113

SUPPORTING PARTICIPATIVE SYSTEMS DEVELOPMENT
BY TASK—-ORIENTED REQUIREMENTS ANALYSIS

Reinhard Keil-Slawik Technische Universitit Berlin
Institut fiir Angewandte Informatik
Franklinstr. 28/29, Sekr. FR 5—6
D-1000 Berlin 10, Berlin (West)

Task-Oriented Requirements Analysis {TORA} is a technique for analysing and
documenting the requirements when developing software which is to be embed-
ded into human work processes. The aim of TORA is to further understanding
of the usage context of the DP system so as to enable the user to assess the
quality of his work, and the developer to check if the software is adequate
with respect to the working procedures to be supported by the software.

1. Introduction

TORA is part of a methodology called STEPS {Software Technology for Evolutionary Par-
ticipative Systems development) which is being developed at the Technical University of
Berlin. As software engineers, we are primarily interested in elaborating methods and tech-
niques to support software development according to the process-oriented approach describ-
ed in [1]. The conventional approach to software development is based predominantly on
a view of software as an autonomous product on its own with no explicit relationship to
the outside world. Since data structures and algorithms can be viewed as mathematical
objects, and mathematics is a scientific discipline, a ot of research is being done to extend
mathematical formalisms so as to enable them to be used from the beginning of the soft-
ware development process. According to this view, documents such as the requirements
definition should reflect the properties of mathematical objects: they should be complete,
consistent and unambiguous.

In fact, the result of the software development process is a product which is reduced to
formal aspects. However, the semantics of such a product is not defined by mathematical
descriptions. Essential for understanding is participation in the reduction process. To under-
stand, for instance, a mathematical abstraction, one has to know the design alternatives
undertying the abstraction.

Participation makes no sense when the participants may only have to agree to, or criticize,
a final document or product. They must have the opportunity to influence design decisions
at every level relevant to the embedment of the DP system into the work tasks.

By choosing the appropriate notions for the task-oriented requirements analysis, we try to
fix the areas where reductions are made in order to render the underlying decisions ex-
plicit and transparent. The aim of TORA is to enable the users to influence design deci-
sions at the appropriate level and to further the developer’s understanding about what is
required to support the users’ work tasks, and not to establish a political strategy on how to
Set up groups and committees for participative systems development.

114

Before describing TORA in more detail, the basic premises underlying the conventional
approach to software development are examined and charactefized by reference to the
notion of the closed system. In contrast, the approach described in this paper is charac-
terized by the notion of the open system. This distinction serves to illustrate our per-
spective, which views the development process as evolutionary rather than as a pre-planned
sequence of activities, and to elucidate our view of the world, which influences our be-
haviour as well as our design decisions in the actual development process. The last chapter
contrasts our approach with certain technigues for requirements analysis currently in use.

2. Open and closed systems in software development

In the following section the notion of open/closed system is used to characterize different
views of software, rather than to denote different kinds of systems. The closed system
view assumes that once the topmost functions are formally specified, the whole product
can be constructed by specifying the semantics of each function or operation by subfunc-
tions or lower-level operations. This is repeated unti!, eventually, each (sub-)function or
operation is defined by elementary functions or operations, which may be regarded as
semantic atoms. Such semantic atoms may be machine-executable operations, such as are
provided by a programming language and a compiler; or they may be basic mathematical
objects, when using a mathematical specification language. In this view of software as a
closed system, it is not feasible to introduce new operations whose semantics are not
derived from other existing operations or from the semantic atoms. On the other hand, if
the topmost functions are specified, the construction process consists in dividing functions
into subfunctions, whereby at each level “implementation details’” are added. During the
whole process, though, the identity of the system is maintained by the fact that the same
functions remain to be realized.

The conventional approach embodies such a closed system view in two respects. Firstly,
the phase model advocated by Boehm [2] generally assumes that requirements can be
determined and fixed in advance, and that the later phases are only steps in which the
initial document, the requirements specification, is successively transformed into a function-
ing system which, it is hoped, fulfills the specified requirements. Secondly, mathematical
specification techniques, which may be employed in one phase, aim at formally defining
the semantics of the system functions in a top-down manner, as described at the begin-
ning of this section.

Such a closed system view exhibits several limitations:

1. No explicit relationship is established between the software and the “'Lebenswelt”
(Habermas) of the users.

2. No theory exists with respect to the application area, such a theory being equated
with the system specification {see [3]}.

3. Requirements are fixed in advance and cannot be changed; futhermore, it is assumed
that they are complete, consistent and unambiguous.

4. Production and use are viewed as two opposite ends of a linear development chain.

5. Meaning is derived exclusively from the specification, without the usage context being
taken into account.

6. Software quality is judged only on the basis of software-immanent characteristics, such
as run time, number of operations, branches, etc.

115

To distinguish the notion of closed system as used here from other definitions, such as, for
f.'xample, that of Maturana, Vareta (4] and Bertalanffy [5], the term “productionally closed"”
is used. This notion emphasizes that closedness refers to the assumption that there is a
complete specification of the system to be built and that the whole production process can
be carried out only with reference to the specification.

A closer look at the development process shows that the closed system view is not ade-
quate, According to Jones [6] — and this is corroborated by our own experience — there is
no software system in practical use which has been successfully developed purely on the
basis of a written specification. l

Software development is part of an organizational process in the course of which production
and decision processes are changed, the working routines and communication processes modi-
fied, and the organizational structure possibly redefined. These processes of orgarizational
change are imposed by different interests and views put forward by the people involved in
these processes. Furthermore, people’s behaviour and their requirements may have changed
or will change by the time the system is installed. New requirements emerge, and experience
gained in using the system results in new insights and demands.

The same holds for the production of software in its narrow sense. Software and the related
documents are modified during the development process; errors are found; some parts may
be optimized; design decisions are revised; and the system, or some part of it, may be re-
structured.

The reasons for, and the motivations leading to, such changes are not usually documented,
and cannot be documented in their entirety and with all their relations and mutual depend-

encies.

Each document or product reflects the history and intermediate development stages only to
a very limited extent, or, as Naur [7) puts it: ‘“reestablishing the theory of a program
merely from the documentation is strictly impossible’””. This holds for all documents and
products in the system development process: the requirements specification as well as the
software system.

If we accept this view, it follows that any document or any piece of software can only
be understood with reference to the knowledge of those who have participated in the
development process and have experience in using the system. Software and the related
documents are not autonomous entities, but are part of continuous processes of social
interaction, such as communication, learning, understanding, and adapting to changing
needs. In the development process, documents and programs serve as the explicitly formu-
tated common memory of the people involved in that process. As is shown in [8],the
relationship between such memory media and the oprocesses they are part of can be char-
acterized by ecological attributes comparable to those in use for describing natural ecol-
ogical systems. These allow us to distinguish between data-processing machines and informa-
tion-processing human beings.

Openness of a systern means that some attributes or parts of the system are subject to
later revisions due to interaction with the environment. The identity of a software system
viewed as an open system is maintained by the people involved in the development pro-
cess. Characterizing this as a process-oriented view, Floyd [8] states: “The software system
is productionally open; the actual set of programs at any stage is considered a version
subject to later revisions and embodying limited and possibly conflicting insights ..."”

Naur [7] gives some impressive examples of software systems whose structure and underly-
ing theory were lost owing to the fact that they were not modified and extended by the

same people who had produced them.

116

Regarding software as an open system means using documents and programs to promote
the understanding of users and developers: establishing relations between software functions
and the usage context; initiating a sequence of cycles of {re-)design, (re-)implementation
and {re-Jevaluation; and providing a flexible framework to cope with changing requirements.

With respect to requirements analysis, it follows that design decisions relevant to the embed-
ment of the DP system into the work tasks should be explicitly modelled, and that the
results of communication processes with various people or groups of people should be docu-
mented as well as their possibly differing views.

3. Task-oriented requirements analysis

3.1. Basic concepts and notions

Requirements analysis is the first step in the software development process. Software engi-
neers tend to look at data-processing aspects with a view to finding out first which pre-
viously built software functions can be used in the new application area. Hence, it is a

widely accepted practice to equate requirements with DP functions. In contrast, we distin-
guish between:

~ functional requirements, describing the desired output to be attained for a given input;

— performance requirements, stating the resources available to achieve these functions, i.e.
specifying quantities and time constraints;

— handling requirements, defining the manner in which the system is to be embedded

into the working and communication processes of the users, in particular the user
interface:

- embedding requirements, comprising the consideration of already existing equipment,
organizational regulations for use of the DP System, required document standards,
required qualifications and training courses etc.

As part of the requirements analysis, these have to be provided for the next development
phase, namely functional analysis. Hence, a clear distinction is made between the require-
ments definition {a document describing what the users want) and the functional specifica-
tion {a document describing what the developer will offer as a solution). The following
refers to the requirements definition/requirements analysis phase only.

Users and user groups as well as managers, customers and clients are characterized by func-
tional roles. This notion serves to relate the existing working tasks and those to be newly
defined to the workplaces and interests of the users. According to Nygaard, Handlykken

[10], a functional role is defined by a specific task or a set of related tasks which has to

be performed by a person or a group of persons. A person may have more than one func-
tional role.

Usually, a task can be performed using different working routines, which may also vary
according to personal styles and individuai preferences. Working routines co-ordinate activities
So as to manipulate objects. For each task, there is a series of possible working routines
for achieving the desired resuit. Hence, we have to take into account that:

= @ modelled working routine is only a representative sample of such a class of routines;

— in order to perform the same task, different persons might use different working
routines.

For these reasons, what is actually modelled is not what people are really doing or think-
ing, i.e. the real working routines. More precisely, we actually model the processing states

17

[functional roles]1:

.~

defined by -~

{ ~
B/ organizational
i PO G777

realized by

[working routines I(- ——————— -?

connect

r activities ié ——————— > (dialog interface

maniputate

¥

X input/output
e ()

Figure 1. Conceptual levels in TORA

of objects which are created, used and modified. These objects and their processing states
are meaningful with respect to the intentions and activities of the people involved. This
can be expressed by attributes characterizing the processing state of objects, and by naming
and describing the actions by which objects are transformed from one state to another.
The concepts underlying TORA can be related to those of human-computer interfaces. On
the left-hand side of figure 1, the conceptual levels in TORA are shown. The right-hand
side illustrates connections to the model proposed by Williamson [11] for the European
User Environment Subgroup of IFIP WG 6.5. The German National Standard Organisation
has adopted this model as the basis for a proposed standard for design criteria in human-
computer interaction {see [12]).

The conceptual levels do not imply a top-down development strategy, nor are they supposed
to indicate that there is a direct and exclusive relationship between, say, actions and the
design of a dialog interface. Hence, the conceptual levels are only used as an analytical
tool for assessing the handlings requirements.

3.2. The modelling process

The approach embodied in TORA is crucially dependent on the situative context. In this
paper, an ideal situation will be described, which serves to illustrate the potential benefits
of TORA. This is easier to describe and understand than a real project situation with its
numerous exceptions, special premises and constraints.

Requirements analysis can be split into two phases: task analysis, and the description of

the computer embedment.

First, functional roles and tasks have to be modelled. Roles do not specify people’s beha-
viour, but it should be emphasized that whenever there is a person to be consulted with
respect to requirements, and this person possesses specific skifls and qualifications or is

118

acting in a specific working environment, there emerges the need for establishing a func-
tional role. Thus, for each task in a functional role, working routines are modelled.

Functional roles, working routines, activities and objects are documented by means of
activity nets. Activity nets are closely related to a specific variety of petri nets, namely
channel agency nets, but are interpreted differently (see figure 2).

Since activity nets grow very rapidly in size and complexity when modelling real working
tasks, the petri net refinement mechanism is used to reduce complexity and achieve models
which can be drawn on a single page. Thus, activities can be replaced by a subnet. This
means that all objects being input to that activity, and all objects — or, more preciselv,
objects in a certain processing state — being produced by that activity have to be modelled
in the subnet. Refinements are indicated by boxes with a black bar on the left side.

Figure 3 illustrates how activity nets are generally used.

When the activity nets with all their refinements have been drawn for each functional role,
the interface between different functional roles must be examined. In particular, it is neces-
sary to check:

— whether all objects in a certain processing state being delivered by a functional role are
used by other functional roles;

— whether the description of an object being delivered by one role corresponds to the
description of this object when being used by another role;

— whether there is appropriate feedback, i.e. whether objects handed over to another role
for further processing will be given back in a new processing state or whether, for in-
stance, payments are received when invoices have been sent to a client.

All objects {identifiers written in capital letters}) of the activity nets are listed in a dic-
tionary. For each object, the dictionary contains a short description, giving the attributes
and, where appropriate, information about the format or structure of the object. An ob-
ject is a form, handwritten notice, printed material or whatever, subject to maodification in
the working environment. An object must have a physical appearance, such as letters on a
sheet of paper or lines on a video screen. People’s thoughts, intentions or wishes are not
objects in this sense.

In figure 4, an example of a student accommodation office is given. For each box in the
tree structure, an activity net has been drawn. Two examples of these nets are given in
figure 5. The tree structure serves merely as the table of contents and is not designed to
indicate a top-down development.

In addition to the basic interpretation of activity nets, two further constructs are used.
Communication coupling is used to indicate that the processing state of an object is
achieved by communication between the functional role performing the task currently being
modelled and some other role. The way in which the result is achieved, i.e. the intermediate
or possible processing states, is not specified.

A storage facility contains a number of objects which have run along the processing chain

at different times. It may be a card index, a file, or any place where several objects are
stored.

It is assumed that a storage facility is always maintained by a person or group of persons.
This person or group of persons is, on the one hand, responsible for ensuring that the
internal structure does not get lost when objects are taken out from, or new objects are
put into, the storage facility. On the other hand, a person who has maintained a storage
facility throughout several processing cycles is always in possession of more information
than can actually be retrieved by inspecting the storage facility. For example, a clerk who

19

symbols interpretations

0BJECT channel objects with associated attributes
representing the state of modification

activity agency activities, processing and modifying
objects

modify accomplish a certain processing state
access of an object {produce, deliver)
rights
ana]yze use of an object in a certain processing
state

Basic concepts of channel agency nets.
Furthermore we use the following notations:

functional role

look up

ut into et out
P ‘12 I storage with access rights (always local
w to a functional role)

]
(o)

communicational coupling

FORM

ore than handle big

Mo~ ——*object
ORDER) 20 goods predicates, inscribed on arrows
handle small

?e\s

S5 than lobject

CHEQUE
tobe signed attributes, inscribed on objects

Figure 2. Elements of activity nets

120

fudctional role x

' S - starting activities
A - Firal o delivered
vy Jeterting tnal PRODUCT ;
. . activities activities \‘ '
f /)

________ U U 4

PRODUCT modified
o be modified} \ PRODUCT

functional role y

Figure 3. Activity net with refinements

knows whether clients have previously been punctual and correct in paying their bills may
grant special credit terms to these clients.

Predicates, written along arrows, allow us to model decisions with respect to alternative

working routines. They can also be used to indicate when an activity with no incoming
objects has to be performed.

When the task analysis is complete, the embedment of the DP system into the work tasks
must be modelled (Figure 6). New activities have to be specified, and details must be given
of the activities which are to be automized or supported by particular DP functions. The
DP system is modelled in a similar fashion to the interaction between functional roles.
However, functional roles are modelled in detail with the specification of local objects and
a local storage facility, whereas the DP system is only characterized by specifying the
desired functions and the objects which are exchanged via the dialogue interface. Again,
objects and functions are kept in a dictionary. The entries in the functions dictionary con-
tain the specified function name (in capital letters), a short note indicating what the user
wants the system to do (including constraints on, or relationships to, other functions), and

details with respect to the number of objects to be handled and the frequency with which
the system function will be used.

Activity nets describing the embedment of the DP system into the work tasks include only
those working routines which are affected or changed. In a new development cycle, when
the next version of the system is due to be produced, these activity nets, together with
those nets which have not been changed and the updated dictionaries, can be regarded as the
result of the first phase of requirements analysis, the task analysis. Conceptually, there is no
difference between a new development cycle and an initial task analysis in an organization
where a DP system is already in use. In each development cycle, it is necessary to model the
new requirements with respect to the embedment of DP functions into the working routines.

121

Student Accommodation Office

accommoda-
tton of ficer]

. adminis-
J|ecceptance g| allocation Wftration
accept alter accept : v
request 6[request Blconfirmat 11| register] 1p| urdate
accept alter update update update
s nf!eES | offers 13 offers 18 requests] 1Mallocation

Figure 4. Tree structure of net refinements

functional roie: accommodation officer

functions) role: accommodation offteer
activity: accept reguest

activity:

accommodation of ficer

/ cTip
togetihe:

ADORESS™ OFFER 1
student LABELS acceptince fe TSRt landlord 1':‘}-_';

REQUEST
incomplets

/ student
; TonF 1%
bl @

i

TRAY u W

allocation UGGESTINN —mpt 5tugent

Ty £
fotiv -
admimis-

/ CATION
Teyton

IPINENE

Student

Tangtard

in
TRAY A
Nate: Diagram shows objects 1aterchanged brtween the sccuwmmidatioe ufficer Mote: Requests are stamped with 4 regislration number consisting of the
ang siher fusctlipnal roles date and a conseculfve numper The regisiration nomber detersings
the order of grucessine

Abbrevigtions; OF = OFFERS FILE
RF = REQUESTS FILE
AF - ALLOCATION FILE

Figure 3. Activity nets of the student accommodation office

122

functional role: accommedation officer

activity: accept offer

letter accept
Tindinvd OFFER O FER

accept & M: OFFER ! cffers

register DATA | gregistration
i
. M: OFFER
evETY I’E‘g\StET " DATA
after-
nacn

éii!
1 fer l
e RO (T S
registered VOUCHERS JOLCHER l

l
l
|
l
!
|
!
|

VOUCHER - VOUCHER
f2ndlard mailed dispatch fe printed
fote: 0fFfers can be registerad on tine during opening hours 10-12 a.m.

Since there are also students caming in the morning who need advice
™5t of the regular activitieg usually take place in the afternoon.

Figure 6. Embedment of DP functions in the student accommodation office

4, Summary

Task-Oriented Requirements Analysis is essentially based on a view in which tools and
techniques are regarded as a means of enhancing people’s understanding and furthering
communication in a system development process. The development process should be open,
in such a way that the people involved in the process have the possibility of influencing
design decisions at every relevant level. Furthermore, the tools and techniques being used

must be effective. Developers should not experience them as an additional burden hindering
the software development pracess.

123

TORA is characterized by the following features:

— its strict separation of man and machine;

— a both user-oriented and version-oriented development process;

— its explicit reference to the usage context, ie. the working routines of the users;

— its use of a flexible modelling tool based on a semi-formal documentation technigue;

— the provision of information for technical solutions, in particular the design of the
user interface and the development of a logical data model.

An extended view of this sort, necessary for handling embedded systems, may also be
achieved by using other techniques for requirements analysis such as SADT, ISAC or
various_kinds of petri-nets. However, there are certain limitations inherent in these ap-
proaches which are briefly outlined below.

First of all, none of these approaches is effectively embedded in a software development
methodology (see [13]). SADT can be used to model working tasks by means of actigrams,
but there is no mechanism for incorporating data processing aspects; these have to be
modelled separately using datagrams. Moreover, a strict top-down approach is advocated. It
is not possible to group together activities which are not derived from the same refine-
ment. Different views can be modelled, but there is no additional support such as that
provided by the concept of functional roles.

Advocaters of petri-nets tend to focus primarily on the formal aspects of nets. Neither the
application area, nor the support of communication and learning processes has substantially
influenced the development of these technigues. In [14] and [15], an introduction to, and
extensive discussion of, these techniques can be found. Another petri-net interpretation
developed by Richter [16] focusses on modeliing clerical work. Various points are deserving
of criticism here: documents as well as people are modelled as objects being input to an
activity: the user as an object is interpreted as an available resource; the net models de-
scribe abstract office functions which can be realized by a DP system. It is neither possible
to model user-oriented views nor embed the DP system into the working tasks.

An approach closer 1o that of TORA is ISAC. However, ISAC offers no techniques for
supporting a user-oriented description. As has been shown in [17], activity graphs in ISAC -
although very useful for describing information/data structures — are not a sufficient tool
for analysing requirements. Goldkahl/Lyytinen (18] have developed an extension of the

ISAC formalism based on the theory of communicative action (Habermas}. However, here,
too, there is no reference to concepts such as working routines, tasks or functional roles,
and the embedment of the DP system is not described.

The difference between TORA and all the other techniques outlined here is that TORA
attempts to combine a user-oriented view with a technical approach to the development
of software systems. This brings the software developer into contact with methods and
techniques which are not primarily designed for developing DP systems, but whose aim is
rather to provide qualified jobs and interesting workplaces where people can improve their
knowledge and maintain their individual working styles and preferences. Adequacy of the
software system with respect to the work tasks of the user has thus become the basic

quality criterion.

References

[1] Floyd, C., Keil, R.: Adapting Software Development for Systems Design With Users;
in: Systems Design for, with and by the User/ ed. Briefs, U., Ciborra, C., Schnei-
der, L.: Amsterdam, North-Holland, 1983

124

[2] Boehm, B.W.: Software Engineering, IEEE Transactions on Computers;
Vol. C-25, No. 12, 1976

[3] Turski, WM.: Informatics. A Propaedeutic View, Warszawa, Amsterdam, New York,
Oxford: North-Holland, 1985

[4] Maturana, H., Varela, F. {eds.): Autopoiesis and Cognition, Reide!, 1980

(5] Bertatanffy, L. von: General System Theory, New York, George Braziller, 1984

[6] Jones, C.: A Survey of Programming Design and Specification Techniques, Proceedings,
Specification of reliable Software, |IEEE Catalog No. 79CH1401-9¢, 1979

{71 Naur, P.: Programming as Theory Building, Microprocessing and Microprogramming,
No. 15, 1985

[8] Keil-Slawik, R.: KOSMOS — Ein Konstruktionsschema zur Modellierung offener Systeme
als Hilfsmittel fiir eine okologische Orientierung der Softwaretechnik, Dissertation, Tech-
nische Universitit Berlin, 1985

(9] Floyd, C.: Outline of a Paradigm Change in Software Engineering, in: Computers and
Democracy. A Skandinavian Chalienge/ ed. Bjerkness, G., Ehn, P.. Kyng, M.: Hampshire,
Gower Publishing, 1987 :

[10] Nygaard, K., Hé’ndlykken, P.. The System Development Process — Its Setting, Some
Problems and Needs for Methods, in: Software Engineering Environments/ ed. Hiinke, H.,
Amsterdam, New York, Oxford, North-Holland, 1981

[11] Williamson, H.: User Environment Model, in: Report of the 1st Meeting of the European
User Environment Subgroup of IFIP WG 6.5., 1981

[12] Dzida, W.: Ergonomische Normen fiir die Dialoggestaltung. Wem niitzen die Gestaltungs-
grundsatze im Entwurf DIN 66234, Teil 8?, in: Software-Ergonomie '85/ ed. Bullin-
ger, H.-J., Stuttgart, Teubner, 1985

[13] Floyd, C.: A Comparative Evaluation of System Development Methods, in: Information
Systems Design Methodologies: Improving the Practice/ ed. Olle, TW., Sol, H.G.,
Verijn-Stuart, A.A., Amsterdam, New York, Oxford, North-Holland, 1986

(14] Wedde, H. {ed.): Adequate Modeling of Systems, Berlin, Heidelberg, New York,
Springer, 1983

[15] Floyd, C.: Design Viewed as a Process. Comments on “Giving back some Freedom to
the System Designer” by de Cindio, F., de Michelis, G., Simone, C., Systems Research,
Vol. 2, No. 4, 1985

[16] Richter, G.: Realitdtsgetreues Modellieren und modellgetreues Realisieren von Biiro-
geschehen, in: Informationstechnik und Birosysteme/ ed. WiRkirchen et al., Stuttgart,
Teubner, 1983

{17] Lyytinen, X.: The Philosophical Nature of information Requirements and some
Research Implications, Syslab Report No. 21, University of Stockholm, 1983

[18] Goldkuht, G., Lyytinen, K.: Information Systems Specification as Rule Reconstruction,
in: Beyond Productivity: Information Systems Development for Organizational Effec-
tiveness/ ed. Bemelmans, ThM.A., Amsterdam, New York, Oxford, North-Holland, 1984

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

