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Maximal semigroups and controllability in products of Lie
groups

By

JoacHIM HILGERT

0. Introduction. In recent years authors from various fields of mathematics were lead
to the study of subsemigroups of Lie groups {(cf. [13], 2], [16, 17 [14, 15], [18] etc). In [11]
a first attempt has been made to give a systematic approach to the study of subsemi-
groups of Lie groups.The basic idea is to associate with a subsemigroup S of a Lie group
G a tangent object L(S) = {x € L(G): x = lim nx,, exp X, € S, n e N} (where L(G) is the

Lie algebra of G and exp: L{G) — G is the exponential map) and study the propertie§ qf
L(S)in order to get information about S. It turns out that L(S)is a wedge, i.¢. that 1t 1s
a closed convex set which is also closed under addition and muitiplication by positive

scalars (cf. [11]). Moreover it satisfies
1) e L(S) = I{S) for all xelL(s)n —L(S)

where ad x (y) = [x, y] with the bracket in L(G). If S generates G as a group the tangent
‘;‘c*:dge can also be written as L(S) = {x € L(G): exp (R x) c §) where S is the closure of

mG.

An important concept in this context is that of a maximal open subsemigroup. It plays
@ role in the theoretical question for which wedges W in L(G) satisfying (1) one can find
semigroups S in G with L(S) = W as well in deciding controllability questions on G. In
this paper a control system will be simply a family F of left invariant vectorfields on G
and the control system will be called controllable if for any point x in G we can find an
Integral curve for F connecting the identity with x. :

In section one we will determine the maximal open subsemigroups of Lie groups which
are the product of compact groups with a nilpotent normal subgroup. In section two we
apply this result to give a complete characterization of controllable systems on such Lie
groups. Finally, in an appendix we recall the proof of [4} Proposition 3.11n order to make

this paper as self-contained as possible.

I Maximal open subsemigroups. A maximal open (proper) subsemigroup ofa topolog-
t G is the only open subsemigroup

lcfal group G is an open subsemigroup S of G such tha i
0 G strictly containing S. This concept has been used in [10] and we summarize some
basic facts given there:
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Proposition 1.1. Let G be g connected topological group and S be a maximal open
subsemigroup of G, then:

1) For any normal subgroup N <1 G we have N A § = 0 if and only if N_S = SN =i{'
) Forany closed normal subgroup N <« G suchthat N ~ S = 0 the subsemigroup SN/
of G/N is maximal open.

iil) There exists a unique largest normal subgroup Ng of G such that Ng 0 § = 0. More-
over Ng is closed. [

_ . . . : : ts
We start by considering a special case which will allow us to use inductive argumen
later on. The first lemma is a slight variation of a result given in [2].

d
Lemma 1.2, Let V be g finite dimensional vector space and C be a compact 'connectzn
subgroup of Aut V that operates on V without non-trivial fixed points. If S is an op
subsemigroup of G = V' ¢ which intersects V x {1} then S = G.

Proof Let(o,0)e V' C n § then 5 = J ¢ - vdy, with ; Haarmeasure on C, is a fixed

. . ¢ he
point of C in ¥, hence § = 0, Now consider the orbit M — {¢-v; c e C} of v under tM
action of C. Since C is compact, M is also compact and therefore the convex hull conv
of M is closed. Hence 0 =4econv M. Thus there exist

L4
“Co6eCoand 2, 4 e, 1] with 0= % J¢-v.
i=1
Now it suffices to show that there isan re R * such that r 4;c;,-ve Sforallie {l,..., -
k k : .
In fact, then we have 2 ;-0 so that 0, 1) = [T (r4,c,- v, 1) € S since any neighbor
i=1

. - i=1 n
hood of the identity generates Gasa semigroup. Note that the complement of an op¢
subsemigroup of (R *, +)is always b

. R
ounded, hence for any (x, 1) e S there is an réfhere
Such that (rx, 1) e Sfor all r ~ "x. Thus it only remains to show that for any ¢ €
1san m e N with (m.c-v,1)e$ since then we can choose

"= 0 ) i (4 ]

. is
But the existence of m, 1s shown in [2] Lemma 4 so the proof of Lemma 1.2
Complete. [

. . s in
We_are Now ready to describe the tangent wedge of maximal open subsemigroup
semidirect products of compact groups and vector groups.

.. . cted
Proposition 1.3, Let V be finite dimensiongl vector space and C a compact conne
group of automor

. the
Phisms of V. If § i 4 maximal open subsemigroup of G = V' » C then
langent Wnge L(S)of Sis a halfspace in L(G) bounded by an ideal.

. iant
Proof LetGbeq counterexample of minjma] dimension. Then for any C‘mvanal;l
subspace 1 of y we have (1% IDNS+0 In fact N =1Ix{1} is a closed norﬂler
subgroup of G hence N A § = 0 implies SN — NS = § by Proposition 1.1. MoreoV
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the subsemigroup S/N is maximal open in G/N. Since G was a counterexample of
minimal dimension L(S/N) is a halfspace bounded by an ideal in L(G/N) = L(G)/L(N).
But [4] Proposition 3.1 applied to T =§ implies that L(S)=n""(L(S/N)) where
n: L(G) - L(G/N) is the canonical projection. Thus L(S) is a halfspace bounded by an
ideal in L(G) contradicting our hypotheses. Now consider G, = [L(G), V] » C and note
that [4] Lemma 2.1 shows that C operates without nonzero fixed points on [L(G), V].
Moreover S, = G, n S is an open proper semigroup that intersects [L(G), V] = {1} by the
above, so that Lemma 1.2 applies and we see that (0, 1) € S, = S whence § = G. This final
contradiction to our assumptions proves the proposition. Ul

More generally we obtain

Proposition 1.4. Let G be a finite dimensional Lie group, C a connected compact sub-
group of G and A an abelian analytic normal subgroup of G such that G = CA. If Sisa
maximal open subsemigroup of G then L(S) is a halfspace bounded by an ideal.

Proof Let A = TV where T is the maximal torus in A and V is a vector group. Note
that T is characteristic in A so it is normal in G. Moreover S N T = () since otherwise
S 2 T which would imply § = G. Thus ST =S and §/T is a maximal open sub-
semigroup of G/T by Proposition 1.1. But G/T = (CA)/T = (CT)/TYA/T) with
CT/T = C/;,, zand A/T = V. Therefore (CT/T) N (4/T) = {T} and we may apply Prop-
osition 1.3 to G/T and S/T. Thus L(S/T) is a halfspace bounded by an ideal and as before
[4], Proposition 3.1 applied to T = §/T shows that L{S) is a halfspace bounded by an
ideal. O

Finally we obtain

Theorem 1.5. Let G be a connected finite dimensional Lie group, C a compact subgr_oup
of Gand N q nilpotent analytic normal subgroup of G such that G = C N.If S is a maximal
Open subsemigroup of G then L(S) is a halfspace bounded by an ideal in L{G).

Proof Note first that we may assume that C is connected. In fact ifCyisa maximal
compact subgroup of G containing C then C,, is connected and G = C,, N. Thus we can
replace C by C,,. Moreover we may assume that N is closed.

~ Now consider the commutatorgroup N’ of N.If § 0 N" + 0 then 5 0 N’ is contained
In some maximal open subsemigroup Sy of N (cf. [10]) But then by [10] we have that
L(Sy) is a halfspace bounded by an ideal which must then contain L(N') = [L(N}, L(N)].
Hence exp L(N") < §so that N' < §. Therefore SN’ = N'S = § since §5,55 < S and
the identity cannot be in S. Thus Proposition 1.1. shows that § 1 N = @ Since § 1s
open we have also H n S = ¢ where H is the closure of N in G. P.xgam we apply
Proposition 1.1. to see that SH/H = S/H is a maximal open s_ubsemlgrogp of G/H.
Note that G/H = (CH/H) (N/H) where CH/H is compact and N/H 1s abchz.m by [12]
Theorem 2.1 in Chap. XVI. Hence Proposition 1.4 shows that L(S/H) is a half-
Ezc)e bounded by an ideal and consequently L(S) is a halfspace bounded by an ideal 1n
- O
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: ' wedges of
It now only remains to translate the information we_have on the tallziesrflt g
maximal open semigroups into information on the semigroups themselves:

bsemi-
Remark 1.6. Let G be a connected Lie group then for a non empty open su
group S of G the following statements are equivalent:

(1) L(S)yisa halfspace bounded by an ideal. ' . R
(2) S=¢ " (R*\{0}) for some continuous homomorphism ¢: G - R.

These properties imply that S is maximal open.

ted
Proof (1) = (2) Let I be the ideal that bounds L(S) and‘N be the subgrol;p :g%ne}f:me
by exp I where exp: L(G) - G is the exponential function. Then N N Propositio
N n 5 =0 so that dim N < dim N < dim S and thus N is closed. More.over GIN isthe
1.1 implies SN = N§ = § Of, in other words, § ~ 7! (SN/N) where n: G'—;c)ups e
quotient map. Therefore G/N = R since there are no proper oiplen subseﬂ%%us LS/ i
torus. Moreover [4] Proposition 3.1 shows that L(S) = (L(r)) ! L(S/N).
a halfline and the claim is proved. osi-
(2) = (1) Conversely since § + 0 the map ¢ is a quotient map and henceh [‘t]al; ryozpeﬁ
tion 3.1 implies that L(S) is a halfspace bounded by L (ker ¢). Note finally tTa "R since
subsemigroup T, which contains § = ¢! (R*\{0}) strictly, must satisfy ¢ t)b; Aok
any open subsemigroup of R containing positive and negative elements mus o Lerp s
Since G is connected and G/ker ¢ = R is simply connected we conclude t ;nse opn
connected and contained in § hence in TThus T = ¢! (¢(T)) = G and Tis de

: T7'=G
in G. But then T~ ! jg open dense and also T ~ T 1 i open dense, hence T N
since T T-1 g5 group. Thus T=G. ]

2. Controllability of systems
that a control system on a Lj
vectorfields on G, hence as 3
system described by F is cont
W =conv(R* Fyis controliabl
question whether the semigrou
[2)). Certainly S, is contained
necessary condition for controll
is all of L, Conversely if L,=
interior §, of S, 1s dense in S,
S of G unless S. = G. We find

: n
in G = CN. It has been pointed out in the mtr‘oci‘;gzt
€ 8roup G can be viewed as a family of left ll:hat the
subset F of L(G). It is well known (cf [13])h wedge
rollable if and only if the system gi\f?ﬂ by ¢ CS to the
e. Therefore the question of controllability reduce( ¢ also
P S, generated by exp W in G is all of G or not tl.lat a
in the analytic group generated by W-W Sqning W
ability is that the smallest Lie algebra L, Contalthat the
L it has been noted by various authors (cf. [11]) ioroup
» hence S is contained in a maximal open subsemig

imal opeB
Remark 21 Let ¢ be a connected Lje group such that for any max{m:wedgc
subsemigroup S we haye L(S}is a halfspace bounded by an ideal in L(G). If W is

: . uiva.
in L(G) which generates L(G)as a Lie algebra, thep the following statements are €4
lent:

3 t evel
(1) The Semigroup S, generated by exp W in G is not equal to G (hence nO
dense),

that
(2) There exists 4 Continuous non triyig] homomorphism ¢: G » R such
Lipyw)er-,
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Proof (1)=(2) If S, + G then by the above S, is contained in a maximal open
subsemigroup S of G. By hypothesis L(S) is a halfspace bounded by an ideal so that
Remark 1.6 shows the existence of @: G — R such that §, = § = ¢~ (R"\{0}} and
hence W < L(S,) = L(S) = (L(¢))” ' (R*) by [4] Proposition 3.1.

(2) = (1) Conversely let S: = ¢~ (R *\{0}) then again L(S) = (L(¢))”* (R ") and there-
fore W < L(S). Thus exp W < exp L(§) = § which is a subsemigroup of G, strictly
contained in G. [J

Recall that L(¢): L{G) — R is a Lie algebra morphism and since R is abelian we know
that L(GY = [L(G), L(G)] is contained in the kernel of L(¢). Hence the relative interior
int,_, W in the vector space W — W cannot intersect L(GY unless L(p) (W) contgms
positive and negative values or is completely contained in L(G). Moreover if C 1s a
maximal compact subgroup of G then C < ker ¢ since ¢(C) is a compact subgroup (?f
R. Thus in the situation of Remark 2.1 we have L(C) + L(GY < ker L(g). Even more 1s
true;

Lemma 2.2. Let G be a connected Lie group, C a maximal compact subgroup of G and
W a wedge in L(G) which generates L(G) as a Lie algebra. Then the following statements
are equivalent

(1) int,_, W ~ (L(C) + L(G)) = 0.
() There exists a continuous non trivial homomorphism ¢:G - R such  that

Lio)(W) c R*.

Proof (2) = (1) We know that L(C) + L(G) < ker L{¢p). Moreover W 1is not con-
tained in ker L{¢p) since it generates L(G). B _

Ifnow int,_ W ~ ker L(g) = , then L(¢) (W) contains positive and negative values
contradicting our hypothesis. Thus int,, W n (L(C) + L(G)) = 0. _

(1) = (2) To show the converse note first that the analytic subgroup 4 of G with
L4} = L(C) + L(GY is normal and contains C since G, hence C, is connected. Therefore
A contains all compact subgroups of G and hence 4 is closed (cf. [12] Theor’em.2.4
Chap. XVI and Proposition 2.3 Chap. XVI). Moreover the quotient group G/4 1 a
vectorgroup. In fact, since G/A is abelian connected it is isomorphic to TX V where T 1s
4 torus and V is a vectorgroup. If m: G — Tx V is the quotient map with kernel A and
Bis the identity component of 7~ (V) then Bis a closed connected normal subgroup of
Gand 7(B) = V since © was a quotient map. Thus G/B is compact and [12] Theorem 23
Chap. 111 implies that CB = G so that G = CB = AB < B < G. But this just means that
T'= {0}. Thus we may identify G/A with L(G/4) = L(G)/L(A). o

But now by condition (1) the geometric version of the Hahn-Banach Theorem implies
that W is contained in a halfspace H with L(4) = H so that we can ﬁr:d a linear
functional §: L(G)/L(4) — R with H = ker ¢ and ¢(W + L(A)/L{4)) = R". But then
®=Gem: G — Ris the desired homomorphism if we identify /4 and L(G/L(4). U

i 13
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We can now summarize our results to

Theorem 2.3. Let G be a connected Lie group such that for any maximal open Séml;ir ZK‘
S we have that L(S) is a halfspace bounded by an ideal in L{G). Moreover leé . "
maximal compact subgroup of G. If W is a wedge in L(G) which generates L(G) a
algebra, then the following statements are equivalent:

() Int,_,, (W) ~ (L(C) + [L(G), L{G)) + 0.
(2) exp W generates G as g semigroup.
(3)  The system described by W is controllable.

Appe‘ndix.

Proposition 3.1. ([4) Let G and H be Lie groups and q: G - H a quonentS )Tff};eg
S is a subsemigroup of G generating G gs 4 group, then L(q) (L(S)) < L(q( e If T
L{q): L(G) - L(H) is the morphism associated with g. The converse need not ’be tntt ’- o
is a subsemigroup of H generating H as g4 group and containing the identity
Lg™ (T = (L(g) ' L(T) i

Proof. Note first that we may assume that S is closed since q(3) <4 (S) s(g)) i
LO(LS) < Liq(S) implies Lig)L(S) = Lig) (L)) < Liq(S) L) = L'(qns then
Now €xp,: L(H) > H and €xps: L(G) - G are the respective exponential fu-nctlioIlCe by
exp R™ x < § implies expy R L(g) (x) = q(expe R* x) = ¢(S) < ¢(S)", he s ot
LS) = {xe L(G):expR"* x S} we obtain x e L{g(S)). To see that the converse
true consider an icecream cone W in R? an
intersection with W is a halfline in the bo

L(W) = W, whereas the quotient semigroup has a halfspace as tangent wedge.

ince T

To see the last Statement note first that g~ '(T) generates G as a group Slgfver

generates H and ker g g Y (T) so that L(g™'(T)) makes sense. l\gost .

(g™ '(T)) = T'so that the inclusion Lig='(T)) = L(g)™ ' L(T)follows froT the 1r_1(ﬂ

Conversely if x ¢ L(g)" " (L(T)) then expy R* L(g)x < T'so that CXpg BE X C_ql ()

But since H is metrizabje [1] (Cap. IX, §2, Prop. 1.8) implies that ¢ ' (T) (1: (q n fact.
since any Cauchy Sequence in T can be lifted 1o a Cauchy sequence in ¢~ *(T).

M uence
for any se 41 (T) we find a sequence h_ in T converging to g(s) and i:ence a Sf?(n)*
S»€q '(h) g g (T) converging to 5, i.e. 5 e (@~ (T)". Thusexps R* x {4

and hence, xe (g1 (Ty. 0O
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