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Abstract. Preamble sampling is a popular mechanism in WSN MAC
protocols. This paper optimizes the energy consumption by adjusting the
preamble length to a known or estimated, possibly varying event rate.

1 Introduction

Among the many proposed energy-efficient MAC mechanisms for WSNs, pream-
ble sampling [1] is used in various protocols (WiseMAC [3], B-MAC). The idea
is to have the receiver wake up with a period ∆ and check whether there is any
transmission currently ongoing. If so, the receiver stays awake until the start of
the actual packet; else, it immediately goes back to sleep. A transmitter must
ensure that a receiver will actually stay awake before it transmits the packet by
sending a preamble for (at least) a length ∆.

El-Hoiydi [1,2] has analyzed preamble sampling’s delay and throughput, ex-
tending the classical Aloha-type analysis. What is missing is an optimization of
the preamble length for Poissonian event arrivals and an analysis how to adapt
the length to an unknown arrival rate.

This paper is a first step to such an optimization. To keep the analysis
tractable, only the case of a single transmitter/receiver is considered; a multi-
transmitter MAC case is left for future study. For a single transmitter/receiver
pair, the paper analyzes (Section 2) and optimizes (Section 3) the preamble
length ∆ for energy consumption and provides a simple-to-use approximation
formula suitable for in-field adaptation; it characterizes the overhead necessary
to adapt to an unknown (Poissonian) arrival rate (Section 4), and it looks at the
overhead caused by Markov-modulated Poisson traffic (Section 5).

2 Analysing energy consumption at given preamble
length ∆

Assume a transmitter with Poisson events of rate λ. The packet duration is TPkt,
the transmission power is fixed at PTX, the power consumed during reception
(of preamble or packet) is PRX. For waking up and checking for a preamble, the
receiver consumes an energy Ewkup. There are two main simplifications here:
First, the CSMA aspect is ignored since there is only a single transmitter; second,
the time needed for detecting preamble/idle channel is assumed to be small to



∆ and is thus ignored. Also, the receiver restarts its sleeping/sampling cycle
after a packet has been received (because of Poisson events, assuming that the
statistics of the time to the next event is unchanged is acceptable).

The first step is to find the expected energy consumption as a function of
TPkt, PTX, PRX, Ewkup, λ, and ∆ (expectation taken over the random arrival
process). To do so, the distribution of the number of wakeups before detecting
a premable and of the remaining preamble listening time are derived.

2.1 Number of wakeups

Let X be a random variable describing the inter-event times (and, thus, roughly
the times between transmissions of a preamble); X is exponentially distributed
with parameter λ and successive X are independent of each other. Let Z be a
random variable describing the number of wakeups a receiver executes before
receiving the preamble. The density of Z is:1

P (Z = k) = P (k∆ 6 X 6 (k + 1)∆), k > 0
= P (X 6 (k + 1)∆ | k∆ 6 X)P (k∆ 6 X)
= (1− P (X > (k + 1)∆ |X > k∆)) P (X > k∆)

= (1− P (X > ∆))P (X > k∆) = (1− e−λ∆)e−kλ∆

Note that from line 3 to 4, the memoryless property of X is used. Thence:

E[Z] =
e−λ∆

1− e−λ∆
(1)

2.2 Time to listen to preamble

Suppose now that the receiver has detected a preamble. How long does it have to
listen to the preamble before the actual packet starts? Let the random variable Y
describe this time. It is easiest analyzed looking at its complementary cumulative
distribution function, again using the memorylessness of X in the second step
of Equation (2); FX is the cumulative distribution function of X; 0 6 y 6 ∆ .

P (Y > y) = P (X > y + k∆|X > k∆ ∧X < (k + 1)∆) for some k

= P (X > y|X > 0 ∧X < ∆)

= P (X > y|X < ∆) =
P (y < X ∧X < ∆)

P (X < ∆)
=

FX(∆)− FX(y)
FX(∆)

.

(2)

Thus, P (Y 6 y) = 1−(1−F (y)/F (∆)) = (1−e−λy)/(1−e−λ∆). Some arithmetic
then yields the expected preamble receive time:

E[Y ] =
1
λ
− ∆e−λ∆

1− e−λ∆
. (3)

1 In essence, this derives the known result that an exponential r.v. corresponds to a
geometrically distributed number of fixed time slots.



2.3 Expected energy consumption per MAC interaction

Putting Equations (1) and (3) together gives the expected energy consumption:

E[energy] = (∆ + TPkt)PTX + E[Z]Ewkup + (E[Y ] + TPkt)PRX

= (∆ + TPkt)PTX +
e−λ∆

1− e−λ∆
Ewkup + (

1
λ
− ∆e−λ∆

1− e−λ∆
+ TPkt)PRX.

(4)

The term (∆+TPkt)PTX is the transmitter’s energy consumption to transmit
a packet, the term E[Z]Ewkup the energy for the wakeup attempts, and the last
term is the energy to receive the remaining preamble and the actual packet. Any
additional overhead for ACKs or retransmissions is not accounted for.

Figure 1 illustrates Equation (4), using parameters similar to those in refer-
ence [1]; the circles highlight the optimal ∆ for a given λ.
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Fig. 1. Expected energy consumption (in J) for various λ (in 1/seconds) as a function
of ∆ (in seconds); PTX = PRX = 5mW, TPkt = 1ms, Ewkup = 0.25 µJ

3 Optimize energy consumption in ∆

Choosing an energy-optimal ∆opt is, in principle, easy given Equation (4). An
analytic derivation, however, becomes unwieldy and would hardly be practical to
use on a wireless node at runtime. It is also not necessary. Rather, for given values
of TPkt, PTX, PRX, and Ewkup, a simple approximation of ∆opt as a function of
λ can be derived by regression fitting Equation (4).

As it turns out, the logarithms of λ and ∆ can be easily fitted using a
quadratic polynomial, shown in Equation (5); ∆f indicates the fitted value for
the optimal ∆. (Linear fits are not quite acceptable over a wide range of λ.)

log ∆f = a log2 λ + b log λ + c (5)

For the example parameters used in Section 2.3, a = −0.0026, b = −0.5269,
c = −5.0171. The fit for ∆ is shown in Figure 2(a), the resulting energy consump-
tion in Figure 2(b). In this example, the largest increase in energy consumption
when using the fitted ∆ instead of the optimal computed ∆ is about 3.5 %.
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Fig. 2. Fitted ∆ and resulting energy consumption for various λ; PTX = PRX = 5mW,
TPkt = 1 ms, Ewkup = 0.25 µJ (note double-logarithmic scales)

4 Adapting ∆ to an unknown, fixed arrival rate

Using such a regression-based fit, even a sensor node can choose a near-optimal
∆ for a given λ. However, λ is usually not known. A simple idea is to use observed
interarrival times of events and to estimate the actual λ. A common option would
be to store a few observation and then use a maximum likelihood estimator, but
this needs memory. Alternatively, a simple autoregressive estimation of the mean
arrival time can be attempted: Maintain an estimate λi of the arrival rate after
i events have been observed, update this estimate using the interarrival time
(IAT) of the i + 1st event and a constant smoothing factory α ∈ (0, 1).

1/λi+1 = α/λi + (1− α)IATi+1 (6)

Assuming an arbitrary, initial arrival rate of, say, λ0 = 1, and using the
estimated λi to derive ∆ from the fitted model, what is then the energy over-
head? First, Figure 3(a) shows the average number of steps to adapt λ, from an
arbitrary start value of 1, using different adaption parameters α.

The energy consumption itself can be obtained by simulation. Assuming a
preamble length ∆ and the time to the next event is TTE, then the actually
(not expected) consumed energy is given by Equation (7).

Eactual = (∆+TPkt)PTX+
⌈

TTE

∆

⌉
Ewkup +(TTE−∆

⌊
TTE

∆

⌋
+TPkt)PRX (7)

Thence, the energy consumed when using (clairvoyantly) the correct λ to com-
pute ∆ or an estimate of λ as computed according to Equation (6) can be com-
pared. Figure 3(b) shows this ratio: For a wide range of λ, starting from an inital
estimate of λ = 1 only has a small energy overhead when adapting λ and, thus,
∆. Results were obtained using the parameter settings from above, 200 events,
and averaging over 200 independent iterations (clearly, the more steps are used,
the lower the overhead for the initial adaptation becomes – this is addressed in
the following section). Apparently, α = 0.8 seems like a good choice.
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Fig. 3. Adapting ∆ to a fixed λ (confidence intervals for confidence level 0.95)

5 Adapting ∆ to a Markov-modulated Poisson process

For a WSN MAC, an important function is to be able to change between
“modes”, e.g., “normal” and “alarm”, with severe changes in event arrival rates.
One adequate model is a Markov-modulated Poisson process (MMPP), where a
two-state Markov process represents “normal” and “alarm”; the two associated
Poisson processes have low or high rate. As example, state holding times of 10000
and 1 seconds and corresponding rates of 1/100 and 10 1/s are used; Figure 4(a)
shows a sample path.
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Fig. 4. Adapting ∆ to a Markov-modulated Poisson traffic

The average consumed energy is larger when adapting ∆ to the observed
IAT values instead of to the correct λ (Figure 4(b)). The apparently comparable
behavior for low holding times is deceptive, caused by fewer messages and more
events per message because of an incorrect ∆ (Figure 5(a)). The high energy



consumption of an incorrect ∆ is mainly caused by long times spent in sending/
receiving the preamble (Figure 5(b)).
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Fig. 5. Details on protocol behavior

6 Conclusion

To conclude: Optimizing the preamble length to the traffic rate is important for
preamble sampling. For a fixed traffic rate, it is even possible to automatically
adapt without too high an energy penalty. For varying traffic patterns, however,
a self-adapting MAC protocol runs the danger of (a) missing or delaying mes-
sages (when switching to alarm mode) and (b) running at high overhead when
switching back to normal mode. The crucial point is that even though the trans-
mitter might be aware of a change to a high traffic rate, there is no means of
informing the receiver of such a change before the next ∆! A change to a low
rate can be more easily announced to the receiver, assuming the sender has this
knowledge – but this knowledge would have to be present at the last message
sent during the alarm mode, at the high data rate, to give the receiver an indi-
cation to switch to a ∆ for lower traffic rates. This might not always be feasible,
either. Hence, additional MAC or cross-layer mechanisms are necessary.
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