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Abstract

Next Generation Grids aim at attracting commercial users to employ Grid envi-
ronments for their business critical compute jobs. These customers demand for
contractually fixed service quality levels, ensuring the availability of results in
time In this context, a Service Level Agreement (SLA) is a powerful instrument
for defining a comprehensive requirement profile.

Numerous research projects worldwide already focus on integrating SLA tech-
nology in Grid middleware components like broker services. However, solely
focusing on Grid middleware services is not sufficient. Services at Grid middle-
ware may accept compute jobs from customers, but they have to realize them
by means of local resource management systems (RMS). Current RMS offer
best-effort service only, thus they are also limiting the service quality level the
Grid middleware service is able to provide.

In this thesis the architecture and operation of an SLA-aware resource man-
agement system is described, which allows Grid middleware components to
negotiate on SLAs. The system uses its internal mechanisms of application-
transparent fault tolerance to ensure the terms of these SLAs even in case of
resource outages. The main parts of this work focus on scheduling aspects and
strategies for ensuring SLA compliance, respectively design aspects on imple-
mentation.

Scheduling strategies significantly determine the level of fault tolerance that
the system is able to provide. After presenting requirements of Grid middleware
components on service qualities and a description of operation phases of an
SLA-aware resource management system, intra-cluster scheduling strategies are
described. Here, the system solely uses its own resources and mechanisms for
coping with resource outages.

For further increasing the level of fault tolerance, strategies for cross-border
migration are presented. Beside a migration to other cluster systems in the same
administrative domain, the system uses also Grid resources as migration targets.
For ensuring the successful restart, mechanisms for describing the compatibility
profile of a checkpointed job are presented.

The concept of the SLA-aware resource management system has been imple-
mented in the scope of the EC-funded project HPC4U. We will describe design
aspects of this realization and show results from system deployments at use-case
customers.
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1 Introduction

The idea of Grid computing is similar to the former concept of metacomputing,
but takes a broader approach. More different types of resources are joined:e. g.
supercomputers, network connections, data archives, 3D-visualization devices,
or physical sensors and actors. The vision is to make them accessible similar to
the power grid, regardless of where the resources are located or who owns them.
Many components are needed to make this vision real.

It is surely no overstatement to claim that Grid computing grows up little by
little. Research on Grid computing started under solely technical aspects: how
to realize the virtualization of resources, and how to use these distributed virtual
resources. Meanwhile, Grid computing is widely accepted and no longer used by
research institutes only. Companies like IBM, Hewlett Packard and Microsoft
have recognized the potential of Grid Computing and are investing noticeable
efforts on research and the support of research communities. Common goal is
to attract commercial users for Grid Computing.

Research efforts on Grid Computing lead to numerous Grid middleware sys-
tems. The most prominent are UNICORE [97] and the Globus Toolkit [32].
However, current Grid architectures and implementations lack many essential
capabilities, which would be necessary for a future commercial large scale Grid
system. In this context, the European Commission convened a group of experts
to clarify the demands of future Grid systems and which properties and capabil-
ities are missing in currently existing Grid infrastructures. Their work resulted
in the idea of the Next Generation Grid (NGG) [34, 35, 59].

The Next Generation Grid aims at supporting resource-sharing in virtual or-
ganizations all over the world, and thus to attract commercial users to use the
Grid, to develop Grid-enabled applications, and to offer their resources in the
Grid. Mandatory prerequisites are flexibility (build virtual organizations on de-
mand), transparency, security, predictability, and reliability in communication
and cooperation (Fault Tolerance), and finally the application of reliable con-
tractual agreements to guarantee the desired and negotiated Quality of Service
(QoS). Applications in these NGGs will demand the Grid middleware for mech-
anisms to enable a flexible negotiation of specific levels of Quality of Service. In
this context, a QoS guarantee may range from the reservation of resources for
a given time span, which is required for the orchestrated usage of distributed
resources, up to guarantees for an advanced level of Fault Tolerance.

The guaranteed provision of reliability, transparency and QoS are important

1



2 1 Introduction

demands of the NGG. Commercial users will not use a Grid system for com-
puting business critical jobs if this Grid system is operating on the best-effort
approach only. The user must be able to rely on getting the requested QoS
level, not only meaning the predictable operation of a single resource, but also
the orchestrated execution of an entire workflow.

In this context, a Service Level Agreement (SLA) is a powerful instrument for
describing a job’s requirement profile. It is the exact statement of all obligations
and expectations within the business partnership between the resource provider
and the Grid user as its customer [2]: it describes which resources should be
provided in what amount for how long and in which quality. It also encompasses
the price for resource consumption, respectively the penalty fee for violating the
agreement.

Scientific and engineering applications in domains such as energy, CAE (Com-
puter Aided Engineering), bio-informatics, weather modeling, pharmaceutical,
automobile, fluid dynamics, and finance to name but a few form part of a
widening range of computational and data intensive applications on production
clusters. All these domains of application rely on a guaranteed level of Quality of
Service (efficiency, predictability, scalability, and reliability) from the underlying
computer architectures and from the applied Grid middleware.

These requirements lead to new claims in all Grid middleware components,
local resource management systems, and in the underlying computer, storage
and networking architectures. Many research projects already focus on SLA
functionality within the Grid middleware. However, at present none of the
processing levels (computer architectures, resource management systems, Grid
middleware) complies with these high grade requirements.

It is not sufficient to add SLA mechanisms like negotiation or monitoring
to Grid middleware systems only. As Grid middleware systems base on local
Resource Management Systems (RMSs) for execution of Grid jobs, also these
RMSs have to be able to guarantee the contents of a negotiated SLA. Comparing
the capabilities of current RMS on the one side, which are at best able to reserve
resources for a fixed time span, and the requirements of future Grid systems on
the other, a gap between both sides becomes apparent.

1.1 Scope of this Work

The inadequacy of current systems for emerging Grid requirements has been
underlined by MacLaren et al. in [55]: neither the best-effort approach of batch
schedulers nor the inflexible nature of advance reservation is suitable for future
resource management systems. Mechanisms are required which support SLAs,
"negotiated between the client (user, superscheduler, or broker) and the sched-
uler". Unlike other approaches for providing SLA-awareness and service quality
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guarantees, MacLaren et al propose the development of novel RMS scheduling
mechanisms, which are able to negotiate with SLA-requesting customers con-
necting over the Grid infrastructure. Similar ideas and demands also have been
presented in [27].

The first step in realizing an SLA-aware resource management system there-
fore is the provision of an SLA negotiation interface. This interface empow-
ers Grid middleware components to start direct negotiations on resources, not
limited to functionalities of wrapper scripts mapping requests to legacy RMS
commands. This would furthermore enable broker scripts to act as mediators,
matching customer requests to actually provided services at resource level.

Adding negotiation capabilities however is not sufficient for realizing actual
SLA-awareness. The RMS also has to pay attention to the implications of an
agreed SLA in its system management. Therefore new system management ap-
proaches are required, exceeding the currently existing best-effort mechanisms.
An important task in this scope is the consideration of resource outages as a
normal event in system management. By agreeing on SLAs, the system has to
be able to cope with exceptional situations, aiming for adherence with all agreed
SLAs.

Transparency is a central objective of Grid computing. Similar to the power
grid, the user should be able to connect to his Grid computing infrastructure,
consuming the required amount of compute power, not knowing or caring where
the actually used resources are located or operated. The task of Grid middleware
is to abstract from technical details. Transparency also is a crucial demand on
mechanisms realizing this fault tolerance. The user should not have to care
about details on realizing fault tolerance. He should still be able to submit his
job, without relinking the application to any special purpose libraries. In fact,
relinking or recompiling is not possible in many cases, because commercial users
bring their commercial codes with them.

Mechanisms addressing this fault tolerance have to cover the entire process
environment. Therefore it is not sufficient to solely apply process checkpoint
mechanisms. The resource management system has to further regard storage
aspects as well as network aspects. This way the consistency at job restart can
be ensured.

The SLA-aware scheduler is in charge of assigning available system resources,
so that even in case of resource outages the SLAs of affected jobs are fulfilled.
To increase the level of fault tolerance, the system should actively use its envi-
ronment, not only using internal resources for job restart, but also migrate to
resources on other clusters or even within the Grid.
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1.2 Document Structure

This thesis describes the architecture and operation of such an SLA-aware re-
source management system. The following chapter 2 on foundations addresses
basic questions on Grid computing, resource management, and service level
agreements. The main chapter 3 then explains the operation of an SLA-aware
resource management system. In particular this chapter will highlight schedul-
ing and migration aspects. In the scope of the EC-funded project HPC4U, large
parts of this work have already been implemented. Chapter 4 is devoted to de-
sign aspects of this implementation. The following chapter 5 then describes
results of this work, gained from practical experience on using the system by
partners and other interested parties within the HPC4U context. This chapter
will also address new perspectives for future developments which have emerged
from this practical usage. Before concluding the work in chapter 7, chapter 6
will give an overview about related work in Grid middleware and subsystem
level, which is relevant in the context of SLA-aware resource management. Ap-
proaches and results presented in this thesis have partly already been published
in conference proceedings [67, 5, 27, 37, 38, 8, 39, 42], journal papers [66, 43],
and a book chapter [38].



2 Foundations

2.1 Resource Management

Compute clusters have a long tradition beginning in the early 1970s with the
UNIX operating system [33]. Since then many resource management systems
evolved, bringing functionality targeted to their specific usage domain, e. g. ca-
pabilities on load balancing. Classic systems are mostly used in high throughput
environments, computing large amounts of data in time uncritical context.

Most of the resource management systems available today can be classified as
queuing based systems. The scheduler of these RMS is operating one or more
queues, each of them with different priorities, properties, or constraints (e. g.
high priority queue, weekend queue) [23]. Each incoming job request is assigned
to one of these queues. The scheduling component of the RMS then orders each
queue according to the strategy of the currently active scheduling policy. A very
common strategy is FCFS (first come, first served), assigning resources to jobs
according the job’s entry time into the system. Resources are assigned to jobs
at the queue head, if the system has sufficient free resources. If this results in
idle resources, backfilling strategies can be applied for selecting matching jobs
from one of the queues for immediate out-of-order execution.

Many different strategies on backfilling have evolved, each optimizing accord-
ing to a specific objective or usage environment. Commonly known strategies
are conservative and EASY backfilling. Both strategies only differ in their way
of selecting jobs for backfilling. While conservative backfilling demands that the
backfilled job may not delay other waiting requests [70], EASY backfilling only
demands the queue head jobs not to be delayed [65]. For deciding about the
impact of a backfilling decision on the delay of jobs in the queues, the system has
to have runtime information of these jobs. Hence, specific backfilling strategies
(like EASY and conservative backfilling) can only be applied to environments
where these statements are available.

By switching the focus from classic high throughput computing to compu-
tation of deadline bounded and business critical jobs, also the demand on the
RMS and its scheduler component changes. If negotiating on service level agree-
ments, the system has to know about future utilization, i. e. if it is possible to
agree on finishing the new job as requested.

Planning is an alternative approach on system scheduling [67]. In contrast
to queuing, planning does not only regard currently free resources and assigns

5
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them to waiting jobs. Instead, planning based systems also plan for the future,
assigning a start time to all waiting requests. This way a schedule is generated,
encompassing all jobs in the schedule. Having such a schedule available, the
system scheduler is able to determine which jobs are scheduled to be executed at
what time. The following table depicts the most significant differences between
queuing and planning based systems.

queuing system planning system

planned time frame present present and future
reception of new request insert in queues replanning
start time known no all requests
runtime estimates not necessary1 mandatory
reservations not possible yes, trivial
backfilling optional yes, implicit
examples PBS, NQE/NQS, LL CCS, Maui Scheduler2

1 exception: backfilling
2 Maui may be configured to operate like a planning system [58]

Table 2.1: Differences of queuing and planning systems [67]

A prerequisite for planning based resource management system is the avail-
ability of run time estimates for all jobs. Without this information the sched-
uler has no means of deciding how long a specific resource will be used by a
job. Hence, the scheduler could not assign a start time to jobs following in the
schedule. In case the user underestimated the runtime, the system can try to
prolongate the runtime of this job. If this is not possible due to other jobs,
the job has to be terminated or suspended to have the resources available for
other jobs. This may be considered as a drawback of planning based resource
management. A further drawback regards the cost of scheduling, because the
scheduling process itself is significantly more complex than in queuing based
systems.

The novel approach on scheduling in Planning based resource management
systems allow the development of new scheduling policies and paradigms. Beside
the classic policies like FCFS, SJF (shortest job first), or LJF (longest job first),
novel policies could optimize for new objectives or realize new functionalities.
We are convinced that planning based resource management is a good starting
point for realizing SLA-awareness.
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2.2 Grid Computing

Despite the fact that processors get faster and faster every year, compute power
has always been a precious good. Hence, the idea of collaborative usage of dis-
tributed resources is neither new nor has it been introduced by Grid computing.
Already in the 1960s the Multics project [100] (Multiplexed Information and
Computing Service) aimed at providing compute power to large user communi-
ties, accessing the system from somewhere remote.

In 1962 the United States Department of Defense started developing the
ARPANET (Advanced Research Projects Agency Network) [85]. ARPANET
was designed as a decentralized network. Thanks to the introduction of packet
switching, this network was robust against outages of connected stations. In
1981 the TCP/IP protocol was used for the first time in NSFNet, a network es-
tablished by the United States National Science Foundation (NSF), connecting
multiple US-American universities. Nowadays, this introduction is commonly
considered as the birth of the Internet and led to an incomparable integration
of resources worldwide, which continues until the present day.

Not only the total number of nodes increased, but also the transfer speed of
network interconnect. In the mid 1980s the NSF and later the Defense Advanced
Research Projects Agency (DARPA) started funding US-national testbeds, like
Aurora, Blanca, and Casa [13]. The goal of these projects was research on very
high speed networks. Within these testbed projects the term Metacomputing
was created. Nowadays this term is ascribed to James Catlett and Larry Smarr,
founding director of the National Center for Supercomputer Applications [73],
member institute of one of these testbed projects. Both expressed their ideas
on Metacomputing in an article in the Communications of the ACM journal in
1992 [93]:

While the national power, transportation, and telecommunications
networks have evolved to their present state of sophisticated and ease
of use, computer networks are at an early stage in their evolutionary
process.

and

The computing resources transparently available to the user via this
networked environment have been called a metacomputer.

The basic idea of metacomputing is to harness the compute resources which
are available within a network environment, not only limited to a single site, but
potentially spanning over the entire Internet. As a matter of course, even with-
out having metacomputers available, users can access all networked resources
to compute their jobs. However, this is not what happens in practice. For each
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resource the user has to know about system specific properties like location of
libraries and compilers or access commands for the local resource management
system. He also has to apply for local logins and know about characteristics of
local system policies. For the user this implies significant additional workload,
preventing the efficient usage of large infrastructures. In consequence, users only
use a small subset of available resources following their subjective best-practice
experiences.

2.2.1 First Generation

The vision of metacomputing was to tackle this obstacle which prevents effec-
tive usage of resources distributed over a network. Compute power should be
made accessible similarly to the power grid, regardless of where the resources
are located or who owns them. For satisfying his demands on compute power,
a user should be able to consume the amount of compute power of other re-
sources and finally being charged for actual consumption. Instead of dealing
with system specific details, the user solely accesses a uniform middleware layer
for submitting his jobs. Many components are needed to make this vision real.

Already in the 1980s researchers started to tackle Grand Challenge prob-
lems [72], i. e. key research problems requiring large amounts of compute power,
typically not available at a single site. In this context, several US-funded
projects started in the 1990s, using resources available in the existing testbeds.
The I-WAY project (Information Wide Area Year) [22] starting 1995 focused
on linking high performance computers and appropriate devices for visualiza-
tion. Beside standard software installed on servers within the I-WAY network
also a resource scheduler spanning over all resources has been developed. This
way I-WAY provided an homogeneous layer over the heterogeneous landscape of
available resources, firstly realizing ideas of metacomputing. This generation of
software systems is nowadays denoted as the first generation of Grid computing.

Among the people involved in I-WAY were Ian Foster, Carl Kesselman, and
Steven Tuecke, persons who influenced and impact Grid computing until the
present day. To support user-level application and increase the number of appli-
cations benefiting from I-WAY infrastructure, a low-level communication layer
had to be realized. Hence, the Nexus environment was adapted, such that it
could be used within the I-WAY environment [47]. This adaptation represents
the birth of the Globus Toolkit [29], the de-facto standard in Grid computing
today.

2.2.2 Second Generation

The evolution from metacomputing to Grid computing was a smooth transition,
starting in the mid 1990 and ending 1999, where a first definition and research
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overview on Grid computing was given [49]. This publication also marks the
beginning of the so called second generation of Grid computing. It character-
izes the Grid as global infrastructure linking various types of resources. Grid
middleware is placed as an additional and novel layer between the heteroge-
neous physical resources on the bottom side, and applications accessing these
resources on the upper side, presenting them a homogeneous and uniform view
on the resources.

In this time, various commodity Grid systems emerged, realizing aspects of
Grid computing for their usage domain. However, also general purpose toolkits
were developed.

Research on the UNICORE system (UNiform Interface to COmpute RE-
sources) [97] has been founded by the German Ministry of Education and Re-
search in the scope of two national projects, named UNICORE (1997-1999)
and UNICORE Plus (2000-2002). The goal of UNICORE was to realize a uni-
form and easy to use graphical interface for submitting compute jobs to remote
compute resources [53]. This system provided a certificate based security ar-
chitecture, allowing the user to use various resources with a single sign-on, and
securing all data transfer channels. UNICORE was minimal invasive for the
local system administrator, because the system resides on-top of existing re-
source management systems. Beside the specification of single compute jobs,
UNICORE also supports the definition of complex workflows. The development
of UNICORE was also funded by the European Commission. Within the EU-
ROGRID project, the UNICORE system has been introduced to selected target
communities like biology, computer aided engineering, and meteorology [25].
Nowadays, UNICORE is known even outside Europe and used in projects all
over the world.

The still dominant system in Grid computing is the Globus Toolkit [32],
commonly denoted as solely Globus. As mentioned above, the first version
of Globus evolved from achievements of the US-American I-WAY project. As
the name indicates, the Globus toolkit does not aim at providing a monolithic
system. In contrast, Globus is a collection of services that can be used by users,
programmers, and applications to satisfy their demands [46]. The architecture
of Globus is modular, providing services dedicated to one specific goal. This way,
new services can provide higher level services by using specific services of other
modules. The Globus architecture is layered, distinguishing between higher-
level global services and low-level core services, e. g. communication libraries or
interfaces to local resource management systems.

The first version of the Globus Toolkit (GT1) was released in 1998. It already
encompassed elementary mechanisms necessary for realizing first ideas of Grid
computing, e. g. the Globus Toolkit Resource Allocation Manager (GRAM),
which is necessary for allocating resources provided by local resource manage-
ment systems, respectively monitoring and controlling active computations. The
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second version of Globus Toolkit (GT2) was released in 2002, bringing novel
mechanisms like GridFTP, a file transfer protocol service facilitating existing
Globus communication channels, thus also using Globus security mechanisms.
A major improvement of GT2 was the Grid Packaging Toolkit (GPT)[45]. Sim-
ilar to other packaging toolkits like RedHat’s RPM, GPT allows Globus service
developers to build packages for their software, thus significantly simplifying the
compilation and installation process.

In [49] Foster gave a first definition on Grid computing, which was commonly
accepted and frequently cited within the Grid community:

A computational Grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities.

This definition is still underlining the hardware related aspects of Grid com-
puting, even if it also lists other resource types. Grid computing follows the ideas
of metacomputing, but takes a broader approach. More different types of re-
sources are joined. The notion of a resource is explicitly not limited to hardware
resources like compute nodes, supercomputers, network bandwidth, storage ca-
pacity, physical sensors and actors. It comprises also software resources (e. g.
specific toolkits or libraries), information resources (e. g. data archives), or even
human resources (e. g. a specialist with specific skills).

Still there is not only a single definition of Grid computing, but multiple
approaches in describing its character, depending on organization background
or commercialization interests. In 2002, Foster proposed a three point checklist
for identifying systems as Grid systems [44]. According to this list, a Grid is a
system that

coordinates resources that are not subject to centralized control...,
using standard, open, general-purpose protocols and interfaces...,
to deliver nontrivial qualities of service...

Research on Grid computing started under solely technical aspects: how to
realize virtualization of resources, and how these distributed virtual resources
can be used. For coordinating these research efforts, people started coming
together in the US-American Grid Forum in the late 1990s. In 2000, the Grid
Forum merged with the European Grid Forum (eGrid) and the Asia Pacific
Grid Forum, forming the Global Grid Forum (GGF) [31]. The GGF emerged
as the main standardization organization for Grid computing. In beginning
of 2006, the GGF merged with the business oriented Enterprise Grid Alliance
(EGA) [20], forming the Open Grid Forum (OGF) [77]. However, it is not
the only one. In particular, the non-profit Organization for the Advancement
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of Structured Information Standards (OASIS) [76] is getting more and more
impact on the evolution of the commercial Grid. This is due to their work on
development, convergence, and adoption of e-business standards. But also other
standardization bodies impact Grid computing, e. g. Distributed Management
Task Force (DMTF) [19], Internet Engineering Task Force (IETF) [52], Object
Management Group (OMG) [78], Web Services Interoperability Organization
(WS-I) [79] or the World Wide Web Consortium (W3C) [101].

The first GGF meeting was held in Amsterdam in 2001 with 350 participants
coming from 28 countries and more than 190 organizations. Since then, GGF
met three times a year. Work within the GGF affects a large variety of topics,
both technical and non-technical nature. For ensuring efficiency, more than 50
working groups evolved until the present day, each of them focusing on its own
aspect of Grid computing. However, this set of working groups is not fixed.
In contrast, everybody is free to use GGF meetings to raise new topics within
dedicated birds of a feather (BOF) sessions. Hence, research on Grid computing
is neither centrally steered, nor rigid in its structure, but highly dynamic and
constantly changing.

2.2.3 Third Generation

With the second version of the Globus Toolkit as standard platform for Grid
computing within the GGF, a powerful tool offering numerous services emerged.
However, each deployment of this system for a specific domain required cus-
tomization of services and filling of functionality gaps. Since no global roadmap
existed, interfaces of services tend to be incompatible, making interoperability
of independently developed services more and more complex [48, 30].

In the light of this dynamic evolution of Grid computing, the general adher-
ence to a uniform Grid architecture serving as a blueprint for worldwide research
and development was of central importance. The specification of such an archi-
tecture was the focal topic of the GGF working group on the Open Grid Services
Architecture (OGSA-WG) [80]. Up to the present day, this working group is
driving a continuous process of developing and improving this blueprint for a
common Grid architecture. This architecture is impacting numerous working
fields on Grid development, because it ranges from the description of the general
taxonomy of the Grid infrastructure, up to interfaces of service elements.

The core idea of this Open Grid Services Architecture (OGSA) was the conver-
gence between the Grid and web service technologies. The paradigm of service
oriented computing had already proved itself as a powerful approach in do-
mains like agent based computing, so this approach seemed to be predestinated
for facing the challenges of the envisaged large scale Grid systems.

By specifying a common set of interface specifications, the interoperability
between independently developed services on the Grid should be ensured [64].
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This way it became possible to combine existing services to match given require-
ments as well as to exchange specific services by third party products without
the risk of incompatibilities. The introduction of OGSA marks the beginning of
the third generation of Grid computing.

However, OGSA is not an implementation guideline, but only a blueprint for
a Grid architecture. The actual implementation is described by the Open Grid
Services Infrastructure (OGSI), driven by the OGSI working group within the
GGF [81]. OGSI is defining a set of WSDL specifications. These describe the
interfaces, the behavior, and the schemata for services in Grid computing. A
service having its interfaces and behavior defined is denoted as Grid service.

OGSI has not only been implemented in the third version of the Globus
Toolkit (GT3), but also in a number of other projects. A prominent example
is OGSI.NET [95], realizing the OGSI specification using the .NET platform of
Microsoft.

The approach of OGSA was commonly accepted [15, 16, 86]. In contrast, in
the light of emerging web service technologies, OGSI was broadly criticized. In
[61] main arguments against OGSI are:

• Too much stuff in one specification: OGSI was criticized as being too
comprehensive, not having a clear separation of functions.

• Does not work well with existing Web services and XML tooling: Using
existing web service toolkits was problematic, because OGSI focused on
XML without complying to all WSDL standards.

• Too object oriented: OGSI was realizing the modeling of stateful resources
by means of web services, encapsulating the actual state of resources, not
distinguishing between stateless services and stateful service entities.

• Introduction of forthcoming WSDL 2.0 capability as unsupported exten-
sions to WSDL 1.1: OGSI followed the WSDL 2.0 standard, which was
unpublished in early 2005. This complicated the usage of existing toolkits,
which all still based on WSDL 1.1.

These criticism lead to the development of the Web Services Resource Frame-
work (WSRF) [90], mainly driven by major players in Grid computing, namely
Fujitsu, Hewlett-Packard, IBM, and the Globus Alliance in 2004. WSRF had to
deliver the same functionality as OGSI, avoiding the listed drawbacks. There-
fore, WSRF was not designed to be a monolithic architecture. Instead, WSRF
consists of five specifications, which can be combined or used independently.
These are:

• WS-ResourceProperties Spec describes how a WS resource can be con-
structed from web services and stateful resources.
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• WS-ResourceLifetime Spec defines how a resource has to be deleted once
its lifetime has expired

• WS-ServiceGroup Spec allows the construction and usage of groups of web
services

• WS-RenewableReferences Spec enables to provide information on how to
find a new endpoint reference for a service, if the current reference gets
void

• WS-BaseFault Spec represents a basic error type.

In addition to these five specifications, WS-Notification allows the asyn-
chronous notification about the state of a WS resource [61]. Since WSRF does
not introduce structural modifications in WSDL or XML, it is a steps towards
the convergence between Grid computing and web service technologies.

With the fourth version of the Globus Toolkit (GT4), an implementation of
WSRF is available. However, there are also implementations available beside of
GT4, e. g. WSRF.NET [96], an implementation of WSRF for the .NET frame-
work of Microsoft.

2.2.4 Commercial Grids

Meanwhile, Grid computing is widely accepted and no longer used by research
institutes only. Companies like IBM, Hewlett Packard and Microsoft have rec-
ognized the potential of Grid Computing and are investing noticeable efforts on
research and the support of research communities.

Common goal is to attract commercial users for Grid Computing. In this
context, the European Commission convened a group of experts in 2002 to
clarify the demands of future Grid systems and to find out which properties and
capabilities are missing in currently existing Grid infrastructures. Their work
resulted in the idea of the Next Generation Grid [34]. After a revision of this
document in 2004, this experts group released the third version of their report
in 2006 [59].

2.3 Service Level Agreements

Grid Computing allows the virtualization of resources. Even though the notion
of a resource encompasses not only hardware-resources, but also software- and
information-resources, a typical application scenario is a request of resources
for the execution of a computing job. This scenario will be presented within



14 2 Foundations

this section to clarify the negotiation procedure. To ensure the interoperabil-
ity with Grid middleware components, we apply to WS-Agreement and WS-
AgreementNegotiation protocols [1] as standardized within the GGF.

Prerequisite for the negotiation process is that the service customer was able
to find the resource provider. Therefore we presume, that the service provider
has published some relevant information about his system, so that the service
customer is interested in using the provider’s resources for computation of his
job. For this, it is essential that customer and provider share a common termi-
nology how to describe resources. The publication and presentation of informa-
tion about available resources as well as the matchmaking process is assured by
appropriate building blocks within Grid middleware [14, 40].

We assume that the service customer spotted the resource provider and re-
quests the provider for starting a negotiation process. The resource provider
replies to this request either by denying the request immediately (e. g. because
service requestor is not member of a trusted domain or because the request is
not properly formulated) or by accepting the request. In this case, a negotiation
template is transmitted to the requestor, which may encompass a list of service
definition terms (e. g. access to locally available compute nodes) that may or
may not be negotiated. For example, the provider can state that a maximum
of 100 nodes may be requested or that only best-effort service is available.

The requesting customer now uses this template to formulate a request. By
this, he specifies his requirements, regarding all constraints specified by the tem-
plate. This request is the requirement profile of the upcoming job, specifying
requirements on type of processor, amount of memory, number of nodes, net-
work interconnect or necessary software environment (e. g. operating system,
libraries, or toolkits). This request may also specify a deadline (i. e. the job
should complete until tomorrow morning 8am) or the required level of fault
tolerance (i. e. the system should checkpoint the job regularly).

By sending the request to the provider, the requestor starts the negotiation.
The service provider checks the request for compliance with all constraints, for
completeness and realizability. If the request is not complete (e. g. the requestor
asks for a deadline but did not specify a runtime estimate), an answer is sent
back to the customer. If the request can not be realized on the provider’s system,
the provider can either cancel the negotiation process, or send a counter proposal
to the requestor (e. g. I can not finish the job until 8am, but until 12am). If the
request is complete and can be realized on the system, the provider will accept
the request.

If the provider sent a counter proposal to the customer, the requestor again
checks this counter proposal for its content and either replies with a modified
request, or terminates the negotiation. This procedure of request and counter
proposal continues until either the request can be accepted or one of both parties
aborts the negotiation process. To avoid an endless loop the number of iterations
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is limited to a site specific maximum. It is also possible to limit the lapse of a
negotiation process to a maximum time span.

The service customer may specify job details like URL of application, input
and output files directly in his service request. In this case, the successfully ne-
gotiated job can directly be executed or planned for future execution. However,
if the service request is a reservation for future execution, these details do not
have to be specified at this time, because they are only required at execution
time. If these specifications are not available at runtime, the RMS will not be
able to execute the job, so that the reservation will expire.

The customer has the guaranty, that the provider will execute his job re-
garding the agreed service level specifications. When the job should then be
executed at the agreed execution time, the customer will again contact the
provider, requesting a new agreement. The provider will again answer this re-
quest by submitting an agreement template. The customer now refers to the
already successfully negotiated agreement and adds all necessary specifications.
The provider now does a lookup in his internal database for the specified agree-
ment. If the specified request has been found and has not yet been used for the
execution of a job, the new request will be accepted and executed.

This way an orchestrated execution of distributed jobs can be realized. If a
job consists of multiple sub-jobs that need to be executed according to the se-
quence of a workflow, resources for each sub-job can be allocated by requesting
appropriate agreements, even though information like URL of input and output
files are not available until runtime. At the level of the resource management
system, each step of a workflow is subject of a separate agreement. At the
level of Grid middleware, specific workflow management blocks may orchestrate
the execution of workflow jobs by initiating separate agreements with underly-
ing layers (e. g. local resource management systems), only establishing a single
agreement with the end-user. However, this is out of the scope of this document.

2.3.1 Basics

As explained in the introduction, at least the commercial user requires guar-
anteed service provision. Hence, if the commercial user should be attracted to
use Grid environments, Grid middleware must provide appropriate mechanisms
for ensuring such guarantees. However, determining if a specific service guaran-
tee can be given to a request depends on a multitude of dynamic parameters.
Therefore, service guarantees can not be published like static data (number of
nodes within a cluster, amount of main memory or storage memory). Instead
the requestor has to initiate a negotiation with the service provider, determining
if a guarantee can be given to a request. Only if the current system situation al-
lows assuring the compliance with the terms of a service guarantee, the provider
may conclude the contract. If the a priori analysis of the terms of a requested
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guarantee results in a high risk of violation, the requested guarantee should be
denied.

2.3.1.1 Content of an Agreement

An agreement is negotiated between a service provider and a requesting ser-
vice consumer. At this, a requesting service consumer does not have to be
the end user. For improving the level of fault tolerance, the system will act
as an active Grid component, requesting for spare resources within the Grid.
Therefore, Grid providers can also act as resource requesters. The negotiation
process is conducted using mechanisms provided by Grid middleware. If the
service requestor is the end-user, he may control this negotiation process if his
Grid software offers appropriate interfaces. Otherwise the complete negotiation
process is transparent for the end-user.

Beside general data about both contractual parties, the agreement contains
information about the service level objectives. This information represents the
payload of the agreement. The contract may comprise one or more of such
service level objectives, e. g. the guarantee of availability of resources in the
requested amount, or at the requested level of QoS. Since the service objectives
relate to the definition of a service, also the service definition itself must be
part of the agreement. Concluding, the agreement encompasses at least one
service definition term, referenced by at least one guarantee term. Each of
these guarantee terms may be associated with a business value and violation fee
representing the monetary aspects of an agreement. The guarantee term consists
of at least one service level objective, defining the content of the guarantee.

An agreement may also refer to other agreements, which may be framework
contracts between two parties. These framework contracts are also denoted as
agreement context of the new agreement. If such a framework contract has
been established, subsequent agreements must refer this framework contract for
regulating specific terms within the new agreement. As an example, a resource
provider may use such a framework contract to grant a special rate for resource
consumption to a customer. As a matter of fact, the customer will be charged
for this framework agreement.

Another important term within the agreement is the monitoring and measure-
ment of contract fulfillment. The service consumer will most probably only agree
to pay the charge for resource consumption, if the delivered service matched the
terms of the agreements. In fact, customers will demand the provider to pay a
penalty fee, if such a fee has been stipulated within the agreement. It is obvious
that determining if a guarantee has been fulfilled can be controvertible. Hence,
the fulfillment of an agreement should not only be monitored and asserted at
the side of service provider and service customer, but also by a neutral third
party instance.
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2.3.1.2 Initiation of Negotiation

The process of service level negotiation will normally be initiated by the service
customer. While this is obviously the normal case, the negotiation can also
be initiated by the service provider. Provider driven negotiation may occur
in situations where large amounts of resources are idle, so that the provider
offers special rates for resource consumption to attract additional customers. At
this, provider driven negotiation means, that a provider offers his own resources
within such a negotiation process.

A service provider may also start a negotiation process for requesting the Grid
for resources to improve his own fault tolerance. Even if this negotiation process
is initiated by a service provider, it is not a provider driven negotiation process.
In this case, the provider is in the role of a service requestor, as he requests the
Grid for providing resources.

In both cases (provider initiated negotiation, respectively service customer
initiated negotiation), the negotiation process on a new service level agreement
does not start formless as a loose communication between service provider and
service requestor. The negotiation usually starts with the transmission of a ser-
vice level agreement template from the requested party to the requestor (since
provider initiated negotiation is exceptional, this normally means the transmis-
sion of a template from the provider to the customer). It is noteworthy that only
the structure of this template is defined (by means of a standardized schema),
not the content. This template specifies the framework of an agreement and
defines the aspects that can be negotiated. It may also define general rules that
must be understood and followed for a successful negotiation. These general
rules are also denoted as creation constraints.

2.3.1.3 WS-Agreement and WS-AgreementNegotiation Protocol

To enable both parties to perform a successful negotiation, a common protocol
is required. The WS-Agreement and WS-AgreementNegotiation protocols, de-
fined by the GRAAP (Grid resource allocation and acquisition protocol) [54, 1]
working group of the Global Grid Forum (GGF) aim to match the demands
mentioned above. These two protocols base on a protocol stack, essentially
consisting of the protocols WS-Service Groups, WS-Resource Properties and
WS-Addressing (cf. Figure 2.1).

Primary goals of these protocols are to standardize the terminology, the agree-
ment structure and the concepts of an agreement. It also defines the types of
agreement terms, the structure of an agreement template and the course of its
creation, including creation constraints and required protocols for creation, ne-
gotiation and renegotiation. Last but not least, it also describes a way to express
the state of an ongoing or concluded negotiation process.
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WS AgreementNegotiation

WS Agreement

WS ServiceGroups

WS ResourceProperties

WS Addressing

Figure 2.1: Protocol Stack

For this, the WS-Agreement protocol has to match several requirements.
First, it must allow the usage of arbitrary service description terms, which im-
plies that the protocol must not be bounded to a specific field of application. In
contrast, the protocol has to be applicable in any application domain. Therefore
the definition of domain specific description terms has to be supported, e. g. the
definition of job specification, data service specification, or network topology
specification. At negotiation phase, these predefined service description terms
are referenced by the service objectives.

2.3.2 Structure of a Service Level Agreement

As mentioned in the section above, a Service Level Agreement (SLA) consists of
multiple parts. Beside general data about both contractual parties, the agree-
ment contains information about involved parties, service description terms or
service level objectives. Within this chapter the structure as well as the contents
of such an SLA (cf. Figure 2.2) will be explained in some more detail.

The first field of an SLA, the name, is optional. It can be used to make the
identification of a single SLA easier. However, since the name of an SLA is not
the unique identifier for the SLA and most SLAs are conducted and managed
without human interference, the name can be left blank.

2.3.2.1 Context

More important than the name is the context of an SLA (cf. Figure 2.2). It
defines general facts about the context of the agreement, like information about
the parties of the agreement (e. g. name of organizations, responsible persons,
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<wsag:Context xsd:anyAttribute>

<wsag:AgreementInitiator>xs:anyType</wsag:AgreementInitiator> +

<wsag:AgreementProvider>xs:anyType</wsag:AgreementProvider> +

<wsag:AgreementInitiatorIsServiceConsumer>

xsd:boolean

</wsag:AgreementInitiatorIsServiceConsumer> +

<wsag:ExpirationTime>xs:DateTime</wsag:ExpirationTime> +

<wsag:TemplateName>xs:string </wsag:TemplateName> +

<wsag:RelatedAgreements>

<wsag:RelatedAgreement wsag:RelationshipType="wsag:dependency">

<wsag:AgreementEPR>

wsa:EndpointReferenceType

</wsag:AgreementEPR>

<wsag:RelatedAgreement> *

</wsag:RelatedAgreements> +

<xsd:any/> *

</wsag:Context>

Figure 2.2: XML schema of SLA context

their telephone numbers and email addresses). It is noteworthy, that an SLA
may affect more than only two parties. In the case that the customer requests
for a reservation of resources, the requestor may define which other parties are
eligible to use the successfully negotiated agreement later on.

Optionally, the context also defines the lifetime of the agreement, which may
start at negotiation time and end after job completion for normal agreements.
Lifetime is of special importance for reservations and framework agreements.
The context also encompasses information about other agreements that this
agreement links to (e. g. in case of a framework SLA). The mechanism of SLA
lifetime does not have to be used, since both parties may agree on the duration
of an SLA using other mechanisms.

The context may also comprise the identifier of the agreement template, which
has been used to create the agreement. The agreement identifier only has to be
named if this agreement is based on special offerings related to an agreement
template.

2.3.2.2 Terms

Even though SLAs are exact statements of all obligations and expectations
within the business partnership between service provider and service consumer,
the formulation of an SLA must be possible in arbitrary usage scenarios and
application domains. Therefore the XML schema of the terms sections allows
the nesting of service description terms, service references, service properties,
and service guarantees. All elements can be nested and combined using logical
relations AND, OR, and XOR.

The "Terms" section consists of all service description terms and guarantee
terms (cf. Figure 2.3), so that this section is the real payload of an SLA. It
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<wsag:Terms>

<wsag:All>

<wsag:All>

wsag:TermCompositorType

</wsag:All> |

<wsag:OneOrMore>

wsag:TermCompositorType

</wsag:OneOrMore> |

<wsag:ExactlyOne>

wsag:TermCompositorType

</wsag:ExactlyOne> |

{

<wsag:ServiceDescriptionTerm>

wsag:ServiceDescriptionTermType

</wsag:ServiceDescriptionTerm> |

<wsag:ServiceReference>

wsag:ServiceReferenceType

</wsag:ServiceReference> |

<wsag:ServiceProperties>

wsag:ServicePropertiesType

</wsag:ServiceProperties> |

<wsag:GuaranteeTerm>

wsag:GuaranteeTermType

</wsag:GuaranteeTerm>

}*

</wsag:All>

</wsag:Terms>

Figure 2.3: XML Schema of SLA Terms Compositor

optionally encompasses service references and service properties.
Service description terms are required to identify specific services that this

agreement relates to. Therefore it has fundamental importance for the agree-
ment, as service description terms are describing the services that the agreement
is about. At runtime, the provision may be bound to specific constraints and
service level objectives. These objectives define how the service should be per-
formed.

If a framework agreement is used, many requestors may reference to this
agreement. Nevertheless each of these requestors may have individual definitions
of service qualities and obligations. Using a service reference, that requestor can
refer to the definition of an existing service instance.

<wsag:Variable name="CPUcount" metric="job:numberOfCPUs">

<wsag:Location>

wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDefinitionTerm/job:executable

</wsag:Location>

</wsag:Variable>

Figure 2.4: XML Schema for defining CPU count variable

The provider may specify service properties in his agreement template. These
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elements define measurable and exposed properties (e. g. amount of transferred
data, runtime, or response time). Requestors may quote these service properties
in the agreement request, referencing them in the service level objectives (i. e.
the definition of a service level objective refers to the defined service property).
In this case, the agreement has to define a variable for the referred service
property. This variable can then be used in logical expressions and assertions,
defining the exact meaning of a service level objective.

A sample definition of such a variable can be seen in Figure 2.4. This variable
can then be used to define other variables. For example, an agreement can
define the area of a job as the product of the number of CPUs used and the
number of seconds used for computation. This variable "area of job" can then
be used for defining service level objectives.

2.3.2.3 Guarantee Terms

A guarantee term (cf. Figure 2.5) concludes the description of all service levels
that both parties agree on. These guarantee terms will be used at runtime
for monitoring and evaluation purposes. Note, that an agreement may have
no guarantee terms. This is the case in agreements that only offer best-effort
service. However, each agreement must have at least one service description
term.

<wsag:GuaranteeTerm>

<wsag:ServiceScope>...</wsag:ServiceScope>*

<wsag:QualityingCondition>...</wsag:QualifyingCondition>?

<wsag:ServiceLevelObjective>...</wsag:ServiceLevelObjective>

<wsag:BusinessValueList>...</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

Figure 2.5: XML schema of a guarantee term

Such a guarantee term may guarantee the requestor that he will be provided
a certain amount of nodes for a given time. The guarantee may also define the
quality of service that will be provided. These statements are defined within
the service level objectives.

If service descriptions are listed in the terms of the agreement, these service
descriptions may be referenced in the service scope section of the guarantee
terms. Then, the guarantee applies to all items of this service scope list. The
usage of this service scope is mandatory, if the validity of guarantees of this
agreement is beyond the validity of this agreement. This may be the case, if a
framework agreement guarantees a general service level, e. g. "during the validity
of this framework agreement, the system will have a maximum downtime of 60
minutes".
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Agreements may be limited by qualifying conditions that have to be met. For
example, a framework agreement between a customer and a resource provider
can be negotiated which guarantees that the customer can always use up to 32
nodes for his computation (this is the service level objective), as long as the jobs
are submitted at least 12 hours before the beginning of the requested runtime
(this is the qualifying condition). Qualifying conditions can also be used for
warranty exclusion.

Each guarantee term may also be complemented by business values (cf. Figure
2.6) like importance factors. They represent the importance for requestor and
provider either in abstract values and/or monetary units.

<wsag:BusinessValueList>

<wsag:Importance> xsd:integer </wsag:Importance>?

<wsag:Penalty>...</wsag:Penalty>?

<wsag:Reward>...</wsag:Reward>?

<wsag:Preference>...</wsag:Preference>?

<wsag:CustomBusinessValue>...</wsag:CustomBusinessValue>*

</wsag:BusinessValueList>

Figure 2.6: XML schema of a business value list

The definition of a penalty is of particular importance, since this property
defines the amount of money that has to be paid from the service provider to the
service customer, if the guarantee terms of the agreement are violated. Instead
of stating a general penalty fee, which has to be paid if the guarantee terms are
violated, also a dynamic penalty fee can be defined. This can be achieved by
specifying an assessment interval (cf. Figure 2.7), which represents the unit for
which an agreement violation will be assessed and charged. The definition of an
assessment interval then has the meaning of "for every 30 minutes that the job
is delayed, a penalty fee of xy EUR will be charged".

<wsag:Penalty>

<wsag:AssesmentInterval>

<wsag:TimeInterval>xsd:duration</wsag:TimeInterval> |

<wsag:Count>xsd:positiveInteger</wsag:Count>

</wsag:AssesmentInterval>

<wsag:ValueUnit>xsd:string</wsag:ValueUnit>?

<wsag:ValueExpr>xsd:any</wsag:ValueExpr>

</wsag:Penalty>

Figure 2.7: XML schema of assessment interval

Similar to the definition of penalty fees for violation, it is also possible to define
rewards for fulfilling the guarantee terms. In that case, the service customer has
to pay a basic fee for the agreement. If a certain guarantee term can be met,
he is additionally charged for the reward (e. g. the service provider assures that
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the customer can access up to 32 nodes for computation if the job has been
submitted at least 12 hours before beginning of requested runtime; if the service
provider makes it to provide resources in less than 12 hours time before the job,
the customer pays an additional reward for this.).

The definition of preferences is another way of fine-grained description of busi-
ness values. Preferences are of high importance during the negotiation phase,
as the service requestor may define multiple alternative service requests at the
same time. This enables the service provider to evaluate which service request
could be realized, and to return a single answer to the requestor, which may
dramatically reduce the number of negotiation iterations.

2.3.3 Negotiation of Service Level Agreements

In the previous sections the basic workflow of a negotiation as well as the
contents of a negotiated Service Level Agreement (SLA) have been presented.
Within this section the negotiation process itself should be focused.

In the simplest case a negotiation process consists of only a single iteration:
The service requestor submits an agreement request to the service provider,
who either accepts or refuses the job, depending on the requirements within
the request and the current local system conditions. Since no real negotiation
process takes place, it can be spoken of pseudo-negotiation here.

Non-trivial negotiation takes multiple negotiation iterations. If a service re-
quest can not be fulfilled by the service provider, a counter proposal is sent
back to the service requester. Based on this counter proposal a new request is
generated, starting the next iteration of negotiation. This negotiation process
ends if the request is accepted by the service provider or the negotiation process
is terminated due to the contents of the counter proposal respectively request,
or due to a reached maximum number of negotiation iterations.

Complex negotiation does not only take multiple iterations, the service re-
questor also defines preferences. This allows the service provider a higher degree
of freedom in resource planning, thus resulting in a higher chance of a successful
negotiation.

The GRAAP (Grid Resource Allocation Agreement Protocol) working group
of the Global Grid Forum (GGF) is currently working on defining a negotia-
tion protocol named WS-AgreementNegotiation, which resides on top of WS-
Agreement. It provides a simple state-machine (cf. Figure 2.8), which represents
the course of a negotiation process.

A negotiation process can be initiated both by service consumer and service
provider. Therefore the negotiation protocol has to be symmetric. The party
that stated the negotiation process is called initiator within the state machine.
Accordingly, the other party is called responder.



24 2 Foundations

advisory

initiator

Solicited

responder

Committed

responder

Solicited

initiator

Committed

terminal

fault
observed

Figure 2.8: GRAAP Negotiation States

WS-AgreementNegotiation classifies the types of messages between initiator
and responder as follows:

1. Advisory offers are messages between both parties without any conse-
quences like obligations or restrictions for further actions.

2. Soliciting offers do not have an obligation as consequence, but they require
the partner for a counter-offer, which can again be of arbitrary kind.

3. Committing offers imply that the sender commits himself to the terms
that have been offered. The communication partner can then decide to
reject or accept this offer.

4. Accepting offers indicate that the communication partner accepts the of-
fered terms that the other partner has committed to.

5. Termination messages interrupt the negotiation process, regardless of the
state of each communication partner or the contents of actual offers.

6. Reject messages only reject the last offer of the communication partner,
not terminating the negotiation process.

The state machine always starts in the advisory state. The solicited state
is reached, if one communication partner submits a service request. Since the
solicited state requires a counter-offer, the receiving partner has to analyze the
received request. Based on this process, some kind of answer is returned to
the requesting partner. In case of acceptance, the requested partner changes to
the committing state, waiting for acceptance from the requestor. If the partner
accepts the terms, both partners change to the observed mode.
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Fault tolerant resource management needs various components to achieve the
goal of fault tolerance. Beside operative components like process checkpoint-
ing or storage snapshoting (i. e. the checkpointing of storage partitions), it is
the resource scheduler which has to decide and orchestrate the usage of fault
tolerance mechanisms.

However, there is not only the compute part of a job that has to be considered
by a scheduler. Before a job comes to actual execution, both contractual parties
negotiate on the level of service that has to be provided. Moreover, all input data
is transferred from the user to the compute resource, respectively the transfer
back of all result data to the user after successful execution. These operations
are denoted as phases of operation and will be explained within this chapter.

Fault tolerance mechanisms enable the development of novel scheduling ap-
proaches, targeting on the demands of future commercial Grid users. The sched-
uler has to use these mechanisms to decide on accepting new SLAs as well as
to adhere to all terms of already accepted SLAs. The focus of this chapter will
be on presenting the design of such a scheduler and its application in practice.
In this chapter, the additional options on scheduling and system management
resulting from a Grid integration will be described.

3.1 Negotiation Requirements of Broker Services

At the Grid Middleware level, broker services are in charge of mapping non-
trivial workflows (i. e. workflows consisting of more than only one workflow task)
to appropriate resources. These workflows can either be predefined by the con-
necting Grid customer or loaded from a workflow description database. Such
a database comprises knowledge about workflow details, e. g. which workflow
steps are necessary to obtain a high level goal. By using such a database, a
user does not have to have knowledge about how to solve a high-level goal, he
only selects a matching workflow from the database, which then expands to a
orchestrated workflow description of single workflow tasks. In both cases the
broker service has to parse the workflow description, analyzing the requirements
and dependencies of the single workflow tasks.

For each of these tasks the broker first has to query resource information
services, specifying static requirements of the workflow task like number and
type of resources. The information service answers with a list of service providers
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potentially capable of fulfilling these resource requirements. Since this answer
solely bases on static information, this does not imply a guarantee that the
provider is actually able to provide the resources at the requested time in the
requested quality. Hence, the broker service has to negotiate with resource
providers task by task. Only if the broker service succeeded in agreeing on
SLAs with resource providers for all tasks, it succeeded in instantiating the
workflow on Grid resources.

A workflow is a graph, not only comprising of workflow tasks as nodes of the
graph, but also of task transitions as edges between the tasks. These transitions
describe the order of execution in which the tasks have to be executed. The
execution may be split on a node, such that the output of a workflow task is
used as input data for multiple following workflow tasks. Likewise join nodes
use the output of multiple predecessor tasks as input data. The execution of a
workflow therefore is not only a sequential execution of workflow tasks, but a
combination of sequential and concurrent tasks.

If the workflow broker service at Grid middleware has to provide service guar-
antees for the entire workflows (e. g. to comply with a deadline for the overall
workflow execution), it first has to negotiate with resource management systems
for all workflow steps. Only if the broker can ensure the compliance with all QoS
requirements (i. e. if the broker is able to find resources providing the required
QoS aspects) it is able to agree on the SLA for the overall workflow.

Due to this multi-phase nature of workflow mapping at workflow broker level,
the resource provider has to provide more than solely fixed SLA negotiation.

• non-binding request: if a resource broker is in charge of orchestrating
concurrent tasks between resource providers, it may first need a list of
potential time slots for execution of each resource provider. The broker
therefore requests for a list of potential starting points. The resource
provider in turn answers with such a list, however only matching the
current system situation with the requirements of the new request. This
does not imply the actual reservation of resources for this new request.

• preparatory request: after the resource broker identified resource provi-
ders for all tasks of the workflow, it starts on negotiating for preparatory
agreements with all resource providers. Here, the requestor already nego-
tiates on the terms of the final agreement, so that the resource provider
may only agree on this agreement request if it is able to comply with all its
terms. If the broker service succeeded in these preparatory negotiations
with all workflow tasks, it may accept the SLA-bound workflow request,
because it can ensure the availability of appropriate resources at runtime.
In contrast to binding agreements, the lifetime of a preparatory agreement
is limited to a few minutes. If the preparatory agreement has not been
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confirmed until timeout, the resource broker voids the reservation, freeing
the reserved capacity in the system schedule for other requests.

• binding request: after the broker service has confirmed a preparatory
agreement, the resource provider removes the timeout from this agreement,
so that the resource management system provides all system resources as
specified within the agreement when the runtime of the new jobs starts.

In commercial environments the resource provider will charge the requesting
user for his services. For this purpose service provider and service consumer
can agree on the price for resource consumption. This price may depend on the
number of provided resources and the time used on the system. As a matter of
fact, different charging policies have to be applied for non-binding, preparatory,
and binding requests. Where regular pricing applies to the binding request,
the preparatory request should have a significantly lower price representing the
resource consumption caused by the resource reservation until timeout. The re-
questing service is charged by this amount in case that he does not confirm the
preparatory agreement in time. Without any charging the provider is endan-
gered of fraudulently mass requests, striving to block resources, thus decreasing
the utilization of the machine. Since non-binding requests do not block any
resources, the requesting user does not necessarily have to be charged.

Non-binding and preparatory agreements can not only be negotiated by work-
flow broker services, but any requesting parties within the Grid. Even end-users
are able to request, even if this functionality is primary beneficial in the work-
flow context, not on placing single jobs on Grid resources. Since single node jobs
can be placed in one iteration, a direct binding negotiation is sufficient here.

3.2 Levels of Service Quality

An SLA-aware resource management system has to provide a fault tolerant
operation which is able to agree upon the level of fault tolerance delivered to the
user by the means of an SLA. This SLA negotiation is based on the protocols
WS-Agreement and WS-AgreementNegotiation. Since these protocols solely
specify the form of negotiation but not the content, the application of these
protocols is not bound to a specific domain of applications. The usage of these
protocols for a concrete application demands the definition of specific Service
Description Terms (SDT). With these SDTs, the user can specify, e. g. a number
of nodes, available disk space, an interconnect type.

For standardizing the execution requirements of a computational job, the Job
Submission Description Language (JSDL) has been introduced by the JSDL-
working group of the Global Grid Forum. By means of JSDL all parameters for
job submission can be specified, e. g. name of executable, required application
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parameters, or file transfer filters for stage-in and stage-out. Resource specific
SDTs categorize available resources by their type and functionality.

Resource specific SDTs subjecting static information (e. g. number and type of
required processors) can be resolved using standard Grid information catalogue
systems. Dynamic attributes need to be directly negotiated.

Beside these resource related SDTs also QoS-related SDTs are essential for
enabling the service customer to request for a given level of QoS. QoS specific
SDTs describe which QoS guarantees and mechanisms have to be provided by
the system for the job.

Standard JSDL does not yet cover these kind of job description parameters.
However, these QoS-related SDTs can be introduced as user-specific extension
to JSDL. An evaluation of these QoS enhancements to JSDL only has to be
conducted by the requesting customer (e. g. the end-user connecting the Grid
with his interface or the Grid broker) and the SLA-aware resource management
system. This way this QoS negotiation easily integrates into standard Grid
service deployments.

These QoS-related SDTs have to be further divided into SDTs relating to
resource specific and job specific parameters. The first specify requirements
on QoS for a given type of resource, the latter specify overall job related QoS
requirements, e. g. requirements in system redundancy.

3.2.1 SDTs on Resource Specific QoS

Resource specific QoS properties describe the user’s demands on specific resource
properties. If jobs have particular demands on resource performance character-
istics, these properties are vital for reproducibility of job performance on the
Grid resource. If a job starts in such a well defined system environment, the
envisaged job results can be achieved in time as planned. If the Grid resource
differs significantly from the demanded QoS profile (e. g. slow network), the job
may not finish within the specified time, thus resulting in a violation of the job
deadline.

Examples for such resource specifc QoS SDTs are:

• compute node: checkpoint frequency

• storage: availability and type of redundancy, guaranteed performance on
reading and writing of data

• network: availability of failover mechanisms, exclusive usage of network
interconnect, guaranteed bandwidth, guaranteed latency

At runtime of the application, the resource management system has to ensure
that these agreed parameters are granted. In case of parameters like the guar-
anteed checkpointing frequency or exclusivity of network access, the system has
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to ensure the timely execution of actions or the proper initialization of the job
execution environment.

Performance oriented parameters like performance on reading and writing
of storage data, the resource management system has to use its monitoring
mechanisms as well as the monitoring capabilities of subsystem components. If
a violation of these parameters is detected, the system has to use its mechanisms
on migration for resuming the job on new resources that are able to provide the
requested level of service quality.

3.2.2 SDTs on Guarantee Level

With agreeing on job related QoS SDTs, both service requestor and service
provider can agree on the appliance of specific mechanisms. Thus, the provider
primarily only promises to use his mechanisms on fault tolerance in a specific
way. The provider does not necessarily guarantee on finishing the job within
the given deadline.

Similar to regular insurance policies known from everyday life, service provider
and service consumer have to agree on the contents and implications of an SLA
guarantee. While low priced policies only cover a small number of services,
higher priced policies offer a more comprehensive catalogue of services. The
same holds valid for the negotiation on QoS parameters. If both parties negotiate
on QoS aspects like the adherence with a given deadline, it has to be clarified
which type of unforeseen events the provider has to compensate, respectively
which fault tolerance mechanisms he has to enforce.

In this context we distinguish between the guarantee levels Background Ser-
vice, Legacy Service, Enhanced Service, and Full Service, each defining how the
resource management system has to handle the job and how to apply internal
fault tolerance mechanisms:

• Background Service: Providers are primarily interested in a high utiliza-
tion of their resources. However, even in highly utilized cluster systems,
resources run idle from time to time. This undesirable situation is due to
the fact that even small jobs do not fit into the gaps of a regular schedule.
If the customer is not interested in getting the results at a given time, he
can choose the level of background service. Here, the provider will assign
gaps within the schedule to this job.

This service may also be combined with other services (except the legacy
service). For requesting these services, the user has to specify the maxi-
mum runtime of his job. This is required for enabling the resource man-
agement system to give guarantees for fulfilling the deadline. If the job
does not finish within this maximum duration, it is cancelled and removed
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from the system. By combining with background service, the job is auto-
matically converted into a background service. Hence, the user does not
get his results within the negotiated deadline, but temporary results are
not lost, and only the remaining compute time has to be finished. How-
ever, the probability of matching free gaps decreases with the number of
requested resources, so that there is little point in requesting background
service for massively parallel applications.

• Legacy Service: If legacy service is agreed, the deadline will be realized
by means of advance reservations without any additional fault tolerance
mechanisms. If all resources (i. e. nodes, storage, network, ...) operate
without exceptions and outages, the deadline will be met. However, this
service will not provide any mechanisms for handling exceptional situa-
tions.

• Standard Service: Providing this service, the system will ensure the ad-
herence with given deadlines by means of advance reservations. For fault
tolerance provision, the system will perform regular checkpoints of run-
ning jobs. In case of resource outages, the system will first check the
local cluster system for spare resources. If these resources were found, the
checkpointed job will be restarted on these resources. Otherwise, the sys-
tem will query the Grid middleware for appropriate resources for trying
to resume the job on these resources. If Grid resources are found, the job
will be restarted on these Grid resources. This service does not contain a
guarantee that these resources are available.

• Enhanced Service: Just like operating with standard service, the system
will checkpoint running jobs regularly. In contrast to the standard service,
it will always ensure that spare resources are available at the local cluster,
so that the job does not have to be migrated on Grid resources. Since
the provider has to be secured for cases of massive resource outages, this
liability has to be limited to a maximum of concurrent resource outages.

• Full Service: In contrast to enhanced service, the system will reserve re-
mote resources at full service, so that their availability is ensured in case
of failures. Only if these remote resources can be reserved, the system will
accept the SLA request.

Comprising, only with full service the customer gets unlimited guarantee.
Here, the provider has to pay the contractually agreed penalty fee if the terms
agreed within the SLA are violated, e. g. if he missed the deadline for job com-
pletion. In contrast, the legacy service does not include mechanisms on fault
tolerance at all. It is best effort service only.
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Standard and enhanced service result in limited liability of the provider. The
provider only has to pay the contractually agreed penalty fee if he failed to
enforce the agreed fault tolerance mechanisms (e. g. if he did not checkpoint the
job regularly or if he failed to provide backup resources for restarting the job
in case of resource outages). Hence, the provider has to be able to prove the
fulfillment of the agreement terms, e. g. by means of system protocols.

3.2.3 SDTs on System Policies

Policies are defining the general behavior of a system. By specifying commonly
accepted or locally published policies within an SLA, the mode of operation
is defined at runtime. Similar to SDTs on resource specific QoS, the resource
management system has to prepare the execution environment of a job prior the
execution of a job as well as using its monitoring capabilities during runtime.
In case, the system then has to react as specified within the policy.

• Security Policy: Security is vital for acceptance of Grid systems by users.
By specifying a commonly accepted security policy, the requestor can be
sure that access to his data and job is restricted in a defined way. For top
secret computations such a security policy can demand the restriction of
physical access to compute nodes to selected administrative staff. If the
provider is not able to provide this level of security, the job may not be
executed on this Grid site.

• Migration Policy: The resource management system realizes fault toler-
ance by means of process checkpointing. If a node fails, the job can be
restarted using the last checkpoint. Usually the job can not be restarted
on the same set of nodes, so that the checkpoint has to be transferred
to a new set of nodes. These nodes can be part of the same cluster, but
may also reside to any other cluster system. By specifying a migration
policy, this process of selecting new compute resources for restart of the
checkpointed job can be restricted and controlled. For high security jobs
the migration policy may demand that the job is only migrated to other
sites, also able to fulfill the assured security policy. The migration policy
may also demand not the transfer the job to other cluster systems or not
to query the Grid for spare resources. The demand of a restrictive migra-
tion policy may significantly limit the system’s opportunity to cope with
resource outages, interfering with the provision of full service. Here, inter-
nal evaluation mechanisms have to ensure the applicability of full service
in the context of the demanded migration policy. If full service can not be
granted, the request has to be rejected.
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3.3 Phases of Operation

For the user or Grid customer, the computation of the job on the allocated
compute resources is of greatest interest. However, other phases of operation
can be identified (cf. Figure 3.1), where the system handles the job [42]. As the
customer has specific requirements how his job should be executed, he initially
requests a service level agreement from the system. This is the first stage of
operation. At the end of this stage, both parties (i.e. the cluster system and the
Grid customer) agree on the contents of an SLA, or the negotiation is aborted
without agreeing on an SLA.

In the next phase, the pre-runtime phase, the validity period of the SLA has
not actually started, the system has to prepare itself for this new job. This means
that the network has to be configured (e. g. modifying the network routing or
establishing network failover mechanisms), the assigned compute nodes have to
be initialized and the storage has to be provided.

The main phase of operation is the runtime phase, which starts at the be-
ginning of the validity period of the SLA. As a first step, necessary input data
is transferred from the Grid customer to the compute resource. This process
is denoted as stage-in. If all input data is available, the job can start its com-
putation, generating temporary and result data, and using all agreed resources.
During this computation, the cluster middleware has to ensure the compliance
with all QoS statements of the SLA. This may imply the regular generation of
checkpoints or the utilization of available fault tolerance mechanisms. If the
computation has finished, result data will be transferred back to the user (i.e.
stage out).

The final phase of operation is the post-runtime phase, where the validity
period of the SLA has ended, the job has terminated and all output data has left
the system. In this phase the system can be reconfigured to “normal” operation.

3.3.1 Negotiation

If the Grid user wants to negotiate on resource usage with the resource man-
agement system, the user first submits a negotiation request. The RMS now
decides if it wants to accept this request, thus starting a Service Level Agree-
ment (SLA) negotiation with the requesting Grid user. If it declines the request,
no SLA negotiation will start. The reason for this cancellation may be manifold,
e.g. if the requestor is not member of a trusted domain or if accounting is not
guaranteed. This decision process will be policy driven.

In case the system accepts the request, the whole negotiation process is steered
by a negotiation module within the RMS, as only the RMS has a complete sight
about all resources.
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Figure 3.1: Phases of Operation

The negotiation module now initiates a new SLA negotiation with the request-
ing Grid user by creating a Grid service for this specific negotiation instance.
This Grid service creates a specific template for an SLA and returns an answer
to the requestor. This answer contains the generated SLA template as well as
the endpoint reference of the recently instantiated negotiation Grid service. The
SLA template represents a general framework for all further negotiation activ-
ities. It gives a formal structure for negotiation as well as Service Description
Terms (SDT), which may be topic of the negotiation process.

The requestor now starts the SLA negotiation by utilizing the received SLA
template. He creates an SLA request based on the received SLA template which
specifies all his resource and QoS requirements. If the SLA request is complete,
he transmits the SLA request document back to the system.

Now, the negotiation module of the RMS is in charge of verifying the state-
ments of the received SLA request. This is done in a first step by checking
formal requirements, e.g. constraints on available resources. If static bound-
aries meet existing resource limits, the negotiation module checks in a second
step dynamical aspects of the received SLA request. This affects the question,
whether or not the specified and requested resource is available at the requested
quality at the requested time frame.

In case the requestor specified QoS parameters concerning the checkpointing
of the job, e.g. a deadline bounded job, the RMS will not contact the checkpoint-
ing subsystem. The availability of checkpointing mechanisms on specific nodes
of the cluster system does not depend on dynamic values. In contrast, the avail-
ability is a static property of a cluster node. Hence, the RMS can determine
without any communication to the checkpointing subsystem, if checkpointing
mechanisms can be provided.
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It is important to stress that the specific requests on QoS can not be re-
garded isolated from each other. In fact, they interfere each other. In case of a
deadline bounded job, the storage subsystem has to provide additional storage
capacity for saving process checkpoints. QoS requests even interfere within a
single subsystem: in case more than one storage snapshots shall be saved (i. e.
the checkpoint of all contents of the storage partition which is used for job
execution), the storage capacity has to be aligned.

3.3.2 Pre-Runtime Phase

Each negotiated SLA has a unique identifier which is used as reference in further
communication. In case of a successful negotiation procedure, the RMS saves
the SLA in its internal database.

Due to the SLA-aware scheduler, the contents of all negotiated SLAs are
part of the scheduling process. Hence, the system awaits the incoming job and
assigns appropriate resources. To utilize these resources, further communication
concerning the SLA-bounded job always refers to the unique identifier of the
negotiated SLA.

At the moment where the new job enters the system (this does not only imply
the executable of the application that should be executed, but also all input data
required by this application), the components already have to be fully prepared
for this new job. This process of initialization is denoted as pre-runtime phase.

It is of great importance to consider this phase, as open tasks may be time
consuming due to their complexity or communication intensity. As an example,
the nodes may have to be configured to have a configuration as agreed within the
SLA. This task may range from the provision of specific libraries and compilers,
up to the installation of the whole node environment. It is obvious that this
process needs to be considered in the scheduling process, so that the compute
environment is up and running at the agreed time.

In this phase the RMS initializes the working environment of a job, concerning
the configuration of local cluster nodes, the network subsystem, and the storage
subsystem. The emphasis of this process will be on establishing a fault tolerant
environment, according to the specifications of the SLA. All operations within
this stage are started, steered and monitored by the resource management sys-
tem.

3.3.3 Runtime Phase

After this first stage, the basic environment of the job has been established.
Now, the stage-in of process data can proceed. Stage-in is performed by mech-
anisms at the level of Grid middleware, e. g. the Globus toolkit. Hence, the
RMS does not have to provide these mechanisms on its own. These stage-in
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mechanisms ensure that the process will find its data at runtime. The RMS
only has to ensure that storage capacity is available at the agreed quality and
quantity.

Once all necessary data has been staged in, the computation of the job may
start. The main task of the RMS is to ensure that all resources are available
as agreed in the SLA during runtime. Therefore monitoring mechanisms have
to be used, checking if all resources are operating in normal mode. If resource
outages occur (e. g. dropout of a compute node), appropriate failure tolerance
mechanisms have to be enforced. Due to adherence reasons with all SLAs, it is
of vital importance that resource failures are detected as soon as possible.

For being able to cope with resource outages, the resource management system
has to execute adequate precautionary actions, e. g. checkpointing mechanisms
(refer to Section 4.3 for details on checkpoint generation). In case of resource
outages the RMS will then use its fault tolerance mechanisms, e. g. using gen-
erated checkpoint datasets for restarting the job. Presuming the availability of
monitoring facilities, the system can use its fault tolerance mechanisms also in
a precautionary manner, e. g. reacting on anticipated failures instead of waiting
for actual resource outage.

The primary goal of all fault tolerance mechanisms is the successful completion
of a job. The result of a successfully completed job normally is a result dataset.
This dataset has to be transferred back to the Grid customer, the owner of the
completed job. This transfer is done in the stage-out process, which concludes
this stage. Just like the stage-in process, the stage-out process will be performed
by mechanisms of Grid middleware.

3.3.4 Post-Runtime Phase

The post-runtime phase is the last step of resource consumption. At this point,
the computation of the job has finished and all result data has been transferred
back to the service client. This stage is the counterpart of the pre-runtime stage,
since specific configuration of the cluster system may have to be revoked. This
reconfiguration does not only affect the configuration of the compute nodes,
but also the configuration of the storage or network subsystem. Furthermore
checkpoint/snapshot datasets can be removed, since the job has been completed
and these datasets are not required anymore.

Another important task of the post-runtime stage is the analysis of the job
runtime. As all monitoring data is available at this point, a concluding analysis
of these logs can be accomplished. Goal of these checks is to determine if all
specifications of the SLA have been fulfilled. In case of resource outages, it has
to be checked if the resource management system has reacted as agreed.
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3.4 Timing Aspects of Runtime Phases

In every runtime phase the resource management has to fulfill a given set of
operations [43]. These are vital for providing the agreed service level to the
running operation. Since these operations are consuming a specific amount of
time, this needs to be considered at negotiation, scheduling and general system
management.

3.4.1 Overhead caused by Initialization

In the pre-runtime phase, the assigned cluster partition has to be prepared for
the job which is about to start. This initialization can range from configuration
of system services up to installation of additional drivers and modules or even
the boot of a different operating system.

Resource management systems offering fault tolerant service may enter this
state in two cases: firstly, the job is about to start for the first time. This is
the classical case, which is also occurring in standard RMS. Secondly, the job
may be affected by a resource outage and is now subject to restart. Here the
RMS has to prepare the partition of the cluster such that the job can restart
successfully from the latest checkpointed state. Both cases differ significantly
in their tasks and therefore also in the time consumption.

The catalogue of tasks for initialization of newly starting jobs depends on the
amount of properties that the RMS negotiating on. If the requesting user is able
to request for a specific job environment (e. g. availability of libraries in a specific
version), the RMS has to perform all necessary installation tasks so that the node
environment complies to the profile defined within the agreed SLA. The time
required for this installation is difficult to predict, since it might be necessary
to download installation packets from remote systems. Hence, in practice a fix
amount of time is assumed for this installation procedure (e. g. five minutes),
more than large enough to cover all typical node initializations. For parallel
applications, the initialization effort of a new node is nearly static regardless
of the number of nodes contained in the partition assigned for executing the
parallel application.

In the context of an SLA-aware RMS offering an agreed service quality level
on storage and network, the RMS also needs to initialize these domains at
this point. Regarding the network the user is able to request properties like
minimum bandwidth or exclusive medium access. For this the RMS has to
interface the network management, initializing it accordingly. This task is not
time consuming and can be performed within the fixed time interval for general
initialization. Likewise the storage management has to initialize storage capacity
according to the terms of the agreed SLA.
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The time for initialization of job i can be defined as:

tinitnew
i = tnodeinit + tstinit

s + tstmount (3.1)

with tnodeinit as fixed time for node initialization, tstinit
s as time for stor-

age initialization with size s, Pi as partition of job i, and tstmount as time for
mounting the storage. Depending on the actual software system used for pro-
viding storage services, tstmount may depend on the number of nodes in the
partition of job i.

Both solutions resulted in an effort for rollbacking the storage linear to the size
of their storage partition. In case of NFS this rollbacked storage is automatically
available on all compute nodes. Otherwise, if storage is provided on dedicated
block device, it may be necessary that the block device holding the rollbacked
storage is re-mounted to all compute nodes. If this re-mounting was successful,
the computation should resume. This effort was linear to the amount of compute
nodes.

In the case of a job restart, this initialization phase mainly consists of the
same steps as in the case of a new job start. First the environment of the node
in the node partition has to be initialized such that the job can be restarted
according the specific checkpoint dataset profile. This profile may be part of
the negotiated SLA. In contrast to the initialization of a new job, the storage
container here does not have to be initialized and formatted. Instead, the storage
checkpoint contained in the checkpoint dataset has to be rollbacked, i. e. restored
to the storage partition or storage container. The time effort of this task is also
linear to the size of the storage checkpoint. Concluding, the rollbacked storage
container has to be mounted to the compute nodes.

Here the time for initialization of the restarted job i can be defined as:

tinitrestart
i = tnodeinit + tstrollback

s + tstmount (3.2)

with tstrollback
s as time for storage rollback with size s.

At the end of the job the partition of the cluster has to be released. In the
post-runtime phase the RMS configures this partition back to normal operation.
This implies the reconfiguration of the network subsystem, the release of storage
containers, or the deinstallation of previously installed libraries and tools. This
process takes the time tdeinit

i , not depending on parameters like number of
nodes within the partition or size, size of data partition, or amount of memory
within these nodes. Since the exact demand of time of all necessary operations
is hard to predict, it should be roughly estimated, sufficiently grand to cover all
potential operations.
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3.4.2 Overhead caused by Checkpointing

The main instrument for providing fault tolerance is the generation of regular
checkpoints. There are several checkpointing solutions available, working at
application level, user level, or kernel level (refer to section 6.2). Within the
scope of this work, the focus is on kernel level checkpointing only. Even if other
solutions also provide checkpointing functionality in general, they do not fulfill
the demand on application transparency.

Kernel level checkpointing solutions have in common that it is possible to
checkpoint an application without the need of recompilation or relinking of this
application. However, existing solutions differ in their functionality regarding
prerequisites to support an application. These prerequisites are known to the ad-
ministrator such that these demands can be handled in the negotiation process:
if the user requests for fault tolerant service, the system adds these given con-
straints to negotiation process. By agreeing on such an SLA the user confirms
that his application complies to the functionality restrictions of the particular
checkpointing solution.

A further similarity of all checkpointing solutions which is of importance for
the scheduling component is the fact that the completion of applications is
delayed.

• Impact on performance of application: Some checkpointing solutions vir-
tualize the entire system environment of a running application. Even if this
virtualization is highly optimized and not compute intensive, it has impact
on the overall performance of the compute node. Performance evaluations
on an existing checkpoint solution revealed a slowdown of approximately
1 percent. This value may differ for other checkpointing solutions.

• Additional effort for checkpointing operation: The size of a checkpoint
more or less equals the size of main memory consumed by the checkpointed
application. In case of parallel applications, each node in the partition is
checkpointed, thus increasing the total size of the checkpoint dataset. The
compressibility of the checkpoint dataset is highly application dependent.
Checkpoints of most tested applications were poorly compressible, not
worth additional delay until resume of the application.

The time for the pure checkpointing operation depends on the time re-
quired for dumping the memory allocated by the application on a node.
In parallel applications this operation is executed on all nodes in parallel.
However, here the particular checkpoint datasets have to be saved to a
network file system, which may be a bottleneck. Some systems provide
the option of first saving the checkpoint to a local volume, then copying
it to a central network place at a later time. This way, the checkpointed
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application can resume earlier. However, network and disk utilization may
slowdown the application.

At negotiation time the resource management system does not have any
knowledge about the actual future memory usage of the application. Hence,
the system has to calculate using the worst case where the application con-
sumes all available main memory. This parameter has been either specified
by the requesting customer in the negotiation process, or the system has
to calculate with the amount of actually available main memory on the
compute nodes.

Tests performed on checkpointing performance revealed a linear relation-
ship between consumed main memory and the checkpointing time for a
single node. In addition, the checkpointing time of parallel application
increased linear to the number of nodes used for parallel execution.

The factors for delay caused by performance degradation, per node check-
pointing, and multi-node checkpointing are system specific. Parameters impact-
ing this factor are manifold, e. g. processor performance, type and performance
of network interconnect, or performance of network storage. The administrator
has to test the impact of checkpointing on the deployed system, adjusting the
parameters in RMS configuration.

Having these parameters set the new execution time of job i can be computed
as:

t̂i = fslowti (3.3)

with fslow as slowdown of job execution due to the checkpointing environ-
ment, ti as original execution time of the application (as specified by the user).

In the case that the checkpoint system checkpoints a parallel application
sequentially node by node, the time of a single checkpoint operation for job i

can be defined as:

t
cp
i = |Pi| t

cpnode
m + tsnapshot

s (3.4)

with tcpnode as execution time of a checkpoint on a single compute node with
m main memory, and tsnapshot

s as time used for snapshoting the storage data
of size s.

In the case of using MPI, this only covers the checkpointing of all running
MPI instances of an MPI application. In fact, also the master MPI process (e. g.
mpimon of Scali MPI Connect software) needs to be checkpointed. Since the
size of this process is very small, the effort can be neglected compared to the
effort of checkpointing large compute instances.

Depending on the selected MPI flavor and checkpointing system, the value of
t
cp
i can be significantly smaller. IBM Metacluster generates a checkpoint of all
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MPI instances in parallel, then copying in parallel the checkpoint information
to a network filesystem location. This operation can be further accelerated by
using the background transfer capabilities. Here, Metacluster checkpoints all
MPI instances of an application in parallel, then directly resuming the execution
of the application. The transfer of the checkpoint datasets of the MPI instances
is then performed while the application is already running again. This way, the
checkpoint of a parallel application running on multiple nodes converges the
checkpoint effort for a single node application.

However, this performance improvement has two negative side effects. Firstly,
the background transport of the checkpoint datasets consumes processor per-
formance as well as network bandwidth. This may impact the performance of
the running application, increasing the slowdown factor caused by the check-
pointing environment or impacting the comparability of the compute results.
Secondly, the determination of data consistency is significantly more difficult
for the RMS, since the checkpoint subsystem returns the state successful di-
rectly after all MPI instances have been checkpointed. This way, the RMS is
not directly informed if failures during the transfer of the checkpoint parts occur
(e. g. due to insufficient disk capacity for storing all checkpoint parts, so that
the checkpoint dataset does not contain the checkpoints of all MPI instances).
In this case the RMS has to manually validate the old checkpoint dataset before
generating a new one, respectively before restarting the application in case of a
resource outage.

3.4.3 Overhead caused by Migration

In the case of resource outages, a fault tolerant resource management system
should restart the job from the latest checkpointed state. For this, the check-
point dataset has to be transferred to the particular target host(s).

As long as fault tolerance is provided on the intra-cluster scope, i. e. the
cluster may only use its internal resources for resuming the job, the costs of
dataset migration can be omitted. This is due to the fact that cluster systems
are usually operating with a shared network filesystem, so that a checkpoint
dataset is easily available on each cluster node.

If migrating the checkpoint dataset over the border of a cluster system, there
usually is no network filesystem shared with the source cluster system. There-
fore the checkpoint dataset has to be transferred over the network, using either
standard data transfer mechanisms (e. g. file transfer protocol (FTP) or secure
data copy (SCP)) or other network transport mechanisms (e. g. data transmis-
sion protocols of Grid middleware). Since regular public network connections
are used in this context, the bandwidth between source and target cluster system
is the limiting factor.
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The time required for the migration process can be defined as:

t
migr
i =

s
cp
i

fbw
A,B

(3.5)

with s
cp
i as size of checkpoint dataset of job i to be migrated and fbw

A,B as
bandwidth between cluster systems A and B.

Due to the general lack of network bandwidth reservation mechanisms in
regular networks, the actual bandwidth available at migration time is hard to
predict. Especially if migrating over wide area network connections (e. g. by
migrating over the Grid) the bandwidth is close to unpredictable. First this
is due to the fact that source and target clusters may be even on different
continents, having slow, instable, or congested network segments between them.
Secondly, the target resource is unknown at job start, because the RMS locates
suitable target resources within the Grid only in case of resource outages.

The measurement of network connections within the Grid as well as the reser-
vation of network bandwidth within the Grid are topic of ongoing research (e. g.
within the Network Measurements Working Group (NM-WG) of the GGF [75]).
Having such mechanisms available, network bandwidth as well as resources for
migration could be reserved at start time, such that this would result in an
increased service quality level for the running application.

Without such mechanisms the bandwidth on communication interconnects
has to be estimated. It has to be differentiated between local area networks
(i. e. connecting other clusters within the local domain) and wide are networks
(i. e. migration to remote Grid resources).

3.4.4 Overhead caused by Restart

By providing fault tolerance service to a running application, the resource man-
agement system creates checkpoints in well defined periodic intervals. In case
of a resource outage, the latest checkpoint dataset is used for restarting the
application.

Such a restart implies that all computational results between the moment
of the resource outage and the latest checkpoint are lost. At worst case, the
resource outage occurs shortly before the new checkpoint or even during the
generation of a new checkpoint, so that an entire computation interval is lost
and has to be repeated.

The length of a compute interval of job i can be defined as:

t
compint
i =

t̂i

n
cp
i + 1

(3.6)
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with n
cp
i as the number of planned checkpoints for job i. If n

cp
i equals to

zero (i. e. no checkpoints are planned) the entire application has to be restarted
from scratch.

3.4.5 Determining the Minimum Slot

If the RMS analyzes the schedule to find free slots for computing the schedule,
it does not scan for slots which are large enough to compute the entire job
including possible restarts. The RMS assumes that the job execution will be
successful, taking the resource outage as an unlikely event. Therefore it only
scans for slots which are large enough to compute the job and to execute all
regular fault tolerance mechanisms:

tminslot
i = tinitnew

i + t̂i + n
cp
i t

cp
i + tdeinit

i (3.7)

with n
cp
i as the number of planned checkpoints on this job i.

3.4.6 Determining the Checkpoint Frequency

The definitions of t
compint
i and tminslot

i underlined the importance of the check-
pointing frequency. The selection is a trade-off between overhead in checkpoint-
ing and overhead in restarting. If no resource outages occur, a long checkpoint-
ing interval is beneficial since resources are not used for generating checkpoints,
but for valuable computations. Moreover the satisfaction of the customer is
higher since he gets his results as early as possible. In contrast, in case of
failures a small interval prevents repeating large parts of the computation.

In case of deadline bound jobs, the resource management system has to ensure
an appropriate time buffer for allowing the system to repeat the compute interval
which was affected by the resource outage. Reserving buffer space for one restart
implies that the computation may be interrupted once during the application
runtime. The number of failing nodes during this outage does not matter, since
the time for repeating the computation of the last interval does not depend on
the number of failing nodes.

If the negotiation included the handling of multiple resource outages, the
buffer space available for restart has to be increased accordingly. In case the
number of restarts has not been specified, the system has to use a default value
coming from fixed configuration or long-term experience.

Concluding, the total overhead for restart results in:

t
jobmax
i = t̂i + n

cp
i t

cp
i + nromax

i (tmigr
i + t

compint
i ) (3.8)

with nromax
i as the maximum number of covered resource outage events al-

lowed for job i. Here, we assume the worst-case, where the resource outage



3.4 Timing Aspects of Runtime Phases 43

happened just in the moment of the next checkpoint execution, making the
re-computation of the entire interval t

compint
i necessary.

The determination of the checkpoint frequency depends on multiple factors:

• Minimum checkpoint frequency f
cpmin
i of job i is defined by the time span

available from start date until deadline as well as the maximum number
of covered resource outage events. The frequency has to be chosen high
enough to keep the t

compint
i term small enough to match with the given

deadline. If the system would decrease the number beyond that point,
the worst case finishing time (i. e. assuming that the maximum number of
covered resource outages take effect) would exceed the given deadline.

• Maximum checkpoint frequency f
cpmax
i of job i is defined analogously.

Even if t
compint
i is reduced by increasing the checkpoint frequency, the

term n
cp
i t

cp
i increases. The maximum frequency is the point where the

time span available from start date until deadline as well as the maximum
number of covered resource outage events.

However, the checkpointing frequency does not solely depend on the time
until the given deadline. Also the length of the free slot within the schedule has
to be regarded.

On scheduling time, the RMS scans the schedule for a free timeslot for the job
in question. This slot has to be large enough so that the job can be checkpointed
at least often enough, so that it can finish before the deadline even in worst case
of failures:

f
cpmin
i 6 f

cpact
i (3.9)

with f
cpact
i as the actually chosen checkpointing frequency at runtime of job

i.
Analogously there is no point in increasing the checkpoint frequency beyond

the point, where the slot is no longer large enough to compute it before the dead-
line even without resource outages occurring, which is denoted as f

cpslotmax
i .

These constraint can be defined as

f
cpact
i 6 min(fcpmax

i , fcpslotmax
i ) (3.10)

These constraints combine to:

f
cpmin
i 6 f

cpact
i 6 min(fcpmax

i , fcpslotmax
i ) (3.11)

Since the provider is interested in a high utilization of his cluster machines,
he will presumably tend to decrease the checkpointing frequency as much as
possible. This way, a smallest possible fraction of compute power is used for fault
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Figure 3.2: Impact of Checkpoint Frequency on Runtime

tolerance purposes, resulting in more available space for paid job computation.
Depending on the different levels of guarantees described in section 3.2.2, the
provider will limit his efforts as much as possible.

By negotiating on a given number of resource failures that should be handled,
the resource management system is able to decide on a minimum checkpoint-
ing frequency. When negotiating on full service, the resource owner is able to
configure the maximum number of resource failures he wants to cover in his
calculation, thus impacting the selection of checkpointing frequency here.

The requesting customer is also able to negotiate on a given checkpointing
frequency, despite of the chosen level of guarantee. According to the system
utilization known at negotiation time, the resource management can scan the
schedule looking for free slots able to perform the requested checkpointing fre-
quency. If such a slot can be found, the negotiation may be accepted. If no
such slot is available or the selected checkpointing frequency violates the listed
constraints, the negotiation request has to be rejected.

The impact of the chosen checkpoint frequency on the runtime of a job ac-
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cording to equation 3.8 is depicted in figure 3.2. It assumes a job having a total
runtime of one hour and a duration of each checkpoint of two minutes. The
three curves represent the number of assumed resource outages.

The curve depicting the case of no resource outages occurring has its min-
imum for n

cp
i = 0, having no checkpoints generated. Since each checkpoint

generation delays the completion of the job, each generated checkpoint is un-
necessary overhead in the case of no resource outages. If no resource outages are
expected or if a job restart is acceptable, the best option is to execute without
checkpoints.

In the case of resource outages occurring, things look different. An increasing
number of checkpoints decreases the amount of lost compute power in case of
resource outages, since the system is able to resume from the latest checkpointed
state. The curves have their minima at the point of optimal trade-off between
lost computation power and additional effort for executing the checkpoint op-
eration. Moreover this number increases on increasing the number of expected
outages. Where it is optimal to generate approximately four checkpoints in the
case of one expected outage, it is approximately 7 in the case of two outages.

The minimum can be determined by differentiating equation 3.8 on the num-
ber of checkpoints, omitting the time required for job migration, since we assume
a local restart. We have t̂i as runtime of the job, t

cp
i as time required for a sin-

gle checkpointing operation, and nromax
i as the maximum number of expected

resource outages.
We know: t̂i > t

cp
i > 0. Since nromax

i = 0 is trivial, we furthermore assume
nromax

i > 0.

f(x) = t̂i + xt
cp
i +

nromax
i t̂i

x + 1
(3.12)

f ′(x) = t
cp
i −

nromax
i t̂i

(x + 1)2
(3.13)

f ′′(x) = nromax
i t̂i

2x + 2

(x + 1)4
(3.14)

Calculating the root of the first differentiation as mandatory prerequisite for
local extrema results in:

f ′(x) = 0 (3.15)

⇒ x1/2 = −1±
√

nromax
i t̂i/t

cp
i (3.16)

Taking the example figure above, setting t̂i = 3600, nromax
i = 2, and t

cp
i =

120, this computes to: x1 = −1 +
√

2 · 3600/120 = −1 +
√

60 ≈ 6, 745967 und
x2 = −1 −

√
60 = −8, 745967.
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For ensuring that x1 is a local minimum, we finally calculate the second
differentiations.

f ′′(x1) = nromax
i t̂i

−2 + 2
√

nromax
i t̂i/t

cp
i

(nromax
i t̂i/t

cp
i )2

(3.17)

f ′′(x2) = nromax
i t̂i

−2 − 2
√

nromax
i t̂i/t

cp
i

(nromax
i t̂i/t

cp
i )2

(3.18)

Due to t̂i > t
cp
i it follows nromax

i t̂i/t
cp
i > 1. Therefore f ′′(x1) > 0 und

f ′′(x2) < 0, resulting in x1 = −1 +

√
nromax

i t̂i/t
cp
i as local minimum, and x2

as local maximum.
Obviously x2 is not a valid solution, because it is impossible to execute a

negative number of checkpoints. Therefore the rounded up value of x1 represents
the optimal number of checkpoints for this example: dx1e = 7

Calculating the total runtime when executing seven checkpoints computes to:
f(7) = t̂i + xt

cp
i +

nromax
i t̂i

x+1
= 3600 + 7 · 120 + 2·3600

8
= 5340.

If generating seven checkpoints, the job is running 5340 seconds (1 hour and 29
minutes) instead of only one hour, but being interrupted two times by resource
outages.

3.5 Fault Tolerance with intra-cluster scope

Fault tolerance is a crucial building block for realizing an SLA-aware resource
management system, which does not only negotiate on SLAs, but is also able
to adhere to agreed deadline in case of resource outages. Beside integrating
fault tolerance mechanisms into the RMS, also the system management (i. e.
the system scheduler) has to support these mechanisms.

In this section the impact of providing fault tolerance to the system scheduler
will be outlined. The system will only be able to use its internal resources
to compensate resource failures. This will be enhanced in the following by
migration techniques to remote resource, e. g. resources on different clusters
within the same administrative domain or even resources somewhere in the
Grid.

The scheduler of a resource management system is invoked each time when
scheduling decision has to be taken or an event occurs, which impacts one of
the jobs within the schedule.

• New request: If a new request enters the system the scheduling component
is queried. It has to decide if the new job can be accepted or has to be
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rejected. This decision has to be taken in the context of the current
schedule as well as the current system condition.

• Job finishes: After successful completion, a job terminates successfully.
In this case the resource management has to start the post-runtime pro-
cedures and finally free the allocated resources for new jobs. By using
planning based resource management, each user has to estimate the run-
time of his jobs. If the job terminates before the estimates runtime (i. e.
the user overestimated the runtime), the resources are released earlier than
expected. This results in unexpected gaps within the schedule. The RMS
may assign these gaps to other waiting jobs.

• Exception handling: The RMS has to ensure the adherence with given
SLAs at runtime. In case of resource outages or non-compliant perfor-
mance characteristics, the RMS first has to identify the jobs affected by
this exception. Then the scheduler has to decide on using its mechanisms
of fault tolerance to ensure the SLA-compliance. In this context, the RMS
may decide to migrate the job to remote resources.

Data: R as set of all running jobs
Data: S as set of all accepted SLA jobs
Data: P as set of all problematic jobs, e. g. affected by outages or

non-SLA-compliant performance characteristics, ordered by type,
value descending

Data: B as set of all best-effort jobs
Data: N as set of all new jobs requests, ordered by value descending
Result: SchedNew as new schedule
Result: P as set of all problematic jobs
Result: N as set of all unaccepted new job requests

Figure 3.3: Parameters for Scheduling Algorithm

Beside these events, there are also two further major events within the RMS.
However, these events do not impact the scheduling.

• Job starts: A planning based resource management system assigns a start
time to all jobs within the system. If such a start time is reached, the
RMS initiates the pre-runtime phase, following by the execution of the
application on the nodes of the assigned cluster partition.

• Runtime exceeds: If the user underestimated the runtime of his job, the
RMS will terminate the job at a given point of time. Depending on the
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system policy, the job is either terminated or suspended. The system may
also decide on runtime prolongation of the job, if this can be realized in
the situation of the current system schedule.

3.5.1 Basic SLA-aware Scheduling

This subsection focuses on realizing SLA-aware scheduling. The parameters of
the algorithm are depicted in Fig. 3.3.

3.5.1.1 Input Parameters

This algorithm has the following sets as input parameters:

• Set of all running jobs (R): This first set of jobs contains all jobs which
are currently running on the machine. These jobs can be both SLA- and
non-SLA-bound.

• Set of all SLA-bound jobs (S): This set encompasses all jobs, where the
RMS agreed on some kind of SLA. This can be either the agreement to
provided resources at a specific time (i. e. reservations) or to complete the
job until a given time (i. e. deadline). Additionally SLAs may contain
statements regarding performance characteristics of the resources. Jobs in
S have been agreed, but are not running yet. Therefore:

R ∩ S = ∅

• Set of all best-effort jobs (B): The RMS does not only execute jobs bound
to an SLA, it also executes standard best-effort jobs. In contrast to SLA-
bound jobs, the RMS did not agree on any guarantees for execution of
these jobs. Therefore these jobs may be aborted or delayed arbitrarily.
Similar to S, jobs in B have been accepted, but are not running. Therefore:

R ∩ B = ∅

• Set of all problematic jobs (P): In case of resource outages or other un-
foreseen problems within the cluster, this may affect the fulfillment of jobs
scheduled to execute on these resources. These jobs are elements of P. If a
SLA-violation of a job in P is imminent, the RMS has to react accordingly.
P may contain jobs from R, S, and B, so that

P ⊆ R ∪ S ∪ B
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• Set of all new job requests (N): This set holds all requests for new jobs
which have been submitted to the system. These requests can be both
SLA bound and best-effort. The RMS tries to integrate the new jobs into
the schedule. In case of SLA-bound jobs it has to verify if it is possible to
fulfill all requirements of the SLA. If the RMS succeeds in this, it removes
the job from this set.

The value of a job does not necessarily correspond to the price that the cus-
tomer has to pay in case of SLA fulfillment or the penalty fee that the provider
has to bay in case of SLA-violation. The value may also be determined by
internal policy decisions of the resource owner, who may prioritize on target-
ing specific customer segments (i. e. jobs from VIP customers would be of higher
value than jobs from normal customers) or utilization of the machine (e. g. value
of job depends to the layout of the job, perhaps preferring long running sequen-
tial jobs, or massively parallel jobs).

It is essential that the elements of P are sorted in following order: R first,
S second, B third. The value has to be used as secondary sorting key. This
way the scheduler first tries to solve the problems of already running jobs, then
taking all remaining resources for handling the problems of jobs from set S.

Each of these sets is sorted by the value of the job for the resource operator.
Sorting the subsets of P following the value criterion guarantees that available
resources are first used for handling the problems of valuable jobs.

Also the set N containing all new job requests has to be sorted according to
their value. Similar the jobs in P, this value does not necessarily represent the
price for SLA-fulfillment, but can represent an arbitrary objective defined in the
internal system policies.

The scheduler is working on these input sets and tries to generate a new valid
schedule for the cluster machine. These input parameters are identical for all
following scheduling algorithms.

A job can only be element of one of the sets R, S, B, or N, so that:

R ∩ S ∩ B ∩N = ∅

Additionally, jobs can be elements of set P. Jobs in N are never elements of P,
since these jobs are only in state of negotiation (ref. to Table 3.1). Therefore:

N ∩ P = ∅

3.5.1.2 Output Parameters

Beside these input parameters, the scheduling algorithms return the result of
the scheduling operation using the following return sets:
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begin1

SchedNew = ∅2

SRes = {j ∈ S|j is reservation}3

S¬Res = S \ SRes4

NSLA,Res = {j ∈ N|j is bound to SLA, j is reservation}5

NSLA,¬Res = {j ∈ N|j is bound to SLA, j is not reservation}6

N¬SLA = N \ (NSLA,Res ∪NSLA,¬Res)7

Phorizon = {j ∈ P|j in problem horizon}8

forall j in (R ∪ SRes) \ Phorizon do9

insert j into schedule SchedNew10

forall j in Phorizon do11

if j is SLA-bound then12

if not conflict(j,SchedNew,S¬Res \ Phorizon) then13

insert j into schedule SchedNew14

remove j from P15

forall j in NSLA,Res do16

if not conflict(j,SchedNew,S¬Res) then17

insert j into schedule SchedNew18

remove j from N19

forall j in S¬Res \ Phorizon do20

insert j into schedule SchedNew21

forall j in NSLA,¬Res do22

if not conflict(j,SchedNew) then23

insert j into schedule SchedNew24

remove j from N25

forall j in B ∪ N¬SLA do26

insert j into schedule SchedNew27

remove j from N28

end29

Figure 3.4: Algorithm: Basic SLA Scheduling
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• The new system schedule (SchedNew): The main task of each scheduling
algorithm is to assign available system resources to waiting jobs. In the
case of a planning based RMS, the scheduler assigns start times to all
waiting jobs. However, in the case of non-reservations, these start times
may be subject to change.

• Problematic Jobs (P): The scheduler tried to care about problematic jobs
at runtime. Now, this set contains all the jobs where the scheduler was
not able or did not try to find such a solution.

A schedule may contain thousands of jobs, utilizing the machine for weeks
or months. Within this time frame it is most likely that a failed node will
be repaired and reintegrated into the cluster system. Therefore it is not
necessary that the scheduler handles all jobs in P. Instead, the scheduler
only works on jobs within a given horizon. This horizon has to be defined
by the resource operator and should default to the regular time span that
is required to fix problems on cluster nodes.

– If the affected job is not yet in the problem horizon of the scheduler,
it skipped solving the problem (e. g. resource failed now, but job is
about to start in three weeks)

– If the affected job is in the problem horizon, but the scheduler was un-
able to solve the problem (e. g. failing resource, but no spare resource
available for resuming the job).

Jobs remaining in P may cause an SLA-violation, if the scheduler is not
able to solve the problem until the actual start of the job. If the scheduler
decided on displacing an other job for executing a job in P, this displaced
job is in the result set P of the scheduler. Hence, it is possible that P

contains other (and even more) jobs as at start of the scheduler.

• The set of all unaccepted new job requests (N): The scheduler tries to
find resources for all new job requests. In the case of SLA-bound jobs,
the scheduler may decide to reject such a new job request, since it was
unable to find system resources so that the adherence of the SLA could
be assured. These rejected job requests are returned in the return set N.

3.5.1.3 Initialization

A basic algorithm for scheduling jobs with SLAs is depicted in Fig. 3.4. This
scheduler is utilizing the system fault tolerance capabilities only for resuming
SLA-bound jobs in case of exceptional situations.

In a first step this algorithm initializes the result schedule (SchedNew = ∅)
and generates subsets of the input sets S and N. This is necessary, since the
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algorithm operates different on the subsets of these sets. It is presumed that
the order of the elements in the sets is preserved in the generated subsets. The
subset Phorizon defines which problematic jobs have to be handled at this point
of time. The subset will be described in the following.

At this point of time the schedule is empty. The scheduler therefore is able
to take the entire (remaining) machine for placing the jobs.

3.5.1.4 Handling of Running and SLA-Reservation Jobs

Currently running jobs have the highest priority, because these jobs are cur-
rently consuming compute power. If the scheduler decides on not continuing
the execution, these jobs are either aborted or the system has to use its mech-
anisms on checkpointing, so that the job can be resumed at a later point of
time.

∧ /∈ P ∈ P running SLA

∈ R no problems if SLA-bound, problem on yes both
SLA-compliance, but running

∈ S no problems future SLA-compliant execution no yes
currently not ensured

∈ B no problems assigned resources for execution no no
currently not available

∈ N - - no -

Table 3.1: Sets in Scheduling Algorithm

The same holds valid for all SLA-bound jobs connected to fixed reservations.
It is vital that these reservations keep stick to their original places in the sched-
ule, because these jobs may be part of a higher level workflow. If the scheduler
would decide on relocating these reservations, this may endanger the success of
the overall workflow. Therefore the user negotiated on this very time span, so
that the scheduler should try to provide resources as agreed.

If a job in R or SRes is element of P, this implies that there is some kind of
problem regarding the fulfillment of the SLA.

• In case of jobs in R, this implies that this problem does not affect the
actual execution of the job (since the job is still running), but the execution
violates terms of the SLA. In the case that a running job is affected by a
resource outage that prevents further execution, it is removed from R and
added to S or B (depending if it is SLA-bound or not) and P.
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• If the job is in SRes, the job is currently not running, but its future SLA-
compliant execution is endangered.

In both cases, the job is not directly added to the new schedule, but subject
to the following problem handling procedure.

The first action on the result schedule SchedNew is to insert all currently
running jobs as well as all scheduled SLA-bound reservation jobs. For this, the
scheduler takes all jobs in the set R and SRes and adds them to SchedNew, if
the job is not element of P. This step is essential, since it ensures the completion
of all running jobs as formerly planned and agreed within the SLA. The jobs of
R and SRes in P are not directly added to the schedule, since the RMS has to
react according to the problem occurred.

3.5.1.5 Handling of Problematic Jobs

In the second phase the scheduler has to work on this set P. Due to the described
sorting of P this set first holds elements of R, followed by elements from S. Each
of these subsets is sorted by the value of the job, e. g. represented by the price
for SLA-fulfillment that the customer has to pay. The scheduler now works on
the set P element by element.

If the cluster system is affected by a resource outage, this event will be prop-
agated to the system scheduler. The scheduler will in turn mark the nodes
affected by this resource outage as defect. The administrator may specify that
these resources will not be used within following negotiations (i. e. the capac-
ity of the cluster system is reduced in the succeeding negotiation processes).
However, the cluster system may already have agreed on SLAs, presuming the
availability of all system resources.

As described, a planning based resource management system builds up an
entire system schedule, containing start time and resources for all jobs. Hence,
the scheduler is aware of the impact that a resource outage has on the total
system environment. Since every job is directly assigned to actual resources,
the system knows which jobs are affected by the resource outage. All these jobs
are automatically added to P.

The scheduler will then only handle those jobs in P whose runtime is within
the problem horizon. For all other jobs the scheduler assumes that the problem
will be solved and the resource is available again if it comes to job execution. If
the problem can not be solved within the horizon time frame, the administrator
has the option to extend the horizon arbitrarily (e. g. the outage of a fan caused
damage on a motherboard, which first has to be ordered, so that the node is
unavailable for one week).

Depending on their membership in P or S and their particular value, all jobs
within the horizon are now handled by the scheduler. It tries to find resources in
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the new system schedule SchedNew. Since running jobs as well as SLA-bound
jobs representing reservations have already been placed to SchedNew, the newly
added job from P does not impact any time critical job.

Before placing the job from P to the new schedule SchedNew, the scheduler
checks for conflicts with requirements of the SLA of this job. Only if all require-
ments are fulfilled (e. g. deadlines specified within the SLA can be met), the job
may be added to SchedNew.

In a second validation the scheduler checks if the newly added job impacts
the placement of jobs in S¬Res to the schedule. This placement will be the next
step in this algorithm, directly following this handling of problematic jobs. The
RMS did agree on SLAs for all these jobs in S¬Res. It has to be avoided that
the handling of problematic jobs affected by an outage again affects other jobs.
Therefore the new job may only be placed to the new schedule SchedNew, if
it does not conflict with any other agreed SLA-job from S¬Res. In this context
the system has to verify if deadlines of jobs in S¬Res can still be reached after
placement of the new job in SchedNew, or if specific hardware resources are
still available.

Only in the case where the placement of the new job from P in the new sched-
ule SchedNew neither conflicts with its own SLA, nor with any SLA assigned
to jobs in S¬Res, it may be finally added to the new schedule. In this case, the
job is removed from P, because it is no longer operating on resources which are
affected by the resource outage. In the other case, the job remains in P and the
scheduler continues with the next job found in P.

All jobs remaining in P after this step are critical, because the violation of
their particular SLAs is imminent. For the resource owner this implies that he
is in danger of penalty fees agreed within these SLAs.

3.5.1.6 Handling of SLA-Requests on Reservations

The set N encompasses all new job requests to the resource management sys-
tem. N may contain both SLA-bound jobs and best-effort jobs. In this step
of the algorithm, the scheduler works on all SLA-bound job requests requesting
reservations, which are elements of the subset NSLA,Res. Since SLA-requests
on reservations have a smaller degree of freedom while placing in the schedule,
these jobs need to be handled by the algorithm before other job requests [39].
According to the order of elements in N, the subset is ordered by the value of
the job.

At this point of time the new schedule SchedNew holds all running jobs
(from set R), all agreed SLA-jobs requesting reservations (from set SRes) and all
recovered problematic jobs from P. The remaining space in the schedule now is
used for adding SLA-requests on reservations from NSLA,Res.

The procedure of this step is similar on the previous step on handling prob-
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lematic jobs. Again, the set of requests is iterated request by request. Also the
insertion process is a twin step process:

• Conflicts with SLA of job: Before the job can be placed to the new system
schedule SchedNew it has to be verified that all demands of the SLA-
request can be fulfilled. In particular the reservation has to be realized in
the context of the new schedule.

• Conflicts with jobs from S¬Res: Presuming that all demands of the new
SLA-request can be fulfilled, it still has to be possible to realize all agreed
SLA-jobs in S¬Res. If the addition of the new SLA-request to SchedNew

violates the SLA-compliance of any job in S¬Res, the request may not be
accepted.

If both conflict checks for the new SLA-request are negative i. e. no conflicts
detected), the new job may be accepted. In this case the scheduler removes
the job request from NSLA,Res and adds it to the new schedule. In the other
case, the SLA request remains in NSLA,Res and the algorithm continues with
the next SLA-request in NSLA,Res. All requests remaining in NSLA,Res after
this step have to be rejected.

3.5.1.7 Handling of SLA-Non-Reservation Jobs

In the previous steps of the algorithm the new schedule SchedNew has been filled
with running jobs, SLA-jobs requesting reservations, recovered problematic jobs,
and SLA-requests on reservations.

While adding problematic and new jobs it has been checked that these jobs do
not interfere with already agreed SLA-bound jobs, which do not specify reserva-
tions. Therefore we can presume that the schedule holds sufficient capacity to
realize all jobs remaining. Problematic jobs within the problem horizon Phorizon

do not have to be regarded here, since they have been already inserted during
the second step of the algorithm.

This step now inserts all SLA-jobs of S¬Res \ Phorizon to the new system
schedule SchedNew.

3.5.1.8 Handling of regular SLA-Requests

This step of the algorithm completes the addition of new SLA-jobs to the system
scheduler. Again the jobs within NSLA,¬Res are sorted according to their value,
so that this algorithm first tries to add the most valuable task to the new system
schedule SchedNew.

In contrast to the step on handling SLA-requests on reservations, this step
does not need to care on dependencies with already agreed jobs. This step can
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analyze the current system situation and try to add as much new SLA-requests
as possible.

At each of these iteration the scheduler checks if the new schedule allows an
SLA-compliant placing of the new job. In that case the job can be accepted,
so that the job is removed from N and added to the schedule. SLA-requests
remaining in NSLA,¬Res after this step have to be rejected.

3.5.1.9 Handling of existing and requested Best-Effort Jobs

If accepting best-effort jobs, the resource management system does not promise
on providing any guarantees or service quality levels. In fact, the user is only
provided with resources that are not used by other SLA-bound jobs. Moreover,
the system does not use its mechanisms on fault tolerance to minimize the
impact of resource outages to this kind of jobs. In case of such outages, the
best-effort job is either cancelled or restarted from the very beginning.

Therefore this kind of jobs is added to the new system schedule in the last step
of the algorithm. Here, the scheduler tries to utilize free gaps in the schedule to
place these jobs. If it can not find matching gaps, the best-effort jobs are placed
at the end of the system schedule.

Since a best-effort job can not put any demands on the RMS (e. g. to complete
the job until a given deadline), the scheduler always has the option to put the
best-effort job at the end of the schedule. Hence, requests on new best-effort
jobs are never rejected.

Within the set of the best-effort jobs the scheduler follows the first-come-first-
served (FCFS) policy, so that jobs may be delayed by other SLA jobs, but not
by other best-effort jobs.

3.5.2 SLA-aware Scheduling with Job Suspension

The focal goal of an SLA-aware resource management system is the adherence
with all agreed SLAs. Due to the penalty fee contained in each SLA, resource
outages are potential business risks for the provider. Hence, the resource man-
agement system has to use its mechanisms in such a exceptional situation as
good as possible to minimize the financial impact for the provider.

With the presented algorithm in section 3.5.1 SLA-aware scheduling is intro-
duced into resource management. The RMS is able to cope with exceptional
situation since the scheduler uses available spare resources for handling prob-
lematic jobs within the problem horizon according to agreed SLAs.

It becomes apparent that the amount of available spare resources limits the
options of the resource management system to compensate outages and excep-
tional situations. Given that sufficient suitable spare resources are available,
the system is able to resume all affected jobs from the latest checkpointed state,
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thus guaranteeing the adherence with the agreed SLAs of these jobs. However,
resources in a cluster system are limited and usually already blocked by other
waiting jobs or jobs which are currently in execution. Therefore spare resources
are an exceptionally precious good in outage situations.

Introducing job suspension as means of system management allows to increase
the number of available resources in such a situation. Here, the resource man-
agement system uses its capabilities on checkpointing and restart to stop jobs
which are currently in execution, so that resources used by these jobs are free
for resuming jobs affected by the resource outage.

If looking to the set of running jobs, one can distinguish between two different
types of jobs:

• SLA-bound jobs: this job is bound to an SLA, where the RMS agreed on
providing a specific service level. These jobs can be further classified into:

– jobs bound to a fixed reservation
– jobs not bound to any reservations, but other SLA-attributes (e. g.

the adherence to a deadline or the provision of performance charac-
teristics).

• best-effort jobs: this job is not bound to an SLA, so the RMS did not
contractually agree on providing any services at any quality levels. In par-
ticular, the RMS does not have to ensure the adherence to any deadlines,
nor the fulfillment of reservations, where resources have to be provided
within a given fixed time frame.

These running jobs came to execution, since the scheduler assigned compute
time according to its internal scheduling rules and policies. At the time of jobs
start the scheduler assumed that the entire cluster is available, not anticipating
the occurred resource outage. In the light of the current system situation it may
have been better to postpone the execution of some of these jobs, so that these
resources are available in this moment of fault compensation.

3.5.2.1 Suspension of Best-Effort Jobs

A first step in increasing the amount of spare resources is to use resources blocked
by running best-effort jobs. Since these jobs are not bound to any SLAs, the
RMS does not have to return any results at a specific time.

The easiest solution therefore is to cancel the execution of all best-effort jobs,
if there are problematic jobs that need to be handled. This can be integrated
by modifying the first step of the algorithm: instead of adding all elements of
set R, it only adds those elements j of set R, where j is bound to an SLA (ref.
Figure 3.5).
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begin1

forall j in R \ Phorizon do2

if (B = ∅) or (j is bound to SLA) then3

insert j into schedule SchedNew4

else5

add j to B6

forall j in SRes \ Phorizon do7

insert j into schedule SchedNew8

end9

Figure 3.5: Modified Initial Step in Basic SLA Scheduling Algorithm

Since alls jobs in set B are ordered according to the FCFS model, the cancelled
best-effort jobs would be put back into the common pool of best-effort jobs into
their particular position:

• In case that backfilling mechanisms caused an out-of-order execution of
this job due to a fitting gap within the schedule, the job has to be selected
for backfilling again. Otherwise (i. e. if no matching gap exists in the
schedule which allows an out-of-order execution), the job has to wait until
its regular node assignment time according to the FCFS scheme.

• In case that the job was selected for execution due to its position in the
FCFS scheme, the job remains at this position. Hence, it is first chosen
among all best-effort jobs the next time a resource is available for execution
of best-effort jobs.

After terminating the execution of all currently running best-effort jobs, the
utilization of the machine is lower. Since best-effort jobs are added to the new
schedule SchedNew only in the last step of the algorithm, the newly available
space can be used for scheduling problematic jobs from set P.

Even if this approach improves the level of fault tolerance, it has two major
disadvantages:

• Waste of computational power: Terminating already running jobs does
not only increase the number of spare resources, but also voids all compu-
tational results of the terminated jobs. If thinking of long running applica-
tions, the amount of wasted computational power is significant. Moreover,
the cluster has to repeat the voided computation of the terminated appli-
cations at a later point of time, thus blocking valuable resources.



3.5 Fault Tolerance with intra-cluster scope 59

• Lack of adequacy: Having problematic jobs in B at the start of the algo-
rithm does not necessarily imply that these problems can not be solved
without terminating best-effort jobs. Even if the number of spare resources
is not sufficient for handling all problematic jobs, it may be sufficient to
terminate only a fraction of the currently running best-effort jobs.

The first problem can be solved by utilizing the system’s capabilities on
checkpointing and restart. For this, each best-effort job is started by the re-
source management system as an SLA-bound job that should be regularly check-
pointed. This way the system is able to generate a checkpoint of the running
best-effort application if the scheduler decides on terminating it. The system
saves the checkpoint dataset to the internal checkpoint repository. As soon as
the best-effort job comes to execution again, it does not restart from scratch,
but resumes its computation from this checkpointed state.

If adding the checkpointed and terminated job to the schedule, the system
adjusts the remaining runtime of the job:

t
remaining
i = t

remaining
i − (Tcheckpoint

i − Tstart
i )

The remaining runtime of the job results from the formerly remaining runtime
of the job minus the already computed runtime, which is the time of the latest
checkpoint T

checkpoint
i minus the time of job start Tstart

i .
At job start, the remaining jobtime t

remaining
i was initialized by the run-

time of the job in the checkpoint environment (t̂i). By subtracting the already
computed time from the total compute time, the scheduler assigns a smaller
segment to the rescheduled best-effort job. Hence, the job has a higher chance
to fit into gaps within the schedule.

For the second problem, the scheduler has to evaluate the impact of a running
best-effort job on the total schedule. Here it is not sufficient to determine the
area in the schedule that is missing for successfully handling a problematic job,
because an arbitrary number of jobs may be scheduled between the problematic
job to be handled and the running best-effort job. Killing a best-effort job
therefore would not automatically imply having corresponding spare resources
to place the problematic job.

The problem can be solved by iteratively evaluating the impact of each best-
effort job on the schedule. In this context we have to introduce the term of the
area of a job. We define

ai = |Pi| ∗ t̂i

as the number of resources used by job i multiplied by the compute time.
Analogously we define aremain

i as the number of resources used multiplied by
the remaining compute time of the job.
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Figure 3.6: Best Effort Jobs in Schedule

Figure 3.6 depicts the impact of taking the remaining job area as selection
criterion for job suspension. We have a starting situation here, where all running
jobs are placed in the schedule. In this example, all running jobs are best-effort.
If the system would select the bottom job, it would remove a large job from the
system, but would not free significant amounts of resources, because most of
the computation time is already passed. Only the grey colored part of the job
would be available for other jobs.

It is not sufficient to match the area of jobs in P with the area of running best-
effort jobs for identifying potential suspension candidates, because the algorithm
of section 3.5.1 places jobs in P according to their value. This results in a higher
probability for high value job in P to be placed than low value jobs. By removing
best-effort jobs, the freed place in the schedule could be allocated by higher value
jobs from P.

The idea of this algorithm is first remove jobs with a large remaining areas
from the schedule. For this, it generates a copy of the current schedule (con-
taining all running jobs, as depicted above) and start removing with the job
having the largest remaining area. It continues removing the next largest, until
50 percent of the total remaining best-effort job area has been removed. Now
it uses this copy for executing the scheduling algorithm presented in section
3.5.1. If this algorithm succeeds in placing all jobs from P, this implies that it
is sufficient to remove 50 percent of the remaining best-effort area. In the other
case, 50 percent is not sufficient.

In the second iteration the algorithm follows the idea of binary search, taking
only 25 percent (if all jobs from P could be placed) or 75 percent of the total
remaining best-effort area. The algorithm either terminates on identifying the
sufficient area or by detecting that even stopping all running best-effort jobs is
not sufficient for placing all jobs in P.

After this brief outline, the algorithm is now described in more detail. The
scheduler first sorts the set of running best-effort jobs by their remaining area
aremain

i . It furthermore initializes two variables named upperbound and
lowerbound to 100 and 0. The scheduler now generates a subset BE of the
running best-effort jobs, containing the first jobs that have a total remaining
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area of 50 percent (i. e. lowerbound+upperbound
2

) of all running best-effort jobs.
This subset is now removed from the set R and added to set B.

Having these sets modified, the previous SLA-scheduling algorithm is executed
again. Depending on the result set P this algorithm may have the following
result:

• P 6= ∅: The scheduler is not able to place all problematic jobs with
lowerbound+upperbound

2
percent of all remaining area of running best-

effort jobs. Therefore set lowerbound = lowerbound+upperbound
2

.

• P = ∅: The scheduler is able to place all problematic jobs, so that no
problematic jobs remain. Even if the goal of SLA-compliance is achieved
for all planned jobs, the scheduler might have terminated too many best-
effort jobs. Therefore set upperbound = lowerbound+upperbound

2
.

With a new value for upperbound or lowerbound the scheduler again gener-
ates a subset BE or all running best-effort jobs and executes the SLA-scheduling
algorithm.

This procedure terminates if lowerbound = upperbound. If the set P still
is not empty, the scheduler is not able to handle all problematic jobs even if it
terminates all running best-effort jobs. In the case that P is empty, the scheduler
identified the set of running best-effort jobs that need to be terminated, so that
all problematic jobs are handled and SLA-compliance is ensured.

3.5.2.2 Suspension of SLA-bound Jobs

If suspending all running best-effort jobs is not sufficient for compensating the
SLA-related consequences of a resource outage, the system has to take further
actions to increase its level of fault tolerance. The most obvious approach is
to enhance the mechanism of suspending running best-effort jobs also to SLA-
bound jobs.

As stated, these SLA-bound can be distinguished depending if they include
a fixed reservation or not. In the first case, the resource management system
must not suspend the job, because this may impact a higher level workflow. If
the workflow engine has to ensure that tasks in different branches of a workflow
execute in parallel, it is realized by means of reservations on local RMS. If the
RMS would decide on suspending such a reservation job, this also impacts the
tasks in the other branches, because the synchronicity is no longer ensured.

In contrast it is uncritical to suspend non-reservation jobs, e. g. demanding for
a given deadline. Therefore the scheduler is able to apply the same mechanism
of job suspension as in the case of best-effort jobs:
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• Checkpoint: as soon as the scheduler decides on terminating a running
SLA-bound job, it creates a checkpoint of this job and saves it to the
internal checkpoint repository.

• Reschedule: the suspended SLA-bound job is then added to the new
Schedule, such that all terms of the SLA are fulfilled, e. g. that the dead-
line is met. On adding the job to the schedule, it is only added using the
remaining computation time.

• Resume: as soon as the job is executed again on a compute resource, the
job is resumed from the latest checkpointed state.

The suspension of SLA-bound jobs is initiated in the case that suspension
of best-effort jobs is not sufficient for guaranteeing the SLA adherence of all
problematic jobs. The mechanism is similar, again using the remaining area of
the job as deciding factor for job selection.

The scheduler first sets lowerbound = 0 and upperbound = 100 and gen-
erates a subset SJ encompassing lowerbound+upperbound

2
percent of the running

SLA-bound jobs from R. This subset SJ is then removed from R.
It has to be ensured that the job will be executed in a way that the SLA

is fulfilled. Therefore the scheduler adds the elements of SJ to the top of S, a
set holding already agreed SLA-jobs. Thanks to their position in S, the newly
added jobs are handled first by the scheduler. This way it is ensured that the
suspended SLA-jobs come to execution first among all the agreed SLA jobs.
Moreover the conflict detection mechanisms in the SLA algorithm ensure that
their SLA-compliance is regarded while handling problematic jobs.

Having modified these sets, the SLA algorithm is now executed. According to
the number of elements in the result set P, the lowerbound and upperbound

variables are now adjusted, the set SJ regenerated and the algorithm executed
again.

Corresponding to the suspension of best-effort jobs, this suspension procedure
ends if lowerbound = upperbound. If the return set P is empty, the set of
SLA-jobs has been identified that allows a successful handling of all problematic
jobs. If P is not empty, even suspending SLA-bound jobs is not sufficient for
handling all problematic jobs.

3.5.3 Partial Execution

Unfortunately users usually do not align their computational demands to the
resource utilization of existing cluster machines. Therefore the resource manage-
ment system of such a cluster machine receives uncoordinated resource requests,
and assigns them to the available resources. In consequence to this lack of co-
ordination the jobs do not fit optimal, so that the scheduler is forced to leave



3.5 Fault Tolerance with intra-cluster scope 63

gaps in the generated system schedule. These gaps have the effect that some
compute resources of the cluster machine remain idle over the time span of the
gap.

Scheduling techniques like backfilling have been introduced to deal with this
problem. Here, the scheduler analyzes the gap and tries to find matching jobs
somewhere in the schedule that would fit into this gap. If such a request is
found, the scheduler moves the request to the particular gap. Backfilling is an
important instrument in increasing the system utilization and numerous varia-
tions exist, each focusing on a specific administrative goal. However, backfilling
has its limitations on improving the schedule quality if available requests do not
match with existing gaps.

With checkpointing and restart the SLA-aware resource management system
has a powerful instrument, which can be also applied to this problem domain.
The basic idea is to use existing gaps in the schedule for partial job execution.
In contrast to backfilling, this method does not depend that the runtime of
potential jobs matches with the length of a gap. The only constraint is the
number of nodes that the job requests.

3.5.3.1 Increasing Level of Fault Tolerance

Partial execution can also be used for increasing the level of fault tolerance. By
suspending running best-effort and SLA-bound jobs, the resource management
system did its best to handle all problematic jobs. If this is not yet sufficient,
the system may decide to use the idle computational power of existing gaps to
partially execute problematic jobs, thus trying to meet with SLAs.

Obviously partial execution is not applicable where fixed reservations have to
be provided. Due to potential dependencies to other tasks these jobs have to be
executed without any interruptions.

For enhancing the handling of problematic jobs in P, the partial execution has
to be integrated into the SLA-scheduling algorithm. Instead of placing the job
at the earliest possible place, where resources comply to the requirements of the
SLA and where the entire job can be executed, the algorithm is also searching
of appropriate gaps. This is the case if:

• the gap has at least as much resources as the job requests

• the gap is as least long enough for allowing the job to restart and check-
point

• allocating the gap for partial execution of this job does not conflict SLA-
adherence of any job in S¬Res \ Phorizon

If a gap complies to these requirements, the algorithm selects it for partial
execution of the job. It then calculates the effective execution time of the job
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within this gap (i. e. length of the gap minus time required for restart and
checkpoint) and subtracts it from the remaining execution time of the job in
question.

The algorithm then continues searching for further gaps, starting at the end
time of the used gap. The search for gaps either ends if the entire job was
successfully placed in existing gaps or the remainder of the job could be placed
regularly at the end of the new schedule.

3.5.3.2 Increasing Utilization

The instrument of partial execution is not only useful for increasing the level of
fault tolerance of a cluster system. It can also be used for increasing the overall
utilization, applying it both to non-reservation SLA-bound jobs and best-effort
jobs.

In both cases the SLA-scheduling algorithm has to be enhanced analogous
to the described handling of problematic jobs. However, the check on conflicts
with other SLA jobs can be omitted here, because no SLA jobs will be placed
to the schedule at a later point in the algorithm.

3.5.4 Buffer Nodes

Despite on all efforts in using resources and even gaps within the schedule for
compensating resource outages, the number of available spare resources is still
the limiting factor for SLA-adherence. Depending on the number of failed re-
sources and the general utilization of the cluster machine, the scheduler might
not have sufficient resources for compensating the outage. In consequence, the
resource owner is in danger of paying the penalty fees of all violated SLA con-
tracts.

This situation is paradox, because a resource owner is primarily interested in
a high utilization of his resources. But with increased utilization the system is
no longer capable of compensating outages, resulting in penalty fees.

An approach in handling this situation is the introduction of buffer nodes to
the system schedule. Up to now the scheduler treated all compute resources
equally, placing jobs as soon as possible on an adequate compute node. By
introducing buffer nodes the administrator is enabled to specify node allocation
policies for a specified set of resources.

This way the administrator is able to block a number of nodes for executing
SLA-bound jobs. This way, the scheduler would assign only best-effort jobs to
these nodes. The SLA-scheduling algorithm does not have to be modified for
this, because from the point of view of the scheduler only the number of nodes
decreases while placing SLA-bound jobs. When placing best-effort jobs, the
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scheduler may access the full range of resources, filling up the designated buffer
nodes.

In the case of a resource outage, the scheduler would now be able to suspend or
terminate all jobs running on these buffer node resources, which have runtime
within the problem horizon. This is uncritical, because all jobs running on
these nodes are guaranteed to be best-effort only. After freeing the buffer node
resources, the scheduler may now allocate these resources within the regular
scheduling algorithm.

Specifying buffer nodes significantly increases the probability that all SLA-
bound jobs affected by the resource outage may be successfully completed on the
buffer node resources. However, this method can only be successful if the number
of buffer nodes is larger or equals the number of failed resources. Furthermore
the buffer nodes may also be affected by a resource outage. In such a situation
their buffer capacity is not available for handling problematic SLA-bound jobs.
Therefore it is important to align the number of buffer nodes to experience
values. However, it remains a trade-off between risk of penalty fees and the
number of valuable SLA-bound jobs.

3.6 Fault Tolerance with cross-border scope

All mechanisms presented in section 3.5 enhance the level of fault tolerance of
the resource management system. In case of resource outages, they try to use
available resources in a way that guarantees the SLA-adherence of all agreed
SLA. However, the number of available spare resources is always the limiting
factor. Even with highly optimized algorithms, the number of available resources
limits the options of migration.

Any attempt to significantly increase the level of fault tolerance therefore
has to overcome this barrier. Since the resource management system can not
increase the number of locally available hardware resources, it has to use hard-
ware resources provided somewhere remote. This migration to resources outside
the local cluster system is denoted as cross-border migration [38].

Once can distinguish between two different types of target resources:

• Resources within the local administrative domain: Often providers operate
more than only one cluster system. By operating all of them with identical
policies, they all belong to the same administrative domain, spanning over
the cluster resources.

• Arbitrary remote resources: Grid systems allow users to access worldwide
distributed resources in a transparent manner. Local resource manage-
ment systems offer their resources to these Grid systems. By changing
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the position of these RMS from passive job receivers to active Grid par-
ticipants, local RMS systems can use arbitrary resources within the Grid,
using the same access and transport mechanisms as the Grid end-user.

Both kinds of resources are qualified for resuming jobs from the latest check-
pointed state, as long as specific requirements are met:

• Job-dependent policies: The migration of a job may affect non-disclosure
issues. Therefore the owner of a job might insist of not migrating the
cluster to any remote resource at any time, since he only trusts the chosen
provider, but not arbitrary resource providers in the Grid. Hence, the cus-
tomer may also specify only to migrate within the administrative domain,
but not to external resources.

• System policies: Similar to the Grid customer, also the Grid provider
has demands on the migration process, so that he might want to restrict
the set of potential migration targets to a specific list of providers. The
provider may also specify only to migrate within the internal administra-
tive domain, but never to the Grid.

• Compatibility: A successful resume of a checkpointed job presumes the
compatibility of the target resource chosen for migration with the source
resource. In section 4.4 methods for ensuring compatibility are presented.

• Economic considerations: The introduction of SLAs should leverage the
commercial uptake of Grid computing. Therefore customers as well as
providers are following their particular commercial interest, focusing on
their revenue in their business. The price for resource consumption and
the penalty fee agreed within the SLA are determined in this context.
Therefore a provider is only interested in migrating a job to a external
target resource if this is economically reasonable.

Depending on these aspects the resource management system may start an
external migration process. From the point of the scheduler there is no tech-
nical difference between migration to resources within the same administrative
domain or resources somewhere within the Grid [5, 66]. The scheduler only
decides which jobs are to be migrated to which resource and initiates the migra-
tion process. The technical details on migration (e. g. the negotiation with other
Grid resources, following the data transfer using standard Grid file transmission
protocols) are encapsulated in separate modules within the RMS.
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3.6.1 Identification of Migration Candidates

The first step of migrating jobs to remote resources is the identification of poten-
tial migration candidates. Due to user or system policies, only specific jobs are
eligible for being migrated to a remote system. This step does not yet evaluate
the impact of a future migration of any steps, it only generates a preselection
of potential jobs.

For this, first the provider’s internal policy is evaluated. Here, the provider
may specify:

• May jobs be migrated to resources in administrative domain respectively
the Grid? If yes, in which order?

• Are there any exclude lists, defining which jobs may not be migrated? Are
there any other constraints to be regarded (e. g. definition of maximum
checkpoint dataset size for migration to Grid resources)

• Are there any include or exclude lists for target system selection (e. g.
migration within the Grid only to specific providers)?

• May all jobs be migrated or only problematic jobs, or even only unhandled
problematic jobs?

• Which jobs should be migrated first (e. g. high value, low value, most
remaining time until deadline, most remaining runtime area, etc)?

• Should the system first try to migrate the affected problematic job, before
trying to migrate other jobs?

The system analyzes all defined policy rules and matches them with SLA-
bound jobs in the system. As result, the system gets a subset MT of jobs which
might be migrated. For each of these jobs the system further knows restrictions
or rules regarding the migration target.

This subset MT now has to be ordered. The primary sorting criterion has been
defined by the system’s migration policy, defining if problematic jobs from P

should be migrated first, or if a migration is directly permitted also for currently
running jobs, which are elements of set R.

From S only SLA-bound job describing reservations are of interest, since they
have been already integrated at the time of handling problematic jobs in P.
Non-reservation jobs are added to the schedule at a later point of time. Despite
the situation given on internal fault tolerance mechanisms, reservation jobs may
be migrated here, because it is possible to find a remote resource which is
able to fulfill the reservation at the demanded point of time. However, these
reservations are only added to the subset MT , if the reservation time span is
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before or overlapping with the envisaged time frame of the problematic job (i. e.
the demanded reservation time or deadline). If a reservation is located after
all problematic jobs, its migration would not have any positive impact on the
SLA-adherence of these problematic jobs.

The subset MT furthermore needs to be sorted by a second sorting criterion,
which is also defined by the system’s policy. By default, the value of the job
is taken as second sorting criterion. The sorting order has to be increasing, so
that unimportant or less profitable jobs are migrated first. This ensures that
important jobs remain as long as possible on the source cluster.

If the administrator specified that only problematic jobs may be migrated
which can not be handled, the set MT encompasses exactly these jobs. The
second sorting criterion can then be omitted, since the scheduler will try to find
suitable migration targets for all these jobs.

The system will not add by default SLA-jobs from R which are bound to fixed
reservations, because this would interrupt the currently ongoing execution of the
job and might cause side effects on other branches of a workflow (ref. section
3.5.2.2).

3.6.2 Application of Customer Defined Policies

Beside these system internal policies, the scheduler also has to take policies into
account that have been specified by the customer, i. e. the owner of the job.
These policies can be specified as part of the SLA request. Therefore these
policies are subject in the SLA negotiation process and part of the contract
between the service customer and the service provider.

The service provider has to ensure the adherence of all specified customer poli-
cies. Such a policy defines if the job may be migrated to a remote resource, and
if it may be migrated to Grid resources or only within the same administrative
domain.

The second step of the migration process consists of evaluating the customer
defined policies for each of the jobs in ME. At this, prohibition always overrules
admission. Therefore the customer defined policies overrule the provider defined:
if the provider allows the migration, but the customer prohibits, the job may
not be migrated. In this scope it is not possible that the system’s policy is more
strict than the customer’s policy, because in this case the system’s policy would
have to forbid the migration. In this case, the job would not have been added
to the set ME in the previous step.

This rigid handling may result in SLA-violations. In case the provider de-
fined that only problematic jobs may be migrated that could not be handled by
internal fault tolerance methods, the list of jobs for potential migration exactly
equals the list of jobs which have to be migrated to match all SLAs. If the
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customer defined policy of one of these jobs forbids all external migrations, the
system has no option left for fulfilling this job’s SLA.

The application of the customer defined policies may remove certain jobs from
the set ME. Furthermore it may refine the restrictions or rules regarding the
migration target, which have been set in the previous step.

3.6.3 Generation of Compatibility Profiles

At the end of the previous step the scheduler has an ordered list of jobs from R,
S, and P which may be potentially migrated to remote resources according to
the policy definitions of provider and customer. First in this list are problematic
jobs, where policies demand to first try to migrate the problematic job itself.
Following these jobs, the set contains all other jobs, which may be potentially
migrated, sorted according to the provider policy.

Before the system is able to start any negotiation or migration process, it
first has to create a catalogue for each of these jobs that describes the partic-
ular requirements on the target migration system. For this, it first takes all
information that is known about the job from the negotiated SLA, e. g. num-
ber of nodes, memory size, or network interconnect. However, this is not yet
sufficient to find compatible migration targets. Beside these basic demands the
checkpoint dataset raises numerous additional demands (ref. section 4.4).

These demands are part of the compatibility profile of the job. The resource
management system is able to generate such a profile by using appropriate in-
formation mechanisms of the process subsystem, as well as using RMS internal
information retrieval mechanisms. The compatibility profile encompasses all rel-
evant properties (e. g. name and version of required libraries) that are mandatory
for successful restart of a checkpoint dataset.

3.6.4 Static Profile Matching

Having this compatibility profile catalogue information available for each job in
the set, the system can now begin to look for potential target resources. For this,
the scheduler will instruct a migration module within the resource management
system to query for suitable candidate systems.

In the case of migrating within the same administrative domain, the system
can follow the migration paths configured by the administrators. Since compat-
ibility issues are known within a domain, the administrators may define that
jobs from cluster A are always migrated to cluster B, because these systems
are known to be compatible. Hence, the resource does not have to use the
information from the compatibility profile, but solely follow the configurations.

The a priori knowledge about compatibility is not available when migrating
to Grid resources. Here, the system has to query resource information services
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within the Grid middleware, asking about systems complying with the demands
of the compatibility profile.

For each of the jobs in the set, the system creates a list of potential migration
targets. Depending on the system’s and the customer’s policies, these targets
may be either located in the same administrative domain or somewhere in the
Grid.

3.6.5 Filtering of Static Results

Even if all policies allow the migration of a job to a given compatible remote
resource, it does not necessarily be reasonable to start the migration process.
Before starting, the result set has to be filtered, taking the aspect of time for
executing the migration process into account.

In contrast to intra-cluster migration, the checkpoint dataset has to be trans-
ferred to the remote cluster system. This transmission process usually uses pub-
lic network interconnects, having significantly lower bandwidth as the inner-site
network or even the intra-cluster network (ref. Section 3.4.3).

Before starting negotiations with target resources, the scheduler therefore first
checks for each potential migration target, if it is possible to transmit the entire
checkpoint dataset until the latest start time of the job. This point of time is
determined by agreed reservation time frames or deadlines.

The scheduler may decide that a migration to Grid resources is not possible,
because the available bandwidth on wide area network connections would not
allow a timely data transfer. For these jobs, the scheduler would remove all
Grid systems from the job’s list of potential migration targets. The same holds
valid for resources in the same administrative domain. Even having faster in-
terconnects available within the domain, it may not be sufficient in case of close
deadlines.

The filtering may remove all migration targets from the job’s list. In this case
the entire job is removed from the set ME, so that the system will not try to
cross-border migrate it in the following.

3.6.6 Negotiation and Migration

All remaining migration targets remaining in the job’s list are eligible for the
migration process. First, the system handles all jobs, where the policy demanded
to first try migrating the problematic job itself.

3.6.7 Migration of Problematic Jobs

For each of these jobs the scheduler instructs the migration manager module of
the RMS to start an SLA-negotiation process with all potential target systems.
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If at least one of these systems accepts the new job, the RMS now checks if
the price of the cheapest SLA-offering is lower than the penalty fee that the
provider would have to pay in case of SLA-violation. If none of the SLA-offers
is cheaper, the resource owner may prefer to pay the penalty-fee.

If a reasonable priced offering has been received, the RMS accepts the SLA-
offering of that system. After that it starts the migration of the job. Here the
latest checkpoint dataset is transferred to the remote system and then restarted.
After successful migration, the job is removed from the local system. In conse-
quence, the job would also be removed from set P.

If no target system agrees on the SLA-request, it is not possible for the RMS
to migrate it to a remote resource. Hence, the RMS can not directly ensure
the SLA-adherence of this problematic job. However the system may still fulfill
the SLA of the problematic job, if it succeeds on migrating another job to a
remote resource, thus freeing additional spare resources for the execution of this
problematic job.

3.6.8 Migration of General Jobs

After first handling problematic jobs, the system now continues on working on
the set ME of potential migration candidate jobs. In contrast it does not directly
starts on migrating job by job, but first evaluates the impact of each successful
migration to the set of problematic jobs.

For this, the scheduler selects the first job of set ME and assumes that it can
be migrated to a remote system. Working on a copy of the current schedule and
based on this assumption, the migrated job is removed from the system and
the scheduler generates a new schedule. The removal may have the following
impact:

• No impact on problematic jobs: The releasing of the resources blocked by
the migrated job in the schedule have not been sufficient to have impact
on the problematic jobs.

• Set of problematic jobs has been decreased: The resources released by the
migrated schedule resulted in removing at least one job from the list of
problematic jobs.

If the set of problematic jobs has not been reduced, it is necessary to migrate
additional jobs. Therefore the algorithm takes the next job from the set ME,
assumes its migration and again evaluates the impact on the schedule.

Obviously it may be necessary that the algorithm iterates more than only
once, before the set of problematic jobs is reduced. In such a case, it now enters
the negotiation phase. Here it starts negotiation with all potential migration
targets of all jobs which previously have been assumed to be migrated.
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If none of the potential migration targets of a job is accepting the SLA-request,
this job can not be used for migration. Therefore it is removed from the set
ME and the scheduler has to recalculate the schedule, revoking the assumption
that this job has been migrated. If the set of problematic jobs is still reduced,
the algorithm can continue at this point. Otherwise it has to take the next job
from ME, assume it has been migrated and again evaluate the impact of this
migration on the schedule.

For all jobs having at least one migration target accepting the job, the sched-
uler takes the cheapest price of all SLA-offering of a job as the price for migrating
this job. It then adds all these prices, having the total price for migrating these
jobs. On the other hand it sums up the penalty fees that the provider has to
pay if violating the SLAs of the jobs that were removed from P due to migration
of the jobs.

If the penalty fee is lower than the price for migration, there is no point for
the scheduler to start the migration. However it does not discard the already
taken migration assumptions, but continues in taking the next job from ME,
assuming its migration and again evaluating the impact on the schedule. To
keep the assumptions is important, because by migrating on this basis could
lead to the saving of a high-penalty job, which makes the entire migration
process profitable again.

If the penalty fee is higher than the price for migration, it agrees on these
SLAs with the job’s migration targets. Following, the system transfers the job’s
checkpoint datasets and removes it from the system schedule. This then has the
calculated impact, resulting in a smaller number of problematic jobs.

If set of problematic jobs is not empty after migration, the algorithm starts
again by selecting the next job from ME, assuming its migration, and again
evaluating the impact of this migration on the system schedule.

The algorithm ends if no problematic jobs remain or the remaining problem-
atic jobs can not be solved by migration.
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In the report IST 2003 The Opportunities ahead, the European Commission
reinforced that Grids will be important in achieving eEurope’s goals for acces-
sible services. They are central to the resource sharing that is an essential part
of e-science, and also facilitate collaboration within virtual organizations. This
should enable existing services to become more accessible and user-friendly and
contribute to the creation of a new generation of services.

As part of the sixth framework programme (FP6) the European Commis-
sion published a call in 2004 on Grids for Complex Problem Solving, equipped
with 52 million Euro of funding. The call focused on novel commercial and
non-commercial opportunities arising from the wide field of Grid computing
functionalities. An EC press release [26] states:

By giving everyone access to the immense computing power and
knowledge hitherto available only to the biggest corporations and
laboratories, Grid tools will boost business competitiveness and help
create new markets and services.

This mission statement perfectly matched with the core statement of this
work: if the commercial user should be attracted for the Grid in a way that new
business models can evolve, local resource management systems have to provide
contractually fixed levels of service quality. After partners were found for key
working fields, a project proposal has been created based on these ideas, and
submitted to the EC.

This project was named HPC4U (Highly Predictable Clusters for Internet
Grids) and accepted for funding by the EC in 2005. In this project the Pader-
born Center for Parallel Computing is working on providing SLA-aware Re-
source Management. In addition the technical partners IBM, Seanodes (both
France), Scali, and Dolphin (both Norway) provide their services on process
checkpointing, storage, and network to the RMS. Non-technical partners CETIC
(Belgium), Fujitsu (France), and University of Linköping (Sweden) complement
the project with work on verification, validation, dissemination, and exploita-
tion.

Large parts of this work have already been implemented and published in the
scope of this project. This chapter will highlight the concepts of HPC4U and
present its architecture, core components and main functionalities.
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Figure 4.1: Outcomes of HPC4U

4.1 The HPC4U Project

The goal of HPC4U is to provide a software-only solution for a transparent and
reliable cluster middleware. HPC4U allows the Grid middleware to negotiate
on SLAs, which is realized at the cluster middleware level by means of HPC4U’s
main fault tolerance building blocks: process checkpoint, storage snapshot and
virtualization, and network failover.

The HPC4U cluster middleware consists of multiple elements, i. e. the SLA-
aware resource management system and the main building blocks for ensuring
a high level of fault tolerance: process checkpointing, storage snapshot and vir-
tualization, and network failover. In an exceptional situation, e. g. the outage
of hardware resources, the HPC4U system uses its FT (Fault Tolerance) mech-
anisms to assure the completion of a job. This means that the Metacluster
software enables checkpoint/restart (and migration) of a running process, so
that jobs can be restarted from the last checkpoint on a spare resource. But
only considering the checkpoint process could cause inconsistencies at restart,
because the checkpoint’s data and job’s data can be at a different stage as a
running job continues to write data on files after the checkpoint. Therefore, the
system has to maintain consistency between checkpoints’ data and job’s data.
This process has also to be supported by the network subsystem, e. g. regarding
in-transit network packets.

The results of HPC4U are a mix of open source and proprietary software em-
bedded in two outcomes (cf. Figure 4.1) [27]. The SLA-aware and Grid-enabled
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Resource Management System includes SLA negotiation, multi-site SLA-aware
scheduling, security and interfaces for storage, checkpointing, and networking
support. It is available for multiple platforms and distributed as open source.
The second HPC4U outcome is a vertically integrated commercial product with
proprietary Linux-specific developments for storage, networking and checkpoint-
ing. This outcome demonstrates the entire, ready-to-use HPC4U functionality
(job checkpointing, migration, and restart) for Grids based on Linux architec-
tures. It is obvious that providing an agreed level of Quality of Service and Fault
Tolerance requires broad interaction between all components of the HPC4U sys-
tem. The third outcome also depicts a vertically integrated system, but consist-
ing of non-commercial components only. Compared to the commercial system
this system has significant functionality drawbacks, but can be easily evaluated
without the need of obtaining any licenses.

Without loss of generality we assume that a user from somewhere in the
Grid wants to compute a job and connects to an HPC4U system for negotiat-
ing on a Service Level Agreement. Usually, a user would not connect directly
to an HPC4U system, but uses his local Grid middleware interface for find-
ing suitable resources for his request. Matchmaking mechanisms on the level of
Grid middleware compare requirements with published information about avail-
able resources. Hence, Grid middleware mechanisms offer intermediary services.
However, from the point of view of an HPC4U system, it makes no difference
if a user or some Grid middleware element starts a service negotiation request
(cf. section 2.3).

The cluster middleware system consists of three independent layers:

• At the upper layer, the system provides an interface, which can be used by
Grid middleware systems to negotiate on Service Level Agreements. This
interface applies to standard protocols used in Grid middleware ensuring
interoperability with other projects.

• At the middle layer, an SLA-aware resource management system using
the upper layer interface, negotiating with customers on SLAs. It also
assures the compliance with these agreed SLAs at runtime. This does not
only imply the monitoring of internal resources, but also the utilization
of appropriate mechanisms to realize fault tolerance in case of resource
outages.

• At the lower layer there are the subsystems of HPC4U. Offering specific
APIs, each of these subsystems provides special mechanisms for fault tol-
erance on process-, network- or storage-level. Since all interfaces within
the HPC4U system are standardized and published, each component can
be replaced with arbitrary third-party products, as long as these products
provide compliant interfaces.
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In the following, the resource management system will be explained in more
detail.

4.2 Resource Management System

As it has been stated above, the resource management system (RMS) plays a
central role within the HPC4U architecture [37]. Since it is an SLA-aware RMS,
it has to keep an overview about all SLA-related activities within the HPC4U
system. First of all, it has to negotiate with customers on new service level
agreements. These users may be located somewhere in the attached Grid sys-
tem, accessing the SLA-negotiation interface of the HCP4U cluster middleware
system. The RMS first decides on starting a negotiation process (a negotiation
request may be rejected due to local policies), then actively negotiating on the
contents of the requested agreement. In this negotiation process, the current
system condition has to be considered.

Therefore it is necessary that the RMS has the complete overview about the
HPC4U system. This encompasses available resources (e.g. number, type and
equipment of compute nodes, topology and characteristics of the interconnect
between these compute nodes, or characteristics and capabilities of the available
storage system). Beside these static aspects, the RMS also has to be aware of
dynamic attributes. The validity period of such dynamic attributes normally
is really short, as these aspects represent the current condition of the overall
system.

The resource management system is also responsible for planning not only
the current system usage, but also the future. Therefore it holds a schedule of
all accepted SLA-bounded jobs. According to this schedule, the general static
information, the dynamic information representing the current system condition,
and the requirements of the new SLA request, such a request will be accepted
or rejected.

It is important to stress that the resource management system is the only ele-
ment of HPC4U which has direct contact with the Grid system. The subsystems
of HPC4U are only contacted by the RMS, but not from the Grid user.

To be able to plan requests with assigned SLAs an RMS scheduler not only
has to count free resources, it also has to respect system specific constraints like
the topology of a high speed network. The RMS used in the HPC4U project
is CCS (Computing Center Software) [11, 63, 7]. It does this by splitting the
scheduling process into two parts, a hardware-dependent called Machine Man-
ager (MM) and a hardware-independent part called Planning Manager (PM).
This separation allows to consider system specific requirements (e. g. location
of I/O-nodes or network topologies) at which the MM part may be adapted
to different resource configurations without changing the basic scheduling part
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(i. e. the PM). The MM verifies, whether or not a schedule computed by the PM
can be realized with the available hardware. The MM checks this by mapping
the user given specification with the static (e. g. topology) and dynamic (e. g.
node availability) information on the system resources. Information provided
by the subsystems is incorporated in this mapping procedure. If the MM is not
able to find an SLA conform mapping of the jobs onto the resources at the time
scheduled by the PM it tries to find an alternative time. The resulting conflict
list is sent back to the PM which in turn accepts the schedule or computes a
new one based on the schedule given by the MM.

SLA-aware RMSs are responsible for fulfilling the statements of all SLAs,
which have been agreed. This implies that the RMS has to take appropriate
actions in case of resource outages [8]. Hence, jobs have to be observed during
their whole lifetime. For this purpose, the MM monitors the running jobs and
the affected resources. In case of an error the MM is able to migrate the job to
another matching resource. Since the MM always knows the current schedule
this may be done without violating the current schedule. In HPC4U, the RMS
utilizes the functionalities of the underlying HPC4U subsystems to provide fault
tolerance, thus guaranteeing the adherence with the negotiated SLAs.

The RMS also has interfaces to the three mentioned HPC4U subsystems.
These interfaces are located in the MM part of the RMS since the MM also
controls the execution of jobs. Using the interfaces the RMS may subscribe
callback routines which are called in case a subsystem notices an error and is
not able to solve the problem alone and therefore needs help by the RMS. For
instance we assume a job with an SLA which guarantees a minimal bandwidth.
It may now happen that due to a resource failure (not necessarily used by
the concerned application) the networking subsystem is impelled to change its
routing tables. The subsystem tries to fulfill the mentioned SLA since the RMS
started the application with this constraint. If the networking subsystem is
not able to keep the agreed minimal bandwidth it informs the RMS about the
problem. The RMS then has to decide what to do: migrating the concerned
application or suspending another one.

The resource management system consists of numerous sub-components (ref.
Figure 4.2). The service of all these subcomponents has to be orchestrated, so
that the adherence with agreed SLAs can be ensured. Within this architecture,
the Planning Manager is of central importance. In the following, the tasks and
interaction between these blocks is to be explained.

4.2.1 Grid Interface (GI) with Negotiation Manager (NM)

The HPC4U system is able to act as an active Grid component. This implies
that the system not only can be used to process incoming jobs from the Grid.
The system can also use the Grid for improving its level of fault tolerance. If
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Figure 4.2: Overview RMS Modules

no internal spare resources are available in case of resource outages that would
allow the adherence with the given SLA, the RMS is able to migrate the affected
job to Grid resources.

This interaction with the Grid is encapsulated within the Grid interface (GI),
having the Negotiation Manager (NM) as subcomponent. This interface can be
aligned to the used Grid middleware system, so that the RMS can be integrated
into Grid infrastructures without the need of changing the configuration of other
modules. The Negotiation Manager steers the negotiation process with incom-
ing user requests and communicates with the Planning Manager. Only if the
Planning Manager is able to fulfil the requirements of the SLA, the Negotiation
Manager accepts the request.

The same holds valid for outbound requests. All communication interaction
is encapsulated within the Grid interface. According to the attached Grid Mid-
dleware system, the Grid interface has to provide appropriate mechanisms and
to support required protocols. In case of resource outages the FT Manager and
the Planning Manager uses the Grid interface for querying the Grid for appro-
priate spare resources. If such resources can be found (i.e. the Grid provider
assures the contents of the SLA) the job is transparently migrated.

4.2.2 Planning Manager (PM) and Machine Manager (MM)

In the design of the resource management system, a compromise has to be found
between two conflicting goals: on the one hand the design of the RMS should
utilize available resources (e.g. processors, network, and storage) optimally. On
the other hand, the system should not be tailored to one specific configuration or
technology, but be able to be deployed and ported to arbitrary usage scenarios.

The scheduling process is the central component of a planning based resource
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management system. This component decides which jobs are accepted for com-
putation and which guarantees (e.g. resource reservations) are given. For real-
izing a portable system which utilizes systems optimally, the scheduling process
has been split up into two distinct and independent modules.

The Planning Manager (PM) is the hardware-independent part. It has no
information of any mapping constraints, such as network topology or exact lo-
cation of I/O nodes. The PM checks if the jobs can be planned according to
their general statements, not regarding static or dynamic information of the
hardware machine. The result is a schedule which is coherent with the require-
ments of the received and processed requests. This proposal is then handed over
to the Machine Manager (MM), which does the hardware-dependent mapping
of the schedule to the target machine. The MM provides machine specific fea-
tures, e.g. partitioning of systems into subsystems, or job controlling. Thus,
the MM is hardware-dependent. It verifies whether a proposal for a schedule
of the PM can be mapped onto the available resources (e.g. compute nodes,
network, and storage) at a given time. The MM checks this by mapping the
user specifications and requirements with the static (e.g. static topology data)
and dynamic (e.g. current resource outages, current load situation) information
of the system resources of the cluster machine.

The MM allows to implement mapping modules that are tailored to the spe-
cific hardware configurations and properties of the target cluster machine. For
instance, specific characteristics of the network interconnect can be supported
easily by adding additional functionality to this module. Furthermore, this
makes it simple to adopt the system to future technologies in high performance
computing.

This separation of planning to PM and MM includes the consideration of
dynamic and static information. If the MM is not able to map the proposed
schedule to available resources (e.g. due to a resource failure), it sends back a
counter proposal of the schedule to the PM, which checks this counter proposal
in the light of the requirements of received jobs. This process iterates until a
valid solution has been found.

If no schedule could be found, this either implies that an incoming request has
to be denied, or that an accepted job has to be cancelled. At this point, HPC4U
enriches the RMS mechanisms. Instead of cancelling a job (e.g. a job has to
be cancelled due to a resource failure, since the MM cannot provide suitable
resources anymore), the RMS can use the fault tolerance mechanisms of the
HPC4U subsystems to ensure the adherence with the accepted agreement.

It is a good strategy to solve problems as local as possible. Particularly
regarding a job with huge checkpoint and snapshot datasets, it is expensive or
impossible to migrate it within a reasonable time frame to a remote resource.
Therefore the PM first tries so solve exceptional events (e. g. the outage of
a compute nodes) by means of the mechanisms of the HPC4U subsystems,
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executing specific commands via the HCP4U subsystem controller (SSC).

4.2.3 Access Manager (AM)

In most cases, the access to a compute resource is restricted. Especially in cases
where valuable resources are provided, providers charge their users according to
their resource consumption. Administrators of such machines may also follow
the policy of prioritizing local users, so that only unused idle compute time is
made available to other (i.e. foreign, non-local) users.

The notion of accounting describes the procedure of granting access to a
specific compute resource for a requesting user. In the case of the RMS of
HPC4U, the Access Manager (AM) is in charge of this task. First it checks
the authentication of users requesting for compute resources. Since the AM
may be modified easily, arbitrary authorizing mechanisms can be supported
and implemented. In case of a project based authorization, the user is assigned
to specific projects, each of them having specific access rights on the machine.
In such a scenario, the user authenticates using his password and project name,
following an authorization check of the RMS. Only if the password of the user
is valid and registered for the specified user, his request is be further processed.

In this case, the AM checks accounting information, so that the user or the
specified project can be charged for resource consumption. The RMS also allows
the specification of budgets, so that the usage of a machine for a given project
can be limited. If a user tries to request compute time exceeding the given
budget, the request is rejected.

The AM is also responsible for ensuring and enforcing access policies. Such
policies define which users and user groups are eligible to access which parts
of the system at what time. The AM checks if the request is coherent with
specified policies.

4.2.4 Migration Controller (MC)

As stated in the section 4.2.2, PM and MM always try to solve resource outages
internally. This implies that these modules decide on using internal fault tol-
erance mechanisms, e. g. the generation of checkpoints. If an internal handling
of problems is not possible, since the PM is unable to reschedule in a way that
the SLA-adherence of all agreed SLAs can be ensured, the PM can try to mi-
grate jobs to remote resource. The entire process of migrating jobs to remote
resources is executed by the Migration Controller (MC).

Regarding constraints following from provider defined policies as well as cus-
tomer defined policies, the migration controller also tries to solve problems as
local as possible. Since clusters within an administrative domain normally are
connected with high speed networks, the MC first tries to solve the problem
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"locally". Therefore it queries other systems within the same administrative
domain for compatible resources for a job. If such resources can be found, the
checkpoint and snapshot datasets can be transferred to the compatible local
resource and be restarted there.

If the querying for resources within the local administrative domain failed,
the MC has to locate suitable resources on other sites. The Grid Interface (GI)
module of the RMS is the interface of the entire HCP4U cluster middleware
to the Grid. The MC now utilizes the functionalities on resource information
retrieval to query for suitable spare resources. If this query process returned
potential candidates, a negotiation process on a new SLA is initiated, eventually
followed by a transmission of the checkpoint dataset. This entire process is
driven by the MC, but mapped to Grid protocols and services by the GI.

4.2.5 Configuration Manager (CM)

In SLA-aware resource management systems it can be distinguished between
different phases of operation (cf. section 3.3). In the pre-runtime phase the
set of assigned compute resources of a job has to be configured. This is a pre-
requisite for executing the job according to all the demands of the agreed SLA.
Accordingly, the resource has also to be reconfigured after job completion. These
configuration tasks may comprise the configuration of the storage subsystem or
the initialization of the network interconnect. In case of HPC4U, basically the
subsystems have to be configured and initialized, so that the fault tolerance
mechanisms can work.

The configuration manager is responsible for these tasks. It is invoked before
the job is started on the resources, respectively if the computation has been
concluded. In case of resource failures, it may also be started at failure handling,
as spare resources have to be configured.

In cluster machines, access control is of central importance, because each
node runs a full fledged operating system. Therefore it could be used as a stand
alone computer by its owner. When operated in cluster mode, users must be
prohibited to start processes on single nodes, not only because of unpredictable
changes in CPU load, but also because they might create orphan processes which
are quite difficult to clean up by the resource management system.

Hence, the resource management system also has to care about the access-
and job-control. This is done by dynamically modifying system configuration
files. The exact modifications are depending on the installed operating system.
By this, the exclusive access can be granted to the temporary node owner, i.e.
the owner of the job which is to be computed on the compute resource. Before
releasing the partition, pending processes and files have to be removed. Also
the configuration of the node has to be modified, so that no user is able to login
into this node. Otherwise it would be possible to misuse the node, or at least
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bypassing the control of the RMS. Once this node is assigned to a new job, the
configuration is altered, allowing the owner of the new job to login into this
node.

4.2.6 Execution Manager (EM)

The execution manager (EM) has to start the job, which has been submitted by
the requesting user. By this, the EM represents the job execution level. It sets
up an execution session on the target compute resource, performs application-
dependent pre- and post-processing, establishes the user environment (e.g. shell
environment, shell settings, and environment variables) and maintains the status
of the application.

In the case of HPC4U, the EM also utilizes basic FT mechanisms of the
underlying HPC4U subsystems. By this, it utilizes the checkpointing subsystem
for starting the process in a virtual bubble, so that it can be checkpointed at a
later time. The EM is also responsible for executing local commands, which are
necessary for FT provision. For example, EM executes the command for creating
checkpoints, respectively for resuming the job from a checkpointed state.

4.2.7 Subsystem Controller (SSC)

Flexibility has been a major design goal of the integration of the HPC4U sub-
systems into the resource management system. Even if the main outcomes of
HPC4U mainly focus on the products of the HPC4U partners, the interface
should be general enough to also allow the integration of other products. This
flexibility is also required within the HPC4U project, since the integration of
CCS with non-commercial third-party products for checkpointing is required for
the freeware outcome.

The architecture for integration of the HPC4U subsystems consists of the
following core elements:

• The Subsystem controller (SSC) is a regular CCS daemon, which receives
the monitoring information of the subsystems. It may also actively poll
other CCS daemons for retrieving necessary information. It initiates com-
mands by sending messages to other related daemons (e. g. the Planning
Manager). Moreover, it initiates central commands (e. g. establishing of a
checkpointing bubble).

• The SSC-API is an interface which is mapping the internal commands of
CCS to the respective commands of the used products in the subsystems.
The API is used by a number of CCS daemons, e. g. the Node Session
Manager (NSM), Execution Manager (EM) or the Access Manager (AM).
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The SSC itself provides high level functions to the upper layer modules, e. g.
the generation of a new checkpoint. Within the SSC this high level functions are
realized as workflows, containing single tasks which have to be mapped to the
particular environment. As an example, before generating a new checkpoint of
a running process, the system first has to check for valid licenses and available
checkpoint directories.

The SSC is configured over a central configuration file, holding all informa-
tion for all subsystems of HPC4U. Within this file three main parts can be
distinguished:

• Order of execution

• Mapping of commands

• Mapping of return codes

For some high level commands it is necessary to execute commands in more
than only one subsystem (e. g. for checkpointing a running job, the process as
well as the storage and the network has to be checkpointed). Depending on the
used software solutions within the subsystems, the order of execution in these
subsystem differs. In case of the commercial HPC4U stack it is sufficient to first
checkpoint the storage, followed by a checkpoint of the storage. It is not neces-
sary to checkpoint the network, since this operation is automatically initiated
by the process checkpoint operation. In contrast, in the non-commercial out-
come the RMS first has to execute the checkpoint command within the network
subsystem.

The configuration file allows to define the order of execution for each task.
At runtime the SSC analyzes the configured order and executes the particular
subsystem dependent low-level commands accordingly.

The second main part of the configuration file relates to this very execution
of low-level commands. Depending on the used software system within the
subsystem, product specific commands have to be executed, each expecting
different kinds of input parameters. While the commercial process checkpointing
solution expects the abstract job ID for identifying the job on checkpointing,
the non-commercial process checkpointing system expects the process ID.

Due to this reason the SSC provides a wide range of different parameters
that can be added in form of placeholders into the command mapping here
(e. g. "%JOBID" for the ID of the job, respectively "%PID" for the process
ID). At runtime SSC replaces these placeholders during the command mapping
operation with the current values. This provides the flexibility to integrate
arbitrary solutions within the subsystems.

The third part of the configuration file is important for analyzing the success
of the executed functions. Each command in every software system returns
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different error codes. Most systems are only consistent in the fact that zero as
error code means "success", while anything else means "error". For the SSC it
is important to be able to distinguish between the error codes, so that it can
react accordingly (e. g. if the subsystem returns error code "17", SSC should
recognize that this signals a bad license).

The configuration file allows a subsystem dependent mapping of codes to
common CCS error codes. This way the administrator is enabled to define that
error code 17 in the process subsystem is mapped to CCS_ERROR_NOLICENSE.

By shipping the resource management system with a default set of configura-
tion files for standard checkpointing, storage, and network systems it is easy for
the administrator to deploy the system in his environment. Depending on the
used system, the administrator then only has to merge the fragments contained
in the deployed CCS version, creating his own SSC configuration file matching
his installed system.

4.3 Checkpoint Generation

The generation of checkpoints from running application is the core functionality
for providing fault tolerance to the running application. Without any check-
points available, the results of a running application are lost in case of resource
outages. In the light of long running jobs, potentially running over weeks, using
numerous computers of a cluster in parallel, the total number of lost compute
hours is immense. Therefore the RMS regularly checkpoints the running ap-
plication (e.g. one checkpoint each 60 minutes). In case of a resource outage,
the application can be restarted from the latest checkpointed state, such that a
maximum of 60 minutes is lost.

Since the checkpoint dataset must encompass not only the process memory
and state, but also the network and storage, an orchestrated operation of all
subsystems is mandatory to ensure consistency. This operation is depicted in
figure 4.3.

The first step in the generation of a new checkpoint is an interaction between
the RMS and the process subsystem. Here, the RMS requests the process sub-
system first to suspend the process, such that it does no longer change it’s state
nor process any operations. At this state, the process subsystem may start to
generate the process checkpoint dataset, either by using the IBM Metacluster
system or the Berkeley Lab’s BLCR system.

In the case of MPI-parallel applications it is not sufficient to solely check-
point the state of the application on a single node. Here, it is essential to
checkpoint all processes of the application running on all used nodes (these
nodes are denoted as partition of the parallel job). Since MPI-parallel applica-
tions are communicating via messages sent over the network infrastructure, it is
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Figure 4.3: Generation of a Checkpoint

also essential to checkpoint the state of the network at checkpoint time. Among
the checkpointed data are the network queues on all nodes of the partition as
well as in-transit-packets (i.e. networks currently “on the wire"). This network
checkpoint process is performed in the second step of the checkpointing process.

Since the generation of the network checkpoint is time critical and has to
be performed in a narrow time interval after the process checkpoint to avoid
timeouts, the Cooperative Checkpoint Protocol (CCP) has been introduced, a
direct interface between the process subsystem and the network subsystem. This
way, IBM Metacluster (used in the process subsystem) and Scali MPI Connect
(SMC, used in the network subsystem) are able to orchestrate their operations
at checkpoint time.

In the case of the LAM-MPI as non-commercial alternative to the commercial
HPC4U stack, the CCP protocol is not used. LAM-MPI has daemons running on
all nodes of the partition, called LAMD. The daemon processes are responsible
for starting and terminating the processes of the parallel application on the
specific node. LAM-MPI provides System Service Interfaces (SSI), which can be
used to provide additional services to the MPI implementation. Among others,
one SSI implementation is responsible for realizing the checkpoint and restart
of MPI-parallel applications. The mpirun process, responsible to start up the
MPI-parallel application on all nodes of a partition, initializes the SSI modules
responsible for BLCR checkpointing on program startup. Once a checkpoint
should be generated, these callbacks are used. First, the mpirun process has to
write the topology of the MPI-parallel job. After this, signals have to be send
to the nodes of the partition, such that the MPI-parallel processes of the job
are also saved. For this, it uses the LAMD daemon processes, which initiate the
checkpointing of the process on the particular node.

It becomes obvious, that the HPC4U commercial solution consisting of IBM
Metacluster and Scali SMC follows a different approach as LAM-MPI and
BLCR. In Metacluster/SMC, the process checkpointing solution is the driv-
ing force in the checkpointing process. It steers the process and signals the
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network subsystem to initiate the checkpoint of the network state. In con-
trast BLCR/LAM-MPI is driven by the network part, which is responsible for
the orchestration of the entire process. The BLCR is solely the passive part,
responsible purely for checkpointing processes. However, for the RMS, this dif-
ference is transparent, since it is only signaling to the process subsystem, that
the checkpoint is to be generated, not caring about the following execution.
The process subsystem is configured to the respectively used system (i.e. either
Metacluster/SMC or BLCR/LAM-MPI) and executes the required commands
for checkpointing.

In the third step, the process subsystem signals back the result of the preced-
ing checkpointing efforts regarding process and network. In case of any errors,
the RMS now has to decide to repeat the checkpoint (e.g. if the checkpoint
failed due to insufficient disk capacity) or to skip this checkpoint (e.g. if the
checkpoint failed due to temporary problems). If the checkpoint failed due to
permanent problems (e.g. missing or expired licenses), the RMS may decide
to terminate the job (in case checkpointing is mandatory for the process) or to
resume without checkpointing. Even if the execution of the application may
resume, failures in execution of checkpoints (both temporary and permanent)
are critical for the RMS, since fault tolerance mechanisms base on the existence
of checkpoint datasets.

Presuming the successful execution of the previous step, the RMS now has
to ensure the checkpoint of the application’s storage. This is crucial, since a
consistent image is required at resume time, consisting of process and network
as well as storage. This is the task of the storage subsystem, which is signaled by
the RMS in the fourth step. This step is not time critical, since the application
is still halted, such that it does not change its output files.

In the case of the commercial outcome of HPC4U, the storage solution Ex-
anodes of Seanodes is used. Exanodes realizes the virtualization of storage
capacity of cluster disk drives. In a cluster system, each node usually has more
disk capacity than required, such that a major part remains unused. Exanodes
uses these unused disk partitions and establishes a virtual volume. The user or
administrator now can request storage capacity from this virtual volume, with-
out knowing which parts of which real partitions of which nodes were actually
used. Using the RAIN (redundant array of independent nodes) [6] technology
(which is similar to the widely known RAID - redundant array of independent
disks), Exanodes is even capable of dealing with node outages. By introducing
a certain level of redundancy, Exanodes is able to recover storage capacity af-
fected by a node outage. Exanodes is also able to generate storage snapshots
(i.e. checkpoint of storage). On requesting storage, the user is able to specify
certain parameters (e.g. size or QoS characteristics). Exanodes then provides
a storage container, which is a partition on the virtual disk. The user now can
format and mount the container like a typical block device. If executing a snap-
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shot, the Exanodes system saves the state of the storage container, such that
the content can be reproduced at a later point of time.

For the non-commercial outcome of HPC4U, the storage subsystem uses tra-
ditional storage. However, it is possible to realize fault tolerance, e.g. by using
RAID5 disk arrays. Since these systems do not provide storage snapshot func-
tionality, the storage subsystem has to save the content of the storage part of the
running application using programs like rsync or by simply creating a tar-ball.

In the sixth step, the storage subsystem signals the result of the preceding
storage snapshoting back to the RMS. Similar to the fourth step, the RMS now
has to react on failures. Again, it can decide to resume or abort. It has to
be highlighted that fault tolerance can only be realized if both process/network
and storage have been successfully checkpointed. If one of them has failed, no
consistency at restart time can be ensured.

After checkpointing process, network, and storage, the RMS signals to the
process subsystem in the seventh step that the execution of the application can
be resumed. The successful resume is then finally signaled back to the RMS,
which can update its internal databases concerning the existence of a valid
checkpoint of the particular application. This dataset can be used at a later
point of time to resume the application in case of failures, e.g. resource outages.

4.4 Compatibility Profile

The SLA-aware resource management system uses process checkpoints for vari-
ous purposes. Beside the compensation of local resource outages by intra-cluster
migration (cf. section 3.5), a checkpoint may also be transferred to remote sys-
tems (cf. section 3.6). Since the provision of fault tolerance must be transparent
for the running application, application- and user-level checkpointing solutions
are inappropriate in this context (cf. section 6.2).

Kernel-level checkpointing systems allow the checkpointing of arbitrary appli-
cation without the need of prior relinking or recompiling. Focusing commercial
users executing their commercial code, relinking or recompiling would not be
possible in most cases anyway. This flexibility and transparency on the other
hand has the drawback of a high grade of system dependence.

In contrast to application level checkpointing, a checkpointed process can
not be restarted on arbitrary target systems. Beside high level characteristics
like operating system or processor type, the target machine even has to be
compatible in regard of versions of installed libraries and tools. If restarting
a checkpointed job on an incompatible resource, the job would directly crash
at best. In the worst case, the application would resume its computation, but
return incorrect results. In this case the RMS would assume that the application
restarted successfully, returning incorrect results back to the customer.
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An obvious way to face this situation and ensure a successful restart on the
target machine is to request identical machines. At this, the hardware of a
suitable target machine must be identical to the source machine. The same
holds valid for the software installation. Both machines have to have identical
operating systems with identical upgrade levels (e. g. RedHat AS4, Upgrade 4).

Even if this strict demand solves the problem of compatibility very efficiently,
it reduces the number of eligible target systems in a migration process close to
zero. If looking to resource information catalogues in the Grid, a broad variety
of different systems becomes apparent. Even if some of these systems would
be able to resume the checkpointed application, this strict demand on equality
would disqualify them.

For enhancing the number of potential migration targets while ensuring their
compatibility, the compatibility profile is introduced. This profile is an instru-
ment for describing the application’s requirements on the target machine, so
that the restart can be successful. In the following, the different parts of this
profile will be described.

4.4.1 Architecture and System Properties

The most fundamental requirement on the target machine is regarding its inter-
nal architecture and system properties. These demands are not specific to the
used checkpointing system, but arise from the execution environment.

4.4.1.1 Operating System

The operating system installed on a compute node forms the fundament for
the application execution. Most systems in current Grid environments are run-
ning the Linux operating system. However, also other operating systems like
OpenBSD [82], Solaris [94], or Darwin (Apple MacOS X) [18] exist. Even Mi-
crosoft is pushing for increasing the role of Microsoft Windows operating sys-
tem in the HPC domain. The recently released Microsoft Windows CCS [69]
nowadays still is an exotic platform for HPC or Grid computing, but Microsoft
undoubtedly has the means to also enter and dominate this market.

In this work only the Linux operating system has been targeted. But also
here it is essential to distinguish between the different versions of this operating
system. Even if there are only minor differences in the kernel version between
two systems (e. g. migration from Linux kernel 2.6.9-11 to 2.6.9-34), these kernel
versions may have important differences in core functions of the system.

During the migration process, this attribute is easy to evaluate, because most
providers publish the exact kernel version of their compute nodes to resource
information services in the Grid. Since a kernel version in many cases is closely
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related to core system libraries, this attribute also represents a preselection
criterion for these libraries.

4.4.1.2 Checkpoint System

Kernel-level checkpointing solutions all have their general functionality in com-
mon. By intercepting specific system calls they allow to generate a process image
of a running application. Despite the fact that these solutions differ in their par-
ticular functionality profiles, it is not possible to exchange checkpoint datasets
between them. Therefore it is necessary to have the same checkpointing solution
available on the target machine that was used to generate the checkpoint.

Moreover, the version of these checkpoint system is also essential, because new
versions often introduce new features. This has implications on the internal data
structure of the written checkpoint dataset file, differing from version to version.
Unfortunately most checkpoint systems neither write versioning information to
their checkpoint dataset files, nor do they support backward compatibility on
restart. Therefore it is not only essential to have the same checkpoint system
at restart, but also the same checkpoint system version.

These values are easy to configure within the configuration of the resource
management system. Unfortunately information about the checkpoint system
is not yet propagated in resource information systems within the Grid, so this
aspect has to be added as an item within the SLA-negotiation process.

4.4.1.3 Processor Architecture

The architecture of the processor has to be identical in source and target ma-
chine. It is technically impossible to start the image of a Pentium-based process
on a processor like IBM’s PowerPC. Even if some processors support the exe-
cution of legacy code (e. g. AMD’s 64bit processors allow the execution of Intel
32bit code), it is in general impossible.

For describing the architecture the standard tag could be used, as reported
by the Linux operating system (e. g. x86 for processors compatible to Intel’s
32bit processors). If the operating system only gives information about the
actual processor (e. g. AMD Athlon), this has to be mapped according static
configuration files.

Just like the information about the operating system, this property is easy
to match during the migration process. Most providers report the processor
architecture or the actual processor installed in their machines. Therefore this
criterion can be evaluated without direct interaction with the target provider.
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4.4.1.4 Other System Properties

Beside operating system, checkpointing system and processor architecture, a
broad variety of other system properties is essential for a successful restart of
the application.

First of all, the target machine has to have sufficient amount of main memory
as well as storage capacity. The demand of the application can not be deter-
mined from the actual resource usage, since this may change at a later point
of application execution. However, these parameters are part of the SLA ne-
gotiated with the job owner. In this SLA the provider ensured to provide a
machine that complies with these requirements (e. g. 4GB main memory). If
the application crashes due to a memory allocation error at runtime, even if the
execution host has the required amount of memory, the problem is caused by
underestimation of the customer.

The same holds valid at migration time. If the source system ensures that
the target system complies to these requirements of the agreed SLA, the target
resource is appropriate for restart.

Also hardware demands like the availability of a specific network interconnect,
or software demands like special purpose applications, libraries, or licenses are
part of the customer agreed SLA. The SLA may also demand for the availability
of a specific filesystem type. In this case, also the filesystem must be available
on the target machine.

These properties usually are not listed in resource information systems in the
Grid. Therefore the resource management system has to add these properties
to the SLA request sent to the potential migration target. If the target system
agrees on that SLA, the RMS can be sure that the application resumes as
desired.

4.4.2 Libraries

The concept of libraries is known in almost all operating systems. Instead of
demanding each application developer to write the same core functions again
and again, these functions are provided by means of libraries. The operating
system itself is offering system services over system libraries. By linking his
application against these libraries, this the programmer is able to use these
functionalities easily.

Static libraries are linked to the application and part of the resulting binary.
This way, the user does not have to ensure the availability on the system where
he plans to execute the binary. However, static linking results in significant
waste of space, both storage and memory. Furthermore this type of library
complicates system maintenance. On updating a given library (e. g. due to a
security problem or programming bug), all applications using this library have
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to be relinked.
Shared libraries in contrast are only loaded once into the system memory. On

application start, the availability of the library is checked by a loader service.
This loader verifies the version of the library, sets entry addresses and maps the
memory of the library to the virtual memory segment of the application.

Dynamic loading further improves the concept of a shared library. It allows
the application to dynamically load and unload a library at runtime. Beside
performance increase at start time, this method also has the advantage that
applications can start even if specific libraries are not available on that system.

From the checkpoint compatibility point of view dynamic loading is a serious
issue, because libraries are not necessarily placed at the same position in memory
at each restart. If a checkpoint is resumed in an environment where these
libraries are loaded to different memory addresses, the application would access
the wrong memory segments at runtime.

Metacluster solves this problem by saving the address of these libraries to
the checkpoint dataset file. If restarting the application on a remote system,
Metacluster checks the addresses of these libraries. If necessary, it then reloads
the library and maps the addresses for the restarted application. However, this
method of Metacluster requires the library installed at the same position (i. e.
directory path) and in the same version. A similar method is also implemented
in the Berkeley checkpointing system, having the same constraints.

Due to this reason it is important to add information about the required
libraries to the compatibility profile.

In the Linux operating system libraries are saved, having their version in
their filename. The library can be found under its major version number due
to a link from the real library name to the virtual library name, which only
holds the major version in its name (e. g. libcap.so.1 -> libcap.so.1.10, or
libnetsnmp.so.5 -> libnetsnmp.so.5.1.2).

Changes in the patch version usually do not refer to changes in the func-
tions, so that programs running with version 5.1.2 should also restart with
5.1.1. Minor version changes signal a change in functions, which is backwards
compatible to older versions, so that 1.10 should not be restarted with 1.9.

However, it has to be distinguished between loaded and unloaded libraries
at this point. If a library has been loaded, the loader service of the operating
system mapped all addresses according to the particular library version. Since
this address mapping information is part of the checkpoint dataset, the job
would also use the same information at restart.

Even minimal differences in the code of a library has effect on the memory
size of that function. This results that address mapping tables are different
between two patch versions. If the job restarts with an address mapping table,
which is not matching with the installed library, this would cause an incorrect
behavior at runtime.
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Therefore the checkpointing profile has to distinguish between loaded and
unloaded libraries.

• For unloaded libraries it is sufficient to query for a compatible library
version.

• For loaded libraries it is mandatory that the identical version is available
on the migration target system.

The resource management system can retrieve the library related information
about a running job by analyzing the application and checking the list of loaded
libraries at checkpoint time.

According to this list of libraries the RMS is then able to check the version
numbers of the libraries, adding either the full version or solely the major version
number.

If thinking of large Grid systems, having thousands or even millions of provi-
ders, it is not practicable to publish information about all libraries installed at
each site. Current resource information systems are not sufficiently scalable to
cope with such amounts of data.

Therefore the demands on the system libraries is added by the RMS to the
SLA-request. The negotiation module at remote site is then verifying if the
demanded libraries are available in the correct versions. Only in this case the
remote system would be able to agree on the SLA. The source system can assume
a high probability that the checkpoint dataset will restart successfully at the
remote site, returning correct results.
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In the previous chapters methods and algorithms have been presented that re-
alize the SLA-awareness in resource management. It utilizes and orchestrates
mechanisms provided by the subsystems on process, storage, and network. For
further increasing the level of fault tolerance, the system is designed to act as an
active Grid component. Instead of solely receiving SLA-bound jobs from local
users or Grid users, it harnesses the available Grid infrastructure. By migrating
jobs from the local cluster system to other cluster systems in the local admin-
istrative domain or even to remote resources in the Grid, the SLA-aware RMS
increases the level of service quality.

The described SLA-aware resource management system is not only a theo-
retical vision. In fact its realization is enmeshed in the objectives of the EC-
funded project HPC4U. Thanks to the development partners in that project,
sophisticated commercial software products were used as subsystem compo-
nents, explicitly targeting on requirements and expectations of commercial user
communities.

The HPC4U project will end in November 2007. Therefore not all concepts
presented in this work have already been implemented and validated. Being
in line with the project’s working plan, the system is currently able to provide
fault tolerance to sequential and MPI-parallel applications. For compensating
resource outages the system automatically generates periodic checkpoints of the
running applications.

In the case of failures the system is performing an intra-cluster migration ac-
cording to the requirements of the SLA. This has been validated and presented
during the annual reviews of HPC4U in 2005 and 2006. The implementation
of cross-border migration mechanisms to other resource management systems
within the same local administrative domain is close to completion. The vali-
dation of this functionality is planned to be finished until end of 2006.

The next year then will focus on realization of migration to Grid resources.
A main focus in this work will be on implementing an interface for the RMS to
the Grid middleware.

Numerous other European and non-European projects are focusing the topic
of integrating SLA functionality in Grid middleware. By using standard pro-
tocols and participating in reference implementation repositories, HPC4U is
striving for interoperability with other projects. Concrete agreements have al-
ready been consented with other projects during the European Collaboration
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Days as well as the Global Grid Forum meetings.
The current state of development of the resource management system us-

ing the HPC4U subsystems is installed at the partner sites of University of
Linköping, CETIC, and Fujitsu. Furthermore members of the special interest
group (SIG) of HPC4U have access to the stable development versions of the
software stack. They are evaluating and using the system in its current form,
returning feedback on applicability in use-cases and opportunities for improve-
ment. Among the companies in this SIG are Saab Automobiles (Sweden), the
Swedish Meteorological and Hydrological Institute (SMHI), the french Com-
missariat à l’Energie Atomique, the french Electricité de France (EDF), the
belgium Centre of Excellence in Aeronautical Research (CENAERO), or the
spanish Barcelona Supercomputing Center (BSCC).

5.1 Fault Tolerance Provision

The SLA-aware resource management will enable the Grid middleware to ne-
gotiate on service level agreements describing all requirements of the new job.
There may be a broad divergence in executed applications, ranging from a small
set of standard software packages, up to individually programmed applications.
Each of these scenarios may have different requirements on network, storage, or
the node environment.

Focal goal of Grid computing is the virtualization of resources. The Grid
end-user should be able to consume compute power in a transparent way. After
successfully agreeing on a business contract, he submits his job and retrieves
results at a given point of time. He does not have to be aware of technical details
like file transfer security, access on compute resources or node initialization. In
particular this also includes the transparency of all fault tolerance mechanisms.

In this section the functionality of transparent fault tolerance will be de-
scribed. We selected the padfem application, which is an FEM solver developed
at the Paderborn Center for Parallel Computing. It has been selected as ex-
ample application due to its high demand of resources. At runtime, padfem is
using up to several GB of main memory, depending on the selected problem def-
inition. This memory is used for mesh computation and refinement, such that
inconsistencies within the internal data structure directly result in a crash of
the entire application. Hence, inconsistencies at restarting from a checkpointed
state would be detected directly after restart.

Figure 5.1 depicts the submission of a new compute job using the ccsalloc

command line tool of the CCS resource management system. The padfem ap-
plication has not been modified or recompiled in this example scenario. Instead,
it has been compiled on a different node and then copied.

Beside regular parameters of ccsalloc required in general for all compute job
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Figure 5.1: Submission of new job

(e. g. -n = number of processors, -t = estimated runtime, -o = file for standard
output, -stderr = file for stderr output), new command line parameters have
been introduced for enabling fault tolerance mode.

The first parameter -checkpoint-frequency allows the user to predefine
the frequency how often CCS should generate checkpoints for this application.
In this scenario, CCS should generate a new checkpoint each 5 minutes. The
second parameter -checkpoint-dir links to a user provided path for storing
new checkpoint datasets. If this parameter is omitted, the default path is used.

The last parameter of the command line specifies a script, which executes
the padfem framework for a given problem description. Since padfem requires
numerous parameters, the execution has been encapsulated within this script.

According to the command line, the padfem framework should only use one
single node for its computation. This can be supervised using the ccsMon tool
of CCS, which gives an overview about node activity within a cluster system.
Figure 5.2 shows that only the node kc1.upb.de is used for computation of the
job. There are two bars, representing processor and memory usage.

At checkpoint time, the RMS uses the subsystems as described for generating
a checkpoint dataset of the running application. This operation can be observed
using the ccsmon tool. At checkpoint time the CPU utilization of the node is
low since checkpointing is not a CPU intensive task. After checkpointing, the
new checkpoint dataset can be accessed in the specified location (ref. Figure
5.3).

In the case of a node failure, this event is recognized by the internal monitoring
mechanisms of CCS. Such an event results in a rescheduling operation, since the
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Figure 5.2: Job running on one node

Figure 5.3: Generated checkpoint dataset
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Figure 5.4: System schedule after node failure

Figure 5.5: Restarted job after node failure

system schedule has to take this new situation into account. In the schedule
visualization tools of CCS, this resource failure is directly presented by marking
the node and the running job as red, meaning in trouble. However, shortly after
this event, the red bar of the job turns green again, because CCS has used the
generated checkpoint dataset for restarting the job on a different compute node
(ref. Figure 5.4).
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Figure 5.6: Restarted job finished

The node outage is also visualized in the node monitoring tool of CCS. Here,
the failed node is marked with an X. The node kc2.upb.de is operating at full
load, completing the computation of the affected padfem job (ref. Figure 5.5).

Figure 5.6 depicts the standard output of the padfem framework. According
to this output, the computation of 100 compute steps has been completed suc-
cessfully at 3:24pm, having a computation time of 12 minutes. Since the job
has been started at 3:12pm, the node failure had only minimum impact on the
finishing time of the compute job, since the result has been only delayed by a
few seconds.

5.2 Use-Case Experiences

In this section the experiences of two members of the SIG will be presented.
After describing their particular field of work, the improvement coming along
with an SLA-aware and fault-tolerant resource management system will be high-
lighted.

5.2.1 Swedish Meteorological and Hydrological Institute

Hirlam [41] is a multi-national research programme that started 1985. Par-
ticipating members are meterological institutes in Denmark, Finland, Iceland,
Ireland, Netherlands, Norway, Spain, and Sweden. The French meterological
institute is a cooperative partner.
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Figure 5.7: Sources for Hirlam Input Data (Image by courtesy of Swedish Me-
teorological and Hydrological Institute)

The focal goal of this Hirlam programme was the development of a novel nu-
merical forecast model that allows precise short-range weather forecasts. During
the last two decades, the Hirlam code has evolved as standard code for regular
weather forecasting in Scandinavia and the Netherlands.

In the Hirlam model the initial state is calculated from the current weather
situation. Starting from the previous weather situation that was valid at obser-
vation time, a first guess is calculated. This first guess then is compared with the
initial state calculation, representing the current weather simulation. Depend-
ing on the differences between the first guess and the real situation, the code
parameters are adjusted, getting a better matching with the current weather
simulation. By stabilizing this forecast step, the quality of weather prediction
increases.

The main code is called 3Dvar, consisting of a three dimensional variational
method. During computation parameters like temperature and humidity in 2
meter height as well as soil humidity are used. These parameters stem from
numberless measurement points, respectively adaptive estimates. Other codes
use additional parameters like wave and ocean circulation models. Figure 5.7
depicts the various sources for measurements, e. g. observations of temperature,
humidity, and wind coming from observation balloons (upper left), civil aircraft
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(upper middle), weather satellites (upper right), ground based stations (lower
left), or buoys in the sea (lower middle).

The Swedish Meteorological and Hydrological Institute (SMHI) as member
of the Hirlam programme also uses this code. Their main calculation is the 48
hours forecast, which has a computation time of approximately 6 hours, having
a maximum window of 1 hour. The compute power limits the quality forecast
model approximations within the calculation process. A typical run of the 48
hours forecast takes 150MB of input data and generates 3.2GB of output data.

This calculated forecast data is the basis for a variety of weather related
products that the SMHI is offering. As an example, SMHI is publishing the
regular weather forecast for Sweden to media and end-users.

5.2.1.1 Fault Tolerance Aspects

For calculation of the weather forecast, SMHI is using regular cluster technology.
Since clusters are build on standard computer components, single nodes of the
cluster are subject to failures at every time. However, the timely completion of
computations has to be ensured, even in the case of failures.

Due to the lack of fault tolerance capabilities in current cluster systems, SHMI
uses two cluster systems in parallel for executing the forecast. One of these
clusters is marked as operational cluster, the other one as backup. In case of no
outages, the result dataset generated by the operational cluster is automatically
used in the following product generation processes. If outages occurred on the
operation cluster, the backup cluster dataset is used instead.

Beside the disadvantage of high administration costs, this type of fault tol-
erance for SMHI has the main problem in hardware scalability. Since forecasts
constantly strive for higher precision, the demands on the computation hardware
rise. For SMHI it gets difficult to cope with this, since both cluster systems and
their entire environment (e. g. networks, storage, or backup) have to be upgraded
in this scenario.

Even if the 48 hours forecast is the main application, SMHI is also executing
further simulations and calculations. In the light of cost efficiency it would be
beneficial to use existing high performance cluster infrastructure. However, the
resource management of this system would have to ensure that these additional
tasks do not impact the main application.

As partner of the HPC4U project, the National Supercomputing Center (NSC)
at the University of Linköping is closely cooperating with SMHI. NSC operates
a cluster for SMHI, where these Hirlam calculations are executed in the HPC4U
environment. Compared to standard clusters, this infrastructure underlined
its capabilities in successfully coping with resource outages, while holding the
requested deadline.
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5.2.2 Centre of Excellence in Aeronautical Research

CENAERO is an SME (small/medium enterprise) located in Charleroi, Belgium.
It was funded in 2002 as a center for applied research with a strong focus on the
development of new simulation methods for the aeronautical domain. Current
research at CENAERO focuses on various domains, e. g. virtual manufactoring,
damage and fracture mechanics, or flow simulations.

Being located in the same city as CENAERO, the project partner CETIC
established the link to a working group at CENAERO focusing on the design
of three-dimensional turbomachinery blades. This group is working on estab-
lishing an integrated design process starting from the CAD (computer aided
design) application, continuing with CFD aerodynamic computations and FEM
structural mechanic computations, and finally feeding back simulation data to
the design process.

In this context, the optimization of complex shapes is a highly compute inten-
sive task. Various CFD solvers can be used, each offering different optimization
algorithms. Here CENAERO is working on an automatic shape optimizer, tak-
ing various parameters into account. This solver is called MAX, capable of
performing objective optimization.

5.2.2.1 Fault Tolerance Aspects

CENAERO operates its own supercomputing infrastructure, using the compute
power to execute simulations using the MAX solver. Depending on the input
dataset, a single run can block the entire cluster system for up to two weeks.
Due to the nature of MPI-1 parallel applications, even the outage of a single
node results in a failure of the entire application.

Even if CENAERO does not have to fulfill deadlines for job completion on
the MAX solver, the amount of wasted compute power in case of resource out-
ages is immense. Moreover the failure of a long running simulation delays the
development process, impacting the efficiency of the employees working in the
development group.

In the cooperation between CENAERO and HPC4U, cluster systems of CETIC
are used as evaluation platform. The MAX solver application is running in fault
tolerant mode without any modifications necessary on the binary. In case of re-
source outages the computation does not restart from scratch, but the MAX
solver resumes as planned from the latest checkpointed state.

5.3 Key Requirement Security

Service level agreements are contractual agreements, defining all expectations
and obligations in the business relationship between service consumer and ser-
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vice provider. Integrating service level agreement awareness to resource man-
agement systems is inevitable when commercializing Grid infrastructures.

Having this as core idea of this work and central objective of the HPC4U
project, dissemination of architectures and achievements started. While talking
to potential users it became obvious that the understanding of the terms of a
contractual agreement exceeded the initial considerations. This impression was
underlined by discussions held with representatives of the special interest group
of the HPC4U project.

Beside the envisaged goals of fault tolerance, deadline compliance, and ser-
vice quality adherence, security was of focal interest. These security demands
exceeded the expected scope of access control or encryption of data transfers.

In particular providers raised the issue that they have to ensure a high level
of security to their customers. This does not only include the establishment
of firewall mechanisms separating the internal computing infrastructure from
the public Internet. Security mechanisms are also required within the compute
center, preventing malicious customer jobs from causing any damage.

This demand of establishing security contexts for executing jobs within cluster
systems is new in Grid computing as well as resource management community.
However, it is a central demand of many commercial stakeholders. If commercial
providers should be attracted to provide their resources to their customers by
means of Grid technology, both partners have to be available to negotiate also
on these aspects.

For the negotiation process this novel requirement can be solved quite eas-
ily by introducing new service description terms. At level of resource manage-
ment this demands novel mechanisms, allowing to establish intra-cluster security
mechanisms as well as their surveillance at runtime.

Firewalls will be a major instrument in realizing inner system security. By
establishing micro-firewalls on the nodes of the cluster system, the resource
management system is able to partition the hosts according to their job assign-
ments. In case of malicious jobs running in one partition, these jobs would have
no opportunity to contact nodes of the cluster not belonging to their partition.

Customers will be able to request the execution of their jobs within these
restricted environments by adding this as parameter in the negotiation process.
At runtime the RMS is in charge of configuring the micro-firewalls on all nodes
accordingly.

Additional security can be achieved by installing intrusion detection systems
(IDS) within the cluster. These software systems are analyzing network traffic,
trying to detect unexpected data flows. This mechanism further increases the
security level of micro-firewalls, since attacks may be detected by the IDS, even
if they successfully passed the activated micro-firewall.

Kernel hardening further increases the level of security. Beside removing
unnecessary software packages or protection of daemons by means of network
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transport protocols, this also includes the usage of specifically patched kernels
(e. g. introduction of user stack areas for non-executable code only, which makes
it more difficult to get root privileges by provoking buffer overflows). As a
matter of fact kernel hardening is no system service which can be enabled.
However, the resource management system could boot the compute node with
a hardened kernel prior job execution. This way suspicious jobs (e. g. submitted
by untrusted Grid users) may be executed in a specifically secured environment.

Beside kernel hardening sandboxing is another way for securing the system
against malicious code. Instead of executing the job in a vulnerable environ-
ment, it is executed in a specific partition of the cluster system, which is not
physically connected to the other compute nodes. Malicious jobs could only
attack other jobs running in this sandbox area of the system, but no valuable
jobs of important customers. Sandboxes can also be realized by means of virtual
machines, virtualizing the execution environment for the started questionable
job. If this job wants to attack a job running on another node, it first has to
succeed in escaping from his virtual environment.

If a Grid technology and Grid-enabled resource management system really
should enter the domain of commercial stakeholders, security functions like the
mentioned mechanisms have to be provided. Moreover customers could ask
for execution at security certified providers, which have to follow regulations
of these certificate programs. Here, providers would not only have to establish
security mechanisms at their local site, they also have to prove the appliance in
a given form.

Currently a diploma thesis [71] is focusing the introduction of security mech-
anisms in the RMS domain. Beside the analysis of available methods and tools,
this work will also present a prototypic implementation. For attracting addi-
tional user communities for the idea of SLA-aware resource management, these
achievements will then also be implemented within the scope of the project.
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The development of SLA-aware resource management aims at closing the gap
between functionality demands of Grid middleware and capabilities of current
resource management systems. Commercial users demand their Grid infras-
tructure for contractually fixed service quality levels. At the bottom line these
demands have to realized by means of local RMS, which are offering their re-
sources to the Grid infrastructure. By introducing SLA-awareness to these RMS,
the Grid middleware is enabled to base their binding promises to the customer
on binding promises given by providers.

Numerous research groups and projects worldwide focus on introducing SLAs
in Grid Middleware. This chapter will highlight major developments of both
ongoing and already concluded developments. It will also point out intersec-
tions, distinctions, and connecting points to SLA-aware resource management
presented in this work.

Checkpointing and migration are important building blocks for realizing SLA-
compliance in case of resource outages. This chapter will also present develop-
ments within the domain of resource management focusing on these aspects.
Furthermore this chapter will also address base technologies required in the
subsystems of this SLA-aware resource management system.

6.1 Service Level Agreements in Grid Middleware

In [35], important requirements for the Next Generation Grid (NGG) were de-
scribed. Among those needs, one of the major goals is to support resource-
sharing in virtual organizations all over the world. Thus attracting commercial
users to use the Grid, to develop Grid enabled applications, and to offer their
resources in the Grid. Mandatory prerequisites are flexibility, transparency,
reliability, and the application of SLAs to guarantee a negotiated QoS level.

6.1.1 Advance Reservations and GARA

Traditionally resource management systems are queuing based. Having one
queue or multiple queues with different priorities, new jobs are assigned into
such a queue. Resources of the cluster then are assigned to jobs in the front of
these queues. Due to the fact that the user does not have to specify the runtime
of his job, the system does not now the finishing time, nor the time when an
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arbitrary job within a queue will come to execution. The targeted field of usage
of these system clearly was high troughput computing (HTC), not the provision
of service guarantees or realization of reservations.

For ensuring the availability of (compute) resources at a given point of time,
advance reservations have been introduced. Here, the user is not only able to
specify the amount of required resources, but also the required time frame. Ad-
vance reservations first have been introduced by means of high priority queues,
bringing the particular job in front of that queue directly to execution.

The Maui scheduler [68] is not a resource management system itself, but
a plug-in scheduler component which can be integrated into several other re-
source management systems (e. g. Loadleveler [51], OpenPBS [83], or Sun Grid
Engine [92]). Maui does not replace core system components, but enhances
the already existing scheduler by new features like job priorities or configurable
node allocation and backfilling policies [17]. Since the concept of reservations
has also been introduced to Maui, reservations are available in a number of
resource management systems after installation of the Maui scheduler.

Development on the Globus Toolkit began in the early days of Grid computing
(ref. Section 2.2). Already at that time the demand was recognized for guaran-
teed service provision, e. g. the guaranteed availability of compute resources at
a specific point of time, so that the orchestrated operation of workflows can be
realized.

Another targeted field of application was the multi-site execution of parallel
application. Here the execution of an MPI-parallel job is split to resources
of different Grid sites (e. g. execution on nodes of different clusters systems).
Prerequisite for making multi-site execution work is the simultaneous availability
of compute resources, so that the multi-site distributed instances of the MPI-
parallel job could start in parallel.

Since providers invest remarkable amount of budget in highly sophisticated
network technology bringing high capacity and low latency, the performance of
multi-site jobs using standard LAN or even WAN connections was unsurprisingly
poor. This type of parallelism only is reasonable in cases where problems are
to be computed not fitting on a single parallel machine (e. g. due to required
number of nodes or available main memory), so that performance is not the
decisive factor. Hence multi-site application never became mainstream usage.

In the late 90s the development on an architecture began which supported
the co-allocation of multiple resource types within the Globus toolkit, e. g. pro-
cessors on compute clusters or network bandwidth. The Globus Architecture
for Reservation and Allocation (GARA) was first presented 1999 in [50]. The
designers of GARA were aware of the fact that only few resource management
system (e. g. for compute resources or networks) were able to provide reservation
mechanisms.

To rise acceptance of GARA in a non-reservation environment, "wrapper"
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functions were introduced [28, 88]. First, these functions unified the access to
resource managers. This way upper level layers do not have to know about
calling details of different resource managers. Second, these wrapper functions
tried to emulate missing functionality as good as possible. This way it was pos-
sible in some cases to provide reservation service even if the underlying resource
manager does not provide it originally.

In GARA reservations were specified using RSL [89] (resource specification
language). The user had to specify his reservation demands in form of an RSL
coded request. If GARA was able to comply with this request, it returned a
handle to the application, which then could be used to consume the reserved
resources. Beside creation and deletion, GARA also supported the modification
of agreed reservations, given that the modified reservation could be realized on
the requested resources. At runtime GARA allowed the monitoring of reserva-
tions using both polling (i. e. user actively requests for information about the
current state) and pushing (i. e. user specifies a callback function, which is then
called by GARA for submitting information about the current state).

GARA has been an important step towards an integrated QoS aware resource
management, setting the first step in introducing SLA-awareness in Grid mid-
dleware. However, GARA had to deal with the same limitations as current
SLA-middleware components. For realizing reservations it has to rely on failure
free operation in service providing resource management systems. Moreover it
does not support internal resilience mechanisms to handle resource outages or
failures.

6.1.2 Service Negotiation and Allocation Protocol

The next important step in introducing guaranteed service provision into Grid
middleware was done with the Service Negotiation and Allocation Protocol
(SNAP) [62]. It describes the requirements and procedures of a protocol for
negotiating SLAs within Grid middleware, in particularly focusing on the multi-
phase nature of this negotiation process: beginning with service requests from
the user and the discovery of appropriate providers, followed by negotiation and
reservation, up to configuration, monitoring, or re-negotiation. SNAP provides
a model allowing to perform these steps.

SNAP addressed the fundamental problem of competing interests of service
consumer and service provider within the service negotiation process. On the
one hand the service consumer is interested in a maximum level of understand-
ing and insight. On the other hand the resource provider aims at retaining a
maximum level of autonomy and control over the resources in his administra-
tive domain. Even if the provider will not undisclose all information about his
resources, the user (or an automated system at Grid middleware, like a Grid
broker service) has to be able to determine if a resource is appropriate for a
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given job and what performance and service characteristics can be anticipated.
For this purpose SNAP proposes the introduction of three different kinds of

service level agreements:

• Resource Acquisition Agreement (R-SLA): These SLAs are solely agree-
ments regarding the right to consume a specific resource in a given manner.

• Task Submission Agreement (T-SLA): By means of this SLA a resource
can be informed about an upcoming task.

• Task/Resource Binding Agreement (B-SLA): Bringing together an agreed
R-SLA with an agreed T-SLA. This way a given resource can be used for
a given task.

The SNAP protocol decouples the negotiation process, allowing the distinc-
tion between resource related parts and task related. This is important if tasks
can only be provided in a specific resource environment. Resource providers
in this case can only agree on providing a task if the resource environment is
known in which this task is to be performed.

SNAP raises a general problem on SLA negotiation in Grid middleware. By
distinguishing between R-SLA, T-SLA, and B-SLA the middleware components
are able to first all required hardware components, then to check if tasks can be
mapped in this environment, and to finally assign tasks to the resources.

These basic considerations did not only enter the development of the proto-
cols WS-Agreement and WS-AgreementNegitiation within the GRAAP working
group of the Global Grid Forum (ref. Section 2.3.1.3). It primarily impacted the
development of OGSI Agreement [60], a mechanism at level of Grid middleware
to create OGSI compliant Agreement Services.

However, the problem of SLA mapping on dynamic composition is affecting
more the workflow broker at Grid middleware as the submission of a single
task. Therefore the impact for the local resource manager is limited, because
this system is always able to decide on the contents of a single negotiation
request.

The resource manager developed in this work only supports a subset of the
state defined in Section 2.3.3. In particular, it does not support re-negotiation,
which would be vital for mapping a task to an environment that has not been
specified at initial negotiation time. The focus of this work is on reliability and
fault-tolerance. It gives an answer how a local resource provider can adhere
to the contents of an agreement, in case his local resources do not operate as
planned. This aspect of fault tolerance or even failure handling and recovery
has not been handled by SNAP.
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6.1.3 Grid Broker Services

Compared to advance reservations, SLAs offer a greater scale of freedom. In-
stead of finding available time slots for the resources at provider level, a more
flexible SLA can be negotiated, e. g. defining a deadline as latest possible time
for completion of a given task in a branch. Hence, broker services in particular
benefit from SLA technology in Grid middleware level. Grid brokers are respon-
sible for mapping a workflow to available Grid resources. These workflows can
either be defined by the user in his service request, or selected by the user from
the broker’s repository of known workflows.

Broker services can also perform the task of Grid level schedulers (also known
as superschedulers). These components are responsible for acting as match-
makers between service customer requests and available resources. According
to internal scheduling policies they decide which job will be executed by which
provider.

Research on scheduler services and Grid broker services is focused in numerous
research projects. Selected projects of particular importance will be highlighted
in the following.

6.1.3.1 GRUBER/DI-GRUBER SLA broker

The development on the GRUBER broker system [9] started at the Computer
Science Department of the University of Chicago and the Argonne National
Laboratory. This location underlines the close relationship with the Globus
Toolkit. GRUBER allows the automatic selection of resources that are available
within a virtual organization, following restrictions and rules specified in the
virtual organization’s policy.

Within the GRUBER approach a job is characterized by the properties of VO-
membership [48, 99], group (defining the execution context), required processor
time, and required storage space. The broker now has to find an assignment
that satisfies all policies and optimizes regarding provider/VO utilization or
other objectives.

The GRUBER system consists of four main components. The engine encom-
passes all algorithms necessary for determining optimized resource assignments.
The site monitor is acting as data provider, publishing selective numbers about
the local resource system to the Globus environment. The site selector is respon-
sible for selecting a resource provider for execution of new tasks. The algorithms
of this selection process are part of the engine, so that these two components are
communicating. The queue manager is installed on submitting hosts, deciding
which jobs can be executed at what time.

GRUBER has been implemented in Globus Toolkit versions 3 and 4, both for
web-service and pre-web-service flavors. It is promoted as part of the official
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Globus toolkit family, e. g. at Supercomputing 2005 conference, and therefore
has significant impact in the Grid broker domain. The DI-GRUBER [10] ar-
chitecture is an enhancement of the GRUBER system, allowing it to work in a
larger scale Grid. In contrast to GRUBER, DI-GRUBER has no single point
within the system for taking scheduling decisions. Instead, schedulers are work-
ing independently, exchanging information only rarely and in a loosely coupled
fashion.

Even if GRUBER is called to be an SLA broker service, the notion of an SLA
differs significantly from the ideas of this work. Here, an SLA does not cover any
service quality parameters, but only basic job profile information. This is due to
the fact that GRUBER has been developed for the classic Globus environment,
which is using queuing based resource management systems only for realizing
jobs. For GRUBER the specification of processor time and storage space is
essential to find an optimal match to those systems.

This origin is also underlined by the architecture of the system. Instead of
negotiating on these systems, GRUBER demands special services running on
these machines, publishing data like utilization to the central GRUBER compo-
nent. This central component then takes the scheduling decision, without the
option of interference from the local RMS. Commercial providers in particular
strive for obtaining their local autonomy when providing their resources to Grid
systems. Therefore it is doubtful if this approach will be accepted here.

6.1.3.2 White Rose Grid

The White Rose Grid (WRG) [102] is a center of excellence, funded by the
British eScience initiative. WRG started in 2002 with the universities of Leeds,
Sheffield, and York as providing a Grid infrastructure. It is accessible via Globus
Toolkit and provides various services on computation, e. g. data storage or local
compute clusters. Furthermore WRG provides access to selected applications
over dedicated Grid portals. This infrastructure is used as platform for various
other projects in the eScience initiative.

With a rising number of resources, applications, and users the need for a bro-
ker service increased. The realization of this broker service [24] also enabled
the execution of workflows on the WRG, since the broker service was respon-
sible to find and allocate suitable resources for each workflow step. It tries
to match the requirements of each particular workflow step with the profile of
available resources. This broker supports the negotiation of SLAs both between
user/broker and broker/resource. It implements the SNAP protocol (cf. Section
6.1.2), where the T-SLA represents the user’s specification of the task require-
ments, R-SLA represents the discovered and allocated resources, and B-SLA the
assignment of a task to a resource.

For realizing tasks on compute resources, the WRG broker service has to uti-



6.1 Service Level Agreements in Grid Middleware 111

lize local resource management systems, providing their resources to the WRG
Grid infrastructure [57, 56]. Since the WRG aims at providing a higher service
quality to the upper layers, a gap between the provider capabilities and the
broker demands becomes apparent.

This problem even reveals during the allocation process. If matching multi-
ple tasks to multiple resources, the broker asks the Grid information service for
providers offering appropriate resources, followed by the direct request at these
providers for the current state of these resources. Since the provider does not
provide SLA negotiation mechanisms, the broker can not be sure that the discov-
ered resources are still free at a later point of time in the internal matchmaking
process. In that case the broker would have to repeat the entire matchmaking
process, hoping that resources remain free until the end of the matchmaking
process this time. This problem is answered by starting processes on the partic-
ular provider machines, directly notifying the broker about availability changes.
Beside these basic negotiation problems, this architecture also has to rely on
the reliability of local systems, not offering any fault tolerance.

The results from this work would perfectly complement the functionality of
the WRG broker. In fact, an active cooperation with the University of Leeds has
already started in the scope of the EC-funded project AssessGrid [4]. Having
an interface available offering the standard WS-AgreementNegotiation protocol,
the WRG broker as regular Grid middleware component may directly start
negotiations on new SLAs with the SLA-aware cluster.

6.1.3.3 NextGRID

NextGRID [74] is an EC-funded project, started in the same call as the HPC4U
project (cf. Section 4.1). The focus of NextGRID is to work on tomorrow’s Grid
systems. Following the demands of the Next Generation Grid reports [34, 35, 59]
this explicitly includes commercially successful Grids and the evolvement of new
business models. Hence, the introduction of service level agreement technology
into various Grid architecture elements is of central importance.

As novel key element NextGRID will introduce partnership SLAs (pSLAs),
spanning over the entire lifecycle of a commercial business service: starting at
negotiation time, followed by deployment, execution, and monitoring, up to
accounting and decommission. Even if the service is a leading principle here,
the basic idea of a pSLA equals a regular SLA: a contractual agreement of all
obligations and expectations between provider and consumer.

The NextGRID project will also work on realizing broker services, execut-
ing services by means of locally available resources at provider level. Even
if no implementations of this broker service exists yet, this broker will have
similar limitations like the WRG broker. These limitations are given by the na-
ture of non-SLA aware resource management systems used for executing jobs.
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In the scope of European collaboration, NextGRID is following the achieve-
ments of HPC4U. Presuming the interoperability of NextGRID’s SLA approach
with common standards, SLA-aware resource management will also allow the
NextGRID broker to negotiate on service levels with local resource providers.

6.1.3.4 SLBSH Project

The focus of the British EPSRC funded project Service Level Based Scheduling
Heuristics (SLBSH) is to evaluate the impact of SLA based system management.

In the scope of this project, Yarmolenko et al presented the results of a pa-
rameter study in [98]. Due to the lack of SLA infrastructure and components,
they implemented a simulation environment assuming a central scheduler in-
stance (in this paper called coordinator, acting as the one and only connecting
component between incoming requests and available resources. In this scope,
resource requests only differ in the four available service level objectives (earliest
start, deadline, runtime, number resources).

Even if this paper has interesting results regarding the efficiency of scheduling
algorithms in specific load scenarios, it assumes a simplified reality. Real world
will neither work with a central scheduler component, nor with unified resources
or four service level objectives only. Moreover this work assumes that the local
resource provider will accept all incoming jobs until his schedule is utilized
(which is known in advance by the coordinator by taking the difference between
submitted jobs and available resources). It neglects the existence of local users
directly submitting jobs to their system, as well as schedulers in local RMS
aiming at different goals, e. g. not optimizing for utilization but revenue.

Furthermore the failure aspect has not been regarded in this work. Instead of
expecting failures at local resource level - the driving assumption of this work
- , all jobs are assumed to be executed as agreed. Thus it does not regard the
impact of these events to the schedule quality at Grid middleware level.

Having this work implemented and used in real practice, resource failure pro-
files for these simulations may be extracted from logfiles and scheduler traces.
In general results from this work could be beneficial in general if thinking about
understanding of the work of an SLA-aware resource management system.

This statement also holds valid for earlier work of this group, where Yarmo-
lenko et al evaluated policies for negotiation with resources [98]. The paper does
not focus on local resource management systems but broker services only. The
realizability of these policies is questionable, since the local resource manage-
ment system only has full control over the resources. Only if this RMS agrees,
upper layer instances may have impact on questions like fault tolerance and QoS
provision.
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6.1.4 Grid Economy

Introducing service level agreements on all levels of the Grid - including the local
resource management systems - is only just the first step towards a commercial
Grid system. Business customers do not only request for contractually fixed
levels of service quality. They also demand for traceability and verifiability.

The crucial question in this context is, whether the provider complied to all
requirements of the contract. The current approach of trusting the statement of
the resource provider obviously is not sufficient in business critical commercial
environments, where non-compliance results in severe penalty fees. Both parties
therefore have reasons for distrusting each other. The customer may accuse the
provider for violating terms of the SLA (e. g. providing insufficient network
bandwidth at runtime), but reporting SLA compliant operation. The provider
in contrast may refer to incomplete service requests received by the customer or
other external reasons for job failure, to prevent paying any penalty fees.

SLAs therefore do not only have to be negotiated and regarded in system man-
agement, their fulfillment also has to be monitored. In the optimal case this
monitoring is performed by neutral third party instances that both contrac-
tual parties can trust. Already in 2002 Sahai et al [2] addressed this problem,
proposing the introduction of an SLA monitoring engine at Grid middleware
level. This engine is fed with information from manageability interfaces of the
resources or other agents providing measurement data (e. g. SNMP agents for
network related information).

This problem is also targeted by the Brazil OurGrid project [84], having
Hewlett Packard Brazil as commercial partner. Service level indicators can be
used to assess the service properties of a provider, but how may an SLA auditor
service determine if reported service level indicators are trustful? In [3] an
architecture is proposed, introducing an inspector service and auditor service,
which both parties are trusting. The inspector service is interposed between
the provider and customer. Instead of directly accessing the service provider’s
interfaces, the customer accesses the service inspector, which masquerades the
provider’s service. This way the inspector can monitor all provided services and
report measurement information to an auditor service. This service then is able
to decide on SLA-compliant service fulfillment.

Presuming the trustworthy decidability of SLA-fulfillment (and therefore the
accepted enforcement of penalty fee payments), models on Grid economy have
to be developed. These models are representing novel business models which
should evolve in future commercial Grid systems. In [87] Buyya et al give an
overview about these Grid economic aspects. In this scope new Grid services will
be required, like Grid Trade Server (managing the selling process of resources
from providers to customers, applying pricing policies and ensuring proper ac-
counting) or Trade Managers (discovering resources available in the Grid that
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match the customer’s demands and optimize the costs).

6.2 Process Checkpointing

Process checkpointing is a well known technique for creating an image of a run-
ning process. Various checkpointing solutions exist, ranging from application
driven checkpointing operations up to kernel level solutions. A focal goal of
the HPC4U project is to provide fault tolerance to the application in a trans-
parent and non-intrusive manner. Thus, the HPC4U has to be able to provide
checkpointing services to the running application without the need of changing
or recompiling the application. For this reason, most available checkpointing
techniques are inapplicable within the project context.

Application level checkpointing solutions realize checkpointing and restart
by dedicated code segments within the application. Even if this is highly effi-
cient (due to the fact that only required information is written to the check-
point dataset file), it implies additional programming effort for the application
provider. If an application does not support checkpointing, the user of this
application has no opportunity to realize it on his own.

In contrast, user level or kernel level approaches do not require the applica-
tion source code to be changed. Where user level approaches provide specific
checkpointing libraries, kernel level approaches modify or enhance the operating
system kernel.

Most user level checkpointing solutions are realized as special purpose li-
braries, which then are linked against an application. For this, the application
in question has to be available in source code or at least in object code. In
contrast to kernel level checkpointing, user level checkpointing does not need
the kernel to be changed. At runtime the linked checkpointing libraries inter-
cept a certain set of system calls coming from the application. This way, the
checkpoint system can monitor the current application state and properties.

The Condor checkpointing solution [12] is a well known and widely used rep-
resentative for user level checkpointing solutions. Presuming that the Condor
checkpoint libraries have been linked against the application, the generation of
the checkpoint then can be initiated by sending a signal to the running applica-
tion. This signal then is caught by routines in the checkpointing library. Even if
Condor does not require any modifications of the application itself, the program-
mer of an application has the opportunity to actively support the checkpointing
system. Using checkpoint library provided functions, the programmer can for
instance mark specific parts of functions in his application as not interruptible.

Beside the necessity of linking additional libraries against the application,
user level checkpointing approaches have additional drawbacks, like the inability
of accessing kernel level information about the process, or limited support of
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process groups. These systems also have limited capabilities for restart and
migration, since they cannot modify all application properties, like the ID of
the running process.

Particularly due to the necessity of linking additional libraries against the
application, these approaches are not applicable within HPC4U. The goal of
application transparency implies that any kind of application may benefit from
fault tolerance mechanisms, not only those where source or object code is avail-
able. The user does not even have to know about the system’s fault tolerance
abilities. Therefore, HPC4U solely focuses on kernel level approaches on realiz-
ing checkpointing.

The HPC4U project will have two vertically integrated systems as project
outcomes. The commercial outcome will consist of commercial components for
the storage, process, and network subsystems, whereas the non-commercial out-
come will consist of non-commercial and open-source components only. Hence,
both outcomes will base on different systems for process checkpointing. The
commercial outcome will use the Metacluster system of IBM, the freeware ver-
sion will use Berkeley Labs Checkpointing and Restart (BLCR). Both systems
differ in their functionality and will be presented in the following.

It is vital that the target platform is compatible to the failing resource. If
both platforms are incompatible (e.g. if libraries are not available at target
node), the application will crash at restart. Therefore, the process subsystem
will generate a requirement profile of each checkpointed job. This profile will
be used by the resource management system for finding compatible resources,
which may be located on the same cluster system, a different cluster system
within the same administrative domain, or even somewhere else in the Grid.

6.2.1 Berkeley Labs Checkpointing and Restart (BLCR)

The BLCR system has been developed by the Future Technologies Group of
Berkeley Labs. Even if BLCR does kernel level checkpointing, it does not re-
quire the kernel to be patched. All checkpointing functionalities are realized
by means of kernel modules which have to be compiled specifically for the used
kernel configuration. The modules then can be loaded without the necessity of
rebooting the machine.

BLCR both supports Linux kernel 2.4 and kernel 2.6 and a large range of
processor architectures, including 64bit processors like AMD Opteron. BLCR
ships with the powerful feature of callbacks to user-level code. These callbacks
are triggered by BLCR if the system is about to generate a new checkpoint.
If an application uses these callbacks, it is able to release all critical resources,
i.e. which can not be checkpointed or released by BLCR. Examples for those
resources are open network connections and open files. After reception of this
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callback, the application can close these resources, re-opening them after check-
point has finished.

The BLCR system does not support the checkpoint of parallel applications by
itself. However, systems like LAM-MPI are providing the checkpoint of MPI-
parallel jobs by using the callback feature of BLCR. The user does not have to
modify his application for benefiting from this checkpoint capabilities, but only
to re-link against the MPI libraries of LAM.

While checkpointing, BLCR creates a file for each checkpointed process,
named context.pid, where pid is the process ID of that process. On check-
pointing parallel jobs, for each process and node a separate file is written, plus
a separate file for the mpirun process. The size of the checkpoint dataset approx-
imately equals the sum of memory allocated by the checkpointed application.

BLCR is used for the non-commercial outcome of HPC4U, since it is open
source and can be used free of charge even in commercial environments. Our
tests showed that it can be used with a large variety of applications, so that the
interested user can get a good first impression of the HCP4U system. However,
the system has some drawbacks compared to the commercial outcome, which
mainly affects the migration of processes to other machines. First, BLCR does
not virtualize the system environment. Hence, it restores all job parameters on
restart, e.g. process IDs. If the process ID is already used by another process,
the restart fails. The same holds valid if the application relies on node specific
properties, which differ on the node used as migration target. On checkpointing
MPI-parallel applications using LAM-MPI, the name of the source nodes is
stated in the checkpoint file. It is necessary to change this nodename to the
name of the target host for successful restart.

6.2.2 IBM Metacluster

Metacluster is a product of the HPC4U partner Meiosys, which has been recently
acquired by IBM. Metacluster is also a kernel level checkpointing solution. In
contrast to BLCR it requires the Linux kernel to be patched.

If an application should be checkpointed at runtime, it needs to be started
using Metacluster commands. This way, the Metacluster system will not only
start the application, but start it within a “virtual bubble” around the pro-
cess, presenting a virtual environment to the running process, e.g. consisting
of virtual network devices or virtual process IDs. The impact on the runtime
of the application due to the virtualization overhead is marginal and below one
percent. If a checkpoint has to be generated, the entire virtual bubble is check-
pointed. Since no recompilation or relinking of the application is necessary, this
checkpointing process is transparent for the running application.

The crucial benefit of running the application within a virtual bubble be-
comes apparent at migration. After the checkpoint dataset has been transferred
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to the target host, the Metacluster system resumes the job from the state of
the checkpoint dataset. For this, Metacluster again establishes a new virtual
bubble, where the application executes. Due to the virtualization of the envi-
ronment, the resumed application will not notice that it has been relocated to a
different machine. In case of network communication between multiple virtual
bubbles, Metacluster wraps the relocation of the jobs to new target machines,
so that jobs automatically communicate to the correct new target host. On
communicating with hosts outside the Metacluster system, this relocation can
not be provided, since Metacluster can only impact on virtual bubbles provided
by the system. However, Metacluster provides relocators for network traffic,
which fetch incoming network connections, relocating them to the new target
host, where the application processes the input.

HPC4U explicitly focuses not only on fault tolerance support for single node
applications, but also for parallel applications. Checkpointing mpi-parallel ap-
plications has additional demands on the checkpointing system, since it requires
the orchestrated checkpoint operation on all nodes as well as the checkpoint of
the network state (e.g. network stacks and in-transit packets currently trans-
mitted over the network). For this purpose, the HPC4U partners IBM and Scali
created the Cooperative Checkpointing Protocol (CCP), which ensures the ful-
fillment of these goals. At checkpoint time, Metacluster directly interacts with
the Scali MPI.

While checkpointing, Metacluster creates the checkpoint dataset consisting
of multiple files in a user specified directory. On checkpointing MPI-parallel
applications, this checkpoint dataset contains checkpointed process data from
all nodes as well as the network checkpoint. Similar to BLCR, the size of the
checkpoint dataset approximately equals the sum of memory allocated by the
checkpointed application.
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If commercial users should be attracted to use Grid environments for computing
their business critical and deadline bound jobs, Grids have to be able to provide
contractually fixed service quality levels. This demand also affects local resource
management systems, which are providing their resources to these Grid systems.
Grid middleware components can only agree on contractually fixed QoS levels,
if these agreed services can be realized by means of local resource providers.

Currently resource management systems are operating on the best-effort ap-
proach only. For realizing SLA-awareness in these systems, numerous compo-
nents are essential. Beside integrating mechanisms to enable the negotiation of
new SLAs with Grid middleware components, SLA-awareness primarily has to
be integrated in the system management process. Providers have to pay penalty
fees as agreed within the SLA contract. Hence, providers have to rely on their
resource management systems, delivering service with respect to all agreed QoS
demands.

SLA-awareness in particular implies the consideration of resource outages as
normal events in system management. Resource management systems operat-
ing business critical jobs have to be able to cope with resource outages or other
unforeseen system behavior. Fault tolerance mechanisms have to be integrated,
providing their service to the running application in a transparent manner. This
transparency is crucial since the main task of Grid middleware is the virtual-
ization of Grid resources. Moreover this transparency is crucial for supporting
commercial applications, where recompiling or relinking is not possible.

In this thesis an approach for realizing SLA-awareness in resource manage-
ment systems is presented, which complies to these demands. It provides an
interface allowing Grid middleware components to negotiate on new service
level agreements. The RMS only accepts new SLA-requests if all terms can be
fulfilled according to the current schedule and system condition. At runtime
the system uses its mechanisms to ensure the SLA compliance. For providing
transparent fault tolerance and consistency at restart, it furthermore uses the
services of subsystems for storage, process, and network.

For further increasing the level of fault tolerance, we introduced the idea of
cross-border migration, where resources on other cluster systems are used for
restarting a checkpointed job. If the resource management system is embed-
ded within a Grid infrastructure, the system can even try to migrate to other
Grid resources. This significantly increases the number of potential migration
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target resources. Potential resources must comply to all terms of the SLA of
the job to be migrated. Moreover the resource has to be compatible to its lat-
est checkpoint dataset. For verifying this aspect, a compatibility profile has
been proposed. This profile covers all aspects deciding the compatibility,e. g.
hardware properties or software library versions.

The implementation and realization of SLA-aware resource management has
been carried out in the scope of the EC-funded project HPC4U. With IBM,
Seanodes, Dolphin, and SCALI as commercial partners focusing on subsystem
functionality, it was possible to realize a vertically integrated system, ready to
be used in commercial and productive environments. Early experiences coming
from use-case experiments in the scope of the project confirmed the applicability
of transparent fault tolerance and migration mechanisms.

Discussions with potential users of SLA-aware resource management systems
also revealed the high importance of security demands. Beside general security
mechanisms, providers ask for methods to establish security levels within the
cluster system, e. g. isolating compute nodes by means of micro firewalls or
sandboxing functionalities. These security aspects have to be introduced as
negotiable QoS parameters as a prerequisite for broad commercial acceptance.

The focal goal of SLA-aware RMS is the adherence with all agreed SLAs. In
case of resource outages the number of spare resources is the limiting factor for
compensating the outage. The ability to migrate to cluster-external resources
significantly increases the RMS’ options, because it increases the number of
potential migration targets. While the compatibility between cluster systems
within the same administrative domain can be configured statically, this is not
possible for the migration to Grid resources. Here, information from the com-
patibility profile can be used to find compatible target resources.

However, even if the compatibility profile ensures the successful restart of
the checkpointed job on the migration target resource, Grid migration is not
promising in today’s Grid infrastructures. Firstly, the size of checkpoint datasets
can be huge, since a dataset also contains the storage contents of an application.
This problem currently can only be tackled by background replication of storage
contents at job runtime. As a matter of fact, this requires the precautionary
reservation of backup resources. Having network bandwidth steadily rising, on
demand migration of large datasets will become possible in the future.

The second problem relates to currently existing Grid infrastructures. Even
the EGEE [21] testbed as the largest currently existing Grid deployments only
encompasses approximately 100 resource providers with a total of 50000 CPUs.
The compatibility profile puts heavy demands on the potential target resource.
Even if all resource providers in this testbed were able to negotiate on SLAs,
the probability of finding a matching resource agreeing on all terms of the SLA
(in particular regarding QoS constraints like the demanded deadline) is fairly
low.
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Future Grid systems will consist of tenths of thousands of resource providers
operating millions of resources. Having a rising number of resources available,
also the probability of finding a migration target increases. Moreover, projects
like The Semantic Grid [91] strive on introducing semantically-rich methods in
Grid middleware. Systems like BabelPeers [36] allow the semantic description of
resources in large scale Grids, implicitly deducting new knowledge from available
resource descriptions. Having such semantic methods available, the knowledge
about compatibilities does no longer have to be specified entirely by the com-
patibility profile. Instead existing knowledge in the Grid can be harnessed for
finding migration targets.
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