279

STRUCTURED PARALLEL PROGRAMMING WITH A
HIGHLY CONCURRENT PROGRAMMING ,LANGUACE

Franz J, Rammig
University of Dortmund
Federal Republic of Germany

Abstract

The Concurrent Algorithmic Programming language (CAP) has been designed as
programming language for highly concurrent processes. This means that in CAP
cencurrency in as basic as sequentialism is. ' '

The basic concept of CAP isito implement a linguistic correspondence to
(timed) interpreted Petri Nets. In addition we intended to design a language which
should be as similar to PL/1 as possible, as we didn't want to add an additional
storey to the Tower of Babel.

In this paper we will describe the basic concept of thelanguage CAP. From
this we will derive the class of Petri Nets (based on LOGOS /R01/) which is
suitable for our purpose. With the aid of these so-called CAP nets we will define
what are well behaving control structures (safe, proper terminating, reusable).

On the other hand the problem of structuring concurrent programs is considesr
red.. As structured programming is very close related to a hierarchical process °
(stepwise refinement, top down design) CAP programs which we call structured ones
are defined by an inductive construction. It is shown that elementary structured
CAP programs are well behaving and that well behaving is preserved by every induc+

tion step. By this we get the result that every structure CAP program is well @ ~
behaving,) :

The question is whether the class of structured CAP programs covers this
class. :

This question can be answered by two results:
a) Syntactical incompleteness:
There are well behaving CAP programs that are not structured ones,
b) Semantical complementeness o .
For every well behaving CAP program there is an equivalent structured CAP
program, where we use a very strong definition for equivalence.

Fipaly an overview of implemented CAP software.(compiler, interpreter,
debugger, documentation geperator, family of codegenerators) will be given.

1. Basic Concens of CAP

_ While there are known a couple of programming lantages for cooperating se-
quential processes (e.g. Concurrent Pascal, Modula) there is a lack of languages
for highly concurrent systems, Such systems are of increasing inpprtance in variaus
fields such as hardware design, customers VLSI design, highly distributed systems,
multiprocessor systems with a large number of processes.

CAP is intended to cover both application areas. To describe cooperating
sequential processes a monitor concept and a handshaking mechanism has been
integrated into the language with a foundation in the basic concept of the language.
This basic concept can be characterised as linguistic correspondence to {timed)
interpreted Petri Nets. Petri Nets have been chosen for various reasons:

280

~ There is a rich and well founded theory on Petri Nets (see /PNC/).

~ Petri Nets offer a medel that is intuitivly understood by an arbitrary user,

~ As there is a graphical representation of Petri Nets understanding of, and
communication about concurrént processes is supported very well.

In addition a neutral problem analysis gives the some result:
To describe highly concurrent processes a procedural approach seems to be inade-
quate.

CAP is a nonprocedural language, i.e. the ordering of statements is not atta-
ched to any meaning. Statements are associated with an explicit condition for
execution of the operation described by the statements. A statement ('"triggered
Operation”) of a nonprocedural language has the form
B(B)—> A

where Bt < B, B set of elementary conditions, P(By) a predicate on By. The
datamanipulation A is executed whenever P(Bi) becomes true. The datamanipulation
realizes a.itotal mapping a : Iit = Dg! with D¢, Dy D, D set of elementary data

(variables) inclusive conditions.

In a statement of this form control and datamanipulation are not separated
strictly as the conditions are part of the data. To achieve more transparent
designs the trend goes to a strict separation, however.

In this case we get statements of the form:
P(B,) —» By's A with B n D =@. I.e., the manipulation of the conditions due to

statement execution is not longer implicitly part of data manipulation, but is
result of an explicitely given mapping & : BxD — B. Note that we need data-ele-—
ments as potential arguments, as there may be a data dependent control flow.

Such statements reflect very closely the idea of interpreted Petri Nets if we
assume that all statements are interpreted independetly.

A statement stands for an interpreted transition t, B for the set of places,
B¢ the set of input places of t, B¢h the set of output places of t, P(Bt)

the firing condition, ¢ : BxD — B the firing rule and a : D¢~ D' the inter—
pretation. '

A little problem arises concering data dependent control flow. Within Petri
Nets this is usually expressed using places with forward conflict. To preserve onr

scheme we introduce a data—dependent transition instead of places with foreward
conflict. '

Because of symmetry we replace places with backward conflict by another kind
of transition. It must be part of the firing rule of such a transition to resolve’
backward conflicts in some way. This may be done by a priority rule. But now we are

forced to introduce firing rules that are dependent on the marking of the output—
laces as well, . : '

Therefore every place has a finite or infinite capacity so that free capacity
may be interrogated.

As we now have special transitions for confliets, consequently places are
restricted to have only onme input transition and one output transition. Neverthe-

lesg the reéulting Petri Nets are not Marked Graphs as we have distinect firing
rules.

281

We restrict ourselves to processes that may be of arbitrary internal structu-
re but have one definite beginning and one definite ending. Such processes (kinds
of nets) can be composed very neatly. However we need a kind of a monitor whenever
a subnet shall reflect a time-shared resource.

The above considerations lead to a kind of modified Petri Nets which is very
close to LOGOS control graphs /RO1/. In fact CAP-Graphs use nearly the same set of
transitions, with more general firing rules, a little more restricted use of block-
head/blockend and more rules concerning the global structure. A more detailed dis-
cussion of CAP-pets will follow under 2,.

Formally basic CAP statements are similar to "Guarded Commands" /DI1/. Similar
transition types as in CAP-nets are known from Macro-E-Nets /NO1/. The main
difference is that in CAP we have no attributes at tokens but in contrary attri-.
butes at transitions. When restricting on AND-, OR-, IF-transiticns (OR without
priority), on transitions with degree (1,2) or (2,1) and on placeswith infinite
capacity we get the nets in /HY1/.

The guestion is now, how to make a programming language out of this concept,
and not only any programming language but one that is very similar to PL/1.

The description of data manipulation can be done very easily using PL/1
assignment statements. The problem is to integrate Petri Nets into the language.

To do this we have to descride places and transitions. For places we simply
use labels, and transitions are described with the aid of ON-conditions on labels.

A typical statement of a (unstructured) CAP program looks like:
ON(A,B) : C : D : E : RESULT := ARGUMENT1 + ARGUMENTZ2;
There is a transition with inputplaces A,B and outputplaces C,D,E. As data mani-
pulation we have a simple addition.

When this transition becomes firable it may fire. When it fires it first
computes its datamanipulation and then manipulates iks input- and output-labels
with respect to its firing rule.

2. ' An Intreoduction into CAP nets

2.1 Def.:
APN := (S,T,F) is called Petri Net Graph :<=>

S finite nonempty set of places

T finite nonempty set of transitions
FeSxTuTxS, SnT =29

yxe SUT: g yeSuT : ((x,y) e F Vv (y,x)eF)

As usual by ‘t is denoted the set of input places of tramsition t, by 1t~
the set of output places of t. Input places and output places are orderedf the
position of an input place s .of a transition t is given by id. (s}, id,.(s)
gives the position of an output place s. Places may contain tokens, where the
capacity of places may be finite:
cap: S — Nu {»} (capacity distribution)

m : S — Nu {0} (total marking)
By M we denote the set of all markings of a given Petri Net.

282

2,2 Def.: (AND transition)

Let A ®T., For every a € A holds:

a is firable under marking m : <=>

(yse 'a:m(s)>0) A (ysea’:ms) <cap(§)) .

fa:M— M, f.(m) =m' {is called firing of a : <=>

a is firable and yse ‘a:m'(s) = m(s)-1
vsea® :m'(s) = m(s)+l
m'(s) = m(s) otherwdse.

Symbol:

In the language we write: o
ON(&(eqy...9en) : 04 : *0aOp ¢ or simply:
ON(e4,...5en) :t 04 : ...0 :

2.3 Def,: (OR-transition)

Let 0€T . For every o ¢ O
o is firable under marking m :<=>
(3s€ '0:m(s)>0) (¥seo-: m(s) < cap(s)).
fo: MM, £ (m) =m' ig called firing of “ o0 : <=> , R
o is firable and m'(8) = m(s)-1 :<=> s€ro A id. (s) = min[id.o(s)m(s)>0}
m'(s) = m(s)+l : <& se0° .
n'(s) = m(s) otherwise

Symbol:

In the language we write:
ON('(e-;,...,en)) P04 3 4,0yt

In addition we have other priority rules besides the above defined one as
FIFO, LIFO ete, This shall not be considered in this paper,

2.4 Def.: (DECIDER transition)

Let Dc T. For every d € D holds:

Iidb =1, jd'y) =2

For every decider transition d there is a predicate Py on data.
d is firable under marking m :<=3>

(¥se'd : m(s)>0) a (ysed': m(s)<cap(s)).

fa : M = M, f4(m) = ' is called firing of a4 :<=>

d is firable and m'(s) = m(s)-1 : <=> se °d

idg.(8) = O0APy = "tryue"

m'(s) = m(s)+l :<=> A
.ddo (5)
mla) otherwise

1AP4 = "false”

m'(s)

4
1
¥
z

-

283

Symbol H

In the lanugage we write:
ON(e4) : IF Pyq THEN og:
ELSE o04:

This transition may be generalézed very easy to a CASE style transition.
Special AND-transitions are used to call well defined subnets {blocks) and to
synchronize their ready signal with the control flow of the calling block:

C-transition:

Representation in the language:
‘ON(e4) : o4.:.CALL 032 :

R-transition:

Representation in the lafxguage:
ON(< -ea,e4) : Oq :

" 2.5 Def.: {Blockhead transition)

Let H<cT. For every h ¢ H holds:
I'hi>1,- k"l = I"hl

o is firable under marking m : <=>
ys€ ‘hyid,(8) = 0 : m(s)>0;

dse 'h‘,id.h(s);# 0= ﬁ(s))b;

vse¢h® : m(s)<cap(s).
fh : M= M, f;(m) = m" is called firing of h : <=>

h is firable and -
ov

m'(s) = m(s)-1 : <=> s e'hAid.h(s) 2
s €'hA id.h(s) = min{id.h(s) £0 1| m(s) >0}
‘m'(8) = m(s)+1l ; <=> se'h'/\id.h.(s) =0V

seh’ Aidh.(s)

m'(s8) = m(s) otherwise

min(id.h(s) £ 0| mi(s) >0}

Symbol:

284

Again, we support other priority rulés, too. The inputplace with i'd.h: 0
comtrols the activatability, the activity starts via the outputplace with idh.z 0.

The other places serve to identify and preserve the caller.
As blockend is used a symmetric transition with the same firing rule:

Blockend transition:

Representation in the language:
"ON(e4) : END

It should be noted, that the pajr Blockhead-Blockend form a monitor-mechanism
guarding a critical region. At any time only one reference to the net within this
pair can be activated,

: capacity = 1Z'only one
activation at one time

"return adress" savers

2.6 Def.: (CAP net, semiformally)

A Petrd Net N := (S,T,F) is called CAP net :<=>
1) TeAUOUDUCURUHUE :

2) AinE=9p
3) yseS : I's)<2, Is* <2
4) yteT : “tnt = ¢

5) k:H-— E, total, one to one
e = k(h) <=>
5.1) st ee‘,ide.(s’) =0, s8¢ 'h, id.h(s) =0 => g = gt

5.2) Vse ‘e, id.e(s) £0: (s Iseh'/\id.e(s) = id.h.(s)] F 3 .

5.3 In°l = |'el .
6) every se ‘h, id.h(s) # O 1is outputplace of a C-transition or h is the

single outermost blockhead transition, every see’, id,.(s) £ 9 is
inputplace of a R-transition or e ig the single outermost blockend
transition. :
7) every block is synchronized with the block by which it is called.
B8) s €e'hne’ => ecap(s) = 1
9) there is no recursive call.
10) the Petri Net Graph without the inputplaces s of the single outermost
: blockhead with id.h(s) # 0 and the outputplaces s of the single outer-

most blockend with ide.(s) # O is strongly connected.

285

2.7 Def,: {initial marking, final marking, proper terminating, safe, reusable,
well behaving)

Let be I the unique outermost blockhead trasition, Q the unique outer-
most blockend transitionm.
A marking my; of a CAP net is called initial marking :<=>

mi(s) =1<=> (heH : s¢ 'hAid.h.(s) =0Qvse 'l
¥se€S

: mI(s) = 0 otherwise

A marking m. of a CAP net is called final marking :<=>

il
AseS, seQ": mf(s)>0
Let be Mf
A CAP net N 1is called to be safe :<=>

vmeM,‘ reachable from mys yseS : m(s)<2

the set of final markings.

A CAP net N ist called proper terminating :<=>
From every marking m, reachable from m., a final marking is reachable.

a CAP net is called rausgbhle:<=>
m(s)y=1<> aheH:se’hAid.h(s)=OVssE'

vner, reachable from mI : ysSeS : (s) = 0 otherwise
The behaviour of areusable CAP net is independent from its activation
history,
A CAP net N 1is called well behaving :<=>
it is safe, proper terminating and reusable,
3. Structured CAP Programming

Strict menprocedural programming is comparable with extremly GOTO-oriented
programming., Therefore a more disciplined way of concurrent programming is intro-
duced now. The idea is to construct CAP programs out of a few basic building
blocks. These building blocks have a special syntactical notation and correspond
to specific subnet structures. The syntactic notation is similar to the notation
used in PL/1, .

It will be shown later, that the constructs which ave investigated in this
paper are in some kind "sufficient”. This does not mean, that they are Vsuffi-—
ciently convenient", :For practical applications one misses constructs like
"bridges" (synchronisation of two concurrent activities) or loop with multiple
exits. But within this paper we investigate an extremly restrictive but ‘suffi-
cient" set of constructs.

3.1 Elementatry Structured CAP Program

The most elénentary syntactically correct CAP program looks like:

ON CALL{e ,...,e) : o : PROCEDURE
ON(o) : £ :3.
ON(f) : END;

We allow that this may be replaced by simply:
ON cALL(e ,...,e) : PROCEDURE;

I3

b4
END;

286

This is called the elementary structured CAP program. It corresponds to the
following CAP net: : . .

Formally:
-(In the following we will have to identify a specific subset of the set of places
within CAP net graphs, the set of Transparent Places, TP. We will add the component
TP to the definitjon of CAP net graphs and CAP nets.

Def.: (Elementary Structured CAP Net)

Let be CN the set of all CAP nets.

EeCN, E = (P,T,F,TP,mp) is called Elementary Sturctured CAP Net :<=>)
P := [81,52,513,84,38}

T := {tq€H, t3€$}

F is given by “ty = {84,854}
ty = [52.33}
"ta = {sa,sa}
ta = {s4,ss}

Prop.: E is well behaving

Proof: [m> is given by (1,0,0,1,0) - (0,1,1,0,0) - (0,0,0,1,1)
I.e. E is proper terminating, safe and reusable.)

3.2 Sequential Substitution

Any empty statement (a statement consisting only out of a ";") may be re-—
placed by: '

DO SEQUENTIAL;

m empty statements

Ve e e e we

END;

This corresponds to the following net substitution:

é P i; n transitions

287

Formally:
‘Def.: (SEQ-Substitution)

Let be SCN the set of all structured CAP net graphs
seq: SCN = SCN seq(0) = (N), O :={CPO,TO,FO,TPO),

N :=(CPN,TN,FN,TPN)
is called SEQ-Substitution :<=>

PN := (PO\ {8}) v {sn4,...sn{+4} with seTPO arbitrary, ieN
TN := TO v {tni,...,tDn;}
FN := (FO\FO' uUfN'
FO' := {(t4,8) € PO} u {(s,t2) € FO}
FN' := ((t“ssn“)’(Sni+1gt2)}u
{(tny ,Snj+1),(s‘nj,tnj) 13 =1:i}

TEN := (TPO\ (8)) U {8N1s...,80{44}

Prop.: O with initial marking well behaving => N with initial marking
well behaving

Proof.: O well behaving => Am : m(s) = 1 alm(s)>n Mg £ ')
=> gm' : m'(8n4,...+80544) = (1,0,...0)
[m'> = (1,0,...0) = (0,1,...0) = ... = (0,0,...,1) > ...
I.e. seq preserves well behaving.

3.3 Copcurrent Substitution

Any émpty statement may be replaced by:

DO CONCURRENT;

T m empty statements

This corresponds to the following net substitution:

m n places

Formally:
pDef.: (CON-Substitution)

con : SCN —» SCN, con(0) = (N), O :
. N :

is called CON-Substitution :<=>)

PN := (PO\ {s}) {sn1s..-»3ni+1}, s€ TPO arbitrary, ief

TN := TO u {tns,tna}

FX := (FO\FO') u FN'

FO' := {(t4,s) € FO} u{(s,ta) € FO) .

FN' := {(tq,Sn4)5(sni,ta)} U {(sn4,tn4),(tna,snid}v

{(tnq,snj),(snj,tnz) 1j=2:1i-1)

(r0,TO,F0,TPO),
(PN, TN,FN,TPN)

288

TEN := (TPO\ {s}) v {sn4,...,8ni}

Prop.: 0 with initial marking well behaving =>
N with initial marking well behaving

Proof.: O well behaving => dm : m(s) = 1Aalm> n¥c % 9
=> 2m' : n'(8Ngs.s,ysni) = (1,0,...0)
[r'> = (1,0,...,0) = (0,1,...,1,0) = {0,...,0,1) —
I.e. con preserves well behaving

3.4 Conditional Substitution

Any empty statement may be replaced by:

DO CASE;
H

. m empty statements
H
END;
or as special case by:
IF p THEN;
ELSE;

This corresponds to the following net substitution:

Formally:
Def.: (CASE-Substitution)

con : SCN -» SCN, case(0) = (N), O :
N :
is called CGASE-Substitution :<=>

(P0,T0,FO,TPO),
(PN,TN,FN,TPN)

"o

BN := (PO\ {s}) v {sn4,...,8ni)}, se TPO arbitrary, iepN
TN := TOu {tpnq,tna}
FN := (FONFO') uFN'

FO' := {(t-',S)GFO} u {(S,t;)EFO}
EN' := {(tq,s14),(sni,t2)} u {(sn4,tn,4),(tnz,sn{d}u
{(t1,snj),(snj,tnz) 13 =2 :i-1}
TPN := (TPON (s}) v f{sm4,..%,sn3}

Prop.: 0 with initial marking well behaving =>
N with initial marking well behaving

Proof.: O well behaving = 3Im : m(s) = 1a[m>n Mg e
=> am’ : m'(sn4,...,503) = (1,0,...0)
(m™> = (1,0,...,0) =~ (0,0,...,0,1,0,.,.,0) — (0,0,...,0,1) =
I.e. case preserves well behaving

289

3.5 Iterative Substitution

Any empty statement may be replaced by:
DO WHILE;

3
END;

This corresponds to the following net substituticn:

Formally:
Def.: (ITER-Substitution)

(Po,TO,F0,TPO)
(PN,TN,FN,TPN)

N

iter : SCN— SCN, iter(0) = (N), O©
N

igs called ITER-Substitution :<=>
PN := (PO\ {s}) U {s1,82,53,S4} s 5e€TPO arbitrary

TN := TO v {tn4,tnz}
FN := (FO\FO') uFN'
FO' := {(t4,s) € FO, (s,tz) e FO}
FN' := {(£4551),(83,tn4),(s54,t01),{tnq,32),(s2,tn2) ,{t2,54),(t2,s52)}

TPN := TPO\ (s} v {s1,S2,53,54}

Prop.: O with initial marking well behaving =>
N with initial marking well behaving

Proof: O well behaving => fm : m(s) =1 [m>aMc 3 @
=> m' : m(s4,82,53,54) = (1,0,0,0)
qm' = (1,0,0,0) - (0,1,0,0) = (0,0,0,1) = ...
T$(0,0,1,0)

I.e. iter preserves well behaving

3.6 Subblock Substitution

Any empty statement may be replaced by:
CALL a; (provided procedure a is declared and structured)

This corresponds to the following net substitution:

é m if it is the first

reference

290

,
B

I.e. an Elementary Structured CAP-net has to be included into the net. It

may be expanded due to its declaration afierwards.

é q _ otherwise

I.e. the subnet has already been included and only an additional "entrwy' has
added.

Formally:

Def.: (BLK-Substitution)}

blk : SCN -» SCN, blk{(0) = (N), O := {(PO,TO,F0,TPO)
N := {(PN,TN,FN,TPN)

is called BIX-Substitution :<=>

PN := (PON{s]) v {s; li=1:8}.

TN := TO {thye C,tng € Rytha ¢ H,tna ¢ E}
FN := (FO\FO' u EN'

FO' = {{t4.8)€ FO, (s,t3) € PO}

FN' is given

1) “tna = [se»su}, “n3 = {se,s9), 'tny = (se,87}, t'n = {sa,ss)
2) ‘tng = {s4}, :'ny = {84,832}, "tna = (ss,s2}, t'na = [sal
3) ti = (s}, "tz = {sa) '

TPN := (TPO\ {s}) v {84,32,53,5a}
blk is BLK2-Substitution :<=>

PN := (PON\ {8}) U {(s4482,S3,5S4,5s}
TN := TOu {tn1eC,- tnaze R}
FN := (FO\FO')u FN'

Fo!
EN’!

{(ty,s) € FO, {s,ta) ¢ FO}
{{ty,31)5(s1,tnq),(tnq,54),(tny,52),(88,tna)s(52,tnz},(tna ,s3),
(sa,t3),{su,ta),{ta,sa)}

W

with taeTOnH, ta€e¢TONE
TPN := (TPO\ {s}) U {s1,s2,Sa)

Prop.: 0 with initial marking well behaving =3

N with initial marking well behaving

Proof . :

a) BLK1-Substitution
The referenced block is an Elementary Structured CAP net. Therefore it may be
replaced by a simple place preserving global behaviour, Then BLKi-Substitution

is

agquivalent to CON-Substitution

b) BLK2-Substitution

By

definition of H-transitions and E-transitions a multi-entry block behaves

per reference like a single-entry block. Therefore BLK2-Substitution is equiva-
lent to BLK1-Substitution.

A CAP program is called structured CAP program iff it can be constructed by

the above procedure.

3.7

Theorem

Every structured CAP program is well behaving.

291

Proof: Follows irmediately from Prop. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6.

The contrary is not true as
ilustrated by the following
example:

is not structured but well
behaving

This means not that semantically the call of structured CAP programs is more
restrictive than the class of well behawing CAP proprams;, as we have the following
result: (A similar result for "bridge free" "Control Nets For Asynchronous Systems"
/HY1/ with a constructive prosf is given dby /BSY/.)

3.8 Theonem:

For every well behaving CAP program N we have a structured CAP program N'
with N' is prompt and hangup-free simulation of N.

Proof:

. Let A := {a4,..., an} be a A-free, injective labelling of the tramsition of
N (see /HAl/). As we have concurvency we have L(N) c¢ (®A))* for the generated
Janguhge.

N well behaving => N safe => the set of possible total markings is finite

=> N finite pondeterministic automaton.

=> L(N) can be deribed by a regular expression over P(A)

The oprerations of regular expressions correspond directly to the substitutions
for generating structured CAP nets if we allow multiple labels of transitions
{denoting synchronized parallel execution).

2. Obviously this construction dbesn’t .in‘voduce hang-upsor additional loops.
Therefore we get 2 hang-up free and prompt simulation.

It should be moted, that within this context we are speaking about uninter-
preted nets. Indeed concerning any interpretation we would have to introduce
additional variables to "construct" structured CAP-nets to simulate a CAP-net with
multiple exits of loops or bridges (see /BSY, KO1/).

&, Implemented CAP software

CAP has been designed and implemented as specification language within a €AD
system covering the field from firmware design to logic design. Especially suppor-
ted by the CAP CAD-system is the construction of micro-processor based controllers.

Up to now we have impemented the following software:

4.1 CAP compiler CAPCOM

This system compiles CAP programs into an intermediate language called CAPID.
It is a two step compiler with a LR-1 parser including an excellent error correc-
tion facility.

4,2 CAP interpreter CAPSIM

This is a virtual CAPID-machine The controlling Petri Net. is modelled using

292

gvant-orientdd simulation.

4.3 CAP debugger CAPTEST

This gsystem coopetates with CAPSIM and allows an interactive debugging ei*-cher
of CAP programs or of programs running on virtual machines that have been described
in CAP. Up to now we have implemented such models of the TI990, INTEL B0s5, INTEL

8048, DEC PDPS.

4.4 CAP documentation generator CAPDOC

, A hierarchy of documents may be generatéd by this system during the top down
design of a program, as it accepts also not fully formulated programs. In addition
complete programs may be documented at various levels of abstraction under user
control. As far as possible generalized Nassi-Shneiderman-Diagrams /NS1/ are gene-
rated.

4.5 CAP code generator family CAPCCL

An important application field for CAP is the design of micro-processor
based controllers. I.e. the algorithm representing the task of a controller is
given in CAP. This algorithm has to be implemented on an arbitrary micro-processor
or amulti-micro-system. As typically there are very restrictive time and memory
limitations in controller design, we had to implement a compiler with sophisticated
optimization. '

The code generating process is done on several steps, where we remain pro-
cessor independent as long as possible. Even the basit optimization is done without
considering a special goal processor. Processor specific optimization runs omnly
if a time— or memory-restriction is violated. Adding a mew goal processor to the
system means simply providing some Tabels describing this processor. Even this
task is supported by an automated generation process,

293

"Appendix
a) A CAP programm: (for a language description see /RA2/)

on call (EXAMPLE1) : RUN : procedure;

del (A,B) char (ebedic, 80), I fixed;

del file (SYSIN, SYSOUT) char (80);

on (RUN) : LOOPGO : C : B,A := SYSIN;

on {(C) : D: substr (A, 0, 2) := '$$';

on (}(LOOPGO, LOOFP)) : LOOPIN : I := I+l;

on (LOOPIN) : if *80 then LOOPT : I := I+l

else LOOPEND :;

on (LOOPT)=1LOOFP : .substr (B, I, 1) := 'T';

on (LOOPEND, D) : end;

b) Structured equivalent

on call (EXAMPLEl) : procedure;
dcl (A,B) char (ebedic, 80), I fixed;
del file (SYSIN, SYSOUT) char (80);
do sequential;
B,A := SYSIN;
do concurrent;
substr (A, @, 2) := "$$';
do I := @ to 79 sequential;
substr (B, I, 1) := 'T';
end;
end;
end;.
&nd;

/IBSY/

S/p11/

/ JHAL/

JHYL1/

/K0l/

/N01/

/NS1/

/PNc/

/PR1/

/RALS

/RA2/

/R01/

294

" ‘Reférences

2, Barzilai, E. Strashourger, M. Yoeli:

On structured parallel programming

Technion Haifa, Dept. of computer Sc1ence, Techn. Report 129
(1978)

E. W, bPijkstra:

Guarded Commands, Nondeterminacy and Formal Derivation of Programws
CACM Vol. 18, No. 8§

(1975)

M. Hack:

Petri Net Languages

MIT, Project MAC, Computation Structures Group Memo 124
(1975) .

0. Herzog & M. Yoeli:

Control Nets for Asynchronous Systems, Part 1

Techniou Haifa, Dept. of Computer Science, Techn. Report 74
(1976)

S. Rao Kosaraju:

Analysis of Structured Programs

Journal of Computer and System Sciences 9
(1974) ‘

J. D. Noe, G. J, Nutt:

Macro E-Nets for representation of Parallel Systems
IEEE ToC Vol. C~-22, No. 8

(1973)

I, Nassi, B. Shneéeiderman:

Flowchart Techniques for Structured Programming
Sigplan Notices ' '
(Nov. 1978)

W. Brauer (ed,):

Net Theory and Applications
Springer

(1979)

L, Priese:
On the ccncept of simulation in asynchronous systems

yth ECMS, Linz (Austria)

(1978

F. Rammig: Uberlegungen zur Kontrollstruktur einer €omputer-Hardware-Be~
schreibungs-Sprache (german)

Universitdt Dortmund, Abteilung Informatik

£1378)

F. Rammig:
An Introduction to CAP or Locking at CAP with the Revised Iroman's Eyes

Universitdt Dortmund, Abteilung Informatik
(1979)

C. W. Rose: LOGOS and the software engineer
FJcc 1872

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16

