é

An Ecological Approach to Responsiblf
Systems Development

Reinhard Keil-Slawik

Technische Universitaet Berlin

INTRODUCTION

Having been politically active as a student at the Technical University of Berllr;
in the mid-seventies , [felt a strong need to take account of the'problems 0l
computer use and misuse in my daily work as a computer professpna] whento
started my university career. | began looking for practical and theoretical ways
achieve this.)
Together with some of my colleagues I founded a Wissenschaﬂs{qden (Set
ence Shop). This was open to anyone in search of technical or scientific adv1ce:
provided that this related to his or her own personal needs, and was not cc.)ne
nected with commercial goals. For instance, we advised several “altematlvd
technology projects™ on whether to buy a computer or not; and shop stewards an
employees who where faced with the installation of a computer system they
didn’t want. | -
This change of social perspective, from the developer’s to the user’s point 0
view, enabled us to learn a great deal about the potential of computers and thel?
everyday use (Beuschel, Bickenbach, & Keil, 1983); about the problems 0
limiting the size of a project, with or without the use of high technology: about
the wide variety of possible applications of one and the same DP system
(Beuschel, Bickenbach, & Keil, 1983). And we found we were able to provide
constructive advice and concrete help in a great many cases. However, this
changing of social perspectives proved to be too time-consuming in the long run.
New technological developments seem to produce problems more rapl‘dly
than they can be solved—if they can be solved at all. What we need, then, is 2
closer approximation of cause and effect, that is, we should try to preclude at

* I would like to thank Christiane Floyd, Friedrich Holl, and Dirk Siefkes for their valuab

g e
comments on my manuscript, Furthermore, | am greatly indebted to Phil Bacon for polishing up th
text idiomatically and stylistically.

AN ECOLOGICAL APPROACH TO RESPONSIBLE SYSTEMS DEVELOPMENT 83

least some of the problems instead of trying to “repair’’ them afterwards. Within
Fhe bounds of the conventional scientific approach, however, it has proved
impossible to bring science and policy making together.
~ Onatheoretical level, 1 began to study the historical role of science in society
in general, and the history of the computer in particular. 1 discovered that the
reductionist approach to scientific inquiry was identifiable as one of the main
prleem sources. A new scientific approach was needed. That was more easily
said than done. Criticizing the conventional approach was easier than developing
a new approach which would avoid all the problems, shortcomings, and limita-
tions {nhca.rent in reductionist thinking. It took several years of working in various
qrganlzatlons and on different topics, ranging from highly philosophical ques-
tions (o purely technical ones, before the idea of an ecological approach took
shape in my mind. And still this process continues in a highly dynamic fashion.
to llnnntll:ti Chgpter, my main concern is to surpmarize what has bee.n achieved and
 com ta iscussion as to how the ecological approach can be 1mprovefl 50 as
enau; pete with the conventional approach on all apprgpnate levels of scientific
Rh 1 hope to encourage more computer professionals to work along the
same lines.
herrg:: if:’“"(‘l”ing S?Cﬁon_ pr'esents some arguments-relati
entichrs re ?ctxonxst thm.kmg. A su_bsequent section goes on to plead for’ an
which w ml?j the conventional §c:ent1ﬁc appro_ach by an ecological perspective,
e ducti()nc‘)u z'illolw us to .co_ns1der tqgethef different pheno:pena §eparateq by
outlieg. 1s; thu?kmg. Basm ideas whlqh [judge to be_ essentla_l will be bpefly
context « ; ese ideas will be taken up in the next section and illustrated in the
d i 0 softwgn? development. The limitations of the re('iuctlomst approach
discussegpp_ortumtles offered by t.he adoption of an ecological pf:rspec.twe are
with reference to the notion of open/closed systems. This section also
E’sisjnts. our apprQach to software development, elaborated at the Tech.nic?l
for r:?lty Qf Berlin. The next section atte@pts to provide some ethical c_r1tena
ecolo PO'I]SIble Systems development, which are sFrong]y connected w1’fh the
fut gtcal perspective presenteq here. The final section looks at the potential for
ure work as well as the limitations of the ecological approach.

ng to the problems in-

REDUCTIONISM CONSIDERED DOUBTFUL

s in the emergence of

W . _ .
hat we today call reductionist thinking has 1ts root
entific activity, at the

quem science and can be found at all levels of sci
institutional as well as the methodological level.

The mid-17th century saw the founding of the “Royal Society” (London,
16.62) and the “Acadmie Royale des Sciences” (Paris, 1666). The far-reaching
Pl'lvue.ges attained by these societies from the monarchist state were paid for by
the strict separation of science and politics. Though scientists worked directly for

84 KEIL-SLAWIK

military and economic ends (see Berman 1981, and Bernal, 1965), scientific
enquiry claimed to rely purely on science-immanent criteria, as formulated by
Galilei, Descartes, Newton, and Bacon. .

With the principle of scientific expertment, Galileo Galilei established the
separation of the observer from the observed phenomenon; Rene Descall‘tes for-
mulated the philosophical foundation for this by dividing the wor}d into the
thinking substance man (res cogitans) and the external world functif)mng aC?Ofd‘
ing to mechanical laws (res extensa); Isaac Newton succeeded in Complﬂlﬂg
philosophical atomism with experimental method; and Francis Bacon, fma!l)”
formulated the principle of a technocratically organized scientific gommumt)’-

According to the Cartesian world view, the conventional scientific approfwh
attempts to isolate a phenomenon and divide it into increasingly smaller units,
which are to be studied and described in isolation until, ultimately, the ele-
mentary building bricks (atoms) can be identified. A phenomenon can Fhﬁﬂ be
reduced to, or explained with reference to, these building bricks. This is often
termed a reductionist approach.

Though computer science is a fairly new discipline, it is predominantly bésed
on the Cartesian world view. Asg Edsgar W. Dijkstra has pointed out: “A scien-
tific discipline emerges with the—usually rather slow!—discovery Of.WhICh
aspects can be meaningfully ‘studied in isolation for the sake of their own
consistency’” (Dijkstra, 1982). L

Reductionist thinking lies at the core of a great many problems. This 1s
because scientists and engineers tend to focus only on those aspects which CE_H? be
treated in a technical/technocratic manner, neglecting the social and p011t1C§ll
dimensions of a problem. Yet, despite the €normous progress in computer sci-
ence since World War I, many computer professionals have become aware of
the negative impact of computers on society: terms such as job killer and data
protection have become part of our everyday language. Ultimately, the automd-
tion of war and the creation of a4 new golem by means of artificial intelligence
would appear to mark the end of the dominance of the human race.

The dehumanization of work has also been seen as an indication that comput-

projects, in which scientists, trade union representatives, shop stewards, and
employees attempted to work together cooperatively to determine how work-
places could be designed to meet the interests of the users (Sandberg, 1979).

The division of labor s not, however, a phenomenon exclusively related to
the invention of the computer. It has to be considered in the wider context of
political, cultural, €conomic, social, and philosophical questions. While fQF
centuries the scientist was concerned mainly with the technical problem of domi-
nating man and nature, today the significance of the social dimension of master-
ing science and technology has been recognized.

AN ECOLOGICAL APPROACH TO RESPONSIBLE SYSTEMS DEVELOPMENT 85

.Orgamzations like CPSR, Science Shops, or the “Forum Informatiker fur
Eneden und gesellschaftliche Verantwortung (FIFF) e.V.”, (comparable to
wgill(?; are ntl:(:essary steps along the way, but cannot be our ultimate goal. This
e [he%am efid to differing political and scientific cultures, the one dealing
oy this e nl:enltlon of a new [echno!ogy, and the other with the problems caused
oo C nokqu. Heqce, an ecgioglcgl perspective has to be incorporated into
o pr work 1f we wish to avo-ld finding ourselves, as computer professionals

. SR or FIFF members, in the same dichotomy experienced by those
working for the Science Shop.

ORIENTATION TOWARDS ECOLOGY

g?s"c"l‘i)gg ec Ofogy i_S dfrived from the Greek oikos (house). According to Webs-
betweer, llén?ry R 1. (a) the b?anch of biology that deals with the relations
tween 2 lVln_glorgamsr.ns and t}.1e1r en_/ironment (b) the complex relations be-
elat SPClelC organism and its environment 2. Sociology the study of the
ionship and adjustment of human groups to their geographical environment”
(Webster, 1974, p.442).
Vofgsa;f:ﬁlogical ideas can be traced pack to the natural phitosopher Alexander
which w oldt. lp 1827, hc? gave a series of lectures at the University of Berlin
ischen VS“; PUbllSh§d m”flve volumes entitled “Kosmos. Entwurf einer phys-
World) He tbt?SChr,elbung .(Cosrnos. Draft of a Physical Description of the
an ox r lfmboldt S b?S'C ideas included: the diversity of natural phenomena as
IWeenpkESS]on of the llfe-f9rce; man’s affinity with nature; the connection be-
only accno“f]edge and se‘ntlence; and the recogniti(‘)n that all living systems are
e essible tq experience and comprehension 1n terms of their history and
€ir embedment in time and space.
psylé}::;?s QHly through large-scale df.:struction of the natural environment and the
ree ogical eS,trangement of man in a highly technicized world that these ideas
aptured man’s attention, finding an echo in recent ecological ideas and ap-
proaches,
meE[CO'logical thinking focuses on the relations be
by Stl;(;n§tead of analyzing the entity itself. Such re
stud tl);mg the processes through which they are esta -
undy e processes by which intelligence/inteiligent behavio
erstand the crucial difference between man and machine.
Cor:]n my doct-oral Fhesis (Keil-Slawik, 1985), 1 have identified basic concepts
attaimon to biological, psychological, and sociological processes in order to
S“mn a conceptual framework for an ecological approach. This can be briefly
ma‘.nzed as follows.
iml" h_"iﬂg systems, the gestalt-forming processes
eraction of a conservative and a dissipative princi

tween an entity and its environ-
Jations can only be analyzed
blished. Hence, we have to
ur is revealed to

are always based on the
ple (see Eigen & Winkler,

86 KEIL-SLAWIK

1983). Generally, the conservative principle may be identified as form, and thtz
dissipative principle as process. The form shapes the process, but' does no
determine the outcome. If the outcome were determined, no innovative or cr;:-
ative act could take place. On the other hand, if the form were not to shape the
process, no gestalt couid ever emerge.

A machine, in contrast, 1s a device designed, built, and us.ed by mar fo;la
certain purpose. We want this device to behave in a weli-defined, pre'dlcta : 16]:
manner, in conformity with our purpose. If an error occurs, the. mach1n§ IWI't
either stop or deliver an incorrect result. In both cases, the designers will s
down and analyze what has gone wrong, either in the design, develOpr{lentv or
application, in order to come up with an improved version of the machine 0(; a
fiew one. This conforms to the general notion of design as given by Alexander
(1964). + which

According to Ryle (1949), human errors are “‘exercises of competence w lto
serve to improve our skills and enable us to learn, J uergen Habermas, referring
Ludwig Wittgenstein’s assertion that it is impossible to obey a rule in lsql§t10"»
concludes “that the identity of meanings can be traced back to the abl-lxty_ o
comply with, together with at least one other subject, rules of inters}lbjef:“"e
validity; here, both subjects must possess the competence to behave 1n aCCO:
dance with rules and to assess this behaviour critically” (Habermas 1982, p. 34
translated by the author). _ of

Machines lack this competence. If the development and improvement
machines are viewed as ap evolutionary process, then machines reprffse'_‘t fozﬂ
(i.e., they are passive), whereas man’s activities correspond to process (i.¢., le
plays an active role). According to this view, machines incorporate the knowl-
edge and experience of human beings, embodying the result of intelligent humar
behavior. They do not behave intelligently themselves. As Michae.l Polany1
concludes in a more general sense: “no amount of subsequent expenence can
Justify us in accepting as identical two things known from the start to be different
in their nature” (Polanyi, 1983).

. . . o oo re
Ecological thinking focusing on relations 1s holistic in the sense that the natu

. . ., v e
of a relations 1p Cannot be expressed by means of attributes or qualities of th

OPEN AND CLOSED SYSTEMS IN SOFTWARE
DEVELOPMENT

AN ECOLOGICAL APPROACH TO RESPONSIBLE SYSTEMS DEVELOPMENT 87

William A. Wulf has given a typical example of a closed system view of
software development: “The galling thing about the generalty poor quality of
much current software is that there is no extrinsic reason for it; perfection is, in
Pn'nciple, possible. Unlike physical devices: (1) There are no natural laws limit-
ing the tolerance to which a program can be manufactured; it can be built exactly
as specified. (2) There is no Heisenberg uncertainty principle operative; once
built, a program will behave exactly as prescribed. And (3) there is no friction or
wear; the correctness and performance of a program will not decay with time”
(Wulf, 1979).

This statement is based predominantly on a view of software as an autono-
mous product. A lot of research is being done to develop mathematical formal-
isms in order that, once a complete formal specification is arrived at, it may be
possible to check mechanically if the document is complete, consistent, and
unambiguous. The crucial question is, however, whether such a formalism does
actually provide an adequate basis for communication among developers them-
selves, and between developers and users, during the development process.

In fact, the result of the software development process is a product which 1s
reduced to formal aspects. However, the meaning of such a product for the
people involved cannot be defined by mathematical descriptions. Essential for
understanding is participation in the reduction process. To understand, for in-
stance, a mathematical abstraction, one has to know the design alternatives
underlying the abstraction.

The closed system view assumes that once the topmost functions are formally
specified, the whole product can be constructed by specifying the semantics of
each function or operation by subfunctions or lower-level operations. This is
repeated until, eventually, each (sub)function or operation is defined by ele-
Mmentary functions or operations, which may be regarded as semantic atoms.
S}ICh semantic atoms may be machine-executable operations, such as are pro-
vided by a programming language and a compiler; or they may be basic mathe-
matical objects, when using a mathematical specification language. In this view
of software as a closed system, it is not feasible to introduce new operations
Whose semantics are not derived from other existing operations or from the
semantic atoms. On the other hand, if the topmost functions are specified, the
Production process consists in dividing functions into subfunctions, whereby at
cach level “implementation details™ are added. During the whole process,
though, the identity of the system is maintained by the fact that the same func-
tions remain to be realized.

The conventional approach to software d
System view in two respects. First, the phase model advocated by Boehm (1976)

generally assumes that requirements can be determined and fixed in advance, @d
that the latter phases are merely steps in which the initial docume.nt,.the require-
Ments specification, is successively transformed into 2 functioning system,
which, it is hoped, fulfils the specified requirements. Second, mathematical

evelopment embodies such a closed

88 KEIL-SLAWIK

specification techniques, which may be employed in one phase, aim at formally
defining the semantics of the system functions in a top-down manner, as de-
scribed in the last paragraph. N

To distinguish the notion of closed system as used here from other definitions,
such as, for example, that of Maturana and Varela (1980) and Bertalanffy
(1984), the term productionally closed is used. This notion emphasizes that
closedness refers to the assumption that there is a complete specification of the
system to be built, and that the whole production process can be carried out only
with reference to the specification, which is regarded to be the theory of the
program (see Turski, 1985).

The problem inherent in the closed system view is twofold: no explicit rela-
tionship is established between the software and the usage context, that is, the
application area, and the development process is characterized purely by at-
tributes which are related to the result of the process, that is, the notion of top-
down or bottom-up development, for instance. ,

According to Jones (1979)—and this is corroborated by our own experi-
ence—there is no software system in practical use which has been successfully
developed purely on the basis of a written specification. A closer look at.the
development process leads us to call for an open system view, taking into
account the fact that human beings and the software under development together
form the system that “maintains itself in a continuous inflow and outflow, a
building up and breaking down of components” (Bertalanffy 1969, p. 39).

Software development is part of an organizational process in the course of
which production and decisjon processes are changed, the working routines .aﬂd
communication processes modified, and the organizational structure posm_bly
redefined. These processes of organizational change are imposed by differm‘g
interests and views put forward by the people involved. Furthermore, people’s
behavior and their requirements may have changed or will change by the time 'the
system is installed. New requirements emerge, and experience gained in using

the system results in new insights and demands (sce Belady & Lehman, 1979:
Lehman, 1980).

found: some parts may be optimized; design decisions are revised; and the
System, or some part of it, may be restructured. The reasons for, and the motiva-
tions leading to, such changes are not usually documented (see, by way of an
exception, Parnas & Clements, 1985), and cannot be documented in their en-
tirety and with all their relations and mutual dependencies. Thus, in Naur (1985)
programming is viewed ag theory building about how the problems in hand ar¢
solved by program execution. Each document or product reflects the history and
intermediate development Stages only to a very limited extent, or, as Peter Naur

puts it, “reestablishing the theory of a Program merely from the documentation is
strictly impossible” (Naur, 1985, p.258).

AN ECOLOGICAL APPROACH TO RESPONSIBLE SYSTEMS DEVELOPMENT 89

canl fo\:;:yazceeﬂtngzs t‘rle:’ 1t follows that any document or any piece of software
participated in the ;S 001 with reference to the knowledge of those who have
T]eve ((i)Pment process and have experience in using the system.
confinuone orone relate docgme.nts are not autonomous entities, but are part of
un derstandirrl) aSECSdOf §0c1al 1nterac.t10n, such as communication, learning,
documents ar%c’l nd adapting to changing needs. In the development process,
the and programs serve as the explicitly formulated common memory of
Tplfo!:)le involved in that process.
the pei);)‘}z‘}trii);;)j 21 software system, viewed as an open system, is maintained by
System means usirel :111 the development process. Regarding software as an open
users and develo i .OCUmeptsland programs to promote understanding between
usage context: inIi)t' St? establishing relations between sowaare functions and the
and (rfi)f:valua’tion-la-l lni @ sequence of Cycle.s of (re)design, (re)implementation
ing requirements ari;l ih;)rt, tplro]vldmdg a flexible frarpework to cope with chang-
ment setting. actual needs of the users in an evolutionary develop-
meT; fkl;eatg;:;ader a taste of how this can be. approached in practical terms, let
Technology excursus on our ‘m.eth(.)dologlcal framework STEPS (Software
gy for Evolutionary Participative Systems Development):

lé’h;’i‘;:igizegmdgroup at the Technical University of Berlin, headed by Professor
using softw oy E,;Wf: have focused our attention on thg processes of developing and
opment (F]oarz . Basing our approach on g process—orlented view of software devel-
the Communy - 1981), we began to consider the usage context of a DP system. and
within he dlcatllon and learning processes between developers and users as well as
in which weve opment team. S'ubs,f:quently, we developed a cyclic project model
scribing th: made a clear distinction betwe_en the rec!uirements definition—de-
the develo at the user wants—?—and the functional spec1ﬁcati0n~—describing what
per offers as a solution (Floyd & Keil, 1983).

giegl:;:? of the PP system with respect to the user’s work tasks has become one of
Oriemedd;y qu.allty criteria. sz have therefore‘ developed a technique for Task-
—— gqmrements Analysis (TORA), which allows us (o mode} working
The moda;l~ the embedment of DP functions in work tasks (Keil-Slamk, 1987).
falki cls elaborated by the developer serve as the “universe of discourse” when
ing with the users. not the system functionality itself.
es in which we try 10 distribute
n the development process and to
towards a common goal. and

xf)ﬁg;k wbiéh gestalt—forrr_liﬂg project technigu
establich s tearm s the various teams involved)

a team spirit, that is, to work cooperatively
not against each other.

335??8 also inc.ludes component methods for dialogue specification and modular
metﬁgd Depending on the actual problem setting., these techniques and componcpt

s have to be arranged, modified, extended, or even replaced to a certain
extent by other techniques and methods, and have to be embedded in an overall

90 KEIL-SLAWIK

development strategy which includes various ways of prototyping. As might be
concluded, STEPS does not aim to replace completely conventional software de-
velopment methods and techniques. Our aim is to enrich the repertoire of software
engineering with a view to human-centred systems development. The general
philosophy underlying STEPS is outlined in Floyd (1987).

And what holds for STEPS, applies, in my opinion, in a general sense: I do not
claim here that the conventional scientific approach, which has been charact_er-
ized by the notion of the closed system, lacks validity as a means pf solving
specific problems. My criticism is leveled at the attempt to characterize human
beings and their activities by notions derived from the analysis of COfIIPUtlﬂg
machinery and their algorithms; and against the use of formal mechanisms for
prescribing how people are to react in a given situation.

The closed system view, by neglecting the difference between me and
process, invariably leads to machine-centred quality criteria which fall.to do
Justice to human capabilities. William A. Wulf concludes the statement ?ued at
the beginning of this section with the words: “It is only our human frailties that
limit the quality of software” (Wulf, 1979),

In a cultural environment in which machines are generally regarded as WOflf'
ing more accurately and being less prone to error than human beings (see _MlCh‘e
& Johnston, 1985), the power of a machine or 2 mathematical formalism is rated
higher than the power of human intuition, creativity, and flexibility. Moreover,
in keeping with the conventional approach, it is often concluded that we m“'St
increase computing power or the powerfulness and rigorousness of formalisms in
order to overcome human insufficiencies. In the last instance, it is often a_rgueq,
with respect to artificial intelligence, that once machines have acquired 1ntel}l-
gence they will exhibit all the advantages of human intelligence without 1ts
limitations and frailties.

This widely accepted view, at least among authors of popular literatufel on
artificial intelligence (sce Keil-Slawik, 1987b). is not backed up by empirical
evidence, but is rather an expression of the hopes of machine designers. The
more complex a DP system is, the more indispensable the human operators
become with respect to reliability. In Celko, Davis, and Mitchell (1983) ‘f"d
Naur (1982), it is demonstrated that the use of machines and formalisms Wb‘Ch
fail to appeal to our intuition and which force us to think or react in a prescribed
manner will invariably produce less satisfactory results than if they were de-

AN ECOLOGICAL APPROACH TO RESPONSIBLE SYSTEMS DEVELOPMENT 91

Let me attempt to illustrate the ecological view with reference to another
dimension, namely: values.

We are used to introducing and handling abstract concepts as if they were real
objects of our daily experience. During my student days—and even later on—
discussions on responsibility ran along lines which I should like to term kitchen
knife ethics. This principle denotes arguments such as: “A knife can be used for
cutting bread, or to kill someone; it is neutral with respect to its use.” The same
argument is often applied to computers: They can be used for good or for evil
purposes. If we were to accept this argument, there would be no necessity for
abolishing the strict separation of scientific and political activities.

My arguments against this conclusion run along two lines:

1. The computer, as such, does not exist.
2. We invariably act in a social context.

Regarding the first, if we look at a single, individual computer, we cafmot make
any general assertion about it; we can only state: this computer is or ts. not . . .
Making general assertions implies that we have experience in dealing.wnh a con-
siderable number of computers over a period of time. In studying thf.: history of the
computer, I found that its technology had often been shaped by military d«f:mands,
which were to some extent at odds with scientific or business needs (see Keil, 1982;
Keil-Slawik, 1985b). This phenomenon can be encountered in all branches of
computer science. It has been demonstrated in the case of Ada by Hoare (1981),
and in the case of SDI by Parnas (1985).

Thus, there is a difference between designing a kitchen knife and a bayonet;
and between developing systems for business administration, and robots. for
automating the nuclear battlefield. The general argument make_s_ no sense, since
We can neither state that all computers were developed for military nc.eds, nor
that none were. Responsibility implies that we are able to tell the dlffercqce
between a bayonet and a kitchen knife: and means deciding whether we wish
chiefly to produce bayonets or kitchen knives. As long as new computers are
built, these questions have to be posed anew. The relation§h1p between computer
science and, in this case. the military is not a computer-immanent one.

Regarding the second, whenever we tackle a new lpropie.m. or have to dev‘:loi)v :
new system, we rely to a certain extent on our falth.m its ulufnate succ.f:;sn d e
expect the system to behave according to the specified requirements, Lable. It
believe that we can achieve this by means of the tools and techniques ava;:ha wg;ak
makes a great difference whether we regard the user of a DP sysiem a5 :m lex
component that should merely act in 2 simple and predefined rr_lanl:;::',t Eomplex
decisions being delegated to the computer; or whether we recogml:e b:sis of tl;:eir
systems are trustworthy (if at ali) only because people act freely on ¢

Own experience.

92 KEIL-SLAWIK

When analyzing the Semi-Automatic Ground Environment air deft?nse fys‘tem
(SAGE), for example, Paul Bracken comes to the following conclusion: Gl.VCl'l
the complexity of air defense it is not surprising that informal understandings
would evolve to fix problems unanticipated by the system’s planners. Very fe\:
complex systems would ever run if rule books were followed to the letterd
{Bracken, 1983, p. 12). These oral agreements between operators never showe
up in official reports. Even though SAGE didn’t work (see ‘F.allows, 1981)d,
increasingly more complex systems such as the World Wide Mll%tary Fjomman
and Control System (WWMCCS) have been designed and built w1th0ut any
reliable demonstration that the problems which had plagued the deslgners of
SAGE and similar systems had been adequately solved (see Keil-Slawik, 1986).
With the proposal of a battle management system for SDI, it is argued that most
of the complex decisions involved in battle management have to be performed by
computers owing to time and complexity constraints.

The main argument put forward by David Parnas when he resigned from the
SDIO panel was that the intended computerized battle management system
would not be trustworthy. Again, it should be noted that trustworthiness denotes
a relation between humans and technology, and is not in itself an attribute of thi;
computer. It is based on our previous experience in the development und use ©
complex DP systems and thus cannot be replaced by “in principle” arguments
based on certain newly developed techniques or tools. Thus, the question .pamas
tried to answer was: Has there ever been a complex software system which .has
been successfully built and reliably operated under circumstances and constramtj
which are comparable to those formulated in the SDI report (Fletcher, 1984):
The answer is: Definitely not! _

Responsibility implies that we have to make an individual decision in any

such case. Christiane Floyd defines three types of limits for the responsible use
of computers (see Floyd, 1985):

* the technical limits, i.e., where computers are utilized as a result of mis-
guided trust in the capabilities of computer programs)

* the human limits, j.e. where computers are used as a result of the misguided
equating of people with machines _

* the ethical and political limits, 1.e., where the attempt is made to do things
with computers that ought not be done with them

These limits should be re

garded as a first step towards formulating principles
which are generally acce

pted within the computer science community.

To sum up, it may be stated in general that the ecological perspective compels
us 10 make a clear distinction between what can be sajd about, and concluded
from, the properties and structure of form (be it a product, a document, a
formalism, a tool, etc.), and what can be said about, and concluded from, the
process, that is, the genesis of form as denoted, for instance, by evolution,

AN ECOLOGICAL APPROACH TO RESPONSIBLE SYSTEMS DEVELOPMENT 93

growth, learning, thinking, and designing. These processes can only be charac-
terized by the relations established between the individual person or entity and
the environment.

We have to make sure that no confusion arises between the result and the
process of producing it. This applies to the use of formal techniques in software
development, in particular, as well as to the realm of artificial intelligence in
general. If we equate humans with machines, we confuse the result of intelligent
human behaviour (the machine) with the process which produced it. Since we
tan never deduce from the final structure the laws governing its genesis and
control, we should never use DP systems or formal techniques to prescribe how
people are to behave. When designing products, we should ensure that they
exhibit a high degree of flexibility so as to meet the actual needs and intentions of
the users.

To show how this can be achieved, I will refer to the notion of “small
Systems™ as adopted by Dirk Siefkes. He attempts to provide guideiines for
Creating and maintaining systems appropriate to human needs. As he points out,
only small systems evolve. A small system, according to Siefkes’ definition,
requires the participation of human beings. He defines a system as being a group
of people united by a given task, and supported or hindered in this task by natural
or technical means. In a small system, six dimensions have to be continually
balanced: means, rules, words, concepts, values, and will. These dimensions
Siefkes calls bearings. Rules may be rigid or uncertain; knowledge may be ﬁﬁfed
or shaky and so on. “A system is small if it is appropriate, i.e. neither excessive
nor defective, in all bearings” (Siefkes, 1987, p. 3). _

Since these bearings are constantly changing, they have to be contmua]?y
rebalanced with respect to the actual processes, establishing the relationship
between means anq value, rules and will. Thus, if we separate development from
Use, or the production of scientific results from their application, we cannot hope
10 design small systems. What is more, we cannot talk about responsible systems
development, while neglecting the link between our daily work as computer
Professionals and the social context in which it is embedded.

CONCLUSION

In the previous sections I have tried to give a brief outline of what may be termed
€cological thinking, contrasting it with the conventional reductionist approgch.
AS may have become apparrent, a lot of questions are left open: What reiat.lon-
ships should be considered relevant? What are the links between the various
relations? How do we determine where the conventional approach may be suffi-
Cient? How can we develop operative and constructive princ:iplt?s? And so 0;:.

Reductionism underlies every act of articulate communication. Thus, t: e
€cological approach presented here is also reductionistic, particularly when

94 KEIL-SLAWIK

transformed into rigorous scientific method in the conventional sense. My main
argument in favor of the ecological approach is that ecological thinking embodles
a world view which makes us aware of our being embedded in an evo!v'mg
universe and connected to our environment through our own history as living
beings. There exists a dialectic relationship between our acting as autonomous
beings upon the world, and at the same time the world’s acting upon us. A
fundamental conclusion which may be drawn from this fact is that we can Onb’
ever control the world to a very limited extent. This discovery may engender in
us a feeling of deep respect for the living world, which we can only totally
subjugate by destroying it. ,

The ecological approach attempts to unite things which have been separated in
the reductionist approach: science and policy making; facts and values; develop-
ment and use; mind and body; subject and object; theory and practice; and so on.
However, in uniting science and policymaking we have to ensure that we armive
at a sound intersubjectively acknowledged basis for conducting our worlf. This
represents a compietely new problem for computer professionals and engineers,
and we have no deeply rooted experience to build upon. On the other hanczl, there
are strong indications that the same basic principles may apply In blology,
sociology, and especially in psychology (see Neisser, 1976; Gibson 1979). Th.IS
may pave the way for future interdisciplinary work: software development, 1n
particular, needs an interdisciplinary approach of this sort. _

Gregory Bateson has, in my opinion, formulated the most fundamental in-
sights into the Questions addressed here. He states: “Learning the contexts of life
s a matter that has to be discussed, not internally, but as a matter of the ex'temal
relationship between two creatures.” And he concludes: “Relationship 1s not
internal to the single person™ (Bateson, 1980). And I would add: Nor to a group
or subculture.

As Bookchin (1982) has also pointed out, the ecological perspective shoul_d
not be limited to science, or even to organizations like FIFF or CPSR. The fact is
that ecological subcultures can only exist within an ecological society.

REFERENCES

Alexander, C. (1964).
sity Press.

Bateson, G. (1980). Mind and nature: A necessary unity. New York: Dutton.
Belady, L.A., & Lehman, M.M_ (1979). The characteristics of large systems. In P.

Wegner (Ed.), Research directions in software technology. Cambridge, MA: MIT
Press.

Berman, M. (1981). The reenc
Press.

Bemal, 1.D. (1965). Science in History (Vol. 1-4). New York: Hawthorn Books.

Notes on the svnihesis of form. Cambridge, MA: Harvard Univer-

hantment of the World. Ithaca, NY: Cornell University

AN ECOLOGICAL APPROACH TO RESPONSIBLE SYSTEMS DEVELOPMENT 95

Bertalanffy, L.V. (1984). General svstem theorv. New York: G. Braziller.

Beuschel, W., Bickenbach. J., & Keil. R. (1984, March). Informationstechnologic—
technische Moeglichkeit und tacgliche Nutzung. 7th International Conference on
Data Processing in Europe, (pp. 19-23). ADV Arbeitsgemeinschaft fuer Daten-
verarbeitung, Wien.

Beuschel. W., Bickenbach. J., & Keil, R. (Eds.). (1983). Computer in Alternativpro-
jekten. WILAB-Bericht 1-83. Berlin: Wissenschaftsladen Berlin.

Boehm, B.w. (1976). Software engincering. IEEE Transactions on Computers, C-
25(12), 1226-1241.

Bookchin, M. (1982). The ecology of freedom. Palo Alto, CA: Cheshire Books.

Bracken, P. (1983). The command and control of nuclear forces. New Haven, CT: Yale
University Press.

Celko, 3., Davis, J.S.. & Mitchell, J. (1983). A demonstration of threc requirements
language systems. SIGPLAN Notices, 18(1), 9-14.

Dijksira, EEW.D. (1982). Selected writings on computing: A personal perspective. New
York: Springer-Verlag.

Eigen, M., & Winkler. R. (1983). Das Spiel. Naturgesetze steuern den Zufall. Mmuen-
chen Zuerich. Berlin: Springer.

Fallows, J. (1981). National Defense. New York: Random House.

Fletcher, 1. (1984, February). Report of the study on eliminating the threat posed by
nuclear ballistic missiles (Vol. V): Battle management communications, and data
processing (Contract MDA 903 84 C 0031; Task T-3-191).

Floyd, C. (1987). Outline of a paradigm change in software engineering. In G. Bjerknes,
P.Ehn, & M. Kyng (Eds.), Computers and democracy. A Scandinavian chatlenge.
Brookfield, VT: Gower.

Floyd, C. (1985, Spring and Summer). Responsible use of computers: Where do we draw
the line. CPSR Newsletter, 3(3 and 5), 2-3, and 1.2. :

F]oyd, C. (1981). A process-oriented approach to software development. Systems archi-
tecture: Proceedings of the 6th European Regional Conference. Guildford, En-
gland: Westbury House. ; ~

Floyd, C.. & Keil, R. (1983). Adapting software development for systems design w:th
users. In U. Briefs, C. Ciborra, & L. Schneider (Eds.), Svstems design for, with,
and by the users. Amsterdam: North Holland.

Gibson, J J. (1979). The ecological approach to visual perception. Boston: Houghton-
Miflin.

Guralick, p B (1982). Webster's New Word Dictionary of the American Language. New

York: Simon & Schuster. kfurt:
Habermas, J. (1982). Theorie des kommunikativen Handelns (Vol. 1-2). Frankfurt:

Subrkamp. ot i I
Jones, C. (1979). A survey of programming design and specification techniques. In

Proceedings of the Conference on Specifications of Reliable software. New York:

IEEE Computer Society.
Hoare. C.AR. (1981), The emperor’s old clothes. Communications of the ACM, 24(2),

75-83,
Keit, R. (1982). Die neue Waffe—der computer. In H. Nehmer (Ed.), GI--12. Jah-

restagung. Berlin: Springer.

A

96 KEIL-SLAWIK

Keil-Slawik, R. (1988). Von der mechanisierung des Kopfes zur Oekologie des Geistes.
Ein Literaturueberblick zu anthropologischen Aspekten von menschlicher und
kuenstlicher Intelligenz. In M. Stoehr & H. Wendt (Eds.), Menschliche und
Kuenstliche Intelligenz. Frankfurt: Fischer.

Keil-Slawik, R. (1987, May 12-15). Supporting participative systems developmept by
task-oriented requirements analysis. Proceedings of the International Federation of
Information Processing Societies. Working Group 9.1 Conference on System D_e'
sign for Human Development and Productivity: Participation and Beyond. Berlin,
GDR.

Keil-Slawik, R. {1986). SDI considered harmful—ansaetze zum umdenken in der so.ft-
waretechnik. In A. Shulz (Ed.), Die zukunft der informationssysteme. Berlin:
Springer.

Keil-Slawik, R. (1985a). KOSMOS—Ein konstruktionsschema zur modellierung foener
Systeme als hilfsmitte! fuer eine oekologisch orientierte softwaretechnik. Disserta-
tion, Technische Universitit, Berlin.

Keil-Slawik, R. (1985b). Von der Feuertafel zum kampfroboter—die entwicklungsge-
schichte des computers. In J. Bickenbach, R. Keil-Slawik, M. Loewe, & R.
Wilhelm (Eds.), Militarisierte informatik. Forum informatiker fuer Frieden und
gesellschafiliche. Berlin: FIFF Berlin.

Lehman, M.M. (1980, September). Programs, life cycles, and laws of software evolu-
tion. Proceedings of the IEEE, 9, 1060-1076.)

Maturana, HR., & Varela, F.J. (1980). Auropoiesis and cognition. Boston: D. Reidel.

Michie, D., & Johnston, R. (1984). The creative computer. New York: Viking.

Naur, P. (1982). Formalization in program development. BIT, 22, 437-453.

Naur, P. (1985). Programming as theory building. Microprocessing and Microprogram-
ming, 15, 253-261.

Neisser, U. (1976), Cognition and reality. San Francisco: W.H. Freeman. _

Pamas, D.L. (1985). Software aspects of strategic defense systems. American Scientisl,
73, 432-440.

Pamas. D.L., & Clements, P.C (1985). A rational design process;: How and why to fake
it. IEEE Transactions on Software Engineering, SE-12(2), 251-257. _
Polanyi, M. (1962). Personal knowledge. Towards a postcritical philosophy. Chicago:

University of Chicago Press.

Ryle. G. (1949). The concept of mind. New York: Barnes and Noble.

Sandberg, A. (1979). Computers dividing man and work. Stockholm: Arbetslivscentrum.

Turski, W.M. (1985). Informatics. A propaedeutic view. Amsterdam: North Holland.

Wulf. W.A_ (1979). Introduction to part I Comments on “current practice.” In P. Wegner
(Ed.), Research directions in software technology. Cambridge, MA: MIT Press.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15

