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Abstract

An important implementation aspect of federated
database systems is the implementation of the trans-
action synchronization component. Most approaches
in database transaction synchronization are based on
a single synchronization strategy, e.g. locking or val-
idation. However, the adequacy of a transaction syn-
chronization strategy often depends on the expected
probability of conflicts. Therefore, it seems to be ad-
vantageous to adapt the synchronization strategy to
the expected conflict probability. This paper describes
an integrated scheduler based on predicative locking
and predicative validation, which adapts its synchro-
nization strategy to the expected conflict probability.

A comparison of predicative locking and predicative
validation shows that predicative locking is superior to
predicative validation if many conflicts occur, whereas
predicative validation performs better if no conflicts
occur. In order to combine the advantages of both
synchronization strategies and to avoid their disadvan-
tages, we develop an integration of both strategies.
The integrated synchronization strategy uses an effi-
cient heuristics in order to choose the appropriate syn-
chronization strategy. An implementation of all three
predicative synchronization strategies (locking, valida-
tion and their adaptive integration) within a single fed-
erated database system shows that the integrated syn-
chronization is superior to both predicative locking and
predicative validation.

*This work has been partially done at the University
of Frankfurt and has been supported by the Deutsche
Forschungsgemeinschaft under Grant-No SCHM350/3-1.
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1 Introduction

A federated database system consists of a server con-
taining the database and a couple of workstations
which concurrently execute transactions of application
programs. The transactions are synchronized by a
scheduler the main part of which is located on the
server and schedules the access to the database. We ar-
gue that the appropriate synchronization strategy for
accesses to this database may be very much applica-
tion dependent and therefore the server should inte-
grate more than one synchronization strategy.

This paper presents an integrated predicative synchro-
nization strategy based on both predicative locking and
predicative validation. This integrated synchronization
uses an efficient heuristics in order to choose an ap-
propriate synchronization strategy. The heuristics is
motivated by a comparison of predicative locking and
predicative validation. It is further confirmed by per-
formance tests for a given set of transactions. The per-
formance tests compare predicative locking, predica-
tive validation, and the presented mmtegration of both
using an implementation of these strategies within the
DBPL database system [Bottcher, 1989]. Previous per-
formance evaluations in the DBPL database system
have shown that the time needed for predicative lock-
ing is less thon 0.1 % of the transaction run time on the
database server, if predicative locking nses an mcom-
plete theorem prover [Béttcher ef al, 1986]. Therefore
predicative synchronization is considered to he not too
expensive,

Correctness of transaction scheduling and a high
performance are considered to be the most impor-
tant propertics of a synchronization strategy for



transactions accessing a relational database (eg.
[Papadimitriou, 1986]).  Correctness of transaction
scheduling and especially the phantom problem
[Eswaran et al., 1976], [Bernstein et al., 1981], require
to use predicative synchronization instead of physical
synchronisation, On the other hand, performance com.
parisons have only been given for physical synchronjza.
tion (e.g. [Franaszek and Robinson, 1985]) but not for
Predicative synchronization.

Performance results comparing predicative locking and
predicative validation can not be expected to be the
same as for a comparison of Physical locking and phys-
ical validation, becauge physical locking uses a simple
locking mechanism whereas predicative locking uses a
fast theorem prover (e.g. [Bottcher ef al., 1986]) in or-
der to check lock compatibility. Similarly, performance
results comparing predicative locking and predicative
validation with ap integration of both may differ from
& comparison of physica] locking and Physical valida.
tion with an integration of bot} of these strategies.

That is why this paper describes ap integrated pred-
icative synchronizatioy strategy, and furthermore sum-
marizes the result of a Performance test for o given set
of transactions, which compares an implementation of

predicative locking, predicative validation and the pre-
sented integration of bot},

The presented inte
not only be applied to

ses, but also to object-oriented
databases using attribute inheritance (Béttcher, 1990a)

and to the synchronization of integrity constraints and
write operations [Béttcher, 1990b].

The paper js organized as follows,

The next section
summarizes the differences between

2 Predicative synchronizatiop

The phantom problem s solved b
locking and predjcat

locking or physical
[Reimer, 1983].

. ¥ both predicative
1ve validation, byt not by physical
validation [Eswaran e al, 1976),
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2.1 The difference between
predicative locking and
physical locking

Detailed descriptions of predicate locking are given
¢.g. in [Eswaran et al, 1976, [Bernstein et al, 1981]
The difference of predicate locking compared to phys
ical locking is that transactions lock predicatively de
scribed subrelations instead of tuples or physical rels
tons. Subrelations are subsets of the relation schems
of the corresponding relation. Two locks on subrels
tions of the same relation are compatible, if the subyc-
lations locked do not overlap, i.e. if there does not ex’ISt
any tuple in the corresponding relation schema YNIUCh
is contained in both subrelations. This overlapping of
subrelations is checked by a fast theorem prover.

In order to get a fast theorewm prover for predicative
locking, we allow that jt is incomplete, i.e. the ther
Tém prover may decide, that it can not find out whcthci;
or not two subrelations overlap. In this case (and f
the subrelations overlap), the scheduler delays one ot
the transactions, Only if the theorem prover finds og
that both transactions can run in paralle], the. scll‘"
uler allows them to run in parallel. As described u'l
[Bsttcher et al., 1986] the theorem prover has a Clomc
plexity of 0(113) and finds out all typical cases wher
both transactions can run in parallel.!

The time needed for predicative locking could be. re
duced to ess than 0.1 % of the transaction run time
because the DBPY, database uses an incom}fl‘f“‘: thz
orem prover. Therefore predicative synchronization !
considered to be not {00 expensive.

2.2 The difference between
Predicative validation and
physical validation

. . 83)-
Predicative validation is described in [Reimer, 1963

The division of transactions into phases, the nssxg::
nent of transaction numbers, and the rule which t?‘:ns
action has to validate against which other transact fo
fre equal to the parallel validation algorithm glveltl‘hf
physical validation [Kung and Robinson, 1981]. .
difference betweey predicative validation and physt

. . . . . M i con‘
validation lies in the evaluation of the validation
dition,

5
) ) - : cates
As in physical validation, every transaction allo

R I 5¢S-
read set and o write for every relation it acces

,‘.;,‘_“ e o not ﬁnd out
The cases, where the theorem prover can erlap:
in a time 0(n’) whether or not two subrelations oV

ur it
are only of theoretica] interest, but usually do not occ
Practice.



predicative validation, the read set of a database re-
lation contains the subrelations accessed by queries of
the transaction?, and the write set contains old and
new values of tuples written by the transaction. The
validation condition of predicative validation is the fol-
lowing: Two operations of two transactions are in con-
flict, if there is a subrelation contained in the read set
of one transaction and there is a tuple in a write set
of the other transaction so that the tuple is contained
in the subrelation. This containment is checked by the
query evaluation system.

Because of these differences between predicative vali-
dation and physical validation and between predicative
locking and physical locking a comparison of predica-
tive validation and predicative locking may lead to dif-
ferent results from a comparison of physical validation
and physical locking.

3 Comparing and integrating
predgcative validation and
predicative locking

On the basis of a discussion of the advantages and
disad vantages of predicative validation and predicative
locking, we present an integration of both strategies
with the aim to combine the advantages and to avoid
the disadvantages.

3.1 C?mparing predicative locking
with predicative validation

The following discussion of predicative locking
and predicative validation extends a discussion in
[Brigger and Reimer, 1983]. The disadvantages of

predicative locking compared to predicative validation
are:

* If predicative locking grants locks which are larger
than necessary, then parallel transactions are
blocked although they do not conflict. If on the
other hand predicative locking requires locks as
small as possible, then the time for checking lock
compatibility may become very long.

* Every lock compatibility check has to be per-
formed on a global data structure and has to be
synchronized against lock compatibility checks of
parallel transactions. This decreases parallelism.

¢ Incrementel locking may lead to deadlocks. On
the other hand, a deadlock-free locking policy re-
duces paralleism.

2
@ The read set farthermore contains the subrelations
Mtacterizing the modified parts of the database relation.
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o Two-phase locking requires to lock objects longer
than they are accessed. This delays other trans-
actions which could run in parallel under predica-
tive validation.

The advantages of predicative locking over predicative
validation are:

o If the transactions lock subrelations described by
a simple selection condition, then it is faster to
check whether these subrelations overlap or not
than to use queries during the validation phase.

¢ Validating transactions are backed up and
restarted, if serializability is endangered. With
an increasing number of conflicts, this leads to
a considerable amount of unsuccessful transac-
tions. These unsuccessful transactions withdraw
resources like CPU-time nnd disk accesses from
successful transactions.

Performance evaluations using an implementation of
both strategies in one single system, ie. the DBPL
database system developed at the University of Frank-
furt [Béttcher, 1989], confirm especially what follows:
Predicative locking is superior to predicative validation
for histories with a high ratio of conflicts, whereas pred-
icative validation performs better when very few con-
flicts occur (see also section 4.3). Therefore, it seems
to be advantageous to integrate both synchronization
strategies and to choose the appropriate synchroniza-
tion strategy depending on the expected mmounts of
conflicts. This approach is described in the next sub-

section.

3.2 Integrated synchronization based
on predicative validation and
predicative locking

We first outline the idea of the integrated synchroniza-
tion and afterwards give an example.

A key to the iden belind the presented integration
is that the conflict probability of operations depends
on the size of the subrelations accessed by the opera-
tions, i.c. usually tuple operations have a lower conflict
probability than set-oriented operations accessing large
parts of a relation.

A transaction may contain some operations with a
lower conflict probability, i.e. tuple operations, and
other operations with a higher conflict probability, e.g.
set-oriented operations. Therefore, we do not require
that this transaction uses the same synchronization
strategy for each of its operations. Instead, we allow
that some operations are synchronized by validation,

whereas other operations of the same transaction are
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l set-oriented opcratio?l
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(predicative) locking

set-oriented operation

(predicative) Tocking
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Figure

synchronized by locking. This means that the synchro-
nization strategy needs not to be chosen at the leve]

of transactions, instead it can be chosen at the level of
operations.

Furthermore, a given operation (e.g. a tuple operation)
may have different conflict probabilities with different
other operations, i.e. conflicts with other tuple opera-
tions are legs probable than conflicts with set-oriented
operations. Therefore, we allow that the given opera-
tion is synchroniged with one strategy (say validation)
against other tuple operations and with another strat.
gy (say locking) 8gainst set-oriented operations.

The overall idea behin i

operations are
locking, if on the other
f this pair of operations
are synchronized by (pred-

synchronized by (predicative)
hand the confljct probability o
is low, then the operations
icative) validation.

ented in the DBPY, database
the synchronization strategy
ristics distinguishes twq kinds

e relations Supported by t)e
database Programming language DBPI,: tu

tions and set-oriented operations.
tions are only in conflict ;

s that the

8 set-oriented operation
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1: Selected Synchronization strategy depending on the operations.

both operations vote for validation and they are Vﬂl}'
dated against each other. If however one operation s
a set-oriented operation, then this opcmti_oll votes.fof
locking and both operations are synchronized aglfmsg
each other by locking.  The heuristics is summarse
in the table given in figurel.

Now we give an example in order to illustrate the
heuristics: Consider three transactions Ti1, T2, T3 “;t
cessing the same relation. T1 and T2 perform & tl'lpn
operation and T3 performs a set-oriented OPerat;;;
Then the DBPI, heuristics assumes that the co’;;cis
probability hetween the operations of T1 m\d’ of
low, while the confliet probability of the opersti
T3 with the operation of T1 (and the operation (:lulcr
respectively) is high, This menns, the DBPL sc.hction
synchronizes the operations of T1 and T2 by.vnhdi‘dw’
whereas the set-oriented operation of T3 is SJmtu e
nized against the tuple operation of T1 (“,“d the k'IfK-
operation of T9 respectively) by (P"dicatlve) lock

In the integrated synchronization®, one of .bOtl,l St)r 1:1
gies (predicative locking or predicative va]_.ldntw“ dent
be chosen for any single pair of operations mdepenther
from the synchronization strategies d‘osen_for oak
Pairs of operations. The correctness of this integr
synchronization is stated in the following theoren:

Theorem:

oy et
I & scheduler uses the algorithm outlined II]ﬂsizt.
tion 4.2 and synchronizes cach pair of f';“r by
Ing operations of different transactions et :“cn.
(predicative) two-phase locking or by (Prc by
tive) validation, then every history produc
the scheduler s serializable.

9l
The proof of this theorem is given in [Béttcher, lf9 30]r
It is an extension of the serializability pro° o
two-phase locking, which can be found C'g'ot de
[Bernstein o al, 1987]. Since the proof d?cs » the
pend on Properties of predicntive synchl'omzamlh’
theorem holds for physical synchronisation as wel

ed on int®
The Implementatipn of the scheduler base

jons 4.187
grated synchronization js deseribed in the sections
42,
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" p-read-lock [ p-write-lock l e-rend-lock [ e-write-lock J

p-read-lock compatible compatible compatible not compatible
p-write-lock compatible compatible | not compatible | not compatible
e-read-lock compatible not compatible compatible not compatible
e-write-lock || not compatible | not compatible | not compatible | not compatible

Figure 2: Compatibility of p-locks and e-locks.

4 Implementation and
experimental results

Having outlined the idea behind integrated predica-
tive synchronization, we now describe the implemen-
tation of the heuristics within the DBPL database sys-
tem, sketch the transaction scheduling algorithm, and
present a performance test, which demonstrates that
at least for the tested transaction load the integrated
scheduling is superior to hoth predicative locking and
predicative validation.

4.1 Implementation of the heuristics

Since predicative validation is already described in
[Reimer, 1983] and the fast theorem prover used for
lock compatibility checks in the DBPL database sys-
tem is described in [Bottcher et al., 1986], here we re-
strict the implementation description to the heuristics
selecting the synchronization strategy.

In order to implement the heuristics, the lock table
of the DBPL database system distinguishes between
two kinds of locks, exclusive locks (e-locks) and par-
ticipation locks (p-locks). e-locks forbid other Jocks on
overlapping parts of a relation, whereas p-locks forbid
¢-locks on overlapping parts of a relation, but allow for
other p-locks on the same relation. Pairs of operations
f"hiCh are locked by p-locks are synchronized by pred-
icative validation. The heuristics uses e-locks for set-
oriented operations and p-locks for tuple operations.
The lock compatibility is summarized in the table of
figure 2 which also distinguishes read locks and write
locks. This compatibility matrix guarantees that p-
IOCk_s only have to be checked against e-locks but not
against other p-locks. Hence, if two operations are syn-
chronized by validation, i.e. they use only p-locks, then
n?,lod( compatibility check® is needed. Lock compati-
b{hty only has to be checked, if two operations have a
!“g}t conflict probability and are synchronized by pred-
leative locking, i.e. if at least one of them is a set-
oniented operation and requires an e-lock.

e

4 . .y
That is the most expensive operation of predicative

'Ocking,
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In a similar way validation is resiricted to be performed
only for those pairs of operations, with a low conflict
probability, i.e. tuple operations for which a p-lock was
required. In order to implement this restricted vali-
dation, the integrated scheduler keeps in the rend sets
only used subrelations of the operations with a low con-
flict probability, and similarly it transfers only the old
and new values of these operations into the write sets.
Since the integrated synchronization does not collect
the old and new values of set-oriented write operations
in the write sets of the transactions (as predicative val-
idation does), queries during the validation phase are
applied to much smaller write sets than this is the case
with predicative validation.

To summarize: Every pair of conflicting operations
is synchronized by only one synchronization strategy,
predicative locking or predicative validation. A fast
heuristics selects the appropriate strategy depending
on the expected conflict probability, 1.c. depending on
ihe kinds of both operations. [f the conflict probability
between them is high, then locking is applied. If on
the other hand operatious are synchronized by valida-
tion using queries, then these queries only have to he
applied to small write sets.

4.2 The scheduling algorithm for
integrated synchronization

In the following sketch of the transaction schedul-
ing algorithm, < A > denotes that & is exe
cuted in a critical section.  The algorithm is
a combination of the parallel validation algorithm
of [Kung and Robmson, 1981], the two-phase lock-
ing algorithm and the two-phase commit protocol

[Bernstein ¢t al, 1987):

< tBegin >

read phase ;

< start validation >

validation phase( successful yalidated );
prepare to commit( successful validated );
IF successful comnitted THEN write phase ;
END ;

< tEnd > 3



The procedures  prepare to commit and
successful comited implement the two-phase com-
mit protocol [Bernstein ef al, 1987). The procedures
tBogin, start validation and tEnd are implemented
o8 described in [Kung and Robinson, 1981]. During
the read phase write operations are performed on local
copies. Read locks are required immediately before the
read operations, and write locks are required at the end
of the read phnse (before start_validation).® ALl Jocks
are released at the end of transaction (before tEnd). In

the validation phase only tuple operations (p-locked op-
rtations) are validated against other

{p-locked operations). Therefore, we
validation time of integrated synchron
short compared to ordinary validation

tuple operations
expect that the
1zation is rather

4.3 A performance test within the
DBPL system

Performance Tesults
predicative validation can not be ex

same as for a companson of physical locking and phys.
ical validation, because physical locking uses a sim-

ple lock compatibility chccking mechanism whereas
predicative locking nses o fast theorem Prover (e.g.

[Bottcher ¢f al,, 1986]) in order to check lock com

pati-
bility.

A performance comparison of
predicative validation should ¢
synchtonization strat

predicative locking and

onsider the Peculiarities
egies,

idation nseq query evaluat;
Hence it

which no

on in the validation phase,
$6€MS 10 be very difficult to develop 4 mode]

.t only considers the differences between both

tion may
prefecred to i
single databnge

More complicated
plement af) three g 1
system?®

Rumber of processes (
ting the same kind of
Performs twg Write opergt;
integrity check contain;
:Por the Teason see the correctney,
We used the DBPy databage 4
Univmity of Frankfyyt.

8 proof in th
Ystemn developed at the
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(written in DBPY, [Schmidt and Matthes, 1990) is s
follows.

HOT SOME t1 IF R1 SOME t2 I§ R2 SOME t3 IF B3
((t1.attr12 = t2.attr12) A¥D
(t1.a8t113 = t3.attr13) AW
(t2.attr23 = t3.attr23)

Whenever locking is used, the subrelations locked. for
the write operations overlap with the subrf:latJ.OHS
locked for the query. For the predicative vahdatlfﬂ,
the test distinguishes two cases, first that no conflict
occurs at all, and second the more realistic case that
some conflicts oecyr.’

We count the mumber of successful completed transac
tions within a fixed time interval (tmnsaction' trougﬁ-
put) and compare the integrated synchron.izatmn wrltll
predicative locking and predicative validation. The fok
lowing diagram shows the transaction throughput de

. ich sub-
pending on the number of parallel processes which su
mit transactions.

transaction
throughput

‘T

30

204

B

1 2 3 45
number of parallel processe

Line 1 denotes
line 3 4
line 3 4
line 4 ¢

the integrated synchronization,
enotes predicative locking, .
thotes predicative validation with conflicts,
enotes predicatjye validation without conflicts

i s Jation WIS
In this Performance test, predicative validation wbe-
if no conflicts occur at all, hut looses if conﬂxctsﬂuc
tween the query and the write operations of par

"This distinction g
scheduling, since the
Ways overlap wit), t
Operations.

. ted

0¢s not apply to locking or integr® N

subrelations locked for the q“e[yritt
w

he subrelations locked for the



transactions occur. Integrated synchromization is su-
perior to both predicative locking, and it is also supe-
rior to predicative validation, if there occur some con-
flicts. This performance evaluation has been confirmed
by other performance evaluations within the DBPL sys-
tem which yield similar results [Kupijai, 1988].

5 Summary and Conclusion

We have compared predicative locking and predicative
validation and have shown, that predicative locking is
superior to predicative validation if many conflicts oc-
cur, whereas predicative validation performs better if
no conflicts occur. In order to combine the advan-
tages of both synchronization methods and to avoid
their disadvantages, we have developed the integrated
synchronization. Integrated synchronization uses a fast
heuristics and schedules pairs of operations depending
on their conflict probability: Pairs of operations with
a low conflict probability, ie. pairs of tuple opera-
tions, are validated against each other, whereas pairs
of operations with n high conflict probability, i.e. pairs
including at least one set-oriented operation, are syn-
chronized by predicative locking.

F}uthermore, we have implemented all three synchro-
fuzntion strategies, predicative locking, predicative val-
idation and the integrated synchronization within the
federated DBPL database system and compared their
performance. The presented result shows that inte-
greted synchronization is superior to both predicative
locking and predicative validation. Altogether, inte-
grated synchronization seems to be an important im-
Provement to schedulers of federated database systems.
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