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Daniell lattices and adapted cones

By

B. FucHSSTEINER

Herrn Prof. Dr. G. Brauxss zum 50. Geburtstag gewidmet

Adapted cones (Mokobozky-Sibony [8], see also [2], [3], and [7]) came up in
potential theory, they were introduced to study integral-representation of linear
functionals: Every monotone linear functional on an adapted cone P has a repre-
senting measure. The reason for that fact is, roughly speaking, that for every f e P
there is a g € P which, compared to f, increases very rapidly at the points away
from compactness. Hewitt’s [5] (see also [9]) representation theorem for bounded
functionals on C'(X) can be understood by the same intuitive argument although,
from the technical point of view, if differs very much from the preceding result.
In order to contribute to a unified treatment of integral representation we generalize
the notion of “adaptedness™ and extend the integral representation theorem. This
theorem then covers both results which were mentioned above. At the same time
this result simplifies the proof of Hewitt’s theorem. For all proofs the ingredients
are of an elementary nature (Hahn-Banach, Daniell-Stone).

Lattices. Let X be a nonempty set and E (X) a truncated vector lattice (with
respect to pointwise operations). Recall that truncated means that 1 A f € E(X) for
all fe E(X). For a sequence fne E(X) we write fal 0 if f, is decreasing (i.e.
frni1 = fn for all ne N) and converges pointwise to zero.

E(X) is said to be a Daniell lattice if, for every positive linear functional
t: E(X)— R, Daniell’s condition is satisfied, i.e. for every sequence fn | 0 we
have inf 4 (f;) = 0. From the Daniell-Stone theorem [1] we obtain:

nely

Buvery positive linear functional on a Daniell lattice has a representing measure.

Recall that a ¢-additive positive measure m on X (with respect to the g-algebra
generated by E (X)) is said to be a representing measure for u if

#(f)==i[fdm for all feE(X).

A sequence f, | 0 in E(X) is said to be Ding convergent if there is some 0 < ¢ € E(X)
such that ¢~1f, converges uniformly to zero. Here, as usual, we put

O‘(+°O):O and (p“l(x):-}-oo if @(z)=0.



Vol. 37, 1981 Daniell lattices 529

If every s : . . . )
attice. y sequence [, | 0 in E(X) is Dini convergent, then E(X) is called a Dini

Observation. Every Dini lattice is a Daniell lattice.

PE‘) oof. Let u be a positive linear functional on the Dini lattice E (X) and consider
](; "y 0 Take 0 < ¢ € E(X) such that ¢~ 1f, converges uniformly to zero. Then
n {0, where 0, = sup {g71(2) 2 (¥) |x € X}. Since p is positive we obtain:

0 < pljn) S p(dng) = 0app(@)y 0. U

We define a sequence f, | 0 to be almost Dini conv
such that, for every & > 0, the sequence

(fav (Egj)) — ¥

Is Dini convergent. The lattice E (X) is said t
in £(X) is almost Dini convergent.

ergent if there is 0 = ¥e E(X)

o be adapted if every sequence fad O

Theorem 1. Every adapted lattice is @ Daniell lattice.

nectional on the adapted lattice E(X). Consider

Proof. Let u be a positive linear fu
sequence hn e =

fnl 0 in E(X). Let 0 = W e E(X) such that for every € > 0 the
(fav e¥) — ¥ is Dini convergent. It suffices to show
inf u(fn) < ep(¥) for every & > 0.

neN

Fix &£ > 0 and take 0 < ¢ € E(X) such that ¢~
define T = fivev¥ and consider the subspace

= {gecEX)|]|g] < 3T for some leR:}-

are in this subspace.
ctionals on £ given by:

1y, ¢ 18 uniformly convergent. We

The functions ¢, Y and all the fa Let ﬁ be the restriction of
# to B and consider the sublinear fun
pn(g) = sup {T(x)1g(2) |zeX with fu(2) = W)},
g lg) = sup {T (@) 719 (*) |ze X with ful2) 2 eW(@)}-
where o = (T) = (D) S
see also [4]) we can decompose f = ¥a T nn_lpto
d ns < 09n- In particular yn and 7n are positive.
| 0. And from
- (51; @ — EW) é 0

Then ‘[2 < p max (Pa, In)
By Kénig’s Maximumsatz [6] (
linear v,, 7, with vz = ¢Pn a1
Put §, = sup (¢~ 1hn,¢) then On

Palfn — e¥)=£0 and  ¢n(fn
we obtain:

va(fa) = eval¥)

N (fn) < Ontin (@) 5 En (¥
Hence we obtain the desired inequality

infy(f,,) = 8[‘(5”) + infau!‘(‘?) = 8/‘('{,)'

nehi nel

3
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)< ena(P)+ npi(9)-

O
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Cones. A convex subcone F(X) of a Daniell lattice or an adapted lattice £ (X) is
said to be a Daniell cone or an adapted cone, respectively, if for every g < K (X)
there is some fe F(X) with gl <1 Asa consequence of theorem 1 we have that
every adapted cone is a Daniell cone.

Recall that a functional p: F(X)— R is said to be monotone if [ = g implies
#(f) = ulg).

Theorem 2. Every monotone linear functional on a Daniell cone has a representing
measure.

Proof. Consider F(X) and E(X) as above and let 4 be a monotone linear funec-
tional on F(X). From the definition above follows that

p@)=inf{u(f)|g < fe F(X)}

defines a sublinear functional on E(X). ¥Furthermore y — P|rx). Hence [4], 4 can
be extended to a linear 4= pon E(X). u must be monotone since g =< 0 implies
F@ =p@) =p(0)=0. O

Examples.

Example 1. Let E(X) be an algebra and a lattice with 1 E(X) and assume
that E(X) has the following properties:

1) If ge E(X) with g(x) > 0 Yz € X then there is some y € E(X) with ¢ - g = 1.
u) If v, € E(X) with 0 < Tn = 1 for all n € N, then there are An > 0 with
Z}.n< oo and zlnrneE(X).

HER nefy

Observation, E(X) is ¢ Daniell lattice.

Proof. Let f, | 0 and £ > 0. Consider the sets

Yy = {:z:ff,,(x) < ;} Zn = {x| fn(z) =z e}

2 ‘ €
Define 1, = Y (6 — (fn v *2) s). Then 7, ¢ E(X) with 0 < Tp, =1 and Toy, = |

and 7, = 0. Condition i) yields some } e E(X) with &(f; = 1) = 1. Condition 1i)
vields 4, >0 with > 2, < oo such that

g:ZZHkTﬂEE(X)
Observe that g(z) > 0 Yz e X since every z € X is in some Ya. Again, by i), there
s a ¢ € E(X) with P9 =1 Put ¥ =1 then we obtain:
¢ ((fav eW) — e¥) = g((fave) —e) = 2 ATk ((fuv €) — &)
:

oo =n+1
< S i
k=n+1

A i

It



Vol. 37, 1981 Daniell lattices 531

gence: fn is almost Dini convergent. Since the sequence was arbitrarily chosen,
(X) is adapted and a Daniell lattice by theorem 1. [

Fx ;mple-Q (Hewitt [5], see also [9]). Let C'(X) be the space of continuous real-
VE? lée functions on a topological space X. Then every positive linear functional
u: C(X) — R can be represented by a measure with respect to the o-algebra gen-

erated by C(X).
~ Proof. Trivially C'/(X) fulfills the conditions considered in example 1. Hence C(X)
i1s a Daniell lattice. [

Example 3. Let £(X) be a truncated vector lattice. For @ = Y ¢ X we denote
by E (.Y) the space of restrictions of fe B (X) to Y. Assume that £ (X) has the
following property: For every 0 = fe E(X) we can find some 0 < ¥ ¢ E(X) such
that for every & > 0 there is a nonempty Y ¢ X with f < £¥ outside ¥ and such

that E(Y) is a Dini lattice. Then X (X) is clearly adapted.

83]). Let X be a locally

Example 4 (Mokobozky-Sibony [8], see also [3, p.2
tive functions on X such

:}C;mpact space and P(X) a cone of continuous non-nega
at:

i) For every x € X there is some fe P(X) with f{z) > 0.
ii) For every fe P(X) there is some p€ P(X) such that for every &> 0 there is
a compact set K ¢ X with f = ¢p outside K.

Denote by E(X) the following space
E(X) = {feC(X)|there is a pe P(X) with HESIE
Then E(X) is a Daniell lattice. Hence P(X) is a Daniell cone.
Proof. Obviously E(X) is a truncated vector lattice. Take a sequence fz | 0 in
E(X). From condition ii) and the construction of E(X) it is clear that we can find

a pe P(X) such that for every &> 0 there is a compact K¢ C X with fi S ¢€p
outside K,. We claim that the sequence hy = (fnv{ep)) — €P is Dini convergent.
To see this, take some ¢ € P(X) with @e (k) > 0 for all ke K. (since K, is com-
pact such a ¢ exists by 1)) Now, by Dini’s lemma, @~ 1hy converges uniformly.  ©

I am indebted to the referee for his critical remarks.
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