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Abstract

Commercial computer games have significantly evolved in the recent decade. Current
games feature vast and highly detailed virtual environments with realistic physics,
complex and highly dynamic gameplay as well as complex multi-player game
modes. Therefore, the creation of sophisticated and intelligent game agents that
inhabit the game worlds and oppose or collaborate with the player has become a
considerable challenge in terms of competitive performance and fast adaptation, but
also concerning the believability and human-likeness of the shown behaviour.

This thesis gives a general introduction into the field of artificial intelligence in com-
puter games and proposes several approaches to create intelligent game characters for
a three-dimensional, action-oriented computer game. The focus of these approaches
is to create competitive and quickly adapting game agents that show sophisticated,
human-like behaviours. To achieve this, the proposed methods are based on the imita-
tion of other players and the usage of a population of several agents that collaborate to
accelerate the learning process. The foundation of the presented work lies in the util-
isation of powerful adaptation and learning techniques like evolutionary algorithms,
reinforcement learning and cultural learning.





Inhaltsangabe

Computerspiele haben sich innerhalb des letzten Jahrzehnts signifikant weiter-
entwickelt. Aktuelle Spiele zeigen hochdetaillierte, virtuelle Umgebungen mit
realistischen Phyiskeffekten und verfügen über vielfältige und hochdynamische
Spielmodi. Darüberhinaus ermöglichen viele Spiele die Teilnahme mehrerer Spieler.
Aus diesen Gründen ist die Erstellung von konkurrenzfähigen künstlichen Spielern,
die in der Lage sind, sich in der Spielewelt autonom zu bewegen und sich schnell
an die menschlichen Spieler anzupassen, eine große Herausforderung. Insbesondere
muss dabei nicht nur auf die Performanz der Spieler, sondern auch auf ihre Glaubhaf-
tigkeit und menschenähnliche Spielweise geachtet werden.

Diese Arbeit bietet eine allgemeine Einführung in das Thema der künstlichen Intelli-
genz für Computerspiele und stellt verschiedene Verfahren zur automatischen Erstel-
lung von intelligenten Spielecharakteren für ein dreidimensionales Actionspiel vor.
Das Hauptaugenmerk dieser Ansätze liegt dabei darin, konkurrenzfähige und schnell
lernende Agenten zu erstellen, die fortgeschrittene und menschliche Verhaltenswei-
sen zeigen. Um dies zu erreichen, basieren die vorgeschlagenen Methoden auf der
Imitation von anderen Spielern und der Ausnutzung einer Population von Agenten,
die gemeinsam lernt, um die Lerngeschwindigkeit zu steigern. Das Fundament bilden
dabei Adaptions- und Lerntechniken wie evolutionäre Algorithmen, Reinforcement
Learning und kulturelles Lernen.
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1

Introduction

Since the 1990s, commercial computer games have seen much advancement. Today’s computer games
have become more sophisticated, realistic and team-oriented than their ancestors. They are constantly
pushing the boundaries of computer graphics and technology by featuring highly detailed virtual worlds
and realistic physics. These advancements are based on the the recent improvement of computing power
and the utilisation of special hardware that is used to compute the advanced graphics [NVI07, AMD07]
and physics [AGE07]. In addition, special purpose software - e.g. physics libraries [Hav07, AGE07], real-
time tree generation algorithms [Int07] or computer graphics libraries [Mic07a, Ope07] - that often has
a scientific background is used to create more stunning and realistic effects. Furthermore, today’s games
feature virtual worlds that are usually inhabited by numerous game agents with which the player can interact
and that can be accessed and distributed over a computer network.

However, in contrast to the huge advancement in terms of graphics and physics, there has been only little
advancement in the area of artificial intelligence for the game agents. Today’s game AI usually uses hard-
coded and scripted behaviours, which are executed upon some special action by the human player1. Only
in some rare cases learning techniques or other more sophisticated AI approaches are used. Instead of
investing into more intelligent opponents or team mates the game industry has concentrated on multi-
player games in which several humans play with or against each other. This led to an even more complex
gameplay by introducing the cooperation and coordination of multiple players, which in turn resulted in
the requirement for competitive game agents to be able to replace a human player. Thus, the creation of a
well playing and believable artificial game agent has become a considerable challenge. Therefore, game AI
presents an interesting reseach field in which new adaptation and learning approaches can be evaluated and
tested in terms of robustness and performance in practice.

As more and more games have become modifiable or are even distributed with open sources, they can
be used as testbeds for numerous tasks that are of interest in several research fields ranging from path
finding to cooperative behaviour. Apart from computer graphics, they can be used as advanced simulation
environments in the artificial life or robotics community that have the advantage of a very graphic and vivid
presentation. The worlds that are offered by today’s computer games are highly dynamic, complex and full
of detail. Though the content of the games is usually fictitious, the simulations are often very realistic. There
exist car racing or flight simulation games that offer a quality of realism that is close to scientific simulators.
Concerning the number of simulated entities, there exist massive multi-player games that manage virtual
worlds that contain thousands of players that are distributed over several computers [Bli07].

Apart from just being used as a simulation environment, computer games also offer interesting challenges
by themselves. Game agents have to be able to move and navigate through vast and detailed environments.
They have to manage their resources, react to changes in their environment and cooperate with each other.
Numerous challenging problems arise if an agent that performs well in such an environment is conceived.
Just as like the competition in robot soccer [Rob07] has given a push to research in the field of autonomous
and cooperative robotics, the competition for successful agents in commercial computer games could give
a push to artificial intelligence research.
1 see section 4.1
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One of the key objectives in the field of robot soccer is the following.

“By the year 2050, develop a team of fully autonomous humanoid robots that can win against the
human world soccer champion team.” [Rob07]

To achieve this, scientists first have to create robots that are physically able to compete with humans. How-
ever, this is already possible in computer games. So, instead of relying on robot hardware, where resources
are low, energy consumption has to be respected and sensors are flawed, artificial intelligence research can
avoid all these issues and directly concentrate on the development of algorithms, if it uses computer games
as the research subject. In addition to offering a platform for direct human-agent-interaction, computer
games can also guarantee that the humanly and algorithmically controlled agents have the same abilities.

Using computer games as a platform for research has also other advantages. Computer games are very
popular. Thus, research in this area can try to take some of this spotlight and can raise the overall interest
in artificial intelligence. In addition, research in this area is relevant for practice. The game industry has
outgrown the movie industry and is now the branch of the entertainment industry that is creating the highest
sales. For example, in October 2007 the game HALO 3 made a staggering amount of 170 million dollars
at its day of release, reaching 300 million after its first week [Mic07c]. According to the Bundesverband
Informationswirtschaft, Telekommunikation und neue Medien (Bitkom), the sales of the computer game
industry in Germany grew by 29% from 2006 to 2007 and almost every third German plays regularly
[BIT07]. Therefore, computer games not only offer interesting research environments, they also offer
opportunities for third-party funds and practical research.

In addition to the features that we discussed above, computer games present a special platform for artificial
intelligence because of their objective to entertain the player. A game should be fun to play and not frustrate
the player with unbeatable opponents. Instead, the main objective of good game AI is the creation of
believable and human-like game agents that apply sophisticated tactics. Therefore, the focus of this thesis
is not only the creation of well performing agents, but also the improvement of their believability and their
humaneness to improve the gameplay and the overall gaming experience.

In our opinion a method that is able to deliver such results is imitation. To generate human-like behaviours,
the imitation of humans is the most straightforward approach. Especially, if the data on human gaming
behaviours is so readily available and can be so easily recorded as it is the case in virtual environments. In
addition, basing the learning on imitation ensures that the performance of the generated game agent will
be about as good as the performance of its human role model and the agents will be neither unbeatable nor
appear to be dumb.

However, the usage of imitation in computer games raises several questions and challenges for which this
thesis tries to find answers. Is imitation alone sufficient to create well playing agents? Will the imitator
always be worse than its role model? How can the recorded data from the human role model be analysed
and used for imitation? Can imitation be incorporated into learning approaches to improve the initial
performance of the imitators?

Apart from imitation, this thesis also addresses the utilisation of another game specific feature to increase
the adaptation rate and the robustness of the learning agents. Most games feature a large number of game
agents that are controlled in parallel. We think that this fact can and should be utilised to improve the learn-
ing processes of the single agents. Therefore, we also focus on creating a collaborative learning mechanism
that can be used in computer games. Again, this approach raises several questions and challenges. How can
each agent benefit from the experiences of the others? How can collaborative learning be achieved, if each
agent has made different experiences? How can gained knowledge be exchanged between and incorporated
by the single agents without destroying already learnt behaviours? How much individuality by the agents
is needed for the learning process to stay robust against changes to the environment?
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To demonstrate, evaluate and analyse the conceived methods and approaches, we have chosen the game
QUAKE III as the basis of our research. QUAKE III is a so-called first-person shooter - an action game that
features a three-dimensional virtual world that is seen in an ego perspective - and was published in 1999.
Figure 1.1 shows a screenshot of this game. Since 2005, QUAKE III is one of the most recent games whose
source code has been released. Therefore, it can be used for research purposes. The game features a highly
dynamic and fast gameplay that is focused on multi-player gaming.

Game Information

Opponent

Item

Fig. 1.1: A Screenshot from QUAKE III

This thesis is organised in three parts. The first part describes the basis of the presented work and gives an
introduction into the computer games domain. It consists of three chapters. First, chapter 2 presents a sum-
mary of basic terms, and a brief taxonomy of computer games. It end with an assessment and an analysis of
the challenges that arise upon the creation of artificial intelligence for computer games. After that, chapter 3
gives short introductions into the methods on which our work is based: evolutionary computation, imitation
& memetics, neural networks, reinforcement learning and swarm intelligence. All these introductions just
cover the parts of the respective fields that are needed to keep this thesis self-contained and should not be
understood as overviews of the respective fields. Eventually, part I closes with an analysis of the state of
the art in the design of game AI. We have chosen to split this analysis into two sections. In the first section
the state of the art in the computer games industry is presented by providing examples from several games
from which reliable information could be gained. In the second section the state of the art in the scientific
game AI community is described. The overall focus and the used methods in the scientific community
differ significantly from what is done in the industry. Several interesting and noteworthy approaches that
focus on learning and adaptation in different kinds of computer games are presented.

Part II is the most technical part of this thesis. It features an introduction into the game QUAKE III and our
extensions to the game from a software engineering point of view. However, the first part begins with a
discussion of several alternatives for game engines that are available and an explanation on why we chose
to use QUAKE III as the basis of our research. Then, an in-depth description of QUAKE III is given by
providing information about the common game mechanics and the structure of the underlying software
system.

As a part of this thesis we had to create an interface to QUAKE III that makes it possible to easily develop
agents for the game, without worrying about the internal structure of the QUAKE III software framework.
Chapter 6 describes this interface and the design decisions behind it. The resulting interface was not only
used in our research but was also successfully used in teaching.
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Finally, part III presents the scientific results of this thesis. It begins with an approach to intelligently
navigate on a three-dimensional map and to avoid dangerous areas based on the collective experiences of
a team of agents. Then several approaches to learn combat - the principal challenge in QUAKE III - are
presented. These approaches range from plain learning approaches to obtain the highest possible perfor-
mance by using evolutionary and reinforcement learning to imitation-based approaches that incorporate the
recorded behaviours of other players to generate more sophisticated and believable behaviours. At the end,
part III culminates in an imitation-based approach that utilises the collective experiences of a team of agents
to generate robust and reliable game agents on-the-fly. In this approach the agents share ideas of how to
perform well and exchange these ideas in an evolutionary manner.

As a final remark we wish to briefly address the use of language in this thesis with respect to computer
games. Since most computer games are of violant or military nature, it is difficult to describe and work
with them without using certain vocabulary. In QUAKE III for example, the player uses weapons like
machine guns, shotguns or rocket launchers to inflict damage and to kill the opponents. However, if a
character in the game is killed - i.e. its health value drops to zero or below - it just looses all collected items
and gets respawned into the map. We thought long about that matter and came to the conclusion that the
text becomes unnecessarily hard to understand if we try to avoid such vocabulary. We did not select the
game because of its violent nature, but because of its open sources and because of its complex and intense
gameplay. If the game was changed into a non-violent one, the game mechanics would have to be changed
and it would loose its practical importance.

Though the described approaches and expressed views in this thesis are primarily the ones of the author,
several ideas have taken their full form in the course of discussions with colleagues and supervisors. Some
of the background ideas, especially the imitation-based methods, are also based on collaborative efforts.
To not switch between “we” and “I”, the word “we” is used in the following for the sake of simplicity and
readability.

Some last words have to be spent concerning copyright issues. As this thesis is focused on game AI for
commercial computer games, we have to talk about commercial software and use titles that are trademark
to some company. Therefore, appendix A contains a list of all titles that were mentioned in this thesis and
their respective developers and publishers.



Part I

Artificial Intelligence & Computer Games





2 An Introduction to Game AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Basic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 A Taxonomy of Computer Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Challenges in Game AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Tactical Enemies and Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Support Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Racing Opponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Strategic Opponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.6 Commentators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Evolutionary Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Learning Classifier Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.6 Lamarckian Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Imitation & Memetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Memetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Imitation-Based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Neuroevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Artificial Swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 An Overview of AI in Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 An in-depth Example: QUAKE III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.3 Artificial Stupidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Origins & Related Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Action Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Arcade Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.4 Puzzle Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.5 Racing Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.6 Strategy Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.7 AI Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.8 Common Methods & Tendencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



8 CONTENTS



2

An Introduction to Game AI

In this chapter we will give an introduction to artificial intelligence for computer games and examine the
challenges that rise in its creation. We will start by defining some basic terms that are used in this thesis.
Then, since the term computer game describes a broad domain of different genres, each with their spe-
cial needs for AI algorithms, we will provide a short taxonomy of computer game genres and respective
examples. Finally, several challenging problems in game AI are identified and presented.

2.1 Basic Terms

In this section we will shortly state some terms that are used throughout this theses and provide a short
explanation or definition of how we understand these terms. Many of the considered terms have a very
general meaning. Therefore, we define them as they fit best into the scope of this thesis.

Artificial Intelligence (AI)

As it is already very hard to define what intelligence itself means, it is very hard to define what artificial
intelligence stands for. Russel and Norvig [RN03] give a good introduction into different understandings
of AI. They differ between systems that act like humans, systems that act rationally, systems that think like
humans and systems that think rationally. From the different quotes given there, we especially favour the
one by Kurzweil.

“The art of creating machines that perform functions that require intelligence when performed by
people.” [Kur90]

It is reasonable to assume that humans are intelligent, because the term is usually used to characterise
humans. In addition, humans are the only source for sophisticated intelligence we know. We therefore
think that the term artificial intelligence should be based on human behaviour. Considering rationality, we
think that using it to define artificial intelligence is a rather limited approach, because in our opinion human
intelligence is not only rational. For example, there exist countless examples of scientific results that were
discovered based upon a feeling that something should work and not by deducing them.

From a computer game point of view it is of no importance for the gameplay in which way the characters
in the game came to behave as they behave. The interesting part is the end product of the AI routines -
the shown behaviour. Therefore, we base our understanding of AI on the notion of systems that act like
humans. This is also the understanding on which the famous Turing Test [Tur50] is based. In this test a
human interrogator can talk to a human or a computer through a text interface. The computer will pass the
test, if the interrogator cannot differ if the answers came from a human or a computer.
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An often expressed critic on this point of view is the example of “artificial flight”. Flight engineering
became only successful after abandoning the idea of imitating birds and starting to research aerodynamics.
However, as long as no general definition of intelligence exists and we do not know how intelligence is
really generated by our brains, imitating humans is as close as we can get to real intelligence.

Machine Learning

Machine learning is a subarea of artificial intelligence that deals with the acquisition and utilisation of
knowledge. In contrast to other AI research, the focus of machine learning lies on the notion of learning.
This means that machine learning algorithms typically use existing data or external feedback to learn how
to handle some problem. Typical examples are the classification of data or the controlling of some process.
In most machine learning applications it is desired to gain a general result which can handle unexpected
problem instances.

Machine learning is usually divided into supervised and unsupervised learning. Supervised learning de-
scribes learning problems in which training samples, usually pairs of inputs and outputs, are presented to the
learning algorithms. Then, the algorithm should learn to map the right outputs to the given inputs in a gen-
eral way, so that it is also able to produce the right output for inputs that were not presented in the learning
process. Examples for such supervised learning methods are ID3, CART [Mit97] or backpropagation1.

In unsupervised learning there exists no supervisor that can tell how the right answers are. Many approaches
from this field work by trial-and-error. They gather knowledge by trying out decisions and judge this
decision according to some feedback. It can be argued that such a feedback is something like a supervisor.
However, the feedback is usually gained from some entity for which no or little information is known by
the user of such an algorithm. Other unsupervised approaches like clustering [JMF99] or self-organising
maps [Koh00] create classifications without any kind of feedback.

Computational Intelligence

Computational intelligence is a branch of artificial intelligence that uses methods based on fuzzy systems,
evolutionary computation and neural networks. The term was introduced to distinguish those techniques
from the classical, symbolic and logic-based AI methods [CE02]. In contrast to the classical approaches,
that use a top-down and explicit way to solve a given problem, computational intelligence methods usually
use a bottom-up approach by automatically creating solutions to the problem.

The field of computational intelligence is sometimes also referred to as soft computing. This term was
introduced to distinguish the above mentioned methods from classical operations research, which is also
known as hard computing.

Agent

In computer science an agent is generally a software program that runs rather independently from the user.
It is able to act on its own initiative and can react to certain events. In many cases several agents are able
to communicate with each other. Finally, seen from the AI perspective, agents are usually able to learn and
adapt.
1 see section 3.3
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In the case of computer games we use the word agent to describe all entities in the game which have the
above features. This means that they are entities that inhabit the virtual world, which is provided by the
game, and are subject to its physics. In this world they act autonomously. A special feature of game agents
is that the player can interact with them or take the role of one of them. In the computer games context a
game agent is also often called bot, which is an abbreviation of robot.

Environment

In computer science the term environment is usually connected to the term agent by the fact that it represents
the domain in which an agent can act. The environment of a game agent is the world that is portrayed in
the respective computer game.

Team

We use a very simplistic definition of a team by defining it as a set of agents with some common objective.

Game AI

We use the term game AI in several contexts. Primarily, game AI describes the routines that are used to
control a game agent and to fill it with live. Section 2.3 presents several examples of what game AI has to
do. In addition, we also use the term game AI to describe the scientific field which focuses on the creation
of intelligent agents in computer games.
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2.2 A Taxonomy of Computer Games

In the following section we will give a short introduction into the domain of computer games. To our knowl-
edge, there exists no scientific survey or taxonomy of this area. Therefore, this section is based on common
computer game genre classifications in the gaming community and is a result of several discussions with
game players and the investigation of several community websites.

First we wish to clarify the term computer game:

A computer game is a game that is run on a computer, whereas the interaction between
player and game is accomplished by using some user interface and at least visual feedback.

We prefer the term computer game over the often used video game because it emphasises the fact that it is
run on a computer and that it is interactive. Furthermore, the term game usually means that the underlying
program is executed for the enjoyment of the user.

There exists a broad range of genres and classifications for computer games. The fast development of the
field and the tendency to create games by mixing genres makes it almost impossible to create a persistant
classification. Therefore, the taxonomy as presented in figure 2.1 just shows a snapshot of how we would
currently classify computer games to give the reader an overview of established genres and representative
games2. Another aim of this section is to introduce some computer game vocabulary. We identified seven
main generes: action, arcade, puzzle, role-playing games, simulation, sports and strategy. Each of them
consists of several subgenres. It should be noted that we did not classify games according to single or
multi-player games because today’s games are usually both.

Some of the most popular games are from the action game genre. The emphasis in these games lies in
combat with other players or game agents. One of the most recent examples for this genre is the game
GEARS OF WAR, which sold more than two million copies in the first six weeks [Mic06]. The most popular
subgenre are the so-called first-person shooters in which the player moves through a three-dimensional
world in the first-person view and engages in combat using different weapons. If the perspective of the
player in an action game is not first-person, the game will belong to the third-person subgenre. The action
adventure genre consists of action games in which the player also has to solve small puzzles or has to talk
to non-player characters. Finally, in tactical shooters the player has to lead a team of game agents by giving
orders and using strategic knowledge to win the game. The games in each subgenre can have different goals
and emphases. For example, the game SPLINTER CELL revolves around sneaking and avoiding detection,
whereas GEARS OF WAR is about open combat and using the environment as cover.

Most of the early computer games - e.g. PONG, ASTEROIDS, PAC-MAN, etc. - belong to the genre of arcade
games. The name originates from the game arcades in which the first computer games were played on coin-
operated machines. Today, arcade games represent games with a simple concept and a short length. Most
arcade games are almost instantly conceivable and offer no or only a thin story line. Beside these classical
arcade games, the genre also contains the arcade racing games which usually have a very unrealistic car
physics model that is optimised for fun. Furthermore, the arcade genre also includes the so-called platform
games. The most prominent member of this subgenre is the SUPER MARIO series. In a platform game,
the player steers a characters over different platforms and has to evade and overcome several obstacles.
Such games are also often called “jump and run” games. Another member of the arcade genre are the so-
called “beat’em up” games. In these games, the player controls a character by pressing buttons for special
movements - e.g. punching, kicking or applying some martial arts technique. The objective of the player is
to avoid being hit and to inflict as much damage to the opponent as possible. There exist counter methods
2 For better understanding we also provide images of some of these games in appendix A. The appendix also contains information

about the copyright of the respective games and game names.
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Fig. 2.1: Short Taxonomy of Computer Games
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for most of the attack techniques. Therefore, such games are like an extended version of the rock, paper
and scissors game. The player has to apply the attack technique that the opponent is not anticipating and to
try to anticipate the behaviour of the opponent.

The puzzle genre consists of two subgenres. In a classical puzzle game the player usually has to solve some
problem given by the program, like finding fitting pieces of a broken object. Many games in this genre
are just virtual counterparts to real-world puzzle games. Many puzzle computer games add some kind of
time pressure to create a more exciting game experience. One of the most popular puzzle games that runs
only on computers is TETRIS. In this game, the player has to turn and move falling blocks so that they fit
together when they reach the ground. Many games in the puzzle genre can be considered as variations of
TETRIS.

In adventure games the player is exploring the gaming world by talking to game agents in the form of
multiple choice questions and interacting with items that can be collected in the game world. There is
usually no combat in an adventure game. It just consists of solving puzzles, collecting and combining
objects and talking to game agents. Though having been one of the most popular genres in the late 1980s
and early 1990s, the production of adventures is only a niche market today.

The special feature of role-playing games is that they revolve around the creation of one or several char-
acters. These characters are described by several attributes (e.g. strength, dexterity, intelligence, charisma
etc.) and skills (e.g. ranged combat, trading, stealth, etc.). By playing the game the player earns experience
points which can be invested into better attribute values and skills. The success of an action in the game is
based on the character values of the player and non-player characters. For example, if one character wants
to buy something from another one, their trading skills and charisma attributes will be compared to compute
the price. Usually some randomness is added, so that higher character values only increase the probability
to be successful.

Role-playing games have become increasingly popular with the rise of the so-called massively multiplayer
online role-playing games (MMORPG). In these games thousands of players play together in parallel over
the internet and inhabit a fictitious, three-dimensional world. The players usually pay a monthly fee to
participate in the adventures that are provided by the game. The main objectives of these games are the
development of the character by earning experience and collecting empowering items as well as the inter-
action with other human players. The genre was created by the game ULTIMA ONLINE and championed
by WORLD OF WARCRAFT, which reached nine million subscribed players in 2007 [Bli07].

Classical role-playing games differ between party-based and single character-based games. In a party-based
game, the player controls a party of three to six characters with different abilities. Combat situations are
usually presented in a turn-based fashion, where each character can move after another and the combat can
be paused. This makes these games very tactical. Action role-playing games are usually single character
games which lay an emphasis on combat. The idea of character development is more and more used in
other genres as well. For example, many sports games now have a career mode in which the player has to
develop the abilities of an artificial athlete. This makes this genre very influential to other genres.

The name of the simulation genre is a bit misleading as it also comprises the simulation of fictitious worlds.
Therefore, the so-called space simulations belong to this genre, though the described physics in these games
are far from realistic. However, most games that belong to the simulation genre try to simulate the real world
as realistic as possible. Examples include the simulation of airplanes (MICROSOFT FLIGHT SIMULATOR),
submarines (SILENT HUNTER) or trains (MICROSOFT TRAIN SIMULATOR).

Sports games are usually based on real sports. In these games the player can virtually participate in different
kinds of real-world sports like playing soccer, racing Formula 1 or playing tennis. Sports racing games are
particularly successful. These games could also be classified as car simulations, but we think that they
better fit to sports games as they usually represent real motorsport races.
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The strategy genre possesses some very special properties. In most other genres the player is controlling an
artificial humanoid figure or some single object and the gameplay is based on fast reactions. Instead of this,
strategy games require the control of numerous units and the making of decisions with long term effects.
The genre is usually split into turn-based, real-time and economic strategy games.

Economic strategy games usually do not contain any form of combat. Instead, the player has to lead a
company, be the mayor of a city or colonise some unknown land. Economic strategy games are particularly
successful in Germany. For example, the game ANNO 1503 is one of the most successful computer games
in Germany [WDR07]. Therefore, many computer game companies in Germany are focused on economic
strategy games.

The classical strategy computer games are turn-based strategy which originate from board games like chess
or risk. Therefore, these games are commonly played on a board-like environment which is divided into
quadratic or hexagonal regions. One of the most popular games in this genre is CIVILIZATION. The
objective of this game is to conquer the whole game world. The game is usually started with three to seven
cultures, which all start with one settle unit. In the course of the game the player founds cities and develops
new technologies and units. These units can move some amount of fields in each turn and can attack units
from other cultures. The winner of a fight is randomly determined, based on the properties of the units.
Beyond moving the units, the player has to decide which technologies are explored and in which kind the
cities are extended. The player can even decide which form of government and religion his culture uses,
which all have advantageous and disadvantageous features.

Out of the classical turn-based strategy the real-time strategy genre emerged in the 1990s with the games
DUNE 2, COMMAND & CONQUER and WARCRAFT. These games are run in real time, which leaves the
player little time to think in battle situations. The usual concept of these games includes the harvesting of
material (e.g. wood, stone or some futuristic energy sources), which is used to build and expand a base as
well as to build battle units. Some of these games also feature the development of new technologies into
which harvested material has to be invested.

All strategy games have in common that the units which can be controlled by the player perform according
to the rock, paper and scissors principles. Some units are good against some type of opposing units but fail
on the encounter of other types. The challenge of such games lies in the right deployment of the units. They
have to be produced and used in the right mixture according to the current opponent.

The so-called god games form a special subgenres because they have some special properties. In these
games the player is some kind of god in the game world. The objective is to improve the lives of the agents
that inhabit the world and belong to the player. To achieve this the player can alter the environment but has
only limited influence on the agents. This gives these games a certain twist which makes them special.

As we mentioned above, there is a tendency to mix computer game genres. For example, many games in
the action and strategy genre incorporate role-playing elements. The strategy game ROME: TOTAL WAR is
turn-based on top but contains a real-time mode for battle sequences. The game THE SIMS, which started
one of the best selling computer games franchise [Ele07]3, can be classified as a mixture between economic
strategy and god game. Therefore the above taxonomy is more a guideline than a fixed definition.

3 Up to 2007, approximately 85 million copies were sold.
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2.3 Challenges in Game AI

As we already stated in our introduction, computer games offer several opportunities for AI research that
are strongly connected to the special demands of game AI. In this chapter we will present an overview of
specific challenges that are posed by game AI problems.

We argue that the most special feature of game AI is that the agents act on the same level as the human
player, often even replacing other humans. Therefore, they should play as human-like and believable as
possible. They should especially not be inhumanly bad or inhumanly good. The highest goal for AI
research in this field is to create game agents that are indistinguishable from human players. This results in
something that could arguably be called a “Game AI Turing Test”. Livingstone published an article in 2006
that very well formulates this special property of game AI.

“[...] But given the constraints of the Turing test, this goal is unsatisfactory for many researchers.
Their goals are to replicate, or alternatively understand, intelligent behaviour and intelligence; to
build something of substance rather than a façade. Further, the academic world recognizes that
intelligence needs a broader definition and that the search for it must look beyond human symbolic
intelligence. [...] But for game developers, the façade is what counts; it provides a simulation of
intelligence to characters in a game world. Believability is more important than truth. Thus the goal
of AI in games is generally the same as attempts to beat the Turing test, i.e., to create a believable
intelligence by any means necessary.” [Liv06]

The original Turing test itself only has two possible results: passed or not passed. To be more precise
Livingstone [Liv06] has developed a list of criteria for believable game AI. According to that game AI
should have features as described in table 2.1. However, these criteria are very subjective and can only be
assessed by surveys. Though, they can be taken as guidelines for creating good game AI.

Table 2.1: Criteria for believable Game AI [Liv06]
Game AI should ... feature group

• demonstrate some degree of strategic / tactical planning.
• be able to coordinate actions with the player / other AI.
• not repeatedly attempt a previous, failed plan or action.

planning
(Might not apply where game design or plot

calls for impulsive or stupid characters, nor

for animals.)

• act with human-like reaction times and abilities.
acting
(Might not apply where game design or plot

calls for characters with significantly superior

or inferior abilities.

• react to the players’ presence and actions appropriately,
• react to changes in the local environment.
• react to the presence of foes and allies.

reacting
(Might not apply where game design or plot

calls for characters with limited awareness.

In the following we will go into more detail about what a good game AI requires. To do this we identify
several roles that game agents have to take in different games. We base this overview on the work of Laird
et al., who have published several articles concerning the demands of game AI [LvL01a, LvL01b, Lai02].
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2.3.1 Tactical Enemies and Partners

Tactical enemies and partners describe game agents that act on the same level and under the same conditions
as the human player. For example, most action games present a three-dimensional world in which the player
controls a character that usually combats other characters controlled by game agents. These opponents have
to impose a challenge to the player to be usable.

In early games the challenge was not created by the intelligence but by the number of the opponents. In
those games the player would usually go from room to room, where numerous opponents awaited him.
Often, the door to the next room would only be opened after the player had killed all opponents. The
typical behaviour of the game agents would be to run directly to the player character and to attack. In many
games these opponents were even not able to leave the room in which they were positioned. This creates a
rather dull gaming experience that would give such a game only little chances at today’s markets. On the
other hand, there were games in which the game agents were inhumanly fast or had inhuman perception.
Again, playing against such characters is felt rather dull by most human players because the agents behave
unnatural in a game that tends to illustrate a natural environment.

The most successful games today feature more intelligent opponents which appear in much lesser numbers.
They show more sophisticated behaviours like taking cover, running away before they die or following the
player to other areas of the map. However, there is still much room for more intelligent behaviours. For
example, some agents could try to sneak on the player or to hide to fall into its back. Most importantly, the
agents could adapt to the level of the player, show unexpected and new behaviours by constantly learning
from their experience and try to outthink their opponents. Several modern computer games also feature
tactical partners. In these games the player is part of a team which has to act cooperatively. Such agents
share similar features with their antagonistic counterparts and pose similar problems.

The demands are further increased in the case of multi-player games. In these games, the game characters
are usually controlled by humans, whereas game agents fill out the remaining slots. Therefore, the game
agents act as a replacement of a human player and should thus be as competitive as the others and show
human-like behaviours.

Problems that have to be solved for creating intelligent game agents include intelligent navigation, move-
ment, resource management, decision making, planning and team behaviour.

Navigation in a virtual world seems to not be a very hard problem because it is possible to obtain exact
locations of all entities in the environment. The agents can use landmarks or waypoints to navigate using
Dijkstra’s or the A∗ algorithm [Dij59, HNR68, DP85]. However, it is quite difficult to find out if and how
it is possible to get from one point to another. In addition, it is usually not always the best solution to just
take the shortest route. If the navigation is too predictable, the player can easily intercept the agent on
its way. Therefore, we talk about intelligent navigation because more aspects than just the distance have
to be considered. For example, most games offer items and powerups which lie around on the map. An
intelligent agent thus adjusts its routes to pick up the items it needs.

The movement also poses several interesting challenges. The agents have to be able to reach all regions of
the map that the player can reach. Therefore, they should be able to perform a wide range of movements -
e.g. jumping, strafing, dodging etc. Furthermore, most games contain combat situations in which the agents
have to dodge attacks, take cover and attack by themselves. For successful attacks the agents have to aim
well and anticipate the movements of the player. Taking cover is for itself a challenging behaviour as it com-
bines the gathering of knowledge about the current environment, anticipation of the players’ movements
and moving in and out of the cover.

As most action games feature different weapons and usable powerups for which ammunition has to be
collected, an intelligent game agent should also be able to mange its depletable resources - e.g. health,
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armour, ammunition etc. - and take its current status into account for making decisions. Such decisions
include if the agent should attack or flee, what items it should should try to get or what strategy it should
use against its opponents. This results in a considerable amount of planning that has to be made to conceive
a successful gaming strategy.

Another feature of many modern games is team-based gameplay. In such game modes two or more teams of
game characters oppose each other. This requires communication between the agents as well as the player,
if he is a part of the team. Furthermore, team strategies have to be proposed and evaluated. For example,
it has to be decided if the team should split up or how many team members take the role of defenders or
attackers. The hardest part is to adapt the team strategy fast enough to be successful. Agents that play in the
same team as the human player have to adapt their behaviour and their strategy accordingly. Furthermore,
they have to react to possible orders from the human player.

2.3.2 Support Characters

Many games contain so-called support characters. These characters do not compete or play as a tactical
partner of the player. Instead they inhabit the presented game world and fill it with live. Especially role-
playing games contain such characters as they usually try to portray a large, lively game world. Therefore,
such characters could be the blacksmith, where the player can buy weapons, or the barkeeper, which sells
drinks and information. To interact with such characters mostly means to chat with them - usually in the
form of choosing a predefined sentence from a set of possible utterances. To create more realistic and
believable chat systems would be a very challenging task for AI research.

As the player usually has complete freedom in the virtual world, support characters should also be able to
defend themselves, if they were attacked by him. In this situation the support character transforms into a
tactical opponent. In addition, several problems like navigation, movement and decision making also apply
to these agents.

Apart from that, support characters should show some believable behaviour. In many games they just stand
around at one spot and never move. The player can only talk to them but does not see that they are living
inhabitants of the game world. In several games, it is also not possible to attack these characters. Instead of
that, sophisticated AI routines could give support characters an artificial life. They should go to work at the
morning, go to eat in between, exchange gossip with other agents, go to bed in the evening and be angry if
the player wakes them up. Today’s games try to achieve things like that more and more. However, there is
still a long way to go to create really believable characters.

2.3.3 Racing Opponents

Racing opponents have similar features as tactical opponents. However, the demands are lower because
racing does not require such a wide range of behaviours. Especially, usually no long term decision making
and planning is needed. To be competitive the agent has to be as fast as possible and to stay on the track.
Furthermore, it has to react to the behaviour of the player in a believable way.

As the physics have become more and more realistic in recent racing simulation games. Artificial racers
will have to solve a tough controlling task, if they are subject to the same physics as the player. They have
to be able to react to the behaviour of the controlled vehicle and to events on the track in real time without
crashing.
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2.3.4 Strategic Opponents

By strategic opponents we generally mean the intelligence which controls the opposing units in a strategy
game. The problem of resource management is very imminent in these games. It has to be decided which
resources are harvested and for which purpose they should be used, which buildings should be built, which
technologies should be explored, which units should be produced, etc. In economic strategy games the
resource management becomes even more important. These problems have a strong connection to some
real-world economic problems.

In addition, strategic decisions and plans have to be made. Depending on the considered game these deci-
sions range from militaristic to economic. The different game genres demand different kinds of decisions.
Real-time strategy requires fast decisions and reactions, whereas turn-based strategy is more strategic.
Though, turn-based games originate from board games like chess, most of the research in those games
is not applicable because of the high complexity of most turn-based strategy games.

2.3.5 Units

The units in strategic games need to be controlled as well. Though they are not as sophisticated as tactical
opponents, they also require the solution of some problems. These problems mainly include the intelligent
navigation on the map and individual behaviour. The main challenge lies in the fact that a game can contain
hundreds of units which have to be controlled individually.

Units usually navigate on their own. The player just gives them the order to go to some location. The unit
then has to decide which way it should take. The path should avoid obstacles and be as short as possible. In
addition, harvesting units should avoid enemies on their path and military units should stay in formation.

Concerning the individual behaviour, the units should react to events in their vicinity. If they were attacked,
harvesters should flee and others should come to their help. Based on the game design, units can also have
a life of their own, which especially concerns god games. As in the case of support characters, advanced
AI routines could be used to show more believable and human-like behaviours.

2.3.6 Commentators

A role for game AI that is not as apparent as the ones above, is the role of a commentator. Many sports
games - e.g. soccer, football or hockey - feature a TV-like view of the game and therefore also feature
commentators, which comment on the current actions. This is again a challenging task which combines
the successful detection of game patterns and game events as well as the selection of fitting comments. It
would be even more challenging to create these comments in an automatically generated way and to not
use prerecorded ones.
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Methodology

This chapter serves as an introduction to several methods that are used in the course of this thesis. These
methods are evolutionary computation, imitation, neural networks, reinforcement learning and swarm intel-
ligence. In the respective sections small but thorough introductions into these topics are presented to keep
this thesis as self-contained as possible.

We chose these methods as the basis of our work because they fit very well to our goal: The creation of
adaptive and believable game agents based on the application of learning methods. What we want to avoid
is the usage of game-dependant knowledge and the employment of methods that would create agents that
appear clearly artificial to the player. As the goal of game AI is to create intelligent agents that resemble
human behaviours, the chosen methods are all naturally inspired and are based on results from biology,
psychology and sociology to create more believable results.

3.1 Evolutionary Computation

This section gives an introduction into the field of evolutionary computation, which is one of the most
fundamental foundations of our work. We are convinced that evolutionary computation and evolutionary
learning lend themselves naturally to game AI because of their robustness and extensibility. Furthermore,
we think that population-based learning approaches are of special interest for game AI because games
usually provide multiple agents that have to learn in parallel. This section is based on the introductory book
from Eiben and Smith [ES03].

Evolutionary Computation describes the application of algorithms for optimisation and learning problems
that are based on the concept of natural evolution. The field of evolutionary computation is very broad and
contains several subfields. The inspiration behind the work in this area comes from the concept of biological
evolution as it has been published by Charles Darwin in 1859 [Dar59] and modern genetics. First notions
of using the evolutionary concept as an adaptation and learning algorithm range back to Alan Turing.
However, the real birth of the field in computer science and mathematics took place in the 1960s and 1970s.
At that time, the field of evolutionary computation formed itself out of three approaches that were published
and followed separately: evolutionary programming, evolution strategies and genetic algorithms. These
three and several newer approaches, like gentic programming, are today combined in the term evolutionary
algorithms, whereas the field is called evolutionary computation.

According to Eiben and Smith [ES03] the general scheme of an evolutionary algorithm can be described as
in algorithm 3.1. At the beginning, a population of (usually randomly initialised) solutions is generated and
then evaluated. In the evolutionary context these candidate solutions are usually called individuals. The
composition of these individuals is subject to the problem for which solutions should be generated. The
most common representations are binary or real-valued vectors. The evaluation of the individuals in the
population is done by the fitness function, which is again subject to the given problem. The fitness function
usually evaluates an individual by assigning it a real or integer value – the fitness of the individual. Some
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of the evaluated individuals are then selected to be (usually pairwise) recombined to form new offspring.
In this operation the offspring individual is constructed from parts of the parents. Then the offspring indi-
viduals are mutated. This means that slight variations are introduced into their encodings. Usual mutation
operators are bit flipping or the addition of a random number in the case of real-valued encodings.

Algorithm 3.1 Evolutionary Algorithm Scheme [ES03]
1: initialise population with random candidate solutions
2: evaluate each candidate
3: repeat
4: select parents
5: recombine parents to generate offspring
6: mutate the resulting offspring
7: evaluate the new candidates
8: select survivors for the next generation
9: until terminal condition is satisfied

After the offspring has been generated, the fitness of each of the new candidates is evaluated. In the next
step the fittest individuals are selected as the possible parents for the next generation of individuals that form
the future population. The other individuals are omitted. This selection according to the “survival of the
fittest” concept is the driving force behind all evolutionary algorithms and causes the overall improvement
of solution candidates in the course of several generations. To distinguish between the different selection
steps they are often referred to as survivor selection and parent selection. Figure 3.1 illustrates the described
procedure.

termination

evaluation

survivor

selection
parent

selection

recombination

mutation

pool for next

generation

evaluated
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initialisation

Fig. 3.1: Illustration of a General Evolutionary Algorithm

The evolutionary operators: mutation, recombination, parent selection and survivor selection can be clas-
sified as variation and selection operators. The variation operators - mutation and recombination - are
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responsible for the exploration of the search space and the creation of new solution candidates. The se-
lection operators are responsible for the exploitation of the gained knowledge and the improvement of the
fitness of the population.

In the usual instances of an evolutionary algorithm, the operators are of a randomised nature - especially
the variation operators. For example, the mutation operator usually randomly decides which piece of the
individual is changed and in which amount. Often used parent selection operators are the random selection
of two parents from the survivors or the fitness-proportional selection, in which the probability to be selected
as a parent depends on the fitness of the individuals. Parent and survivor selection are often interwoven and
it depends on the point of view, if a selection is seen as a parent or survivor selection. Many selection
schemes (fitness-proportional, tournament, etc.) can be used for both kinds of selections. In many cases
only one of the selection procedures is more sophisticated, whereas the other is rather simple. For example,
in a classical genetic algorithm the survivors are selected fitness-proportional. Then, the parents to generate
offspring are just drawn randomly.

Figure 3.1 shows that after recombination the parents can be put back into the population, which then
becomes evaluated. In the case of a deterministic fitness function, the parents already have a fitness and
do not have to be reevaluated. However, if the fitness function is not deterministic, it might be useful
to reevaluate the parents to see if they still fit to the given problem. To emphasise exploration, several
approaches do not admit the parents to be candidates for survivor selection and therefore discard them after
recombination.

Several tuning parameters of an evolutionary algorithm are probabilities. For example, the mutation rate
defines the probability that a part of an individual is changed. The algorithm will usually be terminated, if
a certain solution quality or maximum number of generation is reached. Though, numerous other problem-
specific termination methods exist.

Another illustration that is often used for evolutionary algorithms and other optimisation techniques is the
fitness landscape. Figure 3.2 shows an example. The population is scattered over the landscape where a
higher spot indicates a higher fitness. Mutation lets an individual change its position to another one in its
vicinity. Recombination creates an individual that is usually positioned between its parents. The goal is
to reach the highest spot and to not get stuck in local optima. Because of their population-based search,
evolutionary algorithms are often less likely to stop in local optima than other local search methods - e.g.
gradient ascent/descent, tabu search, simulated annealing etc.

Fig. 3.2: Illustration of a Fitness Landscape
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In the following we will give short introductions into the most important evolutionary computation methods.
We will start with the most widely used one - genetic algorithms. For more details we refer to Eiben and
Smith [ES03]. We chose to put the introduction to neuroevolution into section 3.3 because, though it uses
evolutionary algorithms, it mainly deals with the construction of neural networks for classification and
control tasks.

3.1.1 Genetic Algorithms

Holland introduced the genetic algorithm in [Hol73] and [Hol75] as an algorithm that is directly motivated
by genetics. Therefore, the classical concept - usually called the simple genetic algorithm - uses a pure
binary representation of bit strings for its individuals to resemble a low level encoding like in the DNA. It
uses 1-point crossover for recombination. This technique splits the genes of the parents at a random point
and then recombines the heads and the tails of these split genes to receive the offspring genes.

Example 3.1 (Binary 1-Point Crossover).
Let a = 00110110 and b = 10101010 be the parents. At first a split point is chosen randomly with uniform
distribution, e.g. 3. Then the genes are split into

a = a1 : 001 | a2 : 10110 and b = b1 : 101 | b2 : 01010.

Therefore, the possible offspring is

o1 = a1a2 = 00110110
o2 = a1b2 = 00101010
o3 = b1a2 = 10110110
o4 = b1b2 = 10101010.

Mutation is accomplished by flipping each bit with some (usually low) probability - the mutation rate. The
parents are selected fitness-proportional - i.e. the probability for an individual to be selected as a parent
is the fraction of the individual’s fitness in the sum of all fitness values of the population. Therefore, the
individuals with a higher fitness are more probable to survive, but the low performing individuals also have
a chance to be selected. Survivor selection does not really take place. Instead, the algorithm is inspired
by the generational concept of biological evolution. Therefore, the offspring that has been produced by
recombination forms the next generation, whereas all former individuals are discarded.

Example 3.2.
We want to maximise the function OneMax(x) =

∑4
i=1 xi over bit strings x with length 4. The initial

randomly generated population is
0001, 1000, 0000, 0010.

So, we start with 4 individuals. Since the number of individuals stays constant, 4 offspring individuals are
created after each generation by 1-point crossover and bit flip mutation. The split points are randomly
chosen for each crossover operation. The parents are chosen fitness-proportional. Table 3.1 shows an
exemplary run of the described genetic algorithm.

We found the optimum at 1111. With each generation the mean fitness increased. This increase of the
fitness is solely based on the selective pressure of the survivor selection. In the transition from generation
3 to 4 the individual 1110 was only chosen one time though it has a much larger fitness than the other
individuals in the population. This is due to the fitness-proportional selection being nondeterministic. Only
the probability to be selected is proportional to the fitness value.
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Table 3.1: Example of a Genetic Algorithm
generation parents crossover results population fitness mean fitness

initial 0001 1 0.75
1000 1
0000 0
0010 1

1 0|001 + 1|000 0000 0100 1 1
1001 1001 2

00|01 + 00|10 0010 0010 1
0001 0000 0

2 10|01 + 00|10 1010 1110 3 1.5
0001 0001 1

010|0 + 100|1 0101 0100 1
1000 1000 1

3 1|110 + 0|001 1001 1001 2 2
0110 1010 2

111|0 + 100|0 1110 1110 3
1000 1000 1

4 11|10 + 10|10 1110 1110 3 2.25
1010 1010 2

10|10 + 10|01 1001 1011 3
1010 1000 1

5 111|0 + 101|1 1111 1111 4 2.5
1010 1010 2

1|011 + 1|000 1011 1001 2
1000 1100 2

Today, the field of genetic algorithms has become much broader and is now allowing more representations
like integer strings, real-valued vectors and more problem specific representations. Though, the applications
of genetic algorithms are more focused on combinatorial optimisation. The field has also introduced several
other recombination and mutation operators. For example, uniform crossover generates an offspring by
drawing randomly from the values of the parents at each index. There also exists an n-point crossover and
numerous other operators that are based on the used representations. For mutation, other operators include
bit swapping, scramble mutation, inversion mutation etc. We again refer to Eiben and Smith [ES03] for
more details and further references.

3.1.2 Evolutionary Programming

Fogel, Owens and Walsh introduced the evolutionary programming method in [FOW65] and [FOW66]. In
the original approach the method was used as a machine learning technique. The individuals were finite
state machines that were optimised to predict signals. In the classical concept no pairwise recombination
is used. In spite of that the offspring is generated by just mutating the parents. In this way, one offspring
individual is generated out of each parent. Thus, there is no parent selection. Each surviving individual
becomes the parent of one offspring. Today, evolutionary programming is seen in a more general way
allowing other representations based on the given problem, like real-valued vectors.

The question if recombination is useful for the technical application of an evolutionary algorithm was
much debated in the 1990s. In many applications, evolutionary algorithms without recombination perform
very well, even sometimes outperforming approaches with recombination. Newer results [JF00] show
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that both operators can improve the convergence, whereas mutation is more helpful at the beginning and
recombination more important to the end of the evolution.

Newer versions of evolutionary programming algorithms also use self-adaption of the mutation step sizes
in real-valued representations, as it was introduced by evolution strategies. The mutation step size deter-
mines the range in which a value of the individual can be chosen by mutation. In many cases a Gaussian
distribution is used to randomly draw a new value in the vicinity of the old one. The mutation step size is
then the standard deviation of the used distribution. Each individual has its own mutation step size. These
step sizes are encoded into each individual and also underlie the evolutionary process by being mutated.

3.1.3 Evolution Strategies

At the beginning of the 1960s Rechenberg and Schwefel developed an approach called evolution strategies
[Rec73, Sch95, BS02] for real-valued optimisation. Therefore, the individuals in this method are typically
real-valued vectors. In its classical version - as shown in algorithm 3.2 - it is composed of two individuals
and is used to minimise an objective function f .

Algorithm 3.2 Classical Evolution Strategy (based on [ES03])
1: t = 0
2: create initial point x = (x1, ..., xn) ∈ Rn (n ∈ N)
3: repeat
4: create y = (y1, ..., yn) ∈ Rn

5: for i = 1 to n do
6: draw z ∈ R randomly from a Gaussian distribution
7: yi = xi + z
8: end for
9: if f(y) < f(x) then

10: x := y
11: end if
12: until terminal condition is satisfied

From a starting point, the algorithm just creates a mutated version of it and will use it as the starting
point for the next generation, if it has a smaller value in the objective function f . The Gaussian (or normal)
distribution is used to create mutated points in the vicinity of the original. It is based on the density function

ϕ(x) =
1

σ
√

2π
· e
−(x−ξ)2

2σ2 ,

where ξ is called the mean and σ the standard derivation of the distribution. The decision to use this
distribution is very well supported by statistics because of the central limit theorem, which states that the
accumulation of several arbitrary distributions with finite variance tends to converge against the Gaussian
distribution [Dav94]. Hence, the Gaussian distribution can be found in many natural systems. The Gaussian
distribution is often abbreviated by N (ξ, σ). In the evolutionary context σ is also called the mutation step
size.

Self-adaptation of the mutation step sizes was used almost already from the beginning in evolution strate-
gies. It is also popular in the evolution strategy community to use self-adaptation to tune other strategy
parameters as well. Therefore, the individuals often contain further values to encode these strategy param-
eters. If two individuals are recombined, the offspring will also be formed by recombining the strategy
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parameters. Upon mutation, the strategy parameters are mutated as well. Thus, a typical evolution strategy
not only optimises its objective function but also its own parameters.

Today’s evolution strategies usually use a bigger population size than two. However, because of its origin,
evolution strategy research is usually emphasised on mutation. The population size of an evolution strategy
is determined by the number of parents µ ∈ N and the number of offspring λ ∈ N. Evolution strategies are
typically applied in one of two selection schemes called (µ + λ) evolution strategy or plus selection and
(µ, λ) evolution strategy or comma selection. The difference between the two is that plus selection allows
parents and offspring to be evaluated and selected as the survivors, whereas with comma selection only the
offspring forms the next generation from which the survivors are selected. Parent selection usually happens
randomly with uniform distribution among the survivors. The survivor selection usually deterministically
selects the µ best individuals from the population. Algorithm 3.3 shows the typical scheme of an evolution
strategy.

Algorithm 3.3 Evolution Strategy
1: create initial population Pµ of µ ∈ N individuals
2: evaluate all individuals in Pµ
3: repeat
4: Pλ = ∅
5: for i = 1 to λ do
6: select two parents a and b from Pµ
7: recombine the variables and step sizes from a and b to create offspring o
8: mutate variables and step sizes of o
9: evaluate fitness of o

10: Pλ = Pλ ∪ {o}
11: end for
12: P = Pµ ∪ Pλ
13: Pµ = ∅
14: for i = 1 to µ do
15: if comma selection then
16: select best individual a from Pλ
17: Pλ = Pλ \ {a}
18: Pµ = Pµ ∪ {a}
19: else if plus selection then
20: select best individual a from P
21: P = P \ {a}
22: Pµ = Pµ ∪ {a}
23: end if
24: end for
25: until terminal condition is satisfied

The comma selection scheme is more frequently used than the plus selection scheme. The reason for that is
that the comma selection discards all individuals of the last generation and is thus better equipped to leave
local optima. In the case of a fitness function which is not deterministic, the population in the (µ + λ)
evolution strategy might contain outdated fitness values. This can be fixed by reevaluating the parents, if
they were chosen for the next generation. However, this results in more fitness function calls, which is
usually the component of an evolutionary algorithm with the highest computational cost.
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3.1.4 Genetic Programming

The genetic programming method has mainly been put forward by Koza [Koz92, Koz94] in the beginning
of the 1990s. It describes the idea to evolve programs - usually in the form of program trees (see figure 3.3)
- to solve machine learning tasks. These trees are often based on a very low level language like arithmetic
expressions or machine code. Genetic programming is in many aspects based on genetic algorithms and
differs mainly in the typical representation and in the fact that in genetic algorithms always recombination
and mutation are applied to create offspring against what in genetic programming it is randomly decided
whether to use either mutation or recombination after each generation.
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Fig. 3.3: An example for a Program Tree [ES03]

The special representation as program trees demands special mutation and recombination operators. This
issue is further complicated by the fact that the individuals have different sizes as well as a meaning in
their structure and not only in their values. Mutation is usually accomplished by randomly replacing a
subtree with a randomly generated program tree. The usual recombination operator is based on 1-point
crossover. It randomly selects a node in the trees of each parent. This node is then used as a crossover point
by exchanging the subtrees which are rooted at the respective nodes. The typical selection schemes are the
same as in genetic algorithms, namely fitness-proportional selection for parent selection and generational
replacement for survivor selection. However, other selection schemes are possible and used as well.

Genetic programming has provided several very good results in evolving controllers and classifiers. How-
ever, it is mostly applied for relatively small programs. A common problem in the application of genetic
programming is the bloating of the program trees in the course of the evolution. Thus, there exist several
approaches to prevent the individuals from bloating, like reducing the fitness of too large individuals.

3.1.5 Learning Classifier Systems

Learning classifier systems are related to genetic programming in that they also provide an approach to
solve machine learning tasks. They are especially suited to approach reinforcement learning problems
in which an agent has to learn to cope with an uncertain environment1. Learning classifier systems also
map environment states to actions in the environment and are based on rewards from the environment. In
their earliest form, learning classifier systems were already introduced by Holland [Hol76]. However, they
became popular and successful by the introduction of the ZCS (zeroth level classifier system) and the XCS
by Wilson in the 1990s [Wil94, Wil95, Wil00].

Instead of program trees, learning classifier systems are based on rule sets in which the rules act as the in-
dividuals of an evolutionary algorithm. The rules map inputs to outputs and are commonly binary encoded,
1 see section 3.4
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using wildcards in the input strings to be able to create more general rules. It is also possible to use other
representations like real-valued vectors, fuzzy sets or more problem specific representations. The learning
process consists of two cycles. In the evaluation cycle the currently used rules are evaluated by applying
them to the given input strings and by computing payoff values for the respective rules. In the rule discovery
cycle, new rules are created by recombination and mutation.

In rule evaluation, first the rules with fitting input strings - the so-called match set - are collected. These
rules are grouped according to their proposed actions. Then the utility of each action is computed as a
combination of the estimated payoffs of the single rules with that action. The action with the highest value
is taken. The corresponding set of rules in the match set is called the action set. After the action has
been executed, the gained reward is distributed onto the rules from the action set. A discounted part of the
reward is usually also distributed onto the action set of the last step to trace the recent development of the
environment. As it is the case with reinforcement learning systems, rules and actions that gained a higher
reward are more likely to be used in the future.

The rule discovery cycle is started periodically after some evaluation steps have been executed. It is re-
sponsible for the creation of new rules and the adaptation of the rule set to the given environment. The
estimated payoff of the rules or some value based on it are used as their fitness. Parent selection is usually
done fitness-proportional. Recombination usually takes two rules and swaps their inputs and outputs like
in a one-point crossover. The estimated payoffs for the child rules are the mean of the respective values
of their parents. Mutation applies small changes to the children and is chosen with respect to the given
problem and the used representation.

3.1.6 Lamarckian Evolution

In theory there exist several other types of evolution than the Darwinian. One example is the so-called
Lamarckian evolution [Lam09] that proposes that parts of the learnt behaviours and acquired features of an
individual are passed to its children and are thus subject to evolution. This view is strongly disfavoured in
biology, but it has been shown to be quite useful in the field of evolutionary computation [ES03]. The reason
is, that evolutionary algorithms are often good at finding near optimal solutions, but then lack performance
in taking the last steps to reach the optimum.

An evolutionary algorithm that uses Lamarckian evolution usually applies some local search steps to the
individuals of the current population. The encoding of the individuals is adjusted and the fitness is based
on the performance of the resulting individual to reflect these changes. Instead of recoding the adjusted
individuals, it is also common to just apply some local search and then calculate the fitness of the gained
solution but to keep the original individuals. This is based on the so-called Baldwin effect [Bal96] and is
closer to biological evolution.

Both approaches are sometimes referred to as memetic algorithms2. However, in our opinion this is mis-
leading because the idea behind memetics is much broader than just the application of local search. In the
next section we will provide more detail on the idea of memetics.

2 see section 3.2
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3.2 Imitation & Memetics

Imitation describes the concept of the replication of the behaviour of one individual by another individual.
In contrast to the methods from the other sections in this chapter, there exists neither a theory on the applica-
tion of imitation techniques to artificial intelligence nor a definitive imitation algorithm. Instead, imitation
is interwoven into other approaches3. Usually, human behaviours or expert knowledge are recorded and
then used to learn the corresponding models or to improve the performance of the corresponding models.
Learning by imitation is strongly related to learning by example [Mit97].

Concerning artificial intelligence research, imitation can be used in all fields in which the AI system should
show human-like abilities and for solving problems that are easily solved by humans but very hard to solve
algorithmically. Typical fields of application are autonomous robotics and game AI. In these fields it is
possible to observe human-controlled agents or robots, whose behaviours can be mimicked.

The process of imitation involves a role model, which is imitated, an imitator, that copies behaviours or
knowledge from the role model, and the subject of the imitation process itself. This piece of information
that is replicated from one individual to another and the mechanism behind this replication has been the
topic of several research in sociology and psychology. This research field is often referred to as memetics,
whereas the replicated piece of information is called a meme.

3.2.1 Memetics

The notion meme stems from the popular book “The selfish Gene” by Richard Dawkins [Daw76]4. In this
book, Dawkins proposes the idea that evolutionary concepts are not only restricted to genetics, but might
also be found in other systems. As an example he proposes that culture could be described as being based
on ideas and pieces of information that are transmitted and replicated between different humans. Several
ideas could be recombined to new ones and simple ideas could be mutated by inaccurate replication. To
give these pieces of information a name he called them memes.

Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making pots or of
building arches. Just as genes propagate themselves in the gene pool by leaping from body to body
via sperms or eggs, so memes propagate themselves in the meme pool by leaping from brain to brain
via a process which, in the broad sense, can be called imitation. [Daw76]

The notion was chosen because of its similar sound to gene and is based on the notion of mimesis, which
has its roots in ancient Greek philosophy, where it stands for the act of imitation [Kau92, Aue53, Wik07a].
In accordance to the notion meme, the whole research field about memes and the evolutionary principles
of their replication is called memetics. Major contributors to the field of memetics are Susan Blackmore
[Bla98, Bla00], Daniel C. Denett [Den95], Liane Gabora [Gab93, Gab96] and Francis Heylighen [Hey97,
Hey98]. Further interesting literature can be found in [Cas01, HBS01].

An often cited example for a memetic system is science. New ideas and concepts are often based on
recombinations of other works and successful concepts are more often used as the basis of new work. If
concepts do not work, they are modified or combined with other successful ideas, to achieve better results.
In many cases new ideas can be seen as mutations of existing ones. The gained results are published, so
that they can be used as an influence to other research. There exist selective pressure at several points in
3 see section 4.2 for several examples
4 The notion was already introduced earlier, but was made popular by Dawkins
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this system. Only concepts that work and deliver good results survive. In addition, usually only concepts
that are published at a noted conference with rigorous reviews are selected as the basis of new concepts.

In computer science, memetics is of interest in several aspects. One application is the examination and cre-
ation of memetic systems. Such systems use memetic models to describe the information flow in artificial
systems or simulations of real-world systems. Memetic systems range from economics, politics, society,
viral marketing and religion to artificial swarms and the information flow in the internet. For example,
Weimer et al. [WPG05] propose the usage of memetic ideas for the implementation of a simulated modular
robot in which programs are distributed over the modules and communicated between neighbouring mod-
ules. This modular robot consist of several autonomous modules that can move along the edges of the other
modules to form new shapes. None of the modules has the capacity to store the whole building plan. So,
the plan is spread over all modules and each module has to find the part of the plan that it needs to fullfill
its task.

As it features selective pressure, the memetic idea can also be used as a learning or optimisation algorithm.
In literature the term memetic algorithm is used for the combination of an evolutionary algorithm with local
search. The inspiration behind these algorithms is that, in addition to genetic evolution, individuals that have
a culture usually learn as long as they live and then pass their knowledge to their children. However, in our
opinion the memetic idea is much broader and should be seen as an evolutionary concept by itself.

There also exist approaches for learning that are closer to the memetic idea. For example, Goebels et
al. [Goe06] describe an enhanced evolutionary algorithm to generate rules for a cellular automaton that
partitions the different types of cell allocations to different regions in the cell grid. The enhancement
is made by sustaining a pool of often used rules from the best individuals from which random rules are
incorporated into the rule sets of the children of the new generation.

The learning principle that in our view fits much better to the memetic idea is often called social learning
or cultural evolution and describes an evolutionary approach that is inspired by results from human and
animal sociology as well as psychology [Ban89,TKR93,CC95,BR98,ND07]. However, the basic definition
of social learning is very generic and several approaches exist. A nice overview of several basic approaches
and results in this field is presented by Morikawa et al. [MAEC01]. For a comprehensive definition of social
learning they refer to Conte et al. [CP01].

Social learning is the phenomenon by means of which a given agent (the learning agent) updates
its own knowledge base (adding to, or removing from it a given information, or modifying an ex-
isting representation) by perceiving the positive or negative effects of any given event undergone
or actively produced by another agent on a state of the world which the learning agent has as a
goal. [CP01]

An ambitious project that employs social learning is the NewTies project [GdBB+06,GSE+05,VD05]. The
objective of this European joint project is the evolution of culture in an artificial system. The artificial
system consists of a two-dimensional grid world that is inhabited by up to thousands of autonomous agents.
These agents are able to move from one grid cell to an adjacent one. They can also send text strings to
agents in their vicinity and even build roads to facilitate the movement. Each action consumes some of
the agent’s energy, which can be refilled by eating food that lies around. The agents are subject to genetic
evolution as well as social and individual learning. Thus the agents are able to reproduce themselves and
pass their genes, which encode the agent’s attributes - e.g. movement rate and strength - as well as some
tendencies for certain behaviours - e.g. socialness, to their children. Individual learning is achieved by
classical machine learning approaches like decision trees and reinforcement learning [Bel07] to improve
the single agents.
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The social learning component is based on the agent’s ability to exchange information. One of the objectives
in the NewTies project is the automatic generation of language [VD05, VH07]. Thus, information can be
transmitted using text messages. However, up to the most recent publications [VH07] social learning is
implemented by a direct transmission of parts of the decision trees of the agents, which are chosen according
to their utility.

Other works in the artificial intelligence field that are based on social learning include several works in
the field of autonomous robots [Mat94, DH96, Mat97, Bil00, Mat02, ND07]. However, though imitation is
widely used in game AI research to improve the results of other learning methods, the concept of social
learning itself is barely applied.

3.2.2 Imitation-Based Learning

In the follwing, we will propose an imitation-based learning algorithm that is especially suited for multi-
agent learning and thus is suitable for game AI. It is closely related to the idea of memetic systems and social
learning. The idea behind the algorithm is that several agents try to solve a task. They individually try to
adapt to this task but also communicate with the other agents about their experiences. For the individual
adaptation, the agents try to change those rules or subbehaviours that led to reward punishments. Agents
that show a lower performance take one of the best agents as their role model and try to imitate its best
behaviours.

Each agent’s behaviour is defined by a set of memes. This means that they can be reduced to several in-
formation pieces or subbehaviours. The approach implies that not only the agents themselves are evaluated
but also an estimation of how much each meme participated in the resulting performance is computed.
The performance of the agents is repeatedly evaluated and the best agents form the elite of the population.
The other agents aspire to improve their performance and try to imitate one or more of the elite agents by
gathering successful memes from them and by incorporating these memes into their own meme pool. The
agents then individually adapt to their current task. The individual adaption can be a local search step or
some other sophisticated method. However, in our applications individual adaptation just consists of the
mutation of the low valued memes. Therefore, the agent will just try to do something different, if a meme
seems to fail.

Figure 3.4 illustrates the update cycle of the individual agents. Algorithm 3.4 presents a pseudo code
description of a synchronous version of the described procedure that forms the basis of our successful
implementation of this approach in chapter 11 (algorithm 11.1). However, the approach can also be applied
in an asynchronous way in which each agent will update its memes, if a certain event in the environment
happens.

evaluation

role model 
selection

meme
selection

meme
incorporation

individual
adaptation

elite agent?

no

yes

Fig. 3.4: Illustration of the imitation-based Learning Loop

This algorithm is of evolutionary nature. Thus, it also contains selection and variation operators. The
selective pressure for improvement is a result of the selection of the elite individuals and the selection
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Algorithm 3.4 Imitation-Based Learning (IL)
1: initialise agent population P
2: repeat
3: evaluate P
4: determine the µ elite agents E ⊂ P
5: for all agents a ∈ P \ E do
6: select set of role models R ⊆ E (role model selection)
7: select memes for imitation from role models R (meme selection)
8: incorporate selected memes into own meme pool
9: individual adaptation

10: end for
11: until terminal condition is satisfied

of the advantageous memes. Variation is gained by the individual adaptation and by the incorporation of
memes that might need certain other memes to work well and that could be mixed from several meme pools.

The approach is especially suited for reinforcement learning tasks in very uncertain environments. Instead
of using one single agent that learns to perform well, the method is based on a population of agents that
share their experiences but still have individual behaviours. The elite is always kept unchanged to stabilise
the convergence. This makes the approach very robust against high uncertainty and changing requirements.
We did not include a special point for the crossover of single memes. However, this could be done in the
incorporation step.

It should be noted that the algorithm shows a certain resemblance to the particle swarm optimisation algo-
rithm5. This is not astonishing, because particle swarm optimisation is also socially inspired [KE01]. In
fact algorithm 3.4 could be partly described as a machine learning version of the particle swarm optimiser.

In comparison to reinforcement learning and linear classifier systems, additional robustness is gained by
relying on a population of agents that make their experiences in parallel, whereas in the former approaches
only the experience of one agent in the form of its value function or rule utilities is used. Therefore, we
think that the imitation-based learning approach will show a more stable convergence, if the uncertainty
and the dynamics of the given environment are high.

For selection and variation typical evolutionary operators can be used. However, there exist no standard
examples for the incorporation operator. This operator is crucial to the performance of the algorithm. As we
have learnt from several experiments in preparation to the approach in chapter 11, it is often not sufficient to
just replace bad performing memes by memes with higher values because it leads to a less varied population.
If the performance of the agents is based on the interplay of several memes, the incorporation operator will
have to be chosen even more carefully. Each agent has to choose precisely which meme it accepts and
which memes it replaces or deletes.

Heylighen et al. [Hey98,CH05] have published several criteria for meme selection that are based on results
in sociology [HBS01] and psychology [Bla00, Cas01, SCT02] as well as viral marketing [God01]. These
criteria are presented in table 3.2.

Not all of these criteria are applicable to artificial systems. The first four only involve the host, whereas
the final five are based on the relationship between the role model and the imitator and their type of com-
munication. We found the coherence and the utility criterion to be very important. The agents should only
accept memes that fit to their own meme pool. If the meme is coherent to the agent’s own memes, it still
should only be accepted, if it had a high utility.

5 see section 3.5 and algorithm 3.11
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Table 3.2: Meme Selection Criteria [CH05]
criterion explanation
utility the meme contains useful or valuable information
novelty the meme is sufficiently different from already known memes
coherence the meme is consistent with the knowledge that the hosts already have
simplicity since complex memes are difficult to process, less important details tend to be

left out
formality the less context or background communicating hosts share, the more important it

is to express the meme explicitly
expressivity the meme is easily expressible in the available languages or media
authority the source is recognised as being trustworthy
conformity the majority of hosts agree on the meme
proselytism the meme explicitly incites its hosts to spread it further
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3.3 Neural Networks

Neural networks are used in numerous game AI approaches6 because of their flexibility and their abstraction
abilities. They are usually applied in fields in which little or no a priori knowledge is available. The research
in artificial neural networks stems from results from neurology and human brain research. Originally,
the idea behind artificial neural networks was to copy the design of the human brain to create artificial
intelligence. However, today’s artificial neural networks are often based on simple and dated neuron and
neural network models that are mostly based on the models by McCulloch and Pitts [MP43] as well as
Rosenblatt [Ros58].

The development of the research in neural networks for AI purposes can be divided into two phases. The
first phase ranges from the introduction of the perceptron - a very simple feed-forward network - by Rosen-
blatt [Ros58] to the discovery of it inabilities. The perceptron was the first neuron model with the capability
to learn - using the so-called delta rule. However, in 1969 Minsky and Papert [MP69] showed that the per-
ceptron is not able to learn even simple functions like the XOR function. This lead to years of stagnation in
the field of neural networks until it was discovered that this mentioned incapability can be overcome by the
addition of more layers to the perceptron. The field was eventually revived in 1989 by the publication of the
backpropagation algorithm for supervised learning by Rumelhart et al. [RHW86]. Though, the backpropa-
gation algorithm was already published by Werbos [Wer74] in 1974 but not widely recognised. Other work
with a comparably profound impact was published by Kohonen [Koh82, Koh00], introducing the so-called
self-organising maps for unsupervised learning in 1982.

The neuron model that is used in most neural network applications is illustrated in figure 3.5a. Each neuron
has several input and output connections. Signals are transmitted in the form of real numbers. The input
of the neuron is computed as the weighted sum of the signals on the input lines with the corresponding
weights. This value is usually called the input value of the neuron. Then, an output function g is applied
that determines the output signal or activation value of the neuron. The output lines then transmit the signal
to other neurons.
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Fig. 3.5: Neuron

The simple neuron model that we will use in this thesis can be formally described as follows.
6 see section 4.2
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Definition 3.1 (Neuron, Neural Network).
A triple N = (N,L,w), whereas N is a set of neurons, L ⊆ N ×N is a set of links between the neurons
and w : L → R is a weighting function, is called a neural network. For convenience we also define
w(n1, n2) = w( (n1, n2) ) (n1, n2 ∈ N).

Furthermore, for each neuron n ∈ N we define

inlinks(n) = {(n1, n2) ∈ L | n2 = n}
outlinks(n) = {(n1, n2) ∈ L | n1 = n}
innodes(n) = {n′ ∈ N | (n′, n) ∈ inlinks(n)}

outnodes(n) = {n′ ∈ N | (n, n′) ∈ outlinks(n)}

Then, a triple n = (f, g, b) with f : R|inlinks(n)| → R, g : R → R and b ∈ R is called a neuron with
input function f , output/activation function g and bias b. For each neuron n ∈ N with innodes(n) =
{n1, n2, ..., nk} and wi = w(ni, n),

out(n) = g(f(w1out(n1), w2out(n2), ..., wkout(nk))− b)

is called the output or activation value of n and

in(n) = f(w1out(n1), w2out(n2), ..., wkout(nk))

is called to input or net input of n.

We favour this graph inspired definition over the often used adjacency matrix-based definition because we
think that it is easier to understand and because more special networks can be described in a very natural
and understandable way. The neuron model which is illustrated in figure 3.5a can be described by our
model with an appropriate input function. The biases can also be and are often modelled as the weights of
the links between a further input node with the activation value -1 and the respective nodes. The edges and
nodes are usually called the topology of the network. Many learning algorithms work on a fixed topology
and thus only adapt the edge weights to the given problem.

In the following we will present two popular algorithms that are used in neural network applications: back-
propagation and neuroevolution. We selected them because they can and have been applied in several
research concerning computer games. In addition, there exist numerous other approaches and methods for
which we refer to the books of Ritter [RMS91], Carling [Car92], Zell [Zel94] and Kohonen [Koh00].

3.3.1 Backpropagation

The backpropagation algorithm uses feed-forward networks to solve classifying and control tasks. A feed-
forward network can be defined as follows.

Definition 3.2 (Feed-Forward Network, Recurrent Network).
Let N = (N,L,w) be a neural network. If there exists a partition {N1, ..., Nm} of N with

∀(n1, n2) ∈ L : (n1 ∈ Ni ∧ n2 ∈ Nj)→ i+ 1 = j,

Nwill be called a feed-forward network. If only

∀(n1, n2) ∈ L : (n1 ∈ Ni ∧ n2 ∈ Nj)→ i < j

holds, Nwill be called feed-forward network with shortcuts. All other networks are called recurrent.
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Fig. 3.6: Examples for different Network Topologies

This definition basically says that the neurons can be partitioned into several layers. Note that we only
allow links from one layer to the next one. The typical feed-forward networks used for backpropagation
have input and output functions f, g : R → R and f, g : x 7→ x for the first layer, which means that they
just propagate the input values into the network. The other layers have neurons n with the input function

f : (x1, ..., x|inlinks(n)|) 7→
|inlinks(n)|∑

i=1

xi − b.

The networks that are used for backpropagation stem from the perceptron that has only one input layer
and one output layer. Since the input layer is only used to propagate values into the network, such a
network is also called single layer perceptron. Hence, backpropagation networks are often called multi-
layer perceptrons because they have to have at least one inner layer between the input and output layer.
As we mentioned before, this additional layer is important for the computational power of the network. In
fact, it can be shown that a feed-forward network with at least one inner layer is able to approximate any
arbitrary continuous function [NKKK97].

Example 3.3.
The feed-forward network in figure 3.7 computes the bitwise parity of the input bits x1, x2 and x3. The
weights are denoted on the edges and the biases inside the nodes. The network uses a threshold function as
output function for the inner and output neurons.
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Fig. 3.7: Example for a Network that computes the Bitwise Parity

Perceptrons and backpropagation are usually used for supervised learning. This means that a trainer
presents learning examples to the network for which the right output is already known. If the network
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produces an error, this error will be used to compute better performing weights. Usually, all available test
samples are divided into a set of training samples and a set of test samples. The training samples are used
for weight adjustment. The test set is used to evaluate the learning process.

Perceptrons usually use a simple threshold function as output function which will returning zero, if the value
is below, and one, if the value is above the threshold. Without inner layers it is very simple to determine
weights that improve the reproduction of a sample. The so-called δ-rule works as follows. Suppose that
{n1, ..., nν} is the output layer and {m1, ...,mµ} is the input layer of the used perceptron. For each training
sample (x, y) the corresponding output of the used perceptron (out(n1), ..., out(nk)) is computed. Then
the weights are adapted to minimise the mean squared error according to

w(mi, nj) = γ(yj − out(nj))xi.

γ is called the learning rate and determines the speed of the learning process.

However, things get more complicated when more layers are used and the errors cannot be directly com-
puted back into the weights. The standard backpropagation algorithm uses a gradient descent method to
adapt the weights to reach the desired output. Hence, for backpropagation a differentiable error function and
therefore a differentiable output function is needed. The threshold function of the perceptron is therefore
replaced by a sigmoid function - e.g. the function 1

1+e−x which is depicted in figure 3.5a. The overall error
is computed by the mean squared error. Let (N,L,w) be a feed-forward network with layers N1, ..., Nm.
Then, for each training sample (x, y) the weights are adapted according to

w(n1, n2) := w(n1, n2) + ηδn2out(n1) ∀(n1, n2) ∈ L.

The value of δ is computed by

δn =

{
g′(in(n))(yn − out(n)) , if n ∈ Nm

g′(in(n))
∑

n′∈Nk+1
δn′w(n, n′) , if n ∈ Nk ∧ k > 1,

where yn will be the desired output of neuron n, if n is in the output layer. The derivation of these formulas
is done by differentiating the error function in dependence of the weights of the network and computing
its gradient. This gradient leads to the steepest ascent or, if reversed, to the steepest descent of the error
function and can thus be used to reduce the error by adjusting the weights into that direction. The step
size parameter η ∈ R determines how much the weights are adjusted. A higher step size leads to faster
but more chaotic training progress, whereas a lower step size only makes small adjustments. Finally, the
backpropagation algorithm can be formulated as in algorithm 3.5.

In its usual application a set of training patterns are presented to a network with fixed topology. Then,
backpropagation is used to reduce the error until some terminal condition is satisfied - e.g. the number
of weight adjustments, if the minimal error threshold is reached, etc. To gain a network that is able to
generalise, there usually also exists a validation set of patterns on which the network is not trained but the
error is computed to monitor the learning success. If a network is trained for too long, it can loose its ability
to generalise.

Since backpropagation relies on gradient descent it also shares the shortcomings of this method. It very
often gets stuck in local optima and does not find the global one. Another disadvantage of the algorithm is
that it cannot be simply used with recurrent networks. Nevertheless, backpropagation has successfully been
applied in many fields and applications. For more details we again refer to the aforementioned literature.
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Algorithm 3.5 Backpropagation
1: input feed-forward network with n layers
2: initialise the weights in the network (often randomly)
3: repeat
4: for all examples e in the training set do
5: compute the net output o for e
6: compute the error between the desired output and o
7: for layer i from n to 2 do
8: compute weight changes for all connections from layer i− 1 to i
9: end for

10: update weights in the network
11: end for
12: until terminal condition is satisfied

3.3.2 Neuroevolution

Though we do not use neuroevolution in our research, we will briefly introduce it here because it is widely
used in the scientific game AI community7. Neuroevolution describes the application of evolutionary algo-
rithms to create neural networks. As the human brain was created by evolution, it seems quite natural to
evolve artificial neural networks by using an evolutionary algorithm.

To use an evolutionary algorithm for the creation of neural networks, one has to define fitting evolutionary
operators. In the conventional approach each individual is represented by a neural network. The fitness
of the individuals is calculated by the application of the corresponding network to the given problem. If a
fixed network topology is used, the weight vector of a network can be encoded as a bit string and a standard
genetic algorithm can be used for optimisation [MD89].

Recent neuroevolution approaches also evolve the topology of the network. One of the most popular meth-
ods in this field is called neuroevolution of augmenting topologies or NEAT and was developed by Kenneth
Stanley and Risto Miikkulainen [SM02]. The evolution of topologies imposes several challenges. Net-
works with a more complex topology have an initially low fitness and thus need more time to evolve into
something meaningful. It is also not very simple to recombine two networks with different topologies, be-
cause the functionality of a part of the network is strongly connected to the rest of it and because different
network topologies can have the same functionality.

NEAT approaches these problems by starting with very simple networks that gradually become more and
more complex with each generation. It uses speciation to allow the generation of more complex networks.
Speciation divides the population into subpopulations. Stanley and Miikkulainen use fitness sharing, in
which several individuals in the population share certain parts of their fitness values with each other, to
achieve this.

For more details we refer to several publications by Stanley et al. [SM02, SBM05a, SBM05b, TWS06] as
well as the web site of the NEAT project [Sta07].

7 see section 4.2
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3.4 Reinforcement Learning

Basically, reinforcement learning describes the concept to learn by reward and punishment. It is inspired by
the concept of trial and error learning which is very common in animal and human psychology and lends
itself very well for individual learning in game-like environments. The oldest research in this area ranges
back to Edward Thorndike, who in 1911 expressed the basic idea of reinforcement learning as follows:

“Of several responses made to the same situation, those which are accompanied or closely followed
by satisfaction to the animal will, other things being equal, be more firmly connected with the
situation, so that, when it recurs, they will be more likely to recur; those which are accompanied or
closely followed by discomfort to the animal will, other things being equal, have their connections
with that situation weakened, so that, when it recurs, they will be less likely to occur. The greater
the satisfaction or discomfort, the greater the strengthening or weakening of the bond.” [Tho11]

In addition to these origins in psychology, much of the underwork of reinforcement learning is also based
on mathematical research on optimal control, value functions and dynamic programming [Bel57a,Bel57b].

Because of this somewhat broad concept, several different reinforcement learning techniques exist. The
techniques which are usually referred to as reinforcement learning are based on Markov decision processes
(MDP) in which they try to find the most valuable states and actions. The version of MDPs that is used in
reinforcement learning theory goes back to Richard Bellman [Bel57a]. The situation that is described by an
MDP is illustrated in figure 3.8. It consists of an agent that acts in some environment. The time is divided
into discrete time steps t, t+1, t+2, ... . In each time step t the agent is situated in some state st that it has
received from the environment. According to this state the agent executes some action at which results in
a change to the environment. This change is expressed by a new agent state st+1 and a reward signal rt+1

from the environment. Then, the agent acts according to this new state and so on.

Agent

Environment

rt+1

st+1

reward

rt

state

st

action

at

Fig. 3.8: The Main loop of an Agent in an MDP [SB98]

Though the rewards guide the learning process, reinforcement learning cannot be easily categorised as a
supervised or unsupervised learning method. The rewards can be seen as coming from some sort of a teacher
that says “This was good” or “This was bad”. However, the reinforcement learner draws its conclusions
by itself on how to solve the task or how to behave in this environment. Furthermore, supervised learning
is usually seen as learning by examples. An example is usually more then a simple reward signal and
expresses direct orders on how to behave. In the areas in which reinforcement learning is typically used,
examples of how to behave well are often not available or unknown. Finally, the objective of reinforcement
learning is an interactive learning process in which the learner adapts to fit to the current environment.

In the following we will give a short overview of reinforcement learning theory and the most important
algorithms. For in-depth information we refer to Sutton and Barto [SB98], which gives a very good intro-
duction into the field. This book was also the basis of this section. Formally, Markov decision processes
are defined as follows.
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Definition 3.3 (Markov Decision Process MDP).
Let S = {s1, ..., sn} (n ∈ N) be a finite set of states and let A = {a1, ..., am} (m ∈ N) be a finite set of
actions. For each pair of states s, s′ ∈ S and each action a ∈ A we define P : S × S × A → [0, 1] and
R : S × S ×A→ R as:

Rass′ = E[rt|s = st, s
′ = st+1, a = at]

P ass′ = Pr(s′ = st+1|s = st, a = at).

Furthermore, the action set function A : S → P (A) defines the set of actions that are possible in each
state s. Under these assumptions the Markov property is defined as

Pr(st+1 = s′, rt = r|st, at)
= Pr(st+1 = s′, rt = r|st, at, rt, st−1, at−1, ..., r1, s0, a0).

A system M = (S,A,R, P,A) that possesses the Markov property is called a Markov decision process.

The transition probability P as,s′ is the probability that the following state will be s′, if in state s action a is
executed. The expected rewards Ras,s′ just return the average reward if in state s action a was executed and
the following state was s′. The Markov property describes that the resulting rewards and new states only
depend on the last state and action. Anything that happened before has no influence.

The following example from [SB98] illustrates the idea and functionality behind reinforcement learning
algorithms.

Example 3.4.
Suppose a reinforcement learning agent x is playing a game of TIC TAC TOE. Such a game can be illus-
trated by a decision tree that begins with an empty playing field. Each layer in the tree represents a move
of one player. Figure 3.9 shows such a tree.
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x

x
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xo

x

x

x

o

o

x o

x’s move

o’s move

x’s move

x’s move

o’s move

Fig. 3.9: The TIC TAC TOE Game Tree [SB98]
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Each configuration of the playing field is a state and each move by x is an action in the corresponding
MDP. Furthermore, starting from one state, the further outcome only depends on future decisions and not
on what has been done in the past. Therefore, the Markov property holds. A reward can only be gained
after the game is over. Suppose a reward of 0 if the game is lost, 0.5 for a draw and 1 for a win.

The reinforcement learner x holds a table in which it saves all states s ∈ S and a corresponding value
V (s) ∈ R. At the beginning, the value of all states is set to 0.5, except the values of the final states, which
are set to 0 and 1 for loosing and winning states, respectively. Then, x plays several games in which it
adjusts the values of the states, so that they represent the estimated winning probability from the respective
state. This is done according to the following update rule. Let s be the last state before o’s move and s′ be
the resulting state after x has made its subsequent move. Then, the value of s is updated by

V (s)→ V (s) + α
(
V (s′)− V (s)

)
.

s

s´

o’s move

.
.
.

x’s move

value update

Fig. 3.10: The TIC TAC TOE Update Rule [SB98]

x plays according to the following rule. For a state s, let Succ(s) ⊆ S be the set of successor states of s. If
the game is in state s and it is x’s turn, the following state s′ is chosen according to

s′ =

{
arg maxu∈Succ(s) V (u) in 90% of all cases
a random state in Succ(s) in 10% of all cases.

In 90% of all cases x chooses the move with the highest estimated winning probability - a greedy move.
However, in 10% of all cases an exploratory move is done to gather new knowledge. The value of all states
x encounters is updated by the aforementioned update rule. In the course of several games this value table
or value function gets more and more refined until the best strategy against the current opponent has been
found. Note, that this strategy is based on the behaviour of the current opponent. If the opponent changes
its strategy, the value function has to be adjusted again.

The above example shows a possible approach to the principal problem that has to be faced in the area
of reinforcement learning and other learning techniques as well: the exploration-exploitation-dilemma. If
the player in example 3.4 only behaved greedily and chose the option with the highest estimated winning
probability, the current knowledge would be exploited very well but only few new knowledge would be
gained. On the other side, if the player would randomly choose an action, the search space would be
explored better but the player would not play very well. Therefore, in addition to different reinforcement
learning techniques, there exist also several approaches to face the exploration-exploitation-dilemma. The
simplest one is the ε-greedy approach that was used in example 3.4 with ε = 10%. For other approaches
like the softmax algorithm we refer to the book of Sutton and Barto [SB98].



3.4 Reinforcement Learning 43

If the Markov decision process with all transition and reward probabilities that model the current environ-
ment is given, it will actually be quite simple to compute the optimal policy. To do that we first have to
define policies.

Definition 3.4 (Policy π).
Let M = (S,A,R, P,A) be a Markov decision process. For each time step t the policy πt at t is defined as

πt(s, a) = Pr(at = a | st = s) s, st ∈ S, a, at ∈ A.

So, the policy πt(s, a) just tells how probable it is that the agent chooses action a if it is in state s at time step
t. Policies are often described in a time independent manner, i.e. by only giving the probabilities π(s, a) to
determine what action a is executed when the agent is in state s. The objective of the agent is to earn as
much positive rewards as possible in the long term. It is common to just sum up the rewards that are earned
to measure the success of a policy. This is no problem for discontinuous tasks, but for continuous tasks
such sums would grow to infinity. Therefore, a discount rate is introduced that weights the sum of rewards
in a such a way that the weighted summands converge against zero. Then, the sum converges against some
value that can be compared. Formally these so-called returns of a policy can be defined as follows.

Definition 3.5 (Return R, Discount Rate γ).
Let t ∈ N be some discrete time step and rt+1, rt+2, rt+3, ... ∈ R be a series of reward signals from a
Markov decision process. Then, the value

Rt =
∞∑
i=0

γirt+i+1

is called the return at time t with respect to the discount rate γ ∈ [0, 1].

The discount rate γ determines how much we look into the future. If γ is small, only the most immediate
rewards will be taken into account. If γ is big or approaches one, the considered returns will take the whole
future development according to the current policy into account. Now we can use these notations to define
the value functions which represent the knowledge that is learnt in a reinforcement learning algorithm.

Definition 3.6 (Value Functions).
Let M = (S,A,R, P,A) be a Markov decision process and let t ∈ N be some discrete time step and
rt, rt+1, rt+2, ... ∈ R be a series of reward signals which were received when following the policy π. Then,
the state value function Vπ : S → R and the action value function Qπ : S ×A→ R are defined as

Vπ(s) = Eπ {Rt | st = s} = Eπ

{ ∞∑
i=0

γirt+i+1 | st = s

}

Qπ(s, a) = Eπ {Rt | st = s, at = a} = Eπ

{ ∞∑
i=0

γirt+i+1 | st = s, at = a

}
.

The optimal value functions are defined as follows

V ∗ = max
π

Vπ(s)

Q∗(s, a) = max
π

Qπ(s, a).

The value functions always depend on the used policy. They return the estimated reward when following
the policy π from some state s, resulting in V (s), or return the estimated reward if in some state s first
action a is executed and then policy π is followed, resulting in Q(s, a). Both equations form a system of
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linear equations in which Vπ and Qπ are the unique solution, respectively. Several standard methods like
Gauss’s algorithm or numerical techniques exist to solve such systems. In the reinforcement learning field
dynamic programming methods are common to solve the Bellman optimality equations.

The optimal policy π∗ is the policy that maximises the return in all states. It can be shown that such a
policy exist for all Markov decision processes. With some mathematical conversions and by using that
Rt = rt + Rt+1, the equations in definition 3.6 form the famous Bellman equations that have to be solved
to compute the state value function. For more details we again refer to Sutton and Barto [SB98].

Vπ(s) = Eπ {rt+1 + γV (st+1) | st = s}
=
∑
a∈A

π(s, a)
∑
s′∈S

P ass′(R
a
ss′ + γVπ(s′))

Since the optimal policy is much more interesting for us than some arbitrary policy, one can convert the
Bellman equations to a form which uses this policy. To do this we utilise the optimal value functions. So,
for an MDP (S,A,R, P,A) we get the Bellman optimality equations

V ∗(s) = max
a∈A(s)

Qπ
∗
(s, a)

= max
a∈A(s)

E {rt+1 + γV ∗(st+1) | st = s, at = a}

= max
a∈A(s)

∑
s′∈S

P ass′(R
a
ss′ + γV ∗(s′))

Q∗(s, a) = E

{
rt+1 + γ max

a′∈A(st+1)
Q∗(st+1, a

′) | st = s, at = a

}
=
∑
s′∈S

P ass′(R
a
ss′ + γ max

a′∈A(s′)
Q∗(s′, a′))

This time both equations each form a system of nonlinear equations. If the optimal value functions are
computed, the optimal policy can be easily derived. If the optimal state value function V ∗ is known, the
optimal policy is to choose the action which leads to the best valued successor state with respect to the
expected reward the chosen action returns. So, the optimal policy would be to choose the action according
to

π∗(s) = arg max
a∈A(s)

{∑
s′∈S

P ass′ ·
(
Rass′ + γV

(
s′
))}

.

If the optimal action value function Q∗ is known, the optimal policy can be even more easily derived by
just choosing the action a in state s with the highest Q-value.

π∗(s) = arg max
a∈A(s)

Q∗(s, a)

This is especially convenient because a fitting policy can be derived from an action value function without
knowing P and R. However, they are needed to compute V ∗ or Q∗.
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The policy evaluation algorithm can be used to compute the state value function of a given policy. Using
this algorithm in combination with policy updates according to the computed value function results in the
optimal policy. The value iteration algorithm uses this idea to directly produce an approximation of the
optimal state value function V ∗.

Usually, value iteration is used if a problem together with its underlying Markov model is given. Then,
value iteration is applied to determine the optimal policy. This policy is then used to solve the given task.
No further learning is needed because the optimal policy is already known. The time complexity of both
algorithms is polynomial in the number of states.

Algorithm 3.6 Policy Evaluation [SB98]
1: input the policy π which should be evaluated
2: initialise V (s) = 0 for all states
3: repeat
4: ∆← 0
5: for all s ∈ S do
6: v ← V (s)
7: V (s)←

∑
a∈A(s) π(s, a)

∑
s′∈S P

a
ss′(R

a
ss′ + γV (s′))

8: ∆← max(∆, |v − V (s)|)
9: end for

10: until ∆ < Σ (a small positive number)
11: output V ≈ V π

Algorithm 3.7 Value Iteration [SB98]
1: initialise V arbitrarily; e.g. V (s) = 0 for all states
2: repeat
3: ∆← 0
4: for all s ∈ S do
5: v ← V (s)
6: V (s)← maxa∈A(s)

∑
s′∈S P

a
ss′(R

a
ss′ + γV (s′))

7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < Σ (a small positive number)

10: output V ≈ V ∗

The biggest drawback of these dynamic programming methods is that the whole Markov model has to be
known in advance. For most problems that we want to approach with reinforcement learning this model is
not known. In fact, even for the TIC TAC TOE example above, the underlying Markov model depends on
the behaviour of the opponent and cannot be known in advance. So, the reinforcement learning research
community came up with other techniques to handle such problems. These algorithms are able to learn
without given transition probabilities and estimated rewards by dropping the objective to compute the opti-
mal value functions. Therefore, they are often called model-less. However, this is not really valid because
the state and action sets are still needed to use these algorithms. Instead of the state value function V the
action value function Q is used because it is only possible to directly derive a policy from Q, if P and R
are not known.

For updating the value function the value iteration algorithm took into account the whole future return
development by using the transition probabilities and estimated rewards. Since we don’t want to use these
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any more, the solution is to just look one step into the future and continuously update the value function,
so that the resulting policy will improve over time. Therefore, the algorithms in this field are called time-
differential reinforcement learning. The simplest algorithm to achieve this is the SARSA algorithm. The
name of the algorithm stems from the update rule in which s, a, r, s′ and a′ are used.

Algorithm 3.8 SARSA [SB98]
1: initialise Q arbitrarily
2: loop
3: initialise state s
4: choose a from s using policy derived from Q (e.g. ε-greedy)
5: repeat
6: execute a, observe r, s′

7: choose a′ from A(s′) using policy derived from Q
8: Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))
9: s← s′, a← a′

10: until s is terminal
11: end loop

With the SARSA algorithm the agent learns by updating its Q table with newly gained knowledge. So over
time, while applying the derived policy, the value function gets more and more refined and should converge
against Q∗. However, in general this is not always the case. SARSA is a so-called on-policy reinforcement
learning technique. This means, that the used policy has an effect on the learning process. This would be
not such a big problem, if a pure greedy policy was used. However, to handle the exploration-exploitation-
dilemma, methods like ε-greedy or softmax policies are often employed. This can have a profound effect
on the learnt policy, which can at best be demonstrated by the cliff walk example.

Example 3.5.
In the cliff walk task an agent has to learn to walk from a start to a finish point. Between those points there
is a dangerous cliff on one side of the way. If the agent walks over the cliff it receives a strong penalty and
has to restart the walk. Figure 3.11 illustrates this scenario. The rewards the agent receives are given in
table 3.3. Note that each step gives a small penalty, thus rewarding shorter paths.

cliff finishstart

shortest path

safest path

Fig. 3.11: The Cliff Walk Example

Table 3.3: The Rewards in the Cliff Walk Example
event reward
each step -1
falling over the cliff -100
reaching the finish +100
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Suppose that for the learning process an ε-greedy policy using the SARSA algorithm is used. For example,
ε could be set to 10%. Then, even if the agent already knew the optimal policy to take the shortest path,
it would notice that in some of these 10% of all steps it would fall over the cliff. Each time this happens,
SARSA would react with a corresponding adjustment of the Q table. Thus, the agent would learn to keep
away from the cliff to avoid falling over it. The SARSA agent would learn to take the safest path instead of
the shortest one.

An off-policy learning method would take the effects of the used policy into account. Such a method would
learn to take the shortest path although the ε-greedy policy would result in numerous falls over the cliff.
After the learning process converged, ε could be set to zero resulting in a pure greedy strategy. Then, the
agent would take the shortest path without falling.

In 1989 Watkins [Wat89] published the Q-learning algorithm, which transferred the on-policy SARSA into
an off-policy learning method. It uses the fact that it is possible to learn one policy while acting according
to another one. In this case the optimal policy is learnt while the agent follows some other strategy, e.g.
random, ε-greedy, softmax etc.

Algorithm 3.9 Q-Learning [SB98]
1: initialise Q arbitrarily
2: loop
3: initialise state s
4: repeat
5: choose a from s using policy derived from Q (e.g. ε-greedy)
6: execute a, observe r, s′

7: Q(s, a)← Q(s, a) + α(r + γmaxa′∈A(s)Q(s′, a′)−Q(s, a))
8: s← s′

9: until s is terminal
10: end loop

There exist numerous other approaches for reinforcement learning algorithms that are based on the loose
idea of learning from reward and punishment. However, the Q-learning algorithm is the algorithm that
is considered in the majority of all reinforcement learning research. It has proven to be fast and reliable.
There also exist several derivations of the Q-learning algorithm which were successfully applied in different
projects. Furthermore, there also exist multi-agent reinforcement learning approaches in which multiple
agents adapt according to a shared action value function. We refer to Sutton and Barto [SB98] for further
details and information.
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3.5 Swarm Intelligence

Since the 1990s swarm intelligence has become a major field in artificial intelligence. The principal idea
behind the field is the usage of many, often hundreds, autonomous agents with few capabilities instead of a
central complex controller to solve a problem in a cooperative and self-organising way. It has been shown
in several applications that swarms are able to solve complex problems [BDT99]. The usual inspiration
behind swarm methods comes from natural, self-organising swarms as in insects or birds.

The first part of this section concerns itself with the notion of emergence that plays a major role in swarm
systems and also in this thesis. The second part presents an overview about some algorithms and techniques
from the swarm intelligence field.

3.5.1 Emergence

Emergence describes the process of how the behaviour of a complex system of a set of entities or agents
arises out of the individual behaviour of the entities. The notion emergent behaviour describes the resulting
behaviour of the system. The notion of emergence mainly goes back to the following quote from the
philosopher G.H. Lewes from the year 1875.

“Every resultant is either a sum or a difference of the co-operant forces; their sum, when their
directions are the same – their difference, when their directions are contrary. Further, every resul-
tant is clearly traceable in its components, because these are homogeneous and commensurable.
It is otherwise with emergents, when, instead of adding measurable motion to measurable motion,
or things of one kind to other individuals of their kind, there is a co-operation of things of unlike
kinds. The emergent is unlike its components insofar as these are incommensurable, and it cannot
be reduced to their sum or their difference.” [Lew75]

Emergence does not only relate to swarm intelligence, though it is probably most prominently featured in
this field. Yet, emergence can be seen in almost all complex systems. For example, the human conscious-
ness and deductive processes are an emergent property of the brain and its individual neurons. In terms of
technical system the behaviour of a rule-based system is an emergent result of the interplay of the individual
rules in this system. In analogy to the brain example, the behaviour of an artificial neural network is also
an emergent property of its single neurons.

The main matter of research in emergent systems is the relation between individual and system behaviour.
The challenge in creating such a system is the implementation of the right individual behaviours to create
the desired result in the system. The relation between an individual and the system is often complex or even
chaotic.

Emergence can be seen from two perspectives. The perspective that is usually taken in swarm intelligence
research and artificial emergent systems is that the emergent behaviour of the system can be traced back to
the individual behaviour of the components of the system. This view is sometimes called weak emergence
and relates to the principle of reductionism, which says that all properties of complex systems can be
explained by the properties of its parts and is the basis of most science. If we are not able to find that
relation, then this will be caused by its high complexity.

The second view which is called strong emergence states is that the system exhibits properties that can
not be deduced to the properties of the single entities and implies that some qualities of the system are
irreducible. This view relates to the principle of holism which goes back to the following famous quote
from Aristotle.
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“The whole is more then the sum of its parts.” (Aristotle)

In science the view of strong emergence is partly taken in the chaos theory and the analysis of complex
systems. Instead of trying to understand the detailled inner workings of a system, the system is modelled
on a higher abstraction level and the focus is on trying to make statements about the system as an irreducible
entity.

As the relation between individual and system behaviour is often very complex, optimisation and search
algorithms can be used to design working systems. A very prominent example is neuroevolution. Because it
is very hard to design a complex - maybe even recurrent - neural network, an evolutionary algorithm is used
to evolve networks that are able to perform a certain task. The fitness function is based on the performance
of the whole network, whereas mutation and recombination operate on the level of the components of the
network.

3.5.2 Artificial Swarms

Considering the possible applications of swarms in computer science, there exist two areas. The first
area concerns itself with the simulation of swarm-like systems - e.g. traffic management simulations or
the simulation of escaping people for the design of safe buildings. Another application in this area is the
simulation of the movement of natural swarms - e.g. birds, fishes, humans - to create believable virtual
representations in computer graphics.

In the second area, swarm based systems are used to solve algorithmic and optimisation problems. As they
have no central controlling instance, swarm systems are highly scalable and very robust against the loss
or exchange of single agents. In addition, it is often computationally or technically cheaper to work with
several entities that have only few capabilities instead of one expensive central system. The field became
popular with the publication of the ant colony optimisation by Dorigo [Dor92, BDT99] and the particle
swarm optimisation by Kennedy and Eberhart [KE95, KE01] algorithms.

Ant colony optimisation is based on the ant system that was published by Marco Dorigo in his PhD thesis
[Dor92] and was used to approach the travelling salesman problem8. The inspiration behind the algorithm
is the foraging behaviour of ants, which use the concept of stigmergy to find the shortest path to the current
food source. The notion stigmergy describes the concept of information exchange through the environment
and was introduced by Piere-Paul Grassé in 1959 [Gra59] in an article about the emergent behaviour of
termites. The usage of stigmergy by ants was first published by Deneoubourg [DAGP90]. Many insects use
stigmergy to communicate with each other by leaving pheromones in their environment that can be sensed
by the others.

Ants leave a pheromone trail wherever they go and if an ant senses the pheromone trail of another ant,
it will most likely follow this trail. The pheromone is volatile and its concentration decreases over time.
Figure 3.12 shows the setup of a simple experiment that shows how these pheromones can be used to find
the shortest path between the ant colony and the food. There exists a shortest path and two detours. In the
initial configuration the ants are positioned at their colony. Then, the ants will try to find some food. As they
do not know the shortest path, they decide randomly. However, the ants that take the shortest path need less
time to travel there and back again. Therefore, the ants on the shortest path will walk along their path more
frequently than the others. Hence, the pheromone concentration on the shortest path will start to increase.
As an ant is more likely to follow the highest pheromone concentration, more and more ants will follow the
shortest path, which further increases the pheromone concentration on this path in a self-inducing manner.
8 Find the shortest tour through a set of cities that starts and ends in the same city without visiting a city twice.
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Fig. 3.12: Illustration of an Experiment on the Foraging Behaviour of Ants [BDT99]

Ant colony optimisation is the generic term for all algorithms that are based on Dorigo’s ant system. It can
be used to approach all optimisation problems that can be reduced to the searching of shortest paths in a
graph. In the basic algorithm the edges of the graph are provided with a pheromone value. Virtual ants are
sent over the graph. At each node the ants choose their paths randomly by basing the probability to choose
an edge on its pheromone value. If the ant has chosen to take some path it increases the pheromone value
of this edge. As in the natural system, the algorithm converges against the shortest path. Algorithm 3.10
describes the basic ant colony optimisation algorithm. Many implementation add local search and other
heuristics to improve the results.

The update of the pheromone strengths and the calculations of the probabilities differ between different
implementations of the algorithm. For example, in the ant colony system only the pheromones of the ant
with the shortest path are used to update the edges. For more details we refer to [BDT99]. There also exists
other ant-based methods. For example, the AntNet algorithm [dCD98] uses stigmergetic communication
for the routing of packages through a network of computers.

Another major contribution from the field of swarm intelligence is the particle swarm optimisation al-
gorithm. Particle swarm optimisation was conceived by Kennedy and Eberhart [KE95, KE01] and is an
socially inspired algorithm that is usually used for numerical optimisation. The algorithms is based on the
model of social learning9. Social learning describes the concept that humans do not only learn individually
but also by exchanging views about a learnt topic with others and by following some common learning goal.
Given this source of inspiration, the method therefore fits very well into the field of cultural evolution and
memetics. In addition, particle swarm optimisation can also be seen as another evolutionary computation
method because of its population-based approach10.

The algorithm itself uses a model of “flying” particles, that move through some n-dimensional (n ∈ N)
continuous solution space using some velocity vector v ∈ Rn. The notion of velocity is a bit misleading
because it means that in each iteration of the algorithm, the content of v is added to the position of the given
particle. The velocities are adapted according to the best position that was found until now by the single
particle and the whole swarm. Algorithm 3.11 presents the common particle swarm optimisation algorithm
in detail.
9 see section 3.2

10 However, it was actually first published on a conference about neural networks [KE95].
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Algorithm 3.10 Ant Colony Optimisation
1: input: graph with n cities and k virtual ants
2: for all edges do
3: set initial pheromone strength to 0
4: end for
5: for k = 1 to m do
6: place ant k on a randomly chosen city
7: end for
8: let T+ be the shortest tour found from beginning and l+ be its length
9: repeat

10: for k = 1 to m do
11: create empty tour Tk
12: for i = 1 to n− 1 do
13: choose the next city randomly according to the pheromone distribution of the available edges
14: add next city to Tk
15: end for
16: end for
17: for k = 1 to m do
18: compute length lk of Tk
19: if lk < l+ then
20: T+ = Tk
21: l+ = lk
22: end if
23: end for
24: for all edges do
25: update pheromone strength
26: end for
27: until terminal condition is satisfied

Algorithm 3.11 Particle Swarm Optimisation
1: input: numerical optimisation problem with dimension n ∈ N
2: for all particles p do
3: initialise p
4: end for
5: repeat
6: for all particles p do
7: calculate fitness value f of p
8: if f is better than the best fitness value in p’s history then
9: bestp(p) = pos(p)

10: end if
11: end for
12: determine the best yet achieved position bestg from all particle’s histories
13: for all particles p do
14: draw two random vectors r1, r2 ∈ [0, 1]n

15: vel(p) = vel(p) + c1 · r1 · (bestp(p)− pos(p)) + c2 · r2 · (bestg − pos(p))
16: pos(p) = pos(p) + vel(p)
17: end for
18: until terminal condition is satisfied
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Line 15 shows the velocity adaptation. The new velocity vector is composed from the former velocity,
the direction vector to the best known position of the particle - bestp - and the best known position of the
population - bestg. c1 and c2 are real-valued parameters of the algorithm that control the importance of the
respective position. A common setup is c1 = c2 = 2. r1 and r2 add some randomness to the new velocities.
In many implementations r1 and r2 are just scalar values and not vectors.

The original algorithm by Kennedy and Eberhart also uses another set of vectors - called bestl - that contain
the best positions that have been seen by a local neighbourhood of particles. In this implementation the
particles have fixed neighbours in a ring-like structure.

The field of swarm intelligence is not only bound to algorithms. For example, the SWARM-BOTS project
[MGC+02, DTT+06] and its successor the Swarmanoid project [COD07, TAVD08] try to develop small
robots that cooperate to achieve some task. The robots in the SWARM-BOTS project can communicate
with each other by emitting light in some colour. They can use hooks and grippers to hold each other and
to combine their strengths. The Swarmanoid project adds two more robot types: flying and climbing ones.
Figure 3.13 shows a group of swarmbots that cooperatively crossing a gap.

Fig. 3.13: A group of Swarm-Bots cooperates to cross a Gap [DTT+06]
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State of the Art

In this chapter we will give an overview of the current state of the art in artificial intelligence for computer
games. We have divided the chapter into two sections - state of the art in the game industry and state of
the art in science. We have done this, because there is a gap in the sophistication of the used methods
between the two fields. Whereas the industry is interested in very efficient, reliable and quickly imple-
mented methods, science is more interested in the application of machine learning methods and emergent
behaviour.

4.1 Industry

It is very hard to gather knowledge about the used AI routines in commercial computer games. The inter-
nal algorithms are usually kept secret because the companies want to gain advantage over each other by
developing new technologies. Behind graphics and game design, game AI is becoming a more and more
important selling point. Another reason for the secrecy is that the game agents often cheat to be compet-
itive. For example, the AI of many strategy games has unlimited resources for building units, or game
agents in action games can see through walls. The companies obviously want to hide this from the players.
In addition, the companies often exaggerate the abilities of the game AI for advertisement. Therefore, we
can only give a rather small overview that is based on games for which publications about their AI routines
exist. In addition, we were able to gather information from a game designer and game AI programmer,
though we cannot present proper references for the information we obtained this way.

This section is split into three subsections. In the first part we give a general overview of AI in commer-
cial computer games. In the second part we provide an in-depth analysis of the AI routines in the game
QUAKE III. The full source code of this game has been published which makes it possible to analyse it in
this way. The third section describes methods that are sometimes used to make game agents more stupid
than they actually are in order to create a more entertaining game experience for the player.

4.1.1 An Overview of AI in Games

The AI routines of the virtual characters in computer games are usually not very sophisticated in terms of
learning and adaptation. This has several reasons. First, the main resources of the computer are consumed
by the graphics and physics of the game to give it an impressive look. This leaves the AI routines a low
priority in the usuage of the processor. Second, the AI of the game agents is usually not implemented
until the graphics, level design and physics of the game are finished. Therefore, the AI developers are
under high pressure and have only little time to do their work. Finally, in contrast to graphics and physics
frameworks that are often licensed from special companies, there exists no framework for typical game AI
and learning routines. For example, KYNAPSE [Kyn07], the leading AI framework in the games industry,
only offers algorithms for three-dimensional path finding. In practice, most companies implement their
own AI methods and keep their algorithms secret.
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In the following we will show some typical game AI examples. As we mentioned above it is very hard to
acquire specific information about the used algorithms. However, there are some notable exceptions. For
example, Lars Lidén, one of the designers of the game HALF-LIFE - a first-person shooter game from 1998 -
published some of the used algorithms [Lid01,Lid04]. The developers of the game FARCRY - a first-person
shooter game from 2004 - published a manual [Cry04] for creating modifications of the AI scripts in their
game, in which several details about the used algorithms are presented. Finally, the book “Programming
Game AI by Example” by Mat Buckland [Buc05] gives a good overview of typical techniques.

Navigation

Navigation in most computer games is accomplished by so-called waypoint graphs. A waypoint represents
a location in the virtual environment. As it is no problem for the game agents to locate themselves they
can assign their position to one of the waypoints easily. These waypoints form the nodes of the waypoint
graph. Two waypoints will be connected by an edge, if it is possible to go from one to the other in a straight
line. The graph is then used to navigate through the environment by going from one connected waypoint
to another. To find the shortest path, the agents usually use Dijkstra’s or the A∗ algorithm [Dij59, HNR68,
DP85], where the length of an edge represents the distance between the respective waypoints. Figure 4.1a
shows an example for a waypoint graph in a two-dimensional environment.

(a) Waypoints (b) Convex Regions

(c) Hexagons
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(d) Hexagons with Influence Map

Fig. 4.1: Examples for different Navigation Techniques

The creation of these waypoints is often semi-automatic. The waypoints are placed by hand by the level
designer or are automatically placed on important spots like the position of a collectible item. Waypoints
can be automatically connected, if they are visible from each other. The level designer then has to check if
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the connected waypoints are actually reachable from each other. The remaining waypoints and edges are
usually placed manually. Waypoints often hold more information then just their location - e.g. if an item is
positioned upon them or if they are usable for taking cover or hiding.

Figure 4.1 also illustrates other examples of how navigation in complex game environments can be accom-
plished. Some games - e.g. QUAKE III and FARCRY - use convex areas for navigation. Inside such an
area an agent can move from one point to another in a straight line without leaving the area. Navigation is
then accomplished by passing neighbouring areas until the goal is reached. Such regions usually represent
the map structure much better then waypoints and are in many cases more efficient. For example, a large
clearance can often be represented by one or two convex areas. Inside each area the agent can navigate
freely without looking for obstacles. If the clearance is represented by waypoints, several waypoints, which
are distributed over the clearance, will be needed. Even then, the agent will not have the same freedom of
movement.

The identification of these areas can be done semi-automatically or even fully automatically. In FARCRY

the convex regions are identified by triangulation. Figure 4.2 illustrates this procedure. The game world
in FARCRY consists of large outdoor areas that can usually be walked everywhere, except for specifically
placed obstacles like trees or buildings. In addition, the agents only walk on the ground and do not have to
jump. This simplifies the identification of the walkable convex regions. In the first step (figure 4.2a), lines
are drawn between all sets of three obstacles and some spots on the borders of the map. In the next step
(figure 4.2b), new nodes are created at the intersections between the lines and the borders of the obstacles.
The remaining areas form the basis of the navigation map in figure 4.2c. As the obstacle on the lower left
of our example shows, the described procedure does not always deliver perfect results. Therefore, the level
designer has to optimise the resulting navigation map by adding forbidden areas and by checking if two
adjacent regions are really reachable from each other. This method only works in outdoor environments
which do not have a three-dimensional structure. In indoor environments FARCRY uses classical waypoints.
The developers of QUAKE III managed to create a fully automatic procedure to identify convex regions in
three-dimensional indoor environments. This method is described in section 4.1.2.

(a) Step 1 (b) Step 2 (c) Step 3

Fig. 4.2: Triangulation of Convex Areas in FARCRY

Strategic games usually partition the map in hexagonal or quadratic regions of the same size to accelerate
the navigation routines. The units then plan their path as a series of regions (see figure 4.1c). A usual
addition to this method is the adding of so-called influence maps (see figure 4.1d). These maps influence
the cost of crossing one of the regions. For example, some regions could contain a forest-like environment,
which makes it harder to cross them. The agent then takes the path with the lowest accumulative cost.
Influence maps can be used for several purposes. For example, an opposing unit could cause a rise in the
cost for the regions around its position, so that the game agents avoid its vicinity. Usually, several influence
maps are laid upon each other to determine the resulting navigation behaviour.

Lidén [Lid01] has published a paper on how the waypoint system in HALF-LIFE is used for strategic rea-
soning. For example, the nearest waypoint to the player is identified and all waypoints which are connected



56 4 State of the Art

to this one are marked. Therefore, the agents know at which waypoints they can attack the player and at
which ones they are in cover. In addition, the waypoints that are marked as dangerous and that are behind
the player can be used for surprise attacks. Figure 4.3 illustrates this procedure.

- player

- nearest waypoint to player

- dangerous waypoint

- safe waypoint

Fig. 4.3: Strategic Reasoning with Waypoints in HALF-LIFE

In racing games the agents also use a waypoint-like navigation technique. They usually follow an ideal rac-
ing line that is manually determined by the developers. This line also holds information about acceleration
and braking zones as well as desired speeds. The agents will only have to depart this line, if they interact
with other racers.

The game FORZA MOTORSPORT puts this concept one step further. To simplify the creation of racing
agents, the developers constructed a test track that provides features of all the other tracks in the game. This
track was partitioned into several segments. To create an artificial racer the developers now only have to
drive on this test track. Their racing lines are then recorded for each segment. In the real game the racing
agent then matches the segments of the test track to segments on the other tracks and imitates the racing
line that was shown to him in this segment. Therefore, the game features agents which are able to drive
several lines, which makes them more believable. However, only the general lines are imitated. The rest
of the behaviour is still hard-coded. This method was developed by the Microsoft machine learning and
perception research group in Camebridge [Mic07b]. However, they did not publish any details about their
algorithm.

Movement

Movement without the safety net of a waypoint system is quite problematic, especially if the games offer
fast paced, real-time action. There exist numerous examples of agents which fall of ledges or get stuck
between obstacles in combat sequences [Wet04]. To intelligently use the environment, most games rely
on the placement of special, invisible objects on the map. For example, so-called cover spots are used in
FARCRY which represent areas which can be used to take cover. In the same way there exist objects which
represent other tactical and movement information.

There also exist several action games in which the movement of the agents is fully scripted. Hence, the
agents always do the same actions - e.g. running form one prespecified spot to another and opening fire -
when they encounters the player. By doing this, more sophisticated movement can be presented at the cost
of believability, if the player plays the game more then once.

In racing and simulation games the agents are often not bound to the same physics as the player. Instead
they use a very simplified physics model. For example, in several racing games it is only the player who
will crash, if two cars touch each other, because the artificial racer has no difficulty to keep its car on the
track [Wet04].
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Decision Making

Decision making in commercial game AI is usually accomplished by finite state machines and behaviour
scripts. These are prespecified and hard-coded by the developers of the game and not adaptive. Figure 4.4
shows a finite state machine as it is used to control one of the agents in FARCRY. Each state represents
a behaviour script. In addition, certain objects - so-called anchors - are placed in the environment that
can trigger certain scripts for execution, if the agent is in the idle state and gets in the close vicinity of
the anchor. For example, the agent sits down at a computer or talks to another agent. These actions are
completely staged.
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Fig. 4.4: Example Finite State Machine from FARCRY [Cry04]

The finite state machine differs between five states. The edge labels correspond to certain events in the
game. There exists a small rule-based system that controls the transitions between the states. The agent
starts in the idle state in which it reacts to anchors or patrols along a predefined path. If it hears some
interesting sound - e.g. footsteps - it changes into the interested state. There, it starts searching its vicinity
for the source of the sound. If a threatening sound occurred - e.g. the firing of a weapon - the agent will go
into the threatened state, display a scared animation and search for cover. Finally, if it encounters the player
or an opposing agent, it will switch into the attack state and start combat. The difference between the idle
and the alert state is, that in the idle state the agent is behaving as if it does not expect to be attacked. It will
not look around and be alert for enemies.

In strategy games the AI usually follows some if-then-else rules, which are conceived by the developers
and the level designers, to make its decisions. Usually, the level designers add strategic information to the
created map to help the AI system. This includes general information, like what units should be the most
useful, or location specific information, like strategically advantageous positions that should be conquered.
Because of the high predictability, most experienced human players can easily find a strategy that will
always win against the opposing agent [Wet04].

Some games feature more sophisticated character models to create more believable behaviours. For exam-
ple, the agents in the game THE SIMS have certain desires and intentions - reminiscent of the BDI (believe,
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desire, intention) approach - on which they base their decisions. However, the executed actions are just
scripts as well. Another game that presumably uses a similar approach is S.T.A.L.K.E.R. - a first-person
shooter game from 2007 - which presents a huge game world in which competitors of the player and ani-
mals act on their own intentions, often independently from the player. Sadly, the developers of these games
did not publish any details about their used algorithms. In the case of S.T.A.L.K.E.R. the more sophis-
ticated AI system delayed the completion of the game by more then one year because of balancing issues
and problems in gameplay.

Though learning and adaptation techniques are rarely used in commercial computer games, there exist some
notable exceptions. For example, the god game BLACK & WHITE contains a creature which plays the role
of some kind of a representative of the player - which is a god - in the game world. At the beginning of the
game this creature is displayed very young and untaught. It wanders around aimlessly and does apparently
random thing like helping to build a house or destroying it. The player can then reward or punish the
creature for what it has done by stroking or slapping it with the mouse cursor. As the creature grows older
it learns from these rewards, does the things it gets rewarded for and avoids to be punished. Though this
sounds like reinforcement learning, the used algorithm was sadly not published.

Some games have gone to another extreme by almost completely staging the behaviour of the game agents.
In these games the player usually triggers an event by doing something - e.g. entering a new room, activating
a switch or looking at something - upon which the game agents perform a predefined sequence of events.
The player can sometimes affect this sequence. The goal of this method is to create a more immersing,
movie-like experience. The big disadvantage of this completely scripted approach is its high predictability
in repeated game plays.

Resource Management

There exist different approaches to resource management in computer games. In several games, especially
strategy games, resource management is ignored. The artificial player just has unlimited resources and can
do what it wants with them. Though the industry seldomly admits this, the cheating can be identified in
replays of matches or by monitoring the production speed of the computer-controlled forces.

If the agents are also subject to limited resources, the usual solution is again the implementation of hard-
coded rules. This means, that the designers of the game and the developers try to find some good strategy
for resource management which they put into simple rules that are then implemented. The game AI then
always manages its resources according to these rules. Usually, no adaptation to different player behaviours
is done.

Team Behaviour

The aspect of team behaviour has become more and more important in recent years, because the players
have become more discerning and more games offer team-based gameplay. For example, the agents in
FARCRY exchange information about spotted opponents (the HEADS UP event in figure 4.4). They also
try to surround the attacking opponents in combat situations.

In multi-player games the agents usually act according to a predefined set of rules for the team behaviour.
Such a team strategy usually gives each of the agents some role that is associated with some behaviour
script - e.g. patrol some area, attack along some path, hide somewhere, follow another agent etc. If the
player is part of the team, it will usually be possible for him to order the agents to take a specific role.
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4.1.2 An in-depth Example: QUAKE III

As we already mentioned QUAKE III - as well as the whole QUAKE series - is a first-person shooter game,
whose source code has been published. The QUAKE games were and still are very successful and always
on the front of the newest game technologies. For example, the first QUAKE was the first game in its genre
to feature real three-dimensional graphics. The underlying frameworks of QUAKE to QUAKE III were sold
and licensed to other companies to create their own games. For example, the game HALF-LIFE uses the
first QUAKE engine.

The special feature of QUAKE III is that it is mainly based on multi-player gameplay. In its most usual
gameplay mode several players compete on a map. The player that is the best at surviving and applying
damage to the others wins. However, the game also contains team-based game modes in which two teams
fight against each other or try to steal the opponent team’s flag from its base.

The single-player mode just features the same maps as in the multi-player mode, whereas game agents fill
out the remaining player slots. Therefore, the game AI in QUAKE III is quite sophisticated and advanced
in comparison to other games. In addition, QUAKE III is one of the very few games in which the AI is
able to work almost independently from the level design. All navigation information and strategies are
automatically derived from the map. Though it is possible to do so, the level designer usually does not have
to place behaviour scripts and waypoints for them to operate well.

J. M. P. van Waveren took part in the development of the QUAKE III game agents and wrote about them in
his master thesis [vW01]. This document and the source code of the game give a very detailed view of the
used algorithms and methods.

General Layout

Figure 4.5 displays the general layout of the QUAKE III game AI as presented by van Waveren. It is
separated in four layers in such a way that the upper layers use procedures and sensors from the lower
layers in their procedures. It should be noted that the upper layers also directly call functions that are not in
the next lower layer.

Team Leader AI

Misc. AI AI Network Commands

Fuzzy Character Goals Navigation Chats

Area Awareness System Basic Actions1st

2nd

3rd

4th

Fig. 4.5: The general Layout of the QUAKE III AI System [vW01]

The lowest layer contains the basic functionality for movement and location in the game world. This
means that it contains functions which let the agent perform certain actions in the game world, like moving
forward, jumping or changing the view angles. The agent navigates and locates itself by the so-called area
awareness system. Layer 1 contains all functions through which the agents can access this system. The
section about navigation below contains more details about the area awareness system.

In the next layer one can find several subsystems. The fuzzy module is used for weapon selection and
decision making. It contains a simplified and small fuzzy reasoning system. The character module contains
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functions to load character files that determine tendencies for certain actions. All code that describes be-
haviours to follow any of the subgoals in the game is combined in the goals module. Finally, the navigation
and chats modules contain code for path selection and text chats, respectively.

The third layer contains the so-called AI network. This is a finite state machine that determines the current
behaviour of an agent. In addition, it contains code to interpret and follow commands that have been given
to this agent from another agent or - in the form of text messages - from the player. The misc. AI module
contains all other single-player AI stuff. For example, the solution of small in-game puzzles - e.g. pushing
a switch to open some door - are done here.

Finally, the forth layer represents the team leader AI. This module combines all code that manages the team
strategies and the distribution of roles to the agents.

Navigation

The navigation system in QUAKE III is quite different to many other games as it does not rely on manually
positioned waypoints. Instead of that convex regions are calculated from the map structure which are then
used for navigation. As we already mentioned in section 4.1.1, using convex regions for navigation gives the
agents more freedom in their movement and a better understanding of the game world. In QUAKE III these
regions are called areas and the system which manages and uses these areas is called the area awareness
system (AAS).

The identification of the areas is based on the map representation. QUAKE III maps are stored as binary
space partition trees (BSP tree) [FKN80]. Such a tree represents the world as intersections of several
hyperplanes. Each inner node in this tree represents a hyperplane which splits the space into two subspaces.
The two subtrees then represent the spaces on one and on the other side of the hyperplane. Further nodes
split the space into more and more subspaces until the remaining leaf nodes either represent completely
filled or empty subspaces. Figure 4.6 illustrates this procedure in a two-dimensional space.
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Fig. 4.6: BSP Tree

Figure 4.6a shows an exemplary map which can be represented by a BSP tree. The surfaces in the map are
then described by hyperplanes (a,b,c,e,f,g) in figure 4.6b. Finally, the resulting BSP tree is shown in figure
4.6c. The leaf nodes represent the resulting subspaces, where some are filled and some are empty (A and
B).

As the subspaces are represented by their bounding hyperplanes, they are guaranteed to be convex. Open
regions which are not convex have to be represented by several convex areas. For navigation only the free
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subspaces are of importance. Therefore, the AAS only uses these ones and strips the BSP tree from all
solid leafs and subtrees. The representation as a BSP tree has several advantages. The corresponding area
to some given location can be quickly computed by going down the tree and checking on which side of the
splitting plane the location resides. In addition, it can be used for fast collision detection with the world’s
surfaces.

All characters in QUAKE III - though they have different graphical models - use the same bounding box for
collision detection. Therefore, half of the dimension of this bounding box is subtracted from the boundaries
of the regions to obtain all walkable regions according to the origin of the agents. These regions are the
areas which the AAS uses. Some of these areas can have special properties. For example, they can be filled
with water or contain items. Therefore, the datastructure for an area can contain all this information.

After having recognised all areas, they have to be connected so that an agent is able to pass from one area to
another. To do that much effort is made in the form of several heuristics that compute if and how an agent
would be able to go from one area to another. These calculations are quite complex because the agents are
able to do several movement actions like jumping, swimming and rocket jumps1. For more details on the
computation of these reachabilities we refer to van Waveren [vW01].

After the reachabilities have been computed, the areas can be used for navigation. Inside an area an agent
can reach all points by moving in a straight line. To reach another area the routing algorithm computes the
path the agent would need to cross all areas in between and chooses the shortest sequence of areas.

The routing algorithm that is used is essentially a breadth first algorithm. The developers justify this de-
cision by the fact that the areas usually have very similar dimensions. Thus, the advantages of the A∗ or
Dijkstra’s algorithm are not as big as with usual graphs. They also do not use a precomputed routing table
because some features of the map can change. For example, doors can be closed and have to be opened
somewhere. To accelerate the routing algorithm, previous results are stored in a cache. In addition, multi-
level routing is used. This means that sets of areas are combined to clusters. The agents only navigate per
area in their current cluster and choose their paths per cluster for remote regions.

The creation of the area clusters works semi-automatically. It is possible to let the clusters be computed by
an algorithm. This algorithm marks areas as cluster portals - i.e. areas that connect two clusters - by using
geometric properties and by trying to minimise the following objective function.

number of cluster portals · number of areas +
∑

C ∈ all clusters
(number of areas in C)2

This results in clusters with similar size and a number of clusters of about the square root of the number of
areas. To enhance the quality of the clustering, the level designer can mark areas as cluster portals.

Characters

To give the agents more personality, their decisions and behaviours are subject to some variables. Thus,
the different agents behave slightly different in the same situation. These variables are stored in some files
to which further characters can be easily added. Listing 4.1 shows the character file of the final opponent
in the single-player campaign at skill level 5, which is the highest level. We used this character for our
experiments in part III.

For example, the variable CHARACTERISTIC JUMPER determines the probability by which the agent
jumps when it moves or CHARACTERISTIC CHAT CPM defines how many characters per minute the
1 A special movement which implies the use of the backthrust of the rocket launcher to jump higher.
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Listing 4.1: Character File Example
[...]

skill 5
{

CHARACTERISTIC_NAME "Xaero"
CHARACTERISTIC_GENDER "male"
CHARACTERISTIC_ATTACK_SKILL 0.95
CHARACTERISTIC_WEAPONWEIGHTS "bots/xaero_w.c"
CHARACTERISTIC_AIM_SKILL 0.95
CHARACTERISTIC_AIM_ACCURACY 0.95
CHARACTERISTIC_VIEW_FACTOR 0.95
CHARACTERISTIC_VIEW_MAXCHANGE 360
CHARACTERISTIC_REACTIONTIME 0.5

CHARACTERISTIC_CHAT_FILE "bots/xaero_t.c"
CHARACTERISTIC_CHAT_NAME "xaero"
CHARACTERISTIC_CHAT_CPM 400
CHARACTERISTIC_CHAT_INSULT 0.4
[...]

CHARACTERISTIC_CROUCHER 0.05
CHARACTERISTIC_JUMPER 0.95
CHARACTERISTIC_WEAPONJUMPING 0.05
CHARACTERISTIC_GRAPPLE_USER 0.05

CHARACTERISTIC_ITEMWEIGHTS "bots/xaero_i.c"
CHARACTERISTIC_AGGRESSION 0.75
CHARACTERISTIC_SELFPRESERVATION 0.95
CHARACTERISTIC_VENGEFULNESS 0.95
CHARACTERISTIC_CAMPER 0.25

CHARACTERISTIC_EASY_FRAGGER 0.05
CHARACTERISTIC_ALERTNESS 0.95

CHARACTERISTIC_AIM_ACCURACY_MACHINEGUN 1.0
CHARACTERISTIC_AIM_ACCURACY_SHOTGUN 1.0
CHARACTERISTIC_AIM_ACCURACY_ROCKETLAUNCHER 1.0
[...]

}

agent is able to write when it is chatting. However, judging from the published source code several vari-
ables are not used at all. There exist further files which determine the preferred weapons and typical chat
statements as well as the preferred items the agent is trying to pick up.

Decision Making

As in many other computer games, decision making in QUAKE III is done by a small rule-based system
which switches between several states in a finite state machine. Figure 4.7 shows the finite state machine
that is used. Two states are omitted from the figure as they only represent states in which the agent does not
take part in the game.

The initial state is the stand state. In this state the agent just stands around. It is mostly used to simulate
the typing of a text message. The respawn state is also something like an initial state. If the agent dies, it
will switch into this state to prepare the reentry into the game. The rest of the states can be divided into the
so-called seek and battle states.

If the agent does not see an opponent, it will find a long term goal that it will follow. Such long term goals
can be the acquisition of an important item or the try to get the opponent team’s flag. As long as the agent
directly tries to fulfil this long term goal, it is in the seek long term goal state. On the way to its long term
goal the agent might come by some other item it wishes to pick up or make some other detour from the
direct way. Such short term goals are followed in the seek short term goal state. After finishing this task the
agent usually goes back to following its long term goal. If the agent needs to activate triggers or switches
to go on with its long term goal it switches to the seek activate entity state to accomplish this subtask.
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Fig. 4.7: The Finite State Machine of a QUAKE III Agent [vW01]

If the agent encounters an opponent, it will switch into one of the battle states. These differ between three
principal combat behaviours: fighting, chasing the opponent and retreating. The general combat behaviour
- as it is executed in the battle fight state - will be described in the below section about movement and
combat. In the battle chase state the agent uses its navigation system to follow a retreating opponent.

According to its current inventory of weapons, health and armour the agent decides to either attack and
follow or retreat from its opponent. If the decision is made to retreat. In the battle retreat state the agent
simply identifies a long term goal that leads itself away from the opponent and improves its state. In the
course of combat the agent can also decide to go for some nearby item and then return to combat. This is
done in the battle short term goal state.

The decision to go for some target and to choose some specific weapon as well as to attack or retreat are
subject to a small fuzzy reasoning systems. This system contains fuzzy relations that are used to map the
state of the world and the agent to a decision. For example, the agent bases its decision to go for some item
on its character preferences, its current current health, armour and inventory as well as the distance to the
next item of that type.

The concept of fuzzy sets and fuzzy logic was first developed and published by Zadeh [Zad65, Zad68,
Zad88]. It uses membership functions, called fuzzy sets, which describe the membership of values to some
concept. For example, the temperature 100◦C has a membership of 1.0 to the concept “hot”, whereas the
temperature 30◦C might only have a membership of 0.2. On these fuzzy sets, operators for the logical
operations ∧,∨ and ¬ are defined to draw fuzzy conclusions. For further information we refer to the above
mentioned literature.

The fuzzy module in QUAKE III allows piecewise linear fuzzy sets as illustrated in figure 4.8. This figure
originates from van Waveren [vW01]. However, when we looked at the source code we found out that
the fuzzy sets that are used only contain functions which return some value above zero for some interval
and zero otherwise. For example, the function from figure 4.8 is in fact equal to the corresponding weapon
weight given by the current character for all values above zero and else zero. So, although the fuzzy module
is capable of doing more, only very simple fuzzy sets are used.

The extend to which these fuzzy sets are used is also very simple. For example, the agent computes the
fuzzy weights for all possible weapons. Because of the simplicity of the fuzzy sets, the computed values
will equal zero, if the agent does not possess the weapon or suitable ammunition, and else the corresponding
weapon weight of the agent’s character. The agent then selects the weapon with the highest fuzzy value,
which will always be the available weapons with the highest weapon weight. This results in a completely
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Fig. 4.8: An Example for Fuzzy Weights for the Usage of a Lightning Gun in Relation to the owned Ammunition
[vW01]

deterministic behaviour. The agent will always choose to go for the same item or use the same weapon, if
they are available.

On the one hand, it seems as if the developers planned to implement more sophisticated resource manage-
ment procedures but either were not able to finish them in time or to receive satisfactory results. On the
other hand, the QUAKE III game engine was from the beginning intended to be sold and licensed to produce
other games. Therefore, it seems plausible that the fuzzy module was implemented with more features for
the convenience of other game developers. Van Waveren [vW01] also reports about the intention to use
an evolutionary algorithm to tune the split points of the piecewise linear fuzzy relations. The source code
also contains corresponding functions for recombination and mutation. However, to our knowledge, no
results were gained. Especially the very simple fuzzy relations that were used do not look like the result of
a learning algorithm.

Movement & Combat

The movement of the agents in QUAKE III is directly bound to the AAS system which tells the agents the
boundaries of the world and where it can move safely. Therefore, the agents move very well through the
environment. The agents repeat their think cycle ten times per second. Thus, they can correct their move-
ments each 100 milliseconds. In combat situations five different grades of behaviour exists that correspond
to the difficulty setting.

In the lowest difficulty the agents just stand still and aim at the opponent. In the next step, the agents
move forward and backward in the direction of the opponent. Then, the agents do not move forward and
backward anymore but run to the left and to the right to avoid to be hit. In the fourth step the agents move
in circles around the opponent by using some weapon dependant distance. While doing this movement,
the agents always aim at the opponent. Finally, the agents starts to randomly change their direction when
circling around the opponent.

The aiming skill of the QUAKE III agents also differs between different grades of sophistication. In the
lowest setting the agents just aim at the current position of the opponent. In the next setting they anticipate
the movement of the opponent as being linear and aim at the appropriate spot. To become even more precise,
the agents use the movement routines of the game to anticipate the opponent’s location upon the impact of
their projectiles. Finally, the agents apply weapons with splash damage in the vicinity of opponents that
took cover and even anticipate the movements of opponents they cannot see. In addition, the accuracy of
the agents is increased in each step.
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Chats

As QUAKE III is from 1999, broadband internet was not as common as today. Therefore, chatting was
done by typing text messages into a console instead of audio messages. The QUAKE III agents are able
to participate in those chats by identifying certain keywords and responding to them. Furthermore, the
agents issue messages when they have achieved something or something notable has happened in the game.
Algorithm 4.1 shows how the agents react to transmitted messages.

Algorithm 4.1 Chat Handling in QUAKE III [vW01]
if bot receives a message then

replace synonyms in the message
interpret message using match templates
if match is found then

perform action
else

if messages is a chat message from another player then
if bot wants to reply to this message then

find a reply chat
use random strings in chat message
replace synonyms in chat message to add variation
output chat message

end if
end if

end if
end if

The chat module contains three submodules. The first one uses a dictionary to replace synonyms in the
received text strings. Then, the command module analyses the text by matching it against templates that
represent commands that the agent understands. If the text does not fit to a command template it analyses
it to possibly give some answer. The implementation of both mechanisms is based on the ELIZA chat
program.

ELIZA is a popular computer program that was published by Weizenbaum in 1966 [Wei66] as a reaction to
the Turing Test [Tur50]. It is possible to chat with the program, whereas the program takes the role of an
analyst by answering and asking questions to the user. In terms of technology, ELIZA just uses keywords
that are identified in the users text message. According to the keyword a collection of possible answers
exist which often contain placeholders in which words or groups of words from the user’s text message are
filled in to create a more believable answer. Though, the technology is not very sophisticated, ELIZA and
its descendants reach surprisingly good results in creating a conversation.

In QUAKE III the same technique is used to create more believable chats. Listing 4.2 shows a part of the
chat library that shows possible answers to the keywords “ai” or “artificial intelligence”. The number 5
after the head of the declaration shows the priority with which the agents react to theses keywords. If an
agent chooses to say something, it will choose one of the shown possible answers and replace some words
by synonyms to add variation.

In the case of given commands more sophisticated templates are used. The agents understand a wide range
of commands ranging from “Defend the base” to “Patrol from the red armour to the lightning gun to the
rocket launcher and back”. However, the commands have to match very specific syntax requirements. The
agents can decide for themselves if they wish to follow the commands or not. Based on their character
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Listing 4.2: Chat Example
["ai", "artificial intelligence"] = 5
{

"What, you mean artificial intelligence?";
"A.I. is a crock.";
"Artificial intelligence is just one step below real stupidity.";
"I know a lot about A.I.! ;-)";
"A.I.? Like robots and stuff?";
"I’ve always suspected that Mr. Elusive is a bot.";
"I’ve always suspected that ", botnames, " isn’t real.";
"I run on real-I.";
"Artificial intelligence is an oxymoron.";
"Artificial intelligence? Is that like a mock turtleneck?";

}

values some agents are more solitary than others. In addition, the agents can also answer to questions like
“Where are you?” or “What are you doing?” by returning their current position or their current long term
goal, respectively.

Team Behaviour

As QUAKE III also offers team-based gameplay, a special instance for the team AI is needed. A single
QUAKE III game session can host up to 64 players that are split into two teams of approximately the
same size. Usual games feature at most 32 players and thus an average between 8 to 16 players per team.
Therefore, the team sizes are rather small and the decision was made to create a central instance that controls
the agent teams.

In the game world, a team leader is announced to create some visual counterpart in the game. Though,
in fact any agent can take this role with the same running code and will make the same decisions. The
objective of the so-called team leader AI is to assign roles to the single agents - including the team leader
itself - that will then be usually followed. Typical roles are to defend the base, patrol somewhere or to attack
the opponent.

The team leader AI is again implemented as a fixed set of if-then-else rules. Usually it will form small
subteams in which one agent gets some task and the others the role of followers to this agent. The size
of the subteams is calculated from the overall number of team mates. In the more sophisticated team play
modes the team leader AI differs between different states of the game based on a finite state machine. In
each of the states another predefined team strategy is followed.

4.1.3 Artificial Stupidity

To enhance the game experience and to increase the entertainment value of a game, the game agents are
sometimes made less intelligent and less performing as they could be. This ranges from the simulation of
human-like reflexes to the making of intentional mistakes. Lars Lidén - one of the AI designers in HALF-
LIFE- wrote an article about this topic [Lid04] by providing examples from this and other games. These
examples give an insight into some of the objectives of good game AI for a single-player-oriented game. In
the following we will recite the most interesting of them.

To create faster and more entertaining combat, the agents in HALF-LIFE have textures that are clearly
visible against the background. Therefore, the player can spot them more easily. Several other steps were
taken to make the agents more visible. For example, the agents will not directly attack the player with
instant reflexes, if he enters a room. Instead of that they will first move somewhere or shout a warning to
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the other agents. This enables the player to first get a picture of the current situation before he is attacked.
Furthermore, the agents will always miss their first attack, if they us a weapon that would almost instantly
kill the player’s character. The player can then see the source of the attack and react accordingly.

In most action games, the aiming of the agents is not very accurate. To achieve this, some randomness -
ranging up to 40◦ - is added to the attack vector to show a more human-like aiming skill. Alternatively, some
games feature agents which have accurate aim but apply less damage per shot than the player. Furthermore,
the player is usually not attacked by all opposing agents at once. In HALF-LIFE only two of all opponents
in the vicinity actually attack the player. If one of them ceases its attacks, another agent will take over its
attack slot. However, the number of attacking players will always be just two. Because of this, the game
can feature more sophisticated and competitive agents and still leave a chance to the player to defeat them.
In addition to the above mentioned methods, the agents will also retreat and attack less efficiently, if the
player is near virtual death.

To create more entertainment, AI developers add extra functionality to their agents. For example, the agents
chat with each other or they react to certain events in the game. Some can get scared and run away or call
for help. Animations and sounds are added to the character to make it more believable. Lidén also proposes
to add intentional vulnerabilities to the agents to conceal real algorithmic and design vulnerabilities and to
give the agents more personality.
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4.2 Science

In this section we will give an overview of the scientific work concerning artificial intelligence and computer
games. Artificial intelligence is a very broad field. Therefore, it is not possible to provide a complete
overview of the field in this thesis. Instead, we mainly focus on work that is based on computer games and
its special demands and provide only very short glances on other related work. Therefore, we will mainly
present some work that we found exemplary and that in our view defines the field of game AI.

In recent years, the research field of game AI has flourished. Though, the field is still at its beginning
and mainly promoted by only few research groups [MBC+06]. However, the combination of computer
games and computational intelligence becomes more and more popular, as several recently established
symposia and special sessions at important conferences show [FBM05,KL05,YL06,LvL06,LK06a,LK06b,
MBC+06]. Given the diversity of different computer games, there also exist several different directions in
the game AI community ranging from evolving racing opponents to modelling human-like QUAKE players.

Most of the research in the field can be divided into two subfields. In many cases the games are used
as a testbed for new or improved learning methods. The objective in this kind of research is to create
game agents that are as good as possible. The second subfield approaches computer games as a standalone
challenge for artificial intelligence. There, the objective is to use AI techniques to create well playing but
also more believable and human-like game AI. In addition, the artificial players have to adapt fast enough
to be usable in a real computer game. Both subfields share their basic methods, though the additional
constraints in the second subfield usually lead to more complex approaches. The focus of this thesis lies in
the creation of believable game AI. Therefore, it is also the focus of this section.

As starting point for a further examination of the game AI research field, there exist several introductions
and surveys that were partly the basis of this section [Für01, Nar04, BFGM06, LK06b, MBC+06, Nar07].

4.2.1 Origins & Related Fields

The origins of artificial game intelligence reach back to the implementation of turn-based game players.
The game of chess was and still is the most common objective in this field of research, though considerable
research is also done on checkers and go. For a long time, playing chess was considered as one of the major
challenges in AI research. Thus, the first approaches to implement a chess player go back to some of the
pioneers of AI. The first method to approach such a game, the minimax method, was developed by Claude
Shannon in 1959 [Sha50]. In its classical form, the method can be applied to all turn-based games with
two players that do not possess any randomness. The players of the game are usually called max and min,
whereas the computer usually takes the role of max. Max tries to maximise the outcome of the game by
winning, whereas min tries to minimise it by letting max lose.

The computer decides which move it will make by evaluating a so-called game tree. Beginning from the
current game state all successive moves are enumerated until a certain depth is reached. The game states
of the leaf nodes are evaluated according to some heuristic evaluation function. If a leaf node represents
a win, loose or draw state they are evaluated with a very low, usually negative value for loose and a high
value for win. A draw state is usually given the value zero. Each inner node will get the minimum value of
its successors, if the following move belongs to min (min node), or the maximum value of its successors,
if the following move belongs to max (max node). The underlying premise of the method is that max can
choose its move and thus always takes the best option, whereas min would usually take the best move to
minimise max’s winning probability. DEEP BLUE, the first machine to win against a chess world champion
in 1997, still worked according to this principle, though it also relied on massive databases of openings and
end games as well as several heuristics [New97].
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If the game is simple - like TIC TAC TOE - the whole game tree can be enumerated and the values of the
inner nodes represent the real winning probability when starting from the corresponding state. Therefore,
it is possible to find an optimal game strategy that will maximise the winning probability. For some games
it is even possible to find a strategy that will never loose. This strategy can be represented by a part of
the game tree, in which all successors of a min node are kept, but only the move to the highest valued
successor of a max node is taken. As the computing power of machines rise, more and more games are
solved. For example, the game of checkers, which has about 5 · 1020 positions, has recently been solved
by Schaeffer et al. [SL96, SBB+07] as a result of a project that was started in 1996. The resulting checkers
player CHINOOK in its newest version will now always reach at least a draw and never loose.

Results in game AI research are of interest to several other research fields and vice versa. The research
field with the strongest connections is autonomous robotics. Like game agents, autonomous robots have
to navigate and show robust behaviours in uncertain three-dimensional environments. However, certain
problems, like self-location and incomplete or flawed sensor information, do not exist in the virtual game
environments. Furthermore, algorithms for autonomous robotics often have to run in embedded systems
and are therefore strongly restricted. Though the game AI routines often have to share their resources with
the game graphics and physics, the resource constraints are not as strong and can be extended for scientific
experiments. The strongest resemblance between research in game AI and autonomous robots exists in the
field of robot soccer [Rob07] because it features robots that compete in a well-defined game. There, several
AI approaches have been developed that would also lend themselves to the game AI domain. For example,
the work of Riedmiller et al. features a reinforcement learning-based approach to train a team of robots
to play soccer [RMM+01, RG07]. Another area in the domain of autonomous robotics that overlaps with
game AI is navigation. However, in contrast to waypoint or landmark-based navigation that is favoured
in game AI because of simple self-location, navigation based on artificial potential fields [Ark87, Kha86],
which consist of repelling and attracting sources that correspond to near objects and target positions, is
usually favoured in the robotics community. Yet, Mamei et al. [MZ04] have proposed to also use potential
field-based navigation in three-dimensional action games and we will describe a navigation system that also
shares some ideas with field-based navigation in chapter 8.

Game theory is another field that could add to computer game research. However, to our knowledge, game
theoretic approaches are only sparsely applied to commercial computer games. In the game theory domain
usually only simple2 computer games like SOKOBAN [JS01,Cul97] are considered. Other fields that play a
role in game and game AI research are machine learning, computer graphics, optimisation, simulation and
data mining.

4.2.2 Action Games

The games that are mostly used for game AI research belong to the action genre. The reason for that lies
in the huge popularity of these games and the general openness of the companies that work in this genre.
Especially first-person shooter games are often very modifiable or are even published with open sources
after some years. In addition, it is common in this genre to base a game on a so-called game engine that
already includes all graphics, physics, sound and basic AI algorithms as well as the basic game mechanics.
Therefore, the game developers just have to design the game art and the special game mechanics and can
leave the rest to the engine. The most popular engines are the Unreal Engine3 from Epic Megagames and
the id tech Engine4 from id software. As these companies are interested in the spreading of their engines,
2 Two-dimensional, turn-based or puzzle games that are simple in their presentation and in the number of actions the player can

take. These games are usually not computationally simple.
3 The series of engines behind the UNREAL games.
4 The series engine behind the QUAKE and DOOM games.
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they publish development kits together with their games to build a community that favour the respective
engine over the others. Therefore, action games are not only among the most popular games and feature
interesting and challenging problems for game AI. They also feature the most modifiable games.

The following work mainly revolves around the generation of intelligent agents in games from the QUAKE

and the UNREAL TOURNAMENT series. Several approaches have been published in this area ranging from
the usage of symbol-oriented AI techniques and planning to the usage of evolutionary and neural network-
based methods. Recent years saw a movement of the focus of the field from the former to the latter methods
and to the inclusion of techniques to create more believable game agents instead of just well performing
ones.

Concerning symbol-oriented publications that use classical AI methods, several approaches for creating
competitive game agents in an action game have been proposed. For example, Alexander Nareyek [Nar98,
Nar00,Nar01] has proposed a goal-directed action planning mechanism for several game-like environments.
To dynamically react to the changes in the environment and to show more believable behaviours, the agents
continuously try to improve their current plan. These plans can either be short term plans for times of high
activity or long term plans, if the agent has enough time. Nareyek conceived a general mechanism in the
so-called EXCALIBUR project that he successfully applied to several, though simplified, games. The basic
idea behind his approach is the breakdown of the scripts and finite state automata that are usually used in
computer games into basic actions, goals and sensor information. The agents use these building blocks to
create plans in the game environment by using local search and scheduling methods.

A somewhat related approach that uses basic actions, states and goals is the so-called belief desire intention
(BDI) method [Nor04]. Emma Norling [Nor03,NS04] has published an approach that uses BDI to model a
QUAKE II-player. BDI is an approach that can be described as being based on “folk psychology”. It models
the behaviour of an agent by certain beliefs about the world as well as the agents’ desires and intentions. For
example, Norling’s QUAKE II-player has a certain desire for health items, which will rise, if the health of
the player gets low, and the intention to defeat the other players. The exact modelling is based on interviews
with game players. The approach is especially focused on creating believable and entertaining game agents.
Listing 4.3 shows an example for a BDI intention that was employed in the described approach.

Listing 4.3: An Example for a BDI Intention [NS04]
plan ExploreMap extends Plan {

#handles event MapGoalEvent ev;
#posts event MoveGoalEvent move_goal;
#reads data MapData map;
#reads data SelfData self;
context() {

map.hasGaps() && !self.fighting();
}
body() {

Position next = map.getNextUnknown();
@subtask(move_goal.go(next));

}
}

Concerning the creation of a more intelligent opponent for QUAKE II, Laird et al. [LvL99, Lai00, LD00]
have published some work that is based on the Soar framework. Soar [LNR87] is a general learning model
and framework that is based on cognitive science. As an algorithm Soar uses production rules and problem
spaces as the representation of knowledge. The problem space is searched for a valid solution of a given
problem by playing through the possible actions and observing the results of these actions. If the result
is not satisfactory, a rule - called chunk - will be created, which prevents that the responsible sequence
of actions is used again. If the result is satisfactory, a rule will be generated to memorise the successful
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sequence of actions for future usage. The trained QUAKE II agents use several scripted actions that are
organised in hierarchies. Figure 4.9 shows an example.
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Fig. 4.9: Example for the Action Hierarchy of the Soar QUAKE II Agent [LvL99]

As a special twist Laird et al. also added anticipation to their agent. If it encounters an opponent, it will
use its own planning mechanism to see what it would do in the position of the opponent. This information
is then used to anticipate the opponent’s behaviours and incorporated into the next plan. In a later version
Laird et al. also added reinforcement learning to the approach [NL05], where statistical data is collected
upon the past experiences and then used for action selection.

Based on Soar, Tambe [Tam97] has published an approach that learns team strategies in a military game
and a robocup simulation. The method uses joint intentions instead of single agent goals. Therefore, each
agent not only reflects and plans according to its own intentions, but also explicitly considers the plans of its
teammates. The generated plans thus contain team operators and team actions. A related approach, which
also revolves around teamwork, has been published by Kaminka et al. [KGV02]. It uses arbitration for the
distribution of predefined roles onto the agents of a team - e.g. if the agent is an attacker or a defender.

In the mentioned approaches the improved intelligence lies in the selection of appropriate actions and the
generation of more intelligent plans. However, the approaches are still based on hand-coded behaviour
scripts that restrict the degrees of freedom of the learning process. Though good looking results can be
achieved very quickly, the success of these approaches stands or falls with the quality of these scripts,
which can become tedious to implement and to optimise. Therefore, the current research focus has shifted
to giving the learning process more freedom and to generate intelligent game agents from scratch. To
achieve this, computational intelligence methods are favoured instead of classical artificial intelligence
approaches because they present meta-heuristics that can be used to optimise the behaviour of the game
agents with the least amount of problem-dependent knowledge.

Of course, computational intelligence can also be used to optimise the usage of scripted behaviours and
to tune the parameters of single game agents like it has been done by Cole et al. [CLM04] for the game
QUAKE III or the parameters of the behaviour scripts for a whole team of agents like it has been done by
Bakkes et al. [BSP04] for the capture the flag mode of the same game. However, in our opinion, the more
interesting research addresses the learning of new and believable behaviours.

For example, Bauckhage and Thurau et al. [BTS03, TBS03, BT04a] have used neural networks to train
QUAKE II agents that are based on recorded player information. In their first approach they used a feed-
forward network that was trained by the Levenberg-Marquardt algorithm [PTVF88] - a gradient descent
method that uses an adaptive step size and is therefore related to backpropagation. They fed the network
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with the absolute positions and view angles as well as the distances and directions to the nearest opponent of
the recorded player and were able to successfully mimic the presented movements. In a later approach they
also added a preprocessing step that uses a self-organising map (SOM) [Koh00] to reduce the state space.
The SOM clusters the state space into a two-dimensional network of representative states. For each of these
states a feed-forward network is trained to imitate the presented behaviour by using the aforementioned
method.

In addition to this purely reactive model, Bauckhage and Thurau have also used neural gas [MS91] - a
SOM-related method for clustering - to create topological maps that are based on the positions that were
held by the players in several matches [TBS04a, TBS04b, TB05]. Figure 4.10 shows an example for this
procedure. Based on this topological map a potential field is created that is used to guide the game agents.
The resulting agents were able to navigate on the map and to imitate the tactics of the recorded players.

Fig. 4.10: A 3D Map and its topological Representation as an Outcome of a Neural Gas Algorithm [TBS04a]

To further improve the fluidity of the movement of the agents, Thurau et al. [TBS04a] have also used a
method that is based on movement primitives [FMJ02]. In this method all recorded movement vectors are
examined by a principal component analysis [Fuk90] and then clustered by the k-means algorithm5. In ad-
dition, the probability for the successive usage of two movement primitives is stored and used for movement
selection. With this approach, Thurau et al. were able to recreate very sophisticated movement behaviours,
ranging from simple movements to long jumps and even rocket jumps6. In a later variation of this method,
the movement primitive selection was extendend by using a Bayesian model [TPB05, GTBH06] - based
on a similar approach from the robotics community [RSM04] - in which the probability to choose some
movement primitive is not only based on the last state but also on the goal state that should be reached.

Imitation was also used by Le Hy et al. [HABL04] in an approach that proposes the employment of Baysian
networks that were trained by human generated input for action selection in UNREAL TOURNAMENT.
Other approaches include the training of feed-forward neural networks for weapon selection [BT04b] and
the usage of the neuroevolution algorithm NEAT [SM02] to explore a map in UNREAL TOURNAMENT and
to find the shortest path to navigate from one point to another [KDV+06].
5 see algorithm 9.2 in section 9.4
6 The rocket jump is movement technique in QUAKE and other first-person shooters that is used by experienced players and uses

the backthrust of the rocket launcher to make higher jumps.
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4.2.3 Arcade Games

Arcade games have also frequently been subject to AI research because they can usually be simply imple-
mented and modified. There exist a plethora of open source arcade games that can be employed for research
purposes. However, the simplicity of these games, which usually base their difficulty on fast reaction times,
makes these games sometimes also less interesting as a research object.

One game that has been examined in several approaches is PAC MAN because, in spite of its simple design,
its gameplay is quite tactical. Figure 4.11a shows a screenshot from one of the countless implementations
of this game in which the player has to move a character through a two-dimensional maze to collect all dots
that lie in it. All movement is done in small discrete steps, though the game is not turn-based. After all
dots have been collected, the level is finished. The maze also contains four ghosts that hunt the player. If
the player comes into contact with one of them, he will loose one virtual life. Special dots will enable the
player to temporarily defeat the ghosts, if he comes into contact with them.

(a) A Screenshot of the PAC MAN Game (b) A Screenshot of the X PILOT Game

Fig. 4.11: Examples of Arcade Games used in Research

In 1992 Koza used PAC MAN as an example in his book about genetic programming [Koz92]. This ap-
proach used genetic programming to successfully evolve a PAC MAN player and was based on 15 functions
(2 conditions and 13 actions7). In another approach de Bonet and Stauffer [dBS99] used reinforcement
learning, where the states were based on the current position of the player’s character and a single ghost. In
the approach of Gallagher and Ryan [GR03] an evolutionary algorithm was used to tune the parameters of
a hand-coded finite state machine and the corresponding rule set.

All of the above mentioned approaches were based on simplified versions of the PAC MAN game. Instead of
that, the approach of Lucas [Luc05] is capable of generating very successful behaviour in the real PAC MAN

game. In this approach neuroevolution is used to evolve a neural network to evaluate all successive game
states. The game states are simplified by only containing the positions of the ghosts, the information if they
are dangerous or not, the current location of the player’s character and the distances to the nearest dot and
junction. The evolutionary algorithm that was employed in the conducted experiments was an (n + n)-
evolution strategy8 without recombination. Variation was achieved by the mutation of the edge weights of
the competing networks. The obtained results showed interesting behaviours. For example, some agents
7 These actions were on a quite high abstraction level, like “move towards nearest dot along shortest”.
8 see section 3.1.3
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decided to chase the ghosts as long as they were not chased by them. Most networks specialised themselves
on some specific behaviour, like getting as much dots as possible or trying to defeat the ghosts.

When shifting the focus to other arcade games, some interesting work has been published by Parker et
al. [PP06a, PP06b, PP07] concerning the X PILOT game (see Figure 4.11b). X PILOT is an open source
multi-player arcade game that was developed at the University of Tromsø [SS96] and represents one of
the first massive multi-player games. In this game the player has to control a triangular spaceship on a
two-dimensional map. The spaceship can only be moved forward and turned left and right. As space has
no friction, the ship has to be turned to decelerate. In addition, the structures of the map generate gravity
that attracts the spaceship and ships can attack each other by firing a forward mounted weapon. Therefore,
the game offers a challenging control task.

In the work of Parker et al. hundreds of ships inhabit a large game map - called “the core” - and are
controlled by small programs that are distributed over several machines. The behaviour of each ship is
encoded in a set of rules that map conditions to actions. The conditions are predefined statements about the
state of the ship - e.g. “velocity > 10” or “distance to nearest opponent < 100” - and the actions are the
described movement commands. These rule sets are subject to an evolutionary process. If a ship is defeated
by another one, its set of rules will become the mutated result of the recombination of itself and the other
ship. This could be seen as an imitation step in which the destroyed ship takes a part of the behaviours of the
winning one and incorporates it into its own behaviour. In the published experiments, this approach resulted
in a gradual improvement and sophistication of the behaviours of the ships. They learnt to survive longer
and longer without crashing into walls or being destroyed by an opponent. After some time, the population
converged against a slowly moving but aggressive behaviour pattern. When a randomly initialised ship was
later added into the game, it quickly adopted to the behaviour of the majority.

4.2.4 Puzzle Games

Puzzle games have been subject to AI research for many years. They are often used as examples for search
algorithms and heuristics. For example, the game SOKOBAN has been approached by several scientists.
In this game the game character has to push several stones to some goal positions. The character can just
push the stones and, therefore, will get stuck, if the stone is pushed into a corner. As the character can only
push one stone at a time and can only push but not pull the stones, the difficulty of the game lies in finding
the right strategy to push the stones, so that no deadlocks occur and that the stones get to their destined
positions. It has been shown that SOKOBAN is PSPACE-complete [Cul97] and has an upper bound for the
search space size of 1098 [JS01].

Junghanns and Schaeffer have published a paper [JS01], which not only presents several of their own results
on improving the search in SOKOBAN problems, but also gives a comprehensive introduction into the field.
Typical approaches are based on graph search methods - like the A∗ algorithm [HNR68, DP85] - and use
problem-dependent knowledge to reduce the size of the search space by detecting deadlocks and cycles as
early as possible. For more details we refer to the mentioned literature.

Concerning the application of computational intelligence methods, several approaches exist. For example,
Moraglio and Togelius [MTL07] have published an approach that uses particle swarm optimisation9 to
solve SUDOKU puzzles. The objective of SUDOKU is to fill a 9 × 9 grid with numbers, so that each
row, column and each of the nine 3 × 3 subgrids are filled with permutations of (1, ..., 9). The proposed
approach formulates this search problem as an optimisation problem by partitioning the constraints into
hard constraints that each solution has to respect and soft constraints that are respected in the objective
function. Variations of the existing solutions are created by swapping random numbers in a row or by
9 see algorithm 3.11 in section 3.5
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Fig. 4.12: The first Map from the Game KSOKOBAN

combining several solutions geometrically. The results of the approach are promising, though the method is
outperformed by the usage of an evolutionary algorithm in an earlier approach by Moraglio et al. Actually,
the most interesting part of the paper is the generalisation of the used particle swarm optimiser to more
general search spaces. Particle swarm optimisation in its original form only works on real-valued vector
spaces, where linear combination is possible. Moraglio et al. show that the idea behind particle swarm
optimisation can also be used in geometric spaces - i.e. spaces for which a metric can be defined. The linear
combination can then be replaced by a geometric crossover operator, which guarantees that - according to
the used metric - the result of the crossover lies in the convex space that is spanned by its parents.

Another example for computational intelligence in puzzle games is the TETRIS solver from Siegel and
Chaffee [SC96]. It uses genetic programming10 to evolve a program that is able to play the game, in which
falling blocks have to be turned and moved, so that the whole space at the ground is filled. Evolving a
controller for TETRIS is challenging, because the game is not trivial and is played under increasing time
pressure. Thus, the controller has to be sophisticated enough to play the game well, but also fast enough to
react to the speed of the falling blocks.

Fig. 4.13: An evolved Algorithm clears a Line in TETRIS [SC96]

10 see section 3.1.4



76 4 State of the Art

In the mentioned approach, the evolutionary programming method produces program trees that contain
+,−, ∗, /,∧,∨,¬,max as well as if-then-else statements and read and write operations on 128 integer
variables of memory. The fitness of each program is computed by the accumulated scores over several
games. The presented results are promising, though the authors say that TETRIS has turned out to be a very
challenging problem for evolutionary programming because of the time constraints.

4.2.5 Racing Games

As we already mentioned before, racing games present some interesting challenges for AI research in
terms of creating intelligent and fast controllers. However, commercial racing games are usually not very
modifiable. Therefore, the research in this area focuses on open source racing games and racing games that
were especially made for AI research like RARS [RAR07] or TORCS [TOR07].

Some very interesting work in this area has been published by Togelius et al. which is very well summarised
in their overview paper [TLdN07] and in Julian Togelius’ PhD thesis [Tog07]. The described research
focuses on the creation of well driving but also believable AI drivers for a two-dimensional racing game
with semi-realistic physics. In the proposed approach [TL06, MTK+07] neuroevolution is used to evolve
neural networks that use five laser sensors and the angle to the next road waypoint as an input and generate
driving commands. Figure 4.14a shows a corresponding car and its sensors. The range of the sensors and
their directions are subject to the evolutionary algorithm and are thus also optimised. With this approach
Togelius et al. were able to evolve artificial drivers that almost took the ideal racing line.

7

6

Waypoint 1

(a) A Race Car and its Sensors on a Racing
Track [TL06]

(b) An evolved Racing Track [TNL07]

Fig. 4.14: Evolving Racing AI and Tracks [Tog07]

A very similar approach for RARS has been published by Stanley et al. [SKSM05]. It also uses neuroevo-
lution and virtual laser sensors. However, their objective was to train a network to sense danger and to
warn the driver if a crash is imminent. To achieve this, Stanley et al. first use neuroevolution to train neural
networks as controllers for the vehicles to obtain controllers of a varied quality. These controllers are then
used to control the cars to train the crash predictors.
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Floreano et al. [FKMS04] have also evolved race drivers by using neuroevolution. However, in the pre-
sented method, the neural networks are working with in-game screenshots. From these screenshots a small
area of interest is first chosen and then analysed by the neural network to obtain a corresponding reaction.
As a result the networks learnt to track the edge of the road and to stay on the it.

A very interesting approach that goes into another direction has also been published by Togelius et al.
[TdNL06, TNL07]. Instead of evolving car controllers, the objective of this approach was to evolve race
tracks that maximise the fun of a particular player. To achieve this, a human player and its playing model is
captured and imitated. Then the trained imitator is used to produce a track that fits to its playing model. For
the playing model, Togelius et al. first tried to use backpropagation to learn sensor input to driving output
relationships. However, the resulting networks showed defective behaviours. Therefore, they chose to not
use pure imitation but to use an evolved, well performing controller and to adapt it to have about the same
performance as a human driver on three test tracks.

The tracks themselves are evolved by building sequences of short segments, which can either be straights
or have one of three different radii. In later approaches, b-splines or Bezier curves were used as segments to
create more natural tracks. Starting with random tracks, tracks are mutated by exchanging a segment with
another one. No recombination is used. The fitness of a track is computed by several factors, including
the maximum speed the controller reached and the distance the controller could drive without crashing. In
addition, the difference between the covered distance and a target distance is used to give the tracks the
right challenge for the corresponding driver. Figure 4.14b shows one of the resulting tracks, which was
trained according to the player profile of lead author Julian Togelius and thus shows a rather challenging
layout.

4.2.6 Strategy Games

Concerning turn-based strategy games, we could not find any work that applies the mininax method to a
modern turn-based strategy computer game. The cause might be that such games offer much more possible
moves with much more different units. Many of them also decide encounters between two units by a random
decision based on the characteristics of the units. In addition, modern computer chess algorithms are often
very specialised on the given problem and are full of heuristics, so that they cannot be easily adapted to other
fields - especially if the game itself and its demands are updated, rebalanced and complexified over time,
as it is common in commercial computer games. Therefore, game AI research focuses on more general
approaches that are capable of adapting to a new problem and to work without detailed expert knowledge.

From this point of view the experiments of David Fogel and Kumar Chellapilla on the creation of a player
for checkers are much more interesting [Fog01, CF99a, CF99b]. Fogel’s approach is based on neuroevolu-
tion. The evolved checkers player, which he called BLONDIE2411, uses a neural network to evaluate the
game state. The approach also uses the minimax method to enumerate the following states of the current
game state until some depth is reached. The leaf states of the game tree are evaluated by the neural network
and the next move is chosen according to the minimax value of the successive states.

The checkers board is encoded by a vector of integer values from {−K,−1, 0, 1,K} whereas K and −K
represents the value of the own and opponent’s kings, respectively, 1 and -1 represent fields with regular
checkers of the corresponding players and 0 indicates an empty field. Figure 4.15 shows the fixed network
topology that was used. The input layer has 91 neurons, where the single units encode certain subsquares
of the board. In each subsquare the values of the respective fields are summed up and propagated into the
11 As a part of the training and testing of the program, Fogel registered it at an online checkers game service. The name

BLONDIE24 was chosen to attract more players to start a game with the program after almost no player wanted to play against
the originally chosen DAVID1011.
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corresponding neuron. As the topology is feed-forward, the values are propagated from layer to layer until
they reach the single output neuron. This output neuron receives the signals from the second hidden layer
and the total sum of field values of the board. The total sum relates to the number of stones the player is in
front or back.
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Fig. 4.15: The Neural Network behind BLONDIE24

In the published experiments, the weights of the network and the value K were adjusted by an evolution-
ary algorithm that was based on evolutionary programming. Therefore, the presented algorithm only uses
mutation and no recombination. All networks were initialised randomly. The fitness of a network was com-
puted by letting each one play against five randomly chosen networks from the population. The networks
were rewarded with 1 point for a win, 0 points for a draw and −2 points for a loss. The sum of the rewards
of all matches was then used as the fitness of the individuals. After each generation half of the population
was discarded and the other half was mutated to replace them. The algorithm ran for 840 generations12

and produced a network that was able to play on expert level and was among the 500 best of the 120 000
participants of the internet checkers community in which it was tested. It was also able to beat the 1994
version of CHINOOK, though CHINOOK was set to novice level [FC02].

The success of Fogel’s approach was that it was capable to learn to play the game without any expert
knowledge and heuristics. The approach figured out how to play by just being rewarded for wins and
penalised for losses. In addition, the fitness function did not even specify in which match the corresponding
network lost. The very popular book about the described experiments [Fog01] has spawned several other
approaches to board games which use neuroevolution [Für01]. Similar works include the learning of game
strategies in backgammon [PBL96], chess [KW01, FHHQ04, FHHQ05], go [SM04] and othello [MM95].

Considering modern turn-based strategy games, neuroevolution has been used in several approaches
[Bry06, BM06, BM07, RM02, YLH04]. In one exemplary approach Bryant et al. used neuroevolution to
12 which needed about 6 months at that time
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train the units - called legions - of their strategy game LEGION II (see figure 4.16a). This game consists of
hexagonal fields. In each turn each unit can decide to stay in its field or to move to one of the six adjacent
fields. The goal is to defend the cities against barbarian units that are controlled by some scripts. The
legions sense their vicinity in six pie slices. The sensed value of each slice depends on the number and
distance of the barbarians, cities and other legions in it.

(a) A Picture from the Game LEGION II (b) A Picture from the Game LAGOON

Fig. 4.16: Examples of research-based Strategy Games

The legions are controlled by feed-forward neural networks that have three sets of thirteen input neurons.
These are six neurons in each set that are responsible for the sensing of distant objects, six neurons for the
sensing of near objects and one sensor for the current position of the legion. Each set is responsible for the
sensing of a special type of units. The hidden layer consists of ten neurons. The networks have seven output
neurons that encode the six possible movement directions and the possibility to not move. The legions act
according to the neuron with the highest output value.

In their experiments Bryant et al. were able to evolve well playing game agents by using the enforced
subpopulations approach [GM99]. However, though the units performed very well, they could be easily
identified as machine-made. To generate units that behave more human-like, the behaviour of units, when
they were controlled by a human players was recorded in the form of input-output-samples. Then, the
networks were not only evolved but also trained using backpropagation on the recorded samples, resulting
in a form of Lamarckian evolution13. The result of this approach was not only a slightly better performance
but also a more believable gaming behaviour. It should be noted that Bryant et al. were able to achieve this
without implementing any special expert knowledge about good gaming strategies.

There exists only few AI research concerning real-time strategy games. Commercial games in this genre are
usually hardly modifiable and thus not usable for research. Most research in this area relies on “synthetic”
games that were implemented by the respective research groups. Miles and Louis [MLCM04,ML05,LM06]
base their research on their game LAGOON. LAGOON simulates a modern military conflict in which the
player has to give orders to his units - e.g. warships and jets - to defeat the units of the opponent. In addition,
the player has to manage his resources that allow the deployment of more effective units.
13 see section 3.1
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Miles and Louis propose a method which they call case-injected genetic algorithm to approach the problems
that they had to face in creating game AI for such a real-time strategy game. A case-injected genetic
algorithm describes a technique that combines case-based reasoning with evolutionary computation. In
addition to a plain genetic algorithm that improves the performance of the artificial player, there exists a
database that contains examples of good gaming behaviour. If a solution with an improved fitness is found
after a new generation, it will be put into the database. Thus, the database acts as some kind of long term
memory for the evolutionary process. Furthermore, after a certain amount of generations have passed,
examples from the database are put back into the current population. The worst individuals are replaced
by the examples that are most similar to the current best individuals. Therefore, the database can contain a
high amount of data sets. Only the data sets that seem to be applicable to the current problem are injected
into the population because of the usage of a similarity measurement. The result of this is a much faster
and stable optimisation of the gaming behaviour. This is especially important in real-time strategy games,
as the computer has to learn and adapt quickly to be able to react in time. Analogically to the approach of
Bryant et al., Miles and Louis made it also possible to store examples from a human player in the database
that are then injected into the evolutionary process to create desired behaviours.

Further approaches to real-time strategy-like scenarios include the usage of reinforcement learning to adapt
the values of rules to dynamically create well performing behaviour scripts [SPSKP06], the evolution of the
unit movements by evolving influence maps [MQLL07], the evolution of counter strategies against a set of
training strategies [PMASA05] or the usage of the Soar architecture for the training of a real-time strategy
player [WXL07].

4.2.7 AI Games

Apart from the research in game AI for existing games, there also exists AI researchers that conceive new
games that are focused on the artificial intelligence of the game agents. Examples for such games are
CREATURES and NERO.

The game CREATURES and its successors are based on the research of artificial life scientist Steve Grand
[GCMJ97, Gra97, GC98]. Though the CREATURES games are commercially sold, they can be classified as
scientific work because of their scientific background. In these games, the player has to take care of a small
population of up to ten intelligent, autonomous agents that inhabit the virtual game world as depicted in
figure 4.17a. The player can show these agents how to behave in this world by manipulating objects and by
guiding the agents. He can use the mouse to pet or slap the creature to create positive or negative feedback,
respectively. In addition, the agents are able to learn a simple verb-object language from the keyboard input
of the player. The player can show the agents an item and give it a name. Subsequently, the agents exchange
words and the language is spread throughout the population. Furthermore, the agents in CREATURES not
only learn and create a culture, they also evolve. The player can choose certain agents for interbreeding. In
addition, the agents in the game grow older and eventually die.

Internally, each agent is controlled by a neural network that initially consists of about a thousand neurons
that are grouped into nine so-called lobes. The neurons in each lobe share certain features and have con-
nections to one or more neurons in up to two other lobes. It should be noted that the used neuron model
is considerably different to the one we introduced in section 3.3. The functions that are used in each neu-
ron consist of compositions of several functions. The connections can also have different functionalities
that affect their carried values. The whole network can be build out of an encoding that is subject to the
evolutionary process. In addition, the genes also encode other features, like the skin or hair colour.

Apart from the genetic encoding and the neuronal system, the agents also feature a biochemical system
that models hunger, fear and exhaustion. All the mentioned systems are very sophisticated and it would
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(a) A Picture from the Game CREATURES [GCMJ97] (b) A Picture from the CREATURES Science Kit

Fig. 4.17: Pictures from the AI Game CREATURES [GCMJ97]

go beyond the scope of this thesis to describe them in detail. We therefore refer to the corresponding
literature [GCMJ97, Gra97, GC98].

The game NERO (Neuro-Evolving Robotic Operatives), which has been developed by Stanley et al.
[SBM05a, SBM05b], is another example for a game that revolves around artificial intelligence. The game
features a three-dimensional virtual environment - as shown in figure 4.18 - in which a team of military
agents has to be trained for battle. The objective of the game is to train the team, so that it can beat the team
of another player.

Fig. 4.18: A Picture from NERO [SBM05b]

The agents in NERO are controlled by neural networks and the neuroevolution method NEAT14 in a special
real-time variant is used to train the networks. In this approach, only one individual of the population
is replaced at a time. Thus, a low performing and old individual is chosen for replacement and is then
replaced by the result of the recombination of two high performing agents and subsequent mutation. The
recombination and mutation operators are the same as in the classical NEAT approach.
14 see section 3.3.2
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The agents have several sensors which serve as an input to the neural network. Figure 4.19 illustrates the
model that is used for the NERO agent. Each NERO agent can detect its opponents, determine whether an
opponent is currently in its line of fire, detect objects and walls, and see the direction the enemy is firing at.
According to this information, the neural network in the agent decides which movement should be made
and if the weapon of the agents should be fired. The radars divide the vicinity of the agent into several
slices for which an input value is computed. The range sensors are virtual laser sensors that send out a ray
and return the range that the ray could travel until it hit an object.

enemy radars object rangefinderson 

target

enemy 

LOF 

sensors

bias

left / right

forward / 

backward fire

evolved topology

Fig. 4.19: The Sensor and Action Model of the NERO Agent [SBM05a]

In the training mode of the game, the player can put objects onto the map and determine their influence on
the fitness of the agents. For example, an object can be placed that attracts the agents. If the player then
adds walls in between the spawn point of the agents and the attracting landmark, the agents will learn to
navigate around these walls to reach the goal position. In addition, the player can place fixed or moving
turrets as well as scripted opponents.

The results that are reported by Stanley et al. are very interesting. The real-time NEAT method enables the
agents to learn very fast. Furthermore, incremental learning is possible. This means that the agents can be
trained in a sequence of exercises that gradually increase the difficulty of the given problem or teach the
agents other aspects of the game. An interesting result is that in several experiments the agents learnt to
cooperate in teams of about three to four agents, which resembles a usual military strategy.

4.2.8 Common Methods & Tendencies

In conclusion, several intersting and promising research in game AI exists. A common tendency in the
recent game AI research is the usage of computational intelligence methods in combination with domain-
specific methods. The reason for that is the fact that many researchers do not want to restrict their game
agents to scripted behaviours but to fully evolve or generate game agents that have to manage to survive in
the virtual game world by themselves. The method that has become most prominent in the game AI commu-
nity is neuroevolution. This has several reasons. Several researchers from the neuroevolution community
have embraced computer games as ideal testbeds for their approaches and have thus affected the game AI
community. However, neuroevolution also lends itself perfectly to the game AI domain. If the objective is
to create interesting and believable agents from scratch without using problem-dependent knowledge, neu-
roevolution can presents an approach in which the least amount of problem knowledge is used and which
is roughly based on the human evolution process.
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Instead of just creating game agents that are as good as possible, the focus of the game AI research has
shifted to the creation of more human-like and believable agents that promise more entertainment and are
more desired by the game players. Therefore, several approaches add techniques to achieve these objectives.
In the most recent years imitation has become the most prominent method to create human-like behaviours.
This thesis will also presents several approaches to successfully evolve imitating game agents in chapters
9.1 to 11. As the aforementioned research approaches show, the used imitation techniques are quite varied
and still lack some general theory or some unified view.

One feature of computer games that is still quite disregarded is team learning. There exist only few ap-
proaches that examine the problem to find good team strategies or try to use a team of agents for cooperative
and, thus, accelerated learning. However, these are very interesting and challenging problems. We there-
fore think that game AI research will eventually extend its primary focus on team learning in the future.
For example, section 11 of this thesis features a cooperative, imitation-based learning approach in which
several game agents learn in parallel to utilise the experiences of the whole team for the learning process.
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Working with QUAKE III

In this chapter we will describe why we chose the game QUAKE III as the basis of our research. We will
present criteria that were used as a basis for the decision and present how QUAKE III and the considered
alternatives fit into these criteria. Furthermore we will give some insight on how we reengineered the
QUAKE III engine to gain access to the control of the virtual characters in the game.

5.1 Introduction

To examine the possibilities of AI methods in computer games, we looked for a game in which we could
realise our ideas. We tried to choose this game according to the following criteria.

Modifiability

It should be possible to modify the game to a great extend. Especially, the behaviour of the players in
the game should be controllable. Most suitable would be a game which is - at least partly - accessible
on source code level and that would enable us to use third party libraries and create efficient game agent
implementations.

Practical Importance

To give the research practical importance we need a game which is popular and represents a sufficient por-
tion of the computer game market. In addition, the game and its gameplay should not be too old fashioned
to be representative of current computer games.

Multi-Player Support & Team-Oriented Gameplay

Games that support multiple players are of special interest because the characters in such games have to
show much more human-like behaviours. They have to impose a challenge to the human players not by their
numbers but by their intelligence. In addition, a game that offers team-oriented gameplay requires another
level of intelligence and poses interesting questions and challenges about cooperation and the development
of team strategies. For the usage of the game in further science and in teaching, we therefore need a game
which offers team-oriented game modes.
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Availability of Competitive Opponents

To measure the performance of an agent, it has to play against some other agents or players. To have a fair
comparison, these opponents should play on the same skill level all the time and be competitive. Therefore,
we prefer games which offer competitive opponents, especially in the multi-player game part. Such agents
are also very useful as training partners and as an indication for the actual performance of the created agents
in the game.

Usability for Experiments

The game should be executable on different operating systems to enable us to distribute experiments and
to make it possible to use it on the pool computers of our university for teaching purposes. In addition, the
game should not need too much hardware resources to be executable on affordable hardware.

Available Information

Modifying a computer game, as well as any other complex software, can impose serious challenges. There-
fore, it would be very helpful, if information about the game and its modifications existed. If the game has or
had an active community there exist many sources for further and deeper information about its architecture
and possible bugs.

5.2 The Alternatives

This section presents a selection of some noteworthy alternatives concerning the selection of the base game
or game framework that we identified. Most of these games are from the first-person shooter genre because
it is much more common for companies that produce games in this genre to release parts of the source
code or development kits for the modification of the game. This is a fundamental requirement for the
employment of the game in a research project. In addition, games from this genre are very popular and
usually offer a direct representation of the player as a humanoid character in the three-dimensional virtual
world.

5.2.1 QUAKE

The game QUAKE III directly complies to most of the criteria given above. Modifications of QUAKE III
are plugins in the form of shared libraries which can be implemented in C. Furthermore, in 2005 the full
source code of the game has been published under the GNU1 programming license (GPL). This makes it
possible to modify the game in any extend we wish.

QUAKE III was released in 1999 and became very successful. It sold many copies and is still played today.
In addition, the underlying QUAKE III engine has been licensed to several companies and used in numerous
other games. Finally, QUAKE III is a so-called first-person shooter which represents one of the most popular
genres in computer games. QUAKE III is even a defining game in this genre.
1 abbreviation of “GNU is not Unix”
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QUAKE III not only offers multi-player gameplay, it is actually focused on this kind of games. QUAKE III
features several game modes in which two teams compete with each other. Especially in the capture the
flag (CTF) game mode cooperation between the players is needed. Until the release of DOOM III and
QUAKE IV in 2004 and 2005, respectively, QUAKE III enjoyed a vivid community. Hundreds of modifica-
tions to the game exist and many tutorials and examples are still available in the internet.

In terms of modifiability, QUAKE II also presented a very good option. As its successor, it was published
open source. However, concerning the practical importance, it is a bit outdated. The sources of QUAKE II
are also not as clean and - though also written in pure C - as advanced as the ones of QUAKE III. QUAKE II
was an evolution of the first QUAKE, mainly to include hardware accelerated graphics. For QUAKE III, the
sources were completely rewritten in large parts. In addition, though QUAKE II offers a multi-player part,
it is mainly focused on single-player gameplay. Therefore, it does also not contain game agents which can
take part in the multi-player game mode.

There also exists a Java port of QUAKE II - called JAKE 2 [Jak07]. Of course, the option to use Java and
not C/C++ is very tempting when considering teaching puproses. However, as JAKE 2 was a community
project that was aimed at showing that such a port is realisable and that was based on the already not well
structured code in QUAKE II, the quality of the supplied framework is at least questionable. Figure 5.1
shows a picture from JAKE 2.

Fig. 5.1: JAKE 2 running in a Java Environment

It is also possible to create modifications to QUAKE IV. However, only a small part of the source code of
the game is published. Furthermore, QUAKE IV is very demanding in terms of needed hardware resources
and therefore not very convenient to use in experiments.
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5.2.2 UNREAL TOURNAMENT

In the field of fast paced multi-player action games the UNREAL TOURNAMENT series is the biggest com-
petitor of the QUAKE series. Both games are very similar in terms of gameplay, community building and
popularity. In fact, at the first glance the only difference between the games are the maps and the types of
items that can be collected.

When the work for this thesis started, the last versions of UNREAL TOURNAMENT - UNREAL TOUR-
NAMENT 2003 and UNREAL TOURNAMENT 2004 - were more up to date than QUAKE III. Thus, we
thoroughly examined if UNREAL TOURNAMENT was usable for our purposes.

UNREAL TOURNAMENT offers even more team-oriented game play modes than QUAKE III. It has a strong
community, which can be a source for much information. The underlying technology of UNREAL TOUR-
NAMENT 2004 is known to be very robust and usable. Like the QUAKE III engine it was used in numerous
other game titles.

UNREAL TOURNAMENT is also known to be very modifiable. However, the design of the modification
framework presents the biggest drawback of the UNREAL TOURNAMENT engine. The game is not modifi-
able on source code level. Instead, it uses an own scripting language called UnrealScript which is used to
develop modifications and additions to the game. Only companies that license the engine obtain full source
code access. Therefore, before starting to work with a just partly modifiable engine, which at some point
might have handicapped our work, we decided to not use the UNREAL TOURNAMENT games as the basis
of our research.

5.2.3 FARCRY

FARCRY is a first-person shooter from the year 2004 that is primarily focused on single-player game play
on rather big maps. The company Crytek Studios, which developed FARCRY, has published a software
development kit to modify the game. Among other things it is possible to change the behaviour of the game
agents in the form of scripts in the Lua scripting language [IdFC96, Ier06]. The shipped game agents are
also already quite clever2. As FARCRY is quite new, its high demands to the hardware makes it almost
unusable for experiments on affordable machines. In addition, the modifiability of the game is lower than
for games, whose source code was published.

5.2.4 MORROWIND

MORROWIND (2002, Bethesda Softworks / Ubisoft) is a highly modifiable single-player role playing game.
The game is presented in a first-person perspective and shows a huge world in which the player can shape
his virtual character. Combat is done as in most first-person shooters, though the agents usually fight with
blades. The supplied game agents are not very competitive in terms of behaviour. The challenge to the
player is posed by opponents that have better character values and resources than the player himself.

It is possible to use MORROWIND for AI research. However, the nature of the game is not as focused on
competition and multi-player game play as in the other games. Instead, it is more about exploring the world
and improving the characters attributes. In addition, the game agents can only be controlled by scripts. As
the source code of the game is not open, its modifiability for research purposes is limited.
2 see section 4.1
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(a) A Screenshot from Morrowind (b) The Morrowind Construction Set Editor

Fig. 5.2: Morrowind

5.2.5 GameBots

There also exist other projects that try to create an agent interface for a modern computer game. One of the
most sophisticated projects is the GameBots project [KVS+02] by Kaminka et al. It is based on UNREAL

TOURNAMENT and allows to control the players from external programs by using TCP sockets.

The design of the GameBots interface - as illustrated in figure 5.3b - is based on text messages3 that are
transmitted between the playing agent and the GameBots module, which is implemented as a modification
of the standard UNREAL TOURNAMENT engine. This design makes it possible to use any programming
language to control an agent in the game. However, it also deteriorates the efficiency of the agent imple-
mentation because they are not directly connected to the engine and the text messages need their time to be
transmitted and interpreted.

(a) A Screenshot from a GameBots game
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agent
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(b) The Design of the GameBots Framework

Fig. 5.3: The GameBots Framework

We examined the GameBots thoroughly. As it is based on UNREAL TOURNAMENT it suffers the same
disadvantages as stated above. This mainly is the inability to access the underlying game on source code
3 The whole list of messages can be seen at http://www.planetunreal.com/gamebots/docapi.html
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level. For example, as tracing is not possible, most of the experiments and research presented in Part III
would not have been possible with this framework. Therefore, we rejected the option to base our work on
the GameBots interface. However, there exists several work based on the GameBots framework [KGV02,
HABL04].

5.2.6 QASE

QASE is the abbreviation of Quake2 Agent Simulation Environment and represents another game-based
project for AI research. It was developed in parallel to our own interface and initially published in 2005 by
Gorman et al. [GFH05]. Therefore, it was not one of the options when the decision to implement an own
interface was made. However, we include it here because we think that it is a very interesting alternative to
our own framework because it uses a slightly different approach.

As the name suggests, QASE is based on the game QUAKE II. For the advantages and drawbacks of this
game we refer to the above section about the QUAKE series. The design approach behind the API needs the
full network protocols to be accessible which might have led to the decision to favour QUAKE II and not
QUAKE III, as the full sources for QUAKE III were not published until 2005.

The team behind QASE took a similar design decision as we did in our interface4, namely to make the
agents distributable. However, instead of adding an own protocol to the game server for the network com-
munication and the transmission of the current world state, they created a module which reimplements the
QUAKE II network protocol. Therefore the game is running on a standard game server to which several
clients - including real QUAKE II clients and QASE clients - can connect. Figure 5.4 illustrates this design.

Quake II
game
server

standard
Quake II

client

standard
Quake II

client

standard
Quake II

client

QASE client

p
ro

x
yMatLab

backend
MatLab
agent

QASE client

p
ro

x
yQASE

agent

Fig. 5.4: The Design of the QASE Framework

The QASE clients are implemented in Java and consist of a proxy module, which handles the network
flow, and an API to implement the agent. This separation should make it easy to adapt the framework to
other similar games. The framework also contains a MatLab backend for creating agents using the MatLab
programming environment [Mat07].

From our experience with QUAKE III we know that not all information is transmitted from the server to the
clients. For example, information about the available items is only transmitted for the vicinity of the client.
Instead of extending the network protocol, QASE tries to deduce the missing information from what is
transmitted. This has the advantage that it stays compatible to the standard version of the game. However,
4 see chapter 6
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it can happen that some needed information - for example if the agents need to know the positions of all
items on the map before they start to develop a strategy - is not available.

When comparing QASE to our framework, the real difference lies in the chosen games. As we already
said above, we prefer QUAKE III because it is much more based on multi-player gameplay and ships game
agents that can compete in multi-player gameplay.

QASE has been extensively used in teaching and in the research of Bauckhage and Thurau et al. [BTS03,
GTBH06] as well as Gorman et al. [GFH05].

5.2.7 STRATAGUS

STRATAGUS [Str07] is an open source engine for the creation of real-time strategy games. It is a non-
commercial project made by fans of the genre. In its origin it was loosely based on the WARCRAFT and
STARCRAFT series of games from Blizzard Entertainment. However, today it presents a general framework
that can be used to implement real-time strategy games of all kinds. Figure 5.5 shows a screenshot of the
STRATAGUS-based game BATTLE OF MANDICOR.

Fig. 5.5: A Screenshot of the STRATAGUS-based game BATTLE OF MANDICOR

As STRATAGUS is not a commercial game, it is by far not as widespread and popular as its commercial
relatives. Additionally, it is focused on human vs. human gameplay. Therefore, the supplied AI component
is not very competitive. However, the commercial games in this genre are usually only modifiable to a very
small degree - e.g. building maps or exchanging graphics.

5.2.8 Comparison

Table 5.1 assembles the information we have given above and presents them in one overview that relates to
the given criteria.
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Table 5.1: Comparison of different Games and Frameworks for scientific Purposes.

game modifiability importance multi-player opponents usability information
QUAKE open source very successful

but replaced by
its successor

yes, but simple no multi-player
opponents

Dos / Windows
/ Linux / Mac

less than for its
successors

QUAKE II open source very successful
but replaced by
its successor

yes, but simple no multi-player
opponents

Windows /
Linux / Mac

less than for its
successors

QUAKE III open source very successful
and still played

multi-player-
oriented

contains good
opponents

Windows /
Linux / Mac

still very much
information
available
though it gets
more and more
replaced by its
successor

QUAKE IV partly open
source

very successful single-player-
oriented but
contains
QUAKE III
maps for
multi-player
gameplay

almost the
same as in
QUAKE III

Windows /
Linux / Mac,
but high
hardware
demands

big community

UNREAL
TOURNAMENT
(all)

modifiable by
scripts

very successful multi-player-
oriented

contains good
opponents

Windows /
Linux / Mac,
but high
hardware
demands for
the newer parts

big community

FARCRY modifiable by
scripts

very successful single-player-
oriented but
contains
sophisticated
multi-player
part

contains good
opponents

Windows big community

MORROWIND modifiable by
scripts

very successful purely single-
player-oriented

shipped game
agents are
made for
single-player
gameplay and
thus not
competitive

Windows still very much
information
available
though it gets
more and more
replaced by its
successor
OBLIVION
(2006)

GameBots based on
UNREAL
TOURNA-
MENT, the
agents have
very limited
sensors

see UNREAL
TOURNAMENT

multi-player-
oriented

contains good
opponents

Windows /
Linux / Mac,
agents are
distributable
and
programmable
in Java

still very much
information
available
though it gets
more and more
replaced by its
successor
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game modifiability importance multi-player opponents usability information
QASE open source

and based on
QUAKE II, full
client-side
game
information
queryable

see QUAKE II single-player-
oriented

no multi-player
opponents

Windows /
Linux / Mac,
agents are
distributable
and
programmable
in Java or
MatLab

publications by
the developers
[GFH05]

STRATAGUS open source not a
commercial
game

multi-player-
oriented

opposing AI is
quite weak

Windows /
Linux / Mac,
needs only few
hardware
resources

manuals from
the developers

After thoroughly checking the features of each presented alternative, two candidates remain: QUAKE III
and QASE. Both satisfy most criteria given above. The game behind QASE is not multi-player-oriented
and contains no competitive game agents. However, it already comes with a game agent API.

As we already mentioned above, QASE was published after our initial investigation and did not present
an option at that time. Therefore, we chose to implement an own interface on the top of QUAKE III.
Nevertheless, at the time we found out about QASE, we would not have chosen it, because both APIs share
similar features and are equally usable, but QUAKE III suits our research much more.

5.3 The “Complexity” of QUAKE III

Though it is not really possible to calculate or even prove how complex the decisions are that an agent
in the QUAKE III game has to make, we want to show in the following, what decisions can be made and
under which influences these decisions have to be made, to determine what is needed to implement a fully
functional QUAKE III player?

The game server runs at a rate of 10 Hz. That means that basically each 10th of a second all movements and
further effects of the executed actions are computed. Hence, the player can change his movements, actions
and affect the game world 10 times per second. Figure 5.6 shows which degrees of freedom a player has in
the virtual world. The movement can be adjusted by setting two values f ∈ {−127, ..., 127} for forward
movement and l ∈ {−127, ..., 127} for lateral movement. Furthermore the agent can set a third value
u ∈ {−127, 0, 127}. u = −127 will let the player duck and u = 127 will initialise a jump. The forward
direction is set by the view angles v ∈ (ψ,ϕ, ρ). ϕ ∈ [0◦, 360◦] controls the yaw angle and ψ ∈ [−90◦, 90◦]
the pitch angle. The value ρ ∈ [−180◦, 180◦] is designated to control the roll angle of the head, but has no
effect on the movement.

All movements are influenced by friction and gravity. The gravity holds the characters on the ground.
Therefore, the player always returns to the ground after a jump and has to reset u to 0 and then set it to 127
again to initiate another jump. Friction lets the characters slide a bit over the ground after they have moved.
This causes the movement to become somewhat unpredictable because the friction is influenced by some
randomness. It is not possible to exactly position the agent on some specific spot on the map.

Based on these constraints a player of the game has to move through the three-dimensional world. However,
this covers just the bare movement. Of course a player of QUAKE III has to think about much more things.
Depending on the game play mode the goals of the players differ. In most modes the main goals are to
avoid damage from and to inflict damage to the opponents.
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Fig. 5.6: The Degrees of Freedom of a QUAKE III Player

To avoid damage, a player has to move very fast and not to stand still. Furthermore, a player should only
go into combat if he has enough health and armour points. The health determines how much damage the
character can endure before it loses its virtual life and gets respawned somewhere on the map. The armour
supports the health by holding of damage. If all armour is depleted all damage is directly subtracted from
the health points. Armour and health packs with different amount of points are located on the map and can
be collected by the players. When they are collected, they vanish from the map and respawn on the same
spot some time later. So, health and armour management is a very important and not trivial task in the
game.

To inflict damage, the playing agents need to choose and use the right tools. In the game these are repre-
sented by virtual weapons. These range from instant hit weapons with low damage to weapons with slow
projectiles but with a high damage that affects all entities in a radius. In the computer games area such
damage is called splash damage. There is also one melee weapon which only inflicts damage when one
player touches the other. Almost all weapons need some sort of ammunition which again lies around on the
map. Most weapons also have to be collected by the player, before they can be used. This leads to a struggle
for these resources by the players. Furthermore, a player has to manage its resources in an intelligent way
to win.

The next point that has to be considered is aiming. Since the speed of the projectiles and the type of
damage differs between different weapons, the aiming has to be adjusted according to the used one. If the
projectiles inflict splash damage it is often better to hit the wall or the ground and not the opposing player.
Furthermore, the movement of the opponent has to be taken into account.

To complicate things even further, several powerups exist that can also be collected and used. For example,
there exist instant powerups that multiply the damage of the player’s weapons, double his movement speed
or make him almost invisible. Other powerups can be collected and used later like an invulnerability shield
or a medkit. The competition for these items and powerup is a central part of the game.

In team play modes the behaviour of the team mates has also to be taken into account. No team mate should
accidentally be damaged by friendly fire or by splash damage. The resources of the map have to be managed
in the team, so that the team mate which needs an item the most actually gets it. Furthermore, team combat
strategies have to be considered. No character should get into a situation in which it is outnumbered by its
opponents. Though, players that have a very small distance are an easy target for splash damaging weapons.

The most sophisticated team play mode is the capture the flag game. In this game mode two teams of agents
play against each other on a symmetric map like the one illustrated in figure 5.7. Such a map consists of
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a base for each team (red and blue) and a central area. Each team has a flag which is located in the
corresponding team’s base. The goal of the game is to steal the opponent’s flag, to bring it to the own base
and to put it at the own flag. Such a procedure is called a capture. The flag can only be captured, if the own
flag is still at the base. Each team member is able to carry the flag. If the hit points of a flag carrying agent
are depleted, it will drop the flag and reappear at its own base. So, there exist several subgoals that have
to be considered: Get the opponent team’s flag, guard the own flag, protect the flag carrier and return the
own flag, if it has been stolen. The game runs over a prespecified time span5 or until a maximum amount
of captures by one team is reached6. Then, the team with the most captures wins.

blue

red

Fig. 5.7: An Example for a simple CTF Map

5.4 The Architecture

QUAKE III is a complex piece of software that consists of several modules. It was written in C (not C++)
and partly in assembler code for efficiency reasons. The system can be separated into the base system,
which contains the game engine, and the plugins, which contain the gameplay specific code. Figure 5.8
illustrates this architecture. Table 5.2 gives more detailed information about the content of each module.

botlib

main

clientserver

qcommon renderer

game cgameui

jpeg-6

splines

Base System

Plugins

B   =   A calls functions in BA

Fig. 5.8: The Architecture of QUAKE III

5 usually 10 to 15 minutes
6 usually 10 captures
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Table 5.2: The Modules of QUAKE III.

Base System
botlib This library contains procedures which are used by the standard QUAKE III agents (see

section 4.1.2). It consists of
• the area awareness system for navigation,
• a chat library for in game chats (mainly string handling)
• wrapped, simplified calls to the server for movement and acting in the environment
• a (simplified) fuzzy logic module for decision making.

client This module represents the interface to the cgame plugin, which handles client side cal-
culations. It handles calls from cgame and in return calls the main frame function in that
module.

jpeg-6 This library is used to decode jpeg (Joint Picture Expert Group) images [PM93].
qcommon This module is the basic module of the game. It serves as a common code base for the

client and the server. It is responsible for the main event loop of the game, contains the
code for the communication between client and server (direct or by network) and manages
the built-in console. All calls from the cgame, game or ui plugins end either here or in the
renderer.

renderer The renderer is responsible for painting three- and two-dimensional content. It uses the
Open Graphics Library (OpenGL) [Ope07] to do this. OpenGL was developed by Sili-
con Graphics Incorporated [SGI07] and its main objective is to display three-dimensional
graphics in real time. The functions provided by this unit are called by the client to display
the game content.

server This module represents the interface to the game plugin. Analogical to the client unit, it
handles calls from game and delegates these to the responsible modules.

splines This unit is a small library to compute splines. The ability to display real curves was a new
feature in this game engine. However, it was only sparsely used in practice.

main This module contains the control loop of the game. It periodically calls the main frame
function in the qcommon package. Furthermore, this unit contains all platform specific
code - e.g. the connection to the OpenGL library, the support for several input devices and
the connection to the sound system.

Plugins
ui This plugin is responsible for the main menus of the game. After the game was started only

this plugin is loaded to display the main menu.
game This plugins controls the whole game mechanics like the movement of the players and the

effects of actions by the players. It therefore contains all the rules which determine the
gameplay.

cgame This module determines what is displayed on each client of a game session. It determines
what should be drawn on the screen and represents the interface between the real and the
virtual player. Together with the game plugin it shares the code for the movement of the
players. In cgame this code is used to predict the movements for a more fluid gaming
experience. Almost all information which is present on the server is also available as a
regularly transmitted copy in the cgame module.

QUAKE III can run in four different modes. The base system is running in all cases. In the first mode, only
the ui module is loaded to display the main menu. There, the user can set up games and change the game
settings. The game can also run as a dedicated server. In this case only the game module is loaded by the
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base system. The game then runs in a pure console mode and accepts connections from other clients. All
game rules are computed by this dedicated server which usually also runs on a dedicated machine.

The most common running modes are used for single and multi-player gameplay. In a single-player game
both game and cgame are loaded. The cgame module then displays a virtual representation of the game
world. It also reacts to inputs by the player. The game module is again responsible for calculating the game
rules. In a single-player game the client and the server communicate directly with each other. Exactly one
game instance is needed for each game to run. So, in a multi-player game either one client has to also be
the server or a dedicated server is used. All other clients run in the fourth running mode in which only the
cgame module is loaded by the base system. Server and clients then communicate over a network using the
User Datagram Protocol (UDP). Figure 5.9 displays the described running modes.

game & cgame

(a) Single-Player

game & cgame cgame cgame cgame

(b) Multi-Player

ui

(c) Main Menu

game cgame cgame cgame

(d) Multi-Player with Dedicated Server

Fig. 5.9: The Running Modes of QUAKE III

5.5 Reengineering the QUAKE III Engine

When we began to plan using the QUAKE III engine to implement an interface to control the virtual char-
acters, we had the choice between implementing the agents on server side (in game) or on client side (in
cgame). We decided to go for the client side option because it has several benefits. The most important one
is, that it is possible to distribute the agents onto several computers using the built-in, robust, efficient and
reliable network code of the QUAKE III engine. Therefore, we did not have to think about implementing
our own network protocols which had to be hacked into the engine. Furthermore, we would still operate
within the QUAKE III engine without loosing efficiency. Most necessary game information is transferred
from the server to the clients 10 times per second. This includes the current position and trajectory of all
entities within a certain distance as well as the current state of the client’s player. It is always known that
an entity exists, but its current position is only updated if it lies within this mentioned distance. However,
for most entities, e.g. items and special entities, this information never changes.

In the standard engine, the status of the other players is particularly not transmitted to avoid cheating.
However, this behaviour could easily be changed by altering the responsible source code in the qcommon
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module. This change came with the cost of creating an incompatible version of the QUAKE III engine.
Therefore, clients using this version of the game cannot play against clients using the original game version.
Changes to the base system became also unavoidable when we wanted to implement a method to steer the
agent. Since all keyboard and mouse inputs are processed in the base system we had to add calls in the
interface between cgame and client to forward pointers to the variables which determine the movement of
the client.

To make it possible to run the client remotely without the connection to an X server we also made it possible
to cut the connection between the client and the renderer module. If a specific switch is activated upon game
start, the game will not open a window and run in a pure console mode, like the dedicated server but with
cgame loaded. To achieve this, all calls from cgame and client to renderer are ignored and the initialisation
of the rendering system is skipped.

These are the only changes that were made to the base system. Further reengineering effort went into
making more information available which is not so time sensitive. Therefore, we used console commands in
the built-in console to transfer this information. All other changes did only affect the cgame module. There,
the main part of the CLIENTBOT INTERFACE which is presented in the next chapter, was implemented.
This part was written in C++ and accesses the above mentioned information and wraps it into classes.
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The CLIENTBOT INTERFACE

This chapter describes the interface to the QUAKE III engine that was implemented in the course of this
thesis. It can be used to control the player characters in the game by a dynamically loadable plugin. In ad-
dition, it allows to distribute the controllers onto several machines. Parts of the implementation were made
by Matthias Keller in the course of his bachelor thesis1. The created interface was used for the experiments
in part III as well as in several bachelor and master theses. In 2005/2006 it was also used for teaching
purposes in the project group “Cooperative Intelligence”. The name of the interface is a combination of the
term “client”, as it works on the client side of the game, and “bot”, which is an abbreviation of robot that is
commonly used to describe artificial characters in a computer game.

6.1 The Architecture

Figure 6.1 shows how the CLIENTBOT INTERFACE is embedded into the QUAKE III engine. As mentioned
in section 5.5 we had to change some parts of the base system to be able to control the movement and get all
needed information. The rest of the interface is embedded in the cgame module where it consists of three
parts: the DLL manager, the console manager and the bot interface.

base system

cgamegame ui

dll

manager

console

manager

bot

interface

agent

move /

states

Fig. 6.1: The Architecture of QUAKE III

The DLL manager handles the connection between the agent and the game. It is responsible for dynami-
cally loading and unloading the agent and for calling the appropriate functions in the agent itself. The con-
sole manager is responsible for the connection to the in-game console2. Finally, the bot interface provides
1 The authorship of each class is noted in the header of the corresponding source file.
2 see section 6.3.2
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the agent with all functions that can be used to control its corresponding player and to query information
from the game.

6.2 Design Principles

When we decided to implement a new interface to control QUAKE III characters, we first assembled a list
of design principles according to which the implementation should be carried out. In the following we will
present these design principles and how we tried to realise them.

Comprehensibility & Modularity

The most important objective of the interface was to create an object-oriented design that is mostly self-
explaining. Therefore, we wrapped the actors and sensors of the controlled agent into corresponding classes.
Figure 6.2 illustrates the design we came up with.

B
o

t-
In

te
rf

a
c
e

Move

Action

SeeChat

Status

Fig. 6.2: The Design Idea of the CLIENTBOT INTERFACE

There is one class for movement, one for actions and one for chatting. The sensors are split into seeing and
sensing the states of the other players. Finally the world in which the game is taking place is represented
by a corresponding class. For all these classes only one singleton object exists that can be accessed when
programming an agent.

Efficiency

Efficiency was very important in the design process because the game engine is already consuming much
computation power and it had to be possible to execute the agent implementations as a background process
on the pool computers of the university. Therefore, we paid special attention to making the calls to the
interface in a very efficient and fast way. Speaking in C++ terms this means that bigger objects are always
called by reference and that short and often called procedures are implemented inline.
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Bug Avoidance

Since the QUAKE III engine is already a complex piece of software, we paid special attention to avoiding
as much sources for bugs as possible. Therefore, we used C++ features to avoid C pitfalls. For example,
we used the type safe C++ stream processing and not the popular printf function. Further effort went
into the usage of the const statement. In C++ this can be used to declare variables or whole functions
as constant, which means that their content cannot be changed or that they are not changing any variables,
respectively. Using the const statement leads to compiler errors when something is changed which is
declared constant. Therefore, it is very helpful for avoiding unwanted side effects. Finally, we used unit
testing for all parts of the interface to check, if they are working as expected.

Reusability

Though the interface was made primarily with QUAKE III in mind, we organised it in a way that allows
to reuse it in other, similar environments by using the façade design pattern. The whole interface and
its data structures are only accessible in the form of pure virtual classes that were subclassed for the real
implementation. Therefore, the implementation can be adjusted to work with other environments without
loosing compatibility to the already conceived agents. Furthermore, the programmer of an agent can only
see the façade of the interface and is not able to access the inner structure. Figure 6.3 illustrates this concept.

ISee See

Agent
cgame

module
IMove

IAction

IWorld

Move

Action

World

pure virtual

layer

real

implementation

Fig. 6.3: Access through the Interface

Several parts of the interface were also implemented as single independent libraries which can be reused in
other programs. These libraries include a library for network access, a logging library, a small math library,
a library to access the file system, a library to wrap function as functor objects and a library to easily access
dynamically linked libraries.

Platform Independence

As QUAKE III is executable on Windows, Linux and MacOS, we wanted to keep this platform indepen-
dence. Though, our main focus was the utilisation of the game engine on Linux machines to be able to
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remotely start experiments on the various pool computers of the University of Paderborn. Therefore, we
implemented the interface in a way in which at least platform independence is intended - e.g. by using only
platform independent libraries and making operating system specific code unavailable or replaceable on
other operating systems.

Usability

The interface was designed in a way that facilitates the making of experiments or testing of agent be-
haviours. To achieve this, we devised an additional plugin layer for the behaviour code of the agent itself.
Hence, an agent plugin can be unloaded, changed, replaced and loaded again in a running game session.
Furthermore, we added easy to use shell scripts to create new agent projects and other expandable content.

Cheat Protection

Whilst developing the interface, we decided that all possible information and actions should be available,
so that we would not miss things when doing experiments. For example, it could be very useful for repeated
experiments to be able to teleport the player or to know the positions of all other players. However, such
knowledge and actions are not available to the normal player and should therefore be considered as a cheat.
To be able to check if an agent uses such cheats, we added an extra logging level that displays additional
messages when methods are called that can be used to cheat. This feature became very important when the
interface was used for teaching purposes.

6.3 The Subinterfaces

In the agent implementation, all subinterfaces can be accessed through the singleton system object, which
by itself is returned by the system() function. Figure 6.4 shows the first layer of subinterfaces. These
subinterfaces are described in the following sections.

6.3.1 The DLL Manager

The DLL manager internally manages the loading and unloading of agent DLLs or shared objects on
runtime. It also executes the appropriate prespecified functions in the agent (OnStart(), OnEnd(),
etc.). From the side of the agent it is possible to register think functions which will then be executed, if
some specified think call check becomes true. In most cases think call checks will become true, if a certain
amount of time has passed since the last call of the corresponding think function.

The concept of think calls is already used in QUAKE III itself. There, all entities have a think function which
is called in each server frame (10 times per second) to compute their new state. Therefore, the game server
just has to call the think function of all entities in each frame and the appropriate code is closely stuck to its
corresponding entity. This keeps the overall implementation very clean. In addition, the original QUAKE III
agents can change their think function by the use of function pointers. There exists a corresponding think
function for each state of the agent which is then automatically called by the server event loop. We extend
this concept for think calls while keeping it cleaner and more usable by using C++ features.

When an agent is loaded, its OnStart() function is called. This function is then used to initialise the
agent and to register its think functions to the DLL manager. This design gives the developer of an agent
much freedom in how he wants it to work. It is possible to register several functions with various call
checks. Furthermore, the IThinkCallCheck interface can be subclassed to develop even more think
call checks.
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Fig. 6.4: System Hierarchy

6.3.2 The Console Manager

QUAKE III offers a powerful in-game console. Almost all aspects of the game, ranging from the game rules
to the parameters of the renderer, can be controlled from this console by executing console commands or
changing console variables. The execution of a console command is caught by the game and a correspond-
ing C function is called. The variables are directly initialised by the game and accessed by its code. They
can store either float, integer or string values. In the game, the console can be displayed in the upper third
of the screen as shown in figure 6.5. If no graphical front end has been started, the terminal in which the
game was started will serve as the game console.

The console manager represents the interface between the agent and the console. It can be used to reg-
ister new console variables and commands. The variables are then accessible by objects which wrap the
QUAKE III console variable mechanism in an intuitive way. Console commands are tied to function calls
in the agent itself.

As a developer, it is very convenient to have such a mechanism at one’s disposal because console commands
can always be entered and variables can always be changed in a running game session. Therefore, it is
possible to use commands to create debug output or to change something in the behaviour of the agent.
Parameters of the agent behaviour can furthermore be implemented as console variables which can then be
read and changed on runtime.
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Fig. 6.5: The QUAKE III Console

Finally, it is possible to transmit an arbitrary console command or to change an arbitrary console variable
through the sendCommand(string cmd) function. This is one of the most powerful functions in the
whole interface and a good example for a function which was declared a cheating function. The other
functions in the console manager only give access to the commands and variables that the agent registered
by itself.

6.3.3 The Bot Interface

The bot interface is by far the largest part of the whole CLIENTBOT INTERFACE. It contains all functions
which are needed to control the player character in the game and to query information from the game. As
we already stated above, we tried to design this part of the interface in analogy to the human sensors and
actors. The result of this design process can be seen in figure 6.6.

In the following we will describe each of these subinterfaces according to their functionality.

The See Interface

The see interface is responsible for seeing, or better, querying information about the entities in the environ-
ment. Of course, the agent does not see the world as a rendered image. It would be a large overhead to try
to get all needed information from the rendered representation that a human player uses.

Seeing is divided into two types. The first is the seeing of entities by querying their position or other infor-
mation from the game engine and the second is the seeing of the surrounding structure by sending traces.
Entities comprise all movable objects in the game world, ranging from items, powerups and special event
entities to the players themselves. All entities are always queryable in the cgame module of QUAKE III.
However their information might not always be up to date, if they are positioned at a far distance to the
current client. However, usually only the entities in the vicinity of an agent are important. The interface
provides functions to retrieve all possible or only the visible entities. Each of these functions has a spe-
cial occurrence for items, powerups and players. Only the functions which return visible entities are not
classified as a cheat.

The entities can be separated into three different classes: players, items and other entities. Players are the
most important class of entities. In the QUAKE III sources they are represented by no less then five data
structures that are available at different source files. We decided to let the players be represented by player
state objects which are accessible through the states subinterface. However, it is also possible to query the
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Fig. 6.6: Bot Hierarchy
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entities which correspond to the players, though they do not hold as much information as the whole player
states.

Items are all entities that lie around on the map and can be picked up. Therefore, an item is a special entity
that holds more properties - e.g. the item type or the amount of content in the item or if it has been picked
up before. Furthermore, some items are powerups with some special effect. Finally, there exist usable
items which can be picked up and activated later. The other entities are of lesser interest to the players. For
example, there are entities for light sources or invisible entities that can be used to influence the behaviour
of the original QUAKE III agent - e.g. entities that tell the agent to stay away or to attract it.

start target

collision

point

not part of 

collision mask

Fig. 6.7: An Example for a Trace in QUAKE III

The second type of seeing is called tracing. As it is shown in figure 6.7, a trace sends a ray from one point
in the virtual world to another point. If the ray hits an object in the course of its travel, the trace will be
stopped and a trace result is returned that contains information like the kind of surface that has been hit,
the fraction of the complete way the trace travelled or the point at which the trace ended. If it has hit an
entity, it will also return the corresponding index. The trace is always stopped when it reaches its end point.
It is possible to specify a collision mask that decides with which kind of objects the trace will collide and
which objects are ignored. Thus, it is possible to specifically trace for certain things - i.e. doing a trace that
collides with solids but not with fog. In addition, a bounding box can be specified that will be send along
the path of the trace instead of the ray. Hence, an agent can test if is able to fit through an opening or go
somewhere without collision.

Finally, the see interface also provides functions to change the view angles of the agent. It was difficult
to decide whether to include these functions in the see or in the move interface, as they also control the
direction of the movement. However, we think that it is much more suited for the see interface, as it mainly
affects what the agent looks at.

The Move Interface

This interface controls the movement of the agent in the game world. As we have already stated in sec-
tion 5.3, any character in QUAKE III has five degrees of freedom to affect its movements in the three-
dimensional world. In addition, this movement is always influenced by the physics of the game world -
namely gravity and friction. The gravity forces the agent to always fall to the ground. However, it is possi-
ble to change the direction of the movement when the agent is in the air. The friction makes it impossible
to position the player on some specific point on the ground because the friction lets it slide a bit on each
movement.
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The game character is moved by setting its forward and lateral movement. The resulting movement is the
addition of both single movements. The forword direction is always the direction the player looks at. The
move interface also contains functions to query the own movement rate in each direction. It is also possible
to teleport the agent to an arbitrary position3.

The Action Interface

This part of the interface handles everything which can be done with the hands of the artificial character.
This includes the changing and firing of weapons, the activation of holdable items and gesturing.

The States Interface

Information about the players - regardless of if they are team mates, opponents or the agent itself - is the
most valuable information in QUAKE III. The states interface gives access to this information.

Queried information is returned in the form of player state objects that among other things contain:

• the unique client number of the corresponding player.
• the name of the corresponding player.
• the current health, armour and inventory status of the corresponding player.
• the team of the corresponding player.
• the position, view angles and trajectory of the corresponding player.
• some statistics about how well the corresponding client is playing the game.

For the local player, a local player state is returned that is a specialisation of the common player states. It
also offers the possibility to change some parts of the state of the player like the current name and team.

The Chat Interface

Though much information about the other players is available through the states interface, a direct com-
munication between the agents is needed to give game AI developers all possibilities for implementing
extensive cooperative agent behaviours. The QUAKE III engine uses UDP4 to transfer its data. This proto-
col is very fast. However, it does not guarantee that sent packages arrive in order or that they arrive at all.
This is a minor problem for QUAKE III because it transmits the current game state ten times per second.
If a package is lost, the client will bridge the gap by predicting what happened until the next game state
arrives.

Scientific use, however, may result in the requirement to transmit longer messages in a reliable way, which
guarantees the right order of reception. Hence, we created a small messaging library5 which uses TCP6.
Most of the functions in the chat interface represent the usage of this messaging library.

Agents which join a game are automatically connected with each other. They can directly start to send
messages to each other using their unique client numbers It is also possible to connect to other processes
that use the same messaging library. This can be agents in other game sessions or external programs, which
for example can be used for monitoring and controlling a team of agents.

The chat interface also contains functions that use the built-in functionality to send text messages that are
then printed on the screen of all clients.
3 Teleporting is considered as a cheat.
4 user datagram protocol
5 see section 6.4.1
6 transmission control protocol
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The World Interface

The world interface wraps all information about the current game session - e.g. the server time and the
current frame. It also returns information about the current level or map - e.g. the name of the map, the
winning criteria and the status of the current match.

6.4 The Shared Libraries

In the course of the implementation of the CLIENTBOT INTERFACE we identified several needed parts
which could be developed in a more general way. The following sections give a short overview of the most
important of these generally usable libraries.

6.4.1 The Messaging Library

As we already stated in section 6.3.3, we built an external messaging library to facilitate the communication
between several agents. To understand the need for such a library one has to look back at the release of
QUAKE III. In 1999 broadband internet was not as widespread as today. Most internet users were connected
using a modem with a transfer rate of at maximum 56 kilobit per second. Today’s connections using DSL
are more than 17 000 times faster.

As QUAKE III was mainly intended to be an online multi-player game, much effort went into the devel-
opment and the optimisation of the network code. Especially the high dynamics of the game made it very
important to have fast and robust networking code. Therefore, UDP was used as the network protocol.
Though, it is not reliable concerning the arrival of sent packages in order and the loss of packages, it is
very fast and resource saving [Tan03]. Furthermore, it is not a big problem if a sent package is not received
because the next gamestate will be sent soon and outdate the unreceived package.

The only data that is safely received in the right order are the console commands. To achieve this, the
QUAKE III developers implemented a small connection-oriented protocol on top of UDP, which buffers
incoming console commands and internally numbers them to preserve their order. If a transmitted command
is missing, it will be transferred again. This system, however, is only usable for and was only intended for
sending short text messages. A more sophisticated usage quickly results in overflows and a breakdown.

For scientific use, however, it is not tolerable that packages can be lost or received in the wrong order. If
the packages contains control parameters or learnt data, an unsafe transmission can invalidate the gained
results. Therefore, we introduced our own messaging system in the CLIENTBOT INTERFACE framework.
Instead of UDP it uses TCP [Tan03], which is connection-oriented. TCP guarantees that all sent packages
are received and that the packages are received in the right order. Yet, it introduces an overhead in terms of
transferred data. Today’s games more and more use TCP to transfer their data because of its safety.

The messaging systems consists of a small library that can also be used outside of QUAKE III. This makes
it possible to build external programs that can communicate with our agents. This turned out to be a
very convenient feature. For the underlying network code we looked at several networking libraries or
libraries that contain a networking module. We decided to use the Qt library [Qt07], as it offers an easy
to use network interface. Qt is a platform independent library written in C++, which is developed by
Trolltech [Tro07]. Its aim is to provide a toolkit that makes it possible to develop graphical programs that
run on different platforms. Qt is available for Windows, Linux/X11 and MacOS as well as for Linux-based
embedded systems. All platform specific calls are wrapped in C++ classes which can be conveniently used
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by the developer of a Qt application. Besides that, Qt also contains very useful and sophisticated data
structures like strings and dynamic lists. Since external programs which use the messaging library have to
link against Qt, they can also use it to present a graphical user interface in a platform independent way. The
messaging library supports versions 3 and 4 of the Qt library, whereas version 4 is the current version of
the library.

The agents which share a game session are automatically connected by the CLIENTBOT INTERFACE. Other
connections have to be handled manually. After the connection has been established, messages can be
transmitted between the participants. We use an object-oriented approach to the messaging. Therefore, a
message is represented by an object that contains the transferred data. To transfer this data, it has to be
serialised - i.e. translated into a byte string - and to be sent over the TCP connection.

Serialisation is a bit complicated in C/C++. It is not possible to just read in the corresponding object from
the memory because it might contain pointers which have to be followed to find all data. Therefore, for
each message class a serialise and deserialise function has to be implemented to do this job. Figure 6.8
shows an exemplary message hierarchy which is derived from the IMessage interface that is defined by
the messaging library. �����������	
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Fig. 6.8: The Message Transfer between two clients

The transmission of a message then works as follows. First, the message is created and serialised by the
sender. The serialised message is then transferred to the receiver. There it is deserialised by the so-called
message factory. This is a singleton objects that takes a message id and returns a corresponding newly
constructed message object. This message object is then filled with content by deserialising the data. Figure
6.9 illustrates this procedure.

The message id is transferred separately in the message header. The complete binary format of a message is
shown in figure 6.10. In addition to the message id that specifies the type of a message, an id for the sender,
the message factory and the message size is contained in the header. The sender id can be used to distinguish
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Fig. 6.9: The Message Transfer between two clients

between different senders. The message factory id assures that messages are only recreated by a fitting
message factory. If there are several clients in a messaging network that use a different message hierarchy,
they will send messages with different message factory ids. This assures that no false interpretation of
received date happens.

message ID sender ID
message

factory ID
message size message

message size byte32 bit32 bit32 bit32 bit

Fig. 6.10: The Header of a Message

6.4.2 The DLL Manager Library

A DLL (dynamically linked library) is a binary code library that can be loaded by a program on runtime
[TW97]. Depending on the used platform, the concept of a DLL has several names. For example it is
called Dynamic-Link Library on Microsoft Windows or Shared Object on Linux and Unix machines. The
original idea behind DLLs was to save memory. If several programs use the same functions and no DLLs
are used, they will all have to include the corresponding code into their own code and load it into memory
on startup. Therefore, there exists much redundancy in the occupied memory. When using a DLL such
code is only loaded once. All programs which use it just have a reference to the corresponding memory
address. In addition, DLLs also allow to reach a higher modularity in the used code.

A feature of DLLs that has become more and more important is the possibility to load such a library on
runtime. Therefore, a DLL can be used as a plugin that holds some functionality that can be exchanged
upon loading different DLLs. To achieve this, an interface between the loading program and the DLL has
to be specified. Then, several DLLs can be implemented that comply to this interface. QUAKE III relies
heavily on this concept. As we already stated in 5.4 the whole game mechanism, the shown menus and the
user interface are just plugins. The CLIENTBOT INTERFACE also uses DLLs to be able to load and unload
agents on runtime.
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Therefore, we conceived the DLL manager library to facilitate the loading and unloading DLLs and to han-
dle related things automatically. Furthermore, this library wraps the DLL handling functions for different
platforms into one common interface.

6.4.3 The Functors Library

The functors library offers an object-oriented way to create functors which can be given as parameters for
certain functions. A functor is an object that represents a certain function and whose (()-operator) can
be used to call this function. In the CLIENTBOT INTERFACE, functors are needed for the registration of
console commands7 and for the registration of think functions8. There, functors are used to specify the
function which should be called in the case of a think event or the invocation of a console command.

Though C/C++ offers the usage of function pointers, we think that the concept of functor objects is easier
to understand. Furthermore, our functor class is able to easily handle the call of member functions of an
object, which is quite complicated when using function pointers. Therefore, the developer of an agent can
specify some of its member functions as the think and the console command functions, instead of using
global functions.

6.4.4 The Logging Library

Early in the development process we figured out that a sophisticated logging mechanism is needed for a
software project of this size. Therefore, we build a stream based logging library with support for different
log levels and channels. These levels can be used to hide and show logging messages depending on the
interest of the user. In the CLIENTBOT INTERFACE the following levels are defined.

0. critical
1. error
2. warning
3. info
4. verbose
5. very verbose
6. debug
7. cheat

The user can specify a number between 0 and 8 and will only see the channels which are below or equal
to that number. An example logging output can be seen in listing 6.1. The log is channelled to the console
and into a log file. In the log file, additional timestamps are printed in front of the messages. Further log
output formats can be easily implemented and added. The used logging channel is printed in front of each
message - e.g. <II> for info or <VB> for verbose.

6.4.5 The Math Library

As QUAKE III runs in a virtual three-dimensional space, many operations in the game need vector mathe-
matics. The QUAKE III developers used preprocessor macros for their vector math, which results in hardly
readable code. We improved upon this by introducing a small, object orientend math library that mainly
contains classes for three-dimensional vectors and matrices. By using the feature of C++ to overwrite op-
erators, these new classes can be used in a very readable and clean way. Listing 6.2 shows an example of
how to use this library. The math library also contains functions to create random numbers under several
distributions.
7 see section 6.3.2
8 see section 6.3.1
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Listing 6.1: An Example for some Logging Output
<II> [System] ---- Game Init ----
<II> [System] Host: atreju.cs.uni-paderborn.de
<II> [System] Working Directory: /opt/quake3/clientbot
<II> [System] Qt Version: 3.3.8
<II> [System.Bot.Chat] ---- Network Setup ----

Client Number: 0
Interface: eth0
IP: 131.234.66.102
Port: 4242

-----------------------
<II> [System.Bot.Chat] Connecting to myself (client 0).
<VB> [System.Bot.Chat] Connection to myself established.
<II> [System] initializing cheat control...
<VV> [>ConsoleVariable<] setting cb_cheatcount = 0
<DD> [System.DllManager] OnInitGame()
<II> [System.DllManager] autoloading bot examplebot...
<II> [System.DllManager.<ExampleBot>] Init
<II> [System.DllManager] successfully loaded examplebot.so.

ExampleBot Brain Version: 1.2
created with gcc-3.4.6 at Apr 25 2007, 13:37:55
by Steffen Priesterjahn (spriesterjahn@upb.de)

<II> [System] ---- Game Startup ----
<II> [System.DllManager.<ExampleBot>] ExampleBot started

Listing 6.2: An Example for Code using the Math Library
Vector3D u, v, w;
float a;

u = Vector3D(1, 2, 3);
w = Vector3D(3, 2, 1);

u.normalize();

v = u + w;
a = v * u + 2 * v * w;
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Imitation and Cooperation in QUAKE III
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Introduction

This part deals with the experimental results that were obtained in the course of the thesis. It presents several
learning and adaptation approaches for computer games that can be divided into methods that generate high
performing results and methods that provide more believable and human-like agents.

From a purely scientific point of view, the generation of high performing game agents is interest for the
evaluation of learning methods. If a learning technique should be examined in terms of its overall power
and adaptation rate, it will be better to test it in the game environment without further additions to create
more believable agents that would have an impact on the gained performance.

However, from a game design point of view, the creation of good AI for computer games imposes some
special requirements. Since the aim of a computer game is to entertain the player, the artificial players
should be fun to play against. Therefore, the agents should not be as good as possible but approximately
as good as the current human players. They should impose a challenge to the human players but still be
beatable. Most importantly, they should not be easily identifiable as algorithmic agents but show human-
like behaviours and movements.

We think that the application of imitation learning and other imitation techniques are very well equipped
for handling such conditions. On the one hand imitation is capable of producing human-like behaviours, if
a human player is imitated. On the other hand imitation can balance the difficulty level of an agent. If the
agent’s performance is too bad, it will imitate its opponents to beat them with their own strategies. If its
performance is too good, it can again imitate its opponents to adapt to their level.

The usual presence of multiple agents in most games is another feature that has to be considered but that can
also be utilised in a learning method. It allows the agents to use cooperation to improve their performance.
For example, they can share information about the current game to form a joint strategy or share information
about well performing behaviours which can be adopted by the lesser performing agents.

The goal of this thesis is to generate game playing agents from scratch. We do not want to use any prespec-
ified scripts, which make the behaviour of an agent predictable and constrain the agents in their behaviour.
Instead, it is our goal to use learning and adaption mechanisms which are inspired by human learning and
biological systems to generate more human-like and natural behaviours. To achieve this we concentrate on
basic behaviours which form the basis for a well playing agent.

The following chapters describe approaches which tackle the navigation and the movement problem. In the
domain of QUAKE III navigation means that a spot on the map should not only be reached fast but also in
an intelligent way. Thus, chapter 8 introduces a method based on swarm algorithms to cooperatively share
information about the status of the map to avoid dangerous paths.

In QUAKE III the movement problem can be extended to combat. Chapters 9 to 11 present approaches to
generate well performing solutions of this problem. First, two approaches, which enable the agents to learn
successful combat behaviour from scratch by using evolution and reinforcement learning, are presented.
Then, chapter 10 presents two approaches that are based on neural networks and evolution to obtain more
sophisticated gaming behaviours by using imitation techniques. Finally, chapter 11 presents an approach
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which incorporates the prior approaches into a method that enables artificial agents to adapt online to their
opponents in a running game session. There, imitation techniques coupled with cooperative knowledge
sharing is used to gain successful results.

Since our approaches can only be experimentally evaluated the realisation of the mentioned systems im-
posed a considerable challenge because of the underlying usage of a computer game. The gaming world
of QUAKE III contains some amount of uncertainty in the movements and the results of the actions of the
agents. Therefore, the agents have to learn how to cope with an uncertain environment and several repeated
runs of an experiment have to be made to be more precise. Furthermore, the execution of the experiments
requires a considerable amount of time and resources. Executing actions in a computer game takes approx-
imately the same amount of time as in the real world. Therefore, the evaluation of a learnt behaviour needs
some time to be accurate.
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Cooperative Navigation

In this chapter we introduce an approach that was developed in the course of this thesis to handle navigation
problems in a computer game. It successfully uses ideas from the swarm intelligence field to teach agents
to avoid dangerous parts of a map and thus to navigate more intelligently by cooperation. The results that
are presented in this section are in large parts based on a paper from Priesterjahn et al. in the Proceedings of
the International Conference on Artificial Intelligence and the Simulation of Behaviour in 2005 [PGW05].

We propose the idea of using waypoint graphs, which are commonly used for navigational purposes in
three-dimensional environments1, to hold adaptive game information, based on the concept of stigmergy2.
We will present a methid in which pheromone information is used to indicate dangerous areas in a map. To
achieve this, we will introduce two propagation methods: One which uses global and another one which
uses only individual knowledge.

In relation to other works, the proposed pheromones bear some resemblance to the potential field approach
which is commonly used for robot navigation [Ark87, Kha86]. As the pheromones in this approach, a
potential field is composed of several forces that attract or repell the robot. Mamei et al. [MZ04] have even
proposed an approach that uses potential fields for navigation in QUAKE III. However, in this approach the
attracting and repelling forces are assigned to entities in the world - e.g. the opposing players - and not to
the environment itself.

There also exists a certain overlap with the influence maps method, which is often used in strategy games1,
in the fact that movement costs are computed according to several additional features than just the length
of the path. However, this technique is usually not used adaptively and is certainly not used for information
exchange between the agents.

It should be noted that there exists a much simpler approach that would produce an even better performance.
If the agents know where their opponents are located, they can just choose a path that avoids an encounter.
However, this approach would also produce very unbelievable behaviour and is hence not applicable for
real game AI. In addition, the availability of all opponent locations, even if they are not in the field of view
of the agent, can be considered as a cheat.

8.1 Basics

8.1.1 The Artificial Environment

As we stated in part II, we use the QUAKE III engine for our experiments. For placing the waypoints (see
subsection 8.1.2) we built a waypoint editor within the QUAKE III engine (figure 8.1). There, the waypoints
are placed by hand, whereas edges can be placed automatically or by hand.
1 see section 4.1.1
2 see section 3.5
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Fig. 8.1: The waypoint system on a QUAKE III map

When observing the capture the flag (CTF) game mode, one can see that intelligent path finding for the
agent teams is a major problem. In fact, experienced players would say that choosing the right path to
the opponent’s flag is crucial for a good team strategy. In most computer games, however, the artificial
characters just take the shortest or some random route. Therefore, we chose a modification of the CTF
game to determine what can be gained by using stigmergy to communicate routing information with each
other. In the CTF game two teams fight against each other and try to steal the enemy’s flag and to bring it
to their own base.

8.1.2 Waypoint Systems

We begin this subsection by defining a standard waypoint system as it is often used for navigation in three-
dimensional environments.

Definition 8.1 (Waypoint System, Waypoint, Edge).
A waypoint system is a pair (W,E), where W = {w1, ..., wn} (n ∈ N0) is a set of waypoints and E =
{e1, ..., em} (m ∈ N0) is a set of edges. Waypoints w ∈ R3 are defined as points in three-dimensional
space. An edge e ∈ E connects two waypoints and is therefore defined as a pair of two waypoints e =
(w1, w2), whereas w1, w2 ∈W and w1 6= w2.

Therefore, a waypoint system is basically a directed graph in three-dimensional space with fixed positions
for the nodes. Additional information is commonly added to the waypoints and (not quite as commonly)
to the edges. For example, a waypoint can mark a special item or it can hold special information about
a trigger - e.g. a button which is positioned close to it. In computer games, waypoints generally hold
additional strategic information - e.g. whether it is a good spot to take cover or a good position to wait and
attack. Some examples how waypoints are used in computer games can be seen in section 4.1.1. In most
applications, edges don’t hold more information than their length and maybe a reachability value - e.g.
whether you have to walk, jump or crawl to reach the next waypoint. The length of an edge e = (w1, w2)
is calculated by dist(w1, w2), where dist denotes the euclidean distance between two points in R3.

Another important property of most waypoint systems is that each waypoint can be reached from each other
waypoint - i.e. the waypoint graph is connected. This is due to the layout of the map and the automatic
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or manual placement of the waypoints. It should be also noted that usually most of the directly connected
waypoints are connected in both directions.

8.2 The Danger Adaptive Waypoint System

8.2.1 Basic Idea

We think that for intelligent navigation in the game environment it would be beneficial to avoid dangerous
areas on the map and to take alternative paths. This is the main goal of our danger adaptive waypoint
system. The principle idea of this system is that whenever an agent is hit, it leaves some amount of a
danger or fear pheromone at its current position. If an agent “smells” this pheromone, it will try to avoid
its vicinity. The pheromone strength decreases over time so the agents will not avoid this part of the map
forever. Thereby, a system of avoiding dangerous spots for some amount of time is established. Since we
already have the waypoint system at our disposal for the standard navigation, it is reasonable to use it to
hold the pheromone information.

Fig. 8.2: A Pheromone Spot on a Waypoint System

The danger information could be stored in the waypoints or in the edges. We chose to use the edges because
our waypoints are not very dense3 and because a waypoint only represents some spot in the map, whereas
an edge represents the area between two waypoints. However, if the waypoints were more dense and thus
were connected by shorter edges, a reconsideration of our decision could be necessary.

However, we are dealing with sparse waypoints in this approach. Therefore, we extend the standard way-
point system as follows. The edges hold an additional value - the so-called danger level - that indicates its
dangerousness. These danger levels decrease over time by a given half-life. The propagation of the danger
pheromone is parametrised by the propagation range. How this propagation range is used depends on the
pheromone propagation algorithm. A formal definition of the danger adaptive waypoint system is given
below.

Definition 8.2 (Danger Adaptive Waypoint System).
A danger adaptive waypoint system DAWS a 4-tuple W = (W,E, h, r), where W is a set of waypoints
and E is a set of edges. h ∈ R>0 is called the half-life ofW and r ∈ R≥0 is called the propagation range
ofW . For a DAWS an edge e ∈ E is defined as a 3-tuple e = (w1, w2, d), with w1, w2 ∈ W , w1 6= w2

and d ∈ R≥1. d is called the danger level of edge e.

3 see figure 8.1
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The danger level is applied as a length modifier to its edge by computing the weight of an edge e =
(w1, w2, d) as d · dist(w1, w2). So, an edge with danger level 2 appears twice as long as it actually is.

The decrease of the pheromone strengths or danger levels, is handled by

dnew =

{
d∗, if d∗ ≥ 1
1, if d∗ < 1

d∗ = dold · e−
ln 2
h
∆t,

where h is the half-life of the considered DAWS and ∆t is the time since the last update. dnew and dold are
the new and old danger levels, respectively. This function is based on similar natural decaying processes
and is depicted in figure 8.3.

h

d

d/2

1

Fig. 8.3: Decaying Function of the Danger Pheromone

The question is now how to propagate the danger levels through the waypoint system. There are several
possibilities to do this. Two possible concepts are presented in the following subsections.

8.2.2 Global Danger Accessibility

In this subsection we describe the propagation of the danger values by the waypoint system itself. This
means that whenever an agent reaches a waypoint it is asking the waypoint system which way it should
take. Hence, the main part of the intelligence is implemented into the waypoint system, whereas the agents
themselves have only very few abilities - namely walking from one waypoint to another and finding a first
waypoint to go to at the start.

The algorithm for determining the danger levels is rather simple. Given a DAWS (W,E, h, r), an agent
transmits its last position p ∈ R3 to the waypoint system whenever it is hit. Based on this position, for each
edge the new danger level dnew of each edge e = (w1, w2, dold) ∈ E is computed by

dnew = dold +
d1 + d2

2
, with

d1 = max(r − dist(p, w1), 0) and

d2 = max(r − dist(p, w2), 0).
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The values d1 and d2 are computed by a decreasing linear function in dependence of the distance of the
respective waypoint w1 and w2 to p. If the distance of d1 and d2 to p is bigger than the propagation range r,
d1 and d2 will be zero and the danger level of the corresponding edge will not be changed. A propagation
range of 1 relates to approximately 1 metre in the simulated world.

The agents determine their paths by using Dijkstra’s algorithm for calculating shortest paths in the weighted
graph. Since the danger levels are always decreasing until they reach 1.0, the optimal path has to be
recalculated each time an agent reaches a waypoint. For better readability we call the agents which use this
“global information accessibility” strategy g-agents.

As all agents have the global danger information at their disposal, they will all tend to use the same paths.
This creates a quite unbelievable behaviour and hence should be avoided in a real game scenario. For
example, each agent could randomly choose one from the three best paths or randomly choose a path in a
weight proportional way.

Another solution for obtaining different paths and more individual behaviours would be to use a personal
DAWS for each agent. Thus, each agent only updates its own DAWS at the points it has been hit. However,
using this strategy would result in no information interchange between the agents, because each agent only
acts according to its own beliefs. A danger propagation algorithm which utilises parts of both concepts -
global information availability and individual agent beliefs - will be presented in the following subsection.

8.2.3 Danger Propagation by the Agents

Having of a more natural approach to danger propagation in mind, we developed a system in which the
agents itself are responsible for the propagation of the danger/fear pheromone. To achieve this, each agent
has a personal view of the pheromone distribution and thus acts according to an individual DAWS. There
also still exists a global DAWS in which the real danger state of the map is stored. Hence, each agent
uses its own DAWS to determine its path and only updates it with the danger information from the global
DAWS it came in touch with. This setup is much more realistic and should create much more believable
behaviours. It should not happen that an agent uses a different path because it knows that something has
happened on the other side of the map that it could not have noticed.

In detail the algorithm works as follows. Whenever an agent is hit, it spills some pheromone onto the edge
it just used. It will do the same with the reverse edge of the current edge, if it exists. This means that it adds
some amount of danger level on the real edge in the global DAWS and on the edge in its own DAWS. No
other edges are affected. For the determination of the new danger level of the current edge the same method
as in subsection 8.2.2 is used with the difference that it is only applied to this edge.

As it was stated above, the propagation of the danger levels is done by the agents themselves. When an
agent arrives at a waypoint (figure 8.4, left), it looks at all outgoing edges of this waypoint and sums up
their danger levels (figure 8.4, centre). If the danger is high enough, the agent will spill additional danger
pheromone on all considered edges (figure 8.4, right). This could be interpreted as the agent becoming
afraid because of sensing the danger. In this way, the danger can be propagated over the waypoint system,
whereas it decreases with its distance to the originating edge. In detail, the algorithm works as described in
algorithm 8.1, where {e1, ..., ek} (k ∈ N) are the outgoing edges of the current waypoint. e−1 denotes the
- possibly not existing - reverse edge of edge e and d(e) denotes its danger level.

The standard danger level of an edge is 1. So, 1 has to be subtracted in line 3, because the danger level
should not change when there is no danger. As k represents the number of outgoing edges, the amount of
danger that is spilt onto the adjacent edges will be reduced, if k increases. The decision to multiply the
computed new danger by 1

8 in line 5 is based on empirical results from several experiments.
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- current agent position- Waypoint /

Fig. 8.4: The Danger Level Propagation by an Agent. The Thickness of an Edge indicates its Danger Level.

Algorithm 8.1 Danger Waypoint System Adaptation
1: d = 0
2: for i = 1 to k do
3: d = d+ d(ei)− 1
4: end for
5: d = 1

8 · r ·
d
k

6: for i = 1 to k do
7: d(ei) = d(ei) + d
8: if e−1

i exists then
9: d(e−1

i ) = d(e−1
i ) + d

10: end if
11: end for

The agents use Dijkstra’s algorithm on their personal DAWS to determine their paths. Because their choice
depends on their personal beliefs about the danger distribution, each agent can make its own decisions. This
means that they will take different routes but it also means that an agent has to walk over a dangerous edge
by itself to see that it is dangerous there. Only the agent which has last seen a dangerous spot knows the
real danger level value of this place. The others only know the danger values they have personally seen
some time ago. Since they are expecting the danger level to drop by the decaying function, they believe that
the dangerous area is safer as it really is. The reason for that is that the last agent who has been there has
raised the danger levels again. Therefore, the agents only have dated information about most of the edges
and each agent has up-to-date knowledge about only few edges. Furthermore, this up-to-date knowledge is
different for each agent.

The strength of the danger levels depends on the number of agents which came in touch with the corre-
sponding dangerous edges. Though, after an agent has learnt that an edge is dangerous, it will usually not
use it again for a period of time. Therefore, the danger level of an edge will not grow higher, after all agents
have learnt that it is dangerous, as long as there exists an alternative path. However, because of the decay
of the danger level the agents will use the edge again when its danger value has decreased enough.

Another factor by which the propagation is affected is the number of edges which are incident to a waypoint.
When there are several waypoints which are positioned in a line as shown in figure 8.5a, the propagation
of the danger will happen very slowly. If an agent runs from the left to the right, it will see the danger of
edge three the first time it arrives at the waypoint after edge two. Then it will distribute additional danger
to edge two and three and go to the next waypoint. There, it will increase the danger level of edge four then
five etc. However, edge one will remain untouched. The resulting distribution is shown in 8.5b. The next
agent which has no knowledge of the danger in this area and which moves from the left to the right will not
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see the danger until it has walked over edge one. This results in a very slow backward propagation of the
danger level when there is no agent which takes the opposite direction. Given a situation as shown in figure
8.5c, the danger level will be propagated to all surrounding edges immediately when the agent arrives at the
central waypoint.

1

2
3

4

5

(a)

42

1

3

5

(b) (c)

Fig. 8.5: Examples for Danger Propagation. The Thickness of an Edge indicates its Danger Level.

In analogy to the g-agents above, we call the agents that use the described “local information accessibility”
strategy l-agents.

8.3 Results

8.3.1 Experimental Setup

For the first testing of our algorithms we built a simple test map with a waypoint system - as illustrated in
figure 8.6 4 - to obtain reproducible results. The map contains three different paths leading from the blue
flag (b) to the red flag (r) and back. The middle path has been chosen to be the longest, to test whether
the system will be able to converge to this path, if the other two paths appear to be dangerous. This was
primarily important for the g-agents, because in this method all edges in the vicinity will be affected, if an
agent is hit.

rb

Fig. 8.6: Waypoint Configuration for Testing

8.3.2 Static Scenario

First, we chose the following static scenario to test our propagation algorithms. There were three agents in
the blue team which all tried to get to the red flag and to bring it to the blue flag. We wanted to have an
unsafe, an almost safe and a safe path. So, if an agent takes the upper or the lower path, it will be hit at the
middle of the map and be brought back to the blue flag with a probability of 2/3 or 1/3, respectively. The
agents will never be hit, if they take the middle path. Therefore, the middle path had to be a bit longer than
the other paths, because otherwise the agents would have always taken it without ever getting to the unsafe
areas of the map. We used a pheromone half-life of 20 seconds and a danger propagation range of 1 for this
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Table 8.1: Results of the Static Scenario
strategy runs hits ratio
g-agents 2267 121 5.3%
l-agents 2226 184 8.3%

random path selection - - 33.3%5

experiment. A run is defined as the attempt to go from one flag to the other. The results of this scenario are
shown in table 8.1.

Both strategies performed significantly better than the random strategy. Interestingly, the l-agents performed
much better than we expected. Since each of the three l-agent has to sense the danger for itself, in the worst
case, the l-agent would perform three times worse than the g-agents. However, in this setting this factor was
only 1.6. This is surprising if you take into account that, because of the long unbranched paths in which the
danger is only propagated edge by edge, the structure of the waypoint system is not ideal for the l-agents.

Concerning the overall behaviour of the agents, they behave as it can be expected. Both types of agents first
take the shortest path and go for the middle path after some agents have been hit on the outer routes. After
some time one or more agents try the outer paths again, only to see that they are still dangerous.

8.3.3 Dynamic Scenario

In a second set of experiments we dynamically changed the hitting probabilities. As in the static experiment
above, one path had a hitting probability of 2/3, another one had a probability of 1/3 and the remaining path
was safe. The selection of the dangerous paths changed each five minutes. We used different half lives (10
s and 20 s) and propagation ranges (1 and 2) to see how these parameters influence the performance of the
strategies. The results are presented in table 8.2.

Table 8.2: Results of the Dynamic Scenario
# strategy half-life propagation

range
runs hits ratio

1 g-agents 10 s 1 11024 873 7.9%
2 g-agents 10 s 2 11319 667 5.8%
3 g-agents 20 s 1 8604 484 5.6%
4 g-agents 20 s 2 12287 431 3.5%
5 l-agents 10 s 1 9204 1125 12.2%
6 l-agents 10 s 2 14642 4692 32.0%
7 l-agents 20 s 1 11871 3907 32.9%
8 l-agents 20 s 2 n.a. n.a. n.a.
9 random - - - - 33.3%

Experiment 3 shows that the g-agents were almost not affected by the change of the scenario. When
comparing the results that were obtained for a half-life of 10 seconds and a propagation range of 1, the
l-agents performed 1.54 times worse than the g-agents. This fits to the factor 1.6, which we obtained in the
static scenario. However, in experiments 6 and 7 the l-agents lagged behind the performance of the g-agents
4 In the real test setting the number of waypoint was significantly larger than in this figure. (73 Waypoints, 83 Edges)
5 The value was calculated by assuming a uniformly distributed path selection. Hence, we get a probability of 1

3
· 2

3
+ 1

3
· 1

3
= 1

3
.



8.3 Results 131

much more. In these cases all paths seemed almost equally safe to the l-agents because the danger levels
did not decay fast enough. So they ended up using the random path strategy. In experiment 8 the danger
levels even built up to infinity, because of the much too slow decay. This shows that the behaviour of the
l-agents depends highly on the used parameters, whereas the g-agents are more robust against parameter
changes.

The results for the g-agents show that they are quite robust in terms of parameter changes. A reduction of
the half-life results in an increase of the hitting ratio. Using a danger propagation of 2 instead of 1, results
in the same behaviour as if we doubled the half-life.

8.3.4 Large Map Scenario

To validate our results for larger maps, we developed a scenario in which a much more detailed map was
used. The waypoint system of this map had 340 waypoints and 939 edges. We used a quadratic dangerous
area in which each agent would be hit with a probability of 3/4. So, it was possible for them to remain
unhurt in this area, though it was more probable to be hit. The position of the dangerous area was randomly
shifted each 30 seconds by at most 100 units6. Thus, the area did move fast enough to be dynamic, but also
slow enough to let the agents adapt to it. It should be noted that a slower danger area movement would have
been beneficial for our agents, but also less realistic in relation to the underlying game.

Fig. 8.7: Testmap for the Large Map Scenario

We again employed a randomised strategy to have a reference. In this strategy each agent randomly se-
lects an edge at each waypoint that shortens its way to its target. The results that were obtained in these
experiments are shown in table 8.3.

Again, the danger adaptive strategies performed much better than the random strategy. As in the exper-
iments above, the g-agents performed better than the l-agents. However, this time the l-agents had no
problems with the longer decay. This shows that this problem rarely occurs on real game maps because
there are much more alternative routes. Interestingly, the change of the propagation range had almost no
effect on the performance of the l-agents. A comparison of both strategies is shown in table 8.4.
6 approximately one metre in the simulated world
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Table 8.3: Results of the Large Map Scenario
# strategy half-life propagation

range
runs hits ratio

1 g-agents 10 s 1 11334 1036 9.1%
2 g-agents 10 s 2 11080 774 7.0%
3 g-agents 20 s 1 16387 882 5.4%
4 g-agents 20 s 2 10686 361 3.3%
5 l-agents 10 s 1 12328 2053 16.7%
6 l-agents 10 s 2 13819 2180 15.8%
7 l-agents 20 s 1 11885 1383 11.6%
8 l-agents 20 s 2 17885 1927 10.8%
9 random - - 11927 3855 32.3%

Table 8.4: Comparison of the Strategies
# half-life propagation

range
g-agents l-agents factor

1 10 s 1 9.1% 16.7% 1.8
2 10 s 2 7.0% 15.8% 2.2
3 20 s 1 5.4% 11.6% 2.1
4 20 s 2 3.3% 10.8% 3.3

In comparison 1 both strategies differ by a factor of 1.8, which is slightly higher than in the results obtained
in subsection 8.3.3. Comparisons 2 and 3 show a factor of 2.1 and 2.2, respectively. In the last comparison
we have obtained the best results for both algorithms. However, the factor has risen to 3.3 because of
the change to the propagation range, which has almost no effect on the l-agents, but results in a strong
improvement of the g-agents.

These results continue the tendency of the prior experiments. It is obvious that in such a difficult task a
strategy which uses only local information can not perform as good as if global information is used. Yet,
with well chosen parameters the local strategy gets quite close. Though, it can be difficult to find these
parameters.

8.4 Conclusion

We have presented a system which uses indirect information interchange to coordinate multiple agents
to avoid dangerous areas in a three-dimensional, virtual environment. When comparing local and global
information accessibility, the global strategy is advantageous as expected. Though, when using the right
parameters, the local strategy is also able to perform very well. However, the l-agents have shown to be
quite sensitive in terms of parameter changes. Therefore, the local strategy is not as robust as we hoped.
An intelligent method for choosing the parameters could increase the robustness of this strategy.

In conclusion, it seems to be possible to use only local information to obtain a good danger avoidance
strategy. This is encouraging because the behaviour of the l-agents appears more natural and less “algorith-
mic” than the behaviour of the g-agents and would therefore be a better candidate to model human gaming
behaviour.
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Combat: A Learning Problem in QUAKE III

The most basic problem a player has to face in the QUAKE III game is combat. All other behaviours
and strategies as well as the success in the game are based on a competitive combat behaviour. This and
the following chapters present several approaches to handle combat behaviour in an action game. In this
chapter at first a detailed problem description is given before two approaches to successfully learn combat
from scratch are presented. The first approach is based on evolutionary computation, whereas the second
approach uses reinforcemet learning, to create competitive combat behaviour.

9.1 Problem Description

As we already mentioned above, combat is the most basic behaviour in QUAKE III. It includes all be-
haviours that are needed to directly compete with a gaming opponent - e.g. applying damage to the oppo-
nents, avoiding to be hit, using the map structure to the advantage, timing attack and defence as well as
adapting to the opponent. To create a successful gaming agent it is essential to include a competitive com-
bat behaviour. Only if the combat problem is solved it makes sense to tackle other problems like resource
management and team play.

The problem of combat can be separated into two subproblems: movement and aiming. Movement de-
scribes how the agent uses its degrees of freedom to move through the QUAKE III world. Good movement
implies the minimisation of received damage and the evasion of hostile projectiles. Furthermore, good
movement also considers the map structure by taking cover and attacking from strategically advantageous
positions.

The second part of the combat problem - the aiming - describes how well the agent is able to hit its op-
ponents when it attacks. This means that a well aiming agent almost never misses when it attacks and it
incorporates the movement of the opponents into the calculations of the attack vector. In many situations
it is needed to aim slightly in front of the current target to compensate the travel time of the projectiles.
For a good aiming, it is also important to attack at the right time and to wait long enough for the reloading
process of the current weapon to finish.

To concentrate on combat, we reduced the QUAKE III game by stripping it from all gaming concepts that
go beyond. Therefore, we built a small map which consists of just one small, quadratic room. We put a
column in the centre of the map to provide an obstacle. The edge length of the room is 1024 units1. Figures
9.1 and 9.2 show a view of this map.

There exist no items or other collectables on the map and all players are equipped with infinite ammunition.
Therefore, resource management can be ignored. We also only allow the usage of one weapon, namely the
“shotgun”. We chose this weapon, because it is not an instant hit weapon - i.e. its projectiles need some
time to travel to the target. Furthermore, it needs approximately one second to reload, after an attack has
1 approximately 10 metres
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- red team start

- blue team start

- solid

Fig. 9.1: The Schematic View of the Combat Training Map

Fig. 9.2: A Picture of the Combat Training Map

been made. This adds to the complexity of the considered problem. Finally, the projectiles of the shotgun
scatter, so that it is possible to apply much damage to one nearby target, or less damage to several distant
opponents that stand together. Therefore, good aiming and the right distance to the target are needed to
handle it right.

It should be noted that the map offers only a “two-dimensional gameplay” by omitting slopes, stairs and
additional height levels. However, QUAKE III is more or less a two-dimensional game that takes place in a
three-dimensional world. All players are bound to the ground by the gravity. Furthermore, the usual combat
situations in QUAKE III are performed in a very close range. Distant combat almost never takes place and
is disencouraged by the game design. Therefore, we omitted the third-dimension from our experiments.

9.2 The Environment Model – Grids & Rules

This sections describes which environment model our agents use and why we have decided to design it in
the described way. The model itself and several related theoretic thoughts are presented.

For close combat only the near vicinity of the player is important. Especially, everything that can not be
seen because it is behind walls or positioned on other parts of the map is of no importance. Furthermore,
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we think that any competitive model should be agent centric - i.e. all data that defines a state should be
described in a relational way and not in an absolute way. For example, no absolute coordinates should
be used. Instead coordinates in relation to the position of the agent are a far better solution. Suppose a
situation as illustrated in figure 9.3. Both agents a and b are in a very similar situation. In an absolute
model, however, the situations would be very different. Both agents have different positions, different view
angles and different objects in their vicinity. In a relative model both agents have an obstacle to the right
and another agent in front of them. Thus the situations are almost identical and the best action would very
probably be similar or even the same in both states.

agent a

agent b

field of 

view

Fig. 9.3: Example for a Game Situation

In our model the environment of an agent is segmented into a grid of quadratic regions on the floor (see
figure 9.4). The agent is positioned at the centre of the grid. The alignment of the grid is always relative
to the agent. Hence, if the agent moves, the grid will be rotated and shifted to fit these movements. Each
grid field is always placed at the same relative position to the agent. The size of the grid is limited and only
covers the vicinity of the agent.

Fig. 9.4: Obtaining the grid from the player. (o - player, x - opponent)

Formally, the grid is essentially a matrix that contains different values for filled, empty or other fields. We
basically chose this representation because of two reasons. First, it is very close to how a human player
sees and senses the current situation. A human player has a rough feeling for his vicinity. He can roughly
tell how near or far and in which direction an object is positioned. He has also a vague knowledge of what
is positioned behind him. This all fits to the chosen representation. Second, matrices are easily manageable
by computers. There exist several matrix manipulating algorithms that can be used. Furthermore, a matrix
can be easily displayed as a picture and be manipulated by image processing algorithms.

The content of the grid is constructed as follows. In each acting frame of the agent, it traces2 to the centre
of each grid field on the floor of the environment. This can be compared to using a laser sensor. For each
2 see section 6.3.3
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trace a ray is sent from the head of the agent. If this ray reaches the centre of the grid field it was sent to, the
corresponding value of the matrix will be set to a value which indicates that this field is empty. Otherwise,
the field is indicated as filled. If a field is occupied by an opponent, a corresponding value will be written
into the matrix. The central field - i.e. the position of the agent - is always regarded as empty and can not
be changed. A detailed and formal description of these grids is given in the following definition.

Definition 9.1 (Grid).
A grid G is a matrix G = (gi,j)1≤i,j≤n ∈ Nn×n

0 , n ∈ N with n ≡ 1 mod 2 and

gi,j =


0, if the field is occupied
1, if the field is empty
20, if the field contains an opponent.

G denotes the set of all grids.

The chosen values may look arbitrary but we have chosen them after numerous tests and experiments
because they exhibited the features we desired. We gave the opponents a larger weight, so that learning
algorithms can adapt and react to their presence more easily. In addition, if a field is occupied by an
opponent, it can be regarded as an empty field with an opponent inside. If the opponent is gone, the field
will be empty again. Therefore, the value for an empty field is 1 and the value for an occupied field is
0. As grids are just matrices, we use the standard notations from linear algebra. For example, we write
G = G1 +G2 when we mean that gi,j = g1i,j + g2i,j ∀i, j ∈ {1, ..., n}.

With the above definitions, a grid is parametrised by its number of cells and the size of its cells. A setup we
used in several experiments and which proved to provide good results is a 15 × 15 grid with a cell size of
100× 100 units3. As we always work with quadratic cells, we will in the following denote the grid size as

grid width× grid height× cell size.

In our example we used a 15× 15× 100 grid.

Having defined what grids are, we can apply mathematical methods that are needed for their employment
in several learning methods. First we will define a metric and distance measurement between the grids.
Such a measurement will become very important when we want to reduce the number of agent states or to
cluster the grids. The most commonly used metric for vectors and matrices is the Euclidean distance.

Definition 9.2 (Euclidean Distance).
The Euclidean distance between two n× n-grids G and G′ is defined by

dist(G,G′) =
√ ∑

1≤i,j≤n
(gi,j − g′i,j)2.

However, using the Euclidean distance for this special purposes has a flaw. The similarity between certain
situations is not fully taken into account. For example, suppose the following simplified matrices.

A
1 0 0
0 0 0
0 0 0

B
0 1 0
0 0 0
0 0 0

C
0 0 0
0 0 0
0 0 1

3 One unit roughly represents a centimetre.
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All three matrices have the same Euclidean distances to each other. However, from our point of view the
situation in A is much more similar to B then to C. Therefore, we need another distance measurement
which is able to reflect such effects. The solution is to smooth the matrices with a filter. By doing this we
can obtain matrices that look as follows.

A′

0.8 0.5 0
0.5 0.2 0
0 0 0

B′

0.5 0.8 0.5
0.2 0.5 0.2
0 0 0

C ′

0 0 0
0 0.2 0.5
0 0.5 0.8

If the Euclidean distances between these matrices are computed, we will get the desired result. The dis-
tance between A′ and B′ is much smaller then the distance to C ′. Therefore, smoothing the grids before
computing the distance gives us a distance measurement which reflects rough similarities between different
game situations.

To smooth a matrix, several different methods exist. Inspiration can be gained by looking at the image
processing or signal processing research field. There, several techniques to smooth images or signals are
known. The most popular algorithms revolve around the usage of filters and the convolution of the matrix
with this filter. The most popular smoothing filters are the mean, the median and the Gaussian filter. For a
better understanding, we will now shortly explain how filters work. Suppose a matrix A ∈ Rm×n should be
smoothed. The result should be stored in another matrix B ∈ Rm×n. First we need to define what a filter
matrix is.

Definition 9.3 (Filter).
A filter with radius r ∈ N is a quadratic matrix F ∈ Rn×n with n = 2r + 1 and∑

1≤i,j≤n
(fi,j) = 1.

n is called the size of F .

Typical sizes for filters used in image processing are 3× 3 or 5× 5 or radius 1 and 2, respectively. Suppose
now that the filter F and the original matrix A look as follows.

A
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

F
0.05 0.1 0.05
0.1 0.4 0.1
0.05 0.1 0.05

We will now compute the new value at position c = (2, 2) (the position with value 7). The resulting value
will be stored at the same position in B. The convolution is done as follows. The convolution centre c is
identified with the centre of the filter. Then each neighbouring field of c and c itself are multiplied with
their corresponding value in the filter. These values are summed up and then stored in B. Since the sum of
all values of F is 1, the resulting value will always be in the range that is specified by the corresponding
values in A. In general the resulting value is computed by

bi,j =
i+r∑

k=i−r

j+r∑
l=j−r

fk+i+r+1,l+j+r+1 · ak,l.

In our example the resulting value is
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b2,2 = 0.05 · 1 + 0.1 · 2 + 0.05 · 3 + 0.1 · 6 + 0.4 · 7 + 0.1 · 8 + 0.05 · 11 + 0.1 · 12 + 0.05 · 13 = 7.

This is repeated for all values until B is filled. The border values need a special treatment because they
do not have all neighbours. Therefore, A is usually extended beyond its borders. For the extension several
possibilities exist that are applied according to the desired result. The simplest is to just fill the outer fields
with some value. Another solution would be to mirror A on its borders. In our case it is most suitable to
just assume all fields beyond the borders to be filled.

There exist other filters, that do not fit into the aforementioned scheme. For example, in the median filter
the values of the centre field and its neighbouring fields are ordered and the middle value is taken, thus,
resulting in a value which has already been in the matrix. The mean and the Gaussian filter with radius 1
look as follows.

Mean
0.11 0.11 0.11
0.11 0.11 0.11
0.11 0.11 0.11

Gaussian
0.05 0.12 0.05
0.12 0.33 0.12
0.05 0.12 0.05

The mean filter has a very strong effect by completely equalising the influence of all considered elements.
The same can be said about the median filter. Therefore, we chose to use the Gaussian filter that highlights
the importance of the central field. In general, the Gaussian filter is defined as follows

Definition 9.4 (Gaussian Filter).
The Gaussian Filter F ∈ R2r+1×2r+1 with radius r ∈ N is defined by

fi,j =
1
H
hi,j ,

whereas

hi,j = e−
(i−r)2+(j−r)2

r2

and
H =

∑
1≤i,j≤2r+1

hi,j .

Hence, the Gaussian filtered grid and the corresponding distance are defined as in definition 9.5.

Definition 9.5 (Gaussian Grid, Grid Distance).
Let G be an n × n-grid. Then, Gg = (ggi,j)1≤i,j≤n ∈ Rn×n

≥0 denotes the result of a convolution of G with
a Gaussian filter of radius r ∈ N and is called the Gaussian grid of G. The set of all Gaussian grids is
denoted by Gg.

The Euclidean distance of the Gaussian filtered grids distg between two grids G and G′ is defined as

distg(G,G′) = dist(Gg, G′g)

and is called the grid distance between G and G′.

Note that the set of all Gaussian grids Gg is finite. Figure 9.5 shows an example grid and its Gaussian
counterpart. The effect of the filtering is that walls now show a transition between filled and empty cells.
The neighbouring cells of an opponent show something that could be called its shadow.

We also examined some alternatives to the grid representation. For example, we also made some experi-
ments that employed a disc-like representation that basically replaces the grid fields by disc pieces. Figure
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(a) A pure Grid (b) The corresponding Gaussian Grid

Fig. 9.5: A Grid in pure and smoothed Form
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Fig. 9.6: A disc-like Representation of the Vicinity of the Agent

9.6 shows an example for such a representation. The disc has the property that it gives more detailed infor-
mation in the near and is less detailed in the distance. This is for example advantageous for some weapons,
that are less accurate in the distance, but disadvantageous for actions that depend on more detailed infor-
mation of the more distant points. Therefore, the grid is more generic, as it gives the same level of detail on
its whole area.

The above mentioned operations can easily be adjusted to be used with the disc, as it is actually also
represented by a matrix. Only the borders of the matrix need special treatment. The right border is directly
connected to the left border and everything beyond the far border is considered filled. The fields on the
lower border, which are at the centre of the disc, are considered neighboured to the field on the opposite
side of the disc.

We made some preliminary experiments to compare the disc and the grid. In these experiments the disc
produced equal or better results than the grid, when the shotgun was used. For other weapons, which are
more accurate, the grid performed slightly better. Because of its higher generality we chose to use the grid
for all our experiments.

In addition to the model and definition of the states, a model for the possible actions is needed. This model
defines on which level any behaviour and learning takes place. This level can range from very low and
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concrete - e.g. move forward for 10 units and left for 20 units - too high and abstract - e.g. avoid damage or
circle around enemy. If the gaming behaviour is learnt, it will be advisable to use a rather low abstraction
level. If the level is to high, the result of the learning process will be influenced and limited by the used low
level behaviours. Thus, the lower the abstraction level is, the higher the freedom of the learning process
will be. However, a higher abstraction level will simplify the learning task because the learner does not
have to learn all simple subbehaviours and can concentrate on learning a better gaming strategy.

Judging the options above, we chose to use a very low level action model as we wanted to completely
create a game playing agent from scratch. Furthermore, we also wanted to incorporate imitation techniques
into the learning algorithms. Therefore, we had to choose an abstraction level on which the behaviour of a
human player can be observed. Figure 9.7 illustrates the action model. It merely consists of the standard
movement actions. Definition 9.6 formally describes this action model.

forward, 

back, left, 

right

attack
turn n

degrees

Fig. 9.7: The possible Commands of an Agent

Definition 9.6 (Command).
A command C is a 4-tuple C = (f, r, ϕ, a) with f, r ∈ {−1, 0, 1}, a ∈ {0, 1} and ϕ ∈ [−180◦, 180◦]. The
interpretation of these variables is as follows.

f =


1, move forward
0, no movement
−1, move backward

r =


1, move to the right
0, no movement
−1, move to the left

a =

{
0, do not attack
1, attack

ϕ = alteration of the yaw angle

C denotes the set of all Commands.

In section 5.3 we stated that forward and lateral movement can be set to values ranging from -127 to
127. However, it is usually not needed to set any intermediate speeds. In most game situations it is the
best solution to move as fast as possible. Furthermore, a human player would usually use a keyboard
and a mouse for steering. The mouse is used for changing the view angle and the keyboard is used for
movement. Therefore, a human player can only decide between full speed movement, half speed moment
(using a modifier key) and no movement. Though, experienced players always use full speed. Thus, we
have decided to incorporate this knowledge into our action model to simplify it. Combining all movement
alternatives and the alternatives for attack only 3·3·3·2 = 54 behaviours are possible. However, the change
of the view angle has a real-valued range between−180◦ and−180◦. The view angle is the most important
value that has to be learnt, as it has a direct influence on the aiming skill of the agent. In our experiments
we concentrate on the yaw angle because it is the most important one. The pitch angle can be easily set
according to the current height of the opponent, whereas the yaw angle has to fit to the movements of the
opponent and to the current goal of the agent.
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Again, we use a relative format for the model. All movement is stated in terms of speed and not absolute
coordinates and the view angle is regarded as a difference angle referring to the current view angles. This
has an effect on the control mechanism, as it has to be able to deal with accumulated movements. However,
it also enables the used learning mechanism to adapt to friction and uncertain movement results.

Having defined both agent states and actions, they can be combined for controlling the agent. A typical
generic operating loop for such an agent is depicted in figure 9.8. The agent works in time frames and
goes through this loop over and over again. First it senses its current situation by tracing its vicinity and
computes the corresponding grid. Then, according to this grid, a fitting action is chosen. The design of
this decision process is subject to the used learning and decision making algorithm. The selected action is
then executed and the result of the action - usually applied and taken damage - is sensed. This result can be
used by the learning procedure to improve the behaviour. As the server and all entities in the game run at a
frequency of ten frames per second we also chose to use this frequency for our agents. Therefore, the start
of the operating loop is triggered each 100 ms.

sense

situation

compute

grid

get action 

according to 

state

execute

action

sense  result

Fig. 9.8: The generic Operation Cycle of a Grid-Based Agent

The described layout bears some resemblance to a Markov decision process (MDP) M = (G, C,A) as
defined in definition 3.3, whereas the transition and reward probabilities are unknown. In this case the state
set G is the set of all grids and the set of actions C is the set of all possible commands. As it is possible to
execute each possible command in each state, the state action function A is simplified to

A(G) = C ∀G ∈ G.

However, the definition of a MDP requires finite state and action sets. This is true for G but not for C.
Therefore, learning methods that rely on an MDP - e.g. reinforcement learning - have to reduce the number
of possible view angle changes to a finite number.
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In addition to reducing the number of possible commands, many approaches will also need to reduce the
number of possible states to be applicable. A neural network based approach could be able to automatically
handle this by classifying grids to fitting actions. Most other learning approaches will work much better
with a small, preclassified state set.

To reduce the number of states several approaches are suitable. Based on the grid distance a clustering
of the states can be made. Clustering methods like k-means [Mac67] or MajorClust [SN99] are able to
find special states in the form of cluster centres which represent a whole group of states. If a new state
is sensed, its distance to all cluster centres will be computed and it will then be classified in the cluster
with the shortest grid distance to its corresponding centre. In addition, other classification techniques like
self-organising maps (SOM) [Koh00] or feed-forward networks4 can be used.

Another approach to reduce the number of states is provided by the special properties of the games domain.
Of all the possible states, only the ones which actually occur in a game session are of interest. This is
only a small subset of all grid states. The simplest way to obtain such states is to just record the grids that
correspond to the vicinity of a human player. If the player plays long enough most of the possible game
states and the most important game states will be collected. This set of states can then be used as a basis
for a clustering, which will result in much more valid grids. In addition, whilst recording the currently
sensed grids of a human player, his reactions to these states can also be recorded and be used as a basis for
imitation and learning.

If we assume that there exists only one fitting or best performing action for each state, we can define a more
detailed control model. In this case the relation between states and commands is reduced to a one-to-one
mapping. Therefore, the behaviour for some special situation and its corresponding grid G is mapped to a
command C which has to be executed. We call this mapping a rule.

Definition 9.7 (Rule, Rule List).
A rule R ∈ G × C combines a grid and a command. R = G × C denotes the set of all rules.

A list of rules (R1, ..., Rk) ∈ Rk (k ∈ N) is called rule list.

For each rule R = (GR, CR) ∈ R, we define the functions G : R → G and C : R → C, whereas

G(R) = GR and

C(R) = CR.

The behaviour of an agent can now be encoded as a list of such rules. The size of such a rule list is
determined by the number of states of the corresponding behaviour model. Using the above mentioned
techniques, this number can be significantly reduced to a feasible amount. An agent that uses such rule
lists as the basis for its behaviour works according to the operating loop that is depicted in figure 9.9. It
senses its current situation, transforms it into the grid representation and then finds the rule with the best
fitting grid in terms of grid distance. The corresponding command of that rule is then executed. If there are
several rules with the same shortest distance, one of them is chosen randomly with uniform distribution.
Algorithmically, this procedure can be described as in algorithm 9.1.

Given an agent that operates according to this operating loop, several statistics about the used rule list
can be obtained. Of special interest are second order statistics that can be used to show the relations
between the single rules. The following definition presents a so-called co-occurrence matrix which holds
the probabilities that after rule Ri another rule Rj is executed. This should not be confused with the
transition probabilities of a Markov decision process which is a conditional probability. The sum of all
4 see definition 3.2 in section 3.3
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sense

situation

compute

grid
find best 

fitting rule

execute rule

sense  result

Fig. 9.9: The Rule-Based Operation Cycle of an Agent

Algorithm 9.1 Rule-Based Agent Operation Loop
inputs: agent with rule list L = (R1, ..., Rn) ∈ Rn
while TRUE do

detect current grid G from the environment
compute the set of rules with the smallest grid distance to G:

S = {R | distG(G(R), G) = min
R′∈L

distG(G(R′), G)}
select a random rule Rselected ∈ S
apply C(Rselected) until the next time frame

end while

elements in the co-occurrence matrix is one, whereas the sum of each line of the transition probability
matrix is one.

Definition 9.8 (Co-occurrence Matrix).
Let (R1, ..., Rn) ∈ Rn be a rule list of an agent that acts according to algorithm 9.1. Then, the co-
occurrence Matrix P is defined as P = (pi,j)1≤i,j≤n, where

pi,j = Pr (Ri has been selected in the last and Rj is selected in this time frame) .

Figure 9.10 shows an exemplary co-occurrence matrix as a three-dimensional matrix plot. Given the co-
occurrence matrix, according to definition 9.9, the transitivity and the reflexivity of the used rule list can be
computed.
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Fig. 9.10: An exemplary Co-occurrence Matrix for a Rule Set of Size 50

Definition 9.9 (Reflexivity ρ, Transitivity τ ).
For a given co-occurrence matrix P = (pi,j)1≤i,j≤n, the value ρ ∈ [0, 1] with

ρ =
n∑
i=1

pi,i

is called the reflexivity of P . The value τ ∈ [0, 1] with

τ = 1− ρ

is called the transitivity of P .

The reflexivity ρ indicates the strength of the main diagonal of the matrix and denotes the overall probability
that rules are executed in repetition. The transitivity τ denotes the probability that another rule is chosen
after one rule has been executed.
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9.3 Evolutionary Learning

This section presents an approach to completely evolve artificial players to successfully compete in the
above described combat situations. The agents described here use the rule-based approach to encode their
behaviour. The used rule lists are optimised by an evolutionary algorithm to find the one that gives the
best performance. The resulting agents are able to dominate the standard QUAKE III agent in any difficulty
setting and show that the chosen state and action models are valid and powerful. The work that is presented
in this section is based on a paper that has been published by Priesterjahn et al. at the Conference of
Evolutionary Computation (CEC’06) [PKWG06].

In general, the following approach evolves a controller for a game agent. The idea to do so is not new.
Though, in the game AI research field, the usage of neuroevolution is more common than the evolution
of rule-based agents. For several examples we refer to our overview of game AI research in section 4.2.
Of particular interest are among others the works of Bryant et al. [Bry06, BM06, BM07], Stanley et al.
[SBM05a, SBM05b] and Togelius et al. [Tog07, TLdN07]. However, the underlying representation and its
similarity measurement is something that we could not find in other work.

9.3.1 Evolution Model

As described in section 3.1 an evolutionary algorithm basically consists of five parts.

1. A survivor selection operator to select the surviving individuals,
2. a parent selection operator to select the future parents from the survivors,
3. a recombination operator to generate the offspring,
4. a mutation operator to introduce new genetic material and
5. a fitness function to evaluate the performance of an individual.

In our approach each individual is represented by a rule list (R1, ..., Rk) ∈ Rk with a fixed size k ∈ N.
The used evolutionary algorithm is based on evolution strategies5. In the course of the evolution, these rule
lists are evaluated in the game and then manipulated by the evolutionary operators. At the beginning, the
first individuals are randomly initialised. This means that we randomly initialise the grids with filled or
empty fields and randomly put one opponent on some position on some of the grids. The commands are
also randomly chosen. The yaw angle is initialised as a random angle in [−90◦, 90◦]. This is not the full
range for the yaw angle. Yet, in practice there is usually no need for view angle changes that are bigger than
90◦. Table 9.1 presents an overview of how such randomised rules are assembled. All random decisions
are made with uniform distribution.

Survivor Selection

Concerning the population structure and the selection scheme, we use a (µ+λ) evolutionary algorithm. The
size of the parental population is µ ∈ N. In each generation λ ∈ N offspring individuals are produced by
applying the variation operators recombination and mutation. In contrast to the comma selection scheme,
the plus selection scheme lets the parents survive and be a part of the new generation. Therefore, the
population size is always µ + λ. The survivor selection itself just selects the µ best rule lists according to
their fitness. We do not use fitness-proportional selection to achieve a better exploitation.

The parents are kept in the population for several reasons. First, the evolutionary process is stabilised
by keeping the good solutions. As our variation operators - especially recombination - apply very strong
5 see section 3.1.3
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Table 9.1: Construction of randomised Rules

value randomly chosen from

grid field {0, 1}
opponent on grid {TRUE,FALSE}
opponent position random grid field

f {−1, 0, 1}
r {−1, 0, 1}
ϕ [−90◦, 90◦]

a {0, 1}

changes to achieve better exploration, this balances the learning process. Second, it helps to reduce the
effects of a volatile fitness function. The performance of an agent can be affected by several incidents. For
example, the agent or the opponent could have made a lucky shot or have made a very bad decision that got
them into a corner. Therefore, the agents are reevaluated in each generation. To stay in the population they
have to prove their value again and again. This results in more generalised behaviours and the surviving
agents are better equipped to handle unseen situations.

Parent Selection

From the survivors, the parents are selected randomly with uniform distribution.

Recombination

For the recombination, two parents are chosen randomly with uniform distribution from the parental popu-
lation. Let (R1, ..., Rk) ∈ Rk and (R′1, ..., R

′
k) ∈ R

k be the rule lists of the parents. Then, the rule list of
an offspring (O1, ..., Ok) ∈ Rk is created by randomly choosing each rule Oi from {Ri, R′i} with uniform
distribution. For example, from the two following rule lists A and B the following recombination can be
performed.

parent A {A1, A2, A3, A4, A5, A6}
parent B + {B1, B2, B3, B4, B5, B6}
offspring = {A1, B2, A3, A4, B5, B6}

Hence, recombination affects the structure of the rule lists. The operator resembles uniform crossover. We
chose this operator in contrast to a one point crossover to increase the variety of the produced offspring.

Mutation

In contrast to crossover, the mutation operator effects the structure of the rules itself. All changes are made
with the same probability π and uniform distribution. For the grid, a grid field can be changed from empty
to full or vice versa. The position of an opponent on the grid can be changed to one of the neighbouring grid
fields, though it cannot be moved beyond the grid borders. For the command (f, r, a, ϕ) of a rule, f, r and
a can be set to one of their possible values. The alteration of the view angle ϕ can be changed by adding a
random angle ∆ϕ ∈ [−α,+α]. We use a Gaussian distribution with mean zero and standard deviation α to
realise this. Table 9.2 describes the mutation operator in detail.
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Fig. 9.11: Illustration of the Mutation Operator

Table 9.2: The Mutation Operator

variable mutation

filled or empty grid fields randomly switched to full or empty with probability π

grid field containing opponent randomly put to a neighbouring field with probability π

f ∈ {−1, 0, 1} randomly set to any of {−1, 0, 1}
r ∈ {−1, 0, 1} randomly set to any of {−1, 0, 1}
a ∈ {0, 1} randomly set to any of {0, 1}

ϕ ∈ [−180◦, 180◦] ϕnew = ϕold +N (0◦, 5◦)

Evaluation

The fitness of each agent is evaluated by letting it play against the built-in QUAKE III agent6 and by applying
its list of rules for a fixed simulation period. The cumulative damage that was applied to the opponents and
received by the agent are counted and integrated into the fitness function

f = η · applied damage− (1− η) · received damage (η ∈ [0, 1]).

Applied damage increases and taken damage decreases the fitness of the agent. The weight η determines
the influence of each value. We call η the aggressiveness value because it determines the aggressiveness of
the agent. If η equals 0.5, attack and defence will be considered in balance. If η is smaller than 0.5, the
defence will be emphasised. Finally, if η is larger than 0.5, the fitness will be more strongly affected by the
attack capability of the agents.

In preliminary experiments we noticed that a fitness calculation by f = applied damage− received damage
(with η = 0.5) could lead to an undesirable gaming behaviour. In some experiments the agents learnt to
run away from the opponent and got stuck in this behaviour. Therefore, running away seems to be a local
optimum. It minimises the own health loss. Once caught in this behaviour, it is not easy to learn that
the fitness can be even further increased, if the opponent is attacked. As the agent will make itself more
vulnerable, if it moves into an attack position, changing the behaviour would first result in a deterioration
of the fitness.

However, when we chose higher aggressiveness values, like η = 2/3, we created agents that tended to
behave almost suicidal. Therefore, we introduced a dynamic fitness calculation. At the beginning, we start
6 As a matter of fact we chose the final and hardest opponent of the game “Xaero” as the opponent.
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with a rather high value for η. After each generation, a discount rate q ∈ ]0, 1[ is applied to η until it reaches
0.5 This means that η is multiplied by q after each generation to determine the new η value.

To distinguish between the fitness of an agent and its actual gaming result, we distinguish between the
fitness and the performance of an agent. We define the performance of an agent as in definition 9.10.

Definition 9.10 (Performance).
Given a QUAKE III agent a that plays the game for a certain timespan t, the performance p of a in timespan
t or combat performance of a is determined by

p = applied damage− received damage,

where the applied and received damage are the respective values that were accumulated in the given times-
pan.

Therefore, the performance would be the same as the fitness, if η were 0.5. In all conducted experiments of
this thesis, we always examine the raw performance of the agents and not their fitness.

When considering other evolutionary approaches to the given problem, the question of why we do not use
learning classifier system arises, as they would fit very well to the rule-based agent model. This has several
reasons. As the game is very dynamic, the overall fitness value of an agent after one minute of training is
much more reliable than the fitness values of each rule. As our experiments with reinforcement learning
in section 9.4 will show, this results in a more robust approach. In addition, the interplay of several rules
is important. Though, learning classifier system use discounted rewards like reinforcement learning, we
think that it is more reliable and robust to judge the quality of a rule list by its overall performance to avoid
negative side effects. After all, we are interested in the performance of the agent and not in the highest
performing single rules. We also hope to obtain a more diverse rule lists with this approach. Yet, rule-based
fitness values can be very helpful, if they are used in combination with the agent-based fitness as it will be
shown in chapter 11.

9.3.2 Experimental Setup

We have conducted a series of experiments, to determine the learning capabilities of the approach and to find
out more about the influence of its parameters. However, since we were more interested in the capabilities
of our approach and the state representation than on the evolutionary algorithm itself, our interest was
aimed at the influence of the design parameters - e.g. the size of the grid or the rule lists - and not at the
parameters of the evolutionary algorithm. Therefore, we conducted several experiments concerning these
design parameters and left the parameters of the evolutionary algorithm fixed. As a result of an empiric
process - i.e. extensive testing and several experiments - we chose those parameters according to table 9.3.

Each experiment was repeated 5 times to gain statistically more valid results. All experiments were run for
three days (72 generations). We have also experimented with some longer runs but we saw only marginal
performance improvements. The size of the population was chosen to be large enough to be stable with
respect to the exploration of the search space. If the population is too small, the evolutionary process can
take some special direction in the search space and loose diversity. The mutation rate of 0.1 was chosen on
the basis several examples in literature. It turned out to be a good value that allows extensive exploration
but is not too high, so that it handicaps exploitation.

The experiments took place on the map we described in section 9.1. The small size of this map increases the
probability that the agents actually meet each other. So, the evaluation time could be decreased. Further-
more, since we were only interested in learning the fighting behaviour, a small map was sufficient for our
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Table 9.3: Parameter Setup

parameter value

population size µ+ λ 60

number of selected parents µ 10

number of generated offspring λ 50

mutation rate π 0.1

yaw angle mutation range α 5◦

Evaluation Timespan 60 seconds per agent
(1 hour per generation)

aggressiveness η starts at 2/3

aggressiveness discount rate q 0.99

termination after 3 days (= 72 generations)

runs per experiment 5

experiments. A QUAKE III agent was placed on this map and played against all agents of the population,
one after another. Thus, we employed an opponent which always plays the same way and on the same level.
This reduces the variations in the fitness function. Though, the performance measuring is still influenced
by coincidence - e.g. if the agents directly see each other at the beginning of a round or not. We figured out
that we need at least one minute of playing time to get reliable results - especially in the first generations
in which our agents only show very random behaviours. An even shorter evaluation timespan would lead
to too much fluctuations in the fitness evaluation and handicap the learning process. On the other side, a
too long evaluation period would lead to an even longer running time of the evolutionary algorithm. The
aggressiveness discount rate was chosen, so that η reaches 0.5 after the first 30 generations.

For the determination of the experiment configurations, we conducted a series of tests to find out good
values. Then, we took the best values and systematically varied each parameter at a time to detect its
influence. Table 9.4 gives an overview of the conducted experiments. Experiment 1 denotes the base
experiment.

Table 9.4: Experimental Setup

# grid size (field size) rule list size

1 (base) 15 × 15 (×100 ) 100

2 15× 15(×100) 50

3 15× 15(×100) 10

4 15× 15(×100) 400

5 11× 11(×150) 100

6 21× 21(×70) 100

It is important to notice that we modified the density and not the size of the grid. So, all experiments were
run with a grid of approximately 15 metres × 15 metres in the virtual world. However, in experiments 5
and 6 the grid was separated into 11× 11 and 21× 21 fields, respectively.
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9.3.3 Results

Figure 9.12a shows the overall results of our experiments. There, the mean of the performance values of the
best individuals of each generation is plotted to show the reached quality of the solutions. It can be clearly
seen that our agents learnt to defeat or to be as good as the QUAKE III agent in all experiments, since they
all reached fitness values above zero. In the case of experiment 1, even the mean fitness of all individuals
of a generation rose above zero (see figures 9.13a and 9.13b). The best individuals outperformed their
opponent already after five to seven generations.

Figure 9.12b shows the same plots as 9.12a but smoothed with a one-dimensional Gaussian filter with
radius 2 for better readability. Experiment 1 shows the highest performance. The best performing agents
were able to apply up to 3400 points more damage per minute to the QUAKE III agent than the QUAKE III
agent applied to them. This is a very large margin, given the fact that the used weapon is only able to apply
up to approximately 100 points of damage per second in the case of a direct hit. Therefore, it can be said
that the best evolved agents are able to dominate the QUAKE III agent.

When examining the differences between the single experiments, it can be seen that the size of the rule list
has a profound influence on the performance of our approach. Reducing the rule list size from 100 to 50 or
10 reduced the performance. Using a rule list size of only 10 rules resulted in the worst performance of all
experiments. However, it is not the case that using a larger rule list always results in a better performance.
Experiment 4, which used 400 rules per agent, performed worse than the base experiment.

Concerning the grid densities, the experiments show that a too dense (experiment 6) or a too sparse grid
(experiment 5) can compromise the performance. In the case of the sparse grid, the state representation is
not detailled enough and handicaps the decision making and rule selection process. However, a too dense
grid blows up the search space and compromises the convergence speed of the underlying evolutionary
algorithm.

Finally, figure 9.14 shows the mean of the maximum performance of the agents in each generation together
with the corresponding standard deviation. It can be seen that the deviation is quite high. This is not
surprising, given the uncertainty of the environment. However, in all experiments, the best agents were able
to defeat the opposing agent by a considerable margin.

In addition to the consideration of the pure fitness development we think that it is even more important to
assess the gaming behaviour of the evolved agents on a qualitative level. Though, such an assessment can
only be very subjective. As it is common for computer games, we call a behaviour a good gaming behaviour
if it looks fluid and human-like.

The trained agents showed a very aggressive behaviour and were able to move fluidly.7 Interestingly, almost
all experiments produced agents which tried to hunt and to closely follow their opponent. At the same time
they tried to avoid the attacks of their opponent by running from one side to the other. Playing against them
is quite hard, because they really put the player into a defensive position.

Concerning the optimality of the gained result, the aggressive behaviour that is shown by the best agents in
our experiments might only be a local optimum. However, since the same behaviour showed up in almost
all experiments and in almost all setups and given the reached performance, it is also a very good local
optimum and seems to be close to the global one. From all the experiments that were conducted in the
course of this thesis, this approach delivers the best performing agents.

As we trained against some fixed opponent, the generated agents are of course subject to its behaviour.
Therefore, the agents will have to be trained again, if they should adapt to a new opponent. However, the
7 See www.upb.de/cs/ag-klbue/de/staff/spriesterjahn/videos/evobot.avi for a demonstration.
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Fig. 9.12: Experimental Results: Maximum Performance
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Fig. 9.14: Maximum and mean Performance of the best Setup with Standard Deviation

agents that were trained in the aforementioned experiments are already strong enough to compete with any
opponent.

We also made several experiment with the best trained agents on larger maps. They were still successful in
close combat situations but were a bit helpless, if no opponent could be seen. So, the results can also be
used on larger maps, if the generated rule lists are employed for combat in an agent control framework.

9.3.4 Coevolution

Having seen that our approach is able to create successful behaviour from scratch, we also wanted to find
out, if it is possible to work without a third party opponent - namely the QUAKE III agent - to measure
the performance of the agents. In practice we cannot assume that we have competitive hard-coded agents
at our disposal to use them as training partner. Therefore, we also tried to evolve gaming agents by using
coevolution.

To achieve this, we simply took two populations which used the same parameters as in the base experiment
above. These populations were synchronised so that the n’th agent of population one would always play
against the n’th agent of population two. Since coevolution usually needs more time to converge we granted
the algorithm a significantly longer running time of 200 generations8.

After the learning process had finished, we took the final generation and evaluated their performance by
letting each of them play for one minute against the QUAKE III agent. We found out that the produced
8 This results in a running time of more than one week.
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agents are able to compete with the QUAKE III agent. Some defeated it by a margin of up to 1000 health
points per minute. This shows that well performing results can also be produced by coevolution.

Though, the behaviour of the evolved agents was not as fluid as the behaviour of the agents which were
evolved by standard evolution. They moved a bit choppy and therefore were easily identifiable as artificial
players. This behaviour is similar to the behaviour of the agents that we obtained in early stages of the
standard evolution. So, we made a longer run of more than 300 generations. The behaviour of these agents
was indeed more fluent. However, the performance improvement over using 200 generations was only
marginal.

9.3.5 Analysis of the Results

To find out more about the structure of the gained results, this section presents an analysis of the evolved
rule lists. We took the best performing agents from each setup and computed several statistical values - as
introduced in section 9.2 - based on a twenty minute match against the QUAKE III agent. The computed
values were the transitivity τ and the reflexivity ρ of the rule list9. We also did some first order statistics
and computed the standard deviation σ for the probability of a rule to be selected. A low standard deviation
indicates that the rules are executed rather uniformly distributed. A higher value indicates that there are big
differences between the execution counts of the single rules - e.g. when only five out of one hundred rules
are really used. The results are presented in table 9.5.

Table 9.5: Statistical Analysis

# grid size rule list size standard
deviation σ

reflexivity ρ transitivity τ

1 15x15 100 0.34 28% 72%

2 15x15 50 0.24 30% 70%

3 15x15 10 0.28 36% 64%

4 15x15 400 0.20 26% 74%

5 11x11 100 0.23 24% 76%

6 21x21 100 0.21 24% 76%

coevolution 15x15 100 0.20 23% 77%

The values for ρ and τ are relatively similar in all experiments, including coevolution. This seems to lead
to the conclusion that all examined rule lists are organised in a similar way. Therefore, we further analysed
the co-occurrence matrices10 of the best agents. Figure 9.15 shows some representative examples for the
gained matrices. The x- and y-axis denote the number of a rule in the respective rule list. The z-axis stands
for the probability that rule i is taken and then followed by rule j.

Figure 9.15a shows the co-occurrence matrix of the best individual that could be evolved. It originates from
the base experiment in which 100 rules and a 15x15 grid were used. The shown image is an example for
the structure that we found in most of the high performing agents. It consists of just one main rule11 which
9 see definition 9.9

10 see definition 9.8
11 the peak on the main diagonal at position (37,37)
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Fig. 9.15: Some Co-occurrence Matrices. (The Plots have different Scales.)

is executed in repetition and in this case two supporting rules12, which are usually only executed once and
then a switchback to the main rule occurs.

To gain more insight into this structure, table 9.6 shows the co-occurrence values of the three most important
rules in figure 9.15a. 23% of all transitions are transitions from rule 37 to 37. So, in almost one quarter
of all rule executions this rule is executed in repetition. Therefore, rule 37 is the main rule. A transition
from the main rule to one of the supporting rules 82 and 85 occurs in 14% of all transitions. The same
holds for transitions from these rules to the main rule. However, transitions between the supporting rules
and repetitions of these rules occur only rarely. So, in most cases the main rule is executed right after the
supporting rules have been executed just one time. They are just used to correct certain actions. Though,
without them the agent would not be as successful as it is. Another point that should be noticed is that the
sum of the transition probabilities of these three rules is just about 80%. So, in 20% of all cases transitions
between the other rules occur. As figure 9.15a shows, these transitions are distributed very evenly and range
between 0% and 1%. So, the other rules still have an influence, although they are used quite rarely. Some
of them might encode behaviours for some special situations - e.g. to get out of a corner or to turn if the
opponent is behind.
12 the symmetric peaks at (37,82), (82,37), (37,85) and (85,37)
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Table 9.6: The highest Transition Probabilities of fig. 9.15a

rule # 37 82 85

37 23% 14% 14%

82 14% 1% 0.5%

85 14% 0.2% 2%

The main rule encodes the main behaviour of the agent, whereas the supporting rules correct this behaviour
to adapt to the behaviour of the opponent. So, the overall behaviour is encoded in the interplay of these
three rules. Other rule lists with a similar structure use three or four supporting rules or show a slight
modification of this schema. For example, figure 9.15b shows one main rule and two supporting rules,
whereas one supporting rule is also run in repetition for some periods. It might be surprising that only 3
of 100 rules are really used. However, already one rule is enough to encode the behaviour to circle around
an opponent. This is a non-trivial and also a very successful behaviour that is often employed by human
players.

In another experiment we reduced the rule list of the best agent to just these three rules and let an agent
play with it. This agent was following and attacking the opponent. So, these rules are responsible for this
behaviour. However, the agent got into problems when it went into a corner or could not see the opponent.
So, the other rules are indeed important to handle such situations, as we suspected above. When we allowed
the agent to use all rules which were originally executed more often than the mean of all rules (11 of 100
rules), the agent was able to show almost the same behaviour as with the full rule list.

Another interesting point is that using a large rule list generates such a better performance, though only few
rules are really needed. We think that this is caused by the fact that at the beginning a much broader base
of different rules to draw from is generated when using larger rule lists. Furthermore, as the positions of
the rules in the rule list are fixed, a crossover operation on larger rule lists also has a higher probability to
draw good rules from the parents. In small rule lists, there is a higher probability that two good rules are
on the same position, whereby only one of them can be chosen in a crossover operation. The impact of this
effect is decreased once the rule lists are large enough. So, a large number of rules per individual kind of
improves exploration without damaging exploitation. However, if the number is too large, it will blow up
the search space and can also lead to delays in the operating loop because the agent has to look up too many
rules in each time frame.

Interestingly, coevolution also produces results which fall into the same schema. Figure 9.15c shows the co-
occurrence matrix of the best individual that was obtained by coevolution. This indicates that coevolution
can find similar solutions but only needs more time to find them.

9.3.6 Conclusion

We have presented an approach to successfully evolve game agents for a modern computer game. These
agents are not only able to play as good as the provided hard-coded agent, they are even able to dominate it
on any difficulty level. In addition, our approach provides competitive agents already after few generations.
Concerning coevolution, we have shown that our approach is able to deliver competitive results without
any preprogrammed training partners. Therefore, it can be used to train agents in games and environments
which do not yet feature any artificial players.

In a detailed statistical analysis of the generated rule lists, we were able to show that already few rules are
sufficient to reach a high performance. We found out that in all high performing experiments the result is



9.3 Evolutionary Learning 157

a structure in which only few rules work together. In these cases, some rules encode a special behaviour,
whereas others correct certain movements and are only executed once at a time. So, the overall behaviour
is encoded in the interplay of several rules.

The number of the conducted experiments that are described above is quite low. The reason for that is, that
we were mainly interested in the question if it is feasible to evolve QUAKE III agents that are competitive in
combat with the described grid representation and an evolutionary approach. The presented results answer
this question with a definitive yes. Yet, the main focus of this thesis is the generation of believable and
human-like, though still competitive, behaviours. To achieve this, a pure optimisation approach, as we
presented above, is not applicable. The obtained results are simply too good and do not show human-
like behaviours. Though they produce the highest performance, a human observer usually will not call
the obtained agents clever because their behaviour is actually very simple. Therefore, other methods are
needed to create more human-like results. However, the presented approach will be used as the basis of the
methods that are described in sections 10.2 and 11.

Another flaw of the presented method is that it can only be used for offline learning. The algorithm could of
course be parallelised so that the individuals play concurrently in several games on several computers and
one or several central servers handle the evolution. However, in the course of its exploration of the search
space, the evolutionary process will always produce defective agents that do not show a valid gaming
behaviour. It is not desirable to have such agents in an ongoing game. Therefore, other mechanisms have
to be used for online behaviour adaptation. An example for such an online adaptation method would be
reinforcement learning, which we will investigate in the following section.
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9.4 Reinforcement Learning

Though the approach in the previous chapter produces very good results, it fails when it is applied online.
Therefore, we have examined several online learning methods and have then decided to apply reinforcement
learning to the combat problem because it is the classical and most researched method for online learning in
uncertain environments. This section presents the gained results in which the reinforcement learning agents
are also able to defeat the standard QUAKE III agent.

As we already stated in section 3.4, reinforcement learning continuously tries to improve the behaviour of
an agent in some environment by evaluating its actions according to some reward signal. The agent reacts
to positive rewards by reinforcing the corresponding behaviours and to negative rewards by avoiding the
corresponding behaviours. This makes the method especially interesting for the adaptation of game agents
to the current players.

From the several reinforcement learning methods, we chose to apply Q-learning because it naturally fits to
the given problem. The transition probabilities and expected rewards in the game are not known and are
subject to a certain randomness. Therefore, dynamic programming methods are not applicable. Q-learning,
however, does not rely on a known Markov model.

The agent that is examined in this approach has been implemented by Felix Schulte in the course of his
diploma thesis [Sch07].

9.4.1 State & Action Model

For the application of Q-learning, a finite set of states and actions is needed. Furthermore, since the sizes
of these sets have a direct influence on the learning process, they should be as small as possible. Though,
their size has to be big enough to guarantee that the agent can differ between enough states and actions to
learn a valid and successful behaviour.

The state set can be reduced by using a set of exemplary grids, from which the closest is chosen according
to the grid distance to the current situation. In section 9.3 we used an evolutionary algorithm to find such a
reduced state set. However, if the method is applied in practice, using another learning process that by itself
already produces competitive agents as a basis will not be an option because it makes the reinforcement
learner obsolete. We therefore use a clustering approach to obtain a reduced state set.

Clustering describes the classification of a set of objects into subsets. In usual clustering applications
these subsets exhibit similar features. There exist numerous clustering approaches [JD88]. On of the most
popular approaches is the k-means algorithm. k-means was introduced by MacQueen in 1967 [Mac67] and
clusters a set of objects into exactly k ∈ N subsets, so that all objects in each cluster are closest to their
cluster centroid. It therefore needs some distance measurement to work. Algorithm 9.2 presents the general
k-means algorithm.

Algorithm 9.2 k-Means
input objects o ∈ O to be clustered
create k centroids randomly and place them in the object space
repeat

assign each o ∈ O to the nearest centroids
recalculate the centroids

until centroids were not moved



9.4 Reinforcement Learning 159

The centroids are usually the mean points of the clusters in a continuous space or a decided object which is
closest to this mean point in a discrete space. The algorithm is rather simple and very fast and reliable. The
biggest flaw of k-means is that the number of clusters has to be known in advance. However, in our case
this is actually an advantage because it enables us to directly determine the size of the state set.

k-means

- cluster centroid

Fig. 9.16: Illustration of the k-Means Algorithm

In the game the k-means algorithm is applied as follows. The clustered objects are grids and the grid
distance13 is used as the distance measurement. Therefore, the Gaussian filtered grids are actually clustered
and not their raw counterparts. The clustering starts with a set of Gaussian filtered grids, from which k
grids are chosen as the initial cluster centroids.

It should be noted that only in the first iteration the cluster centroids are Gaussian filtered representations of
real states. After the first clustering has been computed, the centroids of these clusters are chosen according
to definition 9.11 and represent the mean grid of all Gaussian filtered grids in the corresponding cluster.

Definition 9.11 (Grid Centroid).
Let S ⊆ G be a set of grids. The grid centroid C of S is defined by

C =
1
|S|

∑
G∈S

G

or in detail
ci,j =

1
|S|

∑
G∈S

gi,j .

The resulting grid clusters are then defined as follows.

Definition 9.12 (Grid Cluster).
Let S be a set of n × n-grids. Given a finite set of grid centroids {c1, ..., ck} ⊆ Rn×n, S is clustered into
|C| grid clusters C1, ..., Ck according to

Ci = {G ∈ S | dist(Gg, ci) ≤ dist(Gg, cj) ∀j ∈ {1, ..., i− 1, i+ 1, ..., k}}

If a grid has the same distance to more then one grid centroid, it will be assigned to the cluster with the
lowest index.

Finally, the adjusted k-means algorithm can then be formulated as in algorithm 9.3.
13 see definition 9.5 in section 9.2



160 9 Combat: A Learning Problem in QUAKE III

Algorithm 9.3 Grid k-Means
input set of grids Gbase ⊆ G to be clustered
choose k random grids from Gbase as the initial centroids
assign each grid G ∈ Gbase to the closest of the chosen grids
update the centroids
repeat

assign each grid G ∈ Gbase to the nearest centroid
update the centroids

until centroids were not moved
return clustering

Inside the Gaussian grid space, the clusters can be represented by the surrounding regions of their centroids.
Since the grid distance is just the Euclidean distance in the Gaussian grid space, it divides the space into
several subspaces by the hyperplanes which represent the points which are equally close to two centroids.
Such regions are usually called Voronoi regions [Vor08] and are defined as the sets of all points that are
closest to the corresponding centroid.

Definition 9.13 (Voronoi Region).
Let V be a vector space. For a finite set C ⊆ V and a metric dist the Voronoi regions of C are defined as{

x ∈ V
∣∣ dist(x, c) ≤ dist(x, c′) ∀c′ ∈ C \ {c}

}
∀c ∈ C

For a further refinement of the space which is represented by a cluster, the convex hull of all Gaussian grids
in the cluster can be used. Definition 9.14 presents a formal description of these convex hulls.

Definition 9.14 (Convex Hull).
Let V be a vector space. For a set S ⊆ V the convex hull of S is defined as

conv(S) =

{
x ∈ V

∣∣∣∣∣ x =
∑
v∈S

wxvv ∧
∑
v∈S

wxv = 1 ∧ wxv ≥ 0 ∀v ∈ S

}
,

where the wxv are scalars with respect to the given vector space.

For a set of n× n-grids C the corresponding convex hull is the convex hull of the corresponding Gaussian
grids.

conv(C) =

{
X ∈ Rn×n

∣∣∣∣∣ X =
∑
G∈C

wXGGg ∧
∑
G∈C

wXG = 1 ∧ wXG ≥ 0 ∀G ∈ C

}

The generated convex hulls do not intersect and just present a further refinement of the objects that cor-
respond to the given cluster. If two convex hulls intersect, they will have to cross the Voronoi region
boundaries. This implies that they contain points which are not closer to their centroid than to another. This
conflicts with the construction of the clusters. Furthermore, definition 9.12 makes it clear that all points
that lie on the boundaries between two or more Voronoi regions are assigned to the cluster with the lowest
index.

Having a clustering algorithm for the grids, it is still open how the basic set of grids Gbase that will be
clustered looks like. We propose three different setups. First, we could just use Gbase = G - i.e. the finite
set of all possible grids. This set is of course very big and consists of many grids that will never appear in
the course of the game. Second, we could randomly assemble a basic set of grids to reduce its size. Though,
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many of these grids will still not be representative for real game situations. We therefore use the third option
in which game situations are recorded from human players and then used as the basis for clustering.

In contrast to the evolutionary rule list approach, we are not able to modify the state set in the course of
the learning process. Therefore, the basic grid set has to be as varied as possible and include some more
extreme situations which do not occur very often. We therefore constructed the basic set for our experiments
by especially playing through several situations. Then, k-means was used to create 100 states. We chose
this number according to the results in the previous section. There, the rule lists with 100 rules - i.e. models
with 100 states - delivered the best results. Figure 9.17 shows a collection of such centroids.
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Fig. 9.17: A Collection of Clustering Centroids

In addition to the reduction of the state space, the action space also has to be reduced. In this case the yaw
angle change is causing problems. Since it has a continuous range from−180◦ to 180◦, it has to be reduced
to a feasible and finite subset. The size of this subset of angle changes has to be as small as possible to
support the learning process. Therefore, we conducted some preliminary tests and finally reduced the set
of all possible yaw angle changes to

Φ = {−60◦,−40◦,−20◦,−10◦,−5◦, 0◦, 5◦, 10◦, 20◦, 40◦, 60◦}.

Thus, the set of commands is reduced to

CΦ {(f, r, ϕ, a) | f, r ∈ {−1, 0, 1}, ϕ ∈ Φ, a ∈ {0, 1}} .

The decision to reduce the yaw angles to such a small set is quite problematic as it will have a direct impact
on the in-game performance of the agent. However, it is clearly needed to have the reinforcement learning
approach working at this abstraction level. On a higher abstraction level with a naturally small and finite
set of actions, reinforcement learning might be more suitable.

The resulting Markov decision process (S,A,A) has the clustering centroids as its state set S. The set of
actions A = CΦ is the reduced command set. The state action function A just allows all actions to be taken
in each state, hence A(s) = CΦ ∀s ∈ S. Therefore, the resulting Q-table has a size of 100 lines for the
states and 3 · 3 · 11 · 2 = 198 columns for the possible actions. This results in 19 800 Q-values.

9.4.2 Agent Model

The reinforcement learning agent uses Q-learning to update the values of its Q-table. Therefore, the be-
haviour cycle of this agent is a derivation of the general behaviour loop as presented in figure 9.8. In each
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frame the agent first senses its current grid. Then, it classifies this grid according to the grid distance to
the clustering centroids. Subsequently, it looks at the Q-values of the actions in the current state. Finally,
the action with the highest Q-value from the available actions is executed. Thus, a greedy policy for action
selection is used.

To improve the exploration at the beginning of the learning process, we chose to apply the ε-greedy policy.
In this strategy the agent usually takes the best valued action according to the greedy policy. However, with
a probability of ε ∈ [0, 1] it takes a random action.

After the action has been applied, the environment - i.e. the game - replies with a reward signal. In our
case the reward is computed out of the damage which has been inflicted to the opponent and the damage
which has been taken as a consequence of the last action. In contrast to the evolutionary approach in which
the fitness was a cumulative result of one minute of gaming, the reinforcement learning approach allows to
directly evaluate the effect of each action, thus resulting in a much finer evaluation of the performance of
each behaviour primitive.

As in the evolutionary setup, we introduce a parameter to the reward formula to tune the aggressiveness of
the agent. If at time t and in state s an action a is executed, the gained reward will be computed by

rts,a = η · applied damagets,a − (1− η) · received damagets,a (η ∈ [0, 1])

where applied damagets,a and received damagets,a are the respective values that were sensed as the conse-
quence of the chosen action. We again call η the aggressiveness value because it has the same influence as
in the previous section.

Based on the sensed reward the Q-table is updated and the agent executes the action until the loop begins
again. As in all other approaches the operating loop is triggered ten times per second. Figure 9.18 presents
an illustration of the operating loop of the reinforcement learner.

9.4.3 Experimental Setup

As for the evolutionary approach, we also made several preliminary experiments to find good parameters
for the reinforcement learning approach. In the process of these experiments we found out that the rein-
forcement learning approach seems to not be capable to learn a successful gaming behaviour in the setup
as described in section 9.1. The approach was especially not able to handle the shotgun weapon. It simply
did not improve with this weapon. Therefore, we switched the weapon to the so-called machine gun. The
machine gun is an instant hit weapon. This means that in the moment the attack button is hit, the game will
query, if the player is directly looking at some opponent. Then, this opponent is instantly hit and receives
damage. There are no projectiles which need some time to reach their target. Thus, the aiming difficulty is
reduced in this setup. Furthermore, the machine gun does not have to be reloaded. It is possible to make a
shot in each frame of the game. Therefore, the reinforcement learning agent also did not have to learn when
to attack and when not. Thus, the agents learnt to always attack because they had unlimited ammunition.
From these tests we can already conclude that the reinforcement learning approach, as it is conceived above,
is not as strong as the evolutionary approach.

An interesting consequence of this weapon change is that the machine gun always hits at one point, whereas
the projectiles of the shotgun scatter when travelling. We thought that the scattering would make it easier
to compensate the reduction of usable yaw angle changes. Yet, the opposite seems to be the case.

We varied the reinforcement learning parameters step size α and discount rate γ as well as the aggressive-
ness value η because they have a direct influence on the learning success. The experiments in section 9.3
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Fig. 9.18: The Operation Cycle of a Reinforcement Learning Agent

already showed that a grid size of 15× 15× 100 works very well. Therefore, we also use this setup for the
reinforcement learning experiments. For a better understanding of the reinforcement learning parameters,
we again provide the update rule of the Q-learning algorithm (Algorithm 3.9).

Q(s, a)← Q(s, a) + α(r + γ max
a′∈A(s)

Q(s′, a′)−Q(s, a))

The learning step size α ∈ [0, 1] determines the speed of the learning process. If it is too small, the Q-
learner will adapt very slowly. If it is too big, the adaptation rate will be too high and the agent will go from
one extreme to another. For reliable convergence α should be cautiously set to a rather small value.

The discount rate γ ∈ [0, 1] determines the farsightedness of the Q-values. The higher this value is, the more
distant rewards are taken into account for the Q-value computation. Usually a value smaller but unequal to
one is chosen for γ. However, in the preliminary tests using the value one produced very good results. So,
we included it in the setup and used it in our base setup.

Furthermore, we chose setups for the aggressiveness value η ∈ [0, 1], in which the applied damage is
weighted twice (η = 2

3 ) and equally (η = 0.5) as much as the taken damage. We also added a setup in
which the agents defence is emphasised by choosing a ratio of 1 : 1.5 (η = 0.4) for the applied and taken
damage.

Finally, we also made tests with a different reward function. In this case the agent will also receive a so-
called “no hit penalty”, if it attacks its opponent and fails to hit it. However, the penalty the agent receives
in the case of a miss is only one, so that its influence is not too high.
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Table 9.7 gives an overview of all parameters we left fixed. We made 14 runs per experiment. The rein-
forcement learning approach produces a wider variety of gained performance, because only one agent is
considered per run. Therefore, we had to perform more experiments to get a firm picture.

Table 9.7: Fixed Parameters
parameter value
grid size 15× 15× 100

state set size 100
runs per experiment 14

termination after 220 lives

As described above, all agents use the ε-greedy strategy. In all experiments the value for ε starts rather high
at 0.5. As it is shown in figure 9.19, ε is then gradually reduced each eighteen minutes, so that it reaches
0.0 after exactly three hours. This results in a strong exploration at the beginning and a gradually stronger
exploitation of the learnt information in the course of the game. The performance of the agents is of course
affected by this setup. Therefore, the pure performance of an agent can at first be assessed directly after the
first three hours of learning have passed.

50 100 150 200
minutes

0.1

0.2

0.3

0.4

0.5

epsilon

Fig. 9.19: Development of ε

In contrast to the common 100 health points, the agents started with 1000 health points in all experiments.
We increased this size, so that the agents would have longer uninterrupted playing times to help the learning
process. We counted the lives that the reinforcement learning agent lost and terminated the learning process
after 220 lives.

For the realisation of the experiments we again chose a base setup and varied each of the chosen param-
eters to detect their influence. Table 9.8 presents all setups for the experiments. The base setup has been
emphasised in all sets. All experiment took place on the training map that is described in section 9.1 and
were conducted with one standard QUAKE III agent as the opponent.
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Table 9.8: Experimental Setup
# learning rate α discount rate γ aggressiveness η no-hit penalty

1.1 0.1 1 0.5 0
1.2 0.01 1 0.5 0
1.3 0.5 1 0.5 0
2.1 0.1 1 0.5 0
2.2 0.1 0.9 0.5 0
2.3 0.1 0.7 0.5 0
2.4 0.1 0.3 0.5 0
3.1 0.1 1 0.5 0
3.2 0.1 1 2

3 0
3.3 0.1 1 0.4 0
4.1 0.1 1 0.5 0
4.2 0.1 1 0.5 1

(base experiment 1.1 = 2.1 = 3.1 = 4.1)

9.4.4 Results

The conducted experiments yielded several interesting results. First of all, given the aforementioned ad-
justment of the combat problem, the approach is able to create competitive agents. In the best setup the
agents were able to apply approximately 1.5 times as much damage to their opponent than they received.
Therefore, the results are not as good as with the evolutionary approach. However, both approaches can
only be hardly compared because of the usage of different weapons.

The plots in this subsection show the applied damage in relation to the spent lives of the reinforcement
learning agent. Since all players have 1000 health points when they spawn into the game, the agent will be
better than its opponent, if it has applied more than 1000 damage points to it. Therefore, the plots include
a horizontal line at the value 1000. The mean life time of the agents was about one minute at the beginning
and then grew, corresponding to their performance, to about three minutes in the best experiments.

The results of the first set of experiments, in which the learning rate α was varied, can be seen in figure
9.20a. The plot clearly shows that α should be set to a very low value. The experiments with α = 0.5
were not successful. These agents were not able to defeat their opponent and to cross the 1000 damage
points mark. For the values 0.1 and 0.01, the agents reached a similar performance, whereas the agents
with α = 0.1 learnt faster at the beginning but were then outperformed by the ones with α = 0.01. This is
the typical behaviour of a learning rate or step size parameter.

Figure 9.20b shows the results of the set of experiments in which the discount rate γ was varied. The
plot shows that γ should be chosen very high. The experiments with γ = 0.3 and even γ = 0.7 failed
to deliver successful results. In contrast, the experiments with γ ≥ 0.9 reached a performance ratio of
about 1.5 in comparison to the opponent. This indicates that to be successful, actions have to be seen and
performed in a long term way. Though, with a frame rate of ten frames per second, such a long term sight
just relates to some seconds of gameplay. A pure reactive behaviour seems to be disadvantageous. In the
evolutionary approach this aspect was considered by measuring the performance of whole rule lists to see
that the included rules fit together.

The next figure 9.21a shows the results of the variation of the aggressiveness value η. In the evolutionary
approach it was vital to start with η > 0.5 to guarantee that the agents would not be trapped in the local
optimum to run away. However, in this approach this seems to be compensated by the evaluation of single
actions and not whole rule lists. Thus, the need for scaling the aggressiveness is not given. Both experiments
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Fig. 9.20: Results of Sets 1 and 2
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Fig. 9.22: Results of the Base Setup including Standard Deviation

with η 6= 0.5 produced agents with a slightly lower performance. Increasing the aggressiveness results in a
slightly faster learning rate at the beginning.

The last set of experiments examined the usage of an altered reward function in which the agent was
penalised if an attack did not produce any damage. Considering the results that are given in figure 9.21b,
it can only be said that it is not a good idea to do so. We wanted to achieve that the agent also has to
learn that it should only attack if the opponent is hittable. As this is somewhat similar to having a weapon
which needs time to reload or for which an exact timing of the attacks is needed - as with the shotgun - the
reinforcement learning approach fails again.

As we mentioned above, the single agents produce a higher variety in the performance because they do not
possess the stability of a whole population. Figure 9.22 shows the standard deviation of the base experiment
to judge, if the difference to the other experiments is significant or not. The figure shows that indeed the
standard deviation between the different runs is rather high. However, even the worst runs of this experiment
show a competitive performance.

In a further analysis we looked at the state change probabilities that correspond to the values of the co-
occurrence matrix in definition 9.8. We let one agent play for some minutes and computed the probabilities
that after some state i was visited some state j followed. Figure 9.23 shows such a matrix. In comparison
to the co-occurrence matrices that resulted from the evolutionary approach (see figure 9.15) it is striking
that much more spikes can be seen and that the distribution along the main diagonal is more balanced.
This shows that the reinforcement learner uses more states. This indicates two things. First, all states
are valid and represent a real game situation. Second, there exist several similar states that are chosen
upon slight changes to the game situation. This should theoretically enable the agent to show a more
sophisticated behaviour. However, when observing the behaviour of the agents, further sophistication in
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comparison to the evolved agents could not be seen. Thus, the more balanced distribution seems to be
based on the similarity of the states. An examination of the state set - see figure 9.17 again for some
examples - supports this. Yet, tests with smaller and larger state set sizes did not show any performance
improvements. Furthermore, the strong main diagonal of the matrix shows that many states are visited
repeatedly. This is a result of the relatively high frame rate of ten frames per second in which the game
situation does not change as fast as the actions are executed.
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Fig. 9.23: Exemplary Co-occurrence Matrix of an Agent

9.4.5 Conclusion

In conclusion, the results of the reinforcement learning approach are actually quite disappointing. The
employment of reinforcement learning does not result in an improvement of the learning speed. In addition,
though the generated agents are able to defeat the QUAKE III agent by a considerable margin, they do not
show the great performance of the evolutionary trained agents. This performance difference has mainly two
reasons. First, in contrast to the evolutionary approach, the reinforcement learning approach is not able to
update and adapt its state model. The evolutionary approach uses its recombination operator to arrange the
states into a fitting combination. In addition, the mutation operator is used to create new possible states that
can be tested. In contrast, Q-learning depends on a fixed Q-table with a fixed state model.

The second problem lies within the action model and the reduction of the possible yaw angle changes.
Again the evolutionary approach used its mutation operator to fine tune the used commands, whereas Q-
learning is bound to a fixed finite action set. Yet, the reduction is needed to achieve a learning success.

Our conclusion is therefore that Q-learning, though being a very reliable, fast and well performing learning
method for uncertain environments in general, is not well equipped for the low level learning which we
try to achieve. It needs a more sophisticated level of abstraction with naturally finite state and action sets.
For example, the concept of an individual or team strategy learner using reinforcement learning is more
promising.
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It should be noted that the usage of a learning classifier system could have avoided the problems with the
state and action set composition because this method is also able to generate new states and actions by using
its evolutionary operators. However, as we already mentioned in the previous section, we think that the sole
reliance on single rule utilities is not as robust as the utilisation of the overall performance of an agent. In
addition, the assessment of the overall agent performance can be particularly well used in computer games,
as it is easily possible to employ several agents that learn in parallel.

However, the evaluation of the single states and action has proven to be useful to decrease the importance
of the aggressiveness value because we saw no fleeing agents in our experiments. Therefore, it would be
interesting to also use the rule utilities in the evolutionary approach. As these values can be easily observed,
it would also mean a loss of information to not use them. As a possible approach, chapter 11 will present
a method that incorporates both evaluation concepts into one evolutionary approach to create an online
adaptation method with a smoother learning characteristic.



10

Imitation-Based Learning

In the last chapter we showed how learning and optimisation methods can be used to train high performing
agents for the combat problem. However, as we already mentioned several times, creating game AI has
different goals. Gaming characters should not be as good as possible or be almost invincible. They should
show some sophisticated human-like behaviours. In terms of the combat problem, the agents should not
just aggressively try to inflict as much damage as possible. It is much more desirable that they try to use
the map structure for taking cover or try to trick their opponents.

The question is how such a behaviour can be achieved. A pure learning approach based on the optimisation
of behaviour is inappropriate. We argue that to behave human-like, an agent should base its behaviour on
how human players play the game and try to imitate them. This should especially be the case in computer
games in which human and artificial players meet at the same level and where it is quite simple to record
the behaviour of a human player. In our case we can simply record the current situation of a player in the
form of the established grid representation and its corresponding action.

However, the question is how such records of human players can be incorporated into the behaviour model
of a game playing agent. This chapter presents two principal ideas of how the imitation of combat behaviour
can be accomplished. The first approach uses neural networks and supervised learning to find input/output
relationships between game states and actions to reach a true imitation of the role model. The second
approach uses the evolutionary learning approach from section 9.3 and initialises it with recorded combat
rules to train an imitation-based agent.

10.1 Imitation-Based Neural Networks

This section describes an approach to imitate gaming behaviour by using supervised learning. Though this
approach was not very successfull, it gave us several hints on further decisions and on the direction we
went by using imitation-based learning rather then pure imitation. As a result we were able to train a neural
network to control a game agent for accomplishing simple tasks and imitating some presented gaming
behaviour. However, the produced agents were not competitive in combat.

Since the results were actually quite disappointing, this section will not go into as much detail as the others.
We just include it, because it shows why we prefer imitation-based learning over pure imitation and why we
chose to not use neural networks in our ongoing research. The implementation of this approach has been
made by Raphael Golombek in the course of his bachelor thesis [Gol07].

The approach has many things in common with an approach from Thurau et al. [BTS03, TBS03] in that it
also trains a neural network on recorded gaming data. However, in that approach an absolute state model
was used to learn how to navigate over a map, whereas we use the established relative grid model. For
the training they also used a backpropagation variant. Yet, their results were also quite disappointing and
caused them to conceive other methods [BT04a, TBS04a, TBS04b, TB05].
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10.1.1 Idea & Modelling

The basic idea behind this approach is to use a feed-forward neural network and to let it learn a certain
relationship between the state of the agent and a corresponding action. We again use the grid representation
from section 9.2, though different values are used for representing empty, filled and hostile fields.

As figure 10.1 illustrates, the value of each field is fed into a corresponding input neuron. This pattern is
then propagated through the network to produce four output values that correspond to the actions the agent
can do: forward movement f , lateral movement r, view angle change ϕ and attack value a.

� � �
Fig. 10.1: Neural Network Control

As neural networks typically work with data in the range of [0, 1], we changed the values which with the
field types and actions are represented. Table 10.1 presents the values that are used for the encoding of
the grid field states. It is noticeable that the opponent has been given a much higher influence than in the
usual encoding. We obtained these numbers from numerous experimental runs. The network was only able
to show acceptable results, if the opponent had been emphasised that much. This essentially means that
the network-driven agents will almost completely ignore the structure of the environment, if they see an
opponent.

Table 10.1: Encoding of the Field States of the Grid
field state value

filled 0.01
empty 0.02

opponent 0.9

Figure 10.2 shows how the output values of the network are transformed back into the actual commands. In
the decoding, the view angle change takes a special role as it has to be transformed back into a continuous
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range of values. Therefore, we transform the values from the interval [0,1] back into angle changes. As
the network is supposed to learn from training data, we analysed some game records and found out that the
view angle change is very rarely above 15◦. Therefore, we adjusted the resulting angle range, so that it only
ranges from −15◦ to +15◦ to gain a higher accuracy.

0 0,5 1

-15° 0° +15°

view angle change

0 0,5 1

no attack attack
attack

0 1/3 2/3 1

left none right
lateral movement

0 1/3 2/3 1

backward none forward
forward movement

Fig. 10.2: The Output Ranges of the Neural Network and their Interpretation

For the training, we record a player and put all occurring rules into a rule set. These rules are presented
to a randomly initialised network and the backpropagation algorithm1 is used to adjust the weights of the
network and to minimise the error in the output values. The recorded rules are split into a training set and
a validation set. The networks are only trained with the training set, whereas the validation set is used
to check the performance of the network on unknown inputs. Thus, it will be possible to detect, if the
network is just specialising on the training set or if it finds a general mapping of input to output values. We
prefer more generalising networks because they are likely to encounter previously unknown situations in
the course of a game.

Our general intend is to create a network that imitates the presented behaviour in the game and that is able
to generalise from the recorded behaviour and to perform well in the game.

10.1.2 Experiments

We split our experiments into two groups. First, we made some experiments by presenting simple tasks
to the network to detect its imitation capabilities. Second, we trained several networks based on recorded
combat behaviour, to see if it is possible to create a well playing agent with this approach.

Simple Imitation Tasks

The simple imitation tasks amount to the two tasks that are presented in figure 10.3. In Task 1 the human
player ran in circles around a column. This behaviour was recorded and then fed into a neural network
that had 25 · 25 = 625 input neurons for the 25 × 25 grid fields of length 70. The network also had two
inner layers, each consisting of 11 neurons. The choice to use a grid size of 25 × 25 was based on several
preliminary experiments. Interestingly, the neural network approach needs more detailed grids than the
rule-based approach to work properly. In the second task a network was fed with the recorded data of
player that runs around two columns in the pattern of an eight.
1 see algorithm 3.5 in section 3.3.1
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(a) Imitation Task 1 (b) Imitation Task 2

Fig. 10.3: Preliminary Imitation Tasks

Both data sets consisted of 3000 training samples and 1500 validation samples. In both experiments the
output error of the networks decreased very fast and converged against an optimum after already 30 gener-
ations. However, concerning the performance in the given tasks, the results of both experiments were very
different.

In task 1 the agent perfectly mimicked the presented behaviour and ran in circles around the column.
However, in none of the several experiments for task 2, involving different grid sizes, grid field values and
neural network sizes, the agent was able to show the desired behaviour. This is extremely puzzling as we
were able to make up a rule list that solves the task. The network had extreme problems in distinguishing
between the situations when the agent went from the left or from the right between the two columns. The
reason for that seems to lie in the fact that these situations are somewhat symmetric. However, the map for
task 2 was actually not completely symmetric. As illustrated in figure 10.3b, the columns were positioned
nearer to the left wall. Thus, it would be even possible to distinguish between coming from the left or from
the right, if both columns had the same distance to the agent.

Imitation of Gaming Behaviour

In the second set of experiments we recorded the combat behaviour of a standard QUAKE III agent as the
basis for imitation. We chose the QUAKE III agent as the role model because it shows an easily recognisable
combat behaviour in which it mainly circles around its opponent. This time the training set consisted of
8000 successively recorded rules. The validation set consisted of 5000 samples. We tested several setups
and came up with the same setup that was used in the simple tasks, namely 2 inner layer with 11 neurons
each and a grid size of 25× 25.

It should be noted that this network was not the one that reached the lowest output error but the one that
showed the best imitation. This fact indicates that the mean squared error, which is used to compute the
output error of a network for a given sample, is not really meaningful in terms of the resulting behaviour.
One cause for that is that the view angle is very important for the resulting behaviour. For example, an
output of 0.4 instead of 0.5 makes a real difference for the view angle but would have no effect for the
forward or lateral movement. Therefore, we tried to strengthen the influence of the view angle by giving
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it a higher weight in the error function. However, doing this interferes with the backpropagation algorithm
and thus has to be done carefully.

Figure 10.4 shows the development of the mean squared error for the mentioned network on the validation
samples along the training process. The figure shows that the error quickly converges against a local
optimum.
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Fig. 10.4: Error Development on the Validation Set

The resulting behaviour was again not fully satisfactory. The produced agents were able to reproduce the
movement of their role model. However, their performance was much worse because the shown imitation
was not close enough to the original. The biggest problem was the adjustment of the view angle change. In
many runs the agents where able to track the opponent in one direction but not in the other.

10.1.3 Conclusion

In conclusion we have to say that the presented approach was not useful to obtain well playing agents.
The failure of the approach has several reasons. The first and most important one is that perfect imitation
can actually not be the goal for creating competitive agents. Even if the imitation is done much better
and closer to the original as we got in our experiments, it will still have errors that most likely have a
disadvantageous effect on the performance. If exact imitation is the goal, then the imitator will most likely
perform worse than the role model. However, if a little bit of optimisation is used to tweak the rules, a
competitive agent that bases its behaviour on imitation but also takes freedom in its actions can be created.
Hence, the following section will present an approach which successfully accomplishes this.

Another cause for the failure of the approach is that the used neural networks were not capable to perform
well with the given representation of the world. This surprised us, as we thought that the matrix representa-
tion should fit quite well to neural networks. However, the mentioned problems with dissolving symmetries
are inherently caused by the design of the used neural networks.

This does not mean that a neural network approach is not capable to return good results. We did not try
to use recurrent networks that could be able to dissolve symmetric states as they also have a memory of
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recent network activity. In addition, the problem with the low weight of the view angle in the error function
indicates that backpropagation is not the best method to obtain well imitating networks. For example,
if neuroevolution is used, the fitness function can be implemented in a way that correctly represents the
importance of each variable. Neuroevolution has proven to be very successful in numerous similar tasks2.

However, we did not choose to go into this direction because of two reasons. First, we already had a very
well working representation in the form of the rule lists from section 9.3. Second, our experiences from
these experiments showed us that it is very hard to actually say why a neural network performs poorly. In
contrast, the rules and rule lists can be easily accessed and presented graphically. The utility of each rule
can be found out and statistics on rule execution frequencies and state transition probabilities can be made.
Thus, we decided to go for this approach instead of using neural networks.

2 see section 4.2
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10.2 Imitation-Based Evolutionary Learning

From several preliminary experiments on imitation methods, including those that we described in the pre-
vious section, we found out that just the imitation of other players is not enough to generate competitive
performance. Therefore, we devised an optimisation method on top of a representation that is based on
recorded player behaviour to obtain competitive, imitating agents.

This section presents an imitation-based approach that uses the evolutionary mechanism from section 9.3
to successfully train agents for the combat problem. However, the evolutionary process is mainly not used
to create new knowledge, but to select the right combination of imitated rules and to smooth the resulting
behaviour. We will show that this approach is able to generate successfully performing as well as imitating
agents that show sophisticated behaviours. This work is based on a paper which was published at the
International Conference on Natural Computation (ICNC’05) [PKWG05] in 2005.

As we already pointed out in section 4.2, the usage of the imitation of human players has become more and
more common in the game AI research field in the most recent years. There, imitation is used as a method to
create pure imitators that behave more human-like [BTS03, TBS04a, TNL07] or as an approach to support
a learning method [Bry06, BM07, LM06, ML05] to achieve more believable but also better performing
results. Our approach fits best into the latter category, as its primary objective is to create competitive
but also believable combat agents. One approach that bears a strong resemblance are the so-called case-
injected genetic algorithms from Louis et al., which also use recorded gaming data in a real-time strategy
game to improve the learning process. However, our approach is more focused on the actual imitation of
the presented behaviour, instead of its utilisation to achieve a higher performance. For a more thorough
description of the related work, we refer to the aforementioned section.

10.2.1 Creating the Rule Base

To achieve imitative behaviour, we generate the initial rule lists of the evolutionary algorithm by recording
players. This is simply done by letting them play against each other and by recording their grid-to-command
matches for each frame of the game. Each of these matches represents a rule which is then stored in a rule
database. We just put the rules into the database without any preprocessing. So, rules which are executed
more often and, hence, should be more important are put into the rule base more often.

In the first step of training, certain behaviours of the players will be imitated by our agents. Then, the
selection of the appropriate rules from the rule base and the performance of the agents is optimised by the
evolutionary algorithm. This approach has the advantage that certain behaviours can be presented to the
agent, from which it learns to use the best in relation to its fitness function. In this way an agent can be
trained to show a certain behaviour without programming it manually but still be competitive.

10.2.2 The Evolutionary Algorithm

In most aspects, the underlying evolutionary algorithm works identically to the one that was used in section
9.3. There is only one difference. The mutation operator is changed so that it only affects the command
but not the grid of a rule. We assume that a recorded rule base that is large enough, already contains all
important game states. There is no need to create new ones. Furthermore, if the grids are not mutated the
resulting rules remain readable over the course of the evolution. Thus, making it possible to easily identify
the situation that is represented by a grid by simply looking at it.
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The evolutionary algorithm plays a slightly different role in this application. It is used to find the most
important rules in the rule base and to put them together in a fitting list. Therefore, the recombination
operator plays an important role. However, our experiments with supervised learning taught us that there is
still the need for optimisation and fine tuning to make the approach work. Therefore, we still use mutation
to adapt the commands to receive the desired gaming performance.

10.2.3 Experimental Setup

For the setup of the experiments to evaluate the modified approach, we could look back on our experiences
on the evolutionary method. However, though the results of section 9.3 helped with the choosing of well
performing parameters, the different initialisation of the algorithm made it necessary to examine the results
of different grid and rule list sizes again. Most of the other parameters were chosen according to the former
experiments. Table 10.2 shows these parameters. It should be noted that we increased the number of runs
per experiment to 20 because this approach produces more narrow results because of the imitation-based
initialisation. In addition, we wanted our statements to be statistically as reliable as possible. We again
started with an aggressiveness value of η = 2

3 to avoid the generation of fleeing agents. The aggressiveness
discount rate q was again chosen so that η = 0.5 is reached after 30 generations.

Table 10.2: Parameter Setup

parameter value

population size µ+ λ 60

number of selected parents µ 10

number of generated offspring λ 50

yaw angle mutation range α 5◦

evaluation timespan 60 seconds per agent (1 hour per generation)

aggressiveness η starts at 2
3

aggressiveness discount rate q 0.99

termination after 3 days (= 72 generations)

runs per experiment 20

rule base size 4000 rules (ca. 6:40 min of gameplay)

Table 10.3 shows the final setup of our experiments. It resembles the setup we used in the approach without
imitation. We added further experiments which use grid mutation and different mutation rates to see if
the new mutation operator has an effect on the gained performance and if it reacts differently to changes
to the mutation rate. The experiments were again run against the standard QUAKE III agent on its default
difficulty setting to have a constant opponent. For a better judgement of the learnt behaviour we also chose
the QUAKE III agent as the role model. Thus, we could see if the agents are improving over their role
models. Furthermore, the QUAKE III agents have a very recognisable behaviour that helps to judge the
quality of the shown imitation and to see if some new behaviours have been generated.

As we already did in former experimental setups, we grouped the experiments in several sets, whereas each
set examines the influence of one parameter. All sets were based on one single base experiment3, whereas
all other experiments in each set provided derivations of the base experiment in one parameter.
3 the one that is underlined
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Table 10.3: Experimental Setup
# grid size rule list size mutation rate grid mutation

1.1 11× 11 100 0.01 no
1.2 15× 15 100 0.01 no
1.3 21× 21 100 0.01 no
2.1 15× 15 10 0.01 no
2.2 15× 15 50 0.01 no
2.3 15× 15 100 0.01 no
2.4 15× 15 400 0.01 no
3.1 15× 15 100 0.01 no
3.2 15× 15 100 0.1 no
4.1 15× 15 100 0.01 no
4.2 15× 15 100 0.01 yes
4.3 15× 15 100 0.1 yes

(base experiment 1.2 = 2.3 = 3.1 = 4.1)

With the new initialisation, the foundation of the learning process had changed. Therefore we again exam-
ined the influence of the grid size in set 1 to see if it has a different effect on the performance of the agents.
Without imitation, a grid size of 15× 15 provided the best results. Therefore, we used it in the base setup.
Again, the field size was changed according to the changes to the grid size so that the area the agent sees
stays the same.

Because of the new initialisation, we also reexamined the influence of the rule list size and the mutation
rate. In set 2, the size of the rule list was varied to see if more or less rules as in the imitation-less approach
are needed. According to the best setup of the former approach, the base setup used a rule list size of 100
rules. Set 3 varied the mutation rate. The base setup used a mutation rate of 0.01, which differs from the 0.1
in section 9.3. However, the imitation-based approach is already initialised in a search space location that
provides rules for effective gaming behaviour. Therefore, less exploration and more exploitation is needed
to find the best rules from the rule base.

As we already explained above, basing the approach on recorded rules makes it possible and also reasonable
to only mutate commands but not grids. To find out, if omitting grid mutation does not handicap the learning
process, set 4 consisted of experiments that use and do not use grid mutation. In this set we also used grid
mutation with different mutation rates to detect the influence of that parameter in this case.

10.2.4 Results

As the first overview of the results of all experiments in figure 10.5 shows, the imitation-based approach
is able to successfully create agents that outperform their opponents. They do this by using their own
strategies against them and by improving upon these strategies.

Because of the extensive setup of the experiments we obtained several results. To give a clearer presentation
of the results we will only show the plots which we find particularly interesting. In the following we will
present mainly figures that show the mean performance of the respective experiments because they allow to
draw more statistically valid conclusions. In addition, our results indicate that the mean and the maximum
performance are correlated. An extensive overview of all obtained results and bigger plots can be seen in
appendix B.

The striking result of the experiments is that the imitation-based initialisation has a strong effect on the
performance and the behaviour of the evolved agents. The reached performance is considerably lower than
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Fig. 10.5: Experimental Results: Overview

the results of the pure evolution4. Therefore, the evolution of competitive behaviour when starting from an
imitation rule base seems to be a harder problem. However, it should be expected that the performance of
an imitating agent is closer to the level of its role model.

Considering the influence of the parameters, one result is that the we can only detect a significant influence
of the grid size in the case that it was set to 21× 21 (see figure 10.6). The experiments using 11× 11 and
15× 15 grids provided a similar performance. This indicates that a grid size of 11× 11 is still sufficient to
generate competitive behaviour. Of course, significantly different results could be obtained by setting the
4 The best agents reach a performance of above 2500
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grid size to more extreme values5. Using a grid of 21 × 21 fields decreased the performance of the agents
significantly. This result is the same as in the imitation-less approach. If the grid size is too big, the agents
can differ more states which leads to a larger search space. In addition, the computation of the distances
between the current situation and all grids in the rule list becomes more time consuming and increases the
reaction time of the agent.
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Fig. 10.6: Results of Set 1 (Variation of the Grid Size)

However, when watching the gameplay of the respective agents, it can be seen that the level of imitation and
sophistication of the shown behaviour is higher with the more detailed grids. As a higher grids size leads
to more distinguishable states, it also makes it possible to encode more complex behaviour. Therefore, the
grid size has to be chosen reasonably big, but not too big.

It should be noted that the setup of set 1 can not be seen as completely fair because each experiment started
with a different rule base of recorded rules with the respective grid size. Though we did our best to achieve
a high similarity between the recorded rule sets by generating them under the completely same conditions
and by making them reasonably big, we can not guarantee that there might exist a small difference in their
quality.

Concerning the rule list size, we came to the same results as in section 9.3. Figure 10.7 shows the mean
performances of the experiments from set 2. The variation of the rule list size has a significant effect on
the performance. As in the random-based experiments a rule list size of 10 is too small to perform well.
This has several reasons. First, 10 rules are simply not enough to encode a diverse gaming behaviour as it
is provided by the rule base. In the imitation-based case more rules are needed to encode the mimicking
behaviours. Second, the number of rules in the first generation is considerably lower and less diverse as
with a higher rule list size. Therefore, many of the experiments with a rule list size of 10 never produced a
well playing agent or, in contrast to that, some of the experiments even converged to rather well performing
agents that resembled the purely evolved agents and did not show imitative behaviour.
5 e.g. 1 × 1 or 100 × 100
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The results also show that increasing the rule list size results in a higher performance until a certain threshold
is reached. If the rule list size is too big, the search space is enlarged and the agents simply need too much
time to go through the rule list.

Figure 10.8 shows the influence of the mutation rate. Using a mutation rate of 0.1 significantly diminished
the reached performance. The imitation-based approach does not need much mutation to work well. It
mainly uses recombination to find out the best mix of rules. Mutation is only needed to make slight adjust-
ments, to create more fluent and successful behaviours. If the mutation rate is too big, the learning process
starts to make bigger steps in the search space and to move away from the imitation-based behaviours.

-900

-800

-700

-600

-500

-400

-300

-200

-100

 0

 100

 0  10  20  30  40  50  60  70

m
e

a
n

 p
e

rf
o

rm
a

n
c
e

generation

3.1 - mutation rate 0.01 3.2 - mutation rate 0.1

Fig. 10.8: Results of Set 3 (Variation of the Mutation Rate)



10.2 Imitation-Based Evolutionary Learning 183

As depicted in figure 10.9, using grid mutation led to a more chaotic learning process and resulted in a lower
performance. In addition, the structures in the grids that resemble real map structures were destroyed. When
grid mutation with a mutation rate of 0.1 was used, the approach even failed to create valid agents at all.
This is very surprising as this setup exactly resembled the best performing setup in the same approach
without imitation.
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Fig. 10.9: Results of Set 4 (using or not using Grid Mutation)

To provide a better basis for the judgement of the significance of the above statements, figure 10.10 provides
the mean and maximum performance of the base experiment with the respective standard deviations.
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Fig. 10.10: Results of the best Setup with Standard Deviation
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Concerning the gaming behaviour of the agents, the result is that they very closely imitated the QUAKE III
agents.6 In the first generations the right combination of rules had to be sorted out and the agents be-
haved quite randomly. Though, they already showed a much more valid gaming behaviour as a randomly
initialised agent. Then - beginning with approximately the fifth generation - the agents started to closely
mirror the QUAKE III agent in its movements. Later, in the course of the evolution, the agents took more
and more freedom in their movements. For example, some agents started to take cover behind the column
while their weapon reloaded. This behaviour was not present in the rule base and represents a level of
sophistication in the learnt behaviour that was not shown in any of the approaches we have considered so
far.

We also conducted several experiments to check if the approach is able to imitate other players. To do this
we created a rule base which contained the behaviour of a human player. The results were also satisfying
and showed imitative behaviour. Though it was difficult to evaluate the quality of imitation, it could be
clearly seen that the agents copied behaviours which were performed by the human players.

10.2.5 Analysis

We again made a statistical analysis of the well performing agents. Table 10.4 shows the standard deviation
σ for choosing a rule as well as the reflexivity ρ and the transitivity τ of the best performing random and the
best performing imitation-based agents. Both are typical for the results that were obtained by the respective
methods. Interestingly, the values from the imitation-based rule list are very similar to the other ones,
except the standard deviation. This indicates that there is a similar structure in the imitation-based rule list
but the work is distributed onto a higher number of important rules.

Table 10.4: Statistical Analysis
agent standard

deviation σ
reflexivity ρ transitivity τ

random-based 0.34 28% 72%
imitation-based 0.06 31% 69%

Figure 10.11 shows the co-occurrence matrix of two of the best agent which we produced by the imitation-
based approach. There is some significant difference to the matrices of the agents that were produced by
pure evolution, as the evaluation of the standard deviation already indicated above. Much more rules are
used and there exists a bunch of special rules for special events and behaviours which enable the agent to
show more sophisticated and human-like behaviours.

To further examine the differences between the resulting rule lists of both methods, figure 10.12 shows the
most important rules of the best performing agents from the random and imitation-based experiments. The
value of a rule was computed by detecting the damage that was applied and taken while the respective rule
was executed. The random-based rule clearly shows that the surrounding map structure does not have a
high influence on the state. The fields are rather randomly empty or filled. This indicates that the random-
based agents usually base their actions on the position of the opponent. The benefit of the imitation-based
initialisation is that the rule base automatically consists of states that already take the map structure into
account. Therefore, the decision to restrict the mutation operator to mutating the commands but not the
grids is important for the generation of more sophisticated behaviours.
6 See www.upb.de/cs/ag-klbue/de/staff/spriesterjahn/videos/imitation.avi for a demonstration.
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(a) Imitation-Based Agent, 50 Rules (b) Imitation-Based Agent, 100 Rules

(c) Purly evolved Agent, 100 Rules

Fig. 10.11: Co-occurrence Matrices

10.2.6 Conclusion

In the experiments, our agents were able to behave in the same way as the original players already after
few generations. They were also able to improve their performance beyond their basis and to develop
new behaviours. Therefore, the presented system can be used to train certain aspects of the behaviour of
an artificial opponent based on the imitation of other players and to emphasise desired behaviours. Our
approach has also turned out to prevent disadvantageous behaviours, because they impair the fitness of the
agent. Such behaviours, e.g. getting stuck in corners or standing still, has been eliminated in all experiments
after at most 20 to 30 generations. The generated agents, though having a lower performance, showed a
much higher level of sophistication in their behaviour and appeared much more human-like as the agents
that were generated by plain evolution. It should be noted that the presented approach is only able to base
its results on the imitation of the respective role model but not to fully imitate it because of the unsupervised
nature of the method.

However, the method can still not be applied to an online scenario because defective agents are generated in
each generation. Therefore, the following chapter introduces a method which is based on this approach and
incorporates reinforcement learning concepts to achieve online adaptation. It can employ a much smaller
populations and works more reliably.
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(a) The best Rule of the best random-based
Agent

(b) The best Rule of the best imitation-based
Agent

Fig. 10.12: Best Rules of the best Agents of both Approaches
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Cooperative Imitation-Based Learning

The previous chapters have presented approaches to successfully handle the combat problem in a multi-
player action computer game. However, all of these approaches, though providing encouraging results, were
not adequate for online adaptation - i.e. learning in real time while the game is running with real players.
The problem of these approaches was that, because of their randomised nature, they often create defective
agents to explore the search space. This section presents an evolutionary method which incorporates several
ideas from the previous chapters to obtain an approach which works online. It is based on a paper that was
published by Priesterjahn et al. at the Genetic and Evolutionary Computation Conference (GECCO’07)
[PW07] in 2007.

The construction of an online approach imposes several interesting challenges. The agents have to learn
quickly and to be competitive as soon as possible. In addition, they all have to be valid players and should
all show good gaming behaviour. This results in a very hard occurrence of the exploration-exploitation-
dilemma. As we already mentioned, creating AI for computer games is very special. Since the aim of a
computer game is to entertain the player, the artificial players should be fun to play against. Therefore, the
agents should not be as good as possible, but approximately as good as the current human players. They
should impose a challenge on the human players but still be beatable. Most importantly, they should not be
easily identifiable as agents, but show human-like behaviours and movements.

We already have argued several times that we think that imitation learning and other imitation techniques
are very well equipped for handling such conditions. On the one hand imitation is capable of producing
human-like behaviours, if a human player is imitated. On the other hand imitation can balance the difficulty
level of an agent. If the agent’s performance is too bad, it will imitate its opponents to beat them with their
own strategies. If its performance is too good, it can again imitate its opponents to adapt to their level.

However, in contrast to the aforementioned methods the following approach is not only based on the imita-
tion of other players. In addition, the agents also learn cooperatively by imitating their best team mates. To
achieve this, behavioural ideas are shared by the agents. The presented approach is based on the socially
inspired imitation-based learning algorithm1 that we proposed in section 3.2 and represents a working im-
plementation of it. The objective of the approach is to reach a higher robustness by restricting the amount
of possible variation that could lead to a lower performance and to increase the learning speed by using
several agents that cooperatively learn in parallel.

Concerning the embedding of this approach into similar work, it is obviously related to the cultural
evolution and social or memetic learning approaches that we referenced in section 3.2. In relation to
other approaches in game AI, the presented method bears some resemblance to the research of Parker
et al. [PP06a, PP06b, PP07] concerning the X PILOT game because they also let the low performing agent
incorporate parts of the knowledge of better performing agents in an imitation-like manner. However, the
focus of their work lies not on imitation and online learning but on the overall improvement of the popula-
tion by evolutionary methods.
1 algorithm 3.4
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11.1 Idea & Modelling

As this approach is based on the evolutionary methods from the previous chapters, the basic modelling
resembles this work in most respects. The agents again use grids for their state representation. They also
use rule lists to encode their behaviour. The basic operating loop is the same as the standard operating cycle
of a rule list-based agent that is illustrated in figure 9.9 in section 9.2. The loop is again executed ten times
per second.

In the former approaches plain evolutionary algorithms were used to produce competitive rule lists from
scratch (section 9.3) or from a recorded rule base (section 10.2) in which the rules were just exchanged
randomly and the resulting rule list were evaluated in the game. This approach is not usable for online
learning because it is not tolerable to have probably defective, randomly composed agents in an ongoing
game. Therefore, we wanted to find a more intelligent way to handle rule selection and to improve learning
performance.

In addition to the evaluation of whole rule lists, it is also possible to evaluate single rules. We already did
this in the reinforcement learning approach in section 9.4 and in the analysis of the evolutionary approaches.
Hence, we incorporate the reinforcement learning way of evaluating actions into the evaluation of the rules.
The quality of some behaviour is measured by its direct outcome. If the agent is damaged, the amount of
damage will be subtracted from the value of the rule. If the agent applies some damage to its opponent,
the amount of damage will be added to the value of the rule. We omit the aggressiveness value η from this
approach because we already found out with the plain reinforcement learning agents that the local optimum
to run away will be no problem, if an action-based evaluation is made. So, for a rule r ∈ R the initial value
v0(r) ∈ Z is initialised with zero and subsequently updated by

vnew
0 (r) = vold

0 (r) + applied Damage− received Damage, (11.1)

whenever r is applied. However, the value or fitness of a rule is not independent from the other rules. The
interplay between certain rules is very important for the behaviour of the agent. Therefore, we have to take
the rules into account that have led to an advantageous situation in which the agent made a successful move.
To do this we have adapted the policy evaluation algorithm2 that is known from the reinforcement learning
field. The real value or simply the value v(r) ∈ R of a rule r ∈ R in a rule list R ⊆ R is then defined by

v(r) = v0(r) + γ
∑
r′∈R

prr′v(r′), (11.2)

where prr′ is the transition probability between r and r′ and γ is a discount value chosen from [0, 1[. Let rt

be the rule that is chosen at some time frame t. Then, the transition probabilities prr′ are defined as

prr′ = P (rt+1 = r′|rt = r). (11.3)

Therefore, prr′ is the probability that at the next time frame r′ is chosen under the condition that r has
been executed in this time frame. To gain these probabilities the transitions between the rules are counted
over each evaluation phase. Figure 11.1 shows a plot of typical transition probability values. The strong
main diagonal is very characteristic and shows that many rules are executed in repetition until they do not
fit to the current situation anymore. At this point we want to note again that these transition probabilities
are different to the co-occurrence matrix because they represent conditional probabilities, whereas the co-
occurrence matrix holds the probabilities that two events happen consecutively.
2 see algorithm 3.6
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Fig. 11.1: Typical Transition Frequencies

Equation 11.2 describes a system of linear equations that has the size of the underlying rule list. This
can be solved or approximated by the appropriate algorithms. Figure 11.2 shows an example for a value
distribution of a rule list with 20 rules. Rules with a high initial value tend to have an even higher real value.
This is caused by the tendency of the system to repeatedly execute a rule until it does not fit to the current
situation anymore. Rules that lead to advantageous situations but do not receive any reward, have an initial
value of zero but a higher real value. As the agent often has to expose itself to danger to apply damage to
its opponent, there are also usually some rules with a negative initial value but a positive real value.

Fig. 11.2: An Example for a Value Distribution

Since we have now found a way to compute the value of a rule, we have to find a way to use this knowledge
to improve the agent. For this we have to face several problems. The first problem is that the environment
is very fast and dynamic. Even with a fixed opponent and a fixed strategy the outcome of a match can
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vary very much, depending on the situations that occur. For example, it can happen that the agent does
not meet an opponent or that it gets into a very disadvantageous situation which it has never encountered
before. After many tests and experiments we figured out that this volatility can only be faced by very long
evaluation phases or by using a population or team of agents which share their knowledge. We opt for the
team solution as QUAKE III is already a team based game and because it promises the faster adaptation
rate.

It is easily possible to let several agents play in parallel. In our framework, they can exchange their
knowledge over TCP/IP connections even if they are not in the same game session. Thus, all agents
synchronously start an evaluation phase with a fixed length. After each exploration phase the best agents
send their most valuable rules to the other agents which try to incorporate them into their own rule lists.
These rule updates can be done on the fly. So, the players will not notice them. The best agent can be
determined by its performance3 - i.e. by the cumulative damage it received and applied over the evaluation
phase. This value will match the fitness value that we used in the evolutionary approaches, if a balanced
aggressiveness value is used.

The second problem is that the relations between the rules are very sensitive to changes. Just adding
some good rules and throwing away the bad ones can often destroy what was already there and result in
no improvement at all. Therefore, we handle rule replacement cautiously. Rules with a positive value
apparently do not need to be modified or replaced. Rules with a negative value stand for situations that
occurred, but in which the action of the agent was not good. Thus, it might be advantageous to do something
else in these situations. Relatively safe candidates for complete replacement are the rules which have never
been chosen because they represent situations that never occurred. However, any new rule can always
disturb the balance in the interplay between the existing rules.

For the rule replacement, we chose to interpret the rules as ideas on how to behave in a certain situation.
So, after each evaluation phase all agents look at the best agents - the so-called elite agents - and try to
learn from them. To do this, they look at the best rules from one of these agents and compare them with
their own knowledge. For each rule, they look at the corresponding grid and search for the best fitting grid
and rule in their own rule list. Then, these two rules compete with each other in terms of their value. If
the new rule has a higher value it replaces the old one. So, the agents try to compare the new behaviour
idea with what they would do in the corresponding situation and adopt the new idea if it seems to be better.
Figure 11.3 illustrates this procedure. If the agent is confronted with unevaluated rules - e.g. rules which
were recorded from a human player - it will randomly decide whether to accept the new idea or whether to
stick with its old behaviour. It is always only one of the best agent from which an agent tries to incorporate
the rules. Experiments in which a combined rule list from two or three elite agents was incorporated into
the own rules did not work very well because the mixture of the rules is quite sensitive and having to many
rules from different agents is very disadvantageous in this matter.

The rule replacement mechanism described above is in parts inspired by the work of Chielens et al. [CH05]
and their work on criteria for meme selection4. One of their recommendations is, that an agent should
only incorporate knowledge that fits to its own. We try to do this by choosing the most similar rule as the
candidate for replacement. Another criterion is that ideas that do not promise an improvement are refused.
Therefore, a rule will only be replaced, if the value of the new rule is higher.

Using the above rule replacement procedure, the best rules can be assembled into the respective rule lists.
However, no new rules can be produced. Therefore, we propose two mechanisms to do this. The first one
is the above mentioned alteration of bad performing rules. Thus, the agents try to find a better solution for
situations in which they performed badly. This should be sufficient if the given environment and especially
3 see definition 9.10 in section 9.3
4 see section 3.2 for details
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Fig. 11.3: Rule Replacement

the opponents do not change too much. The biggest problem would be that the initial pool of states that
the agents share are not sufficient to cope with the changing environment anymore. In such situations some
more explorational adaptation steps that propose modifications to a whole rule list have to be introduced to
improve the performance. To do this the rule recording procedures can be used to introduce fresh rules into
the pool that were recently recorded from the opponents.

11.2 Imitation-Based Adaptation

Based on the aforementioned ideas our approach consists of two levels of imitation. First, the agents imitate
their direct opponents and other human players at the the beginning and during a game session. Second,
the agents chose one of the elite agents - i.e. the best performing agents in the previous evaluation timespan
- as their role model by incorporating its best rules into their own knowledge. This can be interpreted as
imitation as well.

The online nature of the approach forces us to face the exploration-exploitation-dilemma in a way in which
the agents are still able to acquire new knowledge and improve their behaviour, but still remain competitive
and are able to play well. This influences especially the initialisation of the agents. For a running game it is
not possible to have randomly initialised agents. They would bounce around and not show any intelligent
behaviour. Therefore, we initialise the agents with recorded rules from other players. Before the agents
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launch into the game they watch the other players play for some minutes, record their behaviour and then
randomly draw rules from the recorded behaviours for their initial rule lists. Of course, agents that are
initialised like this do not immediately show perfect gaming behaviour. However, they posses rules that fit
to some situations and that will produce a quite good performance, if the right ones are put together in a
rule list. The results in section 11.4 will show that already after two to five minutes of adaptation the agents
are able to play fluidly.

Imitation can also be used for the obtainment of new knowledge. Each agent can try to imitate its last
opponent. To do this, all agents record their current opponents by computing their current input grid and
saving their corresponding action. When the agent updates its rule list it can then choose some of these rules
and incorporate them into its knowledge. This step usually has a strong effect on the agent’s behaviour.
Therefore, it should only be applied if is really necessary. For example, if the performance of the agent is
very low or if the agent is too strong and dominates its opponent. We chose to omit the online imitation
in our experiments because it has such a strong and immediate effect on the performance. However, in a
practical application of the approach, online imitation of other players can be useful.

As in the other imitation-based approaches, the underlying imitation ensures that the agents are working
with grids that show real game situations. So, the grids do not have to be artificially created or learnt.
They are just read from the opposing players. These grids are even supplied with some already quite good
actions. The agent only has to find the most important and best performing rules and it might slightly adjust
the corresponding action. Therefore, we again do not use grid mutation. This decision is backed by the
results in section 10.2 in which using and omitting grid mutation produced the same results in terms of
quality, if the mutation rate was adjusted accordingly. Using grid mutation even handicapped the method,
when the mutation rate was too high.

Therefore, the mutation operator is assembled as follows. Let π ∈ [0, 1] be the mutation rate. Then,
the movement commands for forward movement (forward, none, backward), lateral movement (left, none,
right) and the attack command (attack, do not attack) are just randomly set to some value with the given
probability. With the same probability π a Gaussian distributed real number with mean zero and standard
deviation five is added to the turn angle.

Finally, the adaptation algorithm works as described in algorithm 11.1.

11.3 Experimental Setup

To test our approach we again decided to use the standard QUAKE III agents as the opponents. Each of our
agents played in its own game and had one special opponent. So, they could communicate with but not see
each other. We decided to start the algorithm with agents that were assembled from rules that were recorded
from their opponent’s behaviour in a preliminary match. It would be possible to give them a better starting
point by using offline trained agents from one of our former approaches. However, we decided to take the
less well-prepared option to make a better judgement of the learning capabilities of our approach.

The given approach has many degrees of freedom. Fortunately, we could use the results of chapters 9 and
10 to assign good values to most parameters. Table 11.1 gives an overview of the parameters and their
respective values. We stopped all experiments after one hour because we expected our online adaptation
algorithm to be able to adapt within a short time span. Parameters 7-11 could not be directly assigned with
good values from our experience.

The discount rate γ specifies how much the value of a rule should depend on the rules which were executed
afterwards. It should not be too high or too low for obvious reasons. The number of transmitted rules σ
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Algorithm 11.1 The Imitation-Based Adaptation Algorithm
1: inputs: µ, σ, n ∈ N, µ ≤ n, π ∈ R≥0, agent set A = {a1, ..., an}
2: initialise agents from recorded behaviours (randomly select n rules per agent)
3: loop
4: evaluate agents
5: determine the µ elite agents E = {e1, ..., eµ}
6: for i = 1 to µ do
7: compute the rule values of ei
8: determine the σ most valuable rules R(ei) of ei
9: end for

10: for all non elite agents a ∈ A \ E do
11: if a lost its last round then
12: compute rule values
13: choose a random role model e ∈ E from the elite agents
14: replace rules with rules from R(e)
15: for all σ worst rules r of a do
16: if v(r) < 0 then
17: mutate r with mutation rate π
18: end if
19: end for
20: end if
21: end for
22: end loop

Table 11.1: Parameter Setup
# parameter value
1 grid size 15
2 grid field size 100
3 rule list size 100
4 evaluation timespan 60s
5 runs per experiment 20
6 experiment length 80 min
7 population size ν
8 elite size µ
9 number of transmitted rules σ

10 discount rate γ
11 mutation rate π

specifies how many rules the best agent sends to the other agents in the population after an evaluation phase.
If it is too high, the population will become more uniform in the course of the adaptation. If it is too low,
only some of the most important rules might be transmitted and some crucial rule might be missing.

The population size ν should be big enough to statistically handle the high dynamics of the game and to
have a high enough diversity of rule lists - especially at the beginning. Furthermore, each agent has to adapt
to its own opponent. So, some agent might experience some more valuable events, which helps the others.

Table 11.2 shows the experiments that were conducted and their respective parameter setup. We chose these
values as a result of a series of former experiments and tests. The setups were again organised in a way in
which first a base setup was chosen (underlined) and then each parameter was systematically changed to
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detect its influence. Though some of the parameters are likely to not be independent from each other, this
method is very helpful for obtaining an understanding of their general meaning. Each set of experiments
represents such an examination of one parameter.

Table 11.2: Experimental Setup
# population size

ν
elite size µ number of sent

rules σ
discount rate γ mutation rate π

1.1 8 4 40 0.7 0.1
1.2 16 4 40 0.7 0.1
1.3 32 4 40 0.7 0.1
1.4 64 4 40 0.7 0.1
1.5 128 4 40 0.7 0.1
2.1 32 1 40 0.7 0.1
2.2 32 4 40 0.7 0.1
2.3 32 8 40 0.7 0.1
2.4 32 16 40 0.7 0.1
3.1 32 4 5 0.7 0.1
3.2 32 4 20 0.7 0.1
3.3 32 4 40 0.7 0.1
3.4 32 4 60 0.7 0.1
3.5 32 4 80 0.7 0.1
4.1 32 4 40 0.0 0.1
4.2 32 4 40 0.4 0.1
4.3 32 4 40 0.7 0.1
4.4 32 4 40 0.9 0.1
5.1 32 4 40 0.7 0.0
5.2 32 4 40 0.7 0.01
5.3 32 4 40 0.7 0.1
5.4 32 4 40 0.7 0.5

(base experiment 1.3 = 2.2 = 3.3 = 4.3 = 5.3)

Some setups were using some extreme values. Of particular interest are the setups 4.1 and 5.1. In setup 4.1
the discount rate γ was set to zero to see, how the algorithm performs if the discounted evaluation of the
rules is switched off and the value of the rules is just the immediate gained reward upon its execution. Setup
5.1 switches off the mutation of the worst rules, to detect how much of the performance gain is created by
the assembling of good, fitting rules and how much is gained by changing bad performing rules.

11.4 Results

As the first overview in figure 11.4 shows, the results of the conducted experiments were very successful.
Especially in terms of the mean performance the agents outperformed their evolutionary counterparts from
section 10.2. In the best setups some agents were able to defeat their opponents already after five minutes.
The approach has also proved to be quite robust against parameter changes.

Because of the extensive setup of the experiments we obtained numerous detailled results. To give a clearer
presentation of the results we will only show the plots which we find particularly interesting. An overview
of all obtained results and larger plots can be seen in appendix C.

As we are interested in online learning we have to adjust our focus for the analysis of the results from the
maximum performance in each generation to the mean performance. In offline learning, the result is usually



11.4 Results 195

-1000

-800

-600

-400

-200

 0

 200

 0  10  20  30  40  50  60  70  80

m
e

a
n

 p
e

rf
o

rm
a

n
c
e

minutes

base
1.1
1.2

1.4
1.5
2.1

2.3
2.4
3.1

3.2
3.4
3.5

4.1
4.2
4.4

5.1
5.2
5.4

(a) Mean Performance in each Generation

-400

-200

 0

 200

 400

 600

 800

 0  10  20  30  40  50  60  70  80

m
a

x
im

u
m

 p
e

rf
o

rm
a

n
c
e

minutes

base
1.1
1.2

1.4
1.5
2.1

2.3
2.4
3.1

3.2
3.4
3.5

4.1
4.2
4.4

5.1
5.2
5.4

(b) Mean of the best Performance in each Generation

Fig. 11.4: Overall Results

an agent which is selected as the best generated agent after the learning process. In contrast, online learning
should produce a whole population of competitive agents. Therefore, the following analysis concentrates
on the mean performance of the agents and the percentage of winning agents in each adaptation step. These
two values are in strong relation to each other. Therefore, it is sufficient to present just one of them for a pure
comparison of the parameters. We chose to just present the mean performance in this section. However, to
give the full picture, appendix C includes the percentage of winning agents as well.

The plots in figure 11.4 show that most experiments were successful. As this method is also imitation-based,
the overall maximum performance that was reached, amounts to the same range as in the imitation-based
evolution. The best experiments reached a mean performance of around zero after thirty to forty minutes.
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This means that the mean of all agents performs as good as the opponents and that about 50% of the agents
are winning their matches. This is exactly the objective that the imitation-based approach should achieve.
We will make a more detailed comparison of the results from imitation-based evolution and this method at
the end of this section. In the following we will first examine the influence of each parameter by analysing
their effect in the respective set of experiments and by providing specific plots of the mean performance for
each set of experiments for better readability.

Figure 11.5 shows the influence of the population size on the algorithm. The results show that a sufficient
amount of agents is needed to make the algorithm work. Apparently, with the used settings, 8 agents are not
enough to obtain competitive behaviour. Using 16 agents increases the mean performance, but the agents
still do not reach a mean performance of around zero. Not until a population size of 32 agents is used, the
algorithm works well. Interestingly, the usage of even more agents does not significantly increase the mean
performance. However, a higher population size gives more statistical stability to the approach. It is not
disadvantageous to use as many agents as possible.

-1000

-800

-600

-400

-200

 0

 200

 0  10  20  30  40  50  60  70  80

m
e

a
n

 p
e

rf
o

rm
a

n
c
e

minutes

1.1 - 8 agents
1.2 - 16 agents

1.3 - 32 agents
1.4 - 64 agents

1.5 - 128 agents

Fig. 11.5: Mean Performance of Set 1. (Variation of the Population Size ν)

One cause for the poor performance of the approach using 8 or 16 agents could be that the pool of rules the
agents start with is simply not diverse and good enough to obtain competitive behaviour. In addition, using
more agents statistically stabilises the adaptation process.

The experiments in set 2 varied the elite size µ. We found out that it has a very interesting effect on the
effectiveness of the algorithm. In comparison to plain evolutionary algorithms, µ corresponds roughly to
the number of selected parents because it determines the number of selected agents from which the others
incorporate new knowledge. Therefore, the effect of changing µ is about the same as changing the selection
pressure or the degree of exploitation of the approach.

The results in figure 11.6 show that µ should be chosen greater than one. The experiment with µ = 1
performs significantly worse than the other experiments in this set. Though always copying the single best
agent seems to be quite reasonable, the drawback of this approach is that the game and thus the environment
of the agents is too uncertain and dynamic to specialise so much. Therefore, µ has to be chosen according
to the uncertainty and dynamics of the given environment. In a completely deterministic world, an elite size
of µ = 1 should produce the fastest convergence, but might only lead to a local optimum.
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The other experiments eventually reached about the same performance. However, because of its lesser
degree of exploitation, the experiment using µ = 16 lagged behind the ones using an elite size of 4 or 8.
Therefore, µ should be chosen not too low but also not too high.

As we already mentioned, the algorithm has shown a high robustness against parameter changes. Especially,
the number of transmitted rules σ - as seen in figure 11.7 - has only a small influence, when set to sane
values. Only if the number is too low - as in setup 3.1 - the algorithm did not perform well. All other setups
reached about the same performance as the base setup.
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σ is used at two points of the adaptation algorithm. The first point is the number of rules that are selected
for transmission. Our approach always selects the σ best rules. The others incorporate these rules by the
rule replacement method we specified above. This method compares the values of the incoming rules and
compares them to the rule which should be replaced. If σ is very high, the additionally selected rules tend
to have very low or even negative values which makes them less and less likely to be incorporated into the
other rule lists. Furthermore, if the low valued rules replace some rule, they will always replace a rule that
by itself already had a low value.

The second point where σ is used, is the number of selected rules for mutation. Here, our approach always
selects the σ worst rules. However, the mutation operator will be only applied, if the value of the rule is
below zero. Therefore, setting σ to a very high level, will not damage the well performing rules.

In set 4 (see figure 11.8) of the experiments we varied the discount rate γ to detect its influence on the
algorithm. Again the approach showed a high robustness against parameter changes. All experiments
with a discount rate of γ > 0 produced competitive agents. To show that the discounting and thus the
reinforcement learning-based part of the algorithm has some influence at all, we also made experiments
that used a discount rate of 0.0. This effectively turns of the policy evaluation.
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The plot in figure 11.8 shows that without the discounting of the rule values the agents perform significantly
worse. However, the algorithm still improves the agents based upon the sole rule execution rewards and the
fitness of the agents. It just cannot reach the last bit of performance increase that is gained by relating the
rule values against each other because it might ignore momentarily disadvantageous rules that might lead
to advantageous situations. Another reason why the algorithm still performs quite well is that σ = 40 of
100 rules are transmitted. Therefore, several mediocre rules are also transmitted, which dampens the effect
of using no discounted evaluation.

Finally, the experiments of set 5 examined the influence of the mutation rate π. The results show that the
variation of the mutation rate has only a very small effect on the obtained performance. This has several
reasons. First, the mutation is only important as long as rules with negative values exist, as they are the
only one which will be mutated. As a consequence of the discounted evaluation of the rules, it will be less
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and less likely that rules with negative values exist, if the agent begins to defeat its opponent. Second, the
rules are imitation-based and therefore need only slight adjustments to work well. In addition, as we only
mutate the commands and not the grids, the rules always stay somewhat sane. Only little information can be
destroyed. The agent will just do something else in a state, but it will still have valid state representations.

In experiment 5.1 the mutation rate was set to zero, which effectively turns of the mutation of bad rules.
This experiment produced a significantly lower performance. Therefore, the mutation is important. In fact,
this experiment shows how much performance can be obtained by just finding the best fitting collection of
recorded rules. The remaining gap is closed by small adjustments to optimise the rules themselves.

Concerning the deviation of the single experimental runs for judging the statistical validity of the statements
above, figure 11.10 provides the standard deviation of the base setup for the mean and the maximum per-
formance of the agents. The figure shows that even when adding the standard deviation most experiments
end at about the desired zero mean performance after at maximum one hour.

Finally, figure 11.11 compares the best setup from our new approach (setup 1.5) to the best setup from the
offline evolutionary approach (setup 1.1). In the comparison we are equating minutes in the imitation-based
adaptation to generations in evolutionary learning. This is fair, because given an evaluation timespan of one
minute, the evaluation of one generation will also last one minute, if all individuals are evaluated in parallel.

The plots show that both approaches reach the same level of performance in their best setups. The figure
shows a slight but not significant advantage for the online approach. However, when considering all con-
ducted experiments, the online method has proven to be much more stable and robust against parameter
changes and to produce a lower deviation in its results. This comparison just shows, that both approaches
are able to reach the same performance levels, if they are set to the best possible parameter setups. The
situation changes considerably, if the setup is changed. For example, figures 11.13 and 11.12 compare both
approaches, if a population size of 32 agents with 4 elite agents or parents is chosen.

These comparisons show that the imitation-based adaptation approach outperforms the plain evolutionary
approach by a significant margin in terms of maximum performance, mean performance and especially
winning agents. The reason for that is clearly the more exploitational and more careful character of the new
approach with respect to variation. Instead of exploring into all possible directions, it quickly converges
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Fig. 11.11: Comparison of the best Setups of imitation-based Adaptation and plain imitation-based Evolution

into some advantageous behaviour. Yet, the online approach is still able to deliver almost the same quality
as in the best found setup of the offline method.

When observing the gaming behaviour of the produced agents, all successful experiments showed more
or less the same progression as in our earlier imitation-based experiments. Therefore, we will not go into
much further detail. Right after the initialisation the behaviour was a bit awkward and clumsy. However, the
agents already showed quite fluid movements. Then, with each adaptation pass the behaviour of the agents
became sharper and more refined. After about five minutes the first agents could defeat their opponents.
As in the imitation-based evolutionary experiments in section 10.2, in this phase the agents were almost
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Fig. 11.12: Comparison of the mean Performance of both Approaches with 32 Agents

mirroring their opponents.5 Later, as the game progressed, the agents started to take more freedom in their
movements and showed more sophisticated behaviours. Concerning the state transitions, the co-occurrence
matrix and measurements of the transitivity and reflexivity of the rule lists, the obtained results also show
no significant difference from the ones that were obtained by offline imitation-based evolution.

In analogy to the previous chapters we also tested the created agents outside our test map on real maps.
Again, the agents could of course not navigate and thus made nothing as long they were not in a combat
situation. However, as soon as they got into combat, they proved to be competitive and were also able to
use the environment to their advantage - e.g. by taking cover when reloading.

11.5 Learning from Scratch

In addition to the imitation-based rule initialisation we also conducted experiments that used a randomly
initialised population. We did this because we were interested in the learning capability of the new ap-
proach. Since it is focused on exploitation, we asked ourselves if it is capable to learn competitive gaming
behaviour from scratch. Therefore, we conducted an experiment that used random initialisation and grid
mutation. In the adaptation experiments above, the agents did not change their rule lists, if they had won
the last match - i.e. achieved a performance of greater than zero. This was switched off to strengthen the
exploration.

The rest of the parameters were based on the offline evolutionary approach from section 9.3. Thus, we used
a population size of ν = 64, an elite size of µ = 8 and a mutation rate of π = 0.1. The number of selected
rules for adaptation was σ = 40 and the discount rate was set to γ = 0.7.

Figure 11.14 shows the obtained results. The imitation-based adaptation algorithm was able to generate
competitive gaming behaviour from scratch. In comparison to the plain evolutionary trained agents, the
maximum performance of the best agents was lower in the imitation-based approach. The best agents
5 See www.upb.de/cs/ag-klbue/de/staff/spriesterjahn/videos/imitation.avi for a demonstration.
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Fig. 11.13: Further Comparison of both Approaches with 32 Agents

reached a performance of about 2000, which makes them still dominant in comparison to their opponents.
Interestingly, when considering the mean performance, the imitation-based approach was able keep up with
the evolutionary learning. So, though it is not able to show the same extreme performance values, the
socially inspired approach does not lag behind, when considering the overall quality of the population.
However, at the end, the evolutionary method seems to improve even more, wheres the imitation-based
approach seems to have reached its highest level.

Thus, in conclusion these results essentially confirm, that in our case the biologically inspired evolution-
ary algorithm is better equipped to create competitive individuals out from the void, whereas the socially
inspired method is better in refining and exploiting things that are already partly there.
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Fig. 11.14: Learning from Scratch with imitation-based Adaptation and plain Evolution

11.6 Possible Application Scenario

This section presents an example for how our imitation-based approach can be applied to real game scenar-
ios. One example would be to set up a server that both records player behaviour from different matches and
coordinates the agents on several machines. This would not cause any problems, as the majority of today’s
computers are connected to the internet using broadband connections. In addition, our methods can be used
very well in multi-player games that already require an internet connection. Furthermore, many games use
a so-called game server to post the availability of a game session that can be joined. Therefore, we would
just add a further component that transfers player records and rule updates between the clients.
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Fig. 11.15: Possible Application Scenario

The fitness and rule value calculations are based on the game and can be easily implemented. As the
adaptation algorithm is essentially independent from the representation of the rules, it could also be used
to transfer and record gaming data on other abstraction levels. Since the behaviour of the direct opponent
is always recorded by the agents, the above mentioned online imitation of the human players could be used
in such a scenario to gain new tactical ideas or to create agents on the same competitiveness level as their
current opponents. If the agents are to good on a particular machine, they will be forced to incorporate
the behaviour of the players on this machine into their knowledge to lower their performance and to play
comparably well. After that, the adaptation algorithm would again steadily increase the performance of
the agents to keep them challenging. The agents will also incorporate the behaviours of their opponents,
if they are too bad and get constantly beaten. Thus, they would adapt to the tactics and strategies of
these particularly successful players and would even incorporate knowledge from the other very successful
players in the network. By doing this, the agents should be able to adapt to any player they encounter.

Other applications include the imitation of human players on a competitive level for training purposes or
the training of agents with some special behaviours that are otherwise hard to implement but can be easily
demonstrated.

11.7 Conclusion

The results in this chapter show that it is possible to create an online adaptation method by modifying the
evolutionary-based methods to a more exploitation-oriented approach. The algorithm that was presented in
this chapter is able to quickly produce competitive game agents without producing defective agents. The
method is especially well equipped for improving the mean performance of the agents. However, it has
shortcomings in terms of exploration. Therefore, it is best utilised with an imitation-based initialisation.

The conducted experiments also yielded very interesting results concerning the nature of the considered
learning approaches. Whereas the evolutionary method can be able to generate an extremely high per-
formance, if it is parametrised well and initialised randomly, the imitation-based adaptation method is
beneficial for the performance of the whole population but does not produce such extreme results.

It should be noted that the performance of the presented method can be even more improved, if it starts
with pre-trained agents. There also exist other aspects that could improve the performance. For example,
the parameters could be tuned adaptively - e.g. by using a larger elite size at the beginning and by reducing
it later. Though, this would just introduce further parameters, if it was not done self-adaptively.

We also thought about a more intelligent rule recording method that evaluates the executed rules. However,
this will only make sense, if the rules are classified into a subset of states for which the best action and
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the corresponding value can be determined. This introduces further complexity to the approach. Yet, an
example of how this can be approached by clustering was already presented in section 9.4.
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Conclusion

In conclusion, this thesis presented several new and interesting approaches and ideas for game AI. Based
on the game QUAKE III, we have proposed several adaptive methods that treat navigation and combat.

For navigation, we have presented an approach that is based on the concept of stigmergy - the information
exchange through the environment - to improve the path selection behaviour of the game agents by avoiding
dangerous areas. Global and local information availability were compared with the result that the agents
that were using just local information were able to keep up with the ones that had the global information at
their disposal.

The remaining methods in this thesis all approached the combat problem from different point of views.
Combat is the most basic game element in QUAKE III. To be competitive an agent has to be able to react
to the behaviour of its opponents and to move quickly and precisely to dodge attacks and to get into advan-
tageous positions. In addition, it has to aim precisely with respect to the movement of its opponents and to
use the structure of its environment to its advantage.

To approach the combat problem we have devised several learning methods ranging from evolutionary to
reinforcement learning that were based on a state model that represents the current vicinity of the learning
agent by a regular grid. The objective was to create methods that enable the agents to adaptively learn how
to behave in the gaming world. We have developed several successful approaches that were experimentally
evaluated.

Our first approaches, which were introduced in chapter 9.1, were used to learn combat from scratch. Ran-
domly initialised agents were put into a test map and had to learn to compete with a strong opponent. We
have proposed two approaches using an evolutionary algorithm or the reinforcement learning technique
Q-learning, respectively. Both approaches were able to defeat the built-in QUAKE III agent by a consider-
able margin. In the direct comparison between the approaches, the evolution of well-playing game agents
provided significantly better results. This was caused by the higher stability of the evolutionary approach
with respect to the uncertain nature of the game environment and several problems that lay in the structure
of the Q-leaning algorithm itself. Especially the inability to handle continuous action spaces and very large
state spaces provided problems that could be easily avoided when using the evolutionary approach.

In the following chapter 10 our objective changed from creating the highest possible gaming performance
to the evolution of more sophisticated and human-like behaviours. Therefore, we have proposed two ap-
proaches that are based on the imitation of recorded players. The first approach featured a feed-forward
neural network that was trained on recorded gaming data using the backpropagation algorithm. These ex-
periments were not successful and lead to the result, that pure imitation is not useful to create competitive
agents as there will always be errors in the imitation which deteriorate the behaviour of the imitator in
comparison to the role model. We therefore presented an approach that uses imitation as the basis but then
also incorporates learning to improve the imitators so that they can at least match their role models. To do
this we devised the aforementioned evolutionary approach in which the agents were initialised by recorded
behaviours. The evolution was then used to select the rules from the record that in combination gave the
best results and to gradually adapt the rules to fit better into the gaming model of the imitator. The result
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of this approach was almost mirroring imitation but also competitive behaviour. An interesting byproduct
was the generation of more sophisticated behaviours after longer periods of evolution - like taking cover -
that were not included in the initial recordings of the role model.

Based on these encouraging results, we took our approach one step further in chapter 11 by using a different
learning scheme to make it possible to learn online in real time in an ongoing game. This new approach
was inspired by the idea of social learning and thus used a population of agents that learnt in parallel
and continuously exchanged their experiences and ideas on how to behave to gain a higher performance.
Therefore, the agents not only imitated their opponents but also the best agents in their population. The
proposed method was very successful by delivering the same quality of behaviour as the imitation-based
evolution. In addition, the new method showed a considerable higher stability in the learning process and
a much higher robustness against parameter changes. Because of the careful construction of its variation
and selection operators, the new approach was able to show the same high quality of behaviour, even when
much less agents where used and even performed well, if the parameters were set to extreme values.

In addition to the scientific results, this thesis also presented and interface to the QUAKE III game that was
used for the experiments in this thesis. This interface features a highly accessible object-oriented design and
was implemented using design patterns and other software engineering methods to guarantee its quality. It
was tested in several research projects and teaching. Furthermore, the interface includes multiple additions
like a sophisticated messaging framework and an advanced logging library. It is platform independent and
features the possibility to distribute the agents that play in one game onto several machines.

This thesis also featured an extensive introduction into the field of game AI. We have provided a taxonomy
of computer games and identified several challenges that have to be approached in this field. In addition,
we have provided an extensive overview of the current state of the art in game AI, both in the industry and
in science.

As a final conclusion, we have identified and established the field of game AI as a challenging and research
field. We have made it technologically possible to easily create game agents for the game QUAKE III and
have presented several approaches for successful adaptation and learning in this game. In addition, we have
presented approaches that are able to imitate arbitrary game players and to build upon the imitation to learn
more sophisticated and human-like gaming behaviours. Finally, we have presented a social learning method
that is based on the idea of imitation as a learning concept in culture and successfully applied this method
to create a robust, population-based, online learning method that is able to adapt to a highly dynamic game
in real time.
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A

Overview of the mentioned Computer Games

To supplement our computer games taxonomy from section 2.2, this appendix presents a collection of
images from the mentioned games. All copyrights of the images and names belong to the respective com-
panies. The following table contains all commercial games that were mentioned in the course of this thesis
and their respective copyright holders. It also contains references to the screenshots that are shown on the
following pages.

Table A.1: Overview of Computer Game Examples

game genre year developer / publisher figure
ANNO 1503 economic strategy 2002 Max Design / Sunflowers A.1a
BALDUR’S GATE party-based role-playing 1998 BioWare Corp. / Interplay

Entertainment
A.1b

BLACK & WHITE god game 2001 Lionhead Studios / Electronic Arts
BLACK & WHITE 2 god game 2005 Lionhead Studios / Electronic Arts A.1c
CIVILIZATION IV turn-based strategy 2005 Firaxis Games / Activision A.1d
COMMAND & CONQUER real-time strategy 1995 Westwood Studios
COMMAND & CONQUER 3 real-time strategy 2007 Electronic Arts A.1e
DIABLO 2 action role-playing 2000 Blizzard Entertainment A.1f
DOOM III first-person shooter 2004 id software / Activision A.2a
DUNE 2 real-time strategy 1992 Westwood Studios / Virgin

Interactive
A.2b

FARCRY first-person shooter 2004 Crytek / Ubisoft A.2c
FORZA MOTORSPORT 2 racing simulation 2007 Turn 10 / Microsoft A.2d
GEARS OF WAR third-person shooter 2006 Epic Games / Microsoft A.2e
GOTHIC 3 first-person role-playing 2006 Pyranha Bytes / Jowood A.2f
HALF-LIFE first-person shooter 1998 Valve Software / Sierra Studios /

Electronic Arts
A.3a

HALF-LIFE 2 first-person shooter 2004 Valve Corporation
MICROSOFT FLIGHT SIMULATOR
X

flight simulation 2006 Microsoft Game Studios A.3b

MICROSOFT TRAIN SIMULATOR simulation 2001 Kuju Entertainment / Microsoft A.3c
MONKEY ISLAND 2 adventure 1991 LucasArts A.3d
PAC-MAN for NES arcade action 1984 Namco Limited A.3e
QUAKE first-person shooter 1996 id software / GT Interactive
QUAKE II first-person shooter 1997 id software / Activision
QUAKE III first-person shooter 1999 id software / Activision A.3f
QUAKE IV first-person shooter 1999 Raven Software / id software /

Activision
ROME: TOTAL WAR strategy 2004 The Creative Assembly A.4a
SILENT HUNTER simulation 1996 Aeon Electronic Entertainment A.4b
SPLINTER CELL: DOUBLE
AGENT

third-person shooter 2006 Ubisoft A.4c

S.T.A.L.K.E.R. first-person shooter 2007 GSC Game World / THQ A.4d
SUPER MARIO BROS. platform 1985 Nintendo A.4e
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game genre year developer / publisher figure
TETRIS classical arcade 1985 Alexei Pazhitnov A.4f
THE SIMS economic strategy / god

game
2000 Maxis / Electronic Arts A.5a

ULTIMA ONLINE MMORPG 1997 Origin Systems / Electronic Arts A.5b
UNREAL first-person shooter 1998 Epic Games / Digital Extremes /

GT Interactive
UNREAL TOURNAMENT first-person shooter 1999 Epic Games / Digital Extremes /

GT Interactive
UNREAL TOURNAMENT 2003 first-person shooter 2002 Epic Games / Digital Extremes /

Atari
UNREAL TOURNAMENT 2004 first-person shooter 2004 Epic Games / Digital Extremes /

Atari
A.5c

WARCRAFT 3 real-time strategy 2002 Blizzard Entertainment A.5d
WING COMMANDER 3 space simulation 1994 Origin Systems A.5e
WORLD OF WARCRAFT MMORPG 2004 Blizzard Entertainment / Vivendi A.5f
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(a) ANNO 1503 (b) BALDUR’S GATE

(c) BLACK & WHITE 2 (d) CIVILIZATION IV

(e) COMMAND & CONQUER 3 (f) DIABLO 2

Fig. A.1: Computer Game Examples (1)
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(a) DOOM III (b) DUNE 2

(c) FARCRY (d) FORZA MOTORSPORT 2

(e) GEARS OF WAR (f) GOTHIC 3

Fig. A.2: Computer Game Examples (2)
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(a) HALF-LIFE (b) MICROSOFT FLIGHT SIMULATOR X

(c) MICROSOFT TRAIN SIMULATOR (d) MONKEY ISLAND 2

(e) PAC-MAN for NES (f) QUAKE 3

Fig. A.3: Computer Game Examples (3)
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(a) ROME: TOTAL WAR (b) SILENT HUNTER

(c) SPLINTER CELL: DOUBLE AGENT (d) S.T.A.L.K.E.R.

(e) SUPER MARIO BROS. (f) TETRIS

Fig. A.4: Computer Game Examples (4)
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(a) THE SIMS (b) ULTIMA ONLINE

(c) UNREAL TOURNAMENT 2004 (d) WARCRAFT 3

(e) WING COMMANDER 3 (f) WORLD OF WARCRAFT

Fig. A.5: Computer Game Examples (5)





B

Imitation-Based Evolution – All Results

Table B.1: Experimental Setup
# grid size rule list size mutation rate grid mutation

1.1 11× 11 100 0.01 no
1.2 15× 15 100 0.01 no
1.3 21× 21 100 0.01 no
2.1 15× 15 10 0.01 no
2.2 15× 15 50 0.01 no
2.3 15× 15 100 0.01 no
2.4 15× 15 400 0.01 no
3.1 15× 15 100 0.01 no
3.2 15× 15 100 0.1 no
4.1 15× 15 100 0.01 no
4.2 15× 15 100 0.01 yes
4.3 15× 15 100 0.1 yes

(base experiment 1.2 = 2.3 = 3.1 = 4.1)



222 B Imitation-Based Evolution – All Results

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70

m
a

x
im

u
m

 p
e

rf
o

rm
a

n
c
e

generation

base
1.1

1.3
2.1

2.2
2.4

3.2
4.2

4.3

(a) Maximum Performance in each Generation

-1400

-1200

-1000

-800

-600

-400

-200

 0

 200

 0  10  20  30  40  50  60  70

m
e

a
n

 p
e

rf
o

rm
a

n
c
e

generation

base
1.1

1.3
2.1

2.2
2.4

3.2
4.2

4.3

(b) Mean Performance in each Generation

Fig. B.1: Overview [1 of 2]
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Fig. B.3: Results of Set 1 [1 of 2]
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C

Cooperative Imitation-Based Learning – All Results

Table C.1: Experimental Setup
# population

size ν
elite size µ number of

sent rules σ
discount rate

γ
mutation rate

π

1.1 8 4 40 0.7 0.1
1.2 16 4 40 0.7 0.1
1.3 32 4 40 0.7 0.1
1.4 64 4 40 0.7 0.1
1.5 128 4 40 0.7 0.1
2.1 32 1 40 0.7 0.1
2.2 32 4 40 0.7 0.1
2.3 32 8 40 0.7 0.1
2.4 32 16 40 0.7 0.1
3.1 32 4 5 0.7 0.1
3.2 32 4 20 0.7 0.1
3.3 32 4 40 0.7 0.1
3.4 32 4 60 0.7 0.1
3.5 32 4 80 0.7 0.1
4.1 32 4 40 0.0 0.1
4.2 32 4 40 0.4 0.1
4.3 32 4 40 0.7 0.1
4.4 32 4 40 0.9 0.1
5.1 32 4 40 0.7 0.0
5.2 32 4 40 0.7 0.01
5.3 32 4 40 0.7 0.1
5.4 32 4 40 0.7 0.5

(base experiment 1.3 = 2.2 = 3.3 = 4.3 = 5.3)
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Fig. C.1: Overview [1 of 2]
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Fig. C.2: Overview [2 of 2]
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Fig. C.3: Results of Set 1 [1 of 2]
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Fig. C.4: Results of Set 1 [2 of 2]
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Fig. C.6: Results of Set 2 [2 of 2]
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Fig. C.13: Results of the best Setup [1 of 2]
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Fig. C.14: Results of the best Setup [2 of 2]
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Fig. C.15: Comparison of the best Setups using the approaches from sections 10.2 and 11.2 [1 of 2]
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Fig. C.16: Comparison of the best Setups using the approaches from sections 10.2 and 11.2 [2 of 2]
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Fig. C.17: Comparison of the 32 Agent Setups using the approaches from sections 10.2 and 11.2 [1 of 2]
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Fig. C.18: Comparison of the 32 Agent Setups using the approaches from sections 10.2 and 11.2 [2 of 2]



254 C Cooperative Imitation-Based Learning – All Results

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70

m
a

x
im

u
m

 p
e

rf
o

rm
a

n
c
e

minutes

imitation-based adaptation plain evolution

(a) Maximum Performance in each Generation

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 0  10  20  30  40  50  60  70

m
e

a
n

 p
e

rf
o

rm
a

n
c
e

minutes

imitation-based adaptation plain evolution

(b) Mean Performance in each Generation

Fig. C.19: Learning from Scratch with imitation-based Adaptation and plain Evolution
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[Gra59] P. P. Grassé. La Reconstruction du nid et les Coordinates Inter-Individuellez chez Belli-
cositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interpretation
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