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Deutsche Zusammenfassung:

Zufallige dynamische Systeme spielen in vielen Anwendungen eine grofie Rolle. Wir un-
tersuchen das Langzeitverhalten dieser Systeme. In dieser Arbeit geht es um die Dynamik
von stochastischen partiellen Differentialgleichungen mit dynamischen Randbedingungen.
Dabei werden zunachst parabolische Gleichungen, sowohl mit additivem, als auch mit
multiplikativem Rauschen, auf zufallige Attraktoren untersucht. Das Hauptresultat dieses
Abschnitts ist die Existenz eines Attraktors fiir das Boussinesgsystem mit dynamischen
Randbedingungen. Danach betrachten wir inertiale Mannigfaltigkeiten dieser Gleichun-
gen. Im letzten Abschnitt dieser Arbeit wird die Existenz eines zufélligen Attraktors einer
hyperbolischen Gleichung mit multiplikativem Rauschen gezeigt. Hierzu wird in diesem
Abschnitt auch ein neuer Ansatz mit milden Losungen verwendet.



Abstract:

Random dynamical systems are very important in many applications. We are interested in
the long—time—behaviour of these systems. In this work, the dynamics of stochastic partial
differential equations with dynamical boundary conditions are investigated. At first, we
consider random attractors of parabolic equations with additive and multiplicative noise.
The main result of this section is the existence of an attractor of the Boussinesq system
with dynamical boundary conditions. Then, we show the existence of an inertial manifold
of these equations. Finally, the existence of a random attractor of a hyperbolic stochastic
partial differential equation with multiplicative noise is proven. In this chapter, a new
method, based on mild solutions, is additionally used.
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Chapter 1

Introduction

The intention of this work is to study the dynamics of randomly perturbed parabolic and
hyperbolic partial differential equations with dynamical boundary conditions. The simplest
parabolic problem of this type is given as follows

?;;_Au — f(z,u)+mon D xR* (1.1)
au 6U o +
E_F%_’_C(x)u = g(x,u)+771 on 8DXIR

u(0,2) = wo(x), z€D, &€ oD
with a smooth bounded domain D C IR™ with boundary D and
u:RT x D —= R,

where v is the outer normal and 7);,7 = 0,1 are white noise terms. Later, these terms are
given by generalized temporal derivatives of a Wiener process with values in a function
space.

This type of stochastic partial differential equation (spde) has interesting applications, for
instance describing the dynamics of the ocean—atmosphere system. We can use this type
of equations to model the interaction of atmosphere and ocean. So we assume, that the
dynamics of the ocean takes place in D, while the dynamics of the atmosphere takes place
on the surface of the ocean denoted by dD. The time scales for the atmosphere are much
faster than the time scales of the slow ocean. Often all these short time influences of the
atmosphere are modeled by a noise term. A deterministic meteorological problem can be
found in [5]. The main difference to previous theory is that on the boundary not only the
noise is acting, but we have also a differential operator there.

However, our mathematical model is more general. It also allows a noise acting in the
domain D. In addition, we are going to study more general strongly elliptic differential
operators and its boundary conditions

ou -
a - Z 8xk(akj($)8x]u) + ao(x)u = f(a:,u) +mo on D X R*
kj—=1

ou =
El kZ1 vgag; ()0, + c(x)u = g(z,u) +m on D x RF
7]2
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where v = (v4,...,1vy) is the outer normal to 9D with sufficiently regular coefficients.
We will transform this stochastic partial differential equation into a non—autonomous dif-
ferential equation with random coeflicients, which has the advantage to avoid stochastic
differentials for technical reasons. For basic results about differential operators with dy-
namical boundary conditions, we refer to Amann and Escher [2], Escher [26], [25].

Our intention is to describe the dynamics of such a system, which is influenced by some
noise terms. We use the theory of random dynamical systems to describe the stochastic
dynamics of this kind of equations. This theory is explained in detail in the monograph
by Arnold, [3]. There are different approaches to investigate the long-time dynamics of a
spde. One way is to consider attractors of this spde. Attractors of these problems have
been investigated in [16] and [6].

The dynamics of stochastic parabolic partial differential equations with dynamical bound-
ary conditions have been investigated in [15, 16, 55].

This will be also done for hyperbolic equations in Chapter 8. Attractors of stochastic
hyperbolic pdes have been considered in [33] and [18].

Another way is to consider inertial manifolds to examine the finite dimensional long—time
dynamics of the equation (1.1). Such a manifold represents a set, which is positively
invariant and attracts all states of the phase space. In this sense, the inertial manifold
describes the essential long—time behavior of our random dynamical system. In addition,
this manifold is defined on a finite dimensional linear subspace of the phase space. This
allows us to model the dynamics of the original system on the inertial manifold by a finite
dimensional dynamical system which is called inertial form of the original system.
Invariant manifolds for finite dimensional random dynamical systems have been introduced
by Wanner [52], see also Arnold [3] and for deterministic partial differential equations by
Chow et al. [11], [12]. We also refer to Duan et al. [23], [22], Lu and Schmalfuf} [36],
for the existence of unstable manifolds for stochastic parabolic and hyperbolic differential
equations with additive and multiplicative noise.

This work is organized as follows. In Section 2 we introduce Cp-semigroups and the
basic theory of Sobolev spaces. In Chapter 3 we present main properties of dynamical
boundary problems. In the following the basic ideas of stochastic analysis in infinite
dimensions are given in Chapter 4 and are extended in Chapter 5 to random dynamical
systems. Then we consider attractors of parabolic equations in Chapter 6 with additive
as well as multiplicative noise. In this chapter, both simple reaction-diffusion equations
and a coupled problem (Boussinesq) are considered. In Chapter 7, we deal with inertial
manifolds of random dynamical systems. Finally, in Chapter 8, we investigate second
order in time spdes.



Chapter 2

Functional analysis

At the beginning, we give some basic tools in functional analysis. The first part of this
chapter is about semigroups of linear operators on Hilbert spaces. They are important in
the solution theory of partial differential equations. Then, we introduce the Lax-Milgram
theory, which connects bilinear forms and linear operators. Later on, we deal with elliptic
boundary value problems and introduce the Courant-Fisher principle, which is essential
to estimate the asymptotic behaviour of eigenvalues, which is needed in Chapter 7.

The second part is about Sobolev spaces and their embedding theorems. The derivatives
are understood in this setting in the sense of distributions. We also introduce Sobolev
spaces of fractional order, the Sobolev-Slobodetski spaces. Next, we introduce the trace
operator on the boundary as well for the function itself as for the normal derivative.
After that, we give the connection between semigroups and differential operators. In
particular, we show that semigroups are generated by linear operators. At last, we discuss
the generalized Poincaré inequality, which is essential to create the energy estimates in
Chapter 6.

2.1 Basic concepts

2.1.1 Semigroups of operators

In this section, we give basic definitions of the theory of semigroups of operators. More
details can be found in [41] and [37].

Definition 2.1.1
Let X be a Banach space. A one parameter family T(t),0 < t < oo, of bounded linear
operators from X into X is a semigroup of linear operators on X if

7(0) = 1d

and
T(t+s)=T({t)oT(s) V t,s>0.

The generator A of a semigroup is defined as follows:

3
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Definition 2.1.2 (Generator)
The linear operator A defined on

T(t)x —

T .
emsts}

D(A)={z € X : lim

t—0+
and given by
% for x € D(A)
is called the infinitesimal generator of the semigroup T. D(A) is called the domain of A.

We can define special types of semigroups, which have useful properties.

Definition 2.1.3 (Cp-Semigroup)
A semigroup T of bounded linear operators on X is called Cy-semigroup of bounded linear
operators if

ImT(t)r =2 Ve X.

t—0

These semigroups have the following property:

Theorem 2.1.4
Let T be a Cy-semigroup. There exist constants 6 > 0 and M > 1, such that

|T(t)|| < Me® for 0 <t < oo.

Here, || - || denotes the operator norm from X to X. The space of linear operators from X
to X is denoted by L(X).

We extend this definition to uniformly continuous semigroups. These semigroups are
generated by a bounded operator.

Definition 2.1.5
A semigroup of bounded linear operators T (t) is uniformly continuous if

lim || T°(t) — Id || = 0.
lim |7(1) ~1d | = 0

Example 2.1.6
Let X be a Banach space, A € L(X) a bounded linear operator. Define

T(t) = exp(td) = 3 (t;j!)n.
n=0

This semigroup is uniformly continuous. Conversely, every uniformly continuous semi-
group T on a Banach space X 1is of the form

T(t) = et

We have the following perturbation theorem from [41].
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Theorem 2.1.7 (Perturbation theorem)
Let B be the generator of a Cy-semigroup of operators. If L is a bounded linear operator
on X, then A = B+ L is the infinitesimal generator of a Cy-semigroup on X.

We want to know, whether a linear operator A is a generator of a Cy-semigroup. At first,
we define the resolvent operator.

Definition 2.1.8 (Resolvent operator/Resolvent set)
We define the resolvent operator of A for X\ € p(A) as

Ry=(\Id—A)"

The resolvent set p(A) of A is the set of all X\ € T for which the range of (A\Id—A) is
dense in X and the resolvent operator defined in Definition (2.1.8) is continuous. This
set is denoted as p(A).

We need some additional definitions from [27] to state the Hille-Yoshida theorem.

Definition 2.1.9
A linear operator is called closed, if we have for u; € D(A) and

up = u, Aup — v fork — o0

that
u € D(A) with v = Au.

Remark 2.1.10
A linear operator between two Banach spaces X and 'Y is closed, if its graph is closed.

Definition 2.1.11
A linear operator A between two Banach spaces X andY is called densely defined, if D(A)
1s dense in X.

With these definitions, we can formulate the Hille-Yoshida theorem, which can be found
in [51, p.51].

Theorem 2.1.12 (Hille-Yoshida)
A linear operator A : D(A) C X — X is the infinitesimal generator of a Cy-semigroup of
contractions if and only if

o A is densely defined and closed and
e (0,00) C p(A) and for each A >0

1
< =,
IRl L(x) < 3

The concept of dissipativity is also very important because dissipative operators generate
under additional assumptions Cy-semigroups, see Theorem 2.1.17. We take the definitions
from [41, p.13]. At first, we need to define the duality set.
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Definition 2.1.13
Let X be a Banach space and let X* be its dual. We denote the value of z* € X* atxz € X
by (z*,z) or (x,x*). So we can define for every x € X the duality set F(x) C X* by

F(z) ={a" 12" € X* and (2", 2) = |l2* = [|l*||*}.
Note that from the Hahn—Banach theorem it follows that F(x) # () for every xz € X.

In this case, || - || denotes the norm on X or respectively X*.

Definition 2.1.14
A linear operator A is dissipative, if for every x € D(A) there is a z* € F(x) such that
Re(Az,xz*) <0.

In a Hilbert space setting, we have the following theorem [51, p.59], which characterizes
dissipativity.

Theorem 2.1.15
A linear operator A : D(A) C X — X is dissipative if and only if, for each x € D(A) and
A > 0 we have

AIXI < [(AM = A)]|.

We have also the following remark from [51, p.59].

Remark 2.1.16
Note that, if X = H is a real Hilbert space with inner product (-,-), a linear operator is
dissipative, if for each © € D(A), we have

(x, Az) < 0.
It is now possible to state the Lumer-Phillips theorem [51, p.60]:

Theorem 2.1.17 (Lumer-Phillips)
Let A: D(A) C X — X be a densely defined operator. Then A generates a Cy-semigroup
of contractions, if and only if

A is dissipative, (2.1)

and
there exists A > 0 such that \I — A is surjective. (2.2)

We now recall some basic classifications of operators, we cite [51, Def. 1.6.3].

Definition 2.1.18
Let H be a real Hilbert space indentified with its own topological dual. An operator A :
D(A) C H— H is called selfadjoint, if

A= A"
An operator A : D(A) C H — H is called symmetric, if
(Az,y) = (z, Ay) for z,y € D(A).

Note that a selfadjoint operator is always symmetric.
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Another method to prove the existence of an infinitesimal generator of a Cy-semigroup
is the Stone theorem, which can be applied in the context of hyperbolic problems. The
theorem and the definitions are taken from [51, p. 72].

Definition 2.1.19
An operator U € L(H) is called unitary, if

U =U0"U =1d.

Theorem 2.1.20 (Stone)
The necessary and sufficient condition such that A : D(A) C H — H is the infinitesimal
generator of a Co-group of unitary operators on H is that 1A is self-adjoint.

The concept of Cy— semigroups can be extended to analytic semigroups.

Definition 2.1.21 (Analytic semigroups)
Let A={z€ C: ¢ <argz < pa,01 <0 < @a} and for z € A let T(z) be a bounded
linear operator. The family T(z), z € A is an analytic semigroup in A, if

o 2z — T'(2) is analytic in A.

e 7(0)=1d and lim T(z)x ==z for every x € X.

z—0,z€A
o T(z1 4 2z2) =T(21)T(22) for z1,29 € A.

We state some estimates from [41, p.72] on (operator—) norms of powers of operators,
whose infinitesimal generator is an analytic semigroup.

Lemma 2.1.22
There exist constants M > 0, M, > 0, § > 0 such that for t > 0 and m € Ny

o |T(t)]| < Me™,

o [AT(t)|| < Myt~te ™,

o [[AMT(t)|| < M, t~™e 0%
for M, M; > 0.

From [27, p. 435], we have the following Lemma about differential properties of semi-
groups:

Lemma 2.1.23
Assume u € D(A). Then

o T'(t)u € D(A) for each t > 0.
o AT(t)u =T(t)Au for each t > 0.
e The mapping t — T'(t)u is differentiable for each t > 0.

o LT(tyu=AT(t)u (t>0).
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2.1.2 Courant-Fisher principle

The Courant-Fisher principle is important to get estimates of the eigenvalue expansion of
linear operators, which is important in the gap conditon later in Chapter 7. This principle
is also known as the Minimax principle, see also [53].

Theorem 2.1.24
Let H be a Hilbert space and T a positive selfadjoint (see Definition 2.1.18) operator. The
eigenvalues of T are ordered as follows

AL > A > .. >0.

Then, we have

. (Tz, )
Ap = min  max )
Vozevi\{or (z,7)

The minimum is considered over all (n — 1)-dimensional subspaces V. V- denotes the
orthogonal complement of V.

2.2 Theory of linear differential operators

2.2.1 Sobolev spaces

Definition 2.2.1

In this work D C R™ is an open set and I' := 0D is its boundary. For technical reasons,
we assume that D is bounded, i.e. D is a bounded domain, otherwise one can assume that
the Poincaré inequality or the generalized Poincaré inequality, see Theorem 2.3.9, holds
on the domain.

On these sets, we can define some function spaces. These spaces are used for example
in problem (1.1) mentioned in the introduction. The functional analytic background is
important to understand the theory of existence and uniqueness. The theory of Galerkin-
approximation is also based on theory of embeddings and inclusions of LP-spaces. Another
important topic in this context is the measureability of a solution of a partial differential
equation. This measureability leads to a random dynamical system. To prove this mea-
sureability, we also need the theory of LP- and Sobolev spaces.

At first, we give the definition of the usual LP- and Sobolev spaces. Sobolev spaces are
introduced to investigate the derivatives of a function wu.

Definition 2.2.2
We denote by the Banach space LP(D) of the classes of functions u: D — R™ for1 <p <
oo the space of functions with norm

lull oy = ( /D @) d2)? < 0, 1< p< oo

The space L>®(D) is a set of functions defined on D with

esssup |lu(z)| < oo.
€D
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|| - || denotes the Euclidean norm on R", and ess sup, p the essential supremum, that is the
supremum on almost all x € D. We now introduce the concept of Sobolev spaces. We start
with integer k, later, we generalize this concept to Sobolev-Slobodetski spaces for general
non-integer k. These spaces are equivalent to the spaces generated by an interpolation
method, see [38]. The derivatives are considered in the sense of distributions.

In general, we assume that D fullfills the cone condition (see [1, p.82]).

Definition 2.2.3
D satisfies the cone condition, if there exists a finite cone C such that each x € D is the
vertezr of a finite cone C,, contained in D and congruent to C.

One can say, that for each x € D there exists a cone completely in D. This cone is
contained in a cone C, depending on the whole domain D.
At first, we introduce the multi-index notation.

Definition 2.2.4
Let k be a nonnegative integer number, o = (ou, ..., o), a; nonnegative integer numbers
with 9

lall = a1+ +an,  Dp=55, D% =Dy ... Dy,
We introduce the concept of the theory of weak derivatives. At first, we have to introduce
the concept of distributions, see [51, p.16]
Definition 2.2.5
Let D(D) the set of C*° functions from D to R with compact supports included in D. Let
a € Z" be a multi-index, a« = (aq,- -+ , ). We again set
8041+"'+an<p

D= T
LA P T

Definition 2.2.6

By a distribution on D(D), we mean a real-valued, linear continuous functional defined
on D(D) .

Now, we can define the exact meaning of weak derivatives.

Definition 2.2.7

Let a € IN" be a multi-indexr and u : D — R a locally integrable funtion, i.e. v € L'(O)
for every open subset O of D. By definition the derivative of order a of the function u in
the sense of distributions over D(D) is the distribution D*u defined by

(D%u, ) = (—1)lol / uD%pdx
D
for each ¢ € D(D), where ||a|| = a1 + - - - + an, is the length of the multi-index c.

Remark 2.2.8
If u is a.e. differentiable of order av on D in the classical sense and D“u is locally integrable,
then DYu coincides with D% with the following equality

(Dau,gp)—/ D%uyp dx
D

for each ¢ € D(D).
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Definition 2.2.9 Then, u is in WF(D) if

lullyy = (/ 3 HDO‘u(at)Hp>zladx < .

D llall<k

We concentrate on the case p = 2. Therefore, we set

Definition 2.2.10

W¥(D) = H*(D).
H*(D) is a Hilbert space with scalar product

(w,v)) = Y (D, D).

el <k

Definition 2211
The space C*(D) is the space of infinitely differentiable functions on the closure of D.

In this context, there are several embedding theorems about the relation between LP-
spaces und Wzﬂ“—spaces. Later, we consider the embeddings on the boundary. We have the
following Sobolev embedding theorem (see [43, Theorem 5.26]).

Theorem 2.2.12 )
Let D C R™ be a bounded C* domain. If u € H¥(D) and k < n/2, then u € L==2% (D)
with

Jul, 2y < Clllie oy
This theorem is generalized in theorem 2.2.19. From now on, we consider bounded domains
D and give the main results for space dimension n = 2,3 by applying Theorem 2.2.12.

Corollary 2.2.13
Assume that D is an open bounded set and n = 2. Then, we have the following continuous
embedding with a constant k depending on D

HY(D) c LY(D) for 1 < q < oo,
and
lullLapy < Ellull g (py-
In the case n = 3, we have the continuous embedding with a constant k depending on D
HY(D) c L%(D) for 1 < ¢ < o0,
and
ullzs(py < Kllull g (py-
We have the following Rellich-Kondrachov Compactness Theorem from [43, Theorem 5.32]:

Theorem 2.2.14
Let D be a bounded C' domain. Then H'(D) is compactly embedded in L?(D).

This theorem provides us, that a bounded subset of H! is a compact subset of L2.
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2.2.2 Sobolev spaces with non-integer order

At first, we introduce from [49] the concept of interpolation spaces. The main goal of this
section is to define Sobolev spaces of non-integer order. They have a close connection to
fractional spaces defined later in Chapter 3.1.1.

Theorem 2.2.15 (interpolation space)
Assume that X and Y are two Hilbert spaces, X C Y, X dense in'Y and the injection
being continuous. Then we have a family of Hilbert spaces [X,Y]p, 0 < 0 <1 such that

[X,Y]o=X and [X,Y]; = Y.

We have the following relation
XCX,)YpCVY

with continuous injections and a norm on [X,Y]y with the following properties
-0 0
lullpx vy, < c@O)lull X lluly, VYue X, VO e0,1].

Proof. The proof can be found in [35], the interpolation is understood in the complex
sense, see [1, p. 247]. O

Applying this theorem to our Sobolev space setting, we get the following interpolation
spaces from [49, p. 49], their definition is included in the corollary.

Corollary 2.2.16
Let a € (0,1) and m € IN. We define

H™(D) = [H™H(D), H"(D)]1-a.
For m =0, we set H'(D) = L?(D) and the definition is complete and consistent.

Alternatively, we define the Sobolev spaces with non—integer order by

Definition 2.2.17 (Sobolev-Slobodetski spaces)
Assume that s € (0,1),k € N. Then

H"*(D) = {u € H*(D) : |[ull gr+s(p) < o0},

2 2 [Du(x) — Du(y)|*
u o = ||u + E // dz dy.
el oy = 1l ) eI eyl

where

Remark 2.2.18
The interpolation spaces in Corollary 2.2.16 and the Slobodetski spaces are equivalent
spaces.

Proof. The proof can be found in [38, p. 81, p. 328]. O

We need also a Sobolev embedding theorem for fractional Sobolev spaces. Note that m is
not necessary integer—valued in the next theorem. The theorem is taken from [24, Theorem
2.4.5] and generalizes theorem 2.2.12.

Theorem 2.2.19
Assume, that D C R" is bounded and sufficiently smooth. Let additionally m > n(1/2 —
1/q). Then we have a continuous embbedding,

H™(D) C LY(D).
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2.2.3 L*(0,T; F) spaces

To consider evolution equations, we need the following function spaces, the definitions are
taken from Zeidler [56, p. 407]. These spaces are spaces involving time, which are very
useful in the context of evolution equations.

Definition 2.2.20
Let E be a Banach space with norm || -||g, 1 <p < oo and 0 <T < oco. Then LP(0,T; E)
is the space of all measurable functions u : (0,T) — E, with

T
1
|ullro,r;E) = (/Ilu(t)det)p < 00.
0

For p = oo we have the following definition:

Definition 2.2.21

The space L>°(0,T;E) consists of all measurable functions u : (0,T) — E, which are
bounded for almost allt € (0,T). We denote these functions as essentially bounded. This
means, there exists a number B, such that

llu(t)|| < B for almost all t € (0,T).

These concepts can be extended to continuous functions.

Definition 2.2.22
C™([0,T]; E), 0 < T < oo is the space of continuous functions t — u(t) € E, which have
continuous derivatives up to order m, with norm

m

elonoier = 3 s 1400

u® are the i-th distribution derivatives.

For m = 0 we set C™([0,T]; E) = C([0,T]; E).
From [56, Prop 23.2] we take the following proposition:

Proposition 2.2.23
C([0,T]; E) is dense in LP(0,T; E) and the embedding

Cc([0,T); E) C L*(0,T;E)

is continuous. Furthermore, if the embedding E C F, both Banach spaces, is continuous,
then the embedding

L"(0,T;FE) Cc LY0,T,F), 1<¢g<r<oo
18 also continuous.

We have also embedding theorems, which give connections between LP(0,T; E') and C™([0,T]; E)
spaces. One important theorem is the following theorem of Dubinskij, see [50, p. 123].
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Theorem 2.2.24
We have
Eo CcFEC E1

a continuous embedding, which are all reflexive Banach spaces, and the first embedding
from Ey into E is compact.

Let 1 < g < 0o and M bounded in L4(0,T'; Ey), which is equicontinuous in C([0,T]; E1).
Then M is relatively compact in L9(0,T; E) and C([0,T]; E1).

We cite another theorem from [47, Theorem II1.2.3] which is used in Chapter 8 to obtain
the existence of weak solutions of an evolution equation.

Theorem 2.2.25
Assuming that
Eo CcFEC E1

are Hilbert spaces with continuous injections, and the injection of Fg into E is compact.
Then the injection of

Y = {u € L*(0,T; Ey),u’ € L'(0,T; E)}

into L*(0,T; E) is compact.

2.3 Spaces on the boundary

We extend the theory of Sobolev spaces on product spaces. At first, we introduce the
trace operator and give some embedding theorems.
2.3.1 'Trace operator

Now, we explain the meaning of the trace operator . v can be seen as a projection of a
function from the inner domain D on the boundary dD. We have the following definition
from [43, p. 129]:

Definition 2.3.1
We say that D C R™ is a bounded domain of class C* or a bounded C* domain provided

that at each point xo € OD there is an € >0 and a C*-diffeomorphism ¢ of B(zo,€) onto
a subset B of R™, such that

e p(zg) =0,
e p(BND)CRY and
e p(BNOD) C ORT,

where
R = {z € R™: z,,, > 0}.

Moreover, we have the following theorem, which implies the definition.
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Theorem 2.3.2
Suppose that D is a bounded C'-domain. Then, there exists a bounded linear operator

v : HY(D) — L*(0D),
called the trace operator, if for allu € HY(D) N C°(D)

YU = U’(‘?D-

The proof of this theorem can be found in [43]. We have to clarify, in which sense Sobolev
spaces on the boundary are understood, see [43, p. 145]. We can define H*(0D) by
identifying OR'}" by R™ 1

We can extend this theorem to a trace theorem on Sobolev spaces.

Theorem 2.3.3
Suppose that D is a bounded C* domain. Then there exists a bounded linear operator

~: HY(D) — HY*(0D),
called the trace operator, such that for all uw € H(D) N CY(D)
Yu = ulop.

The proof of this theorem can be found in [54, p. 130]. This theorem can also be generalized
to normal derivatives. We get

Theorem 2.3.4
Suppose that D is a bounded C* domain and j —m > % and j < k —1. Then there exists
a bounded linear operator

Y+ HI(D) — [[ H~"2(0D),

=0
called the trace operator, such that for all u € H’(D) N CY(D)
w=(ulon 3lop 5 Ian)
TmU = oD, on 0D " onm oD)-

é% 1s the derivative into the direction of the inner normal.

The proof of this theorem can also be found in [54, p. 130] and we find there the following
remark.

Remark 2.3.5 B
The functions of C*°(D) are dense in H(D). Hence, the trace operator is uniquely defined.

We use the above definition of the trace operator and extend these concepts to product
spaces, see also Chapter 6.3.

Remark 2.3.6
Assume that U = (u,ur) € H = L*(D) x L*(T"). Then we write

1013 = Hall2aqpy + lall2eqry = luld + furl.

We often set ||ul|p = ||u|| and ||ur|r = ||ul|r.
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2.3.2 Generalized Poincaré inequality

We have the following lemma as a special case of the Generalized Poincaré inequality from
[51, p.19]. This theorem is very important to obtain the energy estimates with dynamical
boundary conditions.

Theorem 2.3.7 (Friedrichs)
Let D be a domain in R"™ whose boundary is of class C'. Then there exists ky > 0, such
that for each uw € HY(D), we have

lullFr iy < k1 (IVullZepy + lullZaqry)-
This theorem has the following consequence:

Theorem 2.3.8
Let D be a bounded domain in R™ whose boundary is of class C1. Then | -, : H'(D) —
R, defined by

1
ully = (IVullZ2py + lullZ2ry) ?
for each w € HY(D) is a norm on H'(D) equivalent with the usual one.

The Friedrichs inequality can be generalized in the following way:

Theorem 2.3.9 (Generalized Poincaré inequality)

Let D be a bounded and Lipschitz set in R™, i.e. I' = 0D is locally the graph of a Lipschitz
function and let p be a continuous seminorm on H™(D), which is a norm on Pn,_1 (the
polynomials of order lower or equal (m —1)). Then there exists a constant c¢(D), such that

lull oy < e(D)( Y 1Dl 2(p) +p(w))  Vu € H™(D). (2.3)

[lel|=m

Proof. We adapt the proof from [54, p. 121]. Assume that inequality (2.3) does not hold.
Then there exists a sequence (p,) € H™(D) with

el Frmpy =1

and
1= ll@nllFmepy > n( D 1D%enll72(py + Plen))- (2.4)
We have that
D™, — 0 in L*(D). (2.5)

On the other hand, the embedding theorems and Theorem 2.2.14 state, that (¢,,) is also
relatively compact in H™!, we have a subsequence (y,), which has for simplicity the
same notation, with

©n — @ in H" (D).

We obtain by equation (2.5) that

on — @ in H™(D).
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Equation (2.5) gives us that ¢ € P,,,—1 and inequality (2.4)

lim p(en) = p(p) = 0.

n—oo

Due to the assumptions on p, we gain that ¢ = 0, a contradiction to inequality (2.4).
O

Examples of seminorms p(u) can be found in [48, p.51].

2.3.3 Green’s formula

In the context of integration by parts, we use the following Green’s formula from [27,
p.712].

Theorem 2.3.10
Let u,v € C?(D). Then

/ VoVudzr = —/ ulAv dx + dyvu dS,
D D oD

where dS is the integration w.r.t. the boundary.

2.4 Concepts of solutions

In this section, we introduce the different types of solutions of nonlinear initial value
problems. The notations and definitions are based on [41, p. 105]. Consider the following
problem

dzgt) = Au(t) + f(t), t>0 (2.6)
u(0) = wo,

where f :[0,7) — X and A is the infinitesimal generator of an Cy-semigroup 7" on X,
where X is a Banach— or Hilbert space. Consider A as a (not necessarily positive) operator
from X to X.

2.4.1 Mild and classical solutions

We start to define mild solutions, which is the weakest concept of solution considered in
this work.

Definition 2.4.1 (mild solution)
Let A be the generator of a Co-semigroup T. Let x € X and f € L'(0,T,X) Then

u(t) =T(t)x + /T(t —38)f(s)ds te|0,T] (2.7)
0

is called a mild solution of (2.6).
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We also know some other types of solutions:

Definition 2.4.2 (Classical solution)
A function u : [0,T) — X is called classical solution of (2.6), if:

o u fulfills (2.6)

e u is continuous on [0,T),

e u is continuously differentiable on (0,T),
e uc D(A) forte (0,T).

Definition 2.4.3 (Strong solution)
A function u: [0,T) — X is called a strong solution of (2.6), if:

e u is differentiable on (0,T) almost everywhere,
e v € LY0,T,X),
o u/(t) = Au(t) + f(t) almost everywhere and u(0) = ug.
The following remark delivers a connection between mild and classical solutions.

Remark 2.4.4 (Variation of constants)
If we have a classical solution, then it coincides with the mild solution. Consider the fol-
lowing inhomogeneuous initial value problem:

du(t)
dt
where f € L'(0,T; X). Then we have

=Au(t)+ f(t) t>0 u(0) = ug, (2.8)

t

u(t) = T(t)up + / T(t — ) f(s) ds.

0

Proof. We have to show that wu(t) solves in fact the equation and work out the details of
the proof from [41, p. 105].
Let

g(s) :==T(t — s)u(s).
This function is differentiable for s € (0,¢) and we have due to Lemma 2.1.23 and the
product rule

dg

o= —AT(t — s)u(s) + T(t — s)u'(s)

= —AT(t—s)u(s) +T(t —s)Au(s) +T(t — s)f(s)
= T(t—s)f(s).
Since f € L'(0,T; X), the right hand side of the equation is integrable, and thus

a(t) — g(0) = / T(t - 5)f(s) ds.
0
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Additionally,
t
T(0)u(t) — /T (t—ys) ds,
0

therefore, we have with 7'(0) = Id and u(0) = uo:

O

u(t) is by definition a mild solution of the problem (2.8) and coincides with the classical
solution.

2.4.2 Nonlinear case

Up to this moment, we have only considered problems, where the function f does not
depend on u. Now, we give up this restriction. If the conditions on f are weak, i.e. if we
assume less regularity on f, we need mild solutions. The variation of constants formula
delivers us the solution.

Theorem 2.4.5 (Variation of constants, nonlinear case)
Consider the following inhomogeneous initial value problem:
du(t)
dt

= Au(t) + f(t,u(t)), t>0 u(0) = ug, (2.9)

where f :[0,T) x X — X. f is assumed as Lipschitz-continuous on X and continuous on
[0,7).

Additionally, f is measurable and the Lipschitz constant of f is independent of t. A is the
generator of a Cy-semigroup T(t). Then

u(t) tug + [ T(t—s)f(s,u(s))ds

o .

is the unique mild solution of (2.9), see [41, p. 184].

2.4.3 Weak solutions/Lax-Milgram theory

An alternative technique to develop a concept of solution is the usage of weak solutions.
The Lax-Milgram theorem connects bilinear forms and linear operators. Suppose we have
a bilinear continuous form a on V. V' is a Hilbert space with scalar product ((u,v)) and
norm ||ul|. We can construct for every a a linear continuous operator A from V to V',
A € L(V,V') and vice versa. Given a bilinear continuous form a we construct a linear
continuous operator A € L(V, V') by

A:u (v alu,v))
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from V to V.
On the other hand, given a linear continuous operator A € L(V, V') we set

a(u,v) = (Au,v), Yu,v €V,
where (-, -) is the duality map from V' x V' — R. If a is coercive, i.e.
Ja >0, a(u,u) > alul|* YueV.
we have the following Lax-Milgram theorem. V' denotes the dual space of V here.

Theorem 2.4.6 (Lax-Milgram)
If a is a bilinear continuous coercive form on V, then A is an isomorphism from V to V'.

Thus, we can find Vf € V' a u € V, such that

(Au,v) = (f,v) YveV.

2.5 Evolution in time

We want to apply this theory to partial differential equations. In most settings, we have
another Hilbert space H, with scalar product (u,v) and norm ||u||. Now we can construct
an evolution triplet

VcCH=H cV'

because of the Riesz representation theorem, this ensures (h,v) = (h,v) for h € H. We
define the domain of A in H as

D(A) ={ueV,Au e H}.

A is also an isomorphism of D(A) onto H. We assume again, that we have a bilinear
coercive form a on V. We consider the following initial value problem

d

dit‘ + Au = f on (0,T) (2.10)
with u(0) = up € H and f € L?(0,T; H). To define a solution in the sense of distributions
we need the following lemma, which includes a definition from [49, p. 69]. We need to
point out, how %‘ is understood in the distribution sense.

Lemma 2.5.1

Let X be a given Banach space with dual X' and let u and g be two functions belonging
to L'(a,b; X). Then the following three conditions are equivalent:

e u is almost everywhere equal to a primitive function of g, i.e., there exists { € X
such that

¢
u(t) = C+/ g(s)ds, for a.e. t € [a,b].
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e For every test function ¢ € D((a,b)),

b b
/ u(t) () dt = / a(t)p(t) dt.

e For each n e X',

%<um> =(g,n)

in the scalar distribution sense on (a,b).

If all these conditions are satisfied, we say that g is the X -valued distribution derivative
of u and u is almost everywhere equal to a continuous function from [a,b] into X.

Now we can interprete (2.10) in the sense of distributions. If u € L2(0,7;V), then
Au € L*(0,T;V").

Because of f € L?(0,T;V’) and Au € L?(0,T;V’) we have, that v/ = f — Au is in the
distribution sense in V/ and we can interprete (2.10) as

%(u,w +a(u,v) = (f,v), YveW

Note that by Lemma 2.5.1 v € C([0,T];V’) and thus the initial condition of (2.10) is
meaningful.

We state two basic theorems from [49, p.70] and [43] which are essential for existence and
uniqueness. To assure existence and uniqueness, we have the following theorem:

Theorem 2.5.2
Assume that ug € H and f € L*(0,T;V"). There exists a unique solution u of (2.10) with

u e L*0,T;V)nC(0,T]; H)

and

u' € L2(0,T; V).

Proof. The proof is based on the Faedo-Galerkin method, see [49, p.70]. The main argu-
ment is to show that

U € L*(0,T; V)N L*(0,T; H), (2.11)
where wu,, is the approximate solution of (2.10). A detailed demonstration of the techniques
of this proof is given in Theorem 6.1.2. 0

We take from [43, Theorem 7.2] the following useful theorem.

Theorem 2.5.3
Suppose that
d
we L*0,T;V) and di;’ e LX0,T; V).
Then
we C([0,7); H)
after a modification on a set of measure zero, and

d 9 du
Ll = 2% ).
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2.5.1 Examples
The following example to apply the Lax-Milgram theorem is taken from [49, p.63].

Example 2.5.4 We consider a homogeneous Dirichlet problem in D associated with the
Laplace operator.

—Au+iu = finD, X>0.
u = 0in JdD.

By Green’s formula 2.3.10, we obtain the following equivalent formulation with the Laz-
Milgram theorem

a(u,v) = (f,v)
with
a(u,v) = / (grad u - grad v + Auv) dz.
D

This leads to the following weak formulation of the problem.
For f given in H = L*(D), findu € V = H}(D), such that

a(u,v) = (f,v) YveW

Example 2.5.5 (Heat equation)
Let D C R be a bounded domain. We consider the following classical parabolic differential
equation. Let Qr = D x (0,T):

ug(z,t) — Au(z,t) = f(t,x) on Qr
u(z,t) =0 on 0D x [0,T],
u(z,0) = up(z) on D

This problem can also be formulated as evolution equation, and the operator A generates a
semigroup of linear operators. The details can be found in [49, p. 84]. A = —A together
with the boundary condition generates a semigroup of linear operators

T(t):up € Hw— u(t) € H.

Example 2.5.6 (Wave equation in R")
We consider the wave equation in R™:

With

the problem is equivalent to
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(0, 2) = up(z) = ( vo(2) ) .

vi(x)

0 Id
=10

generates a semigroup of linear operators. In this context, A is a positive selfadjoint
operator on D(A), for example A = —A.

On X = HY(R") x L*(R™),

We use the following example from [51, p. 166] of a parabolic problem with dynamical
boundary conditions.

Example 2.5.7
Let D be a bounded domain in R"™ with C?-boundary I'. Consider the problem

ug = Au on [0,T] x D
ur+0,u=0on[0,T]xT
with initial condition
u(z,0) = ug(z) € L*(D) x L*(T).
We start with a result of regularity of solutions of a parabolic problem.

Lemma 2.5.8
Let D be a bounded domain in R"™ with C? boundary I and let ;1 > 0,\ > 0. Then, for
each f € L3(D) and g € L*(T"), the elliptic problem

pu—Au = f
A+ 0,u =
U|F = v

has a unique solution u € H3/?(D) with Au € L*(D), wr and d,u € L*(T).

The proof of this lemma is based on the Lax-Milgram theorem, see [51, p. 166]. The main
idea is, that u, = g—\v € L?(T") because the expression on the right hand side is in L?(T).
The operator A generated by the above problem has the following properties, the proof is
based on the Hille-Yoshida theorem.

Theorem 2.5.9
The operator
A:D(A) c L*(D) x L*(T') — L*(D) x L*(I),

defined by
D(A) = {(u,v) € L*(D) x L*(I'); Au € L*(D), 0u € L*(T),upr = v},

A(u,v) = (Au, —0yu) for each (u,v) € D(A),

is the infinitesimal generator of a compact and analytic Co-semigroup of contractions.
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The theorem is proven in [51].
Finally, we have by Amann and Escher (see [2, Theorem 3.2]):

Theorem 2.5.10 The operator —A, coming from the bilinear form a, generates a strongly
continuous positive contraction semigroup S in the space

C(D) :={(w;€&) € C(D) x C(0D) : u=¢ on 0D} . (2.12)

It has a unique extension to a strongly continuous positive contraction semigroup on L,(D),
1 < p < 00, which is compact and analytic, if 1 < p < oo, where

LP(D) := LP(D) x LP(T).
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Chapter 3

Linear partial differential
equations with dynamical
boundary conditions

3.1 Parabolic problems

In this chapter, we apply the Cp-semigroup theory to dynamical boundary operators. At
the beginning, we start with first order in time differential equations and show, that these
operators generate a Cp-semigroup. Later on, we extend this theory to second order in
time partial differential equations, transform these equations to first order equations on
appropriate function spaces and show the existence of a Cy—semigroup generated by the
second order equation.

Let D be a bounded smooth domain in RY. We consider the differential operator A of
second order on the domain D

Alx) ==Y Oplanj(x))9; + ao(x). (3.1)
k.j

On the boundary I := 0D of D we have the boundary operator

Ar(z) = vgar()d; + bo(x). (3.2)
k.j

vy, denote the k-th component of the outer normal on dD. The coefficients ay, ag and by are
smooth functions on D. In addition ag(z) > 0 and the symmetric matrix (ax;(x))k j=1,..d
is uniformly elliptic. That is there exists a ¢ > 0 such that

Zazj(m)ggj > ¢||¢||? for all z, ¢ € R%.
1,5

The next theorem will show the existence of a Cy-semigroup generated by (A, Ar) and we
will specify the domain of the operator A.

Theorem 3.1.1
(A, Ar) generates a Co-semigroup S of contractions on H = L?(D) x L*(T"). The domain

25
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of its generator A is given by

D(A) = {(u,w) € L*(D) x L*(T) : Au € L*(D),
Aru € L*(T)}
c {(u,w):ue H¥*D),u=w onT}

Proof. First we show that the operator A is symmetric. For (uy,w), (u2, ws) € D(A) we
have

(A(ur, wr), (uz, w2))L2(D)><L2(F)
= fD — Z 8kakjaju1u2 dxr + fF Z Vkakjajwlwg dx + (bows, wg)Lz(p)
= fD Z akjajul&m dr — fF Z Vkakj8jw1w2 dr + fF Z I/kakj(?jwlwg dr + (bowl, wg)L2(F)
= — fD Z ulajakjaklm dr + fF Z Vjakjak’u)gwl dr + (bowl, 'UJQ)LQ(I‘*)

Now, we are in the situation to apply Theorem 2.5.10. The properties of D(A) will be
discussed in Remark 3.1.3. The proof is complete. O

In addition, we state from [16] and [7] the following connection to Lax-Milgram theory. We
consider the continuous symmetric positive bilinear form on the space V.= H'(D)x H 3 (T)

d
a(U, V) = g (1) 0z, u(w) 0z, v(w)dx + [ ao(w)u(z)v(r)ds
3231/0 N /D ’ (3.3)

+ /E)D c(s)ui(s)vi(s)ds,

where U = (u,u1), V = (v,v1) € V. Following the Lax—Milgram theory, this bilinear form
generates a positive selfadjoint operator A in H. Thus, A is the generator of a semigroup
of operators on H. By Green’s formula 2.3.10 A is related to the pair (A(z,d), Ar(z,0)).
In particular, we consider the elliptic problem

A(xz,0)u=f on D,

3.4
Ar(z,0)u =g on dD. (38.4)

The domain of A is considered in the following Lemma 3.1.2, which uses elliptic regularity
theory.
We cite the following Lemma from [16].

Lemma 3.1.2 For (f,g) € H (3.4) has a unique solution of the form ® = wu, + u.. where
u, € H*(D), Ar(z,d)u, =0 on 0D and u,. € H>?(D), A(z,d)uswm = 0.

Proof. For a bounded set of right hand sides of (3.4) in H the set of solutions ® for these
right hand sides forms a bounded set in H %(D) x H'(OD). But this space is compactly
embedded in H. Hence, the positive symmetric operator A has a compact inverse, so that
we can apply spectral theory of selfadjoint operators. O

It follows that there exists an orthonormal basis { Fx }ren in H, such that

AE, = NeEp, E=1,2,..., 0< A\ <A <., lim Ap = oo.
k—ro0
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These eigenvalues have a finite multiplicity. By L%mma 3.1.2, we have obtained the domain
D(A) of the operator A which is contained in H2 (D) x H*(dD).
It is now straightforward that —A is the generator of a Cp—semigroup S(t).

Remark 3.1.3
(1) We have by an interpolation argument

H2%(D) x H*(OD), for 0<s< 1,

H2(D) x H(dD), for s> 1. (3:5)

D(A?%) C {

For the first relation see Sell and You [46, Lemma 37.8].
(2) It follows from (3.5) that the eigenfunctions Ey of the operator A has the form

By = (ex;7ler]), k=12,...,
where e, € C*°(D) and vy is the trace operator on the boundary.

The fractional spaces D(A®) are defined in Section 3.1.1 below. We can state the following
theorem, which presents a connection between D(A%) and V.

Theorem 3.1.4
Assume that A is a positive selfadjoint operator and

A: V= V.

Then )
Vg = (AV,V) = [|[A2V|)?
is a norm on V.

Proof. Due to the assumptions on A, the following spectral decomposition of A is given
by

AU =Y \(U, E)E;,
=1

where \; are the eigenvalues and E; the eigenvectors of A. Then we obtain

a(U, U) = <AU, U>V’,V = (AU, U)

o0 o0 oo o0
= (Z u; AE;, Z ui ;) = (Z ui N B, Z u; ;)
i1 i1 i1 Py
o0
= Z )\Zu?
i—1

The last expression is a norm on D(A%). Since a(U, V) is the scalar product on V, the
assertion is proven. Note that we use for simplicity the same notation A to denote the
operator into V' as well as in H, since we consider the relation only on

D(A) ={u eV, AU € H}.

We also use the Riesz representation theorem to identify the scalar product with the linear
functional. O
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It is also possible to prove the existence of a Cy—semigroup by applying the Hille-Yoshida
Theorem 2.1.12. The example 2.5.7 is covered by this theorem.

Theorem 3.1.5
—A is the generator of a Cy—contraction semigroup on H = H° = L?(D) x L*(T).

Proof. First, we note that D(A) is dense in H. In addition, A is symmetric. Furthermore,
we obtain that

AU+ NU =F eH

has a unique solution for every A > 0. Hence, by the positivity of A

MUz < (IF o],
which shows that (A + Aid)~! < A~! by calculating

1
A I Y < —
and A+ MNId
F
HA—I—)\IdH:supu:supMZA.
UeH 1| vern Ul

In particular, there are no positive spectral values. The conclusion follows by Theorem
2.1.12.
O

Now, we will give two examples of parabolic operators with dynamical boundary condi-
tions., the second example is taken from [56].

Example 3.1.6 (1d-problem)
In the 1d-setting, the boundary is divided into two parts. We have only two simple points
here. We consider the following problem on [0, 1]

" :f
u(0) =0
u'(1) + u(l) =g (3.6)

Multiplying by v € H* with v(0) = 0 gives us the following weak formulation

/Olfvdx:—/olu"vdx
_ /01 ol de -+ u(1)u(1) — g(1)u(1).

We have a problem of the following form

L(v) = a(u,v),
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where a is a positive symmetric bilinear form. Fxactly
1
L) = [ fodo -+ g(u()
0
1

a(u,v) :/ u'v' dz + u(1)v(1).

0

The ezistence of a weak solution of (3.6) follows directly by Lemma 3.1.2.

Example 3.1.7 (Natural boundary conditions)
We formulate the third boundary value problem. Let D be an open subset of R™ with
boundary T' and X = H*(D). Consider the following equation

—Au=f on D (3.7)
oyu+ hu =g on T,

where 0, denotes the outer normal derivative on T'. Again, we have a problem of the
following form
L(v) = a(u,v),

where a is a positive symmetric bilinear form. Ezxactly

L(v):/ fvdx~l—/gvda

D r

a(u,v) :/ Vquder/huvda.
D r

Once more, we have the existence of a weak solution.

3.1.1 Fractional spaces

We use the properties of A to define fractional spaces. If the eigenvalues of A are positive,
increasing, countable and tend to infinity as n — oo, we can introduce the following
function spaces for s > 0

D(A*) ={u=>"@Ei: |ulpusy =Y [G[*A* < oo}.
=1 i=1

where \; are the eigenvalues of A and u; = (u, E;). We refer to [48] for details. A
connection between Sobolev spaces of fractional order and the D(A®)-spaces is given in
Theorem 3.1.4.

3.2 The Ritz method

We can also apply the Ritz method to find an approximate solution of (3.7), see [56, p. 28].
This is an alternative way to obtain the existence of weak solutions. The basic concept
of this method is to vary over finite-dimensional subspaces, which satisfy the boundary
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conditions. We can reduce variational problems in function spaces to variational problems
with finitely many variables. Let us consider again the problem (3.7)

—~Au=fonDCR"
Jyu+ hu =g on T.

This is by [56, p.28] equivalent with the variational problem
RS 2 L o ) 1A
D(fZ(Diu) —uf)dz+ F(iu —ug)dO =min!, wue C(G)

2 4
=1

and the generalized boundary value problem

/ (> DiwuDiv — fv) dx + /(hu — g)vdO =0 for all v € C*(G).
D

i=1 r

We use the following ansatz for the solution u

m
Um = E Clem Wk,
k=1

where wy are the eigenfunctions of the Laplacian, and replace our problem (3.7) by the
approximated problem

1 ¢ 1
/ (5 Z:(Dium)2 — U f) dx + /(QUZ,JL — Upmg)dO = min!, cpy € R
D %' r

We now vary over all funtions u,,. Our goal is to determine the unknown coefficients
Clm," " »Cmm- We have that

n
/ (zDiumDiwj — fwj) dx + /(hum — g)wj dO = 0, 7=1,---,m.

D=1 r
and get the equivalent Ritz equations

m

Ckm(/ (ZDikaiwj — fwj) dx + /(hwk - g)wj dO) =0, j=1,---,m.
=1 D o r

o

This is a linear system of equations, and we can determine the coefficients cip,, - , Cmm-
The convergence of u, to u is discussed in [56, chapter 22].

3.3 Hyperbolic problems

We have the same assumptions on the linear differential operators A(x,d) on D, see (3.1),
and Ar(z,0) on I', see (3.2), as in the parabolic case. Now, we consider the hyperbolic
problem

W'+ Au = Oon D
W'+ Aru = OonT
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with initial conditions u(z,0) = ug(x), v/(z) = ui(z) and respectively on the boundary.
We transform this problem with U = (u,ur) and V = (v,vr) to

(v)=r(v)=(2%) (V)

where A = (A, Ar) is the operator from the parabolic problem introduced in the section
before. We can state the following Lemma, where the dissipativity of B is computed
directly.

Lemma 3.3.1
We have that

where the inner product is defined by

u f
(<g>’<g>):[ UUF ’ ng ]::/DVqu—Fvgd:U—F/Furfr—ergrdU.
ur gr

Proof. We have

ur ur

/ VuVu' + Aud dx + / urvr — Oy urvr — urvrdo =
D r

/VuVu’—VuVu’d:c—i—/&,upvp da—/a,,um}p do = 0.
D T T

O

This shows us the dissipativity of B, see Theorem 2.1.15.
To prove the semigroup property on E; = D(A) x V we need the following more general
lemma

Lemma 3.3.2
We have that

(0§ pumn s

with the following scalar product:

where U;, V;, Fy, G; are the coefficients of U, V, F,G in the following basis of Ej;

1
. c2 (0
E = (ul ( >\Z0 ) €, Ui ( 1 > 67;)7;:17.‘.,00.
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Here \; are the eigenvalues and e; the eigenvectors of the operator A, see also [36, chapter

5/.

Proof. From now on we use the Einstein notation of sums and conclude
BE = wei Y
—)wsz)\l €;

N 1
Ui€; YN, 20, j+1,lﬁ . j+lA A
(BE,E)Ej:(< 1 ),( u’é@ €i ) =\ 2ty — A *Ut, = 0.
E

NI

Thus

—ﬂi)\? €; ue; )
J
O
Lemma 3.3.3
Define Ey =V x H. We have that
D(B) =Dom(B) = {(U,V) € Ey;(Au, Arur) €e H; V €V}
Proof. Tt holds, that
U 0 id U v
w=n(§)=( 2 8) (£)=( &) v
O
Theorem 3.3.4
B is the generator of a Cy-contraction semigroup on Fy.
Proof.
Consider as in [27, p.445] on
X == Ey = HY(D) x L*(D) x H'*(I') x L*(T")
the operator equation
with (F,G) € Ep. This yields the following system of equations on X.
—v+u = f (3.8)
Au+Iv = g (3.10)
Arur + Aoy = gr (3.11)

with
(f, fr,9.gr) € H'(D) x H'/*(T') x L*(D) x L*(T).
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The existence of a solution is ensured by [27, Theorem 6.2.2]. We reformulate this system
with F' = (f, fr) and G = (g, gr) as

(U,V) = R\(F.G),
where R) is the resolvent operator with
RA\(F,G) = (M - B)"Y(F,G)
in this case. We insert all these equations (3.8)—(3.11) and obtain the equation
AU + XU = G + AF.

The proof is now the same as in the parabolic case. As in Theorem 2.4.6, we have the
following associated bilinear form to A

a(U,V) = (AU, V).

Starting with
MVIP +a(U,V) = (G, V)

we get by V = (AU — F)

A(IVIP + a(U,0)) (G, V) +a(U,F)

< (IGI? + a(F, F) 2(IVI? + a(U,U))"/?

because

(G,V)+a(U,F)
is a scalar product and we can apply the Cauchy-Schwarz inequality.
1T V)llo = (a(U, U) + [V |[*)*/2
is a norm on X = Ej and thus, we have that

1@ V)llo < $ICF Olo

This gives us finally

1
Ry < —.
Il < 5
By applying the Hille-Yoshida theorem 2.1.12, the generation of a Cy-semigroup by B is
proven. ]
Remark 3.3.5

Due to Lemma 3.53.2, we have that B is the generator of a Cy-contraction semigroup on
FEy with the same arguments as in Theorem 3.3.4.
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Remark 3.3.6 (Damped equation)
We can apply Theorem 2.1.7 to a damped wave equation

W' +aou +Au = fonD (3.12)
du

dv

w4+ o + +u = gonl.

with initial condition Uy = (ug,uor) € H. We can conclude, that by this equation a Cy—
semigroup is generated, see also Chapter 8.

Finally, we can prove the existence of mild solutions of (3.12).

Theorem 3.3.7 (Existence theorem)
There exists a mild solution to (3.12), under the assumptions, that A is the generator of
a Co—semigroup S(t) on Ey, and Q = (f,g) € Ep.

Proof. We reformulate (3.12),
BW =@
and then follow the arguments as in [41, p.184]. The strategy is to show that

K(W(t)) =S{t)Wy + /0 S(t—s)Q(s,W(s))ds

is a contraction on
Y ={W € X :supe P|W(t)|| g, < oo}
[0,7]
where L is the Lipschitz constant of (). The fixpoint of this contraction is the mild solution
of (3.12).
O



Chapter 4

Solutions of stochastic partial
differential equations

4.1 Wiener process in a Hilbert space

The following definitions are from [19]. The Wiener process has to be defined on infinite-
dimensional Hilbert spaces. The operator () plays the role of the covariance operator as
in the finite-dimensional case.

At first, we have to generalize the theory of Gaussian measures to Hilbert spaces.

Definition 4.1.1
Assume that H is a Hilbert space with scalar product (-,-), then a probability measure p
on (H,B(H)) is called Gaussian, if for arbitrary h € H there exists m € R,q > 0, such
that

u{x € H;(h,x) € A} = N(m,q)(A), A€ BR).

If 1 is Gaussian, the following functionals
H—-R,h— / (h, x)p(dx)
H

and
H s H — R, (h, hy) — / (ha, 2) (o, 2hpu(dz)
H

are well defined. Due to [19, Lemma 2.14], they are also continuous. We have the following
proposition and definition from [19, p. 54].

Proposition 4.1.2
From [19, Lemma 2.14] it follows that if u is Gaussian, then there exists an element m € H
and a symmetric non negative continuous operator QQ, such that

/ (h,z)p(dx) = (m,x), Vhe H
H

and
/H<h1,a:)(hg,x>u(d:c) — (myha)(m, ho) = (Qhas he) Vhi, ha € H.

35
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m is called the mean and Q) the covariance operator of u. By a characteristic function
argument, it follows, that u is uniquely determined by m and Q and its distribution is
denoted by N(m, Q). We denote by TrQ the trace of Q.

Let U and H be two separable Hilbert spaces. Our goal is to construct the stochastic Ito
integral

/tB(s) dW(s),t € [0,T],
0

where W (-) is a Wiener process on U and B is a process with values in L(U; H), the space
of linear operators between U and H. These operators are not necessarily bounded.

Definition 4.1.3
Let U be a separable Hilbert spaces, and @ € L(U) a symmetric nonnegative operator.
A U-valued stochastic process (W (t))e>0 is called Q-Wiener-Prozess, if:

e W(0)=0,

o W has continuous trajectories,

o W has independent increments,

o (W(t)—W(s)) is N(0,(t —s)Q),t > s >0 distributed.

The ezxact interpretation of N (0, (t — s)Q) can be found in [19, Chap. 2.2.].

From [19, p. 37], we cite the following definition.

Definition 4.1.4 Note that a probability measure  on (H, B(H)), where H is a separable
Banach space, is called o Gaussian measure, if and only if the law of an arbitrary linear
function in H* considered as a random variable on (H, B(H), p), is a Gaussian measure

on (R!, B(RY)).
This can be generalized to H valued stochastic processes, see [31, Def. 2.4].

Definition 4.1.5 An H-valued stochastic process {Xi}i>0, defined on a probability space
(Q, F, P) is called Gaussian, if for anyn € N and t1,...,t, >0, (X¢y,...,Xs,) is an H”
valued Gaussion random variable.

Remark 4.1.6
Assume that W1 and Wy are two independent Q-Wiener processes. Then, we can also
construct by

W(t) =Wi(t), W(=t)=Wa(?),
a twosided Wiener process, which is zero in zero.
The Wiener process has the following properties, [19, Prop. 4.1]:

Proposition 4.1.7
Assume that W is a Q-Wiener process, with TrQ) < oc. Then, the following statements
hold.
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o W is a Gaussian process on U and

E(W(t) =0, Cov(W(t))=tQ, t>0.

o For arbitrary t, W has the expansion

Z VAiBi(®) (4.1)

7j=1

where

Bi(t) = (W(t),ej)

vy,

with e; the eigenfunctions of Q.

Now, we are able to construct the stochastic integral, see [19, p. 90]. Assume that, we
have a @-Wiener process in (2, F, P) with values in U. This process is given by (4.1).
Furthermore, we are also given a normal filtration {F;};>0 in F and

e W (t) is Fi-measureable,
e W(t+ h)— W(t) is independent of F;, Vh > 0,Vt > 0.

At first, we assume that B(t) is an elementary process, i.e. there exists a sequence 0 = ty <
t1 < ... <t =T and a sequence By, By,...By_1 of L(U; H)-valued random variables,
such that By, are F;, measureable and

B(t) = By, for t € (tpm,tms1],m=0,1,.... k — 1.

Then, we can define the stochastic integral by, see [19, p. 90],

; k-1
/0 B(s)dW(s) = 3 Bun(W(tmss A1) — W(tm A1)
m=0
=: B-W(t).

As in the finite-dimensional case, see [39] we have to extend the class of elementary func-
tions B(t) to a proper class of integrands. These are in fact the predictable processes with
values in L3 = L?(Uy; H), see [19, Prop. 4.7(ii)] or [31, Prop. 2.2], where Uy = QY2U and
L?(Uo; H) is the space of Hilbert-Schmidt operators from Uy into H. The Hilbert-Schmidt
norm of an operator L € L?(Uy; H) is by [31, (2.7)] given by

I 2ty = S (L) et = S (LQY2f) ek

ji=1 §i=1
= [ LQY 2y = tr((LQY)(LQY?)).

where f; is an orthonormal basis (ONB) in U and e; in H.
Note that L(U; H) C L?(Up; H), since for k € Uy

Lk — Z (k, )\1/2 1/27

Uo ]
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regarded as an operator from Uy into H, has a finite Hilbert—Schmidt norm

o0 2 (@)
VL = SO 03 = SNILAE < I 0y t1(Q).
j=1 j=1

The trace condition on ) ensures, that the integrands are square integrable, such that one
can generalize the methods of the finite-dimensional case [39, Chapter 3|, and we conclude
the following Lemma ([19, Prop. 4.5])

Lemma 4.1.8 If a process B is elementary and

t
2
IE/O |B(s)|[25 ds < oo

then the process B - W (t) is a continuous, square integrable H—valued martingale and

t
E|B-W(@)|?* = E/O HB(S)H%g ds < oo.

4.2 Concepts of solutions

We can use the definition of a stochastic integral to introduce stochastic partial differential
equations (spdes). We take the definitions from [19, Chapter 6]. Consider the following
evolution equation on a separable Hilbert space H

dX(t) = (AX + f(t))dt + B(X(£))dW (t)
X(0) = ¢

on a time interval [0,7], where A : D(A) C H — H is the infinitesimal generator of a
strongly continuous semigroup 7'(-) and W is a @Q-Wiener process with 7TrQ < co. £ is a
Fo-measurable H-valued random variable, where (F;):>0 is the filtration generated by the
Wiener process, where f is a predictable process (see Definition 4.2.2) and B : D(B) C
H — Lg is a linear operator. JFp—measurability has to be understood in the sense, that
the initial condition is independent of the Wiener process.

Definition 4.2.1

Let (Q, F, P) be a complete probability space with a given standard filtration F; generated
by the Wiener process. Pr denotes predictable o-fields on Qr = [0,T] x Q. Qp the o-field
generated by the following sets, see also [19, p. 76],

(s,t] x F, 0<s<t<T,FeFsand {0} x F,F € Fy.

Definition 4.2.2
An arbitrary measurable mapping from ([0,T) x Q, Pr) into (H,B(H)) is called a pre-
dictable process.
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Definition 4.2.3 (Strong solution)
An H-valued predictable process X (t) is called strong solution of the above equation, if

T
P(/O (X () + |AX (s)]]) ds < 00) =1,

Hﬁﬂmmmmmﬂ<mwn
and
X(t)=¢+ /Ot(AX(s) + f(s))ds + /Ot B(X(s))dW (s)
holds for arbitrary t € [0,T).

Definition 4.2.4 (Weak solution)
An H -valued predictable process X (t) is called weak solution of the above equation, if

T
P%HMM@<M=L

T
P([ IBOC any < 00) =1
0
and
t t
(X(),¢) = <€,C>+/O (<X(8),A*C>+<f(8),C>)d8+/0 (¢, B(X(s))dW (s))
holds for arbitrary t € [0,T] and ( € D(A*). A* denotes the adjoint operator of A.

Definition 4.2.5 (Mild solution)
An H -valued predictable process X (t) is called mild solution of the above equation, if

T
P%HMM®<@—L

mﬁﬁmmmmmw<wrﬂ
and . .
X(t) :T(t)§+/0 T(t — 5)f(s) ds+/0 T(t — $)B(X(s)) dW (s)
holds for arbitrary t € [0,T).

There are the following connections between the different types of solutions.

Remark 4.2.6
A strong solution is also a weak solution. A weak solution is also a mild solution. This
means, that the concept of mild solutions is the weakest concept.
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4.3 Main theorem of existence and uniqueness of mild so-
lutions

From now on, we consider the spde

dX(t) = (AX + F(X(t),8))dt + B(X(t),t)dW ()
X(0) = ¢ (4.2)

on a time interval [0,7], where A : D(A) C H — H is the infinitesimal generator of a
strongly continuous semigroup 7'(-) and W is a Q-Wiener process with TrQ < oco. & is
a Fop—measurable H-valued random variable, where (F;);>0 is the filtration generated by
the Wiener process. Additionally, we have the Hypothesis 4.3.1 and 4.3.2 below. We cite
Theorem 7.4 from [19]. This theorem gives us a survey on the existence of solutions of
SPDEs. The key aspect is the introduction of the concept of mild solutions.

Hypothesis 4.3.1
There exists a constant C > 0, such that

||F(t7wal‘) - F(t?way)n + ||B(t7wa$) - B(t’w’y)HLZ(Uo;H) < CHZL‘ - yH (43)

and
1t w, 2)[1” + | B(t,w, @)1 22,y < C2(1 + [|2]?). (4.4)

Hypothesis 4.3.2
On F and B we have the following hypotheses:

e The mapping F : [0,T] x Q@ x H - H, (t,w,x) — F(t,w,x) is measurable from
(Qr x H, Pr x B(H)) into (H, B(H)).

e The mapping B : [0,T] x Q x H — L}, (t,w,x) — F(t,w,z) is measurable from
(Qr x H, Pr x B(H)) into (L3, B(L3)).

Theorem 4.3.3 (Existence of Solutions of SPDE)

We assume A is the infinitesimal generator of a strongly continuous semigroup and let hy-
potheses 4.3.1 and 4.3.2 be fulfilled. Then for any arbitrary Foy measurable initial condition
with E||E||P < 0o, p > 1, there exists a unique mild solution X to (4.2) with

X(t)=T()¢ +/0 T(t—s)F(s,X(s))ds —I—/O T(t—s)B(s,X(s))dW(s) Vtel0,T]a.s. .
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Random dynamics

5.1 Random dynamical systems

5.1.1 MDS

Before we study our randomly perturbed differential equations, we need some fundamental
terms from the theory of random dynamical systems (RDS). The theory is introduced in
the monograph by Arnold [3]. First, we define a metric dynamical system, which serves
as a general model for a noise.

Definition 5.1.1
Let (Q, F,P) be a probability space. A quadro-tuple (Q, F,P,0) is called a metric dynamical
system, if 0 is a measurable flow, i.e.

0:(RxQBR)®RF)— (2,F)
fulfills the flow property
Oy = id, O;060, =: 0,0, = 97'+t fOT t, 7 € R.

Here 0, denotes the partial mappings of w — 0(t,w). In addition, the measure P is supposed
to be ergodic with respect to the flow 0 i.e. the 0,-invariant sets have either full or zero
measure.

As an example we study the Brownian motion metric dynamical system. We introduce
the probability space (2, F,P) = (Co(R; U), B(Co(R;U)), Py ) where Cy(R; U) consists of
continuous functions on R with values on some separable Hilbert space U , which are zero
at zero equipped with the compact open topology, B(Cy(R;U)) is the Borel-o-algebra of
this space and P = Py the Wiener measure with respect to some covariance operator K
with finite trace on some appropriate function space. We introduce the flow defined by
the shift operators
Oiw(-) = w(-+1t) —w(t).

The Wiener measure is ergodic with respect to this flow. The associated probability space
defines a canonical Wiener process. We also note, that such a Wiener process generates a
filtration (F)ier,

Fi =A{w(r)|r < t}.

41
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There exist other metric dynamical systems, for instance generated by the fractional Brow-
nian motion. For details see [4].
For the following, we suppose that H is a separable Banach space with norm || - ||.

Definition 5.1.2 (Random set)
A multivalued mapping w — M(w) C H with closed and non-empty values is called mea-
surable, if the mapping
w— inf |z —y]
yEM (w)

is a random variable for every x € H.
In addition we need:

Definition 5.1.3 (Temperedness)
A random variable X € RT on (Q,F,P,0) is called tempered, if there is a set of full
measure such that
. logt X (w)
lim —————~

= 0.
t—+o0 ’t’

This full set is 0;-invariant.
We note that in the ergodic case, there is only one alternative to this relation:

) log™ X (6;w)

limsup ———= =00

t—+o0 ‘t‘
Later on, we will use the notation tempered if for every w the above convergence property
holds. In this sense, we introduce the set of tempered random sets D. A multivalued
mapping w — D(w) is contained in D if D(w) is a bounded subset of H, D is a random
set and

w— sup |z
r€D(w)

is a tempered random variable. The measurability of this random variable is given by the
representation

U #i(w) = D(w),

€N
where z;(w) are measurable maps, see [9, Theorem II1.9], and [44].

We can state some criteria, that a random variable is tempered. For the first one, see [3,
p. 167].

Remark 5.1.4
A sufficient condition that a positive random variable is tempered is that

E sup X(bw) < oo.
tel0,1]

Remark 5.1.5
Let hy and hy be random variables, such that

t— hl (9,50.)), t— hg(etW)
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are locally integrable with Ehy < 0 and ho is tempered. The random variable
0 0
/ ele MOw)dsp) (9,0) dt

exists and is tempered.

The proof can be found in [45] in the proof of Theorem 4.1(i1).

5.1.2 Random Dynamical System

Definition 5.1.6
Let H be some separable Banach space. A measurable mapping

0:R"xQxH—H
having the cocycle property
80(070‘)7 ') - idH? (p(t7 07—0‘)7 (p(T7 w’ x)) = w(t—i_T? w? x)

fort,7 € R",2 € H and w € Q is called RDS. ¢ is called continuous if H > x —
o(t,w,z) € H is continuous for allt >0 and w € Q.

5.1.3 Attractors

We now introduce the term random attractor, which allows to describe the long time
behavior of a random dynamical system. Roughly speaking, the long time behavior can
be described by a stationary set, which is compact. Stationarity has to be understood in
the rds-sense, which is clarified in Definition 5.1.7 below. We will denote by D the family
of random sets, which will be attracted by a random attractor. It is possible to choose
different systems D of random sets, but we restrict ourselves on the family of tempered
sets defined above in Definition 5.1.3.

Definition 5.1.7
A random set A € D with A(w) compact is called a random (pullback) attractor in D, if

o(t,w, A(w)) = A(bww) for every t > 0,w €

and
tl_i)m dist(p(t, 0_w, D(0_w)), A(w)) = 0 for every D € D,w € Q

The invariance of P also gives us the forward convergence in probability. This means

lim P(dist(¢(t, w, D(w)), A(fw)) > ) = 0 V6 > 0.

t—o0
Here dist denotes the Hausdorff semidistance dist(A, B) = sup,c 4 infoep|ja —b].

The measurability of A is given by [44, Theorem 2.4] .
The following theorem contains a sufficient condition for the existence and uniqueness of
a random attractor [15].
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Theorem 5.1.8
Let ¢ be a continuous RDS and let B € D be, such that B(w) is compact, and for every
D €D and w € Q there exists a t(w, D) > 0, such that for t > t(w, D)

o(t,0_yw, D(0_4w)) C B(w).
Then there exists a random attractor A, which is unique in D.

Proof. Existence is given by [44, Theorem 2.4]. Assume, we have two attractors 4; € D,
i = 1,2. Then, it follows for any w € € :

dist(A;(w), A2(w)) = lim dist(p(t, 0_tw, A1(0_w)), Az(w)) = 0.

t—o00

We conclude A;(w) C Az(w) for any w € 2. Changing the roles of A; and Ap leads to
Ag(w) C Ay(w) for any w € Q. Thus, the random D-attractor is unique. O

Sometimes, it is not possible to prove compactness like in Theorem 5.1.8. But then one
can use another concept introduced in the following theorem. The theorem is taken from
[33, Theorem 2.2].

Theorem 5.1.9
Suppose that for the random dynamical system o the mapping

x = o(t,w,x)

18 continuous and suppose, that there exists an attracting random compact set C € D.
Recall that by definition of attracting random compact set C' has the following property

tli>I£l<> d(p(t,0_w, D(0_w)),C(w)) = 0.

Then

Aw) = et 0-w,C(0_w))

T>0t>T1

is a random D-attractor.

5.1.4 Random invariant and inertial manifolds

In this section, we give the same definitions as in [7].

Definition 5.1.10

Let p be an rds, and Hy, Hy be linear subspaces of H, such that H = Hy® Hy is a splitting
of H where Hy is finite dimensional. The projections onto these spaces are denoted by
71, ma. A multi-function w — M (w) C H is called random invariant manifold of the RDS
o(t,w,x) if the following properties hold:

o M is positively invariant:

o(t,w, M(w)) C M(Ow) forallt € RT, we Q.
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e M has a graph structure: There exists a mapping m : Hi X Q0 — Hs, such that
M(w) = {z1 + m(z1,w) : 21 € H1},

m(-,w) : Hi — Hy is Lipschitz-continuous and C*-smooth for some k € IN for all
w € Q. m(x1,-): Q— Hy is measurable for all x1 € Hy.

Definition 5.1.11 An invariant manifold M 1is called random inertial manifold, if M is
exponentially attracting:

For allz € H, w € Q holds tlim distg (¢(t,w,z), M (6;w)) =0
— 00
with exponential convergence rate K, i.e.
For all x € H, w € Q holds disty (p(t,w,z), M(fw)) < Ce™ ",

and some C > 0.

We have the following remarks from [7]:

Remark 5.1.12

Note that from the measurability properties of m, it follows that m : Hy x @ — Hy is
measurable, see Castaing and Valadier [9, Lemma III.14]. Then straightforwardly, the
multi—function M is a random set. Since Hy is finite dimensional, it is closed and hence

1 18 continuous. Then o is continuous, such that Ho = (id — m)H is a closed subspace,
too.

Remark 5.1.13
The dynamics of ¢ is finite dimensional on M. Let x = x1 + m(x1,w) € M(w), 1 € H;.
Then ¢ is represented by
o(t,w,z) = p1(t,w,x1) + m(e1(t,w, z1), Ow),
where p1(t,w, x1) = me(t,w,z1 + m(z1,w)) which is an RDS on Hi.

Proof. Assume, that © € M(w). Then, by the invariance property of M ¢(t,w,z) €
M (0yw). Therefore, there exists zo € H with

o(t,w, z) = xo + m(xg, Bw). (5.1)
Applying the projection on both sides of (5.1) we obtain
mp(t,w, ) = x3.

This gives us the result.
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5.1.5 Conjugated dynamical systems and their properties
We now describe conjugacy between random dynamical systems.

Definition 5.1.14
Let 1 be a continuous RDS and let T : Q@ x H — H a mapping with the following
properties:

e For fized w this mapping x — T(w,x) is a homeomorphism on H. The inverse to
this mapping is denoted by T~ (w, ).

e The mappings w — T(w, ) and w — T~ (w,z) are measurable for x € H.
Then the mapping
(t,w,x) = oa(t,w, ) = T(Ow, o1 (t,w, T~ (w, x)))
defines a continuous RDS which is called conjugate to 1.

We have the following remark from [7].

Remark 5.1.15

Suppose that T(-,w), T~1(-,w) is continuous for all w € Q and that T(z,-), T~ (z,-) is
measurable for all x € H. Applying Lemma III.14 in [9] again, we obtain that T, T~! is
measurable. Then, if @ is a continuous RDS so is

(t,w, ) = Yt w, 7) := T(Ow, p(t, w0, T (w,2))). (5.2)
The following lemma demonstrates the connection between attractors of conjugate RDS.

Lemma 5.1.16

Let A1 be a random attractor of the RDS w1 and T the transformation mapping. Suppose
that the system {T(D)|D € D} is contained in D. Then As(w) = T(w, A1 (w)) generates
a random attractor of the RDS ps.

The proof can be found in [32, Theorem 2.1].
The following lemma from [7] gives the connection between inertial manifolds of the original
and the transformated system.

Lemma 5.1.17

(1) Let w — M (w) be a random set, which is positively invariant with respect to the contin-
uwous RDS ¢. In addition, let T be a mapping introduced above. Then w — T'(w, M(w)) =:
M'(w) is a positively invariant random set for 1.

(2) Let M be an inertial manifold for ¢ and suppose that x — T(z,w), T~ (21, w) is
Lipschitz continuous with a Lipschitz constant Lp(w), Ly-1(w) resp. which is tempered.
In addition, suppose that Hy > x1 — mT(x1 + m(w, 1)) is a homeomorphism on Hy for
every w € Q. Let us denote the inverse mapping by x1 — (mT) " *(x1,w). The mapping
w > (mT) (21, w) is supposed to be measurable. Then M’ is an inertial manifold for 1
with the same exponential convergence rate and with the graph

m’ (w,y1) = mT((MT) " (y1,w) + m(mT ™ (y1,w),w)), w1 € Hy. (5.3)

(8) In addition, if T(-,w), T(-,w)~" is Lipschitz/C*-smooth and m(-,w) is the graph of a
C* —manifold then M’ is a C*-manifold.
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Proof. (1) follows directly by (5.2) and by the fact that M can be represented by the
closure of the union of countable many measurable selectors of the random set M.
The invariance of M’ is given by the relation

Y(t,w, T(w, M(w))) = T(O:(w), p(t,w, T~ (w, T(w, M(w)))))
=T (Orw, o(t,w, M(w))) C T (0w, M (bw)).

(2) We have
distu (¢ (¢, w, y), M/<6tw)) = ze]\l/ln(g ) HT(SO(t? W, Tﬁl(y7 w))) - T(Z7 Oiw) H
< Lr(0w) _int [lo(tw. T () ~ 2]

The right hand side goes to zero and the temperedness of L1 does not change the rate of
exponential decay. On the other hand

M'(w) 3y =T(z1 4+ m(z1,w),w)

y1 =mT(x1 + m(z,w),w)

which gives the second conclusion. (3) follows from (5.3) and the regularity of m, T, T~ 1.
O

5.1.6 The Ornstein-Uhlenbeck process

We now introduce the method of Imkeller-Schmalfuf [32] and Flandoli [28] to transform
a SPDE to a random partial differential equation. The main advantage of this method is
that we can now solve our equation w-wise because of the absence of stochastic integrals.
In general, we assume that A is a positive self-adjoint operator on some Hilbert space H.
In this way, we avoid the issue of exceptional sets of the solution depending on the initial
condition.
We consider the following Langevin equation, whose solution is called an Ornstein-Uhlenbeck
process

dZ + AZdt = dW. (5.4)

W is an appropriate Wiener process with covariance K, as in [19] and Definition 4.1.3.
There exists a mild solution of this stochastic equation, because A is positive and self-
adjoint [19]. As we consider stochastic equations in infinite dimensions, we need the
following lemma to describe the regularity of the system. We refer to [15].

Lemma 5.1.18 (Regularity of the Ornstein-Uhlenbeck process)
Let H be a Hilbert-space, W a twosided Wiener-process (see Remark 4.1.6), A a positive
self-adjoint operator on H and K its covariance-operator so that

trH(KAQSflJre) — trH(Asfl/2+e/2KAsfl/2+e/2) < 0.

Here try denotes the trace of the covariance. Then a Fg-measurable random variable Z
with values in D(A®) exists, and the process (t,w) — Z(6w) is a stationary solution of
(5.4). Moreover, we have for Z(0) = Zy € D(A®) that (5.4) has a continuous stationary
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solution R > t — Z(t) € D(A®). In particular, this solution is given by an Fo—measurable
random variable Z € D(A®), such that

(t,w) = Z(t,w) = Z(6iw)

is an (Fy)ier—adapted stochastic process. Note that (Fy)ier is generated by the twosided
Wiener process, see also Remark 4.1.6. The random variable || Z||p(asy is tempered and
the mapping t — Z(6w) € D(A®) is continuous, see Chueshov and Scheutzow [14] and
the following condition holds:

E||Z|[ a5y = 1/2tru (A7 PKA12) < oo,
Remark 5.1.19

(i) Because of the elliptic reqularity theory the norms || - || p(asy and || - || g2s are equivalent
on D(A?®); see also Lemma 5.1.18 and [48].

(ii) The properties of Z formulated in the last lemma hold on a {0;}icr—invariant set of
full measure. We note that the solution of (5.4) satisfies

Esup [|Z(6:w) |45y < 00
[0,7]

We then find the temperedness of HZ(w)HQD(AS). Hence, there exists a {0 }ier—invariant

set of full measure, where HZ(Gtw)HQD(AS) has a subexponential growth.

(1ii) The process t — Z(6w) is a weak solution to (5.4) as seen in [19, Chapter 5]

(iv) We have a representation

Z(0w) = / T(t — ) dW (w)

—0o0

almost surely for every t € R.

Proof. (ii) follows by applying Burkholder’s inequality and Birkhoff’s ergodic theorem.
The idea of (iv) is the same as in Lemma 5.1.20 below. O

In the following lemma we introduce as in [36, Lemma 2.3] the following Ornstein-Uhlenbeck
process.

Lemma 5.1.20
Consider the following stochastic differential equation

dZ + pZdt = dw, (5.5)

on some Hilbert space U with p > 0 and TryQ < oo. This equation possesses the station-
ary solution Z, later on, for simplicity also denoted by Z,

0
Z(w) = —u/ e’ MW (s) ds.

—0o0
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Proof. We interprete equation (5.5) as integral equation and get

Z(t) + M/Ot Z(t)ds = Z(0) + W(t).

Applying Ito’s formula to ef* Z(t) gives us
d(e" Z(t)) = pe! Z(t)dt + e (dW — pZ(t)dt) = e dWw.

This means

t
Z(t,w) = e Z(0) + / =0 g1 (s).
0

To find a candidate for a stationary solution we calculate

t

201,60 w) = e Z(0) + / M=) QW (00, 7)
0
0

—e iz + [ e aw(n)

—t

_ 0 X
t— o0 / et dW (1) == Z(w).
We conclude

t 0 t
Z(w)e M + / et aw = / e dW (7)e M + / ettt
0 —00 0

t 0
= / et dW(r) = / e’ dW (Orw, 7) = Z(6ww) a.s.

—0o0 —0o0
Integration by parts and the subexponential growth of W give us
0 0
/ e dW(r) = "W (0)— lim W(s)e!s — u/ e’ MW (s)ds

—00 S§—>—00 —00

— _,,,/O eSPW (s) ds = Z(w).

—0o0

Remark 5.1.21

49

Note that the set where W grows subexponentially is a full O-invariant set. Therefore, we

consider often spdes in the trace-o algebra Q. See also [23, Lemma 2.1].

Remark 5.1.22
We can apply the last Lemma 5.1.20 with

Z =(z,2r) and p >0

and

U = L*D) x L*I).



50 CHAPTER 5. RANDOM DYNAMICS

We also have the following lemma from [8, Lemma 4.1].

Lemma 5.1.23 (Asymptotic properties of 7)
Assume that U = R. Then the stationary solution of (5.5) has the following properties on
a 0 invariant set

tim 120 _
t—+too ’t’
1 t
lim / Z(Orw)dr =0
t—+oo ¢ Jy

and

This was generalized by Keller and Schmalfuf§ [33, Lemma 2.5] to

Lemma 5.1.24
Let W be a twosided (see Remark 4.1.6) Wiener process with Try Q < oo. Then, there
exists a O-invariant measurable set Q) of full measure, such that

e (i) the mapping t — Z(0;w) is continuous on D(A) for any w € Q,
e (ii) for any k>0
1t k k
Jdm 1 [ 1z@)lb ar =B 2]}
e (iii) the mapping t — || Z(0ww) ||y grows sublinearly,

e (iv) for somen > 0,a > 0,c > 0 and some random variable y such that E|y||*" < oo
there exists a > 0 such that

t o0
lim 1 (/ emoste o 120@uer)ludry g ) ds)™ dv
t—oo t 0 0

= E(/ emastefs 12Ow)llv 47,9 ) ds)™ < .
0

Proof. The proof can be found in [33, Lemma 2.5]. (i) follows by [19, Lemma 5.13]. The
finiteness of F||Z||y can be shown as follows: By Ito’s Formula we obtain

¢ t
2#/0 1Z(@s)lE; + 120w lE = 1Z(w)]1E + 2/0 (Z(0sw),dW)y + tr Qt.
We use the stationarity of Z to conclude E(||Z(6w)||?) = E(||Z(0sw)||?) for s # t. Thus,

t
2 [ EI1ZG) | ds = e
0

and
E|Z(6w)|t = E|Z ()|l =



Chapter 6

Attractors of stochastic parabolic
equations

In this chapter, we consider random attractors of parabolic equations. We start with
a simple reaction—diffusion equation with additive noise as motivating example. Here, a
very simple Lipschitz non—linearity is chosen. Later on, we investigate a reaction—diffusion
equation with multiplicative noise, with a more difficult non—linearity, which consists of a
global— and a local-Lipschitz function. The assumptions on F' are taken from [16], but in
our case, we consider multiplicative noise instead of additive noise in that article. Finally,
we regard the Boussinesq problen, also known as the Bénard problem, see [48]. This
section is based on [6], and we show the existence of a random attractor of the coupled
system of equations.

6.1 Reaction—diffusion equation with additive noise

6.1.1 Introduction

At first, we study the system of a simple reaction-diffusion equation with dynamical bound-
ary conditions and additive noise. This type of equation appears in chemistry and a
popular example is the heat equation. We use classical energy estimates to prove the
existence of a random attractor. We start with an estimate to obtain an absorbing set in
H = L?(D) x L*T). The existence of an attractor is shown by a compactness argument.
We also consider in this section the space V= H'(D) x H 3 (T"), introduced in Chapter 3.
This space is compactly embedded in H. We denote by || - || the norm || - ||z on H. The
spirit of Remark 2.3.6 holds in this chapter.

6.1.2 General setting

Let D ¢ R? be a bounded domain with smooth boundary I'. Consider the following
reaction-diffusion equation with dynamical boundary conditions

d
u' + Au :f(u)—l—d—l: on D
d
ulp + Aprur :fr(uF) + % on I (6.1)

o1
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or with U = (u,ur) € R, F = (f, fr) € R and AU = (Au, Aru)
dU + AUdt = F(U)dt + dW (6.2)
with U(0) = ugp € H formulated as evolution equation and W Wiener noise on H. We set
Au = —Av and Aru = u + dyu. (6.3)

Hypothesis 6.1.1
We have the following assumption on F':

IE@) < Ul +C
with growth constant l, and
[F(Ur) = F(U2)|| < L||Uy = Ua|. (6.4)

with Lipschitz constant L. Note, that in general | < L.

6.1.3 Transformation by Ornstein-Uhlenbeck process

We use a transformation by the auxiliary Ornstein-Uhlenbeck equation

dz + Azdt = dw
dzr + Arzrdt = dwr,

or with Z = (2, 2r), W = (w, wr)
dZ + AZdt = dW (6.5)

This equation has a stationary solution Z(6;w), see Lemma 5.1.18 and we introduce a new
variable
V=U-Zbw).

This formally gives us the random partial differential equation
VI+ AV = F(V + Z(0w)). (6.6)
Note that stochastic differentials does not appear in (6.6) and we can consider the solution

path—wise for every w.

6.1.4 Existence and uniqueness

Theorem 6.1.2
Assume that Vy € H and F fullfills (6.4). Additionally | < %/\1. Then there exists a unique
weak solution u of (6.6) with

u e L*(0,T; V)N C([0,T]; H)

and
u' e L*0,T;V").
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The proof is divided into two Lemmas 6.1.3 and 6.1.4.

Lemma 6.1.3 (Existence)
We have the same assumptions as in Theorem 6.1.2. Then there ezists a weak solution of

(6.6).

Proof. First note that by operator A, given in (6.6), which is positive and self-adjoint,
a coercive form a associated to A is generated, so that we are in the framework of Lax-
Milgram theory. By operator A we have given an orthonormal basis generated of H by the
eigenvectors {E;}ien. We denote by H,, span{F1,..., E,} and by P, the corresponding
projector on this subspace of H. Therefore, we have the following finite dimensional
equation

dVy, + AVydt = P, F(Vy, + Z(0w))dt,  V,(0) = 00 € H,. (6.7)

Like in [49, p.70] we define an approximate solution of equation (6.6)
n
Va(t) = gin(t)E.
i=1

Consider the following system of ordinary differential equations (ODE) for g;,

%(Vn, Ej)+a(Vp, Ej) = (P F (Vo + 2),E;) fori=1,--- ,n, (6.8)
see also Theorem 2.4.6.

This equation possesses a unique, global and measurable solution with trajectories in
C([0,T]; Hy,), see [49, p.70]. For existence and uniqueness of a weak solution, we have to
prove that an approximate solution V;, in the Galerkin approximation (6.7) of equation
(6.6), see Theorem 2.5.2, is in L?(0,7;V) N L*(0,T;H). Summing up the systems of
equations (6.8) leads to the following relation

1d (
2dt
This is equivalent to

Vo, Vi) + a(Vo,, V) = (P F(V,, + Z),Vy) fori =1,---  n. (6.9)

(V,{, Vo) + (AV,,, Vi) = (P F (Vi + Z(04w)), Vip).
Note that
IVall? = l[onll? + lvallE and [[Vall3 = ((vn, vn)) + [lonllE,

and we obtain
1d

5 g IVal* + 1Vall§ = (PaF (Vo + Z(0,0)), V2. (6.10)
We have the following relation between || - |g and || - [|v
IVallv = Al Valls = Al[Vall- (6.11)

This gives us the following estimate in H

d
Vall® + IVally + AdllVall? < 2(PuF (Ve + Z(01w)), Var).
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Note that

(F(Va+2), Vo) < (UIVa + Z][ + O) [ Vi

<
<UVall + 1ZID1Vall + Cl[Vall

A
<UVall? + K| 2| + FVall? + K. (6.12)
We derive from this estimate, since [ < %Al
D2+ Va2 < KP + K|z
ZIVall? + IVally < K7 + K121

This leads to
Vi, € L*(0,T;V) N L0, T; H).

Inequality (6.12) provides us that F' is uniformly bounded in H. Thus, we can conclude,
following Theorem 8.4 in [43], that there exists a weak solution to (6.6).
O

Lemma 6.1.4
If we assume that V1 and Vo are two solutions with the same initial conditions and setting
V =V — Vo, we obtain uniqueness by (6.10), which yields that

Ld

SSIVIE+ MIVIE < (F(Vi + 2) = F(Va + 2),V) < LIV,

Remark 6.1.5
In the same way as in Lemma 6.1.4, we conclude that V (t) € H depends continuously on
the initial condition.

Lemma 6.1.6

The solution of (6.6) generates a continuous random dynamical system in H. We use the
standard arguments from [9] to prove the property, which are the same as in Lemma 6.2.5
below.

We denote this random dynamical system in the following by .

Remark 6.1.7
The solution is also contained in C([0,T);H); see [49, Lemma I1,3.2].
6.1.5 Random attractor

We can state the following theorem of the existence of a random attractor.

Theorem 6.1.8 (Random attractor)
Let Z be the stationary solution of (6.5) and assume that | < %/\. Then the reaction-
diffusion systems (6.2) and (6.6) have a unique random attractor.
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We divide the proof into two lemmas. The first Lemma 6.1.9 proves the existence of a
random absorbing set and the second Lemma 6.1.10 the compactness of this set. Then
Theorem 5.1.8 gives the existence of a random attractor. We consider the invariant set of
w that is defined in Remark 5.1.19 and such that ¢t — || Z(6;w)|| p(as) has a subexponential
growth. We take the trace-o-algebra of F for a set given by the intersection of this invariant
set and the probability measure, which is the restriction of P to this new o-algebra. Then,
we obtain a new metric dynamical system. In particular, the flow 8 is measurable with
respect to this new o—algebra [8]. For this new metric dynamical system we use the old
notation (2, F,P,0).

Lemma 6.1.9
Let A =2(\ —1— %) with X defined in (6.11). Then the reaction-diffusion problem (6.6)
has an absorbing set

B(w) = By (0, p(w)),

where By(0, p(w)) defines the closed ball in H with center 0 and tempered radius p(w),
which is defined as follows:

0
plw) =2 / exp(At)H (F, Oyw) dt,

H(Fw) = K© 1 K| 2(0)]
Proof. We multiply (6.6) with V' and get
(V,V)+(AV,V) = (F(V + Z(0w)), V).
This gives us the following estimate in H
d 2 2
ZIVIE+AVIE < (B(V + Z(6w)), V).
Note that

(F(V+2),V) < {UIV+2Z]+ V]

<
<UVI+lZzivii+ vl

A
<UVI?+ KIZIP + FIVIP + K©.
Thus we have
d 2 2 B 2 2 A 2
ZIVIE+ 20| VIP < K2 2V + K| ZIP + SV

and thus with A = 2(A\; — [ — %), and H(F,w) = K¢ + K| Z(w)||?

t
IVOI2 < [VO)|2e— + / H(E, 0r)e~ M) 7. (6.13)
0
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We replace w by 0_;w, carry out an integral transform 7 — 7 — ¢ and let ¢ — oo in the
right hand side of (6.13) and conclude that the right hand side of (6.13) is bounded by

0
/ eMTH(F,0,w) dr.

—00

Applying Lemma 4.6 of [8] yields us the existence of an absorbing set in H because A > 0
and H is tempered. We can now conclude the existence of a random absorbing set [8,

chapter 4].
O

We also have a similar estimate on ||[V[|3
d . *
ZIVIE+IVIE < K3 + &5 Z(0w)|* = H* (F. 6w). (6.14)

Lemma 6.1.10
Let B be an absorbing set in H. Then

C(w) = ¢(1,0_1w, B(0_1w))
is a compact and absorbing set of (6.6) in H.

Proof. Usually, we have to use for these estimates the Galerkin approximations, but we
suppress the projections in these equations. The limit transition is well-defined because
Vi € L=(0,T; H)NL2(0, T; V) and @ € L2(0,T;V’). We use the notation from ([49]) and
show some a priori estimates for V in the H!(D) x H%(F)—norm. By Theorem 2.3.9, this
norm is equivalent to the norm generated by ||V||v. To get the existence of an attractor,
we need a regularization result. We will show that [|V(1)|? is bounded, if ||V/(0)? is
bounded.

We multiply (6.6) with AV and get

(VI,AV) + (AV,AV) = (F(V + Z), AV).

We obtain
1d
2 dt
F = (f, fr) has the following property:

V% + (Av, Av) + (Arv, Apo)r = (F(V + Z), AV)

(F(V+2),AV) < (|IV+ Z| + C)||AV||
<UVIIAVI + Ul 2] AV + CllAV]]
<KV + AV + K| Z)* + K€

Hence, we obtain
d
%HVH% < K9+ os||VI? + ol Z(0w) > = G(F, V, 60).

Additionally, we have

devVOlIR) _ divel?
dt dt

+HIVOIR < GF V. 0wt + | V5.
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Integration and (6.14) give us

1 1
V< [ @ Vo + [ V@l dr
0 0
1 1 T
g/ G(F,V,&Tw)dr—ir/ (/ H*(F,0.w)ds + |V (0)]?) dr.
0 0 0

G(F,V,0w) is in L%(0,1) by Lemma 6.1.3 and H*(F,fuw) is also in L?(0,1) by the as-
sumptions on F' and Z, so that we can apply Theorem 5.1.8 and conclude the existence of
a random attractor of the transformed equation (6.6). Lemma 5.1.16 gives us the existence
of a random attractor of the original equation (6.1).

O]

6.2 Reaction-diffusion equation with multiplicative noise

6.2.1 Introduction

We extend our theory of reaction-diffusion equation with additive noise to an equation
with multiplicative noise. As in the chapter before, we are again looking for a random
absorbing set in H = L?(D) x L?(I"). After that, we show the existence of an attractor by a

compactness argument. We again consider in this section the space V.= H*(D) x H 2 ().
We again use the transformation method.

6.2.2 General setting

Again D ¢ R? is a bounded domain with smooth boundary I'. Consider the following
reaction-diffusion equation with dynamical boundary conditions

d
u + Au + f(u) :bud—vl/ on D

u + Aru + h(u) = bu% on I (6.15)

or

aw
dt’
where W is a one dimensional Wiener process, A as in (6.3). On F' = (f, h) we assume

Hypothesis 6.2.1, which are the slightly modified assumptions from [16]. Note that f and
h do not need to be identical.

U+ AU + F(U) = bU (6.16)

Hypothesis 6.2.1
We suppose, that f and h have the following properties:

e the mapping f : R? — R is continuous,

o f has the representation

f(u) = folu) + fr(u),
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where fi : R — R is globally Lipschitz with Lipschitz constant L and fy is a locally
Lipschitz function with the properties

041\8|2 — 61 < sfo(s) < ag]S\Q + B2, s€R, (6.17)

and
(81 — 82)(f()(81) — fo(Sg)) > —043|81 — 82‘2, 81,892 € ]R, (6.18)

where a;, B; > 0.
o There exists a constant ¢ > 0, such that

filwu > —c, ueR. (6.19)

On the boundary, we assume the similar properties
e the mapping h : R? — R is continuous,

e h has the representation
h(u) = ho(u) + hi(u),

where hy : R = R is globally Lipschitz with Lipschitz constant L and hg is a locally
Lipschitz function with the properties

ayls|* = B1 < sho(s) < agls|” + B2, s €R, (6.20)

and
(s1— s2)(fo(s1) — fo(s2)) > —asls1 — 52>, s1,82 €R, (6.21)

where o, 3; > 0.

o There exists a constant ¢ > 0, such that

hi(w)u > —c, wu€R. (6.22)

Furthermore, we assume the following connection condition between f and h. There exists
a c1 > 0 such that
\h(u) — f(u)] < e (14 |u]), weR. (6.23)

The handling of the stochastic differential is not obvious and thus we use a transformation
by a stationary Ornstein-Uhlenbeck process, which is introduced in the following.
6.2.3 Transformation by Ornstein-Uhlenbeck process

We use the transformation by a stationary Ornstein-Uhlenbeck process. Consider the
auxiliary equation

dZ + aZdt = bdW, o> 0. (6.24)

This equation has the stationary solution

Z(0w) = / t et dW (w)

—00
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almost surely for every ¢ € R. Note, that W is a one-dimensional Wiener process. Then,
we apply the transformation

V =T(U,w) =e ?Wy,

where Z is the stationary solution of (6.24). We define

and get by Ito‘s formula, omitting the w, when there are no confusions,
1
dB = —BbdW + aZBdt + 5@’b%lt.
This gives us the following equation

1
dV 4+ AVdt + §bQth + B(0:w)F(B(0yw) ™ V) dt = aZ(0yw)Vdt. (6.25)

6.2.4 Properties of the non—linearity

We state two Lemmas, which give some basic properties of the non—linearity. The following
Lemma is similar to [16, Lemma 3.2].

Lemma 6.2.2
Assume that U € H. Then,

(F(U),U) > ax(fJul® + [lurlf) - c

for some ¢ > 0.

Proof.
(f(u),u) = /Dufo dx + /Duf1 dx > aq /D lul? dz — /Dﬁl dx + (—c) (6.26)
by (6.17) and (6.19). (6.20) and (6.22) give us
(h(w), u)r > al/F]u|2dS— /Fﬂl dz + (—c). (6.27)

Adding (6.26) and (6.27) gives us the assertion. O

The next Lemma is similar to [16, Lemma 3.8].

Lemma 6.2.3
Assume that U € D(A). Then,

1
(F(U), AU) 2 —c = c|U|* - 5| AU

for some ¢ > 0.
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Proof. Integration by parts yields
(B(U), AU) = / Flu)Audz + / h(u) Aru dS
D T
_ / V Vuds + / (h(w) — f(u))ArudS + / Flu)uds. (6.28)
D T T

We estimate the first term in (6.28) by

d
/VfVudx:/ > Op fOruds
D D=1
d d
:/ Z&zifoamiudx—i—/ S 0, f10s,u da
D= D=1

[l 2500,

1
> —cillullmpy = —e2ll UG = —esl|U]* ~ EHAUH?

by an interpolation inequality, (6.18) and the global Lipschitz continuity of f;. O

Furthermore, we estimate as in [16, Lemma 3.8].
[ 11w = )l Aruds < a1 + uln oAU

1
<ecs5+ C5HUH2 + ZHAUHQ.
Finally, we obtain
[ rwuds = - e UJP
r

by the assumptions on f.

6.2.5 Existence and uniqueness

We use the same method as in the additive case. To show existence and uniqueness of a
weak solution, we have again to prove that an approximate solution V;, in the Galerkin
approximation of equation (6.25), see Theorem 2.5.2, is in L?(0,T; V)N L>(0,T; H). This
is given by Remark 6.2.10 and 6.2.11. Uniqueness is given by Remark 6.2.8.

We have again the following Remark:

Remark 6.2.4

The solution is also contained in C([0,T);H); see [49, Lemma I1,3.2] and Theorem 2.5.3
We note that by the measurability w — V € C([0,7]; V') the mapping w — V(t,w) € H
is measurable for t € [0,T7]; see [50, Bem. 4.1.3]. In addition, for fixed ¢,w the mapping
VY = V(t,w) is continuous by Remark 6.2.4. Applying [9, Lemma III.14] the mapping
(V% w,t) = V(t,w) € H is measurable. Thus, we have again the following result.

Lemma 6.2.5
The solution of (6.25) generates a continuous random dynamical system in H.

We generally denote this random dynamical system by .
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6.2.6 The attractor of reaction-diffusion equation with multiplicative
noise

In this section, we will apply the results of the preceding section to prove the existence of
a random attractor for (6.25).

Theorem 6.2.6 (Random attractor)
Let W be a one dimensional-Wiener process and let Z be the one-dimensional stationary
solution of (6.24). We set

Qw) =2\ + a1 — o|Z(w)]) (6.29)
where the constant A1 is defined in (6.11). Assume that Q(w) has the finite expectation
EQ > 0.

Then, the reaction-diffusion systems (6.16) and (6.25) with multiplicative noise have a
unique random attractor.

We first note that from assumption (6.29) there exists a {6;}icr—invariant set of full
measure (see also Remark 5.1.19 (ii)) such that

t_liinoo% ; Q(0rw)dr = EQ. (6.30)
We consider the invariant set of w such that ¢ — |Z(6w)| has a subexponential growth
and the invariant set of w such that (6.29) holds. We take the trace-o-algebra of F for
a set given by the intersection of these invariant sets and the probability measure which
is the restriction of P to this new o-algebra. Then, we obtain a new metric dynamical
system. In particular, the flow € is measurable with respect to this new o—algebra [8]. For
this new metric dynamical system we use the old notation (2, F,P,0).
The proof is divided into two lemmas. After proving the existence of an absorbing set B in
H, we show that this set can be modified into a compact absorbing set. We apply Theorem
5.1.8 together with Lemma 5.1.16 to conclude the existence of a random attractor.

Lemma 6.2.7
Let EQ > 0. Then the reaction-diffusion problem (6.25) has an absorbing set

B(w) = B (0, p(w)),

where By(0, p(w)) defines the closed ball in H with center 0 and radius p(w) which is
defined as follows:

plew) =2 /O exp ( /0 Q0:) dT)Hwtw) at

H(F,w) = 2| B(w)[”
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Note that H is a tempered random variable. Like in Lemma 6.1.5 we make some energy
estimates. Multiplication of (6.25) with V' gives us

1d|V]?
2 dt
With Lemma 6.2.2 we achieve

(BF(BT'V), V) = B2(F(B7'V), B71V)

> B (en(|87 0 + 87 erlp) — )
= a1 (Jvf* + Jur|?) — B2,

FIVIE+ GRIVIP+ (BFEV),V) < alZ@u)lIVIZ. (631)

and conclude p
ﬁ\IVH2 + QOw)| V| < H(F, bw)

with
Qw) =2\ + a1 — a|Z(w)]).

By Gronwall’s lemma we get
t
IV(@)]2 < elo ~QO)d5)1(0) 2 + / H(Oyw)el: ~Q0r)dr g (6.32)
0

The first expression on the right hand side behaves for |t| — oo by Birkhoff’s ergodic
theorem like
e PV (0)|?

and the second tends by replacing w — 6w and a simple integral transformation and
t — oo to

0
/ H(F, Oyw)els ~QO-w)dr g

The temperedness of H and EQ > 0 gives us by applying Lemma 4.6 of [8] the existence
of a random absorbing set for (6.25).

Applying Lemma 4.6 of [8] provides us the existence of an absorbing set in H because
EQ > 0 and H is tempered. We can conclude now the existence of a random absorbing
set [8, chapter 4].

Similar as in Lemma 6.1.4 we obtain uniqueness.

Remark 6.2.8
If we assume that Vi and Vo are two solutions with the same initial conditions and setting
V =V — Vs, we obtain uniqueness by (6.31).

Proof.
SSIVIZ + VIR < olZIIVIP + BF(B™VE) — F(37Va), V).
and
BIF(BV1) = F(B71V2),V) < —(L + as) |V
lead us to

d
@HVII2 < 2(alZ|+ L+ a3)| V]2,

V(0) = 0 and applying Gronwall’s Lemma gives us the uniqueness. O
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Remark 6.2.9
A similar calculation as in Lemma 6.2.8 provides us that V (t) depends continuously on
the initial condition.

Remark 6.2.10
If we replace V in (6.32) by V,,,, we get for the approzimate solution that

V, € L0, T; H).

Remark 6.2.11
If we replace V' in (6.31) by Vi, and apply Remark (6.2.10), we get for the approximate
solution that

Vin € L?(0,T; V).

Proof. From Inequality (6.31) we derive the following inequality

1d||Vinf?

1 _
S T Vol SBRVinll® o (BF (B Vi), Vi) < al Z(00)] Vi

Then, we get by applying

(BF(/Bilvm%Vm) > alHVmH2 - C\5|2

the following inequality

d||Vin® 2 2
KVl < HF, 0) +2012(00) [ Vi
for some k > 0. Integrating from 0 to ¢t and Remark 6.2.10 gives us the result. 0

Lemma 6.2.12
Let B be an absorbing set in H. Then

C(w) = ¢(1,0_1w, B(0_1w))
is a compact and absorbing set of (6.16) in H.

Proof. Usually, we have to use for these estimates the Galerkin approximations, but we
suppress again as in Lemma 6.1.10 the projections in these equations. The limit transition
is well-defined because V;,, € L>(0,T;H) N L?(0,T;V) and % € L*(0,T;V"). We use the
notation from ([49]) and show some a priori estimates for V in the H'-norm. This norm
is by Theorem 2.3.9 equivalent to the norm generated by [|V|y. Multiplying of (6.25) by
AV gives us

( dv
dt’
By

AV) + (AV,AV) + %(bQV, AV) 4+ (B(Oiw)F(B7V), AV) = a(Z(6,w)V, AV)).

(V,AV) = (v, Av) + (v, Arv) = ((v,0)) = (v,0,0)r + [v]I} + (v, By0)r = VT,
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the estimate

A(Z(0)V, AV) < [aZ(0)|(V, AV) < K| Z(60) |V + L(AV, AV)
and by Lemma 6.2.3

(B(6) F(57'V), AV) = ~K [V — L(AV, AV) — K|5(61)

we get
S SIVIE < KIBOw)? + K(Z0w)] + DIV
e calenate WV OR) LAV
AV AVl )
e 1401
and integrate from 0 to 1. O
Thus, we have
V)3 < / K|B(8sw)|>ds + sup |Z(6w) |K HV (s)||? ds (6.33)
te[0,1]
+K/ ||V(s)||2ds+/ HV(s)H%,ds. (6.34)
0 0

It is clear that K|B(0;w)|? and [|V]|? are in L'(0,1), ||V|}3 is also in L'(0,1) by Remark
(6.2.11) and depends on ||V (0)||?, therefore the right hand side of (6.34) is bounded for
initial condition V(0) € H and we can together with Lemma 6.2.7 apply Theorem 5.1.8
to get the existence of a random attractor. By Lemma 5.1.16 we obtain the existence of
a random attractor of (6.16).

6.3 Boussinesq system

6.3.1 Introduction

The Navier-Stokes equations are often coupled with other equations, i.e. with the scalar
transport equations for fluid density, salinity, or temperature. These coupled equations
model a variety of phenomena in environmental, geophysical and climate systems [20, 42,
21, 40).

In this section, we consider the Boussinesq equations in which the scalar quantity is salin-
ity, under dynamical (flux type) boundary conditions for the salinity. This models various
phenomena in our climate system, for example, oceanic density currents and the thermo-
haline circulation.

We take random influences into account and formulate this problem as a system of stochas-
tic partial differential equations (SPDEs). This is a coupled system of the stochastic
Navier-Stokes equations and the stochastic transport equation.

The main differences to the standard Boussinesq model [20] are the dynamical boundary
conditions. We emphasize that the noise also acts on the boundary.
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In the first part of this section we give the general Boussinesq model with dynamical bound-
ary conditions. The basic functional analytic setting and the appearing linear operators
are analyzed. Later on, the properties of the trilinear form evolving for the Navier—Stokes
equations are investigated. Again, we transform the SPDE to a random partial differential
equation by an Ornstein Uhlenbeck process and show the existence of a random attractor.

6.3.2 General setting

Let D C R? be a bounded C'-smooth domain with the boundary 9D =T, in the vertical
plane. We consider a system of coupled partial differential equations (PDE’s) with white
noise and random dynamical boundary conditions of the form [40, 20]:

w1
dt ~ “Re
diveu = OonDx R4
u = OonI'x R,

1 )
Auspfu-VufF—ﬂUk)JrWo on D x Ry

u(0) = g
dUu 1 .
Y (L AU-—u- D
= (RePr U—-u-VU)+WionD xRy
e _(ZOUr =l + f(x)) TWeonT x Ry (6.35)
dt €0
WU = Ur
U@) = U, (6.36)

with velocity v = wu(t,r) € R?, salinity U = U(t,z) € R, pressure p(t,z), where
r = (&n) € D C R*and t > 0. Here A is the Laplacian operator, v is the trace
operator with respect to the boundary, V the gradient operator, div the divergence opera-
tor, F'r is the Froude number, Re is the Reynolds number and Pr is the Prandtl number.
Moreover, Wy, Wi and W, are white noise terms with values in appropriate function
spaces; see also Lemma 5.1.18 below. The mathematical model for these noise terms are
the generalized time derivatives of Brownian motions. Note also that ¢y and ¢ are some
positive constants. When ¢y — 0, the dynamical boundary condition (6.35) reduces to the
usual Robin boundary condition. Finally, f(x) is a given function describing the mean
salinity flux through the boundary; k € IR? is a unit vector in the upward vertical direc-
tion (opposite to the gravity); Uy and ug are the initial conditions; and 9,Ur is the outer
normal derivative, Without lost of generality for our stochastic analysis in this paper, we
take ¢p to be 1.

In the following some function spaces are introduced to deal with this specific setting.
General properties of Sobolev spaces can be found in Chapter 2.2.1. We set

L?:= (L*(D))? x L*(D) x L*(T")

The L?-norm is denoted by || - ||. We define a function space, which incorporates the
boundary and also the divergence-free condition

V= {(u,U,Ur) € (C®(D))* x C®°(D) x yC>°(D) : divu = 0}.
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Define
H} = {(u,U.Ur) € (H}(D))* x H'(D) x H2(I)},
where H!(D) is the usual Sobolev space and H%(F) is given by y(H'(D)). It can be

endowed by a norm, for instance HcpHH%(F) = inf |lul|g1(py; see [49, p.48]
Tu=p

Related to the above functional setting, we define the Hilbert space L? given by the
following inner product:

1
()= ()22 + ?60('7 Jr2py + (5 )2y
with norm
IU|I* = (U, U)
U = (u,U,Up). (6.37)

This norm is equivalent to the usual norm on L?(D)? x L?(D) x L?(T"). Let H = H; x Hy
denote the closure of V with respect to the L?-norm, V = V; x V; denotes the closure of
V with respect to the Hl-norm, and V’ be the dual space of V.

Using (6.37) we can reformulate our problem as an stochastic evolution equation:

dU + AUdt + B(U, U)dt = F(U)dt + dW, (6.38)

with
A: V=V,

AU = < A2E4U17uUF) >

In particular,

Aju = —vAu,
1L AU
nav = ().
€0

B:VxV—=V:

By (u,v) u- Vo
B(U,V)=| B(uw,V) | = w-VV |,
0 0
and
S
F(U) = 0 ,  feL*D).

Note that A; and Ag are positive self-adjoint operators with domains D(A;) and D(Aj3).
So A has the same properties on D(A) := D(A;) x D(A2). Moreover, By and By are
bilinear forms, which are well studied in the context of the Navier-Stokes equations [17].
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Definition 6.3.1

Let {-,-) be the duality mapping V' xV — R. We denote by b(u, v, w) = (B(u,v),

can be represented by
2

by (u, v, w) = /Zuzaijd:r
ox
t,j=1

V., W) i Wd
U /Zuf)xl X,

and
b(U7 V7 W) =b (U, v, ’UJ) + bQ(ua V'v W)

for
U, V,WeV.

We state that B : V' — V by [47, Lemma 3.4, p.92].

Lemma 6.3.2 (Properties of A)
Both Ay and Ao are positive self-adjoint operators.

67

w) which

Proof. Following a density argument, we now assume U € H?(D) to obtain the following
estimate, n denotes the outer normal in this context. There exists a puo > 0, such that

1 1 c
(A2(U,Ur), (U, Ur)) = MO( wAU,U) 2y + (— anUvU)LQ(F)+(%UvU)L2(F)
1 1 C .9
= — [ (=rAU)U dx + 8UUda+ —U~do
KEQ €0

D T

T
= 1(/(VU VU)d /aUUda
I

€0

1
+— [ @U)Udo+ = c /U2da
0

I

T
1 2
= - (VU -VU)dx+c | U do)
0D T

> (U, Up)|.

The last inequality holds because of the generalized Poincaré inequality [49, p.51] or The-

orem 2.3.9. Define

A= min(:ulv #2)7

with (A2(U, Ur), (U,Ur)) > po||(U, Ur)|* and (Aru,u) g2 > pallul|Erzpy

such that
(AU,U) > \|U|2%

(6.39)
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Again, we can as in 3.1.1 also define the following function spaces with respect to the op-
erator A, defined in (6.38), this is reasonable because A~! is compact and so the spectrum
of A is discrete with finite multiplicities. The spectrum of A is denoted by ()\;);en and
the appropriate eigenfunctions are (F;);cn which form a complete orthonormal system in
H. The eigenvalues are positive, increasing and tend to infinity as n — oo. All these
properties follow similar to [15]. This allows us to introduce the function spaces

DAY ={U =3 aE:: [Ulpn = Y [6]°A% < oo}
=1 i=1

with D(A°) = H and D(A'Y/2) = V. We refer to [48] for details.

Lemma 6.3.3 [Properties of the trilinear form B]
The following properties hold for U, V,W € V:

b(U,V,W) = —b(U, W, V) (6.40)

and
(B(V,U),U)=b(V,U,U) =0.

Proof. To prove (6.40) we conclude for U,V € V:

/(u -VV)Wdz = / (U105, VW + 120, VW) dx
D D

= — / V(?ml (U,1W) + V&w (UQW) dx
D

= — / VWOg,u1 + VW0Or,ug + ur VOog, W + uaVOo,, W dx
D

= —/ulv&ch—i—u?V@xQde,
D

by divu = 0. All these integrals are well-defined by the embedding H' C L*, see Theorem
2.2.19. Now, the second assertion is also clear, it is a direct consequence of (6.40). ]

Lemma 6.3.4 (Estimates for b; and b2)
The trilinear forms by and by have the following properties: There exists a constant cg > 0,
such that:

b1(u, v, w)| < epllullgllvlpapllwll v e Vi,v € D(Ar),w € Hy

1 1 1 1
b1 (u,v,w)| < epllull 2 llull vl peap lwl 2wl 7 v € Vi, v € D(Ar),w € Vy
[b1(v,v1,v)] < eglvl[mflvillglv]] v e Vv €V

1 1 1 1
2(v, V1, < ceBlv|IZ|vl| Vil 2 1 v 1, V1 2, 1
2(0, V1, V)| < ellollz (o]l fa Vil V2V, €V, V1€V, VeV
b2(u, V,IW)| < epllulllVIIpan W v e Hy, V€ D(A2), W € V.
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Proof. The first inequality holds because

A

101 (u, v, w)| kalfullLa [ Vol Lallwll 2

< e llullallvllpeayllwl z2-
The first step uses Holder’s inequality and the second step makes use of Sobolev’s em-

bedding theorem. The other inequalities are similar, but additionally Ladyzhenskaya’s
inequality is used:

[b1(u, v, w)] kallull L[ Vll g2 [[wl]| pa

IN

IN

1 1 1 1
ey ||ull Fallull fa lvll peap w22 llwll 72
and it remains to show
b2 (u, VW) < ksllul[[VVI] s W] s
< cepllullllVIipay Wl a1

for the details of the embeddings see Lemma 6.3.16 below. For a two-dimensional domain,
Ladyzhenskaya’s inequality does not depend on the boundary conditions [43, Lemma 5.27].

O]
Remark 6.3.5
b is a continuous trilinear form on V into R which results by Lemma 6.3.4.
We can write (6.36) as stochastic evolution equation
dU + AUdt + B(U,U)dt = F(U)dt+dW, U(0)=u"cH. (6.41)

In which sense we study solutions will be clarified later on. Formally, we transform this
equation as follows. We apply the transformation in (5.4) where we chose W in the role
of Win (5.4) and Z as Z respectively. Subtracting (5.4) from (6.41) with V = U —Z(0,w)
leads us to

W 4 AVt + BV + Z(00), V + Z(0) = F(V + Z(6)), (6.42)

V(0) =° € H.

A solution of equation (6.42) will be defined for every w, here a solution is interpreted in
the weak sense. From the existence of weak solutions of equation (6.42) we can derive the
existence of weak solutions of equation (6.41).

To prove existence of a solution, we use the method of Galerkin approximations, but
only the basic ideas are given here. We consider the orthonormal basis generated by
the eigenvectors {E;};cn of the operator A. H,, denotes span{Ei,...E,} and P, the
corresponding projector on this subspace of H. The finite dimensional equation

dV, +AV,dt+ P,B(V, + Z(0,w),V, + Z(0w))dt
= P, F(V, + P,Z(6w))dt, V,(0) =2 cH
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possesses a unique, global and measurable solution with trajectories in C([0,T]; € H,,).
For the existence of solutions of equation (6.42), we note that the set of Galerkin ap-
proximations {V,, }ney is relative compact in L?(0,7;H) N C([0,T]; V'), since d};" is in
L?(0,7T;V"). This gives us, that the V,, are contained in an equicontinuous set and hence
we can apply Theorem 2.2.24. Limit points of this sets satisfy equation (6.42).

The existence of solutions in L°°(0,T;H) N L?(0,T;V) can easily be shown, we refer to
Remark 6.3.13 and 6.3.14. A straightforward computation shows us that we can apply
the methods of [43, Chapter 9.4] and the compactness theorems referred therein. Due to
those a priori estimates, the existence of the solution is proven. The solution is measurable
as a mapping from Q to C([0,7]; V") N L?(0,T;H) because the approximate solution is
measurable as a solution of an ODE.

Remark 6.3.6
The solution is also contained in C([0,T);H); see [49, Lemma I1,3.2].

To avoid too much indices and for simplicity, constants are denoted by K.

We give some arguments to prove uniqueness of the solution. In the following, V; and Vo
are two solutions of (6.42) for the same initial condition. We set

V=V; -V,

As a preparation for this purpose, we formulate the following both lemmas, which are a
consequence of the properties formulated in Lemma 6.3.3.

Lemma 6.3.7 (Properties of b;)
Assume that V; € V. Then it is essential that

bi(v1,v1,v) — b1 (v2,v2,v) = bi(v,v1,v)

and
ba(v1, V1, V) = ba(va, V2, V) = ba(v, V4, V).
Proof.
bQ(’Ul, V17 V) - bQ(’UQ, ‘/27 V)
ba(v1, Vi, V) + ba(v2, V, V) — ba(ve, V1, V)
= ba(v1 — w2, V1, V) = ba(v, V1, V)
The proof of the properties of b; is analogeous, just replace V' and V; by v and v;. 0

Lemma 6.3.8 (Properties of b;)
The following equalities hold for V; € V and z, Z sufficiently reqular:

bi(vi + z,v1 + 2,v) — bi(v2 + 2,02 + 2,0)
= by (v,v1,v) + b1 (v, z,v)
and

bo(vi +2,Vi+ Z,V) —ba(va+ Z, Vo + Z,V)
= bg(?), 1, V) + bg('l), Z, V)
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Proof.
bi(v1 + z,v1 + 2z,v) — by (vy + z,v9 + 2,0)
= bi(vi,v1 + z,v) + b1(z,v1 + 2,v) — b1 (v2,v2 + 2,v) — b1(2,v2 + 2,v)
= bi(vi,v1,v) + b1(v1, 2,v) + b1(z,v1,v) + b1(2, 2,v)
—by(ve, v2,v) — bi(va, z,v) — b1(2,v2,v) — b1 (2, z,v)
= bl(U,Ul,U) + bl(’U,Z,U) + bl(Z,’U,U)
- bl(v7vlav) +b1(U,Z,U)
and

bo(vi + 2, Vi +2,V) —ba(va + 2, Vo + Z,V)
= by(v,Vi+ Z,v) +ba(2, Vi + Z,V) = ba(va, Vo + Z, V) — ba(2, Vo + Z, V)
= bo(v1, V1, V) + ba(ve, Z, V) + ba(2, V1, V) + ba(2, Z, V)
—ba(va, Vo, V) — ba(v1, Z, V) — ba(2, Vo, V) — ba(z, Z, V)
= ba(v, V1, V) +bo(v, Z, V) + ba(2,V, V)
= by(v,V1,V) 4+ be(v, Z,V)

Thus, we have

d

@HVH2 +VIF < KIVIPUIVilFn + 1Z2(0:w)[13) + ellol 3
for some € > 0. This leads to

d
allVll2 < K(IVill7 + lorll7p + 1 Z(0w)ll7 + ) V]2
and thus, we obtain uniqueness by applying the Gronwall lemma because of || —v9||2 = 0

and [[Va[[3 + [Jvi][F + [ Z(0rw)l[3 + K € L1(0,2) -

Remark 6.3.9
A similar calculation gives us that V (t) € H depends continuously on the initial condition.

We note that by the measurability w — V € C([0,7]; V') the mapping w — V(¢,w) is
measurable for ¢ € [0,T]; see [50, Bem. 4.1.3]. In addition, for fixed ¢,w the mapping
9 — V(t,w) is continuous by Remark 6.3.9. Applying [9, Lemma II1.14] the mapping
(1%, w,t) = V(t,w) € H is measurable. Thus, we have the following result.

Lemma 6.3.10
The solution of (6.42) generates a continuous random dynamical system in H.

We denote this random dynamical system by ¢ = (1, p2).



72 CHAPTER 6. ATTRACTORS OF STOCHASTIC PARABOLIC EQUATIONS

6.3.3 The attractor of the Boussinesq system

In this section, we will apply the results of the preceding section to prove the existence of
a random attractor for (6.41).

Theorem 6.3.11 (Random attractor)
Let Z = (z,Z, Zr) be the stationary solution of (5.4). We set

Qw) = KN Z(w)l[Da,) + Kll2(@)lF — X € L, (6.43)

where the constant K¢ depends on the data of the problem and some € that has to be chosen
sufficiently small, and the constant X is defined in (6.39). Assume that Q(w) has the finite
expectation

EQ < 0.

This can be ensured by Lemma 5.1.18. Then, the Boussinesq system (6.41) has a unique
random attractor.

We first note that from assumption (6.43) there exists a {6;}icr—invariant set of full
measure (see also Remark 5.1.19 (ii)), such that

im [ Q(byw)dr = EQ. (6.44)

t—+oco t 0

We again consider the invariant set of w that is defined in Remark 5.1.19 and such that
t — ||Z(6ww)|| p(asy has a subexponential growth and the invariant set of w, such that
(6.44) holds. We take the trace-o-algebra of F for a set given by the intersection of these
invariant sets and the probability measure which is the restriction of P to this new o-
algebra. Then, we obtain a new metric dynamical system. In particular, the flow @ is
measurable with respect to this new o—algebra [8]. For this new metric dynamical system
we use the old notation (2, F,P,0).

The proof of the above theorem is divided into two lemmas. We first prove the existence
of an absorbing set B in H and then show that this set can be modified into a compact
absorbing set. Then, together with a continuity result, we can apply Theorem 5.1.8 to
conclude the existence of the random attractor.

Lemma 6.3.12
Let EQ < 0. Then the Boussinesq problem (6.42) has an absorbing set

B(w) = B (0, p(w)),

where By (0, p(w)) defines the closed ball in H with center 0 and radius p(w) which is
defined as follows:

plw) =2 /0 exp ( /0 Q(6:0) dT)thw) dt

G(w) = Gi(w) + G2(w),
Gi(w) = K+ K| 2(w)[l[|Z (@) p(as))?,
Ga(w) = K([[2(w) 11 |2 (@) peay))® + KN Z (w)]|>.
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Proof. Let
V= (v,V,)

be the solution of (6.42) and
Z= (Z, Z, Zl")

be the stationary solution of (5.4). Multiplying (6.42) by V with respect to the L? inner
product leads us to

VIR 4 oV, Vi), (V) < 205, V0) + 20t + 2(000), 200, V)] (6.45)

and

d|jv]? 2
& + 2(Ajv,v) < 2 IV + Z|[v]l

+ 2[b1 (2(Orw), 2(Orw), v)| + 2]b1 (v, 2(Orw), v)|.

(6.46)

We start to deal with (6.45). On account of Lemma 6.3.4 we obtain for some € > 0

d||(V, Vo) 1?

7 +2(AV, V) <2|(f, V)| + 2|b2(v + 2(0w), Z(Ow), V)|

< 2[(f, Vo)l + Kllv + 2(0:)[[[| 2 (0w) [ p(an) IV 12
<2/(f, V)| + Kol Z 6:)l| pag) IV [ 1+

+ K|z(0:)[[[|Z (6:) | pag) [V | 1

< K+ K(|0ll1Z(0:w) | p(az))*+

+ K([|2(0:)[[11Z(8:0) | p(a))? + el V I[71

hence

VYOI |51 vy 2 4 KV < K ol21 260 2 G1(0 6.47
o PAVVDIE+ KV < K olPIZ(0w)lpa,) + Grl0w).  (6.47)
Gronwall’s lemma yields

t
t
RADIOIk +KOfe‘“t‘s)ll‘/llir1 ds < Ke/eA(tS)HUHZIIZ(HSW)II%(AQ) ds
0

t
+/€_A(t_S)G1(GSW) ds +6_>\t||(‘/7 VF)(O)||2
0
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Similar to the last calculation we conclude in (6.46); see also Lemma 6.3.4:

d||vl? 2
W 4 ar0,0) < 251V + 20 o] + 21 (2(000). 2(00) )+

+ 2|61 (v, 2(Orw), v)|

2
< VIl + 12 0)llloll) + K12 @)l [0l lFollma+

+ K| 2(0) | 1 12(0) [ pay) 0] (6:48)
< K VP + ol + K1 2(6w) > + o]

5 2(000) 1 1 2(600) [,
+ Sl + K l=00w) o] +

€
ol
Thus, we obtain for small € > 0

d||v||? . 2 € 2
= Qa(0) [v]* < KUV + Ga(0w),

where
Q2(w) = K*[l2(w) |7 — A
Applying again Gronwall’s lemma, we obtain

t

[ Q(0:) ds 2(6rc0) dr
k@ < e ()2 + / G (0)e ds+

. ng(@Tw dr
/ K|V (s)] 2"

We achieve

t t t
[ Q2(0sw) ds J Q2(0-w) dr
IV@)> < e HV(0)||2+/€s 2 G(0sw) ds

0
t

€ IQQ € —All—S
/ Ke|V|2e! T K / Ao |2 Z(8sw) [ ay s

with
We have by (6.47) and

|V |2 6
”dtH ~ QO IVI? + K|IVIZ < K021 Z(00) |5 0, + C1(01)
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such that the following estimate holds

t t t t
Q2(0rw) dr Q2(6,w) dr
[ e = s < [ T
0 0
t

t t
. J Q2(0-w) dr . J Q2(0-w)dr
< Kfe? IV(0)[* + K /65 [0() 117112 (05w) 1D ay) ds

0

t ot
Q2(0,w)dr
+K° esf ’ G1(0sw) ds.

0

We obtain the following integral inequality

t t ot
J Q2(0sw) ds Q2(0,w) dr
IVOI?P < Koo IV (0)[* + Ke/e[ 2 G(0sw) ds
0
[ Qu0r)d
2\0rw)dr
e e 126y IV (S)P ds. (6.9
0
t
) — [ Q2(0rw) dr ) ]
In order to apply Gronwall’s lemma, we multiply (6.49) by e © as an integrating
factor:
[ Qa(6-)d [ [ Qa0r)d
IV(D)|Pe o < K V(0)* + Kﬁ/e o (Osw) ds
0
t s
. — [ Q2(0-w) dr )
e [ 126) | pan IV ()] ds.
0
t
_ 5 —J Q2(0rw)dr .
Applying Gronwall’s lemma ([54, Lemma 29.2]) on ||V (t)||“e © provides us
t t -
JQbrw)dr — [QOsw)ds
V()] < ed (Kﬁ\V(O)]P + /Kfe 0 G(HTw)dT>. (6.50)
0

On account of Birkhoff’s ergodic theorem, we obtain for ¢ — 400

t

0rw)dr
A QO i

For the second part of (6.50) we have

t t T
Q(6-w) dr — [ Q(Bsw) ds
e{ /Kee Of G(0rw)dr

0
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which yields by replacing w — 6_;w simple integral transformation 7 — 7 — ¢ and t — oo
to
r fawwa
sw) ds
K¢ | er

—0o0

G(Orw) dr < 0.

Applying Lemma 4.6 of [8] gives us the existence of an absorbing set in H because EQ < 0
and G is tempered. We can conclude now the existence of a random absorbing set [8,
chapter 4]. O

Remark 6.3.13
Similar calculations as in the last proof give us a bound of V in L*°(0,T;H). This bound
is uniform, if the initial conditions for (6.42) are in a bounded set in H.

Remark 6.3.14
By Remark 6.3.13 and equations (6.47) and (6.48), we obtain directly, that V € L?(0,T;V).

To prove the existence of a compact absorbing set, we need the following two lemmas. At
first, we need the following modification of the uniform Gronwall lemma [49, p.91].

Lemma 6.3.15

Suppose that t € |0, %} and
dy
— < h.
a =T

with g,y and h are positive integrable functions. The the following estimate holds:

o : : :
y(i) < Q/y(s) dsexp(/g(ﬂdr) —|—/h(s) dsexp(/g(T) ClT). (6.51)
0 0 0 0
In the following Lemma, we need estimates of the the trilinear form b;. The proof is

similar to Lemma 6.3.4.

Lemma 6.3.16
Suppose that z, v € D(A1) and V € D(A3). Then, we have

b1(2,2, A1) < K([|zllg |2l peay)® + el Aol
b1(v, 2, A10)| < K€ll3nllz D, + €l Aivl?,
b1(z,0, A1v)| < K€Jv[f, 12(0:w)|[ 37, + €l Avv]l?,
b1 (v, v, Aw)| < K|PlfvllF + el Avol?
and similarly

ba(2, Z, A2V)| < K|zl Z] pay))? + el A2V |17,
b2(v, Z, AV)| < Kol 1 Z]Day) + €l A2V,
ba(2,V, A2V)| < KEYV[§, [12(0:w) | 3, + €ll A2v]?,
ba(v, V, AV)| < K€ A| 2|V |3, + €l A2V ||
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Proof. Applying generalized Holder’s inequality with parameters (4,4, 2) leads to:

bi(z, 2, A1v) < diz||pal| V|| pal| Aol < doll2]l i ]2l peay) A1l
< K(lzlmlzllpeay)? + el Aol ?

In the same way, we conclude
b (v, 2(Biw), Arv) < KC[v][§, [|2(6:w) [ ay) + €ll Ao,
Again with parameters (4, 4,2) we obtain:
b1(2(0iw), v, Arv) < KJol[f, |2(6w) |3, + €l Arol,

In the following calculation again Holder’s inequality with parameter (4,4,2), Young’s
inequality with (4, %) and Ladyzhenskaya’s inequality are used:

bi(v,v, Ar) < dgl|v]|gal| Vo[ pal|Arv]]
1 1 1 1
< drlvf2|[vllg, vllg, | 4] 2[[Arv]]
4
< KolPllvlly, + €l Arv]]?

We use Holder’s inequality with parameters (8, %, 2) to obtain
ba(z, Z, AsV) < K|zl IV 21| 31 AsV ||

Theorem 2.2.19 and the interpolation inequality [48, p. 49] combined with [38, Theorem
B.8] leads to

1 1
IVZIl 5 < KalV 2],y < BallVZILIVZIP ) < KsllZ]pay),

since D(As) C H%(D) Similarly we achieve H'(D) c L3(D), thus ||z| s < K| z|g.
Collecting all the last two estimates we obtain
ba(2, 2, A2V) < K|zl IV Z || pay) |42V || < KE(I|2] a1 V2 pay))? + el A2V ||
Analogeously, we find
bo(v, Z, AsV) < K0l [V Z ] pag AoV | < Kol iV 2]l pag))? + ell AoV |2
and
1 1
ba(2,V, AsV) < K|z i VIS, IV 117 oy |42V I < KV IR, l121150) + €l A2V 2.
The last inequality we achieve by
ba(v, V, A2V) < Kosup [lo() || V|42V ]
Te
< Kollg=IVV I A2Vl
< Kol VI3, + el V]2,

by applying [43, Theorem 5.29] and the relation D(A;) ~ H?(D).
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Lemma 6.3.17
Let B be an absorbing set in H. Then

Cw)=p(1,0_1w, B(_1w))

18 a compact and absorbing set in H.

Proof. This is a similar technique like in [15, Theorem 5.2]. To obtain this result, we show
some a priori estimates in the H'-norm for V in the same way like [49, p.111 and p.139)].
In particular, we have to use for the estimates the Galerkin approximations but we again
suppress the projections in these equations. For details we refer to [47, Theorem I11.3.10]

O]

Proof of Theorem 6.3.11. Lemma 6.3.17 and Remark 6.3.9 allow us to apply Theorem
5.1.8 to the rds generated by (6.42). The transform T'(w,x) = x + Z(w) has all properties
assumed in Lemma 5.1.16 which gives us the existence of a random attractor for (6.41).

We have
dVv
(dt’ AV> + (AV,AV) < |b1(v + 2(Ow), v + z(Oiw), A1v)]|)
+ |b2(v + 2(Ow), V + Z(Ow), A2V)|) + [K((V + Z(Ow) )k, A1v)]
+ |(f7 AZVF)’

Multiplication of (6.42) with respect to the L? scalar-product respectively by A = (A, As)
gives us:

(%, A1v) + (A1v, A1) + b1 (v + 2(Ow), v + 2(Oiw), Ajv) = K((V + Z(6w))k, Ajv) (6.52)
(%7 AV) 4+ (A2V, AV) + ba(v + 2(6w), V + Z(6iw), A2V) = (f, A2V). (6.53)

At first, we deal with (6.52): The Cauchy-Schwarz-inequality and the chain rule provides
us:
d||v]|%
dt
Inserting the estimates of Lemma 6.3.16 in (6.54) yields:

dlv]f5, c
— - HAwl® < KIVIP+ KN Z0w)]F + K (12(000) [ 12(00) [ pan)” +
Rl (12(0w) [a,y + 120 l3n) + K< flol? o], -(6.55)

5
+ g!lz‘hvll2 < (201 (v + 2(0iw), v + 2(0uw), Aro)| + K|V |* + K[| Z(0w)|*. (6.54)

We estimate V' in a similar way and obtain

d||VH%/2 2 € 2 € 2
+[[AV]]" < K(llvllv, 1Z(0w) | pas))” + K ([[2(0:w) || 1| Z2 (00w as))

dt -
FE | Aro| 2V 12, + K€ z(00) M|V, + K°.
(6.56)
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by the estimates of by in Lemma 6.3.16.
(6.55) and (6.56) are of uniform Gronwall type. Adding them with

y = lvly, + VIR, = IVIF

leads to AV 2
VI < 1w + . (6:57)
with
h(w) == K||V||? + Hy(w),
and

9(w) := Ha(w) + Ka|[v]|*|[o][§ + | Arv]*.
H; are defined as follows
Hy(w) = K+ K(|2() | g1 12 (@) p(as)* + KNI Z(@)[IP + K(|2() g (@) par))?
and
Hy(w) = K| 2(@)[[Bay) + KNZ (@) Day) + KNIzl

After applying (6.51) on (6.57), we want to show that [[V(1)||? is bounded, if Vj is
contained in a bounded set in L2. We can write

1 1
‘P(l’ 9_1w, VO) - 90(57 07%(.&}, @(5) 9_]_(.0, VO))v

for V(0) € B(f_1w) and define

— 1
VO = @(57 9710‘]) VO)

1

1 1
3 3 3

We have to demonstrate that [ |V (s)||3 ds, [ g(s)dr and [ h(s)ds are respectively finite,
0 0 0

if ||Vol||? is contained in a bounded set.
Therefore, we have to make some energy estimates on the | - |[y-norm to show that
1

1

3 3

[1IV(s)||3 ds is bounded. We assume for this moment that [ [|Ajv||?ds is finite. This
0 0

will be proven in Lemma 6.3.20 below, if we additionally assume that vg = gol(%, 0_1w,v0)
is bounded in V7, which is shown in Lemma 6.3.18 below. Multiplying (6.42) by V gives
us
d|V]?
dt

Summarizing

HIVIIF, < K+ Ka(|[oll|Z(6:w) [l p(as))? + Ks(|2(0:w) 112 (0) | an))*-

t

t
/IIVH%/2 ds < |[V(0)I7a +K1+K2/(\UIILZIIZ(9sW)||D(A2))2ds+ (6.58)
0 0

t

LK / (1201201 Z(8s) | gy )? ds.
0
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Similar we obtain for v: Multiplication of (6.42) by v with respect to the (L?)2-scalar

product implies:

d|v]|?
dt

+2lollf, < [V + Zll[[v]] + K20 || 12(0ro) | peany o]l +

2
Fr2
K| 2(0:w) | peapllvllvllv,

2 €
< s VIl + 12 o] + K120 1 12(61) )
ellol + K 12(0) b, l0l? + ellol,
< KV + KNZ0) + K200 1 1260 [ pay )

+EK||2(0) 1 ap lv]1* + Bellv]lF,
Now observe that

dlv||?
dt

+ollf, < KNV + KNZ0w)l* + K (2(0w)l| 1 | 2(0:0) | pay))?

+ K20 By 0]

Integrating from 0 to ¢ leads us to

t t
[l ds < @I+ [ @iz + Kz2Ew) + (6.59)
0 0
K (2(00) 1 12(00)| pany ) + K 12(00) [y I01) ds.

We now conclude
1

[ IV < 3o, V).
0

M is bounded, if V| is contained in a bounded set.
1 1

3 3

To obtain that [ g(s)ds is bounded, it is sufficient to show that [([|v]/?([o[|3, + | A1v][?) dt
0 0

is bounded. But this is a direct consequence of Remark (6.3.14) and (6.3.13). The bound-

1

3
edness of [ ||Ajv|?dt is shown in Lemma 6.3.20 below.
0

1
It is clear by the existence of an absorbing set in L? that [ h(s)ds is bounded. By the
0

uniform Gronwall lemma [49, p.91] we obtain that

1 I
le(llv = lle(5. - 1w, Vo)llv
is bounded if ||Vg||? are contained in a bounded set, in particular if

Vy € B(H_%w),
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defined in Lemma 6.3.17. The last statement is clear by

1
@(5,0_1w,V0) € B(Hféw) if Vo € B(6_1w)

and the invariance property of B.
Lemma 6.3.12, Lemma 6.3.17 and Theorem 5.1.8 give the existence of a random attractor.

Lemma 6.3.18
Assume that vo € B(0_jw). Then

1
sup ||<701(§70*1w7?}0)||%1 < 0.
vo€EB(f-1w)

Proof. We start with inequality (6.55) and obtain inequality (6.57) with ||V||y replaced
by ||v|ly, and follow then the arguments of the proof of Theorem 6.3.11 with

h(w) = K|VI? + K[| Z(0w)]* + K<(|2(00)l| 1 12(0) | pay))?

and
g(w) = K([|2(0:w) 1D a,y + 1200) [ 71) + KC|Jol*[vlf3,

The integrals from 0 to % of g and h are respectively finite and the assertion is proven. [

The following Lemma is needed as preparation for Lemma 6.3.20.

Lemma 6.3.19
Assume that vg is bounded in V1. Then

1
v e L(0, E;Vl).
Proof. We obtain by inequality (6.55):

dy
— < h+ 6.60
I = Y9, ( )

with y(t) = [|v[|3,, h and g from Lemma 6.3.18. Integrating (6.60) leads to
t
o) <H@) + [ glrylr)ar,
0

with .
H(t) = /0 h(t)dr + y(0).
We observe by Gronwall’s Lemma [54, Lemma 29.2]
y(t) < elo 9 dmy0) 4 /0 t h(r)elr 9 ds gr. (6.61)
The expressions on the right hand side of (6.61) are bounded by the properties of h and

g and that the initial condition y(0) is bounded in V. Therefore, y(¢) is bounded and we
achieve the proof. O
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Lemma 6.3.20
Assume that

1
v e L(0, §;V1).
Then

=

2
sup / |Av||? dt < oo
UoEB(@i%w) 0

Proof. We obtain by integrating inequality (6.55) fom 0 to %
1 1 1
2 2 2 2 2 2 2
[P 1awiae < O, + 5 [T IviRaex [T 1zow)?
1
2
B[00 i |20l
1 1
e (2.2 2 4 2 el 2114
+K ; [[v]l57, (12 (Oew) [ D apy 120w [ 72) dt + ; Kel[[*||v]ly, dt,

which is bounded, since v € L*(0, %;Vl). O



Chapter 7

Invariant and inertial manifolds
for parabolic equations

7.1 Introduction

We use the Lyapunov—Perron—transform, which gives us a fixed point, which represents
the graph of an inertial manifold. Again, we transform the original stochastic partial
differential equation into a non—autonomous partial differential equation, which generates
a random dynamical system, to get the random fix point. For this, we have to show in
addition that the non—linear dynamical boundary value problem has a mild solution. The
proof of existence and uniqueness does not use the Galerkin method from Chapter 6.1.4,
now a fix—point method is used. Note that the focus on the dynamical boundary condition
is at the example at the end of this chapter, where the spectral properties of an operator
with dynamical boundary conditions are analyzed. Finally, we collect special properties
for the linear part and the non-linear part of our equation with dynamical boundary
conditions that allows us to find an inertial manifold.

We consider similar to Chapter 6 the following problem.

%"‘AU = f(z,u)+mnoon D xR

0
ai:%—flru = g(z,u)+mn on D x R

w(0,2) = wo(z), x €D, (7.1)
U(O,f) = Uo(f), £€dD

with a smooth bounded domain D with boundary 0D and
u:RT"xD— R

The properties of the differential operations A(z,d) and Ar(z,0)

Al@,0) ==Y Op, (ar;(2)0s,) + ao(z) (7.2)
k

7]:1
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and
n
Ar(z‘,a) = Z Vkakj(I)an + C(l‘), (73)
k,j=1
where v = (vy,...,14,) is the outer normal to 9D, are considered in Chapter 3.1. Note

that Au = (Au, Aru) = (—Au, du+ c(x)u) as in (1.2) and Chapter (6) are covered in this
section.

7.2 Transformation

We consider (7.1) as an RDS. As before, see Chapter 6, we need again the same transfor-
mation by an Ornstein-Uhlenbeck process.
At first, we reformulate (7.1) as the following spde

du+ Audt = F(u)dt +dW, u(0) = ug € H, (7.4)

where —A is is the generator of the semigroup S(t) and H = L*(D) x L*(T). For the
properties of the non-linearity F' and the Wiener process see below. The existence of a
semigroup for A allows to interpret the solution to this spde as a mild solution. For details
see Da Prato and Zabczyk [19].

As in Chapter 6, we consider the following random evolution equation

% +Av=F(u+ Z(0w)),  v(0) = . (7.5)

We abbreviate F'(v + Z(w)) =: F(v,w).

7.3 Inertial manifolds for random dynamical systems

In this section, we apply the Lyapunov—Perron transform to show the existence of an
inertial manifold for the random pde introduced in (7.5) above. Let H; be the space
spanned by the eigenelements related to the first IV eigenvalues of the positive symmetric
operator A. Then m; is an orthogonal projection from H on #H;. Similarly, we can describe
the infinite dimensional space Ho given by the span of the eigenelements of An41,--,
where the related projection is denoted by my. We consider the semigroup S defined on
H, see Theorem 2.5.10.

Lemma 7.3.1
Let a € [0,1) be a constant.
(1) We have
mS(t) = S(t)m, fort>0,i=1,2.

(2) We have fort >0
a® _
ISl piae < (t . x;vﬂ>e At

(for o = 0 we have the convention 0° = 0) and for t <0

718 ()| L, p(any) < e AN = Aq eIt
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Our intention is now to interpret (7.5) as an RDS. However, in the classical theory of
stochastic differential equations solutions of these equations are only defined almost surely
where the exceptional set depends on the initial condition. Such a dependence contra-
dicts the definition of an RDS. Therefore, we have to go another way to prove that (7.5)
generates an RDS.

We have

Lemma 7.3.2
(1) Suppose that the mapping

F:D(A%) —H, «ac[0,1)!

is Lipschitz continuous with Lipschitz constant Lp. Then for vg € D(A%),w € Q (7.5)
has a unique mild solution in C([0,T]; D(A%)) for T > 0.

(2) Suppose now that vo € H and o € [0,1/2), then there exists a unique mild solution
which is contained in C ([0, T|; H). This solution depends continuously on vy. In particular,
this solution generates an RDS on H denoted by .

Proof. (1) For the first part, we use the regularization property of S similar to Lemma
7.3.1 which follows because S is analytic. We need that

a%e @

||S(t)||L(H,D(AO‘)) < for ¢t > 0, v e (O’ 1)a (76)

where this operator norm is bounded uniformly in ¢t > 0 if @ = 0, see Chueshov [13]. For
a given T we consider the norm

ullg,paey = sup e~ 7u(t)]| pasy,
te[0,T]

which is equivalent to the standard norm of C([0,T]; D(A%)). o = o(T) is chosen suffi-
ciently large, such that

Ty (,w) s v(+) = S()vo +/ S(- — 1) F(v(T), 0;w)dT
0
is a contraction on C([0,T] : D(A®)) for every w € © with contraction constant

t

1

Lra®e ™ sup / —— Gy
tejo,r) Jo (& —T7)"

The Banach fixed point theorem then gives the conclusion.
(2) Let T > 0. The size will be determined later. Consider the separable Banach space
W of measurable and square integrable mappings [0, 7] — D(A%) with the norm

it = ( T||v<r>u%<m)dr>)é

For o = 0 we replace D(A®) by H.
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We show that T, (-, w) satisfies the conditions of the Banach fixed point theorem for suf-
ficiently small T'. Suppose for a while Ty, (-,w) : W — W. Let us consider the contracting
property of this mapping.

T t
[ Too (01,) — T (02, )| < L3 /0 ( /0 1S(t = 7)1 g1 paey 7%
t
<[ 1) —v2<f>||%(,4a)df)dt
200 212 T t 1 2 2 2
< e Ll L drdt]lloy - all2 < K ller — wall )
o Jo (t—7)

where k < 1 for small 7. Similar estimates ensure that T, (-,w) maps W into itself. We
also note that S(-)vg € W and the mapping vy — S(-)vg is continuous from H to W by
the estimate on the operator-norm (7.6). The fixed points v = v(w) can be presented as a
point-wise limit of the sequence with elements given by the iteration of the mapping 7).
Hence, the fixed point measurably depends on w.

Since the contraction constant is independent of vy, a standard argument shows that the
unique fixed point of T}, (w) continuously depends on vy.

Now, we show that the fixed point v has a continuous version, i.e. it is contained in
C([0,T], D(A%)). We have for 0 <t; <ty <T

1/ “S(ts — VP (0(r), brw)dr — 0 'St — )V F(u(r), bew)dr |
< " Sty — TV F(u(r), Orw)dr — 0 'Sty — )V F(0(r), Orw)dr |
+ || ; ' S(ty — 7)F(v(1),0;w)dr — ; 1 Sty — 7)F(v(r), 0;w)dr]]

t2
< [ Le(IFO.6)] + (o)l paey)dr

t1
t1
+ /0 15(t2 — 1) — Dl 1S — Dllsppany *
% Lp(|F (0, 8:0)l| + [o(r) | paey)dr-

We note that the first integral on the right hand side is arbitrarily small, if to — #; is
sufficiently small. We have for the second integral

t1 1
Clta — ¢ O‘/ —— L (||F(0,0,;w)| + ||lv(T o) )dT
lt2 — t1] N o FIE( M+ o) peasy)

<l —al( | ! ) : (f " L(IF0.6.0)] + o oo Par )

tlfT

which can be made small in the above sense. Straightforwardly vo — S(-)vo € C([0,T]; H)
is continuous. In addition, by the definition of F'(v,w) the mapping t — F(0, 6;w) € H is
continuous. We consider from now on the continuous version of this fixed point v. Let us



7.3. INERTIAL MANIFOLDS 87

denote this version by v(t,w,vp). Then

t —v(t,w,vg), vo — v(t,w,vg) are continuous

w —u(t,w,vg) is measurable,

such that by Castaing and Valadier [9, Lemma III.14 | the mapping (¢,w, vo) — v(t,w,vg) €
H is measurable.

Let now T be any positive number. Let [0, 7] = U}'; [T}, Tj+1] where the intervals [T, Tj 1]
are so small that the above fixed point principle can be applied for every of these intervals.
Since the Lipschitz constant of F' is global and independent of w € € we can divide [0, T
into finitely many of these intervals independently of w. By the continuity property we
can concatenate these pieces of solutions to a measurable and continuous solution on [0, 7]
which generates an RDS on H. O

Now, we are in a position to prove the existence of an inertial manifold for the RDS related
0 (7.5). In a first step we show that the Lyapunov—Perron—transform has a unique fixed
point in a particular space of trajectories. We are going to apply some standard technique
that one can find in Chow et al. [12], [11] to our random problem.

We consider the following mapping

(7.7)

where
ve &= {ue Ol(=o0,0H) :  ulls == sup ™ fu(t) | pgan) < o0}

The constant 8 will be determined below. The following theorem is a direct preparation
for the main result of this section. We prove for general random evolution equation of the
type of (7.5) the existence of an inertial manifold. The techniques are similar to Chow et
al. [12] where deterministic evolution equations are considered. However, the fact that we
have to deal with random dynamical systems generates some differences in the proof.

Theorem 7.3.3
(1) Suppose that F : H — H is Lipschitz continuous with Lipschitz constant Lp. Let the
gap condition

AN+1 — AN >4Lp
be satisfied. Then there exists a Lipschitz continuous inertial manifold M for the RDS
generated by (7.5).
(2) Suppose that F satisfies the assumptions of Lemma 7.3.2 satisfying the gap condition

2L
ANt — AN > TF((l F )XY+ AY)), for0 <k <1, (7.8)

o0
Co = aa/ T % T drT.
0

Let B = Ay + QLTF)\?‘V which is in (An, An4+1). Then the RDS has an inertial manifold of
dimension N.

with
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The proof is divided into three lemmas.

Lemma 7.3.4
Suppose that the assumptions of Theorem 7.3.3 are satisfied. Then (7.7) has a unique
fized point in EP which depends Lipschitz—continuously on x1 € H,i.

Proof. (a) Applying the Banach fixed point theorem we have to show that 7, maps £ to
£B. From the definition of 3 we can see that R™ > ¢ — 1S()z1ll peaey € EB. To see that

the integrals in (7.7) are in €7, we note that from the Lipschitz continuity of F we have
1 (u, )| < Lrlfull peasy + 10, w)]-

Then we can use the same facts that we need to prove that 7, is a contraction:
(b) Let v1, v2 € £ and let us denote F(v1,w) — F(vz,w) by AF. We have:
0
1720 (01,6) = Tl < supe (I [ ms(e =)Ao
t< t
t
+ H/ WQS(t—T)AFdTHD(Aa))
—00

0 t
§supeﬁt</ HAamS(t—T)AFHdT—&—/ HAQWQS(t—T>AFHdT>
t<0 t —00
0 t
<sup Pt (/ )\?VG_AN(t_T)e_BTGBTHAFH dr + / ?V+16_)\N+1(t_7)€_ﬁ7—><
t<0 t —00

t
X e’BTHAFH dr + aa/ ;e(_)\N_H—i_B)(t_T)HAFHdT
oo (t—T)®
0 n 1
<Lpsup (A?v/ e(TANHAET) gr 4 ozo‘/ = (AN tB-T) g r
t<0 t oo (t _ ’7')0‘

¢
+ X]X\H-l/ e(—AN+1+B)(t—T)dT> |1 — w2l
—0oQ
We obtain for the supremum in the last expression the bound

AR c A&
k=1L N+l oy « + N ) < 1.
F<>\N+1 -6 Anp =B B-An

(c) Let us denote by I'(.,w, x1) the fixed point of (7.7).

IT(yw,21) =D w,20) g = 1T (TG w, 21), w) = T (D(w, 27), W) 18
< Ty (T w, 1), w) = T (D(w, 1), w) |5

+ (17 (T w,21),0) = T (T w, 2),w) |15
<[lmS() (@1 =2l + EIT( w,21) = T(,w, 21)

which is the Lipschitz continuous dependence. O
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We now show that
m(z1,w) = mI'(0,w,z1) (7.9)

defines the graph of the invariant manifold M (w). Indeed, by (c) of the last proof, this
graph is Lipschitz.

Lemma 7.3.5
Let M (w) = {z1 +m(z1,w) : 1 € H1}. Then M is positively invariant.

Proof. Let

Krlow) o= { AT TG o €L T0

MNe+T,w,z1) : o<-T

To see the global invariance
o(T,w, M (w)) C M(Orw), T >0

we show that

(-, 0rw, me(T, w,z1 + m(r1,w))) = Xr(-,w).

To see this equality, we consider the my-part. Let c =t —T, o > —T. Then

moXr(o,w) =mep(c + T, w,T'(0,w,x1))

0
:/ mS(oc+T —17)F(I'(1,w,x1),0;w) dr

— 00

o+T
+ / 1280+ T — 7Y F (o, 0, T(0, 0, 21)), 0s0) d
0

_ / " raS(o — P)F(Xp(rw), 0y gw) dr.

—00

Let o < —T'. Then

/U mS(o — 7)F(Xr(1,w), 0ryrw)dr

—0o0

o+T
:/ 108 (t — TVF(Xp( — T, w), ,0) dr
_UOiT
:/ mS(T + o0 —17)F(T(1,w,x1), 0;w)dT

— 0o
:71-2]:‘(0- + Ta W, .Il)
=mo X7 (0o,w).
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Now, we consider the mj-part. Let c =t —7T, o > —T. Then

7T1XT(O', w)
:Wl(p(g + Ta w, F(O7 w, $1))
=me(t,w,T'(0,w, 1))

=m S(t)z1 + /t mS(t —7)F(p(1,w,['(0,w, z1)),0-w) dT
‘ T
St —T) (S(T)xl + /0 ST — ) F(o(7,0. (0, w0, 21)), o) dr

+ /Tt mS(T — 7)F(p(1,w,T(0,w, 1)), 0rw) d7'>
=mS(0)e(T,w,T'(0,w,z1))

+/ ﬂ-lS(J —T)F((,D(T+T,w,1_‘(0,w,$1)),97—+TW) dr
0

=mS(o)p(T,w, I'(0,w,x1)) + /OU mS(oc — 7)F(Xp(T,w),0;47w) dr

and for o < —-T
mXr(o,w) =mI'(oc+T,w,x1)

0
=mS(t)x; —m /t St —7)F(I'(1,w, 1), 0;w)dr
T
=mSt—1T) (S(T)l‘l + /0 S(T —1)F(o(1,w,T'(0,w, 1)), 0rw) dT)

0
—/ mS(c+T —1)F(I'(1,w,z1),0;w) dT—
o+T

T
= [ mS(t = P (p(rw, D0, 0,01), b,) dr
0
-T
=mS(o)p(T,w, I'(0,w,x1)) — / mS(c —1T)FI(1t+ T ,w,x1),0r+7w) dT

o

0
—/ m1S(oc —7)F(o(r,w, T'(0,w, x1)), Or+7w) dT
=T

0
=mS(0)p(T,w,T'(0,w,x1)) — 71 / S(oc —1)F(Xp(1,w),0;17w) dT.
O

Lemma 7.3.6 Suppose that assumptions of Theorem 7.3.83 hold. Then the manifold M
1s exponentially attracting.

We skip the proof because the idea for this proof is quite similar to Lemma 7.3.4. The
proof can be found in [14, Theorem 4.2].
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Remark 7.3.7 We note that we can prove that the inertial manifold is C* following the
methods in Chow et at. [11], [12]. In particular, suppose that F : D(A%) — H is C*
where a bound for a derivative gives the constant L in Theorem 7.3.3. Then the graph of
the manifold is C'—smooth. Conditions for o, such that the Nemytzkii operator has these
properties, are derived in the next section.

7.4 An example

We have to consider (7.5) where the linear differential operator A is generated by the
pair (A, Ar). Let us start to describe the asymptotic behavior of the eigenvalues of
A. The asymptotic behavior can be used to get some impressions about the size of the
Lipschitz constant so that the assumptions of Theorem 7.3.3 are fulfilled. Recall that A
is a positive symmetric operator so that there exists a sequence of positive eigenvalues of
finite multiplicity tending to +oo.

Lemma 7.4.1 The eigenvalues (AN)nen of the operator A considered in (7.5) have the
following asymptotic properties: There exist positive constants K1, Ko, such that

KNVt < Ay < KN/,
Proof. Consider the three eigenvalue problems:

Au = A yuon D
Aru —c(z)u = A nyuon dD
Au = Ayuon D
Aru = A\yuon 0D
Au = (Aany —¢uon D
Aru —c(z)u = (Agn — ¢)u on 9D. (7.10)

We show that the eigenvalue expansion of (7.10) is similar to the others by application
of the Courant-Fischer principle and using the same techniques as in [29]. This is clear
by the following inequality, with é = sup,csp c(z) and Hy the class of N dimensional
subspaces of H

UU)— 2d
AN = min max il 5 ) faD CUQ >
E€Hy 11 (uyuw)eE\{0} [pu?dx + [,pu?ds
< min max o0, U) =
T EeHpyi1 (uyu)€E\{0} fD u? dx + faD u? ds -
in - a(U,U) + fag(é - c)u2d52+ [p éu* dx
EEHN+1 (u,'yu)GE’\{O} fD u dl‘ + faD u ds

AN

<

= XN

where U = (u,yu). By [29] Theorem 3.1 we get
Xon < KoN2/m

and so
Ay < KoN2/™,
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Similarly [29] Theorem 3.3 gives us

AN > Ay > K NYO—D,

We consider for the non—linearity F' defined by a Nemytzki operator (f, g) where
f:DxR—=R, g:0D xR — R

Theorem 7.4.2
(1) Let I(m, w), g(&,u) be Lipschitz continuous with respect to the second variable uniformly
inx €D and £ € 0D with Lipschitz constant Ly, Ly. If (7.8) is satisfied with

Lp=L;+L, (7.11)

for some N, then the RDS generated by (7.5) has an inertial manifold which is Lipschitz.
(2) Suppose that f, g are twice continuously differentiable with respect to the second vari-
able with bounded first derivative Daf, Dog and second derivative D3f, D3g, uniformly in
x €D and & € D, such that (7.8) is satisfied for some o < 1/2 and let n = 2. Suppose
that the uniform bound of Do f, Dag is denoted by L¢, Ly, such that for Lp given by (7.11)
the inequality (7.8) is satisfied. Then, there exists a C* smooth inertial manifold.

Proof. The first part of the theorem follows straighforwardly by the first part of Theorem
7.3.3. We now consider the case that the manifold is smooth, see Remark 7.3.7. Let
FU)[z, & = (f(z,u),9(&u1)), U= (u,ur). We show that

|F(U+ H) = F(U) = F'(U) - H| < o(||H| p(as) (7.12)

where F/(U) ’ HH = (D2f("u('))h(')ﬂDQg('7u1('))h1('))7 and U = (u7u1)’ H = (h, hl)'
By Taylors formula

[FCou) + B0 = £ () = £ ut) RO oy < /D h(z)dz

for an appropriate constant ¢, which is related to the second derivative of f. For the
Sobolev—Slobodecki spaces we have the continuous embedding

LY(D) > H2(D),

because of 5 .
n
5% = n<2 4> 1 (7.13)

for « < 1, see Remark 3.1.3 (1). Similarly we can conclude for g

gy () + ha()) = g ur()) = g Cowr (D) 2agopy < ¢ /8 JRAGRE

and L4(0D) > HY(dD), if

az(n—n(;_i):”;l.
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On account of Remark 3.1.3(1), the right side of (7.12) can be estimated by C”H”?‘)(Aa)a

such that F : D(A®) — H is differentiable. In addition, the derivative DF' as a mapping
from D(A®) — L(D(A%),H) is continuous. This follows because the second derivative of
f is uniformly bounded:

1B H ~ (@) H = [ |f (o u@) (o) ~ (o (o) h(e)Pdo
D
+ /8 W(Ew©(©O — (€ mEmOFde
<e /D ju() — () Ph(z)?dz + ¢ /d lu©) — m©Fm (e

< cllu = all7apy Il Zacpy + ellur = allZagp Ill7a@n)
< U = Ullbae) |1 Hlac-

The assumptions that the first derivatives of f, g are small in the sense that
[Daf (z,u)| < Ly, [Dag(§u)| < Ly

uniformly for u € R,z € D, ¢ € 0D then F is Lipschitz with a Lipschitz constant
given in (7.11). According to Lemma 7.3.2, this Lipschitz continuity and the assumption
a € (0,1/2) ensures that (7.5) generates an RDS ¢ on H. But if < 1/2 then (7.13) is
only possible for n = 2. O

Now, we are ready to investigate the dynamics (7.5). We define the mappings
(z,w) = T(z,w) =z + Z(w), (z,w) = T Hz,w) =2 — Z(w).
Considering
(t,w) = T(o(t,w, T (z,w)), Ow) = ¥(t,w, z)
gives us a solution version to (7.4). Since ¢ — ¢(t,w, T (z,w)) is (F),cp+—adapted so is

t — Y(t,w,z). Then we have

Theorem 7.4.3
Let the assumptions of Theorem 7.4.2 are satisfied. Then the RDS v generated by (7.4)
has an inertial manifold with the same smoothness as the inertial manifold for .

Proof. We can apply for this random dynamical system Lemma 5.1.17. We only need to
remark that
mT(z1 +m(z1,w),w) =21 + mZ(w)

satisfies all assumptions of this lemma. O
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Chapter 8

Attractors of hyperbolic equations

8.1 Introduction

In this section, we consider attractors of hyperbolic partial differential equations. At first,
we consider hyperbolic equations by the theory of Cyp-semigroups, where we use methods
from Vrabie [51]. Starting with the simple wave equation, we later introduce dynamical
boundary conditions (DyBC) and apply semigroup theory to these equations to get results
for existence and uniqueness, see also Chapter 3.3. Later on, we apply the classical theory
from Temam and Ghidaglia [49], but we extend the theory of Dirichlet, Neumann and
periodic boundary conditions to dynamical boundary conditions. In the final section of
this chapter, we derive a theory for hyperbolic SPDE with DyBC, which was introduced
by Keller [34], but has multiplicative instead of additive noise. The stochastic theory uses
a method to transform the stochastic equation to get a random equation, which can be
considered pathwise as a deterministic equation.

8.2 Wave equation

At first, we consider the wave equation with homogeneous Dirichlet boundary conditions
to point out the differences and similarities to dynamical boundary conditions and show
that this equation generates a semigroup. We use a method based on the Lumer-Philips

theorem 2.1.17 in contrast to the methods used in Chapter 3.3. We write formally

W' (z,t) = Au on D xR
u(z,t) = 0 onI'xR

with initial conditions
u(z,0) = uo(z), u'(z,0)=wui(z), z€D.
We rewrite this problem as
u’ u 0 id u
(v)=2(0)-(2%)(7)

95
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Now, we introduce the following inner product on H{ (D) x L?(D)

[(Z)v(ﬁ)]SZ/DVqu—i—vgdx.

Note that by definition ' = v. We have

[<z>73<Z)]:/DVUVU/—FAuu/dx:O (8.1)

We set Au = —Awu. Equation (8.1) gives us Condition 2.1 of the Lumer-Philips theorem
2.1.17. We have to prove Condition 2.2 of the Lumer-Philips theorem 2.1.17. Then we
obtain by the theorem, that B is a generator of a Cp-semigroup because every positive A
is contained in the resolvent set of B by considering the problem

Xu—v=fl+Au=g,fe€HyD)geL*D).
This leads to the equation
Au+ Nu = g+ \f.

By the elliptic-boundary value theory, see Chapter 3.1, we have that this equation has a
unique solution for every A and hence that by this operator a Cy-semigroup is generated.
We have also from [51, p.94] the following result by a different proof by the Stone theorem.

Theorem 8.2.1
The operator B is the generator of a Co-group of unitary operators on H} (D) x L*(D).

Proof. Equation (8.1) give us that B is skew symmetric and because of the calculations
in Chapter 3.3 with A = £1, B is also skew-adjoint (see [51, Lemma 1.6.1]). Now, we can
apply the Stone Theorem 2.1.20. This gives us the proof. O

8.3 Wave equation with dynamical boundary conditions

We modify the homogeneous Dirichlet boundary conditions to dynamical boundary con-
ditions. We get the same result, this equation generates also a semigroup. Consider

W' = Au onDxRT
uf = —Ou—ur onT xR
with initial conditions
u(x,0) = up(x), u'(z,0)=u(z)
and
ur(x,0) = urg(z), ur'(z,0) = uri(z)

We rewrite this problem to a first-order equation

o’ U 0 id O 0 u
v _ 3 v - A 0 0 0 v
up | ur | 0 0 0 id ur
UL ur -0, 0 —id 0 ur

Note that this problem is considered in Chapter 3.3.
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8.4 Wave equation with damping and dynamical boundary
conditions

To prove the existence of attractors, it is necessary to add some damping in the equation.

In our case, we use for sake of simplicity the same damping in the inner domain and

also on the boundary, but it is also possible to use a different damping coefficient on the
boundary.

8.4.1 Dissipativity—Generation of a semigroup

We consider the following hyperbolic PDE with DyBc¢ and damping o« > 0.

W' +ou +(—Au = fonD
up +oup+du+ur = gonl.

We rewrite the equation as a first-order evolution equation for some € > 0

V' + By = (0, £,0,9)

with
u
B v=u+eu
Y= up
vp = U + eur
and
€id —id 0 0
B _ —A—ela—e€)id (a—e)id 0 0
€ 0 0 eid —id
Oy 0 id—e(a—€)id (a—e€)id

We show that the operator B, now on the left hand side, is a positive operator Whiclll yields
dissipativity. Therefore, we introduce the following scalar product on Ey = D(Az) x H,
where H = L?(D) x L*(T') and A is defined in (8.4) below.

u f
v 9 .

[ ur || £ ]Eo .—/DVUVfﬁngd:L“Jr/FurprrvrgrdU.
ur gr

As in [48, p.183], we may assume that u is sufficiently regular

u e D(A) N C2(D).
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The abstract arguments of [48, Lemma II.4.1] show us that the following integrals are
well-defined. Then, we can conclude

U U

v v
w18 e |

ur ur

:/ VuV(eu —v) dx + / v(—Au) — e(la — €)uv + (o — €)v? dz
D D

+ / ur(eup — vp) do + / vrd,u + vrur — vre(a — €)ur + (a — €)vd do
I I

—e/ VuVudx—/ Vqudac—i—/ Vquda:—/&,uvp do—
D D D r

—/ e(a—e)uv—i—(a—e)v2dx+e/uFupda—/urvpdo
D r

T

+/8,,uvp d0+/urvpd0/vpe(ae)uF da+/(ae)vp1}p do
Iy T T T

:/ eVuVu + e(a — e)uv + (o — e)v? dr + / eurur + €(a — €)urvr + (a — €)vi do
D D

> ((wu) + Sl + Il + Sllur]? + Slloc | + 5o

>a || (u, v, ur, or) |,
for all € where Inequality (8.6) holds and «; = min(§, §). The last inequality is given
by Lemma 8.4.2 below. Thus, this operator generates a positive Cp-semigroup on Ey =
D(A%) x H by applying the Lumer-Phillips Theorem 2.1.17, Condition 2.2 is fulfilled by
the arguments in Chapter 3.1, where only a positive operator is needed. Alternatively,
one can apply Remark 2.1.7, which directly yields the result. These calculations can also
be found in [30], where the space Hen is exactly our space Ep.

8.4.2 Exponential decay of the solution

Now, we consider again the following hyperbolic PDE with DyBC and damping. Our goal
is at first to prove the existence of an absorbing set.

v +au' +(=Au = fonD
up + aup +du+ur = gonl. (8.2)

To prove the existence of an absorbing set, we need the following transformation
V=U+eU
to get the transformed equation
Vi+(a—e)V+(A—ela—e)U=(f,9), (8.3)

where in our special case

AU = (Au, Aru) = (—Au, 0pu + ur) = < _aA I(()i > U. (8.4)
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We set U = (u,ur) and V' = (v,vr) respectively. As in [49, p.181], we assume that A
is the associated operator to a bilinear coercive and symmetric continuous form a(U, V)
from a given Hilbert space V into its dual V’. As in Chapter 3.1.1, we can define fractional
powers of the operator A and function spaces

VQSZD(AS), s € R.

Note that Vi = V. These spaces are Hilbert spaces for the following scalar product and
norm

(U,V)as = (AU, AV), |U|j3, = (U,U)as, YU,V € D(A).

Lemma 8.4.1

Assume that o > 0 and

A
e <ei= min(%, i) (8.5)

Assume that (U, V') € Vo1 x Vg Then

(@
U1 + (@ = IV = ela = (U V)s = SIUlGa + SIVIE s =0,1.

€
2
Proof. We may assume that

1
IUlZ < EHUH?H for U € Vsi1,

where A1 > 0 is the first eigenvalue of A. Then we conclude

U131 + (@ = QIIVIE = ela = (U, V)s

e(a—e)
>e|| U241 + (@ =)V~ o U s+ IVl
3 o3
>e|U||241 + zaHVH? - \/XIIUHSHIIVHS
€ o
>V, + SIVIE.
The last inequality is given by
1 1 ea? 1
O e eV < Lz L L L

Vo N DY 2

More details of the functional analytic setting can be found in Definition 8.5.1.

We can also prove the general result given by Lemma 8.4.1 in our special case directly by
Lemma 8.4.2 and Lemma 8.5.20, where A has the form of (8.4) . To prove Lemma 8.4.2
directly, we need a version the generalized Poincaré inequality, which can be found in [49]
and Theorem 2.3.9. We also use the notation

((u,0) = [ Vul2agp) = Il
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Note that ((u,v)) is not an inner product on H*(D). We continue with this non-standard
lemma, which is the analogon to the standard estimate for Dirichlet boundary conditions
€ e
e((u,u) + (o = O[] = el = ) (w,v) = S ((w,w) + o],

which cannot be used in the case of DyBC because of the additionally appearing terms on
the boundary. The main tools in this lemma are Poincaré’s and Young’s inequalities.

Lemma 8.4.2

Assume that o > 0,
« 1 1

4°20(D)2a’ Y (8.6)

€ < €y == min(

and
(U, V) € Ey.
Then there exists an a1 > 0, such that
e Vull? + (@ = e)[[o]]* — e(a = €)(u, v) + eflul|p + (@ = e)[Jv]|E — e(a — €)(u, v)r

SIVul? + Sl + Sl + S ol

v

> ar (IVull + ol + lull? + lol}2).

where
(I57ull® + ol -+l + ol ) = 11, o, ur,vr) I,

s a norm on Ej.

Proof. At first, we consider the part in the interior of the domain. Applying Poincaré’s
and Young’s inequalities yields us by the assumptions on €

el Vul? + (a = e)[lv]|* — e(a — €)(u,v)

3
> €| Vull + Sallo]® - (@ — )(u.v)
3
> €| Vull + Sallo]* - ea(CD)lul + ullr)) ]
€ «
> SVl + Sl = eaC(D)]jullr o]
3 1
> SVl + Sl = Sellullk - sallol? (8.7)
because of
C(D)ce
acC(Dulllell = velul ="
1 1
< Sl + 5ea’CDYoll® < Sllul® + 3ol
and analogically
3 C(D)ae
aeCD)llullelv] = 3/ Sellulr="=="]|

/3
16

2 1
< Sellull + 2ca?CDP ol < Selullt + sallol*
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We have similarly on the boundary, here we need that € < é,
ellullB + (a = e)l[v[|E — e(a — ) (u,v)r
€ o
> Sl + 2ol (5.3

Collecting the terms of both equations (8.7) and (8.8) and setting a; = min(g, §) gives
us the result. O

In the following, we use the latter Lemma 8.4.2 to get some energy estimates. In fact, the
calculations are very similar in comparison to the damped wave equation with Dirichlet
boundary conditions but we have to respect the additional terms appearing by integration
by parts.

Taking the inner product of Equation (8.3) by v on D provides us:

(W, v) + (@ —e)(v,v) + (A - ela—e))u,v) = (f,v)

= 2 S0l + (o= el + (Aw,0) — ela— ww) = (f0)

1d
= 5@(”?1”2 +Val?) + (@ = )l|v]|* + €| Vul* = e(a — €)(u, v) -
—e/ Oyuudo — / dyur/do = (f,v) (8.9)
r r
because of

(Au, v/ +eu) = e(Au,u) + (Au,u’)
€| Vul|? — e/ dyuudo + (Au,u').
r

Furthermore, we have by Green’s Formula 2.3.10, which we can apply by the arguments
in [48, p. 193],

_1d

no_ N n —
(Au,u') = (Vu, Vu') — (Qyu, u’) 5

IVl — / O, u do.

r
Multiplying the equation on the boundary I' by vr = up + eur yields, omitting the |r in
this calculations

(v',v) + (@ = &) (v,0) + (O — €l = ))u,v) + (w,v) = (g,0)
> 2L )2+ (@ = llell2 — efa — ) (u,v) + (u,0)

2dt
+(Ou, ) + €(Oyu,u) = (g,v). (8.10)

Adding both Equations (8.9) and (8.10) gives us for the boundary terms on the left hand
side

1d
S llol? + (o= ol — el — €) (w0} + () + e, w)r

Lemma 8.4.2 leads to
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d
= (1B + lfalf? + ol + V) + ar (JlolR + lulf + o] + [ Vu]?)

1
)
(£:0) + (g, 0)r < Clea, a0) (112 + gl ) + ea(lloll® + 1ol?)

<

for some €2 < ay. By
h= [l + ullp + [Jol* + [ Vul®

and
Qo = Q1 — €2

we conclude

d 2 2
— <
S+ azh < Clea, ) (1712 + gl?).

Now Gronwall’s Lemma can be applied like in [49, p.184] to get the following estimate
B(t) < Ch(0)e™™" + C(ez, az) (I£11% + Ilgl ) (1 — 7). (8.11)

Thus, we have an estimate on the exponential decay of the first term.

8.5 Wave equation with damping and dynamical boundary
conditions and multiplicative noise

This section deals with the most general assumptions on the noise. Instead of simple
additive noise, we have more general multiplicative noise. In fact, we need that the
drift term has to fullfill some trace condition, see Hypothesis 8.5.6[vii]. Otherwise, it is
not possible to use integration by parts successfully. There are two different approaches
included in this section. Both the approach of mild and weak solutions is considered.
Weak solutions were analyzed in the work by Keller [33]. His ansatz is generalized to
dynamical boundary conditions in this chapter. Following the theory of weak solutions,
we can show the existence of a random attractor on (8.12). Additionally, there exists to
each lemma considering weak solutions an associated remark, which proves the statement
of the corresponding lemma, if the reader only considers mild solutions.

8.5.1 General setting

We consider the following hyperbolic SPDE with DyBC and damping with coefficient
a > 0.We formally write

d
v +aou + (=A)u = f(u)+ c(u)d—z: on D (8.12)
" / dw
up +oup + dyu+ur = fr(ur)+ CF(U)% on I
or
dw

U'+aU +AU = F(U)+ C(U)—— o
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The operator A is given by (8.4), the nonlinearity is an operator
F:V—H

on which we have several assumptions, see Hypothesis 8.5.5. As in [33], the operator C'
maps V into the space of Hilbert Schmidt operators with respect to the covariance operator
Q of the Wiener process W

C:V = L*(Ug; H).

More details of Hilbert Schmidt operators and the covariance operator ) of the Wiener
process W can be found in Chapter 4.1 and in the monograph [19]. Furthermore, we
suppose that the operator C' possesses a Fréchet derivative

C': Vs LU x V; H),

which is uniformly bounded.
Later, we transform this equation into a random evolution equation by a version of a
stationary Ornstein-Uhlenbeck process. We can rewrite this problem by the following
coordinate change

V=U+eU

in the following way where ¢ > 0, re—ordering the equations

du = (v — eu)dt on D

(
(
(
= (

dur =
dv =

vr — eur)dt on T’
(e —a)v+e(la—eu—(—A)u— f(u))dt + ¢(u)dw on D
(e — a)vr + €(a — €)ur — Oyu — ur — fr(ur))dt + cr(u)dw on T, (8.13)

so that a second derivative does not appear.
Now, we can rewrite the equation as a first-order evolution equation

90/ + (B + Le)@ = (0707 f(U), fF(uF)) + (07 0, C(U))[dW]

with
U
_ ur
Y= v=1u 4+ eu ’
vr = Up + €ur
0 0 —id O
0 0 0 —id
0, id 0 0
C(U) = (c(u), cr(u)),
and
eid 0 0 0
0 eid 0 0
Le= | _ga—o)id 0 (@—e)id 0 : (8.15)
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Definition 8.5.1 (Function spaces)
In this setting, w is a twosided Wiener process with values in some separable Hilbert space
U defined on a probability space (Q, F,P). The covariance Q of this Wiener process is

finite: Try Q < oo, see also Chapter 4.1. Then, this process has continuous trajectories in
U, see [19]. The operator A is defined in (8.4).

In the following we denote
H = L?(D) x L*(T),

V = D(A2).
Ey=V xH
and
E,=D(A) xV
Remark 8.5.2
We also have that
D(B) = Ey,

see [36, Remark 3.1.] and Lemma 3.3.3. This could also be found in [51, p. 93].

Remark 8.5.3
We can write )
V= D(Az).

since to the operator A is associated to a positive bilinear form a(U, V') defined in Equation
3.8 for suitable a;, a; and ¢;, and thus we can apply Theorem 3.1.4.

Definition 8.5.4 (Norms)
We define by
IVIZ = lloll* + oIl

a norm on H. Note that by the generalized Poincaré inequality 2.5.9 and the definition of
the H'/?(T)-norm
U1 = [Vul® + [lullf

1s a norm on VYV by the relation
(A2U, A2U) = (AU,U) = (Vu, Vu) + (u, u)r,

which is equivalent to the H'-norm for U € H'.
We also define

leliz, = loll* + [Vull® + JollE + [lull?,

and
lellE, = llvl® + [Aul? + lvl|E + [l ApulF

for

Y= (UaquvaUF)-
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On the nonlinearity
F(p) == F(U) = (f(u), fr(ur)),

we have the following assumptions like in [33].

Hypothesis 8.5.5

(i) F:V—H,|FU)|| <Cqnu forUeV,
(i) F: D(A) =V, [|F(U) v < Cay(1+ [Ully) for U € D(A),
(iii) F' is Lipschitz continuous on V to H.
On the operator C(U) = (¢(u), cr(u)), we have the following assumptions like in [36]:

Hypothesis 8.5.6

(i) C : V — L(U,H), the space of all linear bounded operators from U to H.
(i1) C' is a continuously differentiable nonlinear operator with C" from V into L(U xV, V).

(i) C’( V2] : L?(0, T;H) — L?(0,T;H) and
C'(\)[z] : L*(0,T;H) — L?(0,T; L(U x H,H)) are continuous for T >0 and z € U.

() [CO) ] < crllzllo, for U eV,

(v) lle(wr)[z] — e(u2) [Z]]] < evl|zllo (1 + min(fjur]], fuzl)))lur — o,
ler(ui)lz] = er(u2) [2]llr < ev|2llu (1 4+ min((jur]], [luz])))lur = wal| for Uy, Uz € V

)
(v¥) lle (m)gZ] c(uz)[2]| < evllzlloflur =z,

ler(ui)lz] = er(ua)[2lllr < evlizllullur — ual| for Uy, Uy € V
(vi) |C(U)[2llp(ay < epayllzllu for U € D(A).
(vii) c(u)[2]jr = er(u)[z] for U € V.
(viii) We also have an estimate on the operator norm of C':

1C"(O) 2l ) < cullzllu for U eV.

(iz) ¢/ (u) and ¢-(ur) can be extended to a bounded linear operator from H to L(U,H) and
there exists ¢ > 0 such that

e’ (u)[, ] = ¢ (u2) [, i < collur — uall, for U, Uz € V.
and respectively on the boundary.

L(U,V) denotes the space of bounded linear operators between U and V. Note that con-
dition (v) can be replaced by simple Lipschitz continuity, but this condition gives us more
generality, though it is not used in the example at the end of this chapter. Furthermore,
we assume like in [33] that the operators C and C' can be extended as uniformly bounded
continuous functions

C:Vs LUYV), OV LU x H,V).
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First, we state a theorem of existence and uniqueness of the stochastic equation.

Theorem 8.5.7 (Existence and uniqueness)

Let (Uy, Vo) be a Fo—measurable random variable with values in Ey and that the assump-
tions of Hypothesis 8.5.5 and 8.5.6 hold. Then on every interval [0,T], T > 0 Equation
(8.12) has a unique measurable mild solution which is continuous in Ey for almost all
w € Q. Fo-measurability has to be understood in the sense, that the initial condition is
independent of the Wiener process.

Proof. At first, we may assume that our operator C is Lipschitz continuous form Ey to
Ey by 8.5.6[v*]. We have to apply Theorem 7.4 from Da Prato and Zabczyk, see also
Theorem 4.3.3. The proof is based on the fact that B, := B+ L. generates a group, which
is proven in Theorem 2.1.7 and that F' and C' are Lipschitz—continuous. But we only have
local Lipschitz—continuity on C, if we assume Hypothesis 8.5.6[v]. Thus, we have to apply
Theorem 3.6.5 from [10] to get a unique mild solution. In the proof of this theorem a
stopping time argument is used, which yields global Lipschitz continuity. The solution
cannot explode, since we can use the result of Lemma 8.5.13 below as a priori estimates.
Thus, F and G are also linear bounded. O

8.5.2 Transformation

We now transform our stochastic partial differential equation into a random differential
equation, where the stochastic white noise term dissappears. This equation has random
coefficients and the tranformation is stationary, so that the cocycle property is ensured to
the transformed equation. We consider the following equation

dii o
Elit = 00— e+ c(t)[z(0w)] on D
(ZLTF = O —eur + cp(@)[z(Ow)] on T

G = (e-atda- gi- i f(@) - (@ - - Ie(d) x(0)

) + (4)[2(Byw), © — €t + (@) [z(w)]] on D
dditr = (e—a)ir + el —€)ir — Apa — fr(ar) — (o — p — €)er(@)[z(Ow)]

+ep(4)[2(0iw), b — et + c(@)[2(Aw)]] on T, (8.16)

and show that it is equivalent to the origin equation. z is the U-valued Ornstein-Uhlenbeck—
process introduced in Equation (5.5).

dz + pzdt =dW, u>0.
For simplicity, we use the same notation

Y= (U, V) = (4, ar,d,or).
We rewrite (8.16) as first order evolution equation as

% = (B+ L)y + H(Oww, ), (8.17)
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with L. defined in (8.15) and

- cr(u)|z(w
H@ O =1 1) - (a— p— 9e(@)[2@)] — ¢(@) [z(w),d — et + (@) [=(w)]
— () — (o — = er(@)[(w)] — h(@)[(w), & — et + c()[2(w)]

We abbreviate

Remark 8.5.8

As in [33] and [36], we redefine z on (2, U Q)¢ by zero. Qp U Qe is a full set, where
Q¢ is the full set of Remark 5.1.19(ii). Qp is the set of all w € §, where w grows
subexponentially. This is a full 0—invariant set in Q. Thus, the properties of z hold for all
w € .

At first, we will prove existence and uniqueness of a mild solution of Equation (8.16).

Theorem 8.5.9 (Existence and Uniqueness)

We assume, that the assumptions of Hypothesis 8.5.5 and 8.5.6 hold. Then, for every w €
Q and o = (Uy, Vo) € Ey equation (8.16) has a global mild solution (-, w, o) with values
in Ey, for allw € Q, see also Remark 5.1.21 and 8.5.8. Additionally, 1o — 1(t,w, o) is
Lipschitz continuous in Fy and generates an RDS.

Proof. The proof is based on the techniques of Chapter 6 in [41] and uses the fact, that F' is
Lipschitz continuous and C' is local Lipschitz continuous and linear bounded together with
the continuity of z, which is given by the subexponential growth. These facts give us that
the operator H is linear bounded and local Lipschitz continuous in Ey. We have, using
Hypothesis 8.5.6[v*|, that H is Lipschitz-continuous from Ej to Ep, if we only assume
Hypothesis 8.5.6[v], we have only local Lipschitz continuity. Hypothesis 8.5.6[ix] gives us,
that the last two components of H are local-Lipschitz continuous from V — H, and thus,
H is (local)-Lipschitz continuous from Ejy to Ey, and we can apply Theorem 1.4 from
Chapter 6 in [41]. We achieve the local-Lipschitz continuity by the a priori estimates in
in Lemma 8.5.13 and the following estimates using Hypothesis 8.5.6[v]

1C(Uh)[z] = C(U2) 2]l < k[ C(U1)[2] = C(U2)[2]llv
< ko2l (1 4+ min(||Ur]lv + [Uz[lv)) UL = Ue|l|U1]lv
or assuming Hypothesis 8.5.6[v*] instead of Hypothesis 8.5.6[v]
IC(U1)[z] = C(U2) 2]l < kal|C(U1)[2] = C(U2)[2]llv < kallzl|lo||UL — Uallf|Un]lv-
The last expression in H can be estimated by
1C"(UL)[2, Vi — eUr + C(Un) 2] = C'(U2)[2, Va — €Uz + C(Us) 2]k
<|C"(Un)[z,U]] = C'(U2) 2, Us] — C'(U2)[2, U] + C'(U2) [z, Ui |m
<cyllUillullUr = Usz|lv + |C"(U2)[2, U] — C(Us)[z, Us]||m
<y |UillullU1 = Usllv + [|C"(U2)[2, Uy — Us]|lm
<y |Uilul|Ur = Usllv + kll2[v UL = Usllu
<cgllUillIIUL = Uallv + k|| zllu (IVi = V|l + €l|Un = Usllv + kllz[lu]|Un = Uallv),  (8.18)
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by inserting
Ul =V, —eU; + C(Uy)z],

see also the first two equations in (8.16).

Thanks to the bound of 1y € Ey derived in the a priori estimates in Lemma 8.5.13, we
can find local solutions and extend them into global solutions by iterating [41, Theorem
6.1.4]. O

Solutions in E7 are considered in Theorem 8.5.19.
We can also prove the existence and uniqueness of a weak solution of (8.16).

Theorem 8.5.10 (Existence and Uniqueness)
We assume, that the assumptions of Hypothesis 8.5.5 and 8.5.6 hold. Then, for every
w € Q and @y = (U, Vo) € Ey (8.16) has a global weak solution (-, w, o) with values
in Ey, for allw € Q, see also Remark 5.1.21 and 8.5.8. Additionally, 1o — (t,w, o) is
Lipschitz continuous in Fy and generates an RDS.

Proof. The proof is based on the Galerkin method introduced in [49, Theorem IV.4.1]. The
main idea of the proof is to obtain some a priori estimates. We achieve these estimates by
replacing U by

Um = Z gim(t)Ei
=1

where F; are the eigenfunctions of A in the following Theorem 8.5.12. The weak—star
convergence of ¢, = (Upy,,U),) — ¢ follows by the estimate (8.25). Hence, we can follow
the proof in [49, Theorem IV.4.1], use the compactness Theorem 2.2.25 and conclude that

Un — U in L*(0,T;H) strongly.

Due to the properties of H, H(U,,) converges to H(U) weakly in L?(0,T;V): We have to
estimate || P, H (Up,) — H(U)||v:

1P H (Un) — HU)lv < | By H (Unm) = PoH(U)llv + [Pn HU) = H(U)[ly.  (8.19)

The convergence of the second expression to zero of the right-hand side of (8.19) is clear
and the convergence of the first expression follows by the Local-Lipschitz continuity of H,
replace Uy by U, and Uy by U in (8.18), together with the a priori estimates of U, and
Bessel’s inequality.

Thus, we can find a solution U of (8.16), such that

UeL®0,T;V), U eL>®0,T;H).

We obtain that
UeC(0,T}V), U eC(0,T];H).

by [49, Theorem II1.4.1]. O

Existence and uniqueness of solutions in Fj are proven quite similar, see Temam [49,
p.214].
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Remark 8.5.11
Mild solutions and weak solutions coincide in our setting.

Proof. We consider the Galerkin approximations of the mild solution. By Remark 8.5.15
we obtain an a priori estimate similar to Lemma 8.5.13. Then, we can follow the proof in
Theorem 8.5.10. ]

The next theorem transforms the stochastic partial differential equation (8.13) into a
random partial differential equation (8.16) and is adapted from [36, Theorem 3.6].

Theorem 8.5.12 (Transformation)
Let z(w) be the random variable defined in equation (5.5) with the modification of Remark
8.5.8 and let T : Ey x Q +— Ey be given by

¥ = (u,up,v,vr) = (u, up, v + c(u)[z(w)], vr + cr(u)[2(w)]) for w € Q.
Then T is a random homeomorphism with the inverse
T w) = (u,up,v,or) = (u,ur,v — c(u)[z(w)],vr — cr(u)[z(w)]) for w € Q.
Additionally, the mapping
t = T((t,w, T~ (0, w)), iw) =: ¢(t,w, po) € Ey
defines a random dynamical system on R. For ¢g € FEy and z defined by (5.5), the process
(t,w) = o(t, w, po)
is a {Fi h>0-measurable version of the mild solution of the spde (8.13).

Proof. Tt is easy to show, that T'(-,w) is a homeomorphism on Ey with inverse T-1. T (3, -)
and T~1(z,-) are measurable.

(907 w) = T_1(¢7 ')7 (wv w) = T(¢7w)

are measurable by Castaing and Valadier [9, Chapter 3] because of the local Lipschitz
continuity of C. The main part is now to show that 7" transforms a solution of (8.16) to
a version of the mild solution of (8.13).

We have that () is the mild solution of (8.17) with initial condition (0) = ¢y € Ep.
Furthermore, G(t) is the Cp—group generated by the linear operator B, see also Theorem
2.1.7. Then, by the definition of a mild solution, we have

v =G+ [ Gt — ) H (0,00, 0(r)
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Additionally, ¢(t) fulfills
et
— w)) = t
= T =1 40) 1 cla)[(60w)
or(t) + er(a(t))[z(0w)]

0

= t -7 w, (1)) dr 0
= G(t)¢0+/0 Gt VH (07w, () dT + ( c(a(t))[2(6w)] )
cr(a(t))[z(Orw)]

Uuo 0
= “ro —7) w T 0
G@( oo — cluo) [2(w ]) /Gt H{ M»d+(c@®%@M])

vro — cr(uo)[z(w)] cr(a(t))[z(0:w)]

t 0
= G(t)po +/ G(t—r) ( g 2(7_)) dr +

0 0
0 0
+G(t) ( —c(up)[z(w)] ) * ( c((t))[z(Ow)] )
—cr(uo)[z(w)] cr (@(t))[2(6ww)]
( T

We have to show that the mild solution ¢(t) of the spde (8.13) coincides with the ¢(t) in
(8.20). We start with

uo t 0
- uro . 0 -
o) = G| +/OG(t i T))) ) d

Uro

t 0
0
—i—/o G(tr)( c(u(r))dw )dr

We define
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with

Un(t) = (U(t), Ep) and Vp,(t) = (V(¢), Em).-
(Ei)ien are the eigenfunctions of the operator A. By Hypothesis 8.5.6[i], the existence
Theorem 8.5.7 and the continuous embedding from V into H, we have that

B [ W) g ds < o

This guarantees, by Theorem 6.5 from [19], that the mild of the spde solution is also a
weak solution. Therefore, we have

m m t m .M
( um(t) > _ ( uom ) +/ ( vm(T) eum(T) > dr.
up' (t) urp o \ vr'(7) —eup’(r)
u(t) and v(t) are continuous, and therefore u"(t) is continuously differentiable in ¢ on
D(A) with
du™
dt

Using ™ (t) — u(t) and again Hypothesis 8.5.6[i], we get for ¢ > 0 together with the trace
condition Hypothesis 8.5.6[vii]

t 0 t 0
L?— lim /G(t—T) ,,01 dT:/ G(t—) 0 dr. (8.21)
moee [ c(u™)dw 0 c(u(r))dw

cr(u™(7))dw er(u(r))dw

We now rewrite the stochastic integral. Let 0 = 7}’ < 7' < --- < 77 =t be a sequence of
partitions of [0,¢], such that the maximal mesh size tends to zero for n — co. Equation
(5.5) gives us the following relation

=0"(t) — eu™ ().

(1) — 2(s) + u/ 2(r) dr = w(t) — w(s),

so that we get by multiplying with C(U™) the following equation (8.22). This is the limit
in probability of the left—hand side of (8.21). We have by the definition of the Ito-Integral

0
n—1 . 0
2G| futrt,) - () (522
e (7)) () — w(r?)]
0
0
= 2G| e ()5 2(60.) s

per (™ (7)) #(00) ds]

0

- n 0
+;G(t_n) c(u™(r)a(l4) — 2(7")]
er(u™ (1)) [z (7 ) — 2(7])]
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Additionally, we have that

0
n—1 0
Z G(t—7") (1Y) fT (Osw) ds]
i=1

m( ) 2(6u0) ds]

tends in probability to

t 0
0
/0 G(t—r) ( ,uc(um(T))[z(st)]] ) dr. (8.23)

By defining

and applying an intermediate value theorem, we achieve

n—1

—h(0)[z(w)] + h(7_1)[z(0rnw)] — Z(h(ﬁ")[z(e rw)| = (i) [2(0rrw)])
= h(O)[2(W)] + R ) [e(Brp)] Z / Doh(r ] dr
1=1 T -1

—  —h(0)[z(w)] + h(t)[z(0:w)] —/0 D h(7)[2(0;w)]d

because 7 — h(7)z is continuously differentiable and 7 — z(f;w) is continuous. On the
boundary we have a similar result. Applying the chain rule, we get

0 t 0
0 0
( (" (1))(00)] )* /O G(tT)Bf( o re(0] ) o

)
er(u™(t))[z(01w)]

t 0 X
0 0
+ /O G<tT>( 0, ) ) ‘“G(“( ) ) o
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which is equal to

0 0
0 0
)=o) | O ey |
e (u™ () [2(6,0)] er(uf) [2(w)]
| e
LT —a-oeum ) |
(@ — er(u™ (7)) [2(6:w)]
t 0
+ | cu-n o dr
O () 2(Brw), Lum(r)] | 9T
— (™ (1) 2 (Br), (7))

by using the explicit form of Be. Letting m — oo delivers us the equivalence of (8.13) and
(8.16), in the sense that the the transformed mild solution of (8.16) is a version of the
mild solution of (8.13). The terms containing F' are considered analogeously. O

8.5.3 Absorbing set

In this section, the existence of a random attractor is shown. Due to [18] and [15] the
proof is divided in two parts. At first, we show the existence of a random absorbing set,
then the attraction property of this set by a compactness argument. Then, we can apply
Theorem 5.1.9. The main tools in this section are some kind of energy estimates, but
because of the DyBC we cannot use the standard methods of integration by parts. In this
section we set

((u,v)) = (Vu, Vv)
A=-A
Ar =0, +1d
(u,v)p = (u,v)
and write u instead of & and v instead of © respectively. Note that ((-,-)) is not an inner
product on H'(D). The proof of a random absorbing set is divided into several lemmas,

which use the techniques of weak solutions. After each lemma, there is also a remark, how
to achieve the precedent result by techniques of mild solutions.

Lemma 8.5.13 (Random absorbing set)
The RDS (8.16) possesses a random absorbing set.

Proof. We estimate
111, = 112+ IVull® + [[ol|E + ulf
by the chain rule. The scalar products are well-defined, since we can apply the abstract
result from [49, Lemma I1.4.1], and the arguments of [49, Chapter IV], so that
dv
(Zov) =(e—a)(v,v) +ela = €)(u, v) = (Au, v) = (a — p = €)(c(u)[z(6w)], v)

= (f(u),v) = (' (w)[2(0rw), v — eu + c(u) [2(Ow)], v)-
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This leads to

1djjo|f?
2 dt

=(e — a)[|v[* + e(a — ) (u,v) — (Au,v) = (@ = p — €)(e(w) [2(6iw)], v)
— (f(u),v) = (¢ (W)[2(0w), v — eu + c(u)[z(6w)]], v)
with

—(Au,v) = —(Au, v’ + eu — c(u)[2(6w)])
= —(Vu, V') + (O,u, up)r — e(Vu, Vu) + e(d,u, ur)r
+ (Vu, Ve(u)[z(0iw)]) — (Opu, er(u)[2(0:w)])r
1d||Vul? 5
< S IVUE  jwul? + (V. Vew) (0] + he(u, ),
where hr is defined by
hr(u,w) = (8, u, up)r + e(Oyu,ur)r — (Opu, cp(u)[z(w)])r.
As in [34] we have by Hypothesis 8.5.6[v] the estimate

(Vu, Ve(u)[2(0:w)]) < ev[l2(0w)l|lu[Vull® + [[e(0) [(0w)] | Vul
< collz(6w)lu + collz(Bw) ||| Vul|?

and similarly

2(p + € = a)(c(u)[2(0w)], v) < 2|[p+ € = allen || 2(0w) v llv]]

< cqrllu+ e = alPll2(0w)lo + kll2(0ww) o]

2(d (u)[z(0ww), v — eu + c(u)[2(6w)]], v) < 2|/ (u)[2(0iw), v — €u + c(u)[2(Br)]] ][]
< dyllz(0w)llo (ol + llull + [2(0w)llo) o]
< eaflz(00) [l ([[oll + [[Vull + llulle + [12(6x0) o) [[o]
< esllz(0w0) [l ([[oll + [[Vull + [[2(6:w) [[v) vl

+ e[ 2(0r)o [l rflv]

< esll2(0w)llu 1911z, + coll=(Gw)IE,

where ¢; and ¢ depend on ¢}; defined in Hypothesis 8.5.6]viii]. We analogically estimate
on the boundary

1 d|jor |2

5”4 = (e — &)|lvr||f + e(e — €)(ur, vr)r — (ur + dyu, vr)r

—(( = p = €)er (W) [z(6iw)], vr)r — (fr(ur), vr)r
—(ep(u)[2(6iw), v — eu + c(u)[z(0w)]], vr)r

We have that

Ldjurlf

5 ellur[* + (ur, er(w) [2(6:w)))r — hr(u, 6i)

—(ur + dyu,vr)r =
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by inserting
du
Tltp = vr — eur + cr(u)[z(Ow)].

By Hypothesis 8.5.6]iv], we have for any ez > 0 and a k., > 0
(u, er(u) [2(0w)])r < eaflullf + ke ll2 () 17

We obtain on the boundary as well as in the inner domain by Hypothesis 8.5.6[iv] and
8.5.6[vii]

< 2p+e—alegllz(Ow)llulor(r
< cxlp+e—allz(0w)llu + [|2(6:w) ool
< kllz(0w)llu[¥]E, + cllz(0w)]|3-

2(p + € — a)(er(u) [2(0w)], v)r

2(cp(u)[z(0iw), v — eu + c(u)[z(Ow)]],v)r

Again, we could estimate the nonlinearity by Hypothesis 8.5.5]i], that for every e > 0 there
is a K, such that

€
(o (ur), vr)rll < Ke+ LIl

Lemma, 8.4.2 delivers
ellull® + (= e)|v]|* — e(a — €)(u, v) + eflur |7 + (a — €) or ||} — e(a — €) (ur, vr)r > aa |9,
This leads to the following estimate with some 0 < as < a7 and some constant ¢; > 0

d

@HQ/)H%EO + oY), < cllz(0w)llull¢lE, + calllz(0:w) 1+ 1). (8.24)

Integration from 0 to ¢ gives us

T

t
(O, < ol +/0 (c1llz(0zw)lle — a2)llw ()|, dr +/0 ea(lz(0rw)llEy + 1) dr.

The inequality has the form

v(t) < g(t) + /Ot h(r)v(T)dr
with
v(t) = [ OlE,  h(T) = allz0:0)|v — a2, g(t) = [[Yollm, + /Ot ea(|l2(0rw)lIF + 1) dr.
Now we can apply the Gronwall Lemma [54, Lemma 29.2] and conclude

4t w, o) |, <elolctllzrellu=a)dr|jyy 3

t
+ efot(01||z(67—w)|y—oc2)d7'/ 02(”2(97—&})”3(] i 1)6_ fOT(c1||Z(95w)||U—a2)ds dr.
0

We replace w by 0_;w and achieve for

191l gy = l19(t, 01w, ¥o)l| &,
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the following inequality
466, 00, o) 3, <Iibolfeo+er Soullorelo dr
+ /0 coe25Tel S =00l (|1 2(0sw)|[3 + 1) ds.
—t
Therefore, we obtain that the closed ball B(w) in Ey with center zero and square radius
po(w)? == 2/0 coet2ste J? ||Z(9TW)||Ud7(||z(95w)||“z’] +1)ds (8.25)

—0o0

is an absorbing set for the random dynamical system 1, if we choose Try ( small enough,
such that
ECleHU —ag < 0.

O
On the properties of the random ball B(w), we can state as in [33] the following remarks.

Remark 8.5.14
po fullfills the assumptions of Remark 5.1.5 and thus the radius p? defined in (8.25) is
tempered.

Remark 8.5.15
We can also prove the existence of a random absorbing set of 1 in Fy by semigroup methods
considering the mild solution of (8.16). We use Hypothesis 8.5.6[v*] in these calculations.

Proof. The mild solution

o) = Gt + | "Gl — 1) H(Brw, (7)) d

provides us, that

[Pz, < G #)dol 5 +/0 |Gt = 7)H (67w, 9(7))| iz, dT-

The exponential decay of the semigroup, see Lemma 8.4.1 or explicitly Lemma 8.4.2 leads
to the estimate

t
Il (®)llz, < e 1¢ollz, +/0 e NN H (0rw, ()|, dr

for some A > 0 given by Lemma 8.4.1.
We estimate

[1H(w, )5, < kallz(@)llo + ev (@) ulUl + Ca.x + Crllz(w)lo
+ k22 (@) IVI + kall2(@) o Ul + kall (@) 17

We set
O(w) = k1llz(w)llv + Ca,u + Crllz(w)|lu + kal|z(w)][7-
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Note that © is a tempered random variable. We obtain

t
[P(®)llE, < 6MH¢0HEO+/O e N (Rt ks - ev)[|2(0:0) 019 (7) |y +e O (0r0) dr

or

t
leOllzee™ < llvollz, + /0 A (ky + ks + ev) || 2(0:0) Ul (7) | 5, + €O (8;w) dr.

The inequality has the form

v(t) < g(t) + /Ot h(r)v(r)dr
with
o(t) = [[O)llse™,  h(T) = (ka+kz+COv)|2(0:0) v,  g(t) = IIwollEoJr/Ot N O(0,w) dr.
and set ks = ko + k3 + Cy. We obtain

t
o(t) < ek o I=E-lu dr (g ) 4 / 7O (B, w)e Ji 120l ds gy
0
Thus, we achieve
t
()|, < € Jo 12(6-w)lu =2t (4(0) _|_/ O (0;w)e” Jo I2(0sw)llu ds dr).
0

and finally
t
[9(6), < RIS I0 N ar N g, [0 06,y dr. (3.26)
0
Replacing w by 0_;w, we get the following inequality

0 0 0
1t B, o)l < bl oS Soe 1O dr=e / ks 7 1200l ds+X7 Q) (9, ) dr,

—t

This delivers us again that the closed ball B (w) in Ey with center zero and radius
0 0
P (w) = 2/ ehs - 20wl ds+ArQ (9 ) dr (8.27)

is an absorbing set for the random dynamical system 1), if we choose Tryy () small enough,
such that
Ekg,HZHU —A<O.

The right hand side of (8.27) defines a tempered random variable and we can conclude
the existence of a random absorbing set.
O
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8.5.4 Splitting the solution operator

Now, we want to construct a compact random attracting set for the RDS . In the
deterministic theory, the solution is split up into two parts. In our setting, we need a third
part because of the C-term arising from the spde. This term has to be sufficiently regular
in the equation of 1., and thus we get by the residual the third equation. We again apply
the methods from Keller [33]. We use the following splitting method

¢=¢l+¢r=¢z+¢c+(¢r—¢c)7

where ; denotes the cocycle generated by the linear homogeneous problem and solves

d
% = vy —euyyonD
dUFl T
—— = wp;— €ur; on
7t T T
d
% = ela—e)u — Au; — (o — €)yy on D
d
Z;l = e(a—€)ur; — Aru; — (o —€)uron I

with initial condition ¢;(0) = ¥y € Ejp.
Then, we define the compact part analogeously as in [49]

du,.
= Ve~ euct c(uc)[z] on D (8.28)
CZC = e(a—euc— Auc — (@ — €)ve + f(u)
+(1+ € — a)e(u)[2] + ¢ (u) [z, v — eu + c(u)[z]] on D
Wre — upe— eue+er(ul on T
d;gc = e(a—e)ur. — Arue — (a — €)ure + fr(u)

+(p+ e — a)er(u)[z] + p(u)[z,ve — eu + c(u)[z]] on T

with initial condition .(0) = (0,0,0,0). Note that by the estimates in Lemma 8.5.21
(U.,V,) € E1 = D(A) x V. We set

Ya = Pr — e
and obtain
ey cug o]~ cluld on D
% = ela—eug— Aug — (@ —€)vg (8.29)
+d'(u)[z,v = v on D
du
% = wrqg — eurg + cr(u)[z] —er(uc)[z] on T
dz}ll;d = e(la—eurg — Arug — (. — €)vrg (8.30)

+ep(u)[z,v — v on T



8.5. MULTIPLICATIVE NOISE 119

with initial condition 14(0) = (0,0,0,0).
We can state the same Lemma as in [33, Lemma 4.8].

Lemma 8.5.16 (Estimate of ;)
We have for any D in D

sup (95, 0w, Vo)l < d(B_sw)e ™ for t,s >0 and y <
Yo€D(0—-w)

where X is defined in Lemma 8.4.1. d(w) depends on the intial condition in the following
way:

dw) = sup ||z|g-
z€D(w)

This is the classical deterministic theory developed for equations with dynamical boundary
conditions at the beginning of this chapter.

Lemma 8.5.17 (Estimate of ¢, in Ej)
The compact part . has the absorption property in Ey.

Proof. The proof is the same as in Lemma 8.5.13, except the estimate of
2(c'(u) [z (w), ve — eu + c(u) [z(w)]], ve).-
By

killz@)llullvel® + kall () lolu]®
killz(@)llullvell® + ksllz(w) I + kallul*

kollz(w)llorl|wll[[vel

VARVAY

and similarly on the boundary we conclude similarly as in Lemma 8.5.13 that

d .
el + aallel* < erllz(@w)llu el + ex(llzE + 1) + esllo 1"
We may assume that 2¢; < é1, see Inequality (8.24), and obtain

(s, 0, 90)l* < ([ (s,w, 0) 1)

< 2(|Jaho|| e 25t IO 12051 5wl dry2
0
+ 2(2/ coe~ o2t IS ”z(eTﬂW)HUdT(||Z(9r+sw)||§} N 1)dr)2
—0o0

0
< HwOH42(€fa25+c1 Jo 20 sw)llu d‘r)2 + 2(p0(98))4.

Thus, we have since 9y € B(f_w) and

0
9 (5, 010, o) |[* < po(O—rw)i2(e~2sFer Jos l2Omesdllu dry2 4 9(p0 (9, )4,
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We follow the proof in [33] and get that

sup "w(:(t’ g—tw7¢0)H2Eo
Yo€B(0—1w)

t
S/ @ef: —az+eér]|z(0-—sw)llu dT(“z(Qs_tw)"%]+1)d8
0
t
+/ C2€f5t —ag+é1||z(0-—w)|lu depo(e_tw)4€2fos —ag+c||z(0r—tw)||u dT ds
0

t
i / eaelt —oateilOrwlu drg (0 ) g
0

The main difficulty is to estimate the second integral. We estimate
/t C2€f; —agté1|2(0-—tw)llu dTng(g_tw)‘lez Jo —oater||2(0r—w)llu dr 4o
O < QCgtpg(H_tw)4ef0t —oatei[z(6r—w)lu dr (8.31)
There exists a cq, > 0, such that
2c9t < cae%Qt for ¢t > 0.
Therefore, the last expression in (8.31) can be estimated by
Cay (po(ﬁ_tw)QefOi — 22481 2(0r—sw)lu dr)?2

This is a tempered random variable for p large enough, see Lemma 5.1.24.
We obtain with the same arguments as in [33] the following radius of the absorbing set:

0
piw) = / coel? —arreil =0 (2509 ) 4 |[2(0,0) [} + 1) ds

—00

Yot =% ke s(0r) | dr 3 ?
—|—ca2</ coels T el (Hz(ﬁsw)HU—i-l)ds)

— 00
O

We can also consider (8.28) in the context of mild solutions. Therefore, we rewrite (8.28)
as first order evolution equation as

d;/;c = Bewc + Hc(etwa wc)a (832)
with B defined in (8.15) and
c(ue)[z(w)]
Hc(quz)c) — CF(UC) Z(w)]
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Remark 8.5.18

We can also prove the existence of a random absorbing set of . in Ey by semigroup
methods considering the mild solution of (8.28). We use Hypothesis 8.5.6[v*] in these
calculations.

Proof. By the mild solution

belt) = G(t)eo + /0 Gt — 7) Hol(0rw, (), (7)) dr.

we conclude, that

[Pe()ll i, < G (#)deoll 2 +/0 |Gt = 1) He(Orw, Pe(7), (7))l 5 AT

The exponential decay of the semigroup, see Lemma 8.5.20 leads us to the estimate

t
el < e leollzy +/O e M He(0rw, ¢e(7), (7)) |y dr

for some A > 0 defined in Lemma 8.4.1.
We estimate

[He(w; 9e(7), (7)) o
<killz(W)llv + ev Ul + Co,m + crllz(@)llo Vel + 1U]] + l|2(w)lv)

<killz(w) v + kall2(@) 1T + ksllz(@) v oG (@) + Corr + kalltee(T) ] 5,-

We set
O (w) = k1llz(w)llu + k2llz(W)|IF + ksllz(w)lvpg*(w) + Ca,u

Note that ©9 is a tempered random variable. We obtain

t
le(®)llzy < e Mleollz +/0 e Ay | 2(0:0) [0 [[9e(7) [ 5y + €7D0 (07w) dr

or

t
el Eoe™ < el +/O A kal|2(0-w) | [[$e(7) || 5y + €A OL(B7w0) dr

The inequality has the form

t

v(t) < g(t) +/ h(r)v(T)dT.

0

with
t
o(t) = e®lp e, h(r) = kallz(0:0)llvs  9(8) = [[deollm +/0 O (b-w,U) dr.

Gronwall’s Lemma yields us

t
u(t) < ek Jo 12(0-w)llo a7 (g(0) +/ e 09(0,w)e Jo I120sw)llv ds g7y,
0



122 CHAPTER 8. ATTRACTORS OF HYPERBOLIC EQUATIONS
Thus, we achieve

t
() || 5, < € Jo 12(6-0)lu =Xt (4(0) +/ e 0%(0,w)e” Jo z(0sw)llu ds dr).
0

and finally
¢ t
[the(t)|| 2y < eka Jo I12(6-0)llu dT_/\thoHEo _|_/ e—/\(t—f)+f$\|Z(GSW)IIU dsgg(gTw) dr. (8.33)
0

Now, we can follow the arguments in Remark 8.5.15 and conclude that there exists closed
ball B.(w) in Ey with center zero and radius

0
pZL(J(W) = 2/ ekQ fq(—) ||Z(98w)||Ud5+/\T@C(07_w) dr (834)

which is an absorbing set, if we choose Try ) small enough, such that
Ek4HZ’HU - A <0.

The right hand side of Inequality (8.34) defines a tempered random variable.
O

To obtain estimates in 1, we have to show existence und uniqueness in Fy at first. Again,
we can directly prove the existence and uniqueness of a mild solution of Equation (8.32).

Theorem 8.5.19 (Existence and Uniqueness of in E;)
For every w € Q and ¢cy = (Ueg, Veo) € Er equation (8.32) has a global mild solution
Ye(+yw, Yeg) with values in Ey, for all w € Q, see also Remark 5.1.21 and8.5.8.

Proof. The proof uses the techniques of Chapter 6 in [41] and uses the fact, that F(U)
is bounded in V and C(U) is bounded in V. Furthermore, C(U,) is bounded in D(A) by
Hypothesis 8.5.6[vi]. The linearity of C’" in V, gives us, that the last two components of H,
are Lipschitz continuous from V — V. We achieve this if we assume Hypothesis 8.5.6[v*]
very obviously by the Inequalities (8.37) and (8.38). If we assume Hypothesis 8.5.6]v], we
could only use the Inequalities (8.35) and (8.36), but then we could use that U is in set
bounded by the tempered radius pg. Thus, H, is (Local)-Lipschitz continuous from FEj
to E1, and we can apply Theorem 1.4 from Chapter 6 in [41]. Thanks to the bound of
1. € E7 derived in the a priori estimates in Lemma 8.5.21, we can find local solutions
and extend them into global solutions by iterating [41, Theorem 6.1.4]. The semigroup
property of Be on Fj is given by Lemma 3.3.2. O

For the compact part, we can state a lemma similar to Lemma 8.4.2. This result is also
given by Lemma 8.4.1.

Lemma 8.5.20

Assume that
Q 1 1

4’ 2C(D)%a’ o)

€ < €p := min(
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Then, we have the following estimate
el Aul)? + (a = lol|* — (e = €)(Vu, Vo) + el Arul|
+a = e)|Jol|p — e(a = €) (u, v)r

€ (6 € [0
SllAul® + Sl + Sl Arulp + 5 ol

\Y]

\Y]

o (4wl + Joll? + | Arul? + o]

for

a) = min(%, %)
and (U,V) € D(A) x V.

Lemma 8.5.21 (Estimate of ¢, in E;)
The compact part . has the absorption property in E1.

Proof. We calculate ||vc||fEl by the chain rule and consider at first the interior part:

CZ;C:U; = el — €)ue — Aue + (€ — a)ve + f(u)

+(p+ e — a)e(u)]z] — ¢ (u)[z,ve — eu + c(u)[2]].
Multiplying by Av. gives us

(v, Ave) = e(a— €)(ue, Ave) — (Aue, Ave) + (€ — a)(ve, Ave)
(€ = a)e(w)[z] = ¢ (u) [z, ve — ew+ e(u)[#]] + F(u) ), Av).

Thus, we obtain
1d
2dt

=e(a = €)(Vue, Vue) = e(a = €)(ure, d,00)r + (¢ = a)[Juel|* = (e = @) (vre, Byve)r
— (Aue, Aug) — e(Aue, Aue) + (Aue, Ac(u)[2])

+ (((u +e—a)e(u)z — (u)]z,ve — eu + c(u)[z]] + f(u)) Ave),

llvell® — (vrt, Bvuc)r

and on the boundary by multiplying the boundary part with Arv, we omit the index |p
at the scalar product as before in this calculations because we only consider the scalar
product on the boundary

(UF/cv dyve) + (Ul‘/m Ure)
=e(a — €)(ure, vre) + €(a — €)(ure, dyve)
+ (€ — a)(vre, Oyve) + (€ — a)(vre, vre)
— (Arue, Arug) — el Arue||* + (Arue, Ar(c(u)[2]))

(€ = a)er(u)le] e (w)[z.ve = eut c(w)z]] + fr(ur) ). Arve).
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We define k = 1 + € — « and derive the following estimate
(1 + € = a)e(u)[2), Ave) = K((e()lz],ve)) = kler(w)[2], o)
Blle() =il = ker(w)[2], dyvo)r
i (eI + ev 2o llul) Reell = ker(w)[2], dyve)r
allzllullecll® + ks (1 + 1213 + ull) = k(er (w)[2], dyve)r

[VANRVAN

IN

and on the boundary,

((u + € — a)er(u)[z], Arve)r

k(er(u)[z], vre)r + k(er(uw)[2], dpve)r
kller(u) 2] ll[lorellr + E(er (w)[2], yve)r
kallzl|ullorellr + k(er(uw)[2], duve)r

ksl zllullorellf + kellz 5 + k(er(u)[2], dyve)r

IN N CIA

We have for ¢’ the following estimate by Hypothesis 8.5.6[v]

I’ ()2, Bl < K2l (Illlell + 121D, H €V, (8.35)
and on the boundary

lep(u)z, Bl < Kllzllu(IRlllwll + 17]), H €V, (8.36)

where H = (h, hr) by calculating

1P (w)[z, Bl < lim s | Pme(u + sq) [Zl — Pnc(u)[Z]|

< Kl[zllw (allllull + 1),

and similarly on the boundary. With the same arguments as in [33], these are the Fréchet
differentiability of C' : V. — L(U,H) and the extension of C’ as a continuous operator
from V — L(U x V,V) we obtain that the last inequality also follows for m — oo.
P,, = (Pn,vPy) denotes the projection on the first m eigenvectors of A. Note that the
eigenfuntions of A are contained in D(A).

If we replace Hypothesis 8.5.6[v] by Hypothesis 8.5.6[v*], we achieve the simplier estimate

I’ (w)[z, ]Il < Klzllullhl, H €V, (8.37)
and on the boundary
lep(w)[z, AlIr < Kllzllu k], H € V. (8.38)
We can thus derive by (8.35)
(' (u)[z,ve — eu + c(u)[z]], Ave

9y )
(' (w)[z,ve = eu + c(u)[2]], ve)) = (cp(u) [z, ve — eu + c(u)[2]], Oyve)

< 2cflllu (llvell + ellull + eI (lull + D lvel
—(ep(u)[z, ve — eu + c(u)[2]], Oyve)
< (e20f + keoll2lIE + Erllzllo) locl® + ks (1 + lI2l17F + llul™?)
]

—(ep(u)[z, ve — eu + c(u)[2]], Oyve)
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and on the boundary

(cr(u)[z,ve — eu + c(u)[z]], Arve)r
= (cp(u)[z,ve — eu+ c(u)[2]], or) + (dp(u)[z, ve — eu + c(u)[2]], Dyve)
|

< 2|zl (lvell + ellull + [le(u) 2] (lull + 1) [[ore|
+(ep(u)[z, ve — eu + c(u)[2]], O,ve)

< (eap + keollzllEr + Frllz o) lwell® + k(L + (12117 + [|ul?)
+(cp(u)[z, ve — eu+ c(u) 2], D ve).

for an eo > 0 and some 1,72 > 0. We have use in all these calculation the estimate

lle=I < Ne) 2]+ evizllollull < Elzlle + eviizlvlull,

arising from Hypothesis 8.5.6[v]. If we use the estimate (8.37) derived by Hypothesis
8.5.6[v*] instead of Hypothesis 8.5.6[v], we obtain

(c(u)]z,ve — eu + c(u)[2]], Av.)
(¢ (u) [z, ve — eu + c(u)[2]], ve)) — (cp(u) [z, ve — eu + c(u)[]], Byve)

< 2cllzflu (Ivell + ellull + le(w) [0 Nvel
—(er(u)[z, ve — eu + c(u)[2]], dyve)
< (205 + keoll2llE + Erll2llo)lvell® + ks(L + N1zl + lull®)
]

—(cr(u)]z, ve — eu + c(u)[z]], Opve)

and on the boundary

(er(u)[z, ve — eu + e(u)[2]], Arvre)r
(er(u)[z,ve — eu + c(u)[2]], vr) + (cp(u)[z, ve — e + c(u)[2]], Dyve)
|

< 2]zl (lvell + elfull + fle(w) [Z[]) lore|
+(cp(u)[z,ve — eu + c(u)[z]], Oyve)

< (eap + keollzlIT + Kzl 2lo) el + s (1 + 11215 + fJull®)
+(ep(u)[z, ve — eu+ c(u)[2]], ,vc).

for an €5 > 0.
We estimate the nonlinearity by integration by parts and the trace condition of the non-
linearity, see Hypothesis 8.5.5,

(f(u), Ave) + (fr(ur), Arve)

Er (L ) el
< ket Rallll + gl

ANV

for an appropriate constant k. Furthermore, we have by Hypothesis 8.5.6[vi]

(AC(Ue)[2], AUe) < eppayllzllull AU < esl| AU + Ko, l2]17-
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Summing up all these estimates we get with
1117 = ol + | Aul® + flor R + [ Arullf

the final estimate for some k1, ko, k3, kg4 > 0

d
Tl < —aallvellp+2(k 121l +e2p5+kes 1218 el s + s (Rat [ 2137 +llaall ™+ [[ul] ).

Assuming Hypothesis 8.5.6[v*] instead of Hypothesis 8.5.6[v] we have 71 = 4 and o = 4.
If we choose now TryQ sufficiently small such that

012

E(k1]|2llv + €205 + keoll2]17r) < (8.39)

we get by ergodic theory like in Lemma 8.5.13 a ball with tempered radius p. and center
zero. The existence of the expectation (8.39) is ensured by Lemma 5.1.24 and Lemma
5.1.5. Lemma 5.1.24 gives us that ]EGQP% is finite. Then, we choose €5 small enough, such
that E62p(2) < 7. This is possible by Lemma 5.1.24 for a fixed y and Try @ small enough.
Then we chose Try @@ small enough, such that

a
E(killzllv + kell2l17) < 3

to obtain inequality (8.39) and then follow the arguments in Lemma 8.5.13. O

Remark 8.5.22

We can also prove the existence of a random absorbing set of . in E1 by semigroup
methods considering the mild solution of (8.28). We use Hypothesis 8.5.6[v*] in these
calculations.

Proof. The mild solution

Ye(t) = wco‘i‘/Gt—T c(Orw, e (7), (1)) dT.

provides us that

[Pz < |G eol 2 +/0 |G(t = T)He (07w, Pe(T), ¥(7))]| 2, d-

The exponential decay of the semigroup, see Lemma 8.4.1 or Lemma 8.5.20 leads us to
the estimate

t
el < e vellms +/0 e N He (0w, 9e(7), (7)1, dr

for some A\ > 0.
We estimate

[ He(0rw, ¥e(7), (7)) By
2cpallzllv + Cav (@ + [[Ulv) + |C(U)[z, Ve — eU + C(U)[]l[lw
L2cp)llzllu + Cov (L +[[U]lv) + k1l zllu|Ve — €U + C(U)[=]]llv
<2cp)llzllv + Cav (1 + [Ullv) + k2llzllo|[¢e ()] &,

+ k|2l pg (07w) + kallz |70 (0rw) + ksl|zI7-
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We set
Oc(w) = e lz@)llu + Cey + (ks + Cav)2(W)llupg (@) + kallzlEp5 (w) + ksl 2(w)lI7-
Note that ©! is a tempered random variable. We obtain
t
le(®)llE, < e leoll, +/O e Mkl 2(0:0) [0 [9e(7) | 5, + e XD OL(0;w) dr

or
t
le()llz e < [leeolle, +/0 k|| 2(0:w) |ullve(T) | By + €O (B7w) dr.

The inequality has the form
t
v(t) < g(t) +/ h(7)v(T) dr.
0
with
t
o(t) = [e®) e, h(r) = kallz(6:0) v, 9(t) = [[Yeolm +/O A0, (brw, U) dr.
Gronwall’s Lemma yields us

t
U(t) < ek2 fg l2(0-w)ll dq—(g(o) +/ eAT@(I:(QTw)e— Jo 12(0sw)lu ds dT)
0
Thus, we achieve
t
[be(t)|| 5, < e*2 Jo 12(6-0) | dT=t(4(0) _|_/ O (0,w)e™ Jo 120:9)llv ds g7y
0

and finally
t
e(t) |, < 2o 120l dr =2t 1 / e N0l b9l (g, w) dr. (8.40)
0

We can now follow the arguments in Remark 8.5.15 and conclude that there exists closed
ball C(w) in E; with center zero and radius

0
(W) = 2 / k2 S 120l dstxr gl (g ) gy (8.41)

which attracts the set B defined in Remark 8.5.15, if we choose Try Q small enough, such
that
Eksl 2| — A < 0.

The right hand side of Equality (8.41) defines a tempered random variable.

Definition 8.5.23
We denote the random ball with radius p.(w) in Ey by C(w) from Lemma 8.5.21.
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Lemma 8.5.24 (Estimate of 1)
We have that

lm sup [dalt 0 2) gy = 0. (3.42)
t—o0 z€B(0_1w)

B is the ball from Lemma (8.5.13).

Proof. We have to estimate ||1j)d\|12%. Multiplying of (8.29) by vy gives us the following
equation in the interior domain

(vgva) = €(a — €)(ud, va) — (Aua,va) + (e — a)(va, va) + (¢ (w)[z,v — vc], va)
and on the boundary by multiplying (8.30) by vy,
(va va) = e(@ — €)(ua, va) — (Arug, va) + (€ — a)(va, va) + (cp(u)[z, v — ve], va).

By the same arguments as for |||, see Lemma 8.5.13, we achieve that

%H%Hz +azf[tal® < 2(c(w)[z] — e(uc)[2], Aua) + (e(u)[2] — e(uc)[2], Arua)r
+2(c (u)[z,v — ve], va) + 2(cp(w)[2, v — V], va)r
The terms on the right hand side appear from the relation
va = g + eug — (c(u)[2] — c(uc)[2])
and respectively on the boundary. We obtain

(e(u)[2] = e(ue)[z], Aua) + (er (w)[2] = er(ue)[2], Arua)r
=2((c(u)[2] = e(uc)[2]; ua)) + 2(er(u)[2] = er(ue)[z], ura)r

Now, we apply Hypothesis 8.5.6(v) and get in the inner domain

((e(w)[2] = e(ue)[z], ua)) < ev izl (lulllle — vell + flu — well) fuall
< evllzllo (lulllu + wall + lw + uall) fJuall

< evlelly (Relllualllugll + Nulllual® + llugl® + fulluall)-

On the boundary, we have the similar estimate

(er(u)[z] = er(ue)[z], urg)r
<cvllzllu (lullllwlllluglle + lJullllugllluallr + [luallllualle + [Jull|[ugllr) -

If we weaken Hypothesis 8.5.6[v] by Hypothesis 8.5.6[v*|, we again achieve the simplier
estimate

((c(u)[2] = e(uc)[2], ua)) < evllzllu (Nudll + fluall) lludl

and

(er(u)[2] = er(ue)[z], ura) < evllllo (llwll + lluall) luallr
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which is only a simple improvement. We can go further on with the same calculations.
Note that |Ju| and ||u|| can be estimated by the radius pg and thus we have

ev |l 2llullulllullluall < kpollzllullwll® + kpoll 2l lluall®
evzlullulllugl® < koollzllullual® < (espf + kesll1E) Nuall®

evllzllullullllwllluglle < kpollzllullwll® + kpollzlvlluallE

1
evllzll lullllualllualle < kpoll2llollualllluale < (espf + kes 215 5 1¥all*
We can also estimate in the inner domain and on the boundary by Hypothesis 8.5.6(viii)

(c'(u)[z,v = vc],va) < yllzllullvr + vall||vall
< kl|lzllo ([lvall® + [lv]|?)-

and on the boundary

(cr(W)[z,v = vel,va) < cyllzllullor + valljvallr
< kllzlle ([¢all® + lo?)-

Thus, we can derive the estimate for some k1, ko, k3 > 0

d o
@HWHQ + 72!!%\\2 < h1(Bw)|[vall* + ha(Bw) |47,

where 3
hi = 5(63p0(w)2 + ke llz@) 1) + kallz(w) o
and

ha = ka([[2(W)E + pi(w) + 1) + ksl|2(w) |-

We can conclude by the variation of constants formula the result, if we assume that
Eh; < % and we can follow the arguments as in Lemma 8.5.21. Then, we can conclude
as in [33], using the exponential decay of the linear part, proven in Lemma 8.5.16

sup |[a(t, 0w, )|,
z€B(0w)

/ els = Fh(O—rrw)dr (H,tw)Qe_TaQShQ(G,HSw) ds
Spo(e_tw)Qe—&ft/ efs _72+h1(9‘rw)d7—h2(98w) ds
—t

o 0
<p0(0_tw)26—42t/ ef —224hy( Tw)d’rh (9 w)d

Since the integral on the right hand side defines a tempered random variable, we conclude
that the right hand side tends to zero.
O
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Alternatively, we can also prove the property (8.42) by the techniques of mild solutions.
Therefore, we rewrite (8.29) and (8.30) as first order evolution equation as

dipg

g = Betat+ Ha(0w, ¥a), (8.43)
with B, defined in (8.15) and
C(U) [Z(w)] - C(uc)[z(w)]

—c’F(u [2(w), v — v]

We can state a remark similar to Lemma &8.5.21.

Remark 8.5.25
We can prove property of g (8.42) in Ey by semigroup methods considering the mild
solution of (8.43). We use Hypothesis 8.5.6[v*] in these calculations.

Proof. The mild solution

alt) = G(E)bag + /0 G(t — 1) HaBrw, 0a(r), (7)) dr

provides us that

[Ya(®)ll iz, < 1G(#)taol 5 +/0 |G (t = 7)Ha(Orw, Ya(T), ¥u(7))l B, dT.

The exponential decay of the semigroup, see Lemma 8.4.1 or Lemma 8.5.20, leads us to
the estimate

t
lea(®)llE, < e [[aollz, +/0 e M| Ha(6rw, $a(7), 4a(7)) | o d

for some A > 0.
We estimate

[ Ha(Orw, e(T), ¥i(7)) || B
<ev|U = Uclvl|2(0-w)llo + IV = Velll|2(0-w) lo
<ki[[z(6rw)lul|¢all + k2z(0-w) v l|41]]-
We set
Od(w) = Kz z(w)[lull¥ll-
Note that R
Oa(w) < kallz(w)llupg (w)e™ 2%

by Lemma 8.5.16.
We obtain

t
lea()llz, < e [%aollz, +/0 e Nk ||2(0:0) [0 [9a(m) | By + e Oa(Br0) dr
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or

t
lea(®)llEe™ < llvaoll, +/O k1l|2(0:w) [ l[va(r) |z, + €7 Oa(brw) dr.

The inequality has the form

v(t) < g(t) + /Ot h(T)v(T)dr.
with
o(t) = [a®lme™,  h(r) = killz0w) o, 9#) = [aollen + / N Ou(0w) dr
Gronwall’s Lemma gives us
o(t) < ek Je IOl dr (g ) 4 / CPTO (O 1500 ds g7y
0
Thus, we achieve
()]0 < b Jo 1=l dr=3tg(0) 4 / 70, (fs)e 0 )
0
and finally, replacing w by 0_;w,

t t t
[a(t) ||y < ek Jo 1207 —w)llu dT_)\t‘|¢dOHEO +/ e~ A=)+ [7 [12(0s—sw)llu dsgd(gT_tw) dr.
0

(8.44)
We can now follow the arguments in Remark 8.5.15 and conclude that

sup  [|¢pa(t, 01w, z)| &,
z€B(0_tw)

t
<okt Jg 12(6r—w)llu dr-xt / A=V =0l dsg (0 ) dir
0

t
S A S e
0

0
< (0-w)ed [ RN b 20,0 dr. (8.45)

—00

The right hand side of Inequality (8.45) tends to zero because the integal is a tempered
random variable.

O

Now, we can follow again the arguments in [33, 4.5]. Collecting Lemmas 8.5.24, 8.5.17,
8.5.21 and 8.5.16 shows us the existence of a compact random set, which attracts the
random set B in the space Ey. We have also shown that the random set B is absorbing
for our RDS. Thus, C' defined in Definition 8.5.23 attracts any set of D by the cocycle
property. The compactness of C' is proven in Lemma 8.5.21. Applying Theorem 5.1.9
yields the following theorem:
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Theorem 8.5.26 (Existence of Random Attractor)
The hyperbolic stochastic equation (8.12) possesses a random attractor, if we choose v big
enough and Try Q sufficiently small.

Example 8.5.27 (An example)
We consider the following non-linear kernel operator

C(O)[)(x) = ( /D Bz, u(y))=(y) dy, /D ke, u(y))2(y) dylr).

Note that this operator is defined on D = D UT, so that the restriction of ¢ on T is
well-defined. We also set U = D(A). We assume that k(x,u) is three times continu-
ously differentiable in x, two times continuously differentiable in u and the derivatives are
bounded, we set

M(z) = k
(z) max (x,u)

To show that Hypothesis 8.5.6 is fulfilled we start with

le(u) [2)(@) 2 = /D ( /D B, u(y))=(y) dy)* dy

< / 1M () 2|2 de = |2 / 1M ()| da
D D
< K1 [l#[3 0,

for an appropriate constant K1, which depends on D. This delivers us condition 8.5.6[iv].
The condition on the boundary follows by replacing the first D by I'.
To obtain condition 8.5.6[v] we calculate at first on the boundary

/ I / (ks o(y)) — k(e v(y))=(y) dy) |3 dz
T D
z)? — z 2 dz
< /F L(a)?( /D le(y) — b@=w) dy)>d
< / L@l — I3l de < Kall= o — ol3.
T

We have used the Lipschitz continuity of k in u(y), ezactly

L(z) = max || Dyk(x,u)||.
ueR

K5 again depends on D. In the inner domain we have by applying a mean value theorem
that

le(e)[2] = e(w) ]I :/ (Vx/ (k(z, () — k(z, (1)) 2(y) dy)* dz
D D
< Kslzlglle - ¢,
To prove condition 8.5.6[vi], we use that

|D3k(x, w)|| < Ci.
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Thus, we obtain
lle(w)[=](2), er (u)[2)(2) | hay < Kalle(w)[2](2)]-
=Ko [ 32 De( [ hautw)zt) ) dy

el <2

< K, / IS D2k A1 d

llell <2

< Kall2I /D IS Dek(a)|? da

llell <2
< Ks||2[13,

By Taylor’s formula we achieve with a constant

/ (k(z, u(y) + h(y)) — k(z,u(y)) — Duk(z, u(y)))z(y) dy < / D2 k(x,u)|h(y)?|2(y)| dy.
D D

The boundedness of D2k gives us that

[ kGt + 1(0) = ke ) — Db u9))2(0) ) o < Kl el
By Sobolev’s embedding theory for dimension n = 1,2 we obtain for some ¢ > 0
[2][ee < K|zl gr+e < K7[l2]|pays
so that the upper integral can be estimated by
Ks||hl7all2l5 )

and the existence of the Fréchet derivative is ensured. Note that the arguments of C' are a
priori in'V and then in particular in H and so the extension property of C' is also ensured.
The last condition 8.5.6[viii], this is to estimate the derivatives with respect to u, we get

by
@EIE = [ (] Db u)=() dy)* da
< Kol 2l Ba)

since k is one-time continuously differentiable with respect to u. The extension property
of C" Hypothesis 8.5.6[iz] is given because the arguments of K are a priori in H.
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