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316 F. Meyer auf der Heide

Rule 4. If all direct predecessors of a vertex x contain a black or white pebble and x
contains a white pebble, then it is allowed to remove this pebble from x.

The close connection between Rule 1 and 2 respectively 3 and 4 is emphasized in
Lemma 1.

A move of a pebble game is a placing or removing of a pebble according to one of
the four rules. For technical reasons it is also a move to do nothing.

A configuration of G is a pair (B, W) of disjoint subsets of V. B[W]is the set of all
vertices on which black [white] pebbles are lying.

We say “(B, W) directly derives (B’, W') using k pebbles” and write
U(B, W)= (B, W)™ iff #(BU W) <k, #(B'UW')<k and (B’, W') arises from
(B, W) by one move.

A sequence [(B, W), i=1,...,n]is called “a b/w-k-strategy from (B, W) to
(B', W) ift (B, W,) = (Bisy, Wi, foralli=1,. .. ,n—1,(B;, W,)=(B, Wj,and
(B,, W,)=(B', W').

Immediately from the rules we can conclude the following

Lemma 1. Ler [(B, W), i=1,...,n] be a b/w-k-strategy in G. Then
(W, i, Bain),i=1, ..., nlis a b/w-k-strategy in G.

Let us call this strategy the counter-strategy of [(B,, W;),i=1,...,n].

The black pebble game is a special kind of the black—-white pebble game. It only
uses black pebbles. A strategy of this game is called a b-strategy [B,,i=1,...,n].

For both games the goal is to find a strategy that starts from a configuration of G
with no pebbles on the graph, ends with a black pebble on a distinguished vertex r of
G and no pebbles elsewhere, and uses as few pebbles as possible. Such a strategy
which uses a minimum number of pebbles is called optimal for (G, r).

The number of pebbles used in an optimal b/w-strategy for (G, r) is called
Opt(G, r), and that for an optimal b-strategy, Opt, (G, r).

The black [black-white] pebble game can be looked upon as a model of 2
deterministic [non-deterministic] evaluation of a straight line program: The instruc-
tions of the program correspond to the vertices of the graph. (a, ) is an edge in the
graph, if the result of a is an operand for the computation of b. Placing a black pebble
on x corresponds to computing x from its predecessors (which are all pebbled) and
putting it into a register. Removing a black pebble corresponds to freeing a register.
Placing a white pebble on x means that we guess a value for x to be computed
intending later to justify this guess. This justification corresponds to removing the
white pebble. (We are able to justify the guess before removing the white pebble,
because all its predecessors are available).

Thus the storage requirement of the deterministic [non-deterministic] evaluation

of a straight-line program corresponds to the number of pebbles used in the black
[black-white] pebble game.
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Our main result will be that the storage requirement of a deterministic and a
non-deterministic evaluation of a straight-line program differ by a square-root at
most.

2. Results about pebble games

The black pebble game especially is considered in many papers. Here we see some
results that are interesting for the comparison of both games:

(2.1) For both games, it is known that if G is a DAG with indegree 2 and n
vertices, then an optimal strategy from (9, 9) to ({r}, @) for some re V uses at most
O(n/log n) pebbles [1], and there exists a family of graphs which needs this number
of pebbles [2, 5].

(2.2) If S, is a pyramid with m levels and root r (Ss is shown in Fig. 1), then

Opt, (S, r)=m + 1 for m > 1 [4], and Opt(S,, r)=Vom—1[3].

r

Fig. 1. The pyramid Ss.

(2.3) For an /-ary complete tree with depth n and root r, T, itis proved in [6] and

[7] independently that
Opt, (T 1) =(n—1) (-1 +I+1
and

Opt(Th, ) =[3~-Dn+l+1]+1.
)= LOptu(T, r).

L0opt,(T, 7).

ly half as many

For trees T with root 7 it is shown in [6] that Opt(T, r
This result is improved in [8]. It is shown that Opt(T, r) =

hat the black-white pebble game requires on

Now we shall see t
ck pebble game.

pebbles to pebble the top of a pyramid as the bla

Theorem 1. Opt(S,, r)< [zm]+2.

(S, =1, Opt(S2, 1) = 3.

— strategy for S,z given by induction
C,_»] (see Lemma 1).

he notations of Fig. 2).

Proof. By induction on m. Obviously, Opt
Let m =3 and [C,_2] be the ([2(m —2)] +2)
hypothesis and [C, -] the counter-strategy of [
Then consider the following strategy: (We use t
(1) place a black pebble on a by [Cu-2],
(2) place a black pebble on ¢ by [Ca-2]s
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(3) place a white pebble on b,

(4) make three moves as shown in Fig. 2,

(5) remove the white pebble from b by [a:;].

This strategy needs max{([3(m —2)]1+42)+1,4} = [im] +2 pebbles.

R N

Fig. 2. The top of §,,,.

The main result of this paper is the following:

Theorem 2. Let G=(V,E) be a DAG, reV, Opt(G, r)=k, then Opt,(G,r)<
3k*—k)+1, ie., Opt(G, r)=3+v2 Opty (G, r) -1

With the help of (2.3) we can improve (2.2):
Corollary 1. Opt(S,,, r)=3+v2m +1 form>1.

In order to prove Theorem 2 we simulate a special optimal b/ w-strategy, we call it
astandardstrategy, move by move by a b-strategy. The critical point s the simulation
of a move which places a white pebble on a vertex. This simulation will be done by
replacing this move by a b-strategy which places a black pebble on this vertex. The

property ‘standard’ will guarantee that this strategy does not require too many
pebbles.

3. The standard strategy

Let[(B,W,),i=1...n]bea b/ w-k-strategy from (9, ) to ({r}, @) in the DAG
G = (V, E). Then the induced subgraph of G with vertex set V.\(B,. ,u W, ,) for
reVandl</=niscalled S’

Definition 1. [(B, W,).i=1.. n]iscalled standard, if the following property holds:
forall/=1...n;if in the /th move a white pebble is placed on x, then Opt(S', )=
k-1

In this chapter we shall prove that it suffices to deal with standard strategies in
order to compare Opt(G, r) and Opt, (G, r):

Main Lemma. For every DAG G and vertex r of G there exists an optimal strategy
which is standard.
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[;or the. proof we consider a DAG G, a vertex r of G, and a b/w-k-strategy

(B,W,),i=1...n}from (9,0 to ({r},0) in G.

[(;Ze pr*eser‘u an algorithm which transforms this strategy into a new sequence
¥ W¥*), i=1...m]and prove that it is a standard b/ w-k-strategy from @, 9) to

({r},9) in G.
Let [(B, W,), i =1...n] be the input for the following algorithm.

Begin:
Let{/, - - - 1,} be the set of numbers such that

(%) Wi \W, ={x;} forsome x;
and there is a j = [; + 1 such that #(W; uB)N V) =k

Let j; be the maximal such j and & =max{h|x.€ W1+ Wil

Loop:
For i =1 until p do if j; <t

Comment: One move after k pebbles are the last time in V,, the white pebble is still

on x;,
then
(B, W), i=1...n]<[BinUsxWin U)o (Bjo11 Usy Wit
N Us),
(Bji1 N Uy Wy 0 Uy uixid), (Bjs2r Wiy -« -5 (B W)l
else

bble on x is removed in the last move which

Comment:  <j, i.e. the white pe
(k — 1) or earlier;

reduces the number of pebbles in V, from k to
[(B, W), i=1...n]e[(BinUs, Win Us),...» (B, U;y W Us),

(B;_.+1 (@ in, “/1.‘*'1 & in), ey (Bj( e Vx,y “/j, M Vx,),

(Bj,-+h u/1',4—1): LI ] (Bm W")];

End;

to restrict a strategy in G to an induced subgraphof G.

The following fact allows us
_white pebble game.

It follows directly from the rules of the black

AG G toaninduced subgraph H of G

Fact 1. The restriction of a b/w-strategyinaD
f G, then itis also 2 b/ w-strategy in

is a b/ w-strategy in H. If H = G for a vertex x O

G.
We conclude the main lemma from the following 3 propositions:
a b/ w-k-strategy from

Proposition 1. The output sequence of the pass of the loop is

@,9) to (r,0),
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Proposition 2. If a configuration (B, W) is inserted in the then-clause between
(Bj+1, Wis1) and (Bj.2, W;i2), then # (B U W) <k — 1 and after the pass of the loop,
#((BauW)nV,)sk—1forallq=j+2,

Proposition 3. If for someyandq[(B;nV,, W, V,),..., (B, V, W, nV)]is
a b/ w-(k —1)-strategy, then it is still one after the pass.

Accept these propositions for a moment. Let [(B¥, W¥), i=1...m] be the
output-sequence of the algorithm.

Proposition 1 guarantees that it is a b/w-k-strategy. In order to verify that it is
standard consider a number / such that in the /th move a white pebble is placed on x.

Then by Fact 1 it follows that

[(BF n VOMBE 0 Wi), (WE A VNBF AW, i=l+1,...,m],

the restriction of the strategy on S., is a b/ w-strategy in S°.
Because of Proposition 2 and 3 it uses (k — 1) pebbles at most.
Notice that

(B nVONBF UWE)=0, (Wi, A VOBFUWF)={x},

(Wi n VONBF U WF)=0,
and
0, x#r,
(BXn VOBE L W)
r, x=r (%)
In the case (%) remove the black pebble from r in a new move.
Thus we obtain a b/w-(k —1)-strategy from (@, {x}) to (9, @) in S’. Its counter-
strategy (Lemma 1) guarantees that Opt(Si, x)sk-1.
It remains to prove Proposition 1, 2 and 3.

Proof of Proposition 1.

Case 1: The *‘then-clause” is executed.

-(BinU, WinU,),...,(Bj,n U, Wi.in U] is a b/w-k-strategy because of
Fact 1.

- (BiainUs Wi nUd) =4 (Bjin U, (W, n Uy ) Ufx}), because it is always
allowed to place a white pebble and because of the following.

As #((B;u W) V) =k, itfollows that B; U W, < V, and that in the next move

one pebble will be removed (j maximal!).

Therefore, #(B;.,w W;,;)<k—1landasxe Wit

#(Bi1nU) (Wi AU <k ~2
and
#(BjanU)u (Wi AU olx)<sk—1. 3.1

- BisinUs, (WiinU)u{xh) =« (Biv2, W.s), because B;.;n U, =B;.1 and
(vvi+anx)U{x}=u/j+1.
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- [(Bjsz, Wiia), ..., (Bm, W,)]is b/ w-k-strategy in G.

Case 2: The ‘else-clause’ is executed.

- [(BlmUXy WlmUx)7 L ,(Bth)n anx)] and [(BH»ImVx, "‘/H-lm
Vi), ..., (B;nV,, W, V,)] are b/ w-k-strategies because of Fact 1.

- (B, U, W,AU,) = (Bis1n Vi, Wi 0 V,), because B.n U, =B..1n Vy and
WAW,,, ={x}, therefore: W,,,n V.= W.nU.

- (B] M an ‘/‘/] M Vx) =k (Bi+l7 "‘/i+1)’ because Bi’ vV] < VX'

- [(Bjs1, Wis1), . . ., (B, W,)]is a b/ w-k-strategy.

Proof of Proposition 2.

- #(BuUW)<k—1, because (B, W)=(Bjs1n U, (W,
of (3.1).

- #((Byu W,)nV,)<k—1 for all g=j+2, because these configurations are left

unaltered by the pass and j was chosen maximally.

anUduix}) and because

Proof of Proposition 3. The algorithm inserts new configurations only in the
3.1) we have seen that these new configurations always use

‘then-clause’, and in (
some configuration (B, W), it

fewer than k pebbles. If the algorithm manipulates
never enlarges # (B u W). Proposition 3 follows by Fact 1 and Proposition 1.

4. Proof of Theorem 2

The following fact allows us to insert a strategy for S_ inastrategy for G. It follows

directly from the rules of the game.

) a configuration of G, G the induced subgrziph of G
_.n]ab/w-k-strategy in G. Then,

B U W))-strategy in G.

Fact2. Let G be aDAG, (B, W
with vertex set V\(Bu W) and [(B;, W), i = 1.
[(B;uB, W,uW),i=1...n]isab/w-(k+#l

h that Opt(G, r) = k}. Because

We define F(k) = max{Opt,(G, r); G, 7 chosen suc
k-strategy from (0, 0) to

of the main Lemma it suffices to simulate a standard b/w-
(r}, 9) in G by a b —[3(k> — k) + 1]-strategy from @ to {r}in G.

Let [(B, W,), i=1...n]besucha standard strategy and {/1, .., 1.} the set of
numbers such that in the lith move a white pebble is placed on x;. The property
standard guarantees that Opt(Si"‘, x;)<k—1and therefore Opts (S, i) = F(k-1).
The following lemma explains how to replace the /;th move of the strategy by an

optimal b-strategy from @ to {x;} in S i

-strategy in G. If a white pebble is

Lemma 2. Let [(B, W), i=1... n] be a b/w-k
e, #(Bru W) =4d, and there

placed on x in the Ith move and removed in the tth mov
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is a b-k,-strategy [D;, i=1...p]in Sk from @ to {x} and k = max{d + k1, k}, then
[(Bly W1)7 sy (Bl’ Wl)y (BIUDI) ull)a ey (Bl UDpy M)y
(BHZU{X}, wi\{x}), ..., (B:uix}, WAXY, (Bee1, West), . .. , (B, W]

is a b/ w-k-strategy in G.

Proof. It is clear that the maximum number of pebbles used in every configuration
is k.

- [(By, Wh), ..., (B, W))]and [(Bi+1, Wisy) . . . (B, W,,)] are b/ w-k-strategies in G.
- (B, W) = (Biu Dy, W)), because D, = 0.

- [BiuDy, W), ... (BiuD,, W)]is a b/ w-k-strategy because of the main lemma.
- (BiuD,, W) =¢ (Brezu{x}), Wio\{x}) because D, ={x}, and therefore Bj.1u

Wz+1 = B( UDp u Wl.

- (B2 uixh, WeaMxl, ..., (B, U{x}, W\{xD]is a b/ w-k-strategy because By.;u

Wii=(Bsuixhu (Wi Mx ).

- (Biu{x}, WMx} = (Bivr, W), because W)\{x}=W,,,, B,.;=B, and the
removal of black pebbles is always allowed.

Now we execute such a replacement for every I.. The result is a b- strategy from @ to
{r} in G which uses F(k —1)+ (k —1) pebbles at most (Notice that # (B, u W) <
(k —1). This simulation is possible for every DAG G and vertex r of G with
Opt(G, r)=< k. Therefore F(k)<F(k—1)+(k —1). As obviously F(1)=1 we obtain
that F(k)<3(k*—k)+1.

5. Conclusion

We have seen that the number of pebbles required in the black and black-white
pebble games differ by a square-root at most, but there is no family of graphs known
in which it does save more than a factor %
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