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I. INTRODUCTION

"The main purpose of this paper is to study sandwich theorems for
preordered abelian semigroups and to give conditions such that the set
of additive order-preserving functionals on such a semigroup is a
lattice semigroup and to show how preordered semigroups can be
applied. The main theorem of part 1L is a generalization of a theorem
of R. Kaufman. We prove that whenever an order-preserving sub-
additive mapping 8 from an abelian semigroup S[—0, - wof
dominates (5 > w), a superadditive map w: .S — [— 0, —+oc| then
there exists an additive order-preserving [—cc, + oo[-valued func-
tional which lies between w and 8. Of course, such a theorem leads 1n
the usual manner to extensions for additive functionals on sub-
semigroups. As an application we prove a result of H. Dinges which
is a generalization of the well-known extension theorem of G. Aumann;
in our proof we can drop the regularity condition which was necessary
in the original proof. Furthermore we generalize a theorem recently
found by H. Konig to semigroups.

I part III we study the inverse, where we have w = $ and we give
conditions such that there is an order-preserving additive functional
S —> [-— 00, -+ oo[ which lies between 8 and w. A similar problem is to
search for conditions such that the set of order-preserving additive
mappings S — [-—oc, o[ is a lattice semigroup. Of course these
results are closely related to D. A. Edwards’ interpolation theorem.
Actually we give a rather general semigroup version of a theorem of
L. Asimow and A. J. Ellis which they used for proving Edwards
theorem. As an application we obtain a slight generalization of the
Cartier—Fell-Meyer theorem and we prove some characterisations
of Choquet-Simplexes.
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II. SaNDWICH AND EXTENSION THEOREMS

In the following (S, -, <) always denotes a preordered abelian
semigroup, i.e., the relation < is reflexive, transitive, and compatible
with the semigroup structure (a<b c<d=>a+c<b+ d).
Every subsemigroup T of a semigroup S gives a natural T-preorder
in S by

a<{b<=3deT:a+d—=1% (a, b€ 8).

This relation is clearly compatible with the semigroup structure.
Every compatible preorder in an abelian group 1s of this kind, however
this is not true for semigroups.

We are interested in (.S, <)* the set of order-preserving homo-
morphisms from S — R = [— oo, +oo[ and (S, <)* the set of
order-preserving subadditive mappings .S — R. As usual a mapping p
is called (super)-subadditive if (51 -+ 5:0(=) < p(sy) + plsy) for all
$1, 85 € S. If the preorder under consideration is the equality we write
S* and S#. (S, <)* and (S, <.)* endowed with the pointwise order on
S (which we also denote by <)) are ordered abelian semigroups and
they admit a scalar multiplication by R*. a — 4 denotes the canonical
mapping S — [(S, <)*]*.

If S does not have a neutral element, we adjoin a neutral element 0
and extend <C in the trivial way by assuming that 0 is only comparable
with itself. Thus the proofs become simpler, but all theorems remain
valid for semigroups without neutral element.

2 € (S, <)* is called homogeneous if P(ns) = np(s) Vse SVne N =
{0, 1,2,..}. For ge (S, <)* there exists a maximal homogeneous
(S, <)* =27 < ¢ defined by: g(s) = inf{(1/n) g(ns) |0 ¢ ne N}. If

P (S, <)* is homogencous then either p(0) =0 or p = —o0
(e, p(s) = —oVse S).
THEOREM 1. If wis superadditive < § & (.S, <X)* then there exists a

r (S, <)* such that w < p < 8.

Proof. Let P C{pe(S, *|w < p < 8} be a maximal chain
with respect to the pointwise order on S. Since
» = inf(p)
is order-preserving and subadditive it is a minimal element of
{Pe(S, *|lw < p <8}, this implies in particular that p is
homogeneous. We prove that # is additive. If there exist t,,8,€8
such that u(r, 4 t,) < #(t;) + p(t,), then there are £ meR with
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& < w(t), p < wlts), p(ty + 1) < € + 7. The functionals ., p,
defined by

pe() = inf{ém + p@)ImeN, t < mt, 4 £}
) = inf{ym + p(f) |meN, t << mty, + £}

are order-preserving subadditive and ;,u. Since p is minimal neither
w < pe nor w < p, can be true. So there are s;, 5, , ¥, , ¥z €5 and
0 =% my , my € N such that

s <ty + 3y, Emy 4 () < o(sy)
So Kty + Yo, My + p(Fa) < wsp).
Multiplication by m, , m, and addition gives the strict inequality
(€ + ) myms - mau(¥y) + mp(ys) < my(sy) + Mye(sy)

Using the inequalities for £, # and the fact that u is subadditive and
superadditive we get

plmymy(ty, + t5) + mayy + myYp) << w(mgsy + mysy).
Since p is order-preserving > this is a contradiction to
Mysy — mysy < mymy(ty -+ ty) S+ myyy +miye .

CororLARY 1.1. If T is a subsemigroup of S, pe (7T, <)* and
8e (S, )" with u <, 8 (ie., u(t) < 8(t)Vte T), then there exists a
ve (S, <)* such that n <r v << 8.

Proof. Application of Theorem 1 to the superadditive functional w
defined by w(s) = {u(s) if s € T, — oo othcrwise}. |}
CoroLLARY 1.2. If p € (S, <)* is homogeneous then
p(s) = sup{u(s) [ (S, <)*sp < p}-

Proof. T(x) = {nx | ne N} is a subsemigroup of S for any x € S,
and p is additive on T7T(x). Corollary 1 gives a g, € (S, <)*
P <ramyp.<p |

CorOLLARY 1.3. Let T be a subsemigroup of S and p e (T, <)%,
8 € (S, <)* such that . <; 8, then there exists an extension ji € (S, <)*
of w such that i < 8 if and only if:

(x) [t, < t, + 5 = u(ty) < p(ty) + 8(9)] Vt,,t,eT, se8.



4 BENNO FUCHSSTEINER

Proof. Define n (S, <)* by n(s) = inf{u() + 8() |t +§ > s,
teT,§e S} (+) implies that 4 and p are equal on T, so Corollary 1
gives an extension. The only if part is trivial. | |

Theorem 1 generalizes a result of R. Kaufman [12], who proved the
same theorem without considering preorder relations. An equivalent
to Kaufman’s theorem can be found in a paper by P. Kranz [16]. If
§'is an abelian group our theorem is in fact a consequence of Kaufmans
result, but this is not true in general for semigroups. Sandwich and
extension theorems for ordered vector spaces have been studied by
many authors, many results can be found in the work of S. Simons
[18, 19]. A good survey of the literature connected with the Hahn-
Banach theorem (before 1969) can be found in the references of
B. Rodriguez-Salinas Palero [20] (125 references!).

If S is a group the Hahn-Banach extension theorems follows
immediately from Corollary 3. If in Corollary 1 the semigroups under
consideration are real vector spaces and — oo 7= w then the functional »
is automatically an extension of 1 and v is linear if

lim 8(As) = QVse S,
R3A-0

this follows from the density of the rationals in R.

Regularly ordered semigroups have been studied by G. Aumann [4]
and H. Dinges [8]. In the following we shall derive their results as
applications of Theorem 1, it seems interesting to note that the
regularity condition on the order relation is not necessary in both
cases. As a second application we give a generalization of a theorem
recently found by H. Konig [1 5].

Applications

If Z25{0}, YD {0} are subsemigroups of (S, +, <) then the
“Uberholerhalbgruppe” Y,> and the “Unterholerhalbgruppe’” Y,< are
Y>> ={seS|Aye Y,2eZ 0 = meN:y = ms + 3}

Y ;< :{seSJBer,zeZ,O F=meN:y << ms + z}.
THEOREM (Dinges [8, p- 463])*. Let U = (Y + 2y N\Yy, -,
p: S — R be superadditive with P(2) > —o0 for z€ Z, and p be an

R-valued additive functional on Y, then p can be extended to a v (U, <)*
such that

() v(u) = wa) + p(2) whenever w,iicU, zeZ, u =a+z

* The statement of the theorem has been slightly modified following J. Horvath.
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if and only if
(%) u(») = (P + p(8) whenever y,yeY, 2e€Z, y =9y 4 2.

Proof. 'The only if part is trivial. We define

w(s) = inf 1 [1() — w(3) — p)] |0 £ men,

y,jel’,zeZ,y}ns+y~+z$

8(5) = sup | [u(3) — u(») + p(a)] [0 = e,

v,yeY, zeZ,y+ns = z+5/:.
Then we (Y, ,, <)* and 8: (Y + Z); — R is superadditive. Let
s U and take arbitrary clements 3, , Vs, 1, $2€ Y, 2, %€ Z;,
0 == n, , n, € N such that

Y1+ ms =z 4G and Y2 2 RS+ Py X

By an elementary calculation we get n;y, == mn,s + m ¥y + 7,35,
and

My Fo = MaYy MMy - MRy 2 By S Np Yy M Py o MR
This implies 7, ¥, + 7,V == By3y + Ny ¥y — 7Y, — M3 and from ()
it follows n,[u(¥s) — w(F2) — P(z2)] = mo[(F) — p(yn) — p(21)]s
which implies 8 <, w. From this together with the inequalities
w <y u <y & we obtain w =, u =, 8. Now, by Theorem 1 there
exists a v € (U, <<)* such that § <, v <y w. v is clearly an extension
of p. And the desired inequality () follows from 8 ==, p and the fact
that u,ice U, 2e Zand u > & - z implies 2z U. ||

G. Aumann considered the case Z = S (i.e., p(s) > —o0 Vse .S),
then we can extend pon U = Y~

Now, we proceed to H. Konig’s Maximumsatz. Consider in
2 C S* a Hausdorff topology such that £ is compact and

S—={:Q >R |seS}

consists of upper-semicontinuous functions on 2. Let u € 5* such
that p < sup,..o ().
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Tueorem [Konig, 15]. There exists a probability measure o on Q
such that

u(s) < f §(w) do(w) Vs € S.

Proof. 'The result is trivial if u — — oo, therefore we can assume
#{0) = 0 and we consider in USC(£) (upper semicontinuous functions
£ — R) the pointwise order on Q. Let § e (USC(£), <)* be given by

3(/) = sup f(w).

Then 8 s> g where g e (S, <)* is defined by 4(§) = u(s). There
exists av € (USC(£2), <)* such that

Ii <gv <usc() O-

By the Riesz representation theorem the restriction of v to the con-
tinuous functions is a probability measure o. And

W8 < fo §(w) do(w) Vs € S

since v is order-preserving. Therefore has o the desired properties. |

For the special case £ — {#1,---» P} the measure ¢ has to be a
convex-combination of Dirac measures.

COROLLARY.  If u € S* with u < max(p, ..., Pa), where py,..., p, € 5%
then w is dominated by a convex-combination of the p, , i.e., there exist
nonnegative real numbers }, ..., A, such that

n n
Z)\,Zl and 'LA<ZA,-P,-.
i i=1

i=1

III. LaTrTICE SEMIGROUPS

We call (S, +, <) an L-semigroup if < is an order relation (anti-
symmetric preorder) such that any two elements 4,5 .S do have
aglba A bin S, such that the distributive law is valid for A, that is,
G+a)ya(d+¢c)=b-+c A a for all a,b,ce S. An L-semigroup is
called a CL-semigroup if it is conditionally complete (in the sense that
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every nonempty subset of S has a glb) such that the unrestricted
distributive law is valid for the g/b [Birkhoff 6, p. 200].

A +ajacZy=b+ A(Z) Vo +ZCS.

Every bounded set Q in a CL-semigroup .S (i.e., 3be SV geQ:
b = ¢) has a lub which we denote by V(Q) being equal to

A{seSiqg<sVqe0}

(S, <) has the decomposition property (DCP) if for all a, b,ce S
such that @ < & + ¢ there exist b < b, ¢ < ¢ such that @ = b+ ¢
(S, <) has the semiinterpolation property (SIP) if for all a, byc,de S
such that @ < b + ¢, a << b -+ d there exists an s€.5 such that
s<d s <c¢ a<b-+s Every L-semigroup and every preordered
group has the SIP. S has the finite sum property (FSP) if for s, 5,5,
5,5 € Swiths;, + s, = § + § there exist u;; € S(i=127=1,2)
such that s, — wu;; + 4 and § = #y; + uy; (1 = 1, 2).

Of course this property implies that whenever S s = i1 S
there exist u; € S such that s; = Siauy and §; = iy u; . This
is proved by a simple inductive argument. For any abelian semigroup .S
the FSP implies the DCP for the natural S-preorder. If the cancellation
law [Chevalley 7, p. 42] is valid in S then .S has the FSP if and only if
it has the DCP with respect to the natural S-preorder [Alfsen 1, p. 85].

The subsemigroup of (S, <)* consisting of the homogeneous
elements and (.S, <), = {u: S — R | u order-preserving and super-
additive} are examples for ClL-semigroups. The lub Vs, 0= (B)=p
of bounded sets B C (S, <)* is p(s) = supss 8(s), the pointwise
supremum of B on S.

From this we can calculate the gib A (s, )= () for nonempty sets
. Let us show that the unrestricted distributive law is valid if the
clements of X and b are homogeneous. Obviously

b+ A(S.g)# (2) éA(s,gy# (b + 2)

and from S*¥5 & < b -+ & V8 € X it follows from Theorem 1 that there
isape(S, <)*suchthat A —b < p <3V e X, and from this it
follows

B<b+ Ais.or (@)

Corollary 1.2 gives now the desired result. The glb
/\(s.<), (4)
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of nonempty sets A C (S, <), is equal to the pointwise infimum of 4
on S, the validity of the unrestricted distributive law follows imme-
diately from this fact.

Now, we shall give formulas for the lub in (S, <), and gl in
(S, <)*. Letf: S — R, and consider the functions

() = inf if(si)lne N, s << il 5; (1)
(@) =, sup if(si) [neN, 21 s; < sg. (2)

Obviously f > f~ e (S, <)* and whenever f = gpe(S, <)*, then
o <f . If f<w is bounded by an element w e (S, <), then
J<f e(S, <),.. Thus whenever & # Q C(S, <)* and gls) =
inf{g(s) | g € O} then g~ = As.<1# (Q) is the glb of O, and for any
bounded set P C (S, <),., &~ — Vs, <)+ (P) is the lub of Pin (S, <),
where A(s) = sup{p(s) | p € P}. The following remark is easily checked
by a straightforward calculation.

Remark. 1f S has the FSP and (S, <) the DCP then " is additive
whenever w € (S, <), . In this case it follows that we have

1

If S has the FSP and (S, (<)) the DCP, where (<) is the inverse
of < then 8 is additive whenever § ¢ (S, <)* is dominated by an
we (S, <), . We have in this case

n

> w(s)|neN, s =

i=1 i

M=

w™(s) = inf

8%(s) = sup

Z'L:S(s,-)]nel\l, i $; :sé.

i=1
As a consequence of this remark we obtain:

THEOREM 2.

() If S has the FSP and (S, <) the DCP then (S, <)* is a
CL-semigroup such that Jor any nonempty A C (S, <H*

A(s_<)#(A) =A(S.<)*(A) = /\s#(A) = AS*(A)‘
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(ii) If S has the FSP and (S, (<)) the DCP then (S, *isa
CL-semigroup such that for any A C (S, <)* bounded by an w € (S, <),
we have

V@=V @=VH=VH.
(5.7 (5., S, 5=

(iii) If S has the FSP and (S, <) or (S, (<)) the DCP then
(S, <)* interposes [(S, <), (S, <)7], te, whenever (S, <).32 w =
8 € (S, <)* then there exists a p € (S, <)* such that w = p = 3.

COROLLARY 2.1. If S has the FSP then S* is a CL-semigroup such
that Ne (A) = As=(A) for @ 5= AC S* and s+ (B) = Vs (B) for
any bounded B C S*. Furthermore S* interposes [ S, , S7].

This generalizes a result of L. Asimow and A. J. Ellis [5, p. 304]
which leads to D. A. Edwards’ interpolation theorem [9] and to
T. Andd’s theorem [2]. The following is a partial converse of
Theorem 2.

THEOREM 3. If pe(S, <)* ¢1,¢€(S, <)* and p < ¢ + ¢
then there are pq,ps € (S, <)*, py < ¢1, po < gp Such that p <
py + po - If (S, <) has the SIP then p, and p, can be chosen such that
M= Hy o Me -

Proof. Considerin S @ S the preorder

(51,%) < (G, H) = (5 <57 and s, < §)

and let 45 be the diagonal subsemigroup {(s,s)  se .S} of S & S.
Define i € (48, <)*, 8 (S @D S, <)~ by (s, s) = p(s) and

8(sy 5 82) = q1(51) -1- ga(s2)-

Since 8 4, A there is a ve (S D S, <)* such that g <, sv < S.
If (S, <) has the SIP and (5, So) < (51, 81) + (52, $3) then there
exists an s, such that (s, , 54) < (52, 53) and (s, o) < (515 51) + (815 AR
this implies fi(sq 5 o) << fi(sy > $1) + 8(s2 , 53), and using Corollary 1.3
we may assume [ =45 v if (S, <{) has the SIP. By taking u, , po
defined by p,(s) = »(s, 0) and py(s) = (0, s) the theorem is proved. |

CoroLLARY 3.1. (S, <)* has the DCP whenever (S, <) has
the SIP.

Since every L-semigroup has the SIP, (S, <)* has the DCP for
every L-semigroup.
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Applications

Combining H. Kénig’s theorem and Theorem 3 we obtain the
following result, which is also duc to H. Kénig if S is a vector space
without order structure.

THEOREM. Let we (S, <)* and 41 5ees @ € (S, K)* such that
B < max(q, ,..., g,) then there are My sy o € (S, )™ with p; < g
Jor i = 1,..., n such that i is dominated by a convex combination of the
ki - If (S, <) has the SIP we can chose the u; such that p is equal to @
convex combination of the p, .

For the next application consider the following definition.
DEFINITION. For @ C §* the P-decomposition preorder <<, in Sis
given by:
§ <o § < whenever there are z e N and 51 5oy 8, € .5 such that
n
Y osi=s
i=1

then there are §, ,..., $, such that

S =35  and  §(p) = s(p) Vo .

s

Il
i

i

Remark 1. Let S have the FSP; then <, is compatible with the
semigroup structure in .S and S* is a CL-semigroup containing ®.
Now, let {p, ..., 9,} be a finite bounded subsct of the semigroup
generated in S* by &. If

then there is a decomposition of s:

Z §; = s

t=1
such that ¢, (5,) = #x(s;) for all 4, k << n. Therefore we obtain by
Eq. (2)

n n
Sup 2. 5 <os{ = sup 2 Pis:)

n
S osi=s
i=1 i=1 =1

=g v - v Pn)(s),

where v denotes the lub-operation in S* This implies that
(P v - v @) (S, < ). :

2”: @:(s;)

i=1
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Remark 2. Let 2 be a compact space. The semigroup M, (L)
consisting of the positive Borel measures on £2, has the Riesz decompo-
sition property and therefore M (£2) has the FSP. Consider a subset @
of B(2), the real-valued Borel-measurable functions on £2, and let
@ be the max-stable cone gencrated by @ in Bg(£2). A cone is max-
stable if with two functions their maximum belongs also to the cone.
Obviously @ C (M (), <)*. Since the lub of two measurable
functions in the CL-semigroup (M_($2))* is the maximum of the two
functions we obtain by Remark 1 the result ® C (M (), <z)*

Remark 3. Now, let F be a max-stable cone in Cg(£2) (real-valued
continuous functions on the compact space £2) which contains the
constants and consider in ¥ the usual pointwise order on £2. Let
o, 01 , 05 € M (£2) be such that for all feF:a(f) = oy(f) + oo f)-
Since F is an L-semigroup there are (Corollary 4.1) g, pp € (—F, <)*
such that for all feF: 1y (f) = o1(f), pa(f) = of) and o(f) =
w1(f) + po(f)- Now, one can extend u,,pu, uniquely to order-
preserving linear functionals on F—F and then by the Hahn-Banach
theorem (Corollary 1.3) to positive measures g, fi, on £2 such that
o = fi; + f,.! This implies that (M_(£2), (<r)™") has the DCP, where
< r stands for:

v <pv = v(f) <Hf)VfeF.

Using the last two remarks we have proved.

TuEOREM. Let @ be a subset of Bg(£), @ be the max-stable cone
generated by @ in Bg(Q) and F be a max-stable subcone of Cy(£2) and let o,
ve M. (2).

(1) If for any decomposition of

O

I
VR

[eg

i=1

tnto positive measures there exists a decomposition

I
INgE]

v v,

v
-

into positive measures such that fori = 1,..., nv{p) = olp) Vo € D then

o(f) < W(f) Vf €.

1 We extend first g, < g, ¢ to a positive i; < g+ @ onC(£2), where G, and C (£2)
are the positive functions in F — F and Cg(£2) respectively. Then we define fi, = o— &
and take the obvious extensions to Cg(£2). The conditions of Corollary 1.3 are fulfilled
since F — F is a lattice which contains the constants.
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(1) If o(f) < w(f) VfeF then Jfor any decomposition

a
l
™s

3

I
_

Z

into positive measures there is a decomposition

n
v =Y
i=1

into posttive measures such that: vi(f) = o f)VfeF, i = 1,.., n

b

Specializing this result by taking a compact convex set as £, the
affine continuous functions on £ as @ and as F' the sup-norm closure
of @ (the convex continuous functions) one obtains the well-known
Cartier-Fell-Meyer theorem [Alfsen, 1, p. 23].

In the next application we shall derive some of the classical charac-
terizations for simplexes. Let K be a compact convex subset of a
locally convex Hausdorff vector space, M (K) the positive Borel-
measures on K, A(K) the continuous real-valued affine functions on
K, A* the dual space with respect to the sup-norm and (4%)* D K
1ts positive cone which has the compact base K. By A, (K) we denote
the lower-semicontinuous affine functions K -» R, by P (K) the
min-stable cone generated by A4,(K) and by P(K) the continuous
functions in P,(K). For the minimum of the functions f, ,..., f, we
write min(f, ,..., £,). In the function semigroups we consider the
pointwise order < on X, in (A*)* its natural semigroup order, and in
]WJK)meonkr<(kmwdbyy-<v¢>Mf)>uUﬁVf6Pm3
7 shall be the weak *-continuous barycentric map M, (K) — (A*)*.

THEOREM. The Jollowing statements are equivalent:

(1)  A* is a vector lattice;
(i) A(K)isa L-semigroup;
(1)  there exists an order-preserving additive map ¢: P (K)—

A(K) such that (@) == a and @p(a - b) = a + @(b) for all a e A,(K)
and b € P (K);

(iv)  there exists an additive map &: (A*)r — M (K) such that
F(x)a) = x(a) for all x e (A%t and a € A(K);

(v) For every x e (A*)Y*t there exists a unique measure p. maximal
with respect to < such that () = x.
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Proof. (i) = (ii). If A* is a vector lattice then (A*)" has the
DCP (Riesz decomposition property) and therefore it has the FSP.
Then by Theorem 2 and Eq. (1), ((4*)")* is a CL-semigroup
D A,(K) such that for any two a, b€ A, (K)and x € K

(a A b)(x) = inf{a(xy) + b(xz) | ¥y, X € (AX)F, 2y 4% = ]
= inf{p(min(a, b)) | u € M (K), m(u) = x}.

a A b must be lower-semicontinuous on K because

{pe M(K) | m(p) e K}

is a compact space and min(«, b) is lower-semicontinuous on this space
and = is continuous.

(it) = (iii). We define for a,, a; ,..., @, € A(K)
e(min(a, ,..., a,)) = a A - A d,.

(iii) = (iv). Take for x € (A*)* the restriction of x - ¢ to P(K)
then there is a unique order-preserving extension to P(K) — P(K)
and by the Stone—Weierstrass theorem x - ¢ can be extended uniquely
to a measure on K. Now, define this extension to be §(x).

(iv) = (v). Since ¢ is additive we obtain from part (i) of our last
Theorem (Cartier—Fell-Meyer theorem) that u < §(x) for any u such
that 7(u) — x. So @(x) must be maximal.

(v) = (i). Since M (K) has the FSP the < -maximal measures
are a semigroup?® with the FSP. By the uniqueness of the maximal
measures, (A*)* has the FSP and therefore the DCP. Since A* is
directed and (4*)* has a compact base [Alfsen, 1, p. 85] A* is a vector
lattice.
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