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A Modified Trellis Coding Technique for Partial

Response

Channels

Reinhold Haeb, Member, IEEE

Abstract— The problem of trellis coding for multilevel base-
band transmission over partial response channels with trans-

fer polynomials of the form (1 + DN ) is addressed. The novel
method presented here accounts for the channel memory by
using multidimensional signal sets and partitioning the signal
set present at the noiseless channel output. It is shown that
this coding technique can be viewed as a generalization of a
well-known procedure for binary signaling, the concatenation of
convolutional codes and inner block codes that are tuned to the
channel polynomial. It results in high coding gains with moderate
complexity if some bandwidth expansion is accepted.

[. INTRODUCTION

TRELLIS coding techniques which increase the reliability
of data transmission without increasing bandwidth re-
quirements have been pioneered by Ungerboeck [1]. The basic
idea is that by trellis coding onto an expanded modulation
set {relative to that needed for uncoded transmission) and
by designing the trellis codes to maximize the minimum
free Euclidian distance between allowable code sequences,
asymptotic (high signal-to-noise ratio) coding gains of 3—6 dB
compared to an uncoded system can be achieved without
bandwidth expansion. Spurred by the impressive performance
on spectrally flat channels efforts have been made to apply
trellis coding also to partial response (PR) channels, ie.,
channels with a controlled amount of intersymbol interference
[2]-110].

Ungerboeck and Wolf [2] consider binary signaling. Through
the use of a precoder which causes the channel to resemble a
spectrally flat channel conventional convolutional codes can be
applied. Karabed and Siegel [3] showed that the concatenation
of convolutional codes and simple inner block codes that are
tuned to the channel polynomial can yield large gains. Using
the notion of matched spectral null codes they developed codes
that achieve the same performance as codes of Ungerboeck
and Wolf (in terms of rate, coding gain) with much smaller
decoder complexity [4]. They proved that if the spectral null
of the code spectrum matches the spectral null of the channel
then the memory of the channel enhances the performance of
the code.

Multilevel signaling on PR channels has also been con-
sidered [S]-[10]. Ketchum applies the precoding approach
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of Ungerboeck and Wolf to multilevel signaling [5]. His
conclusion is that trellis coding on PR channels suffers a loss in
performance relative to trellis coding on memoryless channels
which typically approaches 3 dB. Further the extra memory
introduced by the channel requires additional complexity for
the maximum likelihood sequence detection. Ketchum uses a
conventional precoder while Forney and Calderbank [6] attach
a preprocessor to the channel which reduces to a conventional
precoder when the power constraint is at the channel input.

Other approaches to trellis coding on partial response chan-
nels subdivide the channel and use ISI-free signaling on
the subchannels. Cioffi and Ruiz [7] use frequency division.
Kasturia et al. [8] divide the channel into a set of parallel
independent channels using eigenvectors of C'C'" where (7
specifies the pulse response of the channel over a finite input
block. The achievable coding gains are larger than in the
other approaches described. However this method requires
additional complexity since a pre- and a post processor have
to be attached to the channel.

Matched spectral null codes for a multilevel symbol al-
phabet have been studied by Eleftheriou and Cideciyan [Y]
and by the author [10]. Besides other sometimes desirable
features (e.g., absence of a dc component) they offer increased
Euclidian distance (coding gain) and code rates as close to
the uncoded M -level system as desired. These codes seem
to be, however, well suited only for applications where for
some reason an extension of the channel input alphabet via
coding is not desired or possible. The reason for this is that
the coding gain is usually not large cnough to compensate for
the rate loss. No four-level code of rate [ with a coding gain
> () dB versus uncoded binary transmission could be found
(neither in [9] nor in [10]). If an extension of the channel
input alphabet is possible and if the line code properties of
the matched spectral null codes are not required then trellis
coding by set partitioning is therefore more attractive,

In this paper we apply the set partitioning idea to the signal
set present at the noiseless channel output. After introducing
the channel model in Section Il we briefly review trellis
coding incorporating a precoder. In Section Il we present
our new approach which avoids the use of a precoder. We
use multidimensional trellis coding where the edge labels
of the trellis are obtained by partitioning the set of noise-
less channel output signals. It is shown that this technique
may be regarded as a generalization of concatenating outer
convolutional codes and inner block codes, which has been
explored in the binary case by Karabed and Siegel [3], to
multilevel signals. The best results are obtained for codes of
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Fig. 1. Precoded partial response system with trellis coding.

rate [(d ~ 1) /d ] logs(M/2) bits per M-ary symbol with some
integer d > 2.

II. CHANNEL MODFL AND TRELLIS CODING WITH PRECODER

The term partial response channcl is used to denote channels
that exhibit a certain amount of controiled intersymbol inter-
lerence (IST). This is practically accomplished by an equalizer
at the receiver front end which equalizes the channel impulse
response to a predetermined shape which gives rise to a
known amount of ISI. Such a configuration is described by
the polynomial C(D), the D-transform of the discrete-time
impulse response of the combination of channel and equalizer.

In this paper we will confine ourselves (o the “dicode”
(1 — D) partial response channel, ic.,

C(D) = (1 - D)/V2. (1

The same codes that will he developed for the (1 - D)
channel can be used on the (1 + D) channel it the coded
sequence is multiplied by (—l)"' (k: time index). The codes can
also be used on channels of the form (1 + D”) since it is well
known that these channels can be regarded as V interleaved
(1 £ D) channels with independent coding/decoding on each
of the interlcaved channels. We assume baseband transmission
with an M-ary signal alphabet (M being a power of 2).
The channel input sequence {wx} assumes values from the
set p € {£1L.E3.-- (M~ 1)} The (1 — D) channe]
produces at its output the noiseless sequence {y} and the
noisy sequence {ry} where

V2

i

S Sl T 2
(3)

The . denote independent Gaussian noise samples with zero
mean and variance 2.

Fig. | shows the block diagram of a precoded partial
response trellis coding system. {ng} is the binary
quence where cach element is a vector of n bits, e, a; =
lagtoa ™"l (b)Y s the trellis encoded sequence
where by (f)i”,’ll’“lu-'.bx). The binary cncoder has

[nstead of the binary vectar

e + g

nput se.

therefore the rate mf (i + 1),
representation by, is interchangeably considered to be
in the range [0.2m+! ],

For the {1 — D) channel under consideration the corre.
sponding precoder performs the operation

an integcr

ek = (bx + ¢ 1) mod A, “

Thus, ¢ is the integer in the range (0,274 _ ] a5
congruent modulo M to &y + Ck-1. The task of the
is to avoid quasicatastrophic error events and to make the
precoded channel resemble a spectrally flat channel such that
conventional coding techniques for memoryless channels can

precoder
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be applied [2]. Subsequently 4 is mapped into a Meay
symbol .y where M 2771 The information rae i
therefore 1n = log,{M/2) bits/symbol.

Using polynomial notation, let in /2y and #(D) = WDz
(D) be two similar code sequences where 2 denotes modulo.
2 addition. And let (D) describe an crror event of length
L+1,ie,

C(D)Z"A-Dk+"'+u»II)A'I'I fho ket 0

Ch—1 = Chagyr =00 L >0, 5

In order to lowerbound the Euclidian distance (ED) between
the channet symbol sequences o [2) and /(1)) obtained from
b(D) and ¥'(D) [absence of precoder] Ungerboeck defined
the Euclidian weight [1]

wle) = win(d(e(h,). rih, = ;1)) (6)
where the minimization goes over all possible b; and d(--}is
the Euclidian distance between the channel symbols specificd
Ketchum 5]
squared ED associated with any error event at the channel
output is lowerbounded by

hA—L
Ply.y) = Sy -yt = ! Sowte). 0
: i=k

In particular, (7) holds also for the minimum distance ermor
event. For a spectrally flat channel a | would oceur i"Stead'm
1/2 on the right-hand side of (7), [1]. From this observatiot
Ketchum concluded that
typically 3 dB less coding gain than on spectrally flal Chan.nels‘

Let g(e,) be the number of trailing zeros in the binary
fepresentation of ;. Ungerboeck showed that from the map
ping by set partitioning it follows thai w(ei) 2 Bgier
Ayie,) tesults from the st partitioning procedure [1] Itlf
the minimum intraset distance after ¢(«,) partitioning fevels
see later examples. Therefore the squared free ED can ¢
lowerboundeqd g5 follows:

e}

) i b+ L ®
) )
e > min 3 E A

qle, e
1=k

coding on PR channels delivers

showed that in the presence of a precoder i

This bounding technique will be used in the subsauer

sections,

HL TresLs CODRING WITHOUT PRECODER

A A Molivaring Example

Here the aim is to adapt the code to the channel P"]ynomlﬂl
father than to eliminate the channel memory by the us®’
a precoder, In the following we assume therefore absence ®
a precod
the Us¢ of a concatenateq coding scheme, which bas
Studied for the binary case, ie., 1, € {1.—1}, by Siege
Karabed (3. The codes comprise convolutional outer

: § 115
€ A means of adapting the code to the Lhm;en i

1a0d ¢
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Partial response treblis coding with inncr block code.

Fig. 2.
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Fig. 3. Sample wrellin codes used in Section I (from [1]). (a) and (b):
Codcs. for one-dimensional signal constellation. (a) and (c): Codes for
wo-dimensional signal constellation.

TABLE 1
PERFORMANCE OF 4-ENCODER-STATE TRELLIS CODE WITH
INneR CODES ON {1 — D7) CHANNEL

1C1 12
Rate (hits /symbols) 1/2 2/3
&... 92 8
Gain versus uncod. 2-AM (02/51/4 (28/3)/4
Gain in dB 6.6 1.5

and simple nonlinear block inner codes. The simplest inner
codes proposed are

IC) iy — Ty = 111 ®
(10)

1C2 2 wyiks — wixeTa = N V2V3-

where % = _, IC1 is known as biphase code {3]. The
Motivation for these simple codes is the observation that the
Squared ED at the channel output can be wrilten as

‘lz(‘!/-:u') = Z (yi —

\2
= %Z (i —vica) = (v = V,Ll))
= Py = 3 = ) e~ i)

[

ui)

1n

The second term on the right-hand side of the last equality
has the desired sign if successive symbols V1. Vi have
Opposite sign and that is just what the inner codes try to
ahieve. It iy interesting to note that the spectral density of the
?’1“‘* codes is minimum where the channel transfer function
'S Minimup, Le, at de. .

Next, the performance of these inner codes is studied i
Multileve] cage, Fig. 2 shows the block diagram of the system.
Using Ungerbocck’s 4-state 4-AM code [1], se¢ Fig. 3(a) a5
the outer code gives the results summarized in Table L.

n the

n
b3

Here gain means the asymptotic (high signal-to-noise ratio)
coding gain which is determined by the minimum free Eu-
clidian distance between allowed noisefree sequences at the
channel output. The average power of the coded systems is
5/T as opposed to 1/T in the uncoded case. Note that due
to the inner code the information rate of the coded system is
smaller than in the uncoded case. Further note that the optimal
decoder requires 8 states because of the channel memory.

The baseline system against which the coded systems arc
compared consists of a binary signal source, a precoder,
the (1 — D) channel, and a two-state Viterbi decoder. The
precoder is used to avoid quasicatastrophic error cvents, and
the Viterbi decoder is the maximum likelihood sequence
detector for this configuration. The squared minimum free ED
of this system is 4.

It might be surprising that the gain of the trellis code with
1C2 is so much smaller than with ICT. The reason for this is
that there is no fixed alignment between the statc transitions
of the trellis code and the block boundaries of the inner code
IC2. Consider the minimum distance error event between the
two scquences {x} and {27}

{z}={ - aprae. =1 =3 L. -}
{a'}={zp 1w 3. L =8 k42, )

There are two possible alignments of the inner code 1C2
with the trellis coded sequence: cither the negative of ry is
inserted or the negative of xx4y. The first choice delivers a
squared ED between {.c} and {} of 28 whereas the second
alignment yields a squared ED of 116! In the case of IC1 such
an ambiguity is not present: the combination of wellis code and
inner code can be well described by an overall trellis diagram
whose edges are labeled with two-dimensional signals (two
consecutive symbols per branch).

Fig. 4 shows the trellis diagram obtained by combining the
four-state 4-AM trellis code of Fig. 3(a) with the biphase inner
code. Four branch labels are used: {(—3.3), {—1.1), (1. -1}
and (3. —3). Transitions originating from the same state or
joiming in the samec state are labeled cither with a signal
of the subset {{—3.3).(1.—1}} or {{(3.-3}.(=1. 1)} which
corresponds to the set of differences between consecutive
symbols V2 € B0 = {—6.2} or V2 € Bl = {6.-2}.
This shows that the same labeling of the trellis can be obtained
by succcssive two-way partitioning of the set of possible
diffcrences between successive symbals from the four-level
symbol set such that the intraset distance increases with every
partitioning step. see Fig. 5

Ay =2
A{l) =24,
Ap(1) =224(1), (12)

The argument “1” denotes the dimensionality of the signal
set to be partitioned. Note that the dimensionality d of the
channel input signals is 2, whereas the dimensionality at
the channel output is considered to be 1 (there is only one
difference between the two symbols associated with a trellis
edge). The minimum distance Ay of the total signal set is
always normalized to be 2.
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Fig. 4. Representation of concatenation of four-state four-level code and
inner block code IC1 as two-dimensional trellis code.
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Fig. 5. Set partitioning of one-dimensienal channel output signal set when channel inpat signal consists of two successive four-level symbols (d = 2}.

The performance of the codes can be lowerbounded by
using (8). Let by denote the binary represcntation ot the
channcl output signal yi. by results from the set partitioning
exemplified in Fig. 5. Using polynomial notation, let I;(D) and
iﬂ( Dy = i;(l)) = (1)) be two similar code sequences (ul the
channel output). Let ¢(¢,) be the number of trailing zeros in
the binary representation of the error polynomial é( D). Using
the code trellis of Fig. 3(a) with the above set partitioning
(Fig. 5) the minimum squared frec ED is lowerbounded by

’[é.».» >

:A3(1>+_\‘;’(U+AZ§(1)}

| =t —

(13)

= - {( AT+ 230 + (u[,w?] =72

This gives a lower bound for the asymptotic coding gain
over uncoded binary signaling of
72 OL/T

I8 e
Ul Lo > = =36 (14)
Do ) o N ] o~ BT

which corresponds to 5.6 dB (the actual asymptotic coding
gain is 6.6 dB. see Table 1). The decoder requires 8 states. the
raie is 1/2 bit/symbol. Using the code treilis of Fig. 3(b) gives
7.3 dB asymptotic coding gain (16 state decoder required).
Note that the coded system does not exhibit quasicatastrophic
e1ror events since the seis of differences are disjoint.

B. Trellis Codes Based on Channel Output Set Pariitioning

The example of the last section showed that the use of
good inner block codes can be viewed as labeling the trellis
with multidimensional signal points where the edge labels are
obtained by partitioning the set of noiseless channel output

signals. Then the edge labels of the trellis diagram which
consist of two or more comsecutive symbols have the task
of the inner codes: adapt the “outer” trellis codes to the PR
polynomial.

The code construction can be generalized to higher dimen-
sions and arbitrary M. Coset codes {11] for a PR (1 - D)
channel can be found by partition the (d — 1)-dimensional
regular signal point constellation present at the channel output
when a d-dimensional regular lattice is present at the channel
input. The region £ which contains the finite set of channel
output signal points whose corresponding channel input signal
points are used in the transmitter, has to be choscn such that }hc
average transmitted power is minimum. This design criterion
may be traded off against the decoder complexity, see later
examples. Generally set partitioning of the channel output
signal sct is harder than set partitioning of the channel input
signal set. For the examples considered here R was fOU”_d
by hand or by computer search, A systematic way that 18
applicable to arbitrary dimensions could not be found.

[tis well known that optimum convolutional codes are found
by using the sequence of intraset distances obtained from the
set partitioning [see, e.g., (12)] in a code search program
[1]. The same codes that have been previously found for
{d ~ 1)-dimensional consteltations on memoryless chapnels
are therefore also svited here when the channel output signal
set has dimension (d — 1).

Fig. 6 shows the set partitioning for a four-level signal in the
case of d = 3. The edges of the trellis diagram at the Chﬂﬂf‘el
input are labeled with three-dimensional signals (3 successive
symbols). This corresponds to a two-dimensional channel
output signal because there are two differences between the
three consecutive input symbols associated with one edge:



HAEB: TRELLIS CODING TECHNIQUE FOR PARTIAL. RESPONSE CHANNELS

,
] 4 D2
B:coDgL 10ce 01001

”
-

81(0)=\ 240

¥ ~
03 0
any o

D 01 G
1oel g0ter e

3

Fig. 6. Sct partitioning of two-dimensional channcl output signal set when channel input signal consists of three successive four-level symbols (7 = 3).

TABLE 11
SiGNAL St ok Rate 2/3 CopE
D D1 D2 D3 D4 D3 DG D7
2-dim. ch.
output sign. —4.2 —4. =2 0.6 0.2 4.2 L=2 0. =2 -6
3-dim. ch.
input sign. 1.-3.—1 3.-1.-3 -3.-3.3 ~-lL-L1I —3.1.3 ~1.3.1 L1—1 3.3.-3

The difference between the second and the tirst channel
Input symbols is considered to be the first dimension and
the difference between the third and the second symbol is
Cfmsidered to be the second dimension of the channel output
signal. The MY = 43 possible input signals transform into 37
possible channel output signals. Fig. 6 shows the successive
l‘.’V(J"\’vay set partitioning applied to these 37 channel ocutput
signals. At the third level of set partitioning therc still exist
Wo subsets with enough (i.e., 24=1 = 4) signal points to
support a rate (d — 1)/d = 2/3 bit/symbol code. From Fig. 6
we choose the signals DO - - - 127 as shown in Table IL

.Since sct partitioning has becn performed on the two-
dimensionat channel output signal sct a trellis code suited
for two-dimensional signal constellations has to be used. e.g..
the codes of Fig. 3(a) and (c). Note that the dth symbols of
Fhf? "-dimensional signal points that are assigned to transitions
Joining into he same encoder state can assume two diflerent
valueg (e.g., DU. D2. D4. D6 : —1 or 3). Therefore the
mumber of decoder states is twice (not four times) the number
of encoder states. With the code trellis of Fig. 3(c) the lower
bound on the minimum free ED turns out to be

1

R > = [A32) + A3(2) + A3(2)]

= [(zﬁm)z +(280)° + (2\/250)2] — 40.
(15)

K’ich corresponds to 3 dB coding gain over uncoded 2-AM.
© actual asymptotic coding gain is 3.4 dB. The rate of the

o] = rof

code is 2/3 bit/symbol and the decoder has 16 states. The
same performance can be achieved with the 4-state wellis
structure of Fig. 3(a) if two parallel transitions per branch
are used. This results in 8 decoder states. Note that the gain
achieved with this sct partitioning is considerably lurger than
the gain obtained with the same trellis encoder structure und
the same rate with the inner code 1C2 (see Section 1I-A).
As a comparison consider trellis coding with precoding as
investigated by Ketchum [5]. In this case set partitioning is
done in the ordinary way. ic.. with the four-level chunnel
input symbols. With a d-dimensional signal space (ie., d
symbols per trellis branch) (d — 1) two-way partitionings can
be performed until the subset contains 204 elements. i.c.. as
many as required for rate {«/ — 1)/d. For example, for a two-
dimensional signal space this results in an minimum intraset
distance of v8.. Using the same d-state trellis encoder as
before (Fig. 3a) results in a lower bound for the squared free
ED of this rate 1/2 code of
- 1 E
i 2 5 [A3

D+ AN+ AT =0 (16)

or 3 dB asymptotic coding gain as opposed 10 the 5.6 dB of
(14). As a further example consider d = 3. For a rate 2/3 code
2d-1 = | partitioning steps of the three-dimensional channel
input signal set have to be performed. With the 8-state trellis
encoder of Fig. 3(c) [16-state decoder required] one obtains

the lower bound

- 1 2. .
Bz 51210+ AF3) + 2IB)] =20

an
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TABLE 1}
SinalL Ser For RaTE 2/3 CODE WITH LARGER GAIN THAN Wit Skt Part. of Tastr 1
Do o D2 D3 D4 D3 Do 2n
2-dim. ch.
output sign.  —4. =2 — L0 2.4 —-2.6 10 4.2 2.6 2.~4
3-dim. ch.
fnput sign. 3.-1.-3 3.-1.-1 —-1.-3.1 —1.-3.3 —-3.1.1 —-3.1.3 1.3.-3 1.3. -1

(A, (33) are obtained by partitioning a three-dimensional signal
set.) The number of states cunnot be decreased since parallel
transitions would not have enough distance.

Now let’s turn to rate | codes. Fig. 5 shows that with d = 2
and channel output signal set partitioning no rate 1 code is
possible since two disjoint subsets of 2¢ = 1 signal points
are required. However the channel output signal set for d = 2
only contains 7 symbols. With = 3 a rate 1 code is possible
since there is more than one subset of at least 2¢ = 8 signal
points. Using the code of Fig. 3{a) with four parallel transitions
pet brunch (16-state decoder required) the lower bound of the
squarcd ED turns out to be 20. Employing set partitioning of
the channel input signals the same lower bound can only be
obtained with a 32-staie decoder.

These examples show that sel partitioning of the (d - 1)-
dimensional channel output signal set can provide codes with
larger gain or less complexity than set partitioning of the cor-
responding channel input signal set. Similar relations hold for
codes with u larger number of states. High coding gains with
fairly low complexity are achievable when some bandwidth
expansion is accepted. i.c.. when the rate of the coded system
is [(d ~ 1)/d] toe, (Af/2) as opposed to loga(M/2) in the
absence of coding.

C. Low Complexing Codes with Higher Gain

Codes with larger gain can be found by exploiting the fact
that for the rates considered here not cvery signal point within
4 region ix actually used. First consider a four-level symbol
alphabet and rate (f — 1)/d codes. In the previous rate 172
code only 4 out of the ttal of 7 channet output symbols are
used. only 8 out of 37 are used for the rate 2/3 code. Using
only a fraction of rhe total number of signal points allows us
W increase the intraset distance by employing a different set
partitioning and still having disjoint subsets.

Consider again the rate 1,2 code of the last chapter. Instead
of using the subsets B0 = {=6.2} and Bl = {6. -2} use
the subsets {~G.4} and {6.—4}. The intraset distance of
these subsets is the largest possible such that there exist two
subsets of that distance. Since the two subsets are disjoint
there are no quasicatastrophic error events. Note that A (1)
is reduced to A, and Aa(1) is increased compared to the
previous set partitioning. That is. the ED contribution of
the beginning {transitions originate from the same state) and
the end (transitions joining in the same state) of the error
event have been increased. From inspection of (13) it may be
concluded that this results in an overall increase in minimum
squared tree ED when the same encoder is used. The four-
level channel input signals are assigned 1o these channel

output signals again such that the average transmitter power
is minimum

—6—3.-3
4—-31
6 — —3.3

—4 - 3. —1. (18)

A computer search for the minimum squared free ED
resulted in d2 = 114. The asymptotic coding gain is

2 44 1/
dfw) P;w _MYT R
Pave / con \ o ) nena T/T 4

(compared to 6.6 dB with the biphasc labcling). Note that since
A(1) has been reduced it takes longer time to accumulate a
certain amount of Euclidian distance. Therefore, the survivor
path memory of the decoder has to be larger than in the previ-
ous case. Further note that with increasing encoder complexity
the asymplotic coding gain does not increase as fast as with
the set partitioning of the last chapter because A(1) has beet
reduced to Ay. Hence this modified set partitioning is only
advantageous for low complexity codes.

Using the same approach of maximizing the intraset distance
of the subsets of signal points that leave the same state (i.¢
the subsets denoted B0 and D1) set partitionings can be
obtained for higher dimensions. As a further constraint in the
selection of signal points we requirc that the dth symbol of the
d-dimensional signal point joining into the same encoder state
shall only assume two difterent values (instead of possibly
four). Then the number of decoder trellis states is again twice
(instead of four times) the number of statcs of the encodef-.
Note that this constraint sometimes conflicts with the goal of
achieving the largest possible intraset distance and assigning
channel input signals to these channel output signals such that
the average transmitter power is minimum. The channel output
and corresponding channel input signal set for a rate 2/3 code
15 given in Table III.

The four signal points belonging to the subsel By =
DO D20 DDLU D6 (or B1, respectively) have the largest
intraset distance possible if they are constrained to end it
only two different (channel input) symbois. With the cod¢
trellis of Fig. 3(a) and with two parallel transitions per branch
the minimum squared free ED turns out to be 60 (this 15
the minimum distance associated with parallel transitions
and at the same time the minimum distance of longer €I
events). The corresponding asymptotic coding gain is 4.8 4
(compared to 3.4 dB of the rate 2/3 code with the st part. f
Table I1. The decoder requires 8 states.

(19)
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TABLE IV
SiGnaL Set For Rary 3/4 Cope witth MODIFILD SET PARIITIONING
Do D1 D2 D3 DA D5 1208 DT
3-dim. ch. 4.—4.0 —2,-2,-2 -2.-2.0
oulput sign. . ] —2.4 4.2,-6 4.2,—1
~v4—d|m.'ch. 1 3.1L.-1.-3 R e |
input sign. 1.-1.3.-1 —-3,1.3.~-1 —3,1,3,--1

For a rate 3/4 code and a four-dimensional signal set
Table IV shows the chosen signal points. Using two parallel
branches with the code trellis of Fig. 3(c) this code achicves
a minimum squared free ED of 52 which is again the min.
distance associaled with parallel branches and at the same time
that of longer error events. This gives rise to an asymptotic
coding gain of 4.6 dB. The decoder requires 16 states.

For higher dimensions the search for the set partitioning that
achicves the largest coding gain becomes very computationally
complex and has not been pursued.

It is not obvious how to apply the above modified set
partitioning to obtain rate 1 codes. With the regular set parl.
described in the last chapter the signal sets used for the rate
1 code are simply one depth less in the set partitioning tree.
The total number of signals used in the (£ — 1)/d rate code,
B0 U BL, form one subsct of signals used in the rate 1
code, say the subset that is assigned to the branches leaving
the even numbered encoder states {where it is assumed that
the states are numbered). This method of extension is not
fe.asible with the modified set partitioning since the intraset
distance of the sct consisting of the union of the subset for
the even states 30 = /D0 U D2 U /21U D6 and the odd states
Bl = DU D3U D5 DT has the very poor intraset distance
of Ay,

Fig. 7 shows a way how to obtain a rate 1 code starting
fmx:n the previously presented ratc 2/3 code (sec Table [I)
W}"l‘e preserving the distance structure of the modified set
ParAmioning. The number of signaling levels is extended. Now
ILis easy to find signal points in this signal spacc such
that the minimum Intraset distance of the subsets for the
even numbered states and the odd numbered states remains
unchanged compared fo the ratc 2/3 code of Table Il Only
four additional signal points per subset are required Lo support
4 rate 1 code. The four signal points aclually chosen, see
F‘g 7, are those for which the corresponding channe! input
Signal set has minimum power and simultancously ends in
only two different symbols per subset { D0U D2U DU DG}
and { D1UD3U D3UDT], respeetively. Therefore, the number
iOf dc;odcr states is only double the number of encoder states,
€., 8,

The chosen signal points have an average power of 35/31
ad the minimum squared ED, when the code wrellis of
Fig. 3(a) is used with four-parallel transitions, is still 60. Thus,
the coding gain of this rate 1 code is 1.1 dB. Ketchums best
€0de with 32 decoder states has .8 dB gain [5]. Note that the
Channcl input symbols are no longer confined o the four-level
Signal sey,

o The rate 3/4 code previously described can also be extended
a1ate 1 code by applying the same design procedure. A rate
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Fig. 7. Channel output signal set assigned to the even numbered encoder
states. Signal points with the same maurker are assigned to parallel transitions.

1 code with 16 decoder states and asymptotic coding gain of
L.5 dB results.

V. CONCLUSION

This paper described a novel approach to trellis coding on
partial response channels: optimum convolutional codes for a
(d — 1)-dimensional signal constellation are adapted to the PR
channel by using multidimensional signal sets and pastitioning
the (d — I)-dimensional constellation present at the noiseless
channel output. This partiliuning, however. turns out to be in
general a harder problem than partitioning the channel input
signal set. It was shown that this coding technigue can be
viewed as a generalization of the concatenation of an outer
convolutional code and an inner block code. which is one
method proposed for binary coding on PR channels. High
coding gains are achieved when some rate loss is accepted.
If no bandwidth expansion is acceptable the proposed sel
partitioning renders codes with slightly better performance
than applying the classical set partitioning of the signal set
at the channel input and adapting the code to the channel by
means of a precoder.
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