition of well-formed CCS graphs 111
6.10 The CCS graph for the process P = a.b.nil + c.nil | d.nil 111
6.11 The idea to implement behavioural semantics by means of graph

transformations: a transition system generated for the original CCS
process must be weak bisimilar with a transition system generated
for the corresponding graph . 112

6.12 Run-time graph T rt
CSS for the CCS model 113

6.13 Typed graph for the CCS process P = a.b.nil + c.nil|d.nil 114
6.14 Pattern for graphs, which represent additional states that do not

have a corresponding process . 115
6.15 Additional pattern for a graph and corresponding notation 117
6.16 The ccsInitial rule (creates first dynamic elements in a static CCS

graph) . 118
6.17 The ccsSequence rule template (moves a Current-node from a graph

Ga.P to a graph GP) . 118
6.18 The ccsSequenceBig rule (moves a Current-node from a graph Gbig.P

to a graph GP) is an extension of the ccsSequence template with the
attribute node for the Event-node with the value big 119

6.19 The ccsCoAction template (moves a Current-node from a graph
Grt
a.P1|ā.P2

to a graph Grt
P1|P2

) . 120
6.20 The ccsSummation rule (duplicates a Current-node for child Process-

nodes) . 121
6.21 The ccsComposition rule (creates two Current-node with different

Mark-nodes, the nearly created Mark-nodes keep the connections of
an original Mark-node) . 121

6.22 The ccsVariableDeclaration rule (moves a Current-node from Grt
µx.P

to Grt
P and additionally keeps the connection to a node, where the

variable x was declared) . 122
6.23 The ccsRecursion rule (performs a recursive step) 122
6.24 A corresponding run-time graph for the process P = a.b.nil+ c.nil |

d.nil, which demonstrates the definition of a corresponding graph
index . 125

6.25 A schematically drawn CCS graph GP̄1∨P̄2∨.... Here, the black
squares are Process-nodes, white squares are Current-nodes, trian-
gles are the subgraphs Grt

P̄1
, Grt

P̄2
, Grt

P̄3
, with a root node marked as

a black square . 134

208 LIST OF FIGURES

6.26 The goal of this section is to define the Petri nets language with a
Type Graph (TG) and Graph Transformation Rules (GTRs) 139

6.27 Type graph T st
PN for Petri nets . 140

6.28 Run-time graph T rt
PN for Petri nets 141

6.29 The pnInitial rule (creates exactly one Token-node for each Place-node
which is labelled as initial) . 141

6.30 A template for the pnMoveToken rule (removes one Token-node from
each input Place-node, creates one Token-node for each output Place-
node) . 142

6.31 The pnMoveTokenBig rule (removes one Token-node from each input
Place-node, creates one Token-node for each output Place-node) is
an extension of the pnMoveToken template with the attribute node
for the Transition-node with the value big 142

6.32 Type graph T st
CCS × TCN × T st

PN for TGG transformation 145
6.33 Extended type graph for Petri nets 146
6.34 Definition of well-formed Petri nets graphs 147
6.35 Definition of a co-event in Petri nets 147
6.36 The pnMoveTokenTauA rule . 148
6.37 The tggInitial rule (creates a skeleton, i.e. the first BBs: a BB_CCS-

node and a BB_PN-node) . 149
6.38 The tggEmpty rule (turns a CCS BB into a structure, which corre-

sponds to the CCS process nil, and a Petri net BB into a structure,
which consists of a single Place-node) 151

6.39 The tggSummation rule (creates a CCS graph, which corresponds to
the CCS process P1 + P2, and a Petri net, where a token could flow
through two different paths) . 152

6.40 The tggComposition rule (creates a CCS graph, which corresponds to
pattern C for the well-formed CCS process P1 | P2, and the pattern
C for a Petri net graph) . 153

6.41 The tggSequence rule (creates a CCS graph, which corresponds to
the CCS process a.P1, and a Petri net transition, which follows a BB) 154

6.42 The tggSequenceCoAction rule (creates a co-event in a CCS graph
and a corresponding transition in a Petri net with an extra transition,
which corresponds to τ , which means that an event and a co-event
are executed simultaneously) . 155

6.43 The tggVariableDeclaration rule (creates a CCS graph, which corre-
sponds to the CCS process µx.P1) 156

6.44 The tggRecursion rule (creates a CCS graph, which corresponds to
CCS process x, and a recursive Petri net from Definition 28) 156

6.45 The tggRecursionI rule (creates a CCS graph, which corresponds to
CCS process x, and a recursive Petri net from Definition 29) 157

6.46 The CCS graph for the process P = µx(a.τ.nil + µy.y|b.x) 159

LIST OF FIGURES 209

6.47 Relevant correspondences: cn, cn1 and cn2 164
6.48 Picture of a machine for selling chocolates 178
6.49 The CCS graph for the process V , denoted GVCCS 179
6.50 The Petri net graph for the process V , denoted GVPN 180
6.51 LTS Q(GVCCS) for the CCS graph generated by the rule system

RSCCS in the left and LTS Q(GVPN) for the Petri nets graph gener-
ated by the rule system RSPN in the right 181

	Short contents
	Contents
	1 Motivation and Overview
	1.1 Role of Models in Software Development
	1.2 Model-Based Software Development Process
	1.3 Correctness of Model Transformation
	1.4 Objective of this Thesis
	1.5 Solution Idea
	1.6 Structure of this Thesis

	2 Problem Statement
	2.1 Model-Driven Architecture Approach
	2.2 Requirements for Model Transformation
	2.3 Survey of Techniques for Semantics Preserving Model Transformations
	2.3.1 Overview of Specific Approaches
	2.3.2 Discussion
	2.3.3 Conclusion from the Survey

	2.4 Concept of our Method
	2.4.1 Syntax Definition
	2.4.2 Behavioural Semantics Definition
	2.4.3 Semantics Preserving Model Transformation

	2.5 Summary

	3 Foundations of Graph Transformations
	3.1 Graphs
	3.1.1 Graphs and Typed Graphs
	3.1.2 Type Restriction
	3.1.3 Attributed Graphs

	3.2 Graphs as a Tool for Syntax Definition
	3.3 Graph Transformations
	3.3.1 Introduction
	3.3.2 Basic Definitions for Graph Transformations
	3.3.3 Injective and Non-injective Matches
	3.3.4 Important Notation
	3.3.5 Universal Quantification
	3.3.6 Graph Transformations for Attributed Graphs

	3.4 Behavioural Semantics Based on Graph Transformations
	3.5 Model Transformation Based on Graph Transformations
	3.6 Graph Transformation Tool
	3.7 Summary

	4 Equivalence Relation on LTS
	4.1 General Approach
	4.2 Transition Systems
	4.3 Bisimulation as Type of Behavioral Equivalence
	4.4 Properties Specification over LTS
	4.4.1 Why ACTL
	4.4.2 Syntax of ACTL
	4.4.3 Semantics of ACTL
	4.4.4 Behavioural Properties Specification with ACTL

	4.5 ACTL Equivalence and Weak Bisimulation
	4.5.1 ACTL Equivalence
	4.5.2 Preservation of ACTL Formulas by Weak Bisimulation
	4.5.3 Additional Theorem about ACTL Formulas Preservation

	4.6 Summary

	5 Method for Semantics Preserving Model Transformation
	5.1 Problem Definition
	5.2 Proposed Solution
	5.3 Method
	5.3.1 Language Syntax (Step 1)
	5.3.2 Language Semantics (Step 2)
	5.3.3 Mapping over the Rule Systems (Step 3)
	5.3.4 Model Transformation (Step 4)
	5.3.5 Establishment of Weak Bisimulation (Step 5)
	5.3.6 Summary

	5.4 Interpretation of Behavioural Properties
	5.5 Summary

	6 Case Study: Model Transformation of CCS into Petri Nets
	6.1 CCS Language (Steps 1-2)
	6.1.1 Original Syntax and Semantics
	6.1.2 From EBNF to Meta-Model
	6.1.3 From Interleaving Operational Semantics to Semantics Defined by Graph Transformations
	6.1.4 Semantics Preservation

	6.2 Petri Nets (Steps 1-2)
	6.2.1 Syntax
	6.2.2 Semantics

	6.3 Mapping over the Rule Systems (Step 3)
	6.4 Model Transformation Specification (Step 4)
	6.4.1 TGG Model Transformation
	6.4.2 Mapping of Well-Formed CCS Graphs to Petri Nets
	6.4.3 Graph Transformation System
	6.4.4 Auxiliary Notation for CCS Graphs
	6.4.5 Important Observations about CCS Graphs

	6.5 Correctness of Model Transformation (Step 5)
	6.5.1 Auxiliary Notation for Corresponding Nodes
	6.5.2 Important Observations about Corresponding Structure
	6.5.3 Definition and Proving of Weak Bisimulation

	6.6 Properties Interpretation for Petri Nets
	6.6.1 System Design
	6.6.2 Properties Specification
	6.6.3 Properties Interpretation

	6.7 Summary

	7 Conclusion
	7.1 Contribution of this Thesis
	7.2 Analysis of the Method
	7.2.1 Restrictions
	7.2.2 Model Transformation
	7.2.3 Proof Statement
	7.2.4 Proof Algorithm

	7.3 Discussion of the method
	7.4 Overview of Publications
	7.5 Future Research

	Bibliography
	List of Figures

