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1.1 STRONG SYMMETRIES
IN a topol ogical vector space E we consider the evolution equation
u, = K(u),
'Where the subscript  denotes the time derivative. We assume that K : E ~ E (possibly nonlinear)

Is differentiable, Throughout this paper differentiable stands for Hadamard-differentiable. We
tecall that a function F: £ — £ between two topological vector spaces is said to be Hadamard-

differentiable [1] at ve E if there is a linear map L such that
lime™'(F(v + ex) — F(v) — eL(x)} = 0

(h

=0

uniformly in x on each compact subset of E. L{x) is then denoted by F'(r)[x] and can be obtained

from the directional derivative

F{t)[x] = E%F(U + Ex)gzo-

Let u(z) be a sol ution of (1) then we are interested in infinitesimal transformations
ult) = u(t) + emft), infinitesimal {2
which leave (1) form-invariant [2]. This is the case if and only if w(t) is 2 solution of N

w = K'()[w] (perturbation equation). |
’ = K(u41)). This follows immediately

One solution of the perturbation equation is for example w{t) - £ is given by (chain rule)

from the fact that the time derivative of F(u(t)) for some F: £
Flu(n), = Fun)[K(0)]

E is said to be a symmetry of (1) if the infinitesimal

(4)

whenever u(z) is a solution of (1). _
As usual [3] a vector-valued function §(-) o0

transformation

w(t) - u(t) + £S(ut))

leaves (1) form-invariant. K() is a symmetry.

* Dedicated to Prof. Dr. Heinz Konig on the occasion of his
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We endow the operators in E (i.¢. continuous linear maps E — E) with the pointwise convergence
on E. Hence an operator-valued function @(-) is differentiable at v if the function v — ®(v)y is for
all y e E differentiable. An operator-valued function ®(-) on E is said to be a strong symmetry for
(1) if D(u(t))wit) s a solution of (3) whenever u(t) and w(¢) are solutions of (1) and (3), respectively.
Because of the linearity of (3) the strong symmetries are a vector space.

1.1. Consequence. Let 9(") be a strong symmetry then the functions v — Q"(v)K(v),n=0,1,2,...,
are symmetries.

The evolution equation (1) is called regular if for every time t, and for every initial condition
ulty) = uy, uy € E, there is a unique solution u(r) = u(t, u,) for (1) which is differentiable with
respect to u,.

1.2. Lemma. Let (1) be regular and let u(t) be a solution of ( 1). Then for every time ¢, and every
initial condition wiz ) = wo. W, € E there is a unique solution w(¢) of the perturbation equation.

Proof. The desired solution is given by

-~

¢
wit) = —ult, ult)) + ew,).
(0= 2 ultultg) + 0w,

Now, let w({t) be a second solution to the initial-value problem under consideration. Then we
define (z, 7, £) to be the solution for the initial condition i(r, .¢) = u(t) + ewl(1).
Via differentiation we get

-

,i_ (it 7, ¢))] =0. (5)

ce =0

Hence because of w(t,) = w(t,) we may conclude

¢ ¢ . N
wit) = it t,,8) = —il(t, t,¢) = W(t).
ce ée
This shows that wi¢) is unique,

I.3 THEOREM. Let ®(-) be a differentiable operator-valued function on E and consider the con-
ditions:

(i) @) is a strong symmetry
(i) ), = [K'(u), ®(u)] whenever u is a solution of 1)
(1) 0 = ¥(0)K(r) — [K'(v), ®(r)] forall ve E,

where [ A. B]denotesthecommutatorand where @'(v)K(v)stands for the operator y — @' () K(v)]v-
Then (i) = (ii) = (i). And in case that ( 1) is regular all the conditions are equivalent.

Proof. (iii) = (ii) is a consequence of (4). Now, let u and w be solutions of (1) and (3) respectively
then for arbitrary @(-) we get via differentiation:

{Pww), — K®upw} = (D(u), ~ [K'(x), O(u)])w. (6)
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Hence (i1) = (i).
Now, if (1) is regular then in virtue of Lemma 1.2 the right-hand side of (6) vanishes for all

s.olutions of the perturbation equation if and only if (ii) holds. So, we have proved (1) = (ii). And
(ii) = (iii) follows from (4) and the fact that we may prescribe any initial condition for (1).

At the end of this subsection we would like to emphasize other useful properties of strong sym-
metries.

Asusualamapuv — p(v) e Riscalled an integral [4] for (1)if p(u(1) is time-independent whenever
u(t) is a solution of (1). These integrals are potentials for conserved covariant forms. To define
this notion, let E* be the dual of E and let us denote the application of some y e E* on ve E by
{y,v). Amap @:E — E* is called a conserved covariant if

{@(u(t)), w(t)) is time-independent

whenever u(t) and w(t) are evolving according to (1) and (3), respectively. Now, let @' denote the
transposed of @, then:

1.4. Consequence. If () is a conserved covariant and if @) is a strong symmetry thenv — @ (v)(v)
is again a conserved covariant,

Now, assume @) to be a strong symmetry such that condition (iii) in Theorem 1.3 holds. Then
the spectral properties of @(u(t)) are not changed while u(¢) evolves according to (1). For regular
evolution equations this can be seen from:

(D(u) — A)w), = K'(u) (D(u) — A)w.
In other words the perturbation equation leaves the eigenvalues of ®(u(t)) invariant. Now, let
S be a symmetry. then for reasons which become obvious later on we define a solution u(r) of (1)
to be an S-®-soliton-solution (or rather an N-multisoliton with respect to S and @) if for some ¢,

we have :
S(ulty) = Y wilto), "
n=1
where the w (t,) are eigenvectors of ®{u(t,)). If any solution w(1) of (3) with wit,) = 0 has to be
zero (especially if the evolution equation is regular) then obviously the decomposition (7) remains
valid for all times ¢.

1.2 HEREDITARY SYMMETRIES

We have already indicated that strong symmetries might turn out to be rather useful, but the

whole problem is how to find them. Usually that is quite easy for simple evolution equations

(like linear ones), but rather complicated for nonlinear ones. In this chapter we recommepd a
method which will allow us to pass over from strong symmetries for trivial evolution equations

to those for complicated ones.
First some words on notation. Consider a bilinear operator A, a linear operator B and some

ve E. Then we define the operator A* and the products AB, Av in the following way:
A% (¥, ¥2) = Az ¥1)
AB: (v, ¥,) = A(BY1. ¥))
Av: y — A(v, y)-
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In other words, the products are formed with respect to the first variable of the bilinear operator.
A is called symmetric if A* = A.

If &(*) 1s some operator-valued function on E, then we shall henceforth identify @'(v) with the
bilinear operator

¥y, ¥2) = P(v) [}’1])’2'

Now, a differentiable operator -valued function ®(-) on E is called a hereditary symmetry if for
all v € E the operator [®'(v), ®(v)] is symmetric. We want to put emphasis on the fact that this
definition does not depend on any special evolution equation.

We consider a function K(-) in E and we define L(v) = ®(r)K(v). Then with some calculation
we obtain the following formula

O'(v)L(v} — [L'(v), ®(v)] = &) {¥'(1)K(p) — [K'(v), ®(v) ]}

+ [@'(0), D(v)]K(r) — [D(v), D(v)]*K(r) (8)
From this we may immediately draw the following conclusion:

1.5. THEOREM. Let () be a hereditary symmetry with
P(v)K(v) — [K'(v), ®(v)] = OforallveE.
Then
Q') {r) - [L{v), D(v)] = Oforall v E,
where L(v) = &(r)K(v).

This together with Theorem 1.3 leads to:

1.6.CoroLLARY. If @(') is a hereditary symmetry and a strong symmetry for the regular evolution
equation

u, = Klu)
then @-) is a strong symmetry for the following evolution equations
= (Ou)y'K(u),n=0,1,2,....
Another consequence of (8) deals with the following

L7. Situation. Consider a subalgebra « of all functions from E to L(E, E) containing the functions

(), K'(*) and @'(")K{(-) and such that &) is not a zero-divisor of .&¢ (which is certainly the case
if & has no zero—dmsors)

1.8. THEOREM. Let @X-) be a hereditary symmetry, assume that & is as in 1.7 and assume that for
L{r) = ®(v)K(v) we have @'(v)L{v) — [L(v), L, ®()] =0VveE. Then

¥'(1)K(v) — [K'(v), ®(v)] = Oforall ve E.
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1.3 EXAMPLES

We consider for E the complex linear space C*(R) or #(R), where C*(R) are the infinitely
often differentiable functions on R and were #(R) = C*(R) are the fast decreasing functions.

We assume that E is endowed with a Hausdorff-topology such that ail the following operators
are continuous. By D we denote the differential operator and D! stands for

a

D7(w)(x) = J‘x w(é)dé VweE

where a e RifE = C*(R)anda = — 0 if E = #(R). If e C*(R)and v € E then ¢(v) denotes the
following multiplication operator:

(plow)(x) = p(v(x)w(x) YweE.

We have found that the following operators @ (u) are hereditary symmetries:

(HO) @, (1) = o(u)

(H1) ®,(u) = u D™ olu)

(H2) @,(u) = Plu) + u D™ ()

(H3) @,(u) =D + a(u D™ + u)

(H4) ®,(u) = D* + (y + 2fu + au?) + u DB + au),

where @ and ¥ are arbitrary elements of C*(R) and where o, B, 7 are scalars. The proof can be

found in the appendix. . o
Further hereditary symmetries we can easily obtain by restricting the linear structure in £ to

multiplication with real scalars.
In this case

(H5) ®(u) = iuD™'Re(i’)
(H6) @ (u) =D + iouD " 'Re(ii), 2 €R

are hereditary symmetries. Here, of course, the bar means complex conjugation and Re(ar’)

stands for the real-linear operator

w — L(@w + uw) = Real part of (iaw).
The restriction to real-linear structure is essential, otherwise these operators are neither differenti-
able nor linear.

2. APPLICATIONS

The heritage of the equation u, = u,.

2.1. The descendants ' ' _
In this chapter fast decreasing solutions of nonlinear partial differential equations are treated.

We show that the results of our symmetry considerations lead in a very natu.ral way to recursion
formulas for symmetries and conservation laws. F urthermore, our theory hides a new complete
description of the soliton solutions for the equations under consideration.
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Let % _(R) denote the space of those C*-functions vanishing rapidly at — cc. The space & _(R)
is embedded in the dual of #(R) via the following bilinear form:

J- Yx)u(x) dx in case that &(R) is regarded as a complex-linear space

ey =4°% )
f (v1(x)v,(x) + y,(x)v,(x)) dx in case that Z(R) is regarded as a real linear space,
R

where v, v,, y,, y, are real functions such that vy +iv, =vef(Ryand y, + iy, = ye ¥ _(R).
The space #(R) is endowed with a topology such that the functionals given by & _(R) and all
the following operators are continuous.

The obvious extensions of the operators @) to # (R)arealso denoted by @(-), and ®(u)* stands
for 1ts adjoint with respect to (9); i.e.

D%y, t) =y, Q) Vyes _(R),ve F(R).
2.1. Remark. For all the operators @(-) given by (H1) to (H6) we have

[D,(t)] = ¥(t)[v,] VreS (R). (10)

Hence, they are all strong symmetries for the trivial evolution equation: u, = u_.

Actually (10) remains valid for an algebra of operators. It does not hold if #(R) is replaced,
say by C*(R), because in this case D and D! do not commute. But with some skillful handling
of the matter one can steer around this difficulty. So, very many of the following results do go
over to the C*(R)-case. This will be shown in a subsequent paper.

Now, choose as ®@(-) any of the operators given by (H1)-(H6) and consider the evolution
equations

u =K, n=012... (11)

where
K (u) = ufu,. (12)

The equation u, = K, . (u) will be called the n-th generalization of u, = K, (u). Because of transla-
tion invariance u — u_is always a symmetry for these equations.

2:2. Consequence. By Theorem 1.5 and Remark 2.1 D(u) is a strong symmetry for all the equations
given by (11). Hence all the K, (w) are symmetries for all those equations.

For the construction of conserved covariants we need a nontrivial one to start with. This 18

not always possible (example 1). But quite often we shall have energy conservation, which means
that

{u, u) is time -independent (13)

for so_lutions u(t) of the evolution equation under consideration, (Actually sometimes the physical
meaning of this conserved quantity is the conservation of the number of particles).
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2.3. Consequence. Assume that we have energy conservation for the evolution equation u, = K {u).
Then u (or rather the linear functional given via (9) by u) is a conserved covariant. Hence by 1.4
all the

G (w)=D*"uu, m=0,12,.... (14)

are conserved covariants.

It is quite easy to find the corresponding integrals (potentials) H_(u) if the G, (u) are fullfilling
the following integrability condition

(G [t]w) =G, m[w],v) Vo,weF(R). (15)
Then putting H' (u) = G, (u) we obtain
H_(u) = Jl (G, (Au),u> dA. (16)
0
Now, let us turn our attention to solitons of the form:
u, = i w,, where Q(ujw, = W, (17)
k=1

We recall that a solution u of u, = K, (u) is for all times ¢ of this form if it has this decomposition

n

for one time t,- We discuss first the case N = 1. Then we have

u, = Owf'u, = Ajw, = Aju, (18)

Hence u(x, ¢) has to be a travelling-wave solution
u(x,t) = a(x + Aft)

with velocity 47, .

Now, we consider a special solution of u, = K {(u) having the property thatitdecomposes asymp-
totically (|t} - c0) into N travelling-waves with different velocities such that all the energy is
carried by the asymptotic waves [5]. Then in virtue of (18) and because of the fact that &u) 1s
a local operator the eigenvectors of ®(u) are asymptotically the eigenvectors of ®(s){c a travelling

wave) since the overlap of the waves vanishes rapidly.

24. Consequence. The solutions of u =K (u)(n 2 1) which decompqse asymptotically’ into N
travelling waves such that all the energy is carried by those asymptotic waves are described by
the following system of ordinary differential equations:

N
u, = 3w, Duww, = 4w,
k=1
where the Ay k =1,..., N are the n-th roots of the corresponding velocities.

Examples.
(1) Burgers equation. Application of

@(u) = D + (u D' + u)(special case of (H3)) (19)
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to u,_ leads to Burgers equation [6]:
u = uwu,=u_ + uu_ (20)

Neither solitons nor polynomial conserved covariants can be found. But all the ®(u)"u_ are
symmetries for this equation.

{2) Korteweg—de Vries equation. Consider
Du) = D* + 4u + 2u D" ! (special case of (H4)). (21)

Then the first equation in the series u, = K (u) = O(u)'u, (n > 1) is the well-investigated KdV-
equation:

u, =u, + 6uu. (22)
From

D®(u)* = dw)D (23)

we obtain for the symmetries K _(u):

(D7IK (), K W)y = (u, @™ "w)Dud = — (u, DO )™ ") = — Cu, @ ™(u)Du).
Hence

(DK (u), K.(u)) = Ofor all n.m, (24

which implies that (u, u) is time-independent for any solution of the KdV or one of its generaliza-
tions. So, by 2.3 all the

G,(u) = O (w"u = D™ 'D(uy"u, = D 'K_(u) 2}
are conserved covariants for all KdV-equations. The first three of this series are:
Gyu) = u

Gy(u) = u,, + 3u?
Gow) =u__ + 5u2 + 10uu__ + 10u°,

potentials. These potentials are the well known integrals of t.he Kdv& ?}ll
wn (for example [7], [8]). the recursion formula (25) was discovered by

All the G_(u) do have
these results are kno
A. Lenard.

According to consequence 2.4 u(t) is an N-soliton solution if there is some t,, such that

T (26)
ulto) = 3w Dult)w, = 4w,k =1,...,N.
k=1
Using (23}, this is shown to be equivalent to:

(t — C ¥ (27)
ol = L v @ity = Ay, k=1, N,

An casy calculation leads to the usual soliton description [5], [7].
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(3) The modified KdV-equation. Let us consider another special case of (H4):
®(u) = D? + du D" 'u + 4u’, (28)
Then the modified KdV-equation [9]
u = u,, + 6uu’ (29)

is the first one of the series u, = K, (u)(n > 1). Again the K (u) are symmetries for all these equa-
tions. And because of

D®*(u) = Y(u)D, (30)
we can go through the same analysis as in the last example. The
G (W) = D™'K,(u)

are conserved covariants. The first three are

Gylu) =u
Gy(u) = ey + 20°
G(U) = Uy, + 10u_u® + 10u2u + 61°.
The function u(z) is an N-soliton solution if there is some £, such that (26) or (27) does hold with

respect to d(u) given by (28).

2.6. Remark. Any linear combination of (28) and (21) is again a hereditary symmetry. So, for any
evolution equation having as right hand side a linear combination of the right hand sides of the

KdV and the modified KdV the same “theory” goes through.

(4) The Zakharov—Shabat equation. Now, let us restrict the linear structure in #(R) to the reals.
We consider the hereditary symmetry (H6):

®(u) = —iD + 4iuD ™ 'Re(ir’). (31)
Then the Zakharov-Shabat equation [ 10]

u = —iu, + 2u’d (32)
is the first one in the series u = K ., () (n = 1). All the K (u), m = 0,1,..., are symmetries for
(32) or any of its gcneralizatirons. I: Jisl easily shown that energy conservation:

(u, uy = time independent
holds for the Zakharov-Shabat equation. Hence, all the
G, (u) = ®° (W (33)
are conserved covariants for this equation. Because of
®*(u) = Vi) (34)
-and
(35)

i)y = —iu,
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we have the following relation between the conserved covariants and the symmetries:

Gy i) = — K _(iu) (36)
The first four in this series of conserved covariants are

Golu) = u
G,(u) = —iu,
Gyu) = —u__ + 2au?

Gylu) = iu, — 2a) — Ziu(uu, — ui ).

All these covariants do have potentials. These potentials are the well-known integrals for the

Zakharov-Shabat equation [10]. Again the N-soliton solutions of the Zakharov-Shabat equa-
tion (and its generalizations) are characterized by

N
u, = Z W, Dlu)w, = AW, k=1, N.
k=1

2.2, The ancestors

Let E be equal to #(R) or & _(R). By #(D,D™') we denote the algebra of operator-valued
functions on E generated by functions of the following type:

t=Dev-D F@™), 0~ g(u'=m),

where the f and g occuring in the last two multiplication operators are allowed to be arbitrary
entire analytic functions, and where ™ and t'~" are denoting the n-th derivative and the n-th
integral of .

Then we have the tpurely algebraic) fact:

27. Remark. &/(D. D" ') has no zero divisors,

We briefly indicate a proof of this remark. Let us fix bounded nonempty open set @ = R. Then
we consider the algebra of operators on Z(Q) (C*-functions with support in Q) generated by
D.D™" and by multiplication with entire analytic functions f(x). This algebra will be denotgd
by A(D. D). Then we putdD) = 1, dD ") = 1, d(x) = —1,d(0) = — oc, and we extend this
toadegreed: A(D, D~ Y/ {— o}, thatisa multiplicative function with (i)d(h) = — x <> h_T
0.and d(h, + h,) < max(d(h, ), d(h,)). The multiplicativity of the degree implies that A(D,D ™)
has no zero divisors. Now take T,(-) # 0 and Ty() # 0 out of «/(D, D~Y). For any m there is
Some v, € E such that its restrictiop to Q2 is equal to the polynomial x™. Depending on T,(") and
T,() there is a sufficiently large m such that T,(x™) and T,(x™ (restriction of T,(v,) and T(v,) t0

Z(Q)) are both nonzerg elements of A4(D, D™"). Hence, T,(x") T,(x™) # 0 and this implies that
the product of T.(‘) and T,(*) is not equal to zero,

Now, an immediate application of Theorem 1.8 leads to:

2.8. Consequence. Let Dv)e (D, DY) be a hereditary symmetry and let K(-) be a vector-valued
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map on E such that K'(-) and @'(-)K(-) are elements of (D, D~ 1), Assume furthermore that for
L{v) = ®(v)K(v) we have

@'(v)L(v) — [L(v), ®(v)] =0 VveE. (37)
Then ®() is a strong symmetry for the evolution equation

u = K(u). (38)

Examples.

(1) The sine-Gordon equation.
Let the function space E be equal to & _(R). We look for solutions K{u) of

OWKW) = u, (39)

where ®(u) is the hereditary symmetry given by (28). K(u) must be of the form.‘i’(j’i xu('é)'dg“),
with ¥ being a function of one variable and \P(z) standing for (d/dz)'¥(z). Insertion of this into
(39) leads to

OuK(w) = ui(¥ + 4V) + u (@Y + ¥) - 4, Y0)
Hence,

P(¢) = —Lcos(28) + Bsin(28).

But 8 must be zero since we require K (u)e & _(R).

Thus the solution is:
K =3 Sin(j w(&) dé) (401

Now, consequence 2.8 tells us that ®(u) is a strong symmetry for the equation

u(x,t) = %Sin(?f w(é, 1) dé) (41

- X

This is the well-known sine-Gordon equation [11], [12].
The analysis for symmetries, conserved covariants and soliton-so ion: :
the case of the modified KdV, (since this is by (39) the second generalization of the sine-Gordon

equation). An infinite sequence of symmetries is given by

lutions proceeds exactly asin

S, (u) = Bwru, m=01.... (42)
And in case that the solution u(r) is in F(R) the
G, () =D7'S,u (43)
are conserved covariants. u(f) is a soliton solution if there is some f, such that
(44)

N
ufty) = 3 w, Dulto)w, = Aw, with 4, # 0, k=1....N

k=1
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But, because of u, = Ou)”'u_ the relation between the 4, and the speeds of the asymptotic
travelling-waves is for thig €quation given by:

1 45)
Ck = /,{'—k (
2. The sinh-Gordon equation.
We can perform the same calculation with the operator
6
Wu) = D* ~ du D=1y — 4y, )
instead of (28). Then the solution of O(u)K (u) = u,is
, * 47
K(u = %smh(2 J- u(é) df), @)
which leads to the evolution equation
x 48
ufx,t) = %sinh(?. f wé t) df). )

. . a . - . 1 -free
This equation has no solitop solutions, since it is an ancestor (second degree) of the soliton
type of the modified K gy [11]:

(49)
U=u, —6uu

: ced
The symmetries and conserved covariants are given by (42) and (43), where ®(u) must be repla

by (46).

APPENDIX

. ; linear
Here we shall give the proof that (HO){H6) define hereditary symmetries. For two TBB we
Operators we shall write 4 >Biff4 - Bisg Symmetric bilinear operator. Instead of 4 ~

. - 1 n the
Sometimes write A(p, W) = B(v, w). where v.w are understood as arbitrary elements of E. I
following we sha depend very much op integration by parts:

oDty — D™y D 1y = p-1pyy

. . . ivative
‘By differentiation we obtain Do(u)(v, w) = @ (u)vw, where @ (u) denotes the partial dert
with Tespect to u. From this we imm,

' ediately see that [D(u), ®y(w)] = 0.
Further differentiation yields &;(u)(y, w) = D™ ouw + u D' (u)ow.
And from this we get

(@', @, 1y} 0, W) = (ux(D-lgo(u)v))xD“go(u)w +u D™ o (wwu D™ plul

Al)
- “XD_IGD(“)UID'IMH)W ~ u D™ o(uu D~ 1o (w)rw. (

Via diftrentiation and integration by parts the first term becomes:
Uy (D ~ plupy (D™ p(upw) + u (oD~ pu)w
mﬂw + u D™ p(u) D™ plu)w
= WD' 'ouw + u D™ pfujo D™ plu)w-
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The second term cancels out with the third term of (Al), and the first term together with the
second one of (A1) is symmetric. In this calculation we have underlined those expressions which
are clearly symmetric. Hence

[@(u), © ()] ~ 0. (A2)

Now, we calculate the following commutators:

[@)(w), Y(@)] (v, w) = (P(w)),D "~ pluw + u D" ¢ (W Fuow
— Y D 'puw — Y(uu D o urw

~ ¥ (ujou D™ @(uw (A3)
[W'(w), D, ()] (v, w) = ¥ ()wu D~ Yp(u)y — @, () (u)rw
~ ¥ (wwu D™ o). (A4)
Hence,
[W(w), ®,(u)] + [@(u), ¥(w)] ~ 0 (AS)
This together with (A2) yields:
[@)(u), ©,(w)] = 0. (A6)
One easily obtains
[W(u), D] (v, w) =~ ¥ () w (A7)
[@(u), D] (v, w) =~ u D o w,w — v Qupw. (A8)
Specialization and addition leads to
[(w D' +u),D] =0, (A9)
Hence [@(u), @,(u)] ~ 0.
For the proof that (H4) defines a hereditary symmetry we calculate:
[¥'(), D] (v, w) = ¥ (u)o, W (A10)
and
(@, (u), D*](v,w) ~ v, D 'pluw + u D" Lo (wr, w — D, D™ pluw
~u Do w — 200w — v (p(uw),
~ u D fu,w — 20 luw = U0y
(All)

~ —u Do (U)W — 2v,0uw.

(¢ ), = 0 and 2¢(u) = ¥ (u). Add:-

Now, put = = v + 2Bu + au’ then
Ofu) = au+ fand ¥w) =y + 2 + @,(u), D*] = 0. This together with

tion of (A11) and (A10) gives for this special case that ['¥'(u)
(H2) proves that (H4) defines a hereditary symmetry.
Now, let us restrict the linear structure to the reals. The

@, (u)(v, w) = ivD ™ 'Re(iaw) + iuD ™ 'Re(iw).

derivative of @,(u) is then
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The crucial commutators are calculated to be:

[D(), Ds()] (v, w) = — (D™ 'Reiar)) (D~ ' Ref(iaw)) symmetric
. . 1 - - 1 —
— iuD™ "Re(iwitD ™~ 'Re(v)) symmetric
~ D™ 'Re(iviiD ~'Re(iiw))
= D" "Re(izuD ' (iw)) symmetric

~ 0.
[95(w),iD] = — v D~ 'Re(aw) — iuD~ 'Re(it,w)
+ DoD ™ 'Re(iiw) + DuD ™ 'Refiw)
~ Hliw + um) + uD~ (5w — v W)
~ 3(uw + uD 5w — woiy + uD~'vw )
~ 0.
Combination of these results shows that @, and O, are hereditary symmetries.
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