## Maximal semigroups and controllability in products of Lie groups

By

## JOACHIM HILGERT

0. Introduction. In recent years authors from various fields of mathematics were lead to the study of subsemigroups of Lie groups (cf. [13], [2], [16, 17] [14, 15], [18] etc). In [11] a first attempt has been made to give a systematic approach to the study of subsemigroups of Lie groups. The basic idea is to associate with a subsemigroup S of a Lie group G a tangent object  $L(S) = \{x \in L(G): x = \lim_{n \to \infty} n x_n, \exp x_n \in S, n \in \mathbb{N}\}$  (where L(G) is the Lie algebra of G and  $\exp: L(G) \to G$  is the exponential map) and study the properties of L(S) in order to get information about S. It turns out that L(S) is a wedge, i.e. that it is a closed convex set which is also closed under addition and multiplication by positive scalars (cf. [11]). Moreover it satisfies

(1) 
$$e^{\operatorname{ad} x} L(S) = L(S)$$
 for all  $x \in L(S) \cap -L(S)$ 

where ad x(y) = [x, y] with the bracket in L(G). If S generates G as a group the tangent wedge can also be written as  $L(S) = \{x \in L(G) : \exp(\mathbb{R}^+ x) \subset \overline{S}\}$  where  $\overline{S}$  is the closure of S in G.

An important concept in this context is that of a maximal open subsemigroup. It plays a role in the theoretical question for which wedges W in L(G) satisfying (1) one can find semigroups S in G with L(S) = W as well in deciding controllability questions on G. In this paper a control system will be simply a family F of left invariant vectorfields on G and the control system will be called controllable if for any point x in G we can find an integral curve for F connecting the identity with x.

In section one we will determine the maximal open subsemigroups of Lie groups which are the product of compact groups with a nilpotent normal subgroup. In section two we apply this result to give a complete characterization of controllable systems on such Lie groups. Finally, in an appendix we recall the proof of [4] Proposition 3.1 in order to make this paper as self-contained as possible.

1. Maximal open subsemigroups. A maximal open (proper) subsemigroup of a topological group G is an open subsemigroup S of G such that G is the only open subsemigroup of G strictly containing S. This concept has been used in [10] and we summarize some basic facts given there:

**Proposition 1.1.** Let G be a connected topological group and S be a maximal open subsemigroup of G, then:

- i) For any normal subgroup  $N \triangleleft G$  we have  $N \cap S = \emptyset$  if and only if NS = SN = S.
- ii) For any closed normal subgroup  $N \triangleleft G$  such that  $N \cap S = \emptyset$  the subsemigroup SN/N of G/N is maximal open.
- iii) There exists a unique largest normal subgroup  $N_S$  of G such that  $N_S \cap S = \emptyset$ . Moreover  $N_S$  is closed.  $\square$

We start by considering a special case which will allow us to use inductive arguments later on. The first lemma is a slight variation of a result given in [2].

**Lemma 1.2.** Let V be a finite dimensional vector space and C be a compact connected subgroup of Aut V that operates on V without non-trivial fixed points. If S is an open subsemigroup of  $G = V \rtimes C$  which intersects  $V \rtimes \{1\}$  then S = G.

Proof. Let  $(v, \mathbf{1}) \in V \times C \cap S$  then  $\bar{v} = \int_{c} c \cdot v \, d\mu$ , with  $\mu$  Haarmeasure on C, is a fixed point of C in V, hence  $\bar{v} = 0$ . Now consider the orbit  $M = \{c \cdot v; c \in C\}$  of v under the action of C. Since C is compact, M is also compact and therefore the convex hull conv M of M is closed. Hence  $0 = \bar{v} \in \text{conv } M$ . Thus there exist

$$c_1, \ldots, c_k \in C$$
 and  $\lambda_1, \ldots, \lambda_k \in ]0, 1]$  with  $0 = \sum_{i=1}^k \lambda_i c_i \cdot v$ .

Now it suffices to show that there is an  $r \in \mathbb{R}^+$  such that  $r \lambda_i c_i \cdot v \in S$  for all  $i \in \{1, ..., k\}$ . In fact, then we have  $\sum_{i=1}^k r \lambda_i \cdot v$  so that  $(0, 1) = \prod_{i=1}^k (r \lambda_i c_i \cdot v, 1) \in S$  since any neighborhood of the identity generates G as a semigroup. Note that the complement of an open subsemigroup of  $(\mathbb{R}^+, +)$  is always bounded, hence for any  $(x, 1) \in S$  there is an  $r_x \in \mathbb{R}^+$  is an  $m_c \in \mathbb{N}$  with  $(m_c c \cdot v, 1) \in S$ , since then we can choose

$$r = (\max\{r_{(m_{c_i}c_i \cdot v)}\}) (\min\{\lambda_i\})^{-1} \prod_{i=1}^k m_{c_i}.$$

But the existence of  $m_c$  is shown in [2] Lemma 4 so the proof of Lemma 1.2 is

We are now ready to describe the tangent wedge of maximal open subsemigroups in semidirect products of compact groups and vector groups.

**Proposition 1.3.** Let V be a finite dimensional vector space and C a compact connected group of automorphisms of V. If S is a maximal open subsemigroup of  $G = V \times C$  then the tangent wedge L(S) of S is a halfspace in L(G) bounded by an ideal.

Proof. Let G be a counterexample of minimal dimension. Then for any C-invariant subspace I of V we have  $(I \bowtie \{1\}) \cap S \neq \emptyset$ . In fact  $N = I \bowtie \{1\}$  is a closed normal subgroup of G hence  $N \cap S = \emptyset$  implies SN = NS = S by Proposition 1.1. Moreover

the subsemigroup S/N is maximal open in G/N. Since G was a counterexample of minimal dimension L(S/N) is a halfspace bounded by an ideal in L(G/N) = L(G)/L(N). But [4] Proposition 3.1 applied to  $T = \overline{S}$  implies that  $L(S) = \pi^{-1}(L(S/N))$  where  $\pi: L(G) \to L(G/N)$  is the canonical projection. Thus L(S) is a halfspace bounded by an ideal in L(G) contradicting our hypotheses. Now consider  $G_1 = [L(G), V] \rtimes C$  and note that [4] Lemma 2.1 shows that C operates without nonzero fixed points on [L(G), V]. Moreover  $S_1 = G_1 \cap S$  is an open proper semigroup that intersects  $[L(G), V] \rtimes \{1\}$  by the above, so that Lemma 1.2 applies and we see that  $(0, 1) \in S_1 \subset S$  whence S = G. This final contradiction to our assumptions proves the proposition.

More generally we obtain

**Proposition 1.4.** Let G be a finite dimensional Lie group, C a connected compact subgroup of G and A an abelian analytic normal subgroup of G such that  $G = C\overline{A}$ . If S is a maximal open subsemigroup of G then L(S) is a halfspace bounded by an ideal.

Proof. Let  $\overline{A} = TV$  where T is the maximal torus in  $\overline{A}$  and V is a vector group. Note that T is characteristic in  $\overline{A}$  so it is normal in G. Moreover  $S \cap T = \emptyset$  since otherwise  $S \supseteq T$  which would imply S = G. Thus ST = S and S/T is a maximal open subsemigroup of G/T by Proposition 1.1. But  $G/T = (C\overline{A})/T \cong ((CT)/T)(\overline{A}/T)$  with  $CT/T \cong C/_{C \cap A}$  and  $\overline{A}/T \cong V$ . Therefore  $(CT/T) \cap (\overline{A}/T) = \{T\}$  and we may apply Proposition 1.3 to G/T and S/T. Thus L(S/T) is a halfspace bounded by an ideal and as before [4], Proposition 3.1 applied to  $T = \overline{S/T}$  shows that L(S) is a halfspace bounded by an ideal.

Finally we obtain

**Theorem 1.5.** Let G be a connected finite dimensional Lie group, C a compact subgroup of G and N a nilpotent analytic normal subgroup of G such that  $G = C \overline{N}$ . If S is a maximal open subsemigroup of G then L(S) is a halfspace bounded by an ideal in L(G).

Proof. Note first that we may assume that C is connected. In fact if  $C_m$  is a maximal compact subgroup of G containing C then  $C_m$  is connected and  $G = C_m \overline{N}$ . Thus we can replace C by  $C_m$ . Moreover we may assume that N is closed.

Now consider the commutatorgroup N' of N. If  $S \cap N' \neq \emptyset$  then  $S \cap N'$  is contained in some maximal open subsemigroup  $S_N$  of N (cf. [10]). But then by [10] we have that  $L(S_N)$  is a halfspace bounded by an ideal which must then contain L(N') = [L(N), L(N)]. Hence  $\exp L(N') \subset \overline{S}$  so that  $N' \subset \overline{S}$ . Therefore SN' = N' S = S since  $\overline{S}S$ ,  $S\overline{S} \subset S$  and the identity cannot be in S. Thus Proposition 1.1. shows that  $S \cap N' = \emptyset$ . Since S is open we have also  $H \cap S = \emptyset$  where H is the closure of N' in G. Again we apply Proposition 1.1. to see that SH/H = S/H is a maximal open subsemigroup of G/H. Note that  $G/H \cong (CH/H)(\overline{N}/H)$  where CH/H is compact and  $\overline{N}/H$  is abelian by [12] Theorem 2.1 in Chap. XVI. Hence Proposition 1.4 shows that L(S/H) is a half-space bounded by an ideal and consequently L(S) is a halfspace bounded by an ideal in L(G).  $\square$ 

It now only remains to translate the information we have on the tangent wedges of maximal open semigroups into information on the semigroups themselves:

Remark 1.6. Let G be a connected Lie group then for a non empty open subsemigroup S of G the following statements are equivalent:

- (1) L(S) is a halfspace bounded by an ideal.
- (2)  $S = \varphi^{-1}(\mathbb{R}^+ \setminus \{0\})$  for some continuous homomorphism  $\varphi: G \to \mathbb{R}$ .

These properties imply that S is maximal open.

Proof. (1)  $\Rightarrow$  (2) Let I be the ideal that bounds L(S) and N be the subgroup generated by  $\exp I$  where  $\exp: L(G) \to G$  is the exponential function. Then  $N \cap S = \emptyset$  hence  $\overline{N} \cap S = \emptyset$  so that dim  $N \leq \dim \overline{N} < \dim S$  and thus N is closed. Moreover Proposition 1.1 implies SN = NS = S or, in other words,  $S = \pi^{-1}(SN/N)$  where  $\pi: G \to G/N$  is the quotient map. Therefore  $G/N \cong \mathbb{R}$  since there are no proper open subsemigroups in the torus. Moreover [4] Proposition 3.1 shows that  $L(S) = (L(\pi))^{-1} L(S/N)$ . Thus L(S/N) is a halfline and the claim is proved.

- $(2)\Rightarrow (1)$  Conversely since  $S\neq\emptyset$  the map  $\varphi$  is a quotient map and hence [4] Proposition 3.1 implies that L(S) is a halfspace bounded by  $L(\ker\varphi)$ . Note finally that any open subsemigroup T, which contains  $S=\varphi^{-1}(\mathbb{R}^+\setminus\{0\})$  strictly, must satisfy  $\varphi(T)=\mathbb{R}$  since any open subsemigroup of  $\mathbb{R}$  containing positive and negative elements must be all of  $\mathbb{R}$ . Since G is connected and  $G/\ker\varphi\cong\mathbb{R}$  is simply connected we conclude that  $\ker\varphi$  is connected and contained in  $\overline{S}$  hence in  $\overline{T}$ . Thus  $\overline{T}=\varphi^{-1}(\varphi(\overline{T}))=G$  and T is dense open in G. But then  $T^{-1}$  is open dense and also  $T\cap T^{-1}$  is open dense, hence  $T\cap T^{-1}=G$  since  $T\cap T^{-1}$  is a group. Thus T=G.
- 2. Controllability of systems in  $G = C\bar{N}$ . It has been pointed out in the introduction that a control system on a Lie group G can be viewed as a family of left invariant vectorfields on G, hence as a subset F of L(G). It is well known (cf. [13]) that the  $W = \overline{\text{conv}}(\mathbb{R}^+ F)$  is controllable if and only if the system given by the wedge question whether the semigroup  $S_w$  generated by E with E is controllability reduces to the [2]). Certainly E is contained in the analytic group generated by E where E is all of E or not (cf. also necessary condition for controllability is that the smallest Lie algebra E containing E is all of E. Conversely if E is dense in E in that the smallest Lie algebra E containing E interior E is dense in E in the seen noted by various authors (cf. [11]) that the E of E unless E is dense in E is contained in a maximal open subsemigroup

Remark 2.1. Let G be a connected Lie group such that for any maximal open subsemigroup S we have L(S) is a halfspace bounded by an ideal in L(G). If W is a wedge lent:

- (1) The semigroup  $S_w$  generated by exp W in G is not equal to G (hence not even
- (2) There exists a continuous non trivial homomorphism  $\varphi: G \to \mathbb{R}$  such that  $L(\varphi)(W) \in \mathbb{R}^+$ .

Proof. (1)  $\Rightarrow$  (2) If  $S_w \neq G$  then by the above  $\mathring{S}_w$  is contained in a maximal open subsemigroup S of G. By hypothesis L(S) is a halfspace bounded by an ideal so that Remark 1.6 shows the existence of  $\varphi: G \to \mathbb{R}$  such that  $S_w \subset S = \varphi^{-1}(\mathbb{R}^+ \setminus \{0\})$  and hence  $W \subset L(S_w) \subset L(S) = (L(\varphi))^{-1}(\mathbb{R}^+)$  by [4] Proposition 3.1.

(2)  $\Rightarrow$  (1) Conversely let  $S := \varphi^{-1}(\mathbb{R}^+ \setminus \{0\})$  then again  $L(S) = (L(\varphi))^{-1}(\mathbb{R}^+)$  and therefore  $W \subset L(S)$ . Thus  $\exp W \subset \exp L(S) \subset \overline{S}$  which is a subsemigroup of G, strictly contained in G.

Recall that  $L(\varphi): L(G) \to \mathbb{R}$  is a Lie algebra morphism and since  $\mathbb{R}$  is abelian we know that L(G)' = [L(G), L(G)] is contained in the kernel of  $L(\varphi)$ . Hence the relative interior  $\inf_{w \to w} W$  in the vector space W - W cannot intersect L(G)' unless  $L(\varphi)(W)$  contains positive and negative values or is completely contained in L(G)'. Moreover if C is a maximal compact subgroup of  $C \to \ker \varphi$  since  $C \to \ker \varphi$  is a compact subgroup of  $C \to \ker \varphi$ . Thus in the situation of Remark 2.1 we have  $C \to \ker \varphi$ . Even more is true:

**Lemma 2.2.** Let G be a connected Lie group, C a maximal compact subgroup of G and W a wedge in L(G) which generates L(G) as a Lie algebra. Then the following statements are equivalent

- (1)  $\operatorname{int}_{w-w} W \cap (L(C) + L(G)') = \emptyset$ .
- (2) There exists a continuous non trivial homomorphism  $\varphi: G \to \mathbb{R}$  such that  $L(\varphi)(W) \subset \mathbb{R}^+$ .

Proof. (2)  $\Rightarrow$  (1) We know that  $L(C) + L(G)' \subset \ker L(\varphi)$ . Moreover W is not contained in ker  $L(\varphi)$  since it generates L(G).

If now  $\operatorname{int}_{w-w}W\cap\ker L(\varphi)=\emptyset$ , then  $L(\varphi)(W)$  contains positive and negative values contradicting our hypothesis. Thus  $\operatorname{int}_{w}W\cap(L(C)+L(G)')=\emptyset$ .

(1)  $\Rightarrow$  (2) To show the converse note first that the analytic subgroup A of G with L(A) = L(C) + L(G)' is normal and contains C since G, hence C, is connected. Therefore A contains all compact subgroups of G and hence A is closed (cf. [12] Theorem 2.4 Chap. XVI and Proposition 2.3 Chap. XVI). Moreover the quotient group G/A is a vectorgroup. In fact, since G/A is abelian connected it is isomorphic to  $T \times V$  where T is a torus and V is a vectorgroup. If  $\pi: G \to T \times V$  is the quotient map with kernel A and B is the identity component of  $\pi^{-1}(V)$  then B is a closed connected normal subgroup of G and  $\pi(B) = V$  since  $\pi$  was a quotient map. Thus G/B is compact and [12] Theorem 2.3 Chap. III implies that CB = G so that  $G = CB \subset AB \subset G$ . But this just means that  $T = \{0\}$ . Thus we may identify G/A with L(G/A) = L(G)/L(A).

But now by condition (1) the geometric version of the Hahn-Banach Theorem implies that W is contained in a halfspace H with  $L(A) \subset H$  so that we can find a linear functional  $\bar{\varphi}: L(G)/L(A) \to \mathbb{R}$  with  $H = \ker \bar{\varphi}$  and  $\bar{\varphi}(W + L(A)/L(A)) \subset \mathbb{R}^+$ . But then  $\varphi = \bar{\varphi} \circ \pi: G \to \mathbb{R}$  is the desired homomorphism if we identify G/A and L(G)/L(A).

We can now summarize our results to

**Theorem 2.3.** Let G be a connected Lie group such that for any maximal open semigroup S we have that L(S) is a halfspace bounded by an ideal in L(G). Moreover let C be any maximal compact subgroup of G. If W is a wedge in L(G) which generates L(G) as a Lie algebra, then the following statements are equivalent:

- (1)  $\operatorname{Int}_{w-w}(W) \cap (L(C) + [L(G), L(G)]) \neq \emptyset$ .
- (2) exp W generates G as a semigroup.
- (3) The system described by W is controllable.

Appendix.

**Proposition 3.1.** ([4]) Let G and H be Lie groups and  $q: G \to H$  a quotient map. If S is a subsemigroup of G generating G as a group, then  $L(q)(L(S)) \subset L(q(S))$  where  $L(q): L(G) \to L(H)$  is the morphism associated with q. The converse need not be true. If T is a subsemigroup of H generating H as a group and containing the identity then  $L(q^{-1}(T)) = (L(q))^{-1}L(T)$ .

Proof. Note first that we may assume that S is closed since  $q(\overline{S}) \subset q(S)^-$  so that  $L(q)(L(\overline{S})) \subset L(q(\overline{S}))$  implies  $L(q)L(S) = L(q)(L(\overline{S})) \subset L(q(\overline{S})) \subset L(S)^- = L(q(S))$ . If now  $\exp_H: L(H) \to H$  and  $\exp_G: L(G) \to G$  are the respective exponential functions then  $\exp_G: R^+ \times \subset S$  implies  $\exp_H: R^+ L(q)(x) = q(\exp_G: R^+ \times) \subset q(S) \subset q(S)^-$ , hence by  $L(S) = \{x \in L(G): \exp R^+ \times \subset \overline{S}\}$  we obtain  $x \in L(q(S))$ . To see that the converse is not true consider an icecream cone W in  $\mathbb{R}^3$  and factor a discrete subgroup of a line whose intersection with W is a halfline in the boundary of W; then W is a semigroup with L(W) = W, whereas the quotient semigroup has a halfspace as tangent wedge.

To see the last statement note first that  $q^{-1}(T)$  generates G as a group since T generates H and  $\ker q \subset q^{-1}(T)$  so that  $L(q^{-1}(T))$  makes sense. Moreover  $Q(q^{-1}(T)) = T$  so that the inclusion  $Q(q^{-1}(T)) \subset Q(q^{-1})$  makes sense. Moreover Conversely if  $X \in L(q)^{-1}(L(T))$  then  $\exp_H \mathbb{R}^+ L(q) X \subset T$  so that  $\exp_G \mathbb{R}^+ X \subset q^{-1}(T)$ . But since H is metrizable [1] (Cap. IX, § 2, Prop. 1.8) implies that  $Q(q^{-1}(T)) \subset Q(q^{-1}(T))$  since any Cauchy sequence in T can be lifted to a Cauchy sequence in  $Q(q^{-1}(T)) \subset Q(q^{-1}(T))$  for any  $Q(q^{-1}(T))$  we find a sequence  $Q(q^{-1}(T))$  and hence a sequence  $Q(q^{-1}(T)) \subseteq Q(q^{-1}(T))$ . Thus  $Q(q^{-1}(T)) \subseteq Q(q^{-1}(T))$  and hence  $Q(q^{-1}(T)) \subseteq Q(q^{-1}(T))$ .

## References

- [1] N. BOURBAKI, Topologie génerale. Paris 1958.
- [2] B. BONNARD, V. JURDJEVIC, I. KUPKA and G. SALLET, Transitivity of families of invariant (1982).
- [3] J. GAUTHIER, I. KUPKA and G. SALLET, Controllability of right invariant systems on real simple.

  [4] J. GAUTHIER, I. KUPKA and G. SALLET, Controllability of right invariant systems on real simple.
- [4] J. HILGERT, Infinitesimally generated semigroups in motion groups. Preprint THD 1986.
  [5] J. HILGERT and K. H. HOFMANN, Lie semialgebras are real phenomena. Math. Ann. 270, 97-103 (1985).
- [6] J. HILGERT and K. H. HOFMANN, Semigroups in Lie groups, semialgebras in Lie algebras. Trans. Amer. Math. Soc. 288, 481-503 (1985).

- [7] J. HILGERT and K. H. HOFMANN, Old and new on SL(2). Manuscripta Math. 54, 17-52 (1985).
- [8] J. HILGERT and K. H. HOFMANN, On the automorphism group of cones and wedges. Geom. Dedicata 21, 205-217 (1986).
- [9] J. HILGERT and K. H. HOFMANN, On Sophus Lie's Fundamental Theorems. J. Funct. Anal. 67, 293-319 (1986).
- [10] J. HILGERT, K. H. HOFMANN and J. LAWSON, Controllability of systems on a nilpotent Lie group. Beiträge Algebra Geom. 20, 185-190 (1985).
- [11] K. H. HOFMANN and J. LAWSON, Foundations of Lie semigroups. LNM 998, 128-201, Berlin-Heidelberg-New York 1983.
- [12] G. HOCHSCHILD, The structure of Lie groups. San Francisco 1965.
- [13] V. JURDJEVIC and H. SUSSMANN, Control systems on Lie groups. J. Diff. Equations 12, 313-329 (1972).
- [14] G. OL'SHANSKIÍ, Convex cones in symmetric Lie algebras, Lie semigroups, and invariant causal (order) structures on pseudo-Riemannian symmetric spaces. Dokl. Sov. Math. **26**, 97–101 (1982).
- [15] G. OL'SHANSKIÍ, Invariant cones in symmetric Lie algebras, Lie semigroups, and the holomorphic discrete series. Functional Anal. Appl. 15, 275-285 (1981).
- [16] S. Paneitz, Invariant convex cones and causality in semisimple Lie algebras and groups. J. Funct. Anal. 43, 313-359 (1981).
- [17] S. Paneitz, Classification of invariant convex cones in simple Lie algebras. Ark. Mat. 21, 217-228 (1984).
- [18] L. ROTHKRANTZ, Transformatiehalfgroepen van niet-compacte hermitesche symmetrische Ruimten. Dissertation Univ. Amsterdam 1984.

Eingegangen am 4. 3. 1986

Anschrift des Autors:
Joachim Hilgert
Fachbereich Mathematik
Technische Hochschule Darmstadt
Schloßgartenstr. 7
D-6100 Darmstadt