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Abstract

We study the existence of Lie group structures on topological groups of dif-
ferentiable maps Cr(M,K) from a non-compact manifold M to a possibly
infinite dimensional Lie groupK, and on weighted function spaces CV (X, g)

from a completely regular Hausdorff space X to a Lie algebra g. As a tool
to deal with the groups Cr(M,K), we develop a differential calculus of par-
tially differentiable mappings on multiple products of locally convex spaces
and establish exponential laws for such mappings, which also admit appli-
cations in other parts of infinite-dimensional Lie theory.



Deutsche Zusammenfassung

Die Arbeit ist dem Studium von Liegruppenstrukturen auf topologischen
Gruppen der Form Cr(M,K) gewidmet, wobeiM eine nicht-kompakte Man-
nigfaltigkeit und K eine endlich- oder unendlichdimensionale Liegruppe ist.
Zudem werden Liegruppen zu Funktionräumen CV (X, g) untersucht, wobei
X ein vollständig regulärer topologischer Raum ist und g eine topologische
Liealgebra. Als ein Werkzeug zum Umgang mit den Gruppen Cr(M,K)

entwickeln wir eine Differentialrechnung partiell differenzierbarer Abbildun-
gen auf Produkten mehrerer lokal konvexer Räume und beweisen Expo-
nentialgesetze für solche Abbildungen, welche auch in anderen Teilen der
unendlich-dimensionalen Lietheorie von Nutzen sind.
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Chapter 1

Introduction

Infinite-dimensional Lie groups are of importance for mathematical physics. This thesis

introduces two classes of infinite-dimensional Lie groups. The first class are certain

mapping groups which generalize loop groups and current groups, that have attracted

much interest in mathematics and also appear in quantum theory. The second class

are Lie groups modelled on weighted function spaces, special cases of which have a gain

been applied in various branches of mathematics and physics.

It is a well-known fact that the set of smooth maps C∞(M,K) from a compact

smooth manifold M to a Lie group K modelled on a locally convex space carries a

natural Lie group structure (see [27], [23] and [25]). For non-compact manifolds M

this statement is, in general; not true, in this case, the topological group C∞(M,K)

may fail to admit a manifold structure. In [31], Neeb and Wagemann developed Lie

theory for this class of groups. Notably, they gave sufficient conditions for the existence

of Lie group structures on such groups. In this thesis, we study the group Ck(M,K)

for finite k. We show that there exists a natural Lie group structure compatible with

evaluations on Ck(M,K) if the image of the left logarithmic derivative carries a natural

manifold structure. We then obtain a manifold structure on the group Ck∗ (M,K) :=

{f ∈ Ck(M,K) : f(m0) = 1} and hence on Ck(M,K) ∼= K n Ck∗ (M,K) a Cs-regular

Lie group structure compatible with evaluations, for k ≥ s+ 1 (Theorem 142).

Let X be a completely regular Hausdorff space, E be a topological vector space and

V be a Nachbin family of weights on X (Definition 150). The weighted spaces CV0(X)

and CV (X) were introduced in the scalar case by Nachbin [28], and the corresponding

E–valued functions weighted spaces analogues CV0(X,E) and CV (X,E) were intro-

duced and studied by Bierstedt [5] and Prolla [35]. In general these spaces need not be
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1. INTRODUCTION

algebras if E is an algebra. In [33] and [34] Oubbi presented necessary and sufficient
conditions for these spaces to be locally convex algebras of a certain type. In this the-
sis we study such weighted spaces in an infinite-dimensional Lie theory setting. More
precisely, we shall consider the Lie algebra–valued weighted functions space CV (X, g)

and we shall give conditions on the weight making this weighted space a topological Lie
algebra. We shall also consider Lie group structures on such spaces if g is nilpotent.

Thesis outline and statement of results

This thesis consists of two parts. The first five chapters comprising the first part are
devoted to the study of the Lie group structures on mapping groups. The remaining
part deals with the Lie-theoretical weighted spaces.

Chapter 2 presents some preliminaries on infinite-dimensional Lie theory. We collect
a few results concerning the differential calculus in locally convex spaces which will
be important later. We also briefly review some basic concepts and results concerning
manifolds, infinite-dimensional Lie groups and spaces of mappings.

Chapter 3 gives a systematic treatment of the calculus of mappings on products with
different degrees of differentiability in the two factors, called Cr,s-mappings. We shall
develop their basic properties and some refined tools. We study such mappings in an
infinite-dimensional setting, which is analogous to the approach to Cr-maps between
locally convex spaces known as Keller’s Crc -theory [24]. We first introduce the notion
of a Cr,s-mapping: Let E1, E2 and F be locally convex spaces, U ⊆ E1 and V ⊆ E2

be open subsets and r, s ∈ N0 ∪ {∞}. We say that a map f : U × V → F is Cr,s if the
iterated directional derivatives

(D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f)(x, y)

exist for all i, j ∈ N0 such that i ≤ r and j ≤ s, and are continuous functions in
(x, y, w1, . . . , wi, v1, . . . , vj) ∈ U ×V ×Ei1×E

j
2 (see Definition 25 for details). To enable

choices like U = [0, 1], and also with a view towards manifolds with boundary, more
generally we consider Cr,s-maps if U and V are locally convex (in the sense that each
point has a convex neighbourhood) and have dense interior (see Definition 26). These
properties are satisfied by all open sets.
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The first aim of this chapter is to develop necessary tools like a version of the Theorem of

Schwarz and various versions of the Chain Rule. After that we turn to an advanced tool,

the exponential law for spaces of mappings on products (Theorem 52). We endow spaces

of Cr-maps with the usual compact-open Cr-topology (as recalled in Definition 20) and

spaces of Cr,s-maps with the analogous compact-open Cr,s-topology (see Definitions 45

and 56). The main results of Section 3 (Theorems 49 and 52) subsume:

Theorem A. Let E1, E2 and F be locally convex spaces, U ⊆ E1 and V ⊆ E2 be

locally convex subsets with dense interior, and r, s ∈ N0∪{∞}. Then γ∨ : U → Cs(V, F ),

x 7→ γ(x, •) is Cr for each γ ∈ Cr,s(U × V, F ), and the map

Φ: Cr,s(U × V, F )→ Cr(U,Cs(V, F )), γ 7→ γ∨ (1.1)

is linear and a topological embedding. If U × V ×E1 ×E2 is a k-space 1 or V is locally

compact, then Φ is an isomorphism of topological vector spaces.

This is a generalisation of the classical exponential law for smooth maps. Since C∞-

maps and C∞,∞-maps on products coincide (see Lemma 40, Remark 41 and Lemma

46), we obtain as a special case that

Φ: C∞(U × V, F )→ C∞(U,C∞(V, F )) (1.2)

is an isomorphism of topological vector spaces if V is locally compact or U×V ×E1×E2

is a k-space.

Naturally one would like to apply the exponential law (1.1) to a pair of smooth manifolds

M1 andM2 modelled on locally convex spaces E1 and E2, respectively. In Section 3.4, we

extend our results to Cr,s-maps on products of manifolds. Beyond ordinary manifolds,

we can consider (with increasing generality) manifolds with smooth boundary, manifolds

with corners and manifolds with rough boundary (all modelled on locally convex spaces)

– see Definition 54. It turns out that if the modelling space of the manifold is well

behaved, the exponential law holds in these cases (Theorem 59). The main results of

Section 3.4 subsume:

1A topological space X is called a k-space if it is Hausdorff and its topology is the final topology
with respect to the inclusion maps K → X of compact subsets of X. For example, all locally compact
spaces and all metrizable topological spaces are k-spaces.

3



1. INTRODUCTION

Theorem B. Let M1 and M2 be smooth manifolds (possibly with rough boundary)

modelled on locally convex spaces E1 and E2, respectively. Let F be a locally convex

space and r, s ∈ N0∪{∞}. Then γ∨ ∈ Cr(M1, C
s(M2, F )) for all γ ∈ Cr,s(M1×M2, F ),

and the map

Φ: Cr,s(M1 ×M2, F )→ Cr(M1, C
s(M2, F )), γ 7→ γ∨ (1.3)

is linear and a topological embedding. If E1 and E2 are metrizable, then Φ is an iso-

morphism of topological vector spaces.

The same conclusion holds ifM2 is finite-dimensional or E1×E2×E1×E2 is a k-space,

provided that M1 and M2 are manifolds without boundary, manifolds with smooth

boundary or manifolds with corners.

Chapter 4. In this chapter we generalize the results of the previous chapter. We

introduce and study mappings on multiple products of locally convex spaces (resp.

manifolds modelled on locally convex spaces) with different degrees of differentiability

in the individual factors (Cα-maps). We first introduce the notion of a Cα-mapping:

For all i ∈ {1, . . . , n}, let Ei and F be locally convex spaces, Ui be an open subset of

Ei and αi ∈ N0 ∪ {∞} such that α := (α1, . . . , αn). Suppose that D̆i is the iterated

directional derivatives in the i-th component. we say that a map f : U1× · · · ×Un → F

is Cα if the iterated directional derivatives

(D̆1 · · · D̆nf)(x)

exist and are continuous functions on U1 × · · · × Un × Eβ11 × · · · × E
βn
n such that βi ∈

N0, βi ≤ αi (see Definition 65 for details). More generally, we consider Cα-maps if Ui
is a locally convex subset with dense interior (see Definition 66). Using this definition,

most results of this chapter in the Cα setting are analogous to those of Chapter 3, also

for the results concerning exponential laws (Theorems 94 and 96).

Chapter 5. In this chapter we discuss the Ck-regularity concept. After recalling some

definitions and results (mainly from [32], [27], [17] and [21]), we shall introduce a version

of the Fundamental Theorem for g-valued functions (Theorem 132). The main result in

this chapter is the following:
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Theorem C. Let M be a smooth manifold (possibly with boundary and modelled on
a locally convex space), 2 ≤ k ∈ N and G be a Ck−2-regular Lie group with Lie algebra
g. If α ∈ Ω1

Ck
(M, g) satisfies dα+ 1

2 [α, α] = 0, then α is locally integrable.

Chapter 6. In this chapter, we study Lie group structures on groups of the form
Ck(M,K), where M is a non-compact smooth manifold and K is a, possibly infinite-
dimensional, Lie group. Using that the map

δ : Ck∗ (M,K)→ Ω1
Ck−1(M, k)

is a topological embedding (Theorem 141), we prove the following theorems (Theorems
142 and 147) :

Theorem D. Let s, k ∈ N0∪{∞} with k ≥ s+1, M be a connected finite-dimensional
smooth manifold (with boundary) and K a Cs-regular Lie group. Assume that the subset
δ(Ck∗ (M,K)) is a smooth submanifold of Ω1

Ck−1(M, k). Endow Ck∗ (M,K) with the smooth
manifold structure for which δ : Ck∗ (M,K)→ im(δ) is a diffeomorphism and

Ck(M,K) ∼= K n Ck∗ (M,K)

with the product manifold structure. Assume that Lj for j ∈ J are compact submanifolds
(with boundary) of M whose interiors L◦j cover M, and such that

δj : Ck∗ (Lj ,K)→ Ω1
Ck−1(Lj , k),

is an embedding of smooth manifolds onto a submanifold of Ω1
Ck−1(Lj , k). Then the

following assertions hold:
(a) For each r ∈ N0∪{∞} and locally convex Cr-manifold N , a map f : N ×M → K

is Cr,k if and only if for all n ∈ N, fn : M → K, m 7→ f(n,m) are Ck and the
corresponding map f∨ : N → Ck(M,K), n 7→ fn is Cr.

(b) K acts smoothly by conjugation on Ck∗ (M,K), and Ck(M,K) carries a Cs-regular
Lie group structure compatible with evaluations.

Theorem E. Let K be a Ck−1-regular Lie group and N and M finite-dimensional
smooth manifolds. We assume that G := Ck(M,K) carries a Ck−1-regular Lie group
structure compatible with evaluations and the smooth compact-open topology. If Cr(N,G)

also carries a regular Lie group structure compatible with evaluations and the compact-
open Ck-topology, then Cr,k(N ×M,K) carries a Ck-regular Lie group structure com-
patible with evaluations. Moreover, the canonical map

Φ : Cr,k(N ×M,K)→ Cr(N,G), f 7→ f∨

5



1. INTRODUCTION

is an isomorphism of Lie groups.

Theorem D ensures, in particular, that Ck(R,K) is a Lie group for each k ∈ N and
Ck−1-regular Lie group K. Theorem E implies that, if k, r, s ∈ N0∪{∞} with k ≥ s+ 1

and r ≥ s+ 3, then Cr,k(R×R,K) admits a Cs-regular Lie group structure compatible
with evaluation and the compact-open Cr,k-topology.

Chapter 7. In this chapter we study the weighted spaces of continuous functions

CV (X,E) = {f ∈ C(X,E) : |f | v is bounded for every v ∈ V },

CV0(X,E) = {f ∈ C(X,E) : fv vanishes at infinity for every v ∈ V },

such that X is a completely regular Hausdorff space, E is a topological vector space
and V is a Nachbin family of weights on X. In Section 7.2, we recall from [33] and [34]
some facts concerning these spaces as algebras. Analogous to those facts, we describe
a condition on the weights that makes CV (X, g) a topological Lie algebra (Corollary
172):

Theorem F. If (g, [·, ·]g) is a locally convex topological Lie algebra, X a Hausdorff
topological space and V any Nachbin family on X such that V ≤ V V, then CV (X, g) is
a locally convex topological Lie algebra with the Lie bracket

[·, ·] : CV (X, g)× CV (X, g)→ CV (X, g), (γ, η) 7→ [γ, η]

with [γ, η](x) := [γ(x), η(x)]g.

Using the fact that the Baker-Campbell-Hausdorff formula defines a group structure on
any nilpotent Lie algebra ([21]), we obtain an analytic Lie group structure on CV (X, g),

if g is a nilpotent topological Lie algebra.
Also, for any Banach Lie group H with Lie algebra h, we use CV (X, h) to create a

Lie group structure on
〈expH ◦γ : γ ∈ CV (X, h)〉 ,

if 1 ∈ V (see Section 7.3 for details).

Remark. This text slightly deviates from the version of the thesis submitted to the
Institut für Mathematik in February 2013, as it takes comments of the referees into
account.
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Chapter 2

Preliminaries

This chapter briefly reviews some of the basic concepts and material concerning differ-

ential calculus in locally convex spaces, infinite-dimensional Lie groups and spaces of

mappings.

The letter K always stands for R or C. All vector spaces will be K-vector spaces

and all linear maps will be K-linear, unless the contrary is stated.

2.1 Differential calculus in locally convex spaces

In this section we recall the Cr-maps in the Michal-Bastiani sense, also known as Keller’s

Crc -map [24] (see [26], [23], [27], [15] and [21] for streamlined expositions, cf. also [4]).

For Cr-maps on suitable non-open domains, see [21] and [41].

Definition 1. Let E and F be locally convex topological vector spaces, U ⊆ E open
and f : U → F a map. Then the derivative of f at x in the direction of h is defined as

df(x, h) := lim
t→0

1

t

(
f(x+ th)− f(x)

)
whenever the limit exists. The function f is called differentiable at x if df(x, h) exists for
all h ∈ E. The function f is called continuously differentiable or C1 if f is continuous
and differentiable at all points of U and

df : U × E → F, (x, h) 7→ df(x, h)

is a continuous map. The function f is called a Cr-map if f is C1 and df is a Cr−1-map,
and C∞ (or smooth) if f is Cr for all r ∈ N.

7



2. PRELIMINARIES

Definition 2. (Cr-maps on non-open sets). Let U ⊆ E be a locally convex subset
with dense interior. A mapping f : U → F is called Cr if f |U◦ : U◦ → F is Cr and
each of the maps d(k)(f |U◦) : U◦ × Ek → F admits a (necessarily unique) continuous
extension d(k)f : U × Ek → F .

We shall use some fundamental facts of the theory of Cr-maps. For details, the
reader is referred to [15, 21, 23, 26, 27] (cf. also [4]):

Lemma 3. If f : E ⊇ U → F is C1, then f ′(x) := df(x, •) : E → F is a continuous
linear map, for each x ∈ U.

Proposition 4. (Schwarz’ Theorem). ([16, Proposition 1.13]) Let E and F be
locally convex spaces, f : U → F be a Cr-map on a locally convex set U ⊆ E with dense
interior, where r ∈ N0 ∪ {∞}. Then d(k)f(x, •) : Ek → F is symmetric, K-linear, for
each x ∈ U.

The compositions of composable Cr-maps are Cr.

Lemma 5. (Chain Rule). ([21]) Let E, F and G be locally convex spaces, U ⊆
E, V ⊆ F be locally convex sets with dense interior, and f : U → F, g : V → G be
Cr-maps such that f(U) ⊆ V , where r ∈ N0 ∪ {∞}. Then also g ◦ f : U → G is Cr.

Proposition 6. (Parameter-dependent integrals). ([6, Proposition 3.5]) Let E
and F be locally convex spaces, f : [a, b] × X → F be a continuous map such that
g(x) :=

∫ b
a f(t, x) dt exists in F for every x in a topological space X. Then g : X → F is

continuous. Suppose, in addition, that ∂ 2f : [a, b]×U×E → F exists and is continuous,
and that g1(x, v) :=

∫ b
a f(t, x; v) dt exists in F for every x in an open U ⊆ E and every

v ∈ E. Then g is a C1-map with dg = g1.

Lemma 7. A map f : E ⊇ U → F is Cr+1 if and only if f is C1 and df : U × E → F

is Cr.

We shall also use the Rule on Partial Differentials:

Lemma 8. ([21]) Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively, and f : U×V → F be a continuous
map. Assume that there exist continuous functions

d(1,0)f : U × V × E1 → F

d(0,1)f : U × V × E2 → F

8



2.1 Differential calculus in locally convex spaces

such that D(w,0)f(x, y) exists and coincides with d(1,0)f(x, y, w) for all (x, y) ∈ U0×V 0

and w ∈ E1, and D(0,v)f(x, y) exists and coincides with d(0,1)f(x, y, v) for all (x, y) ∈
U0 × V 0 and v ∈ E2. Then f is C1 and

df((x, y), (w, v)) = d(1,0)f(x, y, w) + d(0,1)f(x, y, v). (2.1)

Using the method of the proof of Lemma 8 as in [21], one obtains the following
proposition.

Proposition 9. (Rule on Partial Differentials). Let E1, . . . , En and F be lo-
cally convex spaces, Ui be a locally convex subset with dense interior of Ei for all
i ∈ {1, . . . , n}, U := U1 × · · · × Un and f : U1 × · · · × Un → F be a continuous
map. Assume that there exist continuous functions dif : U1 × · · · × Un × Ei → F

such that D(wi)∗f(x1, . . . , xn) exists and coincides with dif |U0(x1, . . . , xn, wi) for all
i ∈ {1, . . . , n} and for all (x1, . . . , xn) ∈ U0, wi ∈ Ei and the corresponding element
(wi)

∗ ∈ ({0})i−1 × Ei × ({0})n−i ⊆ E1 × · · · × En. Then f is C1 and

df((x1, . . . , xn), (w1, . . . , wn)) =
n∑
i=1

dif(x1, . . . , xn, wi). (2.2)

Proof. Assume that dif exists for all i ∈ {1, . . . , n}. If we can show that f |U0 is
C1 and (2.2) holds for f |U0 , then the right hand side of (2.2) provides a continuous
extension of d(f |U0) to U1 × · · · × Un × (E1 × · · · × En), whence f is C1 and (2.2)
holds. We may therefore assume that U1 × · · · × Un is open in E1 × · · · × En. Given
(x1, . . . , xn) ∈ U1 × · · · × Un and wi ∈ Ei for all i ∈ {1, . . . , n}, there exists ε > 0 such
that (x1, . . . , xn) + Dεw1 × · · · × Dεwn ⊆ U1 × · · · × Un, where Dε := {z ∈ K : |z| ≤ ε}.
Then (x1, . . . , xn) + [0, 1]tw1 × · · · × [0, 1]twn ⊆ U1 × · · · × Un for each 0 6= t ∈ Dε. By
the Mean Value Theorem (see [21]), we obtain

1

t
(f((x1, . . . , xn) + t(w1, . . . , wn))− f(x1, . . . , xn))

=

n∑
j=1

1

t
f(x1 + tw1, . . . , xj + twj , xj+1, . . . , xn)

−
n∑
j=2

1

t
f(x1 + tw1, . . . , xj−1 + twj−1, xj , . . . , xn)− 1

t
f(x1 . . . , xn)

=
n∑
j=1

∫ 1

0
djf(x1 + tw1, . . . , xj−1 + twj−1, xj + σtwj , xj+1, . . . , xn, wj) dσ. (2.3)

Note that the integrals in (2.3) make sense also for t = 0 (the integrands are then
constants), and hence define mappings I1, . . . , In : Dε → F. The map Dε × [0, 1] →

9



2. PRELIMINARIES

F, (t, σ) 7→ dif(x1 + tw1, . . . , xi + σtwi, xi+1, . . . , xn, wi) being continuous for all i ∈
{1, . . . , n}, the parameter-dependent integral Ii is continuous (see [21]). Hence the right
hand side of (2.3) converges as t→ 0, with limit I1(0)+· · ·+I2(0) = d1f(x1, . . . , xn, w1)+

· · · + dnf(x1, . . . , xn, wn). Hence df exists and is given by the right- hand side of (2.2)
and hence continuous, whence f is C1.

2.2 Manifolds

Since the composition of Cr maps between locally convex spaces is a Cr map, we can
define Cr-manifolds M as in the finite-dimensional case (see [26], [23], [27], [15] and
[21]) .

Definition 10. (a) A smooth manifold modelled on a locally convex topological vector
space E is a Hausdorff topological space M , together with a set A of homeomor-
phisms (charts) ϕ : U → V from open subsets of M onto open subsets of E, such
that the domains cover M and the transition maps ϕ ◦ ψ−1 are smooth on their
domain, for all ϕ, ψ ∈ A.

(b) If the transition maps ϕ ◦ψ−1 are just Cr on their domain, for all ϕ, ψ ∈ A, then
it is called a Cr-manifold.

(c) A manifold modelled on Banach space is called a Banach manifold.

Products of manifolds and smoothness of maps between manifolds are defined also
as in the finite-dimensional case.

Remark 11. For i ∈ {1, . . . , n}, let Mi be a smooth manifold modelled on the space
Ei. Then the product setM := M1×· · ·×Mn carries a natural manifold structure with
model space E =

∏n
i=1Ei.

Definition 12. A mapping f : M → N between manifolds is said to be Ck if for each
x ∈ M and each chart (V, ψ) on N with f(x) ∈ V there is a chart (U, φ) on M with
x ∈ U, f(U) ⊆ V, and ψ ◦ f ◦ φ−1 is Ck. We will denote by Ck(M,N) the space of all
Ck-mappings from M to N . A Ck-mapping f : M → N is called a Ck-diffeomorphism
if f−1 : N → M exists and is also Ck. Two manifolds are called diffeomorphic if there
exists a diffeomorphism between them.

Definition 13. Let M be a manifold modelled on the space E, and N ⊆M a subset.
(a) N is called a submanifold ofM if there exists a closed vector subspace F ⊆ E and

for each x ∈ N there exists an E-chart (U,ϕ) of M with x ∈ U and ϕ(U ∩N) =

ϕ(U) ∩ F .

10



2.3 Infinite-dimensional Lie groups and their Lie algebras

(b) N is called a split submanifold of M if, in addition, there exists a vector subspace
G ⊆ E for which the addition map F × G → E, (f, g) 7→ f + g is a topological
isomorphism.

2.3 Infinite-dimensional Lie groups and their Lie algebras

Definition 14. A Lie group G is a group, equipped with a smooth manifold struc-
ture modelled on a locally convex space E such that the group operations are smooth
maps. Similarly, an analytic Lie group is a group G equipped with an analytic manifold
structure turning the group operations into analytic maps.

We write 1 ∈ G for the identity element and λg(x) = gx, resp., ρg(x) = xg for the
left, resp., right multiplication on G.

Remark 15. It is easy to see that the group operations are smooth if the map G×G→
G, (x, y) 7→ xy−1 is smooth.

Smooth and analytic Lie groups can be described locally:

Proposition 16. (Local description of Lie groups). Suppose that a subset U of a
group G is equipped with a smooth (resp., K-analytic) manifold structure modelled on
a locally convex space E. Furthermore, assume that there exists V ⊆ U open such that
1 ∈ V , V V ⊆ U, V = V −1 and
(a) V × V → U, (g, h) 7→ gh is smooth (resp., K-analytic),
(b) V → V, g 7→ g−1 is smooth (resp., K-analytic),
(c) For all g ∈ G, there exists an open unit neighbourhood W ⊆ U such that g−1Wg ⊆

U and the map W → U, h 7→ g−1hg is smooth (resp., K-analytic).
Then there is a unique smooth (resp., K-analytic) Lie group structure on G which makes
V , equipped with the above manifold structure, an open submanifold of G.

Proof. The proof of [10], Proposition III.1.9.18 carries over without changes.

Remark 17. If V generates the group G (i.e., if G is the smallest subgroup of G
containing V ), then Condition (c) can be omitted in Proposition (16) (as it follows
from (a) and (b)).

The Lie algebra of a locally convex Lie group. As in finite dimensions, the tangent
space 1 L(G) := T1(G) ∼= E at the identity element of a Lie group G can be made a
topological Lie algebra via the identification with the Lie algebra of left invariant vector

1For definitions and details of tangent spaces and tangent bundles, we refer to [21] and [30].
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2. PRELIMINARIES

fields on G. We recall that a vector field X on a locally convex Lie group G is called
left invariant if

X ◦ λg = Tλg ◦X

as mappings G → TG. Then each x ∈ T1(G) corresponds to a unique left invariant
vector field xl with xl(g) := dλg(1).x, g ∈ G. The space of left invariant vector fields is
closed under the Lie bracket of vector fields, hence inherits a Lie algebra structure. In
this sense we obtain on g := T1(G) a continuous Lie bracket (see [21]) which is uniquely
determined by [x, y]l = [xl, yl] for x, y ∈ g.

Definition 18. (Exponential function). Let G be a locally convex Lie group. The
group G is said to have an exponential function if for each x ∈ g the initial value problem

γ(0) = 1, γ′(t) = T1λγ(t).x

has a solution γx ∈ C∞(R, G) and the function

expG : g→ G, x 7→ γx(1)

is smooth.

Definition 19. (The Lie functor). For a Lie group G, the locally convex Lie algebra
L(G) := (T1(G), [., .]) is called the Lie algebra of G.

To each morphism ϕ : G → H of Lie groups we further associate its tangent map
L(ϕ) := T1(ϕ) : L(G)→ L(H), and the usual argument with related vector fields implies
that L(ϕ) is a homomorphism of Lie algebras.

Adjoint Representation. Let G be a Lie group with Lie algebra g. For each g ∈ G, we
define the conjugation or the inner automorphism by the map cg : G→ G, x 7→ gxg−1.

This defines a smooth action of G on itself by automorphisms, hence induces con-
tinuous linear automorphisms

Ad(g) := L(cg) : g→ g.

Thus the adjoint representation

Ad : G→ Aut(g)

is given by Ad(g) = T1(cg) : g → g for g ∈ G. By Definition 19, Ad(g) is a Lie algebra
homomorphism. We also define for x ∈ g a linear map

ad(x) : g→ g, adx(y) := T Ad(x, 0y)

12



2.4 Spaces of mappings

2.4 Spaces of mappings

Definition 20. Let X and Y be Hausdorff topological spaces.
(a) Given a compact subset K ⊆ X and open subset U ⊆ Y , we define

bK,Uc := {γ ∈ C(X,Y ) : γ(K) ⊆ U} .

Then the sets
bK1, U1c ∩ · · · ∩ bKn, Unc

where n ∈ N, K1, . . . ,Kn are compact subsets of X and U1, . . . , Un open subsets
of Y , form a basis for a topology on C(X,Y ), called the compact-open topology.
We write C(X,Y )c.o. for C(X,Y ), equipped with the compact-open topology.

(b) If G is a topological group, then C(X,G) is a group with respect to the pointwise
product. Then the compact-open topology on C(X,G) coincides with the topology
of uniform convergence on compact subsets of X, for which the sets bK,Uc, K ⊆
X compact and U ⊆ G a 1-neighbourhood, form a basis of 1-neighbourhoods. In
particular, C(X,G)c.o. is a topological group.

(c) We topologize for two smooth manifolds M (possibly with boundary) and N , the
space Ck(M,N) by the embedding

Ck(M,N) ↪→
k∏

n=0

C(Tn(M), Tn(N))c.o., f 7→ (Tn(f))n∈N0,
n≤k

, (2.4)

where the spaces C(Tn(M), Tn(N))c.o. carry the compact-open topology. The so
obtained topology on Ck(M,N) is called the compact open Ck-topology.

Remark 21. ([31]) Let G be a Lie group with Lie algebra g and k ∈ N0 ∪ {∞}. The
tangent map T (mG) of the multiplication map mG : G × G → G defines a Lie group
structure on the tangent bundle TG (cf.[21]). Iterating this procedure, we obtain a
Lie group structure on all higher tangent bundles TnG. For each n ∈ N0, we thus
obtain topological groups C(TnM,TnG)c.o.. We also observe that for two smooth maps
f1, f2 : M → G, the functoriality of T yields

T (f1 · f2) = T (mG ◦ (f1 × f2)) = T (mG) ◦ (Tf1 × Tf2) = Tf1 · Tf2.

Therefore the inclusion map Ck(M,G) ↪→
∏k
n=0C(TnM,TnG)c.o. from (2.4) is a group

homomorphism, so that the inverse image of the product topology from the right hand
side is a group topology on Ck(M,G) and thus turns Ck(M,G) into a topological group,
even if M and G are infinite-dimensional.
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2. PRELIMINARIES

The following assertions readily follow from the definitions:

Remark 22. ([19])
(a) For every r ≥ s, the inclusion map Cr(U,E) → Cs(U,E) is a continuous linear

map. The topology on C∞(U,E) is initial with respect to the family of inclu-
sion maps C∞(U,E) → Ck(U,E), where k ∈ N0. Furthermore, C∞(U,E) =

lim←−C
k(U,E). Accordingly, Ck(U,C∞(V,E)) = lim←−C

k(U,Cr(V,E)).
(b) For every k ∈ N0, the topology on Ck+1(U,E) is initial with respect to the in-

clusion map Ck+1(U,E) → C(U,E) together with the mapping Ck+1(U,E) →
Ck(U × E,E), γ 7→ dγ.

We recall from ([21]) the following proposition and lemma for later use.

Proposition 23. Let X1, X2 and Y be Hausdorff topological spaces. Then the following
holds:
(a) If f : X1 → X2 a continuous map, then also the pullback

C(f, Y ) : C(X2, Y )c.o. → C(X1, Y )c.o., γ 7→ γ ◦ f

is continuous.
(b) If g : X1 ×X2 → Y is continuous, then the map

g∨ : X1 → C(X2, Y )c.o., g
∨(x) := g(x, •)

is continuous.
(c) If X2 is locally compact and h : X1 → C(X2, Y )c.o. is continuous, then the map

h∧ : X1 ×X2 → Y, h∧(x1, x2) := h(x1)(x2)

is continuous.

Lemma 24. Suppose that the topology on E is initial with respect to a family (λi)i∈I
of K-linear maps λi : E → Ei into topological K-vector spaces Ei. Then the topology
on Cr(M,E) is initial with respect to the family (Cr(M,λi))i∈I of the linear mappings
Cr(M,λi) : Cr(M,E)→ Cr(M,Ei).
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Chapter 3

Cr,s-Mappings

This chapter gives a systematic treatment of the calculus of mappings on products with

different degrees of differentiability in the two factors, called Cr,s-mappings 1. We shall

develop their basic properties and some refined tools. We study such mappings in an

infinite-dimensional setting, which is analogous to the approach to Cr-maps between

locally convex spaces. We first introduce the notion of a Cr,s-mapping:

Definition 25. Let E1, E2 and F be locally convex spaces, U and V open subsets of
E1 and E2 respectively and r, s ∈ N0 ∪ {∞}. A mapping f : U × V → F is called a
Cr,s-map, if for all i, j ∈ N0 such that i ≤ r, j ≤ s the iterated directional derivative

d(i,j)f(x, y, w1, . . . , wi, v1, . . . , vj) := (D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f)(x, y)

exists for all x ∈ U, y ∈ V,w1, . . . , wi ∈ E1, v1, . . . , vj ∈ E2 and

d(i,j)f : U × V × Ei1 × E
j
2 → F,

(x, y, w1, . . . , wi, v1, . . . , vj) 7→ (D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f)(x, y)

is continuous.

More generally, it is useful to have a definition of Cr,s-maps on not necessarily open

domains available:

Definition 26. Let E1, E2 and F be locally convex spaces, U and V are locally convex
subsets with dense interior of E1 and E2, respectively, and r, s ∈ N0∪{∞}, then we say

1For examples of projects which benefit from the results developed in this chapter see [1]
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3. Cr,s-MAPPINGS

that a continuous map f : U × V → F is Cr,s, if f |U0×V 0 : U0 × V 0 → F is Cr,s-map
and for all i, j ∈ N0 such that i ≤ r, j ≤ s, the map

d(i,j)(f |U0×V 0) : U0 × V 0 × Ei1 × E
j
2 → F

admits a continuous extension

d(i,j)f : U × V × Ei1 × E
j
2 → F.

Remark 27. Variants and special cases of Cr,s-mappings are encountered in many
parts of analysis. For example [2] considers analogues of C0,r-maps on Banach spaces
based on continuous Fréchet differentiability; [15, 1.4] for C0,r-maps; [14] for Cr,s-maps
on finite-dimensional domains; and [13, p. 135] for certain Lipr,s-maps in the convenient
setting of analysis. Cf. also [29], [18] for ultrametric analogues in finite dimensions.
Furthermore, a key result concerning Cr,s-maps was conjectured in [19, p.10].

Definitions 25 and 26 can be rephrased as follows:

Lemma 28. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively and r, s ∈ N0 ∪ {∞}. Then
f : U × V → F is Cr,s-map if and only if all of the following conditions are satisfied:
(a) For each x ∈ U , the map fx := f(x, •) : V → F, y 7→ fx(y) := f(x, y) is Cs.
(b) For all y ∈ V and j ∈ N0 such that j ≤ s and v := (v1, . . . , vj) ∈ Ej2, the map

d(j)f•(y, v) : U → F, x 7→ (d(j)fx)(y, v) is Cr.
(c) d(i,j)f : U ×V ×Ei1×E

j
2 → F, (x, y, w, v) 7→ d(i)(d(j)f•(y, v))(x,w) is continuous,

for all j as in (b), i ∈ N0 such that i ≤ r and w := (w1, . . . , wi) ∈ Ei1.

Proof. Step 1. If U, V are open subsets, then the equivalence is clear.
Now the general case: Assume that f is a Cr,s-map.
Step 2. If x ∈ U0, then for j ∈ N0, j ≤ s

D(0,vj) · · ·D(0,v1)f(x, y) = Dvj · · ·Dv1fx(y)

exists for all y ∈ V 0 and v1, . . . , vj ∈ E2, with continuous extension

(y, v1, . . . , vj) 7→ d(0,j)f(x, y, v1, . . . , vj)

to V × Ej2 → F. Hence fx : V → F is Cs.
If x ∈ U is arbitrary, y ∈ V 0 and v1 ∈ E2, we show that Dv1fx(y) exists and equals
d(0,1)f(x, y, v1). There exists R > 0 such that y + tv1 ∈ V for all t ∈ R, |t| ≤ R and
there exists a relatively open convex neighbourhood W ⊆ U of x in U. Because U0 is
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dense, there exists z ∈ U0 ∩W. Since W is convex, we have x + τ(z − x) ∈ W for all
τ ∈ [0, 1]. Moreover, since z ∈ W 0, we have x+ τ(z − x) ∈ W 0 ⊆ U0 for all τ ∈ (0, 1] .

Hence, for τ ∈ (0, 1] , f(x+ τ(z − x), y) is Cs in y, and thus for t 6= 0

1

t
(f(x+τ(z−x), y+ tv1)−f(x+τ(z−x), y)) =

∫ 1

0
d(0,1)f(x+τ(z−x), y+σtv1, v1) dσ

by the Mean Value Theorem. Now let F̃ be a completion of F . Because

h : [0, 1]× [−R,R]× [0, 1]→ F̃ , (τ, t, σ) 7→ d(0,1)f(x+ τ(z − x), y + σtv1, v1)

is continuous, also the parameter-dependent integral

g : [0, 1]× [−R,R]→ F̃ , g(τ, t) :=

∫ 1

0
h(τ, t, σ) dσ

is continuous. Fix t 6= 0 in [−R,R] . Then

g(τ, t) =
1

t
(f(x+ τ(z − x), y + tv1)− f(x+ τ(z − x), y)) (3.1)

for all τ ∈ (0, 1] . By continuity of both sides in τ, (3.1) also holds for τ = 0. Hence

1

t
(f(x, y + tv1)− f(x, y)) = g(0, t)→ g(0, 0)

as t→ 0. Thus Dv1fx(y) exists and is given by

g(0, 0) =

∫ 1

0
d(0,1)f(x, y, v1) dσ = d(0,1)f(x, y, v1).

Holding (v1, . . . , vj−1) fixed, we can repeat the argument to see that Dvj · · ·Dv1fx(y)

exists for all y ∈ V 0 and j ∈ N0 such that j ≤ s and all v1, . . . , vj ∈ E2, and is given by

Dvj · · ·Dv1fx(y) = d(0,j)f(x, y, v1, . . . , vj).

Since the right-hand side makes sense for (y, v1, . . . , vj) ∈ V × Ej2 and is continuous
there, fx is Cs.
Step 3 Holding v1, . . . , vj ∈ Ej2 fixed, the function (x, y) 7→ d(0,j)f(x, y, v1, . . . , vj) is
Cr,0. By Step 2 (applied to the C0,r function (y, x) 7→ d(0,j)f(x, y, v1, . . . , vj)) we see
that for each y ∈ V, the function U → F, x 7→ d(0,j)f(x, y, v1, . . . , vj) is Cr and
d(i)(d(j)f•(y, v))(x,w) = d(i,j)f(x, y, w, v), which is continuous in (x, y, w, v) ∈ U ×V ×
Ei1 × E

j
2. Hence if f is Cr,s, then (a),(b) and (c) hold.

Step 4. Conversely. Assume that (a),(b) and (c) hold. By Step 1, f |U0×V 0 is Cr,s and

d(i,j)f |U0×V 0(x, y, w, v) = d(i)(d(j)f•(y, v))(x,w) (3.2)

for (x, y) ∈ U0 × V 0, w ∈ Ei1, v ∈ E
j
2. By (c), the right-hand side of (3.2) extends to a

continuous function d(i,j)f : U × V × Ei1 × E
j
2 → F. Hence f is a Cr,s-map.
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3. Cr,s-MAPPINGS

3.1 Elementary properties

The following lemma will enable us to prove a version of the Theorem of Schwarz for
Cr,s-maps.

Lemma 29. Let E1, E2 and F be locally convex spaces, f : U × V → F be a C1,1-map
on open subsets U ⊆ E1, V ⊆ E2. Let w ∈ E1 and v ∈ E2. Then D(0,v)D(w,0)f exists
and coincides with D(w,0)D(0,v)f .

Proof. After replacing F with a completion, we may assume that F is complete. Fix
x ∈ U, y ∈ V. There is ε > 0 such that x+ sw ∈ U and y + tv ∈ V for all s, t ∈ BR

ε (0).

For t 6= 0 as before, we have

1

t
(f(x+ sw, y + tv)− f(x+ sw, y)) =

∫ 1

0
D(0,v)f(x+ sw, y + rtv)dr. (3.3)

For fixed t, consider the map

g : BR
ε (0)→ F, g(s) :=

∫ 1

0
D(0,v)f(x+ sw, y + rtv)dr.

The map [0, 1]×BR
ε (0)→ F, (r, s) 7→ D(0,v)f(x+ sw, y+ rt) is differentiable in s, with

partial derivative D(w,0)D(0,v)f(x+ sw, y+ rtv) which is continuous in (r, s). Hence, by
[6, Proposition 3.5], g is C1 and

g′(0) =

∫ 1

0
D(w,0)D(0,v)f(x, y + rtv)dr.

Hence (3.3) can be differentiated with respect to s, and

1

t
(D(w,0)f(x, y + tv)−D(w,0)f(x, y)) =

∫ 1

0
D(w,0)D(0,v)f(x, y + rtv)dr. (3.4)

Note that, for fixed x, v and w, the integrand in (3.4) also makes sense for t = 0, and
defines a continuous function h : [0, 1] × BR

ε (0) → F of (r, t). By [6, Proposition 3.5],
the function

H : BR
ε (0)→ F, H(t) :=

∫ 1

0
h(r, t)dr

is continuous. If t 6= 0 this function coincides with 1
t (D(w,0)f(x, y+ tv)−D(w,0)f(x, y)),

by (3.4). Hence

D(0,v)D(w,0)f(x, y) = lim
t→0

1

t
(D(w,0)f(x, y + tv)−D(w,0)f(x, y))

= lim
t→0

H(t) = H(0) =

∫ 1

0
h(r, 0)dr = h(r, 0) = D(w,0)D(0,v)f(x, y)

exists and has the asserted form.
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Lemma 30. Let E1, E2 and F be locally convex spaces, U and V be open subsets of E1

and E2, respectively, and r ∈ N0 ∪ {∞}. If f : U × V → F is a Cr,1-map, then

D(0,v)D(wi,0) · · ·D(w1,0)f(x, y)

exists for all i ∈ N such that i ≤ r, (x, y) ∈ U × V, v ∈ E2 and w1, . . . , wi ∈ E1, and it
coincides with d(i,1)f(x, y, w1, . . . , wi, v).

Proof. The proof is by induction on i. The case i = 1. This is covered by Lemma 29.
Induction step. Assume that i > 1. By induction, we know that

D(0,v)D(wi−1,0) · · ·D(w1,0)f(x, y)

exists and coincides with

d(i−1,1)f(x, y, w1, . . . , wi−1, v). (3.5)

Define g : U × V → F via

g(x, y) = D(wi−1,0) · · ·D(w1,0)f(x, y) = d(i−1,0)f(x, y, w1, . . . , wi−1).

Then g is C1,0 (f is Cr,1 and r ≥ i, hence we can differentiate once more in the first
variable). By induction, g is differentiable in the second variable with

D(0,v)g(x, y) = d(i−1,1)f(x, y, w1, . . . , wi−1, v) (3.6)

= D(wi−1,0) · · ·D(w1,0)D(0,v)f(x, y), (3.7)

which is continuous in (v, x, y). Hence g is C0,1 and d(0,1)g(x, y, v) is given by (3.5).
Because f is Cr,1 and r ≥ i, the right-hand side of (3.6) can be differentiated once more
in the first variable, hence also D(0,v)g(x, y), with

d(1,1)g(x, y, wi, v) = D(wi,0)D(0,v)g(x, y) = D(wi,0)D(wi−1,0) · · ·D(w1,0)D(0,v)f(x, y)

= d(i,1)f(x, y, w1, . . . , wi, v).

As this map is continuous, g is C1,1. By Lemma 29, also D(0,v)D(wi,0)g(x, y) exists and
is given by D(wi,0)D(0,v)g(x, y) = d(i,1)f(x, y, w1, . . . , wi, v) (where we used (3.7)). But,
by definition of g,

D(0,v)D(wi,0)g(x, y) = D(0,v)D(wi,0)D(wi−1,0) · · ·D(w1,0)f(x, y).

Hence D(0,v)D(wi,0) · · ·D(w1,0)f(x, y) = d(i,1)f(x, y, w1, . . . , wi, v).
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Proposition 31. (Schwarz’ Theorem). Let E1, E2 and F be locally convex spaces
and f : U × V → F be a Cr,s-map on open subsets U ⊆ E1, V ⊆ E2. Let i, j ∈ N0

with i ≤ r, j ≤ s and σ ∈ Si+j be a permutation of {1, . . . , i+ j} . Let x ∈ U, y ∈
V, w1, . . . , wi ∈ E1 and wi+1, . . . , wi+j ∈ E2. Define w∗k := (wk, 0) if k ∈ {1, . . . , i} and
w∗k := (0, wk) if k ∈ {i+ 1, . . . , i+ j}. Then the iterated directional derivative

(Dw∗
σ(1)
· · ·Dw∗

σ(i+j)
f)(x, y)

exists and coincides with

d(i,j)f(x, y, w1, . . . , wi, wi+1, . . . , wi+j).

Proof. The proof is by induction on i+ j. The case i+ j = 0 is trivial.
The case i = 0 or j = 0. If i = 0, then the assertion follows from Schwarz’ Theorem
for the Cs-function f(x, •) : V → F. Likewise, if j = 0, then the assertion follows from
Schwarz’ Theorem for the Cr-function f(•, y) : U → F (see [21]).
The case i, j ≥ 1. If σ(1) ∈ {1, . . . , i}, then by induction,

Dw∗
σ(2)
· · ·Dw∗

σ(i+j)
f(x, y)

= d(i−1,j)f(x, y, w1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi, wi+1, . . . , wi+j).

Because f is Ci,j , we can differentiate once more in the first variable:

Dw∗
σ(1)
· · ·Dw∗

σ(i+j)
f(x, y)

= d(i,j)f(x, y, w1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi, wσ(1);wi+1, . . . , wi+j)

= d(i,j)f(x, y, w1, . . . , wi;wi+1, . . . , wi+j).

For the final equality we used that

d(i,j)f(x, y, z1, . . . , zi, v1, . . . , vj) = d(i)(d(j)f•(y, v1, . . . , vj))(x, z1, . . . , zj)

is symmetric in z1, . . . , zj , as g(x) := d(j)fx(y, v1, . . . , vj) is Cr in x (see Lemma 28).
If σ(1) ∈ {i+ 1, . . . , i+ j}, then by induction,

Dw∗
σ(2)
· · ·Dw∗

σ(i+j)
f(x, y) = d(i,j−1)f(x, y, w1, . . . , wi, . . . , wσ(1)−1, wσ(1)+1, . . . , wi+j).

For fixed wi+1, . . . , wi+j , consider the function h : U × V → F,

h(x, y) := d(0,j−1)f(x, y, wi+1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi+j),
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3.1 Elementary properties

which is Cr,s−(j−1).

By Lemma 30,
Dw∗

σ(1)
Dw∗i

· · ·Dw∗1
h(x, y)

exists and coincides with
Dw∗i

· · ·Dw∗1
Dw∗

σ(1)
h(x, y).

Now

Dw∗
σ(2)
· · ·Dw∗

σ(i+j)
f(x, y) = d(i,j−1)f(x, y, w1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi+j)

= Dw∗i
· · ·Dw∗1

h(x, y).

By the preceding, we can applyDw∗
σ(1)

, i.e.,Dw∗
σ(1)
· · ·Dw∗

σ(i+j)
f(x, y) exists and coincides

with

Dw∗i
· · ·Dw∗1

Dw∗
σ(1)

h(x, y)

= d(i,j)f(x, y, w1, . . . , wi, wi+1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi+j , wσ(1))

= d(i)(d(j)f•(y, wi+1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi+j , wσ(1)))(x,w1, . . . , wi)

where d(j)fx(y, v1, . . . , vj) is symmetric in v1, . . . , vj by the Schwarz Theorem for the
Cs-function fx. Hence

d(j)fx(y, wi+1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi+j , wσ(1)) = d(j)fx(y, wi+1, . . . , wi+j)

for all x. Hence also after differentiations in x:

d(i)(d(j)f•(y, wi+1, . . . , wσ(1)−1, wσ(1)+1, . . . , wi+j , wσ(1)))(x,w1, . . . , wi)

coincides with

d(i,j)f(x, y, w1, . . . , wi+j) = d(i)(d(j)f•(y, wi+1, . . . , wi+j))(x,w1, . . . , wi).

Remark 32. If U and V are merely locally convex subsets with dense interior in the
situation of Proposition 31, then

(Dw∗
σ(1)
· · ·Dw∗

σ(i+j)
f)(x, y) (3.8)

exists for all x ∈ U0, y ∈ V 0, and the map d(i,j)f(x, y, w1, . . . , wi+j) provides a contin-
uous extension of (3.8) to all of U × V × Ei1 × E

j
2.

21



3. Cr,s-MAPPINGS

Corollary 33. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively. If f : U × V → F is Cr,s, then

g : V × U → F, (y, x) 7→ f(x, y)

is a Cs,r-map, and

d(j,i)g(y, x, v1, . . . , vj , w1, . . . , wi) = d(i,j)f(x, y, w1, . . . , wi, v1, . . . , vj)

for all i, j ∈ N0 with i ≤ r, j ≤ s, x ∈ U, y ∈ V, w1, . . . , wi ∈ E1 and v1, . . . , vj ∈ E2.

Lemma 34. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively. If f : U × V → F is Cr,s and
λ : F → H is a continuous linear map to a locally convex space H, then λ ◦ f is Cr,s

and d(i,j)(λ ◦ f) = λ ◦ d(i,j)f.

Proof. Follows from the fact that directional derivatives and continuous linear maps
can be interchanged.

Lemma 35. (Mappings to products). Let E1, E2 be locally convex spaces, U and V
be locally convex subsets with dense interior of E1 and E2 respectively, and (Fα)α∈A be
a family of locally convex spaces with direct product F :=

∏
α∈A Fα and the projections

πα : F → Fα onto the components. Let r, s ∈ N0 ∪ {∞} and f : U × V → F be a map.
Then f is Cr,s if and only if all of its components fα := πα ◦ f are Cr,s. In this case

d(i,j)f = (d(i,j)fα)α∈A, (3.9)

for all i, j ∈ N0 such that i ≤ r and j ≤ s.

Proof. πα is continuous linear. Hence if f is Cr,s, then fα = πα ◦ f is Cr,s, by Lemma
34, with d(i,j)fα = πα ◦ d(i,j)f. Hence (3.9) holds.

Conversely, assume that each fα is Cr,s. Because the limits in products can be
formed component-wise, we see that

d(i,j)f(x, y, w1, . . . , wi, v1, . . . , vj) = D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f(x, y)

exists for all (x, y) ∈ U0 × V 0 and w1, . . . , wi ∈ E1, v1, . . . , vj ∈ E2, and is given by

(d(i,j)fα(x, y, w1, . . . , wi, v1, . . . , vj))α∈A. (3.10)

Now (3.10) defines a continuous function U × V × Ei1 × E
j
2 → F for all i, j ∈ N0

such that i ≤ r and j ≤ s. Hence f is Cr,s.
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Lemma 36. Let r, s ∈ N0∪{∞}, s ≥ 1, E1, E2, F be locally convex spaces, U and V be
locally convex subsets with dense interior of E1 and E2 respectively. Let f : U ×V → F

be a map. Then f is Cr,s if and only if f is Cr,0, f is C0,1 and d(0,1)f : U×(V ×E2)→ F

is Cr,s−1.

Proof. The implication “⇒ ” will be established after Lemma 38, and shall not be used
before. To prove “ ⇐ ”, let i, j ∈ N0 such that i ≤ r and j ≤ s, and (x, y) ∈ U0 × V 0

and w1, . . . , wi ∈ E1 and v1, . . . , vj ∈ E2.

If j = 0, then D(wi,0) · · ·D(w1,0)f(x, y) exists as f is Cr,0, and is given by

d(i,0)f(x, y, w1, . . . , wi)

which extends continuously to U × V × Ei1.
If j > 0, then D(0,v1)f(x, y) = d(0,1)f(x, y, v1) exists because f is C0,1 and since d(0,1)f

is Cr,s−1, also the directional derivatives

D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f(x, y)

= D(wi,(0,0)) · · ·D(w1,(0,0))D(0,(vj ,0)) · · ·D(0,(v2,0))(d
(0,1)f)(x, y, v1)

exist and the right-hand side extends continuously to (x, y, w1, . . . , wi, v1, . . . , vj) ∈
U × V × Ei1 × E

j
2. Hence f is Cr,s.

Lemma 37. Let r, s ∈ N0 ∪ {∞}, E1, E2, H1, H2, F be locally convex spaces, U, V, P
and Q be locally convex subsets with dense interior of E1, E2, H1 and H2, respectively. If
f : U ×V → F is a Cr,s-map and λ1 : H1 → E1 as well as λ2 : H2 → E2 are continuous
linear maps such that λ1(P ) ⊆ U and λ2(Q) ⊆ V , then f ◦ (λ1 × λ2)|P×Q : P ×Q→ F

is Cr,s.

Proof. Let (p, q) ∈ P 0 × Q0 and w1, . . . , wi ∈ H1, v1, . . . , vj ∈ H2. Let X ⊆ U be a
convex neighbourhood of λ1(p) and Y ⊆ V be a convex neighbourhood of λ2(q). For
t ∈ R so small that λ2(q) + tλ2(v1) ∈ Y, we have

1

t
(f(λ1(p), λ2(q) + tλ2(v1))− f(λ1(p), λ2(q)))

=

∫ 1

0
d(0,1)f(λ1(p), λ2(q) + stλ2(v1), v1) ds

by the Mean value Theorem for the C1-map f(λ1(p), •). Hence

D(0,v1)(f ◦ (λ1 × λ2))(p, q)

= lim
t→0

∫ 1

0
d(0,1)f(λ1(p), λ2(q) + stλ2(v1), v1) ds
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exists and is given by ∫ 1

0
d(0,1)f(λ1(p), λ2(q), v1) ds

= d(0,1)f(λ1(p), λ2(q), v1)

and recursively,we obtain

D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)(f ◦ (λ1 × λ2))(p, q)

= d(i,j)f(λ1(p), λ2(q), λ1(w1), . . . , λ1(wi), λ2(v1), . . . , λ2(vj)).

The right-hand side defines a continuous function of (p, q, w1, . . . , wi, v1, . . . , vj) ∈ P ×
Q×H i

1 ×H
j
2 . Hence the assertion follows.

Lemma 38. Let r, s ∈ N0∪{∞}, E1, E2, H1, . . . ,Hn, F be locally convex spaces, U and
V be locally convex subsets with dense interior of E1 and E2, respectively, and

f : U × V ×H1 × · · · ×Hn → F

be a continuous map with the following properties:
(a) f(x, y, •) : H1 × · · · ×Hn → F is n-linear for all x ∈ U, y ∈ V ;

(b) The directional derivatives D(wi,0,0) · · ·D(w1,0,0)D(0,vj ,0) · · ·D(0,v1,0)f(x, y, h) exist
for all i, j ∈ N0 such that i ≤ r, j ≤ s, (x, y) ∈ U0 × V 0, h ∈ H1 × · · · ×Hn and
w1, . . . , wi ∈ E1, v1, . . . , vj ∈ E2, and extend continuously to functions

U × V ×H1 × · · · ×Hn × Ei1 × E
j
2 → F.

Then f : U × (V ×H1×· · ·×Hn)→ F is Cr,s. Also g : (U ×H1×· · ·×Hn)×V →
F, ((x, h), y) 7→ f(x, y, h) is Cr,s.

Proof. Holding h ∈ H := H1 × · · · ×Hn fixed, the map f(•, h) is Cr,s and hence

ϕ : V × U → F, (x, y) 7→ f(y, x, h)

is Cs,r, by Corollary 33, with

D(vj ,0) · · ·D(v1,0)D(0,wi) · · ·D(0,w1)ϕ(x, y)

= D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)f(y, x, h).

Hence f1 : V × (U ×H)→ F, f1(y, x, h) := f(x, y, h) satisfies hypotheses analogous to
those for f (with r and s interchanged) and will be Cs,r if the first assertion holds.
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Using Corollary 33, this implies that g is Cr,s. Hence we only need to prove the first
assertion.

We may assume that r, s <∞; the proof is by induction on s.
The case s = 0. Then f is Cr,0 by the hypotheses.
Induction step. Let v ∈ E2, z = (z1, . . . , zn) ∈ H. By hypothesis, D(0,v,0)f(x, y, h) exists
for (x, y, h) ∈ U0 × V 0 ×H and extends to a continuous map U × V ×H ×E2 → F in
(x, y, h, v). Because f(x, y, •) : H → F is continuous and linear, it is C1 with

D(0,0,z)f(x, y, h) =
n∑
k=1

f(x, y, h1, . . . , hk−1, zk, hk+1, . . . , hn).

This formula defines a continuous function U × V ×H ×H → F. Holding x ∈ U fixed,
we deduce with the Rule on Partial Differentials (Lemma 8) that the map

V ×H → F, (y, h) 7→ f(x, y, h)

is C1, with

D(0,v,z)f(x, y, h) = D(0,v,0)f(x, y, h)+
n∑
k=1

f(x, y, h1, . . . , hk−1, zk, hk+1, . . . , hn). (3.11)

Now f : U × (V ×H)→ F is Cr,0 (see the case s = 0). Also, f : U × (V ×H)→ F

is C0,1, because we have just seen that d(0,1)f(x, (y, h), (v, z)) exists and is given by
(3.11), which extends continuously to U × (V ×H)× (E2 ×H).

We claim that d(0,1)f : U × ((V ×H) × (E2 ×H)) is Cr,s−1. If this is true, then f
is Cr,s, by Lemma 36. To prove the claim, for fixed k ∈ {1, . . . , n}, consider

φ : U × (V ×H × E2 ×H)→ F, (x, y, h, v, z) 7→ f(x, y, h1, . . . , hk−1, zk, hk+1, . . . , hn).

The map
ψ : U × V ×H1 × · · · ×Hn−1 × (Hn × E2 ×H)→ F,

(x, y, h1, . . . , hn−1, (hn, v, z)) 7→ f(x, y, h1, . . . , hn)

is n-linear in (h1, . . . , hn−1, (hn, v, z)). By induction, ψ is Cr,s−1 as a map on U × (V ×
H1 × · · · × Hn−1 × Hn × E2 × H). By Lemma 37, also φ is Cr,s−1. Hence each of
the final k summands in (3.11) is Cr,s−1 in (x, (y, h, v, z)). It remains to observe that
θ : U×V ×(H×(E2×H))→ F, (x, y, h, v, z) 7→ D(0,v,0)f(x, y, h) is (n+1)-linear in the
final argument and satisfies hypotheses analogous to those of f , with r, s replaced by
r, s−1. Hence θ : U× (V ×H×E2×H)→ F is Cr,s−1, by induction. As a consequence,
d(0,1)f is Cr,s−1 (like each of the summands in (3.11)).
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Taking E2 = {0}, Lemma 38 readily entails:

Lemma 39. Let r ∈ N0 ∪ {∞}, E,H1, . . . ,Hn, F locally convex spaces, U be a locally
convex subset with dense interior of E and f : U × (H1 × · · · ×Hn)→ F be a Cr,0-map
which is n-linear for fixed first argument. Then f is Cr,∞.

Proof of Lemma 36, completed. If f is Cr,s, then f is C0,1 and f is Cr,0. Moreover
d(0,1)f : U × V × E2 → F is linear in the E2-variable and

D(wi,0,0) · · ·D(w1,0,0)D(0,vj ,0) · · ·D(0,v1,0)(d
(0,1)f)(x, y, z)

= d(i,j+1)f(x, y, w1, . . . , wi, z, v1, . . . , vj)

exists for all i, j ∈ N0 such that i ≤ r, j ≤ s − 1, if (x, y) ∈ U0 × V 0, and extends to
a continuous function in (x, y, z, w1, . . . , wi, v1, . . . , vj) ∈ U × V ×E2 ×Ei1 ×E

j
2. Hence

by Lemma 38, d(0,1)f is Cr,s−1.

Lemma 40. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively, and r ∈ N0∪{∞}. If f : U×V →
F is Cr,r, then f is Cr.

Proof. We may assume that r <∞, the proof is by the induction on r ∈ N0, The case
r = 0. If f is C0,0, then f is continuous and hence C0. The case r ≥ 1. Assume U, V are
open subsets. Then D(w,0)f(x, y) exists and is continuous in (x, y, w), and D(0,v)f(x, y)

exists and is continuous in (x, y, v). Hence by (2.1) f is C1 and

df((x, y), (w, v)) = D(w,0)f(x, y) +D(0,v)f(x, y), (3.12)

which is continuous in (x, y, w, v). Thus f is C1. In the general case, the right hand
side of (3.12) is continuous for (x, y, w, v) ∈ U × V ×E1 ×E2 and extends d(f |U0×V 0).
Hence f is C1. Next, note that D(w,0)f(x, y) and D(0,v)f(x, y) are Cr−1,r−1-mappings
in ((x,w), y) and (x, (y, v)), respectively, by Lemma 36 and Corollary 33. Hence df is
Cr−1, by induction. Since f is a C1 and df is Cr−1, the map f is Cr.

Remark 41. If r =∞, then a map f : U × V → F is C∞ if and only if it is C∞,∞ (as
an immediate consequence of Lemma 40).

Proposition 42. Let E be a finite-dimensional vector space, F a locally convex space, U
be a locally convex and locally compact subset with dense interior of E and s ∈ N0∪{∞}.
Then the evaluation map

ε : Cs(U,F )× U → F, ε(γ, x) := γ(x)

of Cs(U,F ) is C∞,s.

26
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Proof. Without loss of generality, we may assume that s <∞. The proof is by induction
on s.
If s = 0, then ε is continuous because U is locally compact [11, Theorem 3.4.3]. Also,
ε is linear in the first argument. Hence ε is C∞,0, by Lemma 39 and Corollary 33.
Let s ≥ 1. For x ∈ U0, w ∈ E, γ ∈ Cs(U,F ) and small t ∈ R \ {0},

1

t
(ε(γ, x+ tw)− ε(γ, x)) =

1

t
(γ(x+ tw)− γ(x))→ dγ(x,w) as t→ 0.

Hence d(0,1)ε(γ, x, w) exists and is given by

d(0,1)ε(γ, x, w) = dγ(x,w) = ε1(dγ, (x,w)), (3.13)

where ε1 : Cs−1(U × E,F )× (U × E)→ F, (ζ, z) 7→ ζ(z) is C∞,s−1, by induction.
The right-hand side of (3.13) defines a continuous map (indeed a C∞,s−1-map)

Cs(U,F )× (U × E)→ F

by induction and Lemma 37, using that

Cs(U,F )→ Cs−1(U × E,F ), γ 7→ dγ

is continuous linear. Thus, by Lemma 36, ε is C∞,s.

3.2 Chain Rules for Cr,s-mappings

Lemma 43. (Chain Rule 1). Let X1, X2, E1, E2 and F be locally convex spaces,
P , Q, U and V be locally convex subsets with dense interior of X1, X2, E1 and E2

respectively, r, s ∈ N0 ∪ {∞}, f : U × V → F a Cr,s-map, g1 : P → U a Cr-map and
g2 : Q→ V a Cs-map. Then

f ◦ (g1 × g2) : P ×Q→ F, (p, q) 7→ f(g1(p), g2(q))

is a Cr,s-map.

Proof. Without loss of generality, we may assume that r, s < ∞. The proof is by
induction on r.
The case r = 0. If s = 0, f ◦ (g1 × g2) is just a composition of continuous maps, which
is continuous.
Now let s > 0. For fixed x ∈ U , fx : V → F is Cs. Hence, for fixed p ∈ P , fg1(p) : V → F
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is Cs and fg1(p) ◦ g2 : Q → F is Cs by the Chain Rule for Cs-maps (see [21]). In
particular, the latter is C1, whence

D(0,z)(f ◦ (g1 × g2))(p, q) = d(fg1(p) ◦ g2)(q, z) = dfg1(p)(g2(q), dg2(q, z))

exists for z ∈ X2 and q ∈ Q0. Hence,

d(0,1)(f ◦ (g1 × g2))(p, q, z) = d(0,1)f︸ ︷︷ ︸
C0,s−1

( g1(p)︸ ︷︷ ︸
C0 in p

, g2(q), dg2(q, z)︸ ︷︷ ︸
Cs−1 in (q,z)

)

exists. By induction on s, the map d(0,1)(f ◦ (g1× g2)) is C0,s−1. Hence, by Lemma 36,
f ◦ (g1 × g2) is C0,s.

Induction step (r > 0). If s = 0, we see as in the first part of the proof that h :=

f ◦ (g1, g2) is Cr,0.
If s > 0, we know that

d(0,1)h(p, q, z) = d(0,1)f︸ ︷︷ ︸
Cr,s−1

(g1(p)︸ ︷︷ ︸
Cr

, g2(q), dg2(q, z)︸ ︷︷ ︸
Cs−1

).

By induction on s, this is Cr,s−1. Hence, by Lemma 36, h is Cr,s.

Lemma 44. (Chain Rule 2). Let E1, E2, F and Y be locally convex spaces, U ,
V and W be locally convex subsets with dense interior of E1, E2 and F respectively,
r, s ∈ N0 ∪ {∞}, f : U × V → F a Cr,s-map with f(U × V ) ⊆ W and g : W → Y be a
Cr+s-map. Then

g ◦ f : U × V → Y

is a Cr,s-map.

Proof. Without loss of generality, we may assume that r, s < ∞. The proof is by
induction on r.
The case r = 0. If s = 0, g ◦ f is just a composition of continuous maps, which is
continuous.
Now let s > 0. For fixed x ∈ U , fx : V → F is Cs and g : W → Y is Cs. Hence
g ◦ fx : V → Y is Cs by the Chain Rule for Cs-maps (see [21]). In particular, the latter
is C1, whence

D(0,v)(g ◦ f)(x, y) = d(g ◦ fx)(y, v) = dg(fx(y), dfx(y, v)) = dg(f(x, y), d(0,1)f(x, y, v))

exists for v ∈ E2, if x ∈ U0, y ∈ V 0. Now

d(0,1)(g ◦ f) : U × (V × E2)→ Y
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(x, y, v) 7→ dg︸︷︷︸
Cr+s−1

(f(x, y), d(0,1)f(x, y, v)︸ ︷︷ ︸
C0,s−1

)

is a C0,s−1-map, by Lemma 36, Lemma 37 and induction on s. Hence, by Lemma 36,
g ◦ f is C0,s.

Induction step (r > 0). If s = 0, we see as in the first part of the proof that h := g ◦ f
is Cr,0.
If s > 0, we know that h is Cr,0 by the preceding. Moreover,

d(0,1)h(x, y, v) = dg︸︷︷︸
Cr+s−1

(f(x, y), d(0,1)f(x, y, v)︸ ︷︷ ︸
Cr,s−1

).

Hence, by induction on s the map d(0,1)h is Cr,s−1. Hence by Lemma 36, h is Cr,s.

3.3 The Exponential Law for Cr,s-mappings

Definition 45. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively, and r, s ∈ N0 ∪ {∞}.
Give Cr,s(U × V, F ) the initial topology with respect to the mappings

d(i,j) : Cr,s(U × V, F )→ C(U × V × Ei1 × E
j
2, F ), γ 7→ d(i,j)γ

for i, j ∈ N0 such that i ≤ r, j ≤ s, where the right-hand side is equipped with the
compact-open topology.

Lemma 46. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively, then

C∞,∞(U × V, F ) = C∞(U × V, F )

as topological vector spaces.

Proof. By Lemma 40 and Remark 41 both spaces coincide as sets. Thus it suffices to
show that the C∞,∞- topology coincides with the C∞-topology. As both topologies
are initial topologies, we only have to prove that the families of maps inducing the
topologies are continuous with respect to the other topology. For x ∈ U, y ∈ V, w :=

(w1, . . . , wi) ∈ Ei1 and v := (v1, . . . , vj) ∈ Ej2, we have

d(i,j)f(x, y, w, v) = d(i+j)f(x, y, (w1, 0), . . . , (wi, 0), (0, v1), . . . , (0, vj)).

Let g : U × V × Ei1 × Ej2 → U × V × (E1 × E2)i+j , (x, y, w1, . . . , wi, v1, . . . , vj) 7→
(x, y, (w1, 0), . . . , (wi, 0), (0, v1), . . . , (0, vj)). As g is continuous linear, by [19, Proposi-
tion 4.4], the pullback g∗ is continuous. Hence by continuity of d(i+j), d(i,j) = g∗ ◦d(i+j)
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is continuous with respect to the C∞-topology. This proves that the C∞,∞-topology
is coarser than the C∞-topology. To show the converse we recall that d(k)f(x, y, •) is
multilinear. Writing (wi, vi) = (wi, 0) + (0, vi) we obtain

d(k)f =
∑

I⊆{1,...,k}

g∗I (d
(|I|,k−|I|)f),

where we defined gI(x, y, (w1, v1), . . . , (wk, vk)) := (x, y, wi1 , . . . , wi|I| , vj1 , . . . , vjk−|I|) for
I = {i1, . . . , i|I|} and {1, . . . , k} \ I = {j1, . . . , jk−|I|}. Clearly each gI is continuous
linear, hence smooth and we deduce from [19, Proposition 4.4] that d(k) is continuous
with respect to the C∞,∞-topology. Hence the assertion follows.

Lemma 47. Let E and F be locally convex spaces, U be a locally convex subset with
dense interior of E and r ∈ N0 ∪ {∞}. Then sets of the form

k⋂
i=0

{γ ∈ Cr(U,F ) : d(i)γ(Ki) ⊆ Qi}

form a basis of 0-neighbourhoods in Cr(U,F ), for k ∈ N0 such that k ≤ r, compact sets
Ki ⊆ U × Ei and 0-neighbourhoods Qi ⊆ F.

Proof. The topology on Cr(U,F ) is initial with respect to the maps

d(i) : Cr(U,F )→ C(U × Ei, F )c.o, γ 7→ d(i)γ.

Therefore the map

Ψ: Cr(U,F )→
∏

N03i≤r
C(U × Ei, F ), γ 7→ (d(i)γ)N03i≤r

is a topological embedding. Sets of the form

W := {(ηi)N03i≤r ∈
∏

N03i≤r
C(U × Ei, F ) : ηi(Ki) ⊆ Qi for i = 0, . . . , k}

(with k ∈ N0 such that k ≤ r, compact sets Ki ⊆ U × Ei and 0-neighbourhoods
Qi ⊆ F ), form a basis of 0-neighbourhoods in

∏
N03i≤r C(U × Ei, F ). Hence the sets

Φ−1(W ) form a basis of 0-neighbourhoods in Cr(U,F ).

Similarly:

Lemma 48. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively, and r, s ∈ N0 ∪ {∞}. The sets

W = {γ ∈ Cr,s(U × V, F ) : d(i,j)γ(Ki,j) ⊆ Pi,j for i = 0, . . . , k and j = 0, . . . , l}
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(where k ∈ N0 such that k ≤ r, l ∈ N0 such that l ≤ s, Pi,j ⊆ F are 0-neighbourhoods
and Ki,j ⊆ U ×V ×Ei1×E

j
2 is compact) form a basis of 0-neighbourhoods for Cr,s(U ×

V, F ).

Theorem 49. Let E1, E2 and F be locally convex spaces, U and V be locally convex
subsets with dense interior of E1 and E2 respectively, and r, s ∈ N0 ∪ {∞}. Then
(a) If γ : U × V → F is Cr,s, then γx : V → F is Cs for all x ∈ U and

γ∨ : U → Cs(V, F ), x 7→ γx

is Cr.
(b) The map

Φ: Cr,s(U × V, F )→ Cr(U,Cs(V, F )), γ 7→ γ∨

is linear and a topological embedding.

Proof.

(a) γx : V → F is Cs for all x ∈ U by Lemma 28.
By Remark 22,

Cr(U,C∞(V, F )) = lim←−
s∈N0

Cr(U,Cs(V, F )).

It therefore suffices to prove the assertion when s ∈ N0 (cf. [4, Lemma 10.3]). We may
assume that r is finite. The proof is by induction on r.
The case r = 0. If s = 0 then the assertion follows from [11, Theorem 3.4.1].
If s ≥ 1, the topology on Cs(V, F ) is initial with respect to the maps

d(j) : Cs(V, F )→ C(V × Ej2, F )c.o, γ 7→ d(j)γ, for j ∈ N0 such that j ≤ s.

Hence, we only need that d(j) ◦ f∨ : U → C(V × Ej2, F )c.o is continuous for j ∈
{0, 1, . . . , s}. Now

d(j)(f∨(x)) = d(j)(f(x, •)) = d(0,j)f(x, •) = (d(0,j)f)∨(x).

Thus d(j) ◦ f∨ = (d(0,j)f)∨ : U → C(V × Ej2, F )c.o, which is continuous by induction.
As a consequence, γ∨ : U → Cs(V, F ) is continuous.
The case r ≥ 1. If s = 0, then f∨ : U → C(V, F ). Let x ∈ U0, z ∈ E1. Then x+tz ∈ U0,

for small t ∈ R \ {∞}; we show that

1

t
(f∨(x+ tz)− f∨(x))→ d(1,0)f(x, •, z)
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in C(V, F ) as t→ 0. For this, let K ⊆ V be compact. We have to show that

(
1

t
(f∨(x+ tz)− f∨(x)))|K→ (d(1,0)f(x, •, z))|K

uniformly as t → 0. Let W ⊆ F be a 0-neighbourhood. Without loss of generality, W
is closed and absolutely convex. There is ε ≥ 0 such that x+BR

ε (0)z ⊆ U0. For y ∈ K
and t ∈ R \ {0} such that |t| < ε, we have

∆(t, y) : =
1

t
(f∨(x+ tz)− f∨(x))(y)− d(1,0)f(x, y, z)

=
1

t
(f(x+ tz, y)− f(x, y))− d(1,0)f(x, y, z)

=

∫ 1

0
d(1,0)f(x+ σtz, y, z)dσ − d(1,0)f(x, y, z)

=

∫ 1

0
(d(1,0)f(x+ σtz, y, z)− d(1,0)f(x, y, z)) dσ.

The function

g : BR
ε (0)×K × [0, 1]→ F, (t, y, σ) 7−→ d(1,0)f(x+ σtz, y, z)− d(1,0)f(x, y, z)

is continuous and g(0, y, σ) = 0 for all (y, σ) ∈ K× [0, 1]. Because K× [0, 1] is compact,
by the Wallace Lemma (see [11, 3.2.10]), there exists δ ∈ (0, ε] such that g(BR

δ (0)×K×
[0, 1]) ⊆ W. Hence ∆(t, y) =

∫ 1
0 g(t, y, σ)dσ ∈ W for all y ∈ K and all t ∈ BR

δ (0) \ {0}.
Because this holds for all y ∈ K, we see that ∆(t, •)→ 0 uniformly, as required. Thus
df∨(x, z) exists for all x ∈ U0, z ∈ E1 and is given by df∨(x, z) = d(1,0)f(x, •, z). Now

U → C(V, F ), x 7→ d(1,0)f(x, •, z)

is a continuous function in all of U (by r = 0); so f∨ is C1 on U, and df∨(x, z) =

d(1,0)f(x, •, z). Because

h : (U × E1)× V → F, ((x, z), y) 7→ d(1,0)f(x, y, z)

is Cr−1,0 (see Lemma 36 and Corollary 33), by induction d(f∨) = h∨ : U×E1 → C(V, F )

is Cr−1. Hence f is Cr.
Let s ≥ 1. Because

Cs(V, F )→ C(V, F )× Cs−1(V × E2, F ), γ 7→ (γ, dγ)

is a linear topological embedding with closed image, f∨ : U → Cs(V, F ) will be Cr if
f∨ : U → C(V, F ) is Cr (which holds by induction) and the map

h : U → Cs−1(V × E2, F ), x 7→ d(f∨(x))
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is Cr (see [21]; cf. [4, Lemma 10.1]). For x ∈ U, y ∈ V and z ∈ E2, we have

h(x)(y, z) = d(f∨(x))(y, z) = d(f(x, •))(y, z) = d(0,1)f(x, y, z),

thus h = (d(0,1)f)∨ for d(0,1)f : U × (V × E2) → F. This function is Cr,s−1 by Lemma
36. Hence h is Cr by induction.

(b) The linearity of Φ is clear. For y ∈ V, the point evaluation λ : Cs(V, F ) → F, η 7→
η(y) is continuous linear. Hence, for i ≤ r,

(d(i)f∨)(x,w1, . . . , wi)(y) = λ((d(i)f∨)(x,w1, . . . , wi))

= d(i)(λ ◦ f∨)(x,w1, . . . , wi)

= d(i)(f(•, y))(x,w1, . . . , wi)

= d(i,0)f(x, y, w1, . . . , wi),

using that (λ ◦ f∨)(x) = λ(f∨(x)) = f∨(x)(y) = f(x, y). Hence

(d(i)f∨)(x,w1, . . . , wi) = (d(i,0)f)(x, •, w1, . . . , wi).

Hence by Schwarz’ Theorem (Proposition 31)

d(j)((d(i)f∨)(x,w1, . . . , wi))(y, v1, . . . , vj) = d(i,j)f(x, y, w1, . . . , wi, v1, . . . , vj).

Φ is continuous at 0. Let W ⊆ Cr(U,Cs(V, F )) be a 0-neighbourhood. After shrinking
W, without loss of generality

W =

k⋂
i=0

{γ ∈ Cr(U,Cs(V, F )) : d(i)γ(Ki) ⊆ Qi}

where k ∈ N0 with k ≤ r, Ki ⊆ U × Ei1 is compact and Qi ⊆ Cs(V, F ) is a 0-
neighbourhood (see Lemma 47). Using Lemma 47 again, after shrinking Qi we may
assume that

Qi =

li⋂
j=0

{η ∈ Cs(V, F ) : d(j)η(Li,j) ⊆ Pi,j}

with li ∈ N0 such that li ≤ s, compact sets Li,j ⊆ V × Ej2 and 0-neighbourhoods
Pi,j ⊆ F. Shrinking Qi further, we may assume that li = l is independent of i. Then
W is the set of all γ ∈ Cr(U,Cs(V, F )) such that d(j)(d(i)γ(x,w))(y, v) ∈ Pi,j for all
i = 0, . . . , k and j = 0, . . . , l, (x,w) ∈ Ki ⊆ U × Ei1 and (y, v) ∈ Li,j ⊆ V × Ej2. The
projections of U×Ei1 onto the factors U and Ei1 are continuous, hence the imagesK1

i and
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K2
i of Ki under these projections are compact. After replacing Ki by K1

i ×K2
i , without

loss of generality Ki = K1
i ×K2

i . Likewise, without loss of generality Li,j = L1
i,j × L2

i,j

with compact sets L1
i,j ⊆ V and L2

i,j ⊆ E
j
2.

Now if γ ∈ Cr,s(U × V, F ) then d(j)(d(i)γ∨(x,w))(y, v) = d(i,j)γ(x, y, w, v). Hence γ∨ ∈
W if and only if d(i,j)γ(K1

i ×L1
i,j×K2

i ×L2
i,j) ⊆ Pi,j for all i = 0, . . . , k and j = 0, . . . , l.

This is a basic neighbourhood in Cr,s(U × V, F ) (see Lemma 48). Thus Φ−1(W ) is a
0-neighbourhood, whence Φ is continuous at 0, and hence Φ is continuous.
It is clear that Φ is injective. To see that Φ is an embedding, it remains to show that
Φ(W ) is a 0-neighbourhood in im(Φ) for each W in a basis of 0-neighbourhoods in
Cr,s(U × V, F ).

Take W as in Lemma 48; without loss of generality, after increasing Ki,j , we may
assume Ki,j = K1

i,j × L1
i,j ×K2

i,j × L2
i,j with compact sets K1

i,j ⊆ U, L1
i,j ⊆ V, K2

i,j ⊆
Ei1 and L2

i,j ⊆ Ej2. Then Φ(W ) = {η ∈ im(Φ): d(j)(d(i)η(x,w))(y, v) ∈ Pi,j for all
i = 0, . . . , k, j = 0, . . . , l, x ∈ K1

i,j , y ∈ L1
i,j , w ∈ K2

i,j and v ∈ L2
i,j}, which is a

0-neighbourhood in im(Φ), by Lemma 47.

Lemma 50. Let X be a topological space, E and F be locally convex spaces, k ∈ N, and
f : X × Ek → F be a map such that f(x, •) : Ek → F is symmetric k-linear for each
x ∈ X. Then f is continuous if and only if g : X × E → F, (x,w) 7→ f(x,w, . . . , w) is
continuous.

Proof. The continuity of g follows directly from the continuity of f . If, conversely, g is
continuous, then by the Polarization Identity [8, Theorem A]

f(x,w1, . . . , wk) =
1

k!

1∑
ε1,...,εk=0

(−1)k−(ε1+···+εk)g(x, ε1w1 + · · ·+ εkwk),

which is continuous.

Lemma 51. Let X be a topological space, E1, E2 and F be locally convex spaces,
k, l ∈ N, and f : X × Ek1 × El2 → F be a map such that f(x, •, w1, . . . , wl) : Ek1 → F is
symmetric k-linear for all x ∈ X and w1, . . . , wl ∈ E2, and f(x, v1, . . . , vk, •) : El2 → F

is symmetric l-linear for all x ∈ X and v1, . . . , vk ∈ E1. Then f is continuous if and
only if g : X × E1 × E2 → F, g(x, v, w) := f(x, v, . . . , v, w, . . . , w) is continuous.

Proof. The continuity of g follows directly from the continuity of f . If, conversely, g is
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continuous, then two applications of the Polarization Identity show that

f(x, v1, . . . , vk, w1, . . . , wl)

=
1

l!

1∑
ε1,...,εl=0

(−1)l−(ε1+···+εl)f(x, v1, . . . , vk,
l∑

j=1

εjwj , . . . ,
l∑

j=1

εjwj)

=
1

k! l!

1∑
ε1,...,εl,δ1,...,δk=0

(−1)l−(ε1+···+εl)(−1)k−(δ1+···+δk)g(x,
k∑
i=1

δivi,
l∑

j=1

εjwj),

whence f is continuous.

Theorem 52. (Exponential Law). Let E1, E2 and F be locally convex spaces, U
and V be locally convex subsets with dense interior of E1 and E2 respectively, and
r, s ∈ N0 ∪ {∞}. Assume that at least one of the following conditions is satisfied:
(a) V is locally compact.
(b) r = s = 0 and U × V is a k-space.
(c) r ≥ 1, s = 0 and U × V × E1 is a k-space.
(d) r = 0, s ≥ 1 and U × V × E2 is a k-space.
(e) r ≥ 1, s ≥ 1 and U × V × E1 × E2 is a k-space.

Then
Φ: Cr,s(U × V, F )→ Cr(U,Cs(V, F )), f 7→ f∨

is an isomorphism of topological vector spaces. Moreover, if g : U → Cs(V, F ) is Cr,
then

g∧ : U × V → F, g∧(x, y) := g(x)(y)

is Cr,s.

Proof. We only need to show the final assertion. Indeed, given g ∈ Cr(U,Cs(V, F )), the
map g∧ will be Cr,s and hence g = (g∧)∨ = Φ(g∧). Thus Φ will be surjective. Hence by
Theorem 49, Φ will be an isomorphism of topological vector spaces.

(a) g∧(x, y) = g(x)(y) = ε(g(x), y) where ε : Cs(V, F )× V → F, (γ, y) 7→ γ(y) is C∞,s

(Proposition 42). Hence g∧ is Cr,s by Chain Rule 1 (Lemma 43).

(b), (c), (d) and (e) If g : U → Cs(V, F ) is Cr, define g∧ : U×V → F, g∧(x, y) = g(x)(y).

For fixed x ∈ U, we have g∧(x, •) = g(x) which is Cs, hence

(D(0,vj) · · ·D(0,v1)g
∧)(x, y) = d(j)(g(x))(y, v1, . . . , vj)

= (d(j) ◦ g)(x)(y, v1, . . . , vj)
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exists for j ∈ N0 such that j ≤ s, y ∈ V 0 and v1, . . . , vj ∈ E2. Also,

(D(0,vj) · · ·D(0,v1)g
∧)(x, y) = (ε(y,v1,...,vj) ◦ d

(j) ◦ g)(x),

where ε(y,v1,...,vj) : Cs−j(V × Ej2, F )→ F, f 7→ f(y, v1, . . . , vj). For fixed (y, v1, . . . , vj),

this is the function ε(y,v1,...,vj)◦d(j)◦g of x, which is Cr. Since ε(y,v1,...,vj) and d
(j) : Cs(V, F )→

Cs−j(V × Ej2, F ) are continuous linear, we obtain the directional derivatives

(D(wi,0) · · ·D(w1,0)D(0,vj) · · ·D(0,v1)g)(x, y)

= ε(y,v1,...,vj)(d
(j)(d(i)g(x,w1, . . . , wi)))

= d(j)(d(i)g(x,w1, . . . , wi))(y, v1, . . . , vj)

= (d(j) ◦ (d(i)g))(x,w1, . . . , wi)(y, v1, . . . , vj)

= (d(j) ◦ (d(i)g))∧((x,w1, . . . , wi), (y, v1, . . . , vj))

for x ∈ U0, w1, . . . , wi ∈ E1, and i ∈ N0 such that i ≤ r. To see that g∧ is Cr,s, it
therefore suffices to show that

h := (d(j) ◦ (d(i)g))∧ : U × Ei1 × V × E
j
2 → F

is continuous for all i, j ∈ N0 such that i ≤ r, j ≤ s.
The case i = 0, j = 0. Then h = g∧, which is continuous by the case of topological
spaces with U × V a k-space (see [18, Proposition B.15]).
The case i = 0, j ≥ 1. Then

h : (U × V )× Ej2 → F, where h(x, y, •) := d(j)(g(x))(y, •) : Ej2 → F

is symmetric j-linear. Hence, by Lemma 50 and its proof, h is continuous if we can
show that f : U × V × E2 → F, (x, y, v) 7→ d(j)(g(x))(y, v, . . . , v) = h(x, y, v, . . . , v) is
continuous.
Now

Cs(V, F )
d(j)−−−−→ C0(V × Ej2, F )xg yC0(ϕ,F )

U
η−−−−→ C0(V × E2, F ).

where ϕ : V × E2 → V × Ej2, (y, v) 7→ (y, v, . . . , v) and C0(ϕ, F ) : C0(V × Ej2, F ) →
C0(V × E2, F ), γ 7→ γ ◦ ϕ is the pullback which is continuous linear (see [21]; cf. [19,
Lemma 4.4]).

Hence η := C0(ϕ, F )◦d(j) ◦g : U → C0(V ×E2, F ) is continuous. Because U × (V ×
E2) is a k-space by hypothesis, we know from the case of topological spaces (see [20,
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Proposition B.15]) that f = η∧ : U × (V × E2)→ F is continuous.
The case i ≥ 1, j = 0. Then

h : U × Ei1 × V → F, h(x,w1, . . . , wi, y) = (d(i)g)(x,w1, . . . , wj)(y).

By Lemma 50 and its proof, h is continuous if we can show that f : U × E1 × V →
F, f(x,w, y) := (d(i)g)(x,w, . . . , w)(y) is continuous. But f = ψ∧ for the continuous
map ψ : U × E1 → C0(V, F ), (x,w) 7→ (d(i)g)(x,w, . . . , w). Hence f is continuous
because U × E1 × V is a k-space by hypothesis.
The case i ≥ 1, j ≥ 1. By Lemma 51 and its proof, h will be continuous if we can show
that

f : U × E1 × V × E2 → F, f(x,w, y, v) := h(x,w, . . . , w︸ ︷︷ ︸
i−times

, y, v, . . . , v︸ ︷︷ ︸
j−times

)

is continuous. Now ψ : U × E1 → U × Ei1, (x,w) 7→ (x,w, . . . , w) is continuous and

θ := C0(ϕ, F ) ◦ d(j) ◦ d(i)g ◦ ψ : U × E1 → C0(V × E2, F )

is continuous. Since U × E1 × V × E2 is a k-space by hypothesis, it follows that
θ∧ : U ×E1 × V ×E2 → F is continuous (see [20, Proposition B.15]). But θ∧ = f, and
thus f is continuous.

Since C∞-maps and C∞,∞-maps coincide on products (see Lemma 40, Remark 41
and Lemma 46), we obtain as a special case that

Φ: C∞(U × V, F )→ C∞(U,C∞(V, F )) (3.14)

is an isomorphism of topological vector spaces if V is locally compact or U×V ×E1×E2

is a k-space.

Remark 53. For open sets U and V , the latter was known if E2 is finite-dimensional
or both E1 and E2 are metrizable (see [7] and [21]; cf. [19, Propositions 12.2 (b) and
12.6 (c)], where also manifolds are considered). In the inequivalent setting of differen-
tial calculus developed by E.G. F. Thomas,1 an exponential law for smooth functions
on open sets (analogous to (3.14)) holds without any conditions on the spaces, see
[39, Theorem 5.1]. Related earlier results can be found in [37, p. 90, Lemma 17]. In
the inequivalent “convenient setting” of analysis, (3.14) always is an isomorphism of
bornological vector spaces (see [13] and [25], also for the case of manifolds) – but rarely

1Thomas replaces continuity of a function or its differentials with continuity on compact sets, and
only considers quasi-complete locally convex spaces.
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an isomorphism of topological vector spaces [7] (in this setting other topologies on the
function spaces are used). Analogues of Theorems 49 and 52 for finite-dimensional
vector spaces over a complete ultrametric field can be found in [18].

3.4 The Exponential Law for Cr,s-mappings on manifolds

Definition 54. We recall from [21] that a manifold with rough boundary modelled on
a locally convex space E is a Hausdorff topological space M with an atlas of smoothly
compatible homeomorphisms φ : Uφ → Vφ from open subsets Uφ of M onto locally
convex subsets Vφ ⊆ E with dense interior. If each Vφ is open, M is an ordinary
manifold (without boundary). If each Vφ is relatively open in a closed hyperplane
λ−1([0,∞[), where λ ∈ E′ (the space of continuous linear functionals on E), then M is
a manifold with smooth boundary. In the case of a manifold with corners, each Vφ is a
relatively open subset of λ−1

1 ([0,∞[)∩ · · · ∩ λ−1
n ([0,∞[), for suitable n ∈ N (which may

depend on φ) and linearly independent λ1, . . . , λn ∈ E′.

Definition 55. Let M1 and M2 be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces, r, s ∈ N0 ∪ {∞} and F be a locally convex space. A
map f : M1 ×M2 → F is called Cr,s if f ◦ (ϕ−1 × ψ−1) : Vϕ × Vψ → F is Cr,s for all
charts ϕ : Uϕ → Vϕ of M1 and ψ : Uψ → Vψ of M2. Then f is continuous in particular.

Definition 56. In the situation of Definition 55, let Cr,s(M1 ×M2, F ) be the space of
all Cr,s-maps f : M1×M2 → F. Endow Cr,s(M1×M2, F ) with the initial topology with
respect to the maps Cr,s(M1 ×M2, F ) → Cr,s(Vϕ × Vψ, F ), f 7→ f ◦ (ϕ−1 × ψ−1), for
ϕ and ψ in the maximal smooth atlas of M1 and M2, respectively.

The following fact is well known (cf. [11, Proposition 2.3.2]).

Lemma 57. Let (θj)j∈J be a family of topological embeddings θj : Xj → Yj between
topological spaces. Then also

θ :=
∏
j∈J

θj :
∏
j∈J

Xj →
∏
j∈J

Yj , (xj)j∈J 7→ (θj(xj))j∈J

is a topological embedding.

Proposition 58. Let M1 and M2 be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces, r, s ∈ N0 ∪ {∞} and F be a locally convex space.
Then
(a) f∨ ∈ Cr(M1, C

s(M2, F )) for all f ∈ Cr,s(M1 ×M2, F ).
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3.4 The Exponential Law for Cr,s-mappings on manifolds

(b) The map
Φ: Cr,s(M1 ×M2, F )→ Cr(M1, C

s(M2, F )), f 7→ f∨

is linear and a topological embedding.

Proof. (a) It is clear that f∨(x) = f(x, •) is a Cs-map M2 → F. It suffices to show that
f ◦ ϕ−1 : Uϕ → Cs(M2, F ) is Cr for each chart ϕ : Uϕ → Vϕ of M1. For i = 1, 2, let Ai

be the maximal smooth atlas for Mi. Because the map

Ψ: Cs(M2, F )→
∏
ψ∈A2

Cs(Vψ, F ), h 7→ (h ◦ ψ−1)ψ∈A2

is a linear topological embedding with closed image (see [21]; cf. [19, 4.7 and Proposition
4.19(d)]), f∨ ◦ϕ−1 is Cr if and only if Ψ ◦ f ◦ϕ−1 is Cr (see [21]; cf. [4, Lemma 10.2]),
which holds if all components are Cr. Hence we only need that

θ : Vϕ → Cs(Vψ, F ), x 7→ f∨(ϕ−1(x)) ◦ ψ−1 = (f ◦ (ϕ−1 × ψ−1))∨(x)

is Cr. But θ = (f ◦ (ϕ−1 × ψ−1))∨ where f ◦ (ϕ−1 × ψ−1) : Vϕ × Vψ → F is Cr,s, hence
θ is Cr by Theorem 49.
(b) It is clear that Φ is linear and injective. Because Ψ is linear and a topological
embedding, also

Cr(M1,Ψ): Cr(M1, C
s(M2, F ))→ Cr(M1,

∏
ψ∈A2

Cs(Vψ, F )), f 7→ Ψ ◦ f

is a topological embedding (see [21]).
Let P :=

∏
ψ∈A2

Cs(Vψ, F ). The map

Ξ: Cr(M1, P )→
∏
ϕ∈A1

Cr(Vϕ, P ), f 7→ (f ◦ ϕ−1)ϕ∈A1

is a linear topological embedding. Using the isomorphism∏
ϕ∈A1

Cr(Vϕ, P ) ∼=
∏
ϕ∈A1

∏
ψ∈A2

Cr(Vϕ, C
s(Vψ, F ))

we obtain a linear topological embedding

Γ := Ξ ◦ Cr(M1,Ψ): Cr(M1, C
s(M2, F ))→

∏
ϕ∈A1

∏
ψ∈A2

Cr(Vϕ, C
s(Vψ, F )),

f 7→ (Cs(ψ−1, F ) ◦ f ◦ ϕ−1)ϕ∈A1,
ψ∈A2
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where Cs(ψ−1, F ) : Cs(M2, F )→ Cs(Vψ, F ), f 7→ f ◦ ψ−1. Also the map

ω : Cr,s(M1 ×M2, F )→
∏
ϕ∈A1,
ψ∈A2

Cr,s(Vϕ × Vψ, F ), f 7→ (f ◦ (ϕ−1 × ψ−1))ϕ∈A1,
ψ∈A2

is a topological embedding, by Definition 56. Now we have the commutative diagram.

Cr,s(M1 ×M2, F )
Φ−−−−→ Cr(M1, C

s(M2, F ))yω yΓ∏
ϕ∈A1,
ψ∈A2

Cr,s(Vϕ × Vψ, F )
η−−−−→

∏
ϕ∈A1,
ψ∈A2

Cr(Vϕ, C
s(Vψ, F ))

where η is the map (fϕ,ψ)ϕ∈A1,ψ∈A2 7→ (f∨ϕ,ψ)ϕ∈A1,ψ∈A2 . Because the vertical arrows are
topological embeddings and also the horizontal arrow at the bottom (by Lemma 57 and
Theorem 49) is a topological embbeding, we deduce that the map Φ at the top has to
be a topological embedding as well.

Theorem 59. Let M1 and M2 be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces E1 and E2 respectively, F be a locally convex space
and r, s ∈ N0 ∪ {∞}. Assume that M2 is locally compact or that one of the following
conditions is satisfied:
(a) r = s = 0 and M1 ×M2 is a k-space.
(b) r ≥ 1, s = 0 and M1 ×M2 × E1 is a k-space.
(c) r = 0, s ≥ 1 and M1 ×M2 × E2 is a k-space.
(d) r ≥ 1, s ≥ 1 and M1 ×M2 × E1 × E2 is a k-space.

Then

Φ: Cr,s(M1 ×M2, F )→ Cr(M1, C
s(M2, F )), f 7→ f∨ (3.15)

is an isomorphism of topological vector spaces. Moreover, a map g : M1 → Cs(M2, F )

is Cr if and only if

g∧ : M1 ×M2 → F, g∧(x, y) := g(x)(y)

is Cr,s.

Proof. By Proposition 58, we only need to show that Φ is surjective. To this end, let
g ∈ Cr(M1, C

s(M2, F )) and define

f := g∧ : M1 ×M2 → F, f(x, y) := g(x)(y).
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3.4 The Exponential Law for Cr,s-mappings on manifolds

Let ϕ : Uϕ → Vϕ and ψ : Uψ → Vψ be charts for M1 and M2, respectively. Then

f ◦ (ϕ−1 × ψ−1) : Vϕ × Vψ → F, (x, y) 7→ (Cs(ψ−1, F ) ◦ g ◦ ϕ−1)∧(x, y)

with Cs(ψ−1, F ) : Cs(M2, F ) → Cs(Vψ, F ), h 7→ h ◦ ψ−1 continuous linear. Hence
Cs(ψ−1, F ) ◦ g ◦ ϕ−1 : Vϕ → Cs(Vψ, F ) is Cr. Hence f ◦ (ϕ−1 × ψ−1) is Cr,s by the
exponential law (Theorem 52).
Note. In (d) Vϕ×Vψ×E1×E2 is homeomorphic to the open subset Uϕ×Uψ×E1×E2

of the k-space M1 ×M2 × E1 × E2 and hence a k-space. Similarly in (a), (b) and (c).
Hence the Exponential Law (Theorem 52) applies. If M2 is locally compact, then the
open subsets Uψ are locally compact and hence also the Vψ. Again, the Exponential
Law (Theorem 52) applies.

Remark 60. The same conclusion holds ifM2 is finite-dimensional or E1×E2×E1×E2

is a k-space, provided that M1 and M2 are manifolds without boundary, manifolds
with smooth boundary or manifolds with corners. Recall that direct products of k-
spaces need not be k-spaces. However, the direct product of two metrizable spaces is
metrizable (and hence a k-space). Likewise, the product of two hemicompact k-spaces1

(also known as kω-spaces) is a hemicompact k-space and hence a k-space (see [12] for
further information and [22], including analogues for spaces which are only locally kω).
Thus E1 × E2 × E1 × E2 is a k-space whenever both E1 and E2 are kω. For example,
the dual E′ of a metrizable locally convex space E always is kω when equipped with the
compact-open topology (cf. [3, Corollary 4.7]). Consequently (3.15) is an isomorphism
in the case of manifolds with corners if M2 is finite-dimensional or both E1 and E2 are
metrizable, respectively, both are hemicompact k-spaces (Corollary 62).

To deduce a corollary, we use the following lemma.

Lemma 61. Let X be a Hausdorff topological space. If X =
⋃
j∈J Vj with open subsets

Vj ⊆ X which are k-spaces, then X is a k-space.

Proof. LetW ⊆ X be a subset such thatW ∩K is relatively open inK for each compact
subset K ⊆ X. We show that W is open in X. Since W =

⋃
j∈J(Vj ∩W ), it suffices to

show that each Vj∩W is open. For each compact subset K ⊆ Vj , K∩(Vj∩W ) = K∩W
is relatively open in K by hypothesis, thus Vj ∩W is open in Vj , hence open in X.

Corollary 62. Let M1 and M2 be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces E1 and E2 respectively, F be a locally convex space
and r, s ∈ N0 ∪ {∞}. Assume that (a) or (b) is satisfied:

1A topological space X is called hemicompact if it is the union of an ascending sequence K1 ⊆
K2 ⊆ · · · of compact sets and each compact subset of X is contained in some Kn.
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3. Cr,s-MAPPINGS

(a) E1 and E2 are metrizable.
(b) M1 and M2 are manifolds with corners. Moreover, E2 is finite-dimensional or

both of E1 and E2 are hemicompact k-spaces.
Then

Φ: Cr,s(M1 ×M2, F )→ Cr(M1, C
s(M2, F )), f 7→ f∨

is an isomorphism of topological vector spaces. Moreover, a map g : M1 → Cs(M2, F )

is Cr if and only if
g∧ : M1 ×M2 → F, g∧(x, y) := g(x)(y)

is Cr,s.

Proof. Case M2 a finite-dimensional manifold with corners. Let M2 be of dimension n.
Then each point of M2 has an open neighbourhood homeomorphic to an open subset
V of [0,∞[n. Hence V is locally compact, thus M2 is locally compact. Thus Theorem
59 applies.
Case E1, E2 metrizable. Then all points x ∈ M1, y ∈ M2 have open neighbourhoods
U1 ⊆M1, U2 ⊆M2 homeomorphic to subsets V1 ⊆ E1 and V2 ⊆ E2, respectively. Since
V1×V2 is metrizable, it follows that U1×U2×E1×E2 is metrizable and hence a k-space.
Hence, by Lemma 61, M1 ×M2 × E1 × E2 is a k-space and Theorem 59 applies.
Case E1 and E2 are kω-spaces and M1 and M2 are manifolds with corners. For all
x ∈M1 and y ∈M2, there are open neighbourhoods U1 ⊆M1, U2 ⊆M2 homeomorphic
to open subsets V1 and V2, respectively, of finite intersections of closed half-spaces in E1

and E2, respectively. Hence V1 × V2 ×E1 ×E2 is a (relatively) open subset of a closed
subset of E1 × E2 × E1 × E2. The latter product is kω since E1 and E2 are kω-spaces
(see [22, Proposition 4.2(i)]), and hence a k-space.

Since open subsets (and also closed subsets) of k-spaces are k-spaces, it follows that
V1 × V2 × E1 × E2 is a k-space. Now Lemma 61 shows that M1 ×M2 × E1 × E2 is a
k-space, and thus Theorem 59 applies.

Proof for the Remark 60. All assertions are covered by Corollary 62, except for the
case when M1, M2 are manifolds with corners and E1×E2×E1×E2 is a k-space. But
this case can be proved like the result for kω-spaces in Corollary 62.

Remark 63. If s = 0, then Cr,s-maps f : U × V → F can be defined just as well if V
is any Hausdorff topological space (and U ⊆ E1 as before).
If r = 0, then Cr,s-maps f : U × V → F make sense if U is a Hausdorff topological
space. All results carry over to this situation (with obvious modifications).

42



3.4 The Exponential Law for Cr,s-mappings on manifolds

Remark 64. If F is a complex locally convex space, we obtain analogous results if
E1 is a locally convex space over K1 ∈ {R,C}, E2 is a locally convex space over K2 ∈
{R,C}, and all directional derivatives in the first and second variable are considered
as derivatives over the ground field K1 and K2, respectively. The corresponding maps
could be called Cr,sK1,K2

-maps.

43



Chapter 4

Cα-Mappings

In this chapter we develop the calculus of mappings on products with different degrees
of differentiability, called Cα-mappings, which generalize the concept of Cr,s-mappings
in Chapter 3. We study their basic properties and some refined tools in an infinite-
dimensional setting. In section 4.4, we introduce the exponential laws for such mappings
on products of manifolds modelled on locally convex spaces.

Definition 65. Let E1, . . . , En and F be locally convex spaces, Ui be an open subset
of Ei for all i ∈ {1, . . . , n} and α := (α1, . . . , αn) such that αi ∈ N0 ∪ {∞}.
A continuous mapping f : U1× · · ·×Un → F is called a Cα-map, if for all βi ∈ N0 such
that βi ≤ αi and β := (β1, . . . , βn) the iterated directional derivative

dβf(x,w1, . . . , wn) := (D̆1 · · · D̆nf)(x)

where (D̆if)(x) := (D(wi)
∗
βi
· · ·D(wi)

∗
1
f)(x), exists for all x := (x1, . . . , xn) where xi ∈

Ui, wi := ((wi)1, . . . , (wi)βi) such that (wi)1, . . . , (wi)βi ∈ Ei, (wi)
∗
1, . . . , (wi)

∗
βi
∈

({0})i−1 × Ei × ({0})n−i ⊆ E1 × · · · × En and the maps

dβf : U1 × · · · × Un × Eβ11 × · · · × E
βn
n −→ F,

so obtained are continuous.

More generally, the following definition allows us to speak about Cα-maps on non-
open sets, like products of compact intervals.

Definition 66. Let E1, . . . , En and F be locally convex spaces, Ui be a locally convex
subset with dense interior of Ei for all i ∈ {1, . . . , n} and α := (α1, . . . , αn) such that
αi ∈ N0 ∪ {∞}. We say that a continuous map f : U1 × · · · × Un → F is a Cα-map, if
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f |U0
1×···×U0

n
: U0

1 × · · · × U0
n → F is a Cα-map and for all βi ∈ N0 such that βi ≤ αi and

β := (β1, . . . , βn), and the map

dβ(f |U0
1×···×U0

n
) : U0

1 × · · · × U0
n × E

β1
1 × · · · × E

βn
n −→ F

admits a continuous extension

dβf : U1 × · · · × Un × Eβ11 × · · · × E
βn
n −→ F.

Definitions 65 and 66 can be rephrased as follows:

Lemma 67. For all i ∈ {1, . . . , n}, let Ei and F be locally convex spaces, Ui ⊆ Ei be
a locally convex subset with dense interior, αi ∈ N0 ∪ {∞}. For j ∈ N, 2 ≤ j ≤ n, let
U := U1 × · · · × Uj−1, V := Uj × · · · × Un, γ := (α1, . . . , αj−1) and η := (αj , . . . , αn).
Then f : U1×· · ·×Un → F is a C(γ,η)-map if and only if all of the following conditions
are satisfied:
(a) For all x := (x1, . . . , xj−1) ∈ U , the map fx := f(x, •) : V → F taking y :=

(xj , . . . , xn) ∈ V to fx(y) := f(x1, . . . , xn) is Cη.
(b) For all y ∈ V and wi := ((wi)1, . . . , (wi)βi) ∈ Eβii , the map U → F, x 7→

d(βj ,...,βn)fx(y, wj , . . . , wn) is Cγ, where βi ∈ N0, βi ≤ αi.
(c) For β := (β1, . . . , βn), the map dβf : U1 × · · · × Un × Eβ11 × · · · × Eβnn →

F, (x, y, w1, . . . , wn) 7→ d(β1,...,βj−1)(d(βj ,...,βn)f•(y, wj , . . . , wn))(x,w1, . . . , wj−1),

is continuous.

Proof. Step 1. If Ui ⊆ Ei is an open subset for all i ∈ {1, . . . , n}, then the equivalence
follows by the definition of a C(γ,η)-map.
Now the general case. Assume that f is a C(γ,η)-map.
Step 2. For x ∈ U0 := U0

1 × · · · × U0
j−1 and vk := ((vk)1, . . . , (vk)βk) ∈ Eβkk for k ∈

{j, . . . , n} with corresponding elements (vk)
∗
1, . . . , (vk)

∗
βk
∈ ({0})k−j ×Ek × ({0})n−k ⊆

Ej+1 × · · · × En, the iterated directional derivative

(D̆n · · · D̆j)f(x, y) = D(vn)∗βn
· · ·D(vj)

∗
1
fx(y)

exists for all y ∈ V 0 := U0
j × · · · × U0

n , with continuous extension

(y, vj , vj+1, . . . , vn) 7→ d(0,...,0,βj ,...,βn)f(x, y, vj , vj+1, . . . , vn)

to V × Eβjj × · · · × E
βn
n → F. Hence fx : V → F is Cη. If x ∈ U is arbitrary, y ∈ V 0,

we show that D(vn)∗1
fx(y) exists and equals d(0,0,...,0,1)f(x, y, (vj)1) with j-th entry 1.

There exists R > 0 such that y + t(vj)
∗
1 ∈ V for all t ∈ R , |t| ≤ R and there exists
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a relatively open convex neighbourhood W ⊆ U of x in U. Because U0 is dense, there
exists z ∈ U0 ∩W. Since W is convex, we have x + τ(z − x) ∈ W for all τ ∈ [0, 1].
Moreover, since z ∈ W 0, we have x + τ(z − x) ∈ W 0 for all τ ∈ (0, 1] . Hence, for
τ ∈ (0, 1] , f(x+ τ(z − x), y) is Cη in y, and thus for t 6= 0

1

t
(f(x+ τ(z − x), y + t(vn)∗1)− f(x+ τ(z − x), y))

=

∫ 1

0
d(0,...,0,1,0...,0)f(x+ τ(z − x), y + σt(vn)∗1, (vn)∗1) dσ

by the Mean Value Theorem. Now let F̃ be a completion of F . Because

h : [0, 1]×[−R,R]×[0, 1]→ F̃ , (τ, t, σ) 7→ d(0,...,0,1,0...,0)f(x+τ(z−x), y+σt(vn)∗1, (vn)∗1)

is continuous, also the parameter-dependent integral

g : [0, 1]× [−R,R]→ F̃ , g(τ, t) :=

∫ 1

0
h(τ, t, σ) dσ

is continuous. Fix t 6= 0 in [−R,R] . Then

g(τ, t) =
1

t
(f(x+ τ(z − x), y + t(vj)

∗
1)− f(x+ τ(z − x), y)) (4.1)

for all τ ∈ (0, 1] . By continuity of both sides in τ, (4.1) also holds for τ = 0. Hence

1

t
(f(x, y + t(vj)

∗
1)− f(x, y)) = g(0, t)→ g(0, 0)

as t→ 0. Thus D(vn)∗1
fx(y) exists and is given by

g(0, 0) =

∫ 1

0
d(0,...,0,1,0...,0)f(x, y, (vn)1) dσ = d(0,...,0,1,0...,0)f(x, y, (vn)1).

Holding (vn)1 fixed, we can repeat the argument to see that D(vn)∗βn
· · ·D(vn)∗1

fx(y)

exists for all y ∈ V 0 and is given by D(vn)∗βn
· · ·D(vn)∗1

fx(y) = d(0,...,0,βn)f(x, y, vn).

Again we can repeat the argument to see that D(vj)
∗
βj
· · ·D(vn)∗1

fx(y) exists for all y ∈

V 0, v := (vj , vj+1, . . . , vn) ∈ Eβjj × · · · × E
βn
n and is given by

D(vj)
∗
βj
· · ·D(vn)∗1

fx(y) = d(0,...,0,βj ,βj+1,...,βn)f(x, y, v).

Since the right-hand side makes sense for (y, v) ∈ V ×Eβjj ×· · ·×E
βn
n and is continuous

there, fx is Cη.
Step 3 Holding v ∈ Eβjj × · · · × E

βn
n fixed, the function

(x, y) 7→ d(0,...,0,βj ,βj+1,...,βn)f(x, y, v)
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is C(γ,0). By Step 2 (applied to the C(0,γ) function (y, x) 7→ d(0,...,0,βj ,βj+1,...,βn)f(x, y, v))
we see that for each y ∈ V, the function

U → F, x 7→ d(0,...,0,βj ,βj+1,...,βn)f(x, y, v)

is Cγ and for w ∈ Eβ11 × · · · × E
βj−1

j−1 , we get

d(β1,β2,...,βj−1)(d(βj ,βj+1,...,βn)f•(y, v))(x,w) = dβf(x, y, w, v),

which is continuous in (x, y, w, v) ∈ U × V ×Eβ11 × · · · ×E
βn
n . Hence if f is C(γ,η), then

(a),(b) and (c) hold.
Conversely, assume that (a),(b) and (c) hold. By step 1, f |U0×V 0 is C(γ,η) and

dβf |U0×V 0(x, y, w, v) = d(β1,β2,...,βj−1)(d(βj ,βj+1,...,βn)f•(y, v))(x,w) (4.2)

for (x, y) ∈ U0×V 0. By (c), the right-hand side of (4.2) extends to a continuous function
dβf : U × V × Eβ11 × · · · × E

βn
n → F. Hence f is a C(γ,η)-map.

4.1 Elementary properties

The following lemma will enable us to prove a version of the Theorem of Schwarz for
Cα-maps.

Lemma 68. Let E1, . . . , En and F be locally convex spaces, Ui be an open subset of
Ei, xi ∈ Ui for i ∈ {1, . . . , n}, x := (x1, . . . , xn) and α := (α1, . . . , αn−1, 1) such that
αi ∈ N0 ∪ {∞}. If f : U1 × · · · × Un → F is a Cα-map, then

D(wn)∗1
D(w1)∗β1

· · ·D(wn−1)∗1
f(x) (4.3)

exists for all βi ∈ N0 with βi ≤ αi, for all (wi)1, . . . , (wi)βi ∈ Ei and corresponding
elements (wi)

∗
1, . . . , (wi)

∗
βi
∈ ({0})i−1 ×Ei × ({0})n−i ⊆ E1 × · · · ×En, and it coincides

with
d(β1,...,βn−1,1)f(x, (w1)1, . . . , (wn−1)βn−1

, (wn)1). (4.4)

Proof. The proof is by induction on n. If n = 1, there is nothing to show. Let n ≥ 2.

Now the proof is by induction on β1. If β1 = 0, holding the first variable fixed, we see
that (4.3) exists and coincides with (4.4), by the case n− 1. Now assume that β1 ≥ 1.

If βi = 0 for all i = 2, . . . , n − 1, the assertion follows from Lemma 30. Now assume
that βi ≥ 1 for some i = 2, . . . , n− 1. By induction on β1, we know that

D(wn)∗1
D(w1)∗β1−1

D(w1)∗β1−2
· · ·D(wn−1)∗1

f(x)
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exists and coincides with

d(β1−1,β2,...,βn−1,1)f(x, (w1)1, . . . , (w1)β1−1, (w2)1, . . . , (wn)1). (4.5)

Define g : U1 × · · · × Un → F via

g(x) := D(w1)∗β1−1
D(w1)∗β1−2

· · ·D(wn−1)∗1
f(x)

= d(β1−1,β2,...,βn−1,0)f(x, (w1)1, . . . , (w1)β1−1, (w2)1, (w2)2, . . . , (wn−1)βn−1
).

By the preceding, g is differentiable in the n-th variable and

D(wn)∗1
g(x) (4.6)

= d(β1−1,β2,...,βn−1,1)f(x, (w1)1, . . . , (w1)β1−1, . . . , (wn−1)βn−1
, (wn)1) (4.7)

= D(w1)∗β1−1
D(w1)∗β1−2

· · ·D(wn−1)∗1
D(wn)∗1

f(x), (4.8)

which is continuous in ((wn)1, x). Hence g is C(0,...,0,1) and d(0,...,0,1)g(x, (wn)1) is given
by (4.5). Because f is Cα and α1 ≥ β1, (4.7) can be differentiated once more in the
first variable, hence also D(wn)∗1

g(x), with

d(1,0,0,...,0,1)g(x, (wn)1, (w1)β1)

= D(w1)∗β1
D(wn)∗1

g(x)

= D(w1)∗β1
· · ·D(wn−1)∗βn−1

D(wn)∗1
f(x)

= d(β1,...,βn−1,1)f(x, (w1)1, . . . , (wn−1)βn−1
, (wn)1).

As this map is continuous, g is C(1,0,...,0,1). By Lemma 29, also D(wn)∗1
D(w1)∗β1

g(x) exists

and is given by D(w1)∗β1
D(wn)∗1

g(x) = d(β1,...,βn−1,1)f(x, (w1)1, . . . , (wn−1)βn−1
, (wn)1).

But, by definition of g, D(wn)∗1
D(w1)∗β1

g(x) = D(wn)∗1
D(w1)∗β1

· · ·D(wn−1)∗n−1
f(x). Hence

D(wn)∗1
D(w1)∗β1

· · ·D(wn−1)∗n−1
f(x) = d(β1,...,βn−1,1)f(x, (w1)1, . . . , (wn−1)βn−1

, (wn)1).

Proposition 69. (Schwarz’ Theorem for Cα-mappings). For i ∈ {1, . . . , n}, let Ei
and F be locally convex spaces, Ui ⊆ Ei an open subset, xi ∈ Ui and αi ∈ N0∪{∞} with
α := (α1, . . . , αn). For βi ∈ N0 such that βi ≤ αi, we define β := (β1, . . . , βn), ξi :=∑i−1

m=1 βm+ 1, ρi :=
∑i

m=1 βm, w
∗
ξi
, . . . , w∗ρi ∈ ({0})i−1×Ei× ({0})n−i ⊆ E1×· · ·×En

with entries wξi , . . . , wρi in the Ei-coordinate. If σ ∈ Sρn is a permutation of {1, . . . , ρn}
and f : U1 × · · · × Un → F is a Cα-map, then the iterated directional derivative

(Dw∗
σ(1)
· · ·Dw∗

σ(ρn)
f)(x1, . . . , xn)

exists and coincides with dβf(x1, . . . , xn, w1, . . . , wρn).
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Proof. The case n = 2 having been settled in Proposition 31, we may assume that n ≥ 3

and assume that the assertion holds when n is replaced with n− 1. We prove the n-th
case by induction on ρn. The case ρn = 0 is trivial. If at least one of the βi = 0 for
i = 1, . . . , n, then the assertion follows from the assumption that n has been replaced
with n−1. The case βi ≥ 1 for all i = 1, . . . , n. If σ(1) ∈ {1, . . . , β1}, then by induction,

Dw∗
σ(2)
· · ·Dw∗

σ(ρn)
f(x1, . . . , xn)

= d(β1−1,β2,...,βn)f(x1, . . . , xn, w1, . . . , wσ(1)−1, wσ(1)+1, . . . , wβ1 , . . . , wρn).

Because f is Cα, we can differentiate once more in the first variable:

Dw∗
σ(1)
· · ·Dw∗

σ(ρn)
f(x1, . . . , xn)

= dβf(x1, . . . , xn, w1, . . . , wσ(1)−1, wσ(1)+1, . . . , wρ1 , wσ(1);wξ2 , wξ2+1, . . . , wρn)

= dβf(x1, . . . , xn, w1, w2, . . . , wρn).

For the final equality we used that, for vξi , . . . , vρi ∈ Ei,

dβf(x1, . . . , xn, v1, v2, . . . , vρn)

= dβ1(d(β2,...,βn)f•(x2, . . . , xn, vξ2 , vξ2+1, . . . , vρn))(x1, v1, . . . , vβ1)

is symmetric in v1, . . . , vβ1 ∈ E1, as

g(x1) := d(β2,...,βn)fx1(x2, . . . , xn, vξ2 , vξ2+1, . . . , vρn)

is Cα1 in x1 (see Lemma 67).
If σ(1) ∈ {ξi, . . . , ρi} for some i ∈ {2, . . . , n}, then

Dw∗
σ(2)
· · ·Dw∗

σ(ρn)
f(x1, . . . , xn)

= d(β1,...,βi−1,βi+1,...,βn)f(x1, . . . , xn, w1, . . . , wξi , . . . , wσ(1)−1, wσ(1)+1, . . . , wρi , . . . , wρn).

For fixed wξi , . . . , wρn , consider the function h : U1 × · · · × Un → F, h(x1, . . . , xn) :=

d(0,...,0,βi−1,βi+1,...,βn)f(x1, . . . , xn, wξi , . . . , wσ(1)−1, wσ(1)+1, . . . , wρi , . . . , wρn).

Holding xi+1, . . . , xn fixed, we can apply Lemma 68 and find that

Dw∗
σ(1)

Dw∗ρ1
· · ·Dw∗ξi−1

h(x1, . . . , xn)

exists and coincides with

Dw∗ρ1
· · ·Dw∗ξi−1

Dw∗
σ(1)

h(x1, . . . , xn).
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Now, by induction,

Dw∗
σ(2)
· · ·Dw∗

σ(ρn)
f(x1, . . . , xn)

= d(β1,...,βi−1,βi+1,...,βn)f(x1, . . . , xn, w1, . . . , wξi , . . . , wσ(1)−1, wσ(1)+1, . . . , wρi , . . . , wρn)

= Dw∗ρ1
· · ·Dw∗ξi−1

h(x1, . . . , xn).

Let ψ denote

d(β2,...,βn)f•(x2, . . . , xn, wξ2 , . . . , wξi , . . . , wσ(1)−1, wσ(1)+1, . . . , wρi , wσ(1), wξi+1
, . . . , wρn).

By the preceding, we can apply, Dw∗
σ(1)

, i.e., Dw∗
σ(1)
· · ·Dw∗

σ(ρn)
f(x1, . . . , xn) exists and

coincides with

Dw∗ρ1
· · ·Dw∗ξi−1

Dw∗
σ(1)

h(x1, . . . , xn)

= dβf(x1, . . . , xn, w1, . . . , wξi , . . . , wσ(1)−1, wσ(1)+1, . . . , wρi , wσ(1), wξi+1
, . . . , wρn)

= dβ1ψ(x1, w1, . . . , wρ1)

where d(β2,...,βn)fx1(x2, . . . , xn, vξ2 , vξ2+1, . . . , vρn) is symmetric in vi, . . . , vρi ∈ Ei by
induction on n for the Cα2,...,αn-function fx1 . Hence also after differentiations in x1,

dβ1ψ(x1, w1, . . . , wρ1) coincides with dβf(x1, . . . , xn, w1, . . . , wρn).

Corollary 70. Let E1, . . . , En and F be locally convex spaces, Ui ⊆ Ei be locally convex
subset with dense interior for i ∈ {1, . . . , n}, α := (α1, . . . , αn−1, 1) such that αi ∈
N0 ∪ {∞} and σ ∈ Sn. Define ασ := (ασ(1), . . . , ασ(n)). If f : U1 × · · · × Un → F is a
Cα-map, then

gσ : Uσ(1) × · · · × Uσ(n) → F, x 7→ f(xσ−1(1), . . . , xσ−1(n)) (4.9)

is Cασ and

dβσg(xσ(1), . . . , xσ(n), wσ(1), . . . , wσ(n)) = dβf(x1, . . . , xn, w1, . . . , wn), (4.10)

for all β = (β1, . . . , βn) ∈ Nn0 such that β ≤ α and (x1, . . . , xn, w1, . . . , wn) ∈ U1 × · · · ×
Un × Eβ11 × · · · × E

βn
n where βσ := (βσ(1) , . . . , βσ(n)).

Lemma 71. Let E1, . . . , En and F be locally convex spaces, Ui be a locally convex
subset with dense interior of Ei for i ∈ {1, . . . , n} and α := (α1, . . . , αn) such that
αi ∈ N0 ∪ {∞}. If f : U1 × · · · × Un → F is a Cα-map and λ : F → H is a continuous
linear map to a locally convex space H, then λ ◦ f is Cα and dβ(λ ◦ f) = λ ◦ dβf for all
βi ∈ N0 such that βi ≤ αi and β := (β1, . . . , βn).
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Proof. Follows from the fact that directional derivatives and continuous linear maps
can be interchanged.

Lemma 72. (Mappings to products for Cα-mappings). Let E1, . . . , En be locally
convex spaces, Ui be a locally convex subset with dense interior of Ei for i ∈ {1, . . . , n},
and (Fj)j∈J be a family of locally convex spaces with direct product F :=

∏
j∈J Fj and

the projections πj : F → Fj onto the components. Let α := (α1, . . . , αn) such that
αi ∈ N0 ∪ {∞} and f : U1 × · · · ×Un → F be a map. Then f is Cα if and only if all of
its components fj := πj ◦ f are Cα. In this case

dβf = (dβfj)j∈J , (4.11)

for all βi ∈ N0 such that βi ≤ αi and β := (β1, . . . , βn).

Proof. πj is continuous linear. Hence if f is Cα, then fj = πj ◦ f is Cα, by Lemma
71, with dβfj = πj ◦ dβf. Hence (4.11) holds. Conversely, assume that each fj is
Cα. Because the limits in products can be formed component-wise, we see that for all
(x1, . . . , xn) ∈ U0

1 × · · · ×U0
n, wi := ((wi)1, . . . , (wi)βi) such that (wi)1, . . . , (wi)βi ∈ Ei,

dβf(x1, . . . , xn, w1, . . . , wn) = (D̆1 · · · D̆nf)(x1, . . . , xn)

exists and is given by

(dβfj(x1, . . . , xn, w1, . . . , wn))j∈J . (4.12)

Now (4.12) defines a continuous function

U1 × · · · × Un × Eβ11 × · · · × E
βn
n −→ F.

Hence f is Cα.

Lemma 73. Let E1, . . . , En and F be locally convex spaces, Ui be a locally convex
subset with dense interior of Ei for i ∈ {1, . . . , n} and α := (α1, . . . , αn) where αi ∈
N0 ∪ {∞}, αn ≥ 1. If f : U1 × · · · × Un → F is C(α1,...,αn−1,0), f is C(0,...,0,1) and
d(0,...,0,1)f : U1 × · · · × Un−1 × (Un × En)→ F is Cα1,...,αn−1,αn−1, then f is Cα.

Proof. Let βi ∈ N0 with βi ≤ αi, x := (x1, . . . , xn) ∈ U0
1×· · ·×U0

n, wi := ((wi)1, . . . , (wi)βi)

where (wi)1, . . . , (wi)βi ∈ Ei. Consider also the corresponding elements (wi)
∗
1, . . . , (wi)

∗
βi
∈

({0})i−1 × Ei × ({0})n−i ⊆ E1 × · · · × En.
If βn = 0, then (D̆1 · · · D̆n−1f)(x) exists as f is C(α1,...,αn−1,0), and is given by

d(β1,...,βn−1,0)f(x,w1, . . . , wn−1)
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which extends continuously to U1 × · · · × Un × Eβ11 × · · · × E
βn−1

n−1 .

If βn > 0, then D(wn)∗1
f(x) = d(0,...,0,1)f(x, (wn)1) exists because f is C(0,...,0,1) and

because this function is C(α1,...,αn−1,αn−1), also the directional derivatives

(D̆1 · · · D̆nf)(x)

= (D((w1)∗β1
,0) · · ·D((wn−1)∗1,0)D((wn)∗βn ,0) · · ·D((wn)∗2,0)d

(0,...,0,1)f)(x, (wn)1)

exist and the right-hand side extends continuously to (x, (w1)1, . . . , (wn)βn) ∈ U1×· · ·×
Un × Eβ11 × · · · × E

βn
n . Hence f is Cα.

Lemma 74. Let E1, . . . , En, H1, . . . ,Hn and F be locally convex spaces, Ui ⊆ Ei, Pi ⊆
Hi be locally convex subsets with dense interior for i ∈ {1, . . . , n} and α := (α1, . . . , αn)

where αi ∈ N0 ∪ {∞}, if f : U1 × · · · × Un → F is a Cα-map and λi : Hi → Ei

is a continuous linear map such that λi(Pi) ⊆ Ui, then f ◦ (λ1 × · · · × λn)|P1×···×Pn :

P1 × · · · × Pn → F is Cα.

Proof. Let βi ∈ N0 such that βi ≤ αi and β := (β1, . . . , βn). For (p1, . . . , pn) ∈ P 0
1 ×· · ·×

P 0
n , (wi)1, . . . , (wi)βi ∈ Hi and corresponding elements (wi)

∗
1, . . . , (wi)

∗
βi
∈ ({0})i−1 ×

Hi × ({0})n−i ⊆ H1 × · · · ×Hn, we have

D(wn)∗1
(f ◦ (λ1 × · · · × λn))(p1, . . . , pn)

= lim
t→0

1

t
(f(λ1(p1), . . . , λn−1(pn−1), λn(pn + t(wn)1))− f(λ1(p1), . . . , λn(pn)))

= lim
t→0

1

t
(f(λ1(p1), . . . , λn−1(pn−1), λn(pn) + tλn((wn)1))− f(λ1(p1), . . . , λn(pn)))

= D(0,...,0,λn((wn)1)f)(λ1(p1), . . . , λn(pn)),

arguing as in the proof of Lemma 37. Recursively,

D̆1 · · · D̆n(f ◦ (λ1 × · · · × λn))(p1, . . . , pn)

= dβf(λ1(p1), . . . , λn(pn), λ1((w1)1), . . . , λn((wn)βn)).

The right-hand side defines a continuous function of (p1, . . . , pn, (w1)1, . . . , (wn)βn) ∈
P1 × · · · × Pn ×Hβ1

1 × · · · ×H
βn
n . Hence the assertion follows.

Lemma 75. Let E1, . . . , En, H1, . . . ,Hm and F be locally convex spaces, Ui be a locally
convex subset with dense interior of Ei for i ∈ {1, . . . , n}, α := (α1, . . . , αn) where
αi ∈ N0 ∪ {∞}, H := H1 × · · · ×Hm and f : U1 × · · · ×Un ×H → F be a map with the
following properties:
(a) For all x := (x1, . . . , xn), xi ∈ Ui, the map f(x, •) : H → F is m-linear;
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(b) The map f : U1 × · · · × Un ×H → F is C(α,0).

Then f : U1× · · · ×Un−1× (Un×H)→ F is Cα. Also g : U1× · · · ×Ui−1× (Ui×H)×
Ui+1 × · · · × Un → F, (x1, . . . , xi−1, (xi, h), xi+1, . . . , xn) 7→ f(x, h) is Cα.

Proof. Holding h ∈ H fixed, the map f(•, h) is Cα and hence, for a permutation σ ∈ Sn
of {1, . . . , n}, we have Uσ(1)× · · ·×Uσ(n) → F, (x1, . . . , xn) 7→ f(xσ−1(1), . . . , xσ−1(n), h)

is Cασ , where ασ := ασ(1), . . . , ασ(n), by Corollary 70. Using (4.10), we see that f1 :

Uσ(1) × · · · × Uσ(n−1) × (Uσ(n) × H) → F, f1(xσ(1), . . . , xσ(n), h) := f(x, h) satisfies
hypotheses analogous to those for f (with ασ(i) interchanged) and will be Cασ if the
first assertion holds. Using Corollary 70, this implies that g is Cα. Hence we only need
to prove the first assertion. We may assume that αi <∞; the proof is by induction on
αn.
The case αn = 0. Then f is Cα1,...,αn−1,0 by the hypotheses.
Induction step. Let (wn)1 ∈ En, z = (z1, . . . , zm) ∈ H. By hypothesis,
D(0,...,0,(wn)1,0)f(x, h) exists and extends to a continuous map U1×· · ·×Un×H×En → F.

Because f(x, •) : H → F is continuous and m-linear, it is C1 with

D(0,...,0,z)f(x, h) =

m∑
k=1

f(x, h1, . . . , hk−1, zk, hk+1, . . . , hm).

This formula defines a continuous function U1 × · · · × Un × H × En → F. Holding
(x1, . . . , xn−1) ∈ U1×· · ·×Un−1 fixed, we deduce with the Rule on Partial Differentials
(Lemma 8) that the map Un ×H → F, (xn, h) 7→ f(x, h) is C1, with

D(0,...,0,(wn)1,z)
f(x, h) (4.13)

= D(0,...,0,(wn)1,0)f(x, h) +

m∑
k=1

f(x, h1, . . . , hk−1, zk, hk+1, . . . , hm).

Because we have just seen that d(0,...0,1)f(x1, . . . , xn−1, (xn, h), ((wn)1, z)) exists and is
given by (4.13), which extends continuously to U1× · · · ×Un−1× (Un×H)× (En×H),
f : U1×· · ·×Un−1×(Un×H)→ F is C0,...,0,1. Also, f : U1×· · ·×Un−1×(Un×H)→ F

is Cα1,...,αn−1,0 by the hypothesis.
We claim that d(0,...,0,1)f : U1×· · ·×Un−1× (Un×H×En×H)→ F is Cα1,...,αn−1,αn−1.

If this is true, then f is Cα by Lemma 73. To prove the claim, for fixed k ∈ {1, . . . ,m},
consider

φ : U1 × · · · × Un−1 × (Un ×H × En ×H)→ F,

(x, h, (wn)1, z) 7→ f(x, h1, . . . , hk−1, zk, hk+1, . . . , hm).
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The map

ψ : U1 × · · · × Un ×H1 × · · · ×Hm−1 × (Hm × En ×H)→ F,

(x, h1, . . . , hm−1, (hm, (wn)1, z)) 7→ f(x, h1, . . . , hm)

is m-linear in (h1, . . . , hn−1, (hn, (wn)1, z)). By induction, ψ is Cα1,...,αn−1,αn−1 as a
map on U1 × · · · × Un−1 × (Un ×H1 × · · · ×Hm × En ×H). By Lemma 74, also φ is
Cα1,...,αn−1,αn−1. Hence each of the final k summands in (4.13) is Cα1,...,αn−1,αn−1 in
(x, h1, . . . , hm−1, (hm, (wn)1, z)). To take care of the first summands in (4.13), observe
that θ : U1×· · ·×Un× (H×En)→ F, (x, h, (wn)1) 7→ D(0,...,0,(wn)1,0)f(x, h) is (m+ 1)-
linear in the final argument and satisfies hypotheses analogous to those of f , with
(α1, . . . , αn) replaced by (α1, . . . , αn−1, αn − 1). Hence θ is Cα1,...,αn−1,αn−1 on U1 ×
· · · × Un−1 × (Un ×H ×En), and hence the first summand of (4.13) is Cα1,...,αn−1,αn−1

on U1 × · · · × Un−1 × (Un ×H ×En ×H), by Lemma 74. As a consequence, d(0,...,0,1)f

is Cα1,...,αn−1,αn−1 (like each of the summands in (4.13)).

Lemma 76. Let E1, . . . , En and F be locally convex spaces, Ui be a locally convex
subset with dense interior of Ei for i ∈ {1, . . . , n} and α := (α1, . . . , αn) where αi ∈
N0 ∪ {∞}, αn ≥ 1. Then f : U1 × · · · × Un → F is a Cα-map if and only if f
is Cα1,...,αn−1,0, f is C0,...,0,1 and d(0,...,0,1)f : U1 × · · · × Un−1 × (Un × En) → F is
Cα1,...,αn−1,αn−1.

Proof. If f is Cα, then f is Cα1,...,αn−1,0 and f is C0,...,0,1. Moreover d(0,...,0,1)f : U1 ×
· · · × Un × En → F is linear in the En-variable and for all βi ∈ N0, βi ≤ αi, βn ≤
αn− 1, (x1, . . . , xn) ∈ U0

1 × · · · ×U0
n, (wi)1, . . . , (wi)βi ∈ Ei and corresponding elements

(wi)
∗
1, . . . , (wi)

∗
βi
∈ ({0})i−1 × Ei × ({0})n−i ⊆ E1 × · · · × En,

D((w1)∗β1
,0) · · ·D((wn)∗1,0)(d

(0,...,0,1)f)(x1, . . . , xn, z)

= d(β1,...,βn−1,βn+1)f(x1, . . . , xn, (w1)1, . . . , (wn−1)βn−1
, z, (wn)1, . . . , (wn)βn)

exists and extends to a continuous function in

(x1, . . . , xn, (w1)1, . . . , (wn−1)βn−1
, z, (wn)1, . . . , (wn)βn) ∈ U1×· · ·×Un×Eβ11 ×· · ·×E

βn
n .

Hence, by Lemma 75, d(0,...,0,1)f is Cα1,...,αn−1,αn−1. The converse has already been
established in Lemma 73.

Lemma 77. For i ∈ {1, . . . , n}, let Ei be a locally convex space, Ui ⊆ Ei be a locally
convex subset with dense interior and α := (α1, . . . , αn) where αi ∈ N0 ∪ {∞}. Assume
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that En = H1 × H2 with locally convex spaces H1, H2 and Un = V ×W with locally
convex subsets V ⊆ H1 and W ⊆ H2 with dense interior. Let F be a locally convex
space. If a map f : U1 × · · · × Un−1 × V ×W → F is C(α1,...,αn−1,k,l) for all k, l ∈ N0

with k + l ≤ αn, then f : U1 × · · · × Un → F is Cα.

Proof. We may assume that αn < ∞. The proof is by induction on αn. For the case
αn = 0, the assertion follows by the definition of a Cα-map. For the case αn > 0, let
x := (x1, . . . , xn) ∈ U1 × . . . × Un and (h1, h2), (h′1, h

′
2) ∈ H1 × H2. By the Rule on

Partial Differentials (Proposition 9),

d(0,...,0,1)f(x, (h1, h2)) = d(0,...,0,1,0)f(x, h1) + d(0,...,0,1)f(x, h2). (4.14)

By Lemmas 76 and 74, (4.14) is C(α1,...,αn−1,k,l) as a map on U1 × · · · × Un−1 × (V ×
H1)× (W ×H2) for all k+ l ≤ αn−1, hence by induction and again by Lemma 76, (4.14)
is C(α1,...,αn−1,αn−1) on U1×· · ·× (Un×En). Thus, d(0,...,0,1)f : U1×· · ·×Un×En → F

is C(α1,...,αn−1,αn−1) and by induction f : U1 × · · · ×Un → F is C(α1,...,αn−1,0). Hence, it
is Cα, by Lemma 76.

Lemma 78. Let E1, . . . , En and F be locally convex spaces, Ui be a locally convex subset
with dense interior of Ei for i ∈ {1, . . . , n} and α0 ∈ N0. If the map f : U1×· · ·×Un → F

is Cα0,...,α0 , then f is Cα0 .

Proof. The proof is by induction on α0. The case α0 = 0. If f is C0,...,0, then f is
continuous and hence C0. The case α0 ≥ 1. Assume that U1, . . . , Un are open subsets.
Then D(wi)∗f(x1, . . . , xn) exists and is continuous in (x1, . . . , xn, wi) for all xi ∈ Ui and
all i ∈ {1, . . . , n}, where wi ∈ Ei, (wi)

∗ ∈ ({0})i−1 × Ei × ({0})n−i ⊆ E1 × · · · × En.
Hence, by Proposition 9, f is C1 and

df((x1, . . . , xn), (w1, . . . , wn)) = D(w1)∗f(x1, . . . , xn)+· · ·+D(wn)∗f(x1, . . . , xn). (4.15)

Next note that D(wi)∗f(x1, . . . , xn) is Cα0−1,...,α0−1-mappings, by Lemma 76 and Corol-
lary 70. Hence df is Cα0−1, by induction. Since f is C1 and df is Cα0−1, then f is
Cα0 .

As an immediate consequence of Lemma 78, we obtain:

Remark 79. The map f : U1 × · · · × Un → F is smooth if and only if it is C∞,...,∞.
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Proposition 80. Let E1, . . . , En be finite-dimensional vector spaces and F be a locally
convex space. For i ∈ {1, . . . , n}, let Ui be a locally convex and locally compact subset
with dense interior of Ei and α := (α1, . . . , αn), where αi ∈ N0 ∪ {∞}. Then the
evaluation map

ε : Cα(U1 × · · · × Un, F )× U1 × · · · × Un → F, ε(γ, x1, . . . , xn) := γ(x1, . . . , xn)

is C∞,α.

Proof. Without loss of generality, we may assume up to permutation that αi < ∞ for
all i ∈ {1, . . . , n}. The proof is by induction on |α| = α1 + · · ·+ αn. If α = 0, then ε is
continuous because each Ui is locally compact [11, Theorem 3.4.3]. Also, ε is linear in the
first argument. Hence ε is C∞,0,...,0, by Lemma 75 and Corollary 70. If α 6= 0, we may
assume that αn ≥ 1, using Corollary 70. For xi ∈ U0

i , w ∈ En, γ ∈ Cα(U1×· · ·×Un, F )

and small t ∈ R \ {0},
1

t
(ε(γ, x1, . . . , xn−1, xn + tw)− ε(γ, x1, . . . , xn))

=
1

t
(γ(x1, . . . , xn−1, xn + tw)− γ(x1, . . . , xn))→ d(0,...,0,1)γ(x1, . . . , xn, w) as t→ 0.

Hence d(0,...,0,1)ε(γ, x1, . . . , xn, w) exists and is given by

d(0,...,0,1)ε(γ, x1, . . . , xn, w) = d(0,...,0,1)γ(x1, . . . , xn, w) = ε1(d(0,...,0,1)γ, (x1, . . . , xn, w)),

(4.16)
where ε1 : Cα1,...,αn−1,αn−1(U1×· · ·×Un−1×(Un×En), F )×(U1×· · ·×Un−1×(Un×En))→
F, (ζ, x1, . . . , xn−1, z) 7→ ζ(x1, . . . , xn−1, z) is C∞,α1,...,αn−1,αn−1, by induction.
The right-hand side of (4.16) defines a continuous map (indeed a C∞,α1,...,αn−1,αn−1-
map) by induction and Lemma 74, using that

Cα(U1 × · · · ×Un, F )→ Cα1,...,αn−1,αn−1(U1 × · · · ×Un−1 ×Un ×E,F ), γ 7→ d(0,...,0,1)γ

is continuous linear. Thus, by Lemma 76, ε is C∞,α.

4.2 Chain Rule for Cα-mappings

Lemma 81. (Chain Rule for Cα-mappings). For i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi},
let Ei, Xi,j and F be locally convex spaces, Ui ⊆ Ei, Pi,j ⊆ Xi,j be locally convex subsets
with dense interior, α := (α1, . . . , αn) ∈ (N0 ∪ {∞})n, f : U1 × · · · × Un → F be a Cα-
map and gi : Pi,1 × Pi,2 × · · · × Pi,mi → Ui be a Cγi-map, where γi := (γi,1, . . . , γi,mi) ∈
(N0 ∪ {∞})mi , |γi| := γi,1 + · · ·+ γi,mi ≤ αi . Then

f ◦ (g1 × · · · × gn) : (P1,1 × · · · × P1,m1)× · · · × (Pn,1 × · · · × Pn,mn)→ F,
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(p1,1, . . . , pn,mn) 7→ f(g1(p1,1, . . . , p1,m1), . . . , gn(pn,1, . . . , pn,mn))

is a C(γ1,...,γn)-map.

Proof. Without loss of generality, we may assume that γi <∞. The proof is by induc-
tion on |γ| := |γ1|+ · · ·+ |γn| . If |γ| = 0, then f ◦ (g1×· · ·×gn) is just a composition of
continuous maps, which is continuous, hence C(0,...,0). Now if |γ| > 0, by Corollary 70,
we may assume that |γn| > 0. Again by Corollary 70, we may assume that γn,mn > 0.

Let Pi := Pi,1 × · · · × Pi,mi , for p := (p1, · · · , pn) ∈ P1 × · · · × Pn and z ∈ Xn,mn , the
map d(0,...,0,1)gn(pn, z) is C(γn,1,...,γn,mn−1,γn,mn−1), by Lemma 76. Also, the function

Pn,1 × · · · × Pn,mn−1 × (Pn,mn ×Xn,mn)→ Un,

(pn,1, . . . , pn,mn−1, (pn,mn , z)) 7→ gn(pn,1, . . . , pn,mn−1, pn,mn)

is Cγn , by Lemma 75. In particular, the latter is C(γn,1,...,γn,mn−1,γn,mn−1). Thus both
components of

ϕ : Pn,1 × · · · × (Pn,mn ×Xn,mn → Un)× En, (pn, h) 7→ (gn(pn), d(0,...,0,1)gn(pn, z))

are C(γn,1,...,γn,mn−1,γn,mn−1), so ϕ is C(γn,1,...,γn,mi−1,γn,m−1). By Lemma 76, d(0,...,0,1)f :

U1×· · ·×Un−1× (Un×En)→ F is C(α1,...,αn−1,αn−1). Thus, by the preceding, the map
d(0,...,0,1)(f◦(g1×· · ·×gn−1×ϕ))(p1, . . . , pn−1, (pn, z)) is C(γ1,...,γn−1,γn,1,...,γn,mn−1,γn,mn−1).

Hence,

d(0,...,0,1)(f ◦ (g1 × · · · × gn))(p, z) = (d(0,...,0,1)f)((g1 × · · · × gn), d(0,...,0,1)gn(pn, z))

is C(γ1,...,γn−1,γn,1,...,γn,mn−1,γn,mn−1) and by induction, f ◦ (g1 × · · · × gn) : (P1,1 × · · · ×
P1,m1)×· · ·× (Pn,1×· · ·×Pn,mn)→ F is C(γ1,...,γn−1,γn,1,...,γn,mn−1,0). Hence, by Lemma
76, f ◦ (g1 × · · · × gn) is a C(γ1,...,γn)-map.

4.3 The Exponential Law for Cα-mappings

Definition 82. Let E1, . . . , En and F be locally convex spaces, Ui be a locally convex
subset with dense interior of Ei for i ∈ {1, . . . , n} and α := (α1, . . . , αn) where αi ∈
N0 ∪{∞}. Give Cα(U1× · · ·×Un, F ) the initial topology with respect to the mappings
dβ : Cα(U1×· · ·×Un, F )→ C(U1×· · ·×Un×Eβ11 ×· · ·×E

βn
n , F ), γ 7→ dβγ for βi ∈ N0

such that βi ≤ αi and β := (β1, . . . , βn), where the right-hand side is equipped with the
compact-open topology.
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Lemma 83. Let F and Ei be locally convex spaces for i ∈ {1, . . . , n}, Ui ⊆ Ei be a
locally convex subset with dense interior, α := (α1, α2, . . . , αn) with αi ∈ N0 ∪ {∞} and
βi ∈ N0 with βi ≤ αi. Define U := U1 × · · · × Un and β := (β1, β2, . . . , βn). Then the
sets of the form

W = {f ∈ Cα(U,F ) : dβf(K) ⊆ P}

(where P ⊆ F are 0-neighbourhoods and K ⊆ U ×Eβ11 × · · · ×E
βn
n is compact), form a

subbasis of 0-neighbourhoods for Cα(U,F ), i.e., finite intersections of such sets form a
basis of 0-neighbourhoods.

Proof. The topology on Cα(U,F ) is initial with respect to the maps

dβ : Cα(U,F )→ C(U × Eβ11 × · · · × E
βn
n , F )c.o, f 7→ dβf.

Therefore the map

Ψ: Cα(U,F )→
∏

N03βi≤αi

C(U × Eβ11 × · · · × E
βn
n , F ), f 7→ (dβf)N03βi≤αi

is a topological embedding. Sets of the form

B := {(gβ)N03βi≤αi ∈
∏

N03βi≤αi

C(U × Eβ11 × · · · × E
βn
n , F ) : gβ(Kβ) ⊆ Qβ}

(with compact sets Kβ ⊆ U × Eβ11 × · · · × E
βn
n and 0-neighbourhoods Qβ ⊆ F ), form

a basis of 0-neighbourhoods in
∏

N03βi≤αi C(U × Eβ11 × · · · × E
βn
n , F ), where Qβ = F

for all but finitely many β. Hence the sets Ψ−1(W ) form a basis of 0-neighbourhoods in
Cα(U,F ). These are finite intersections 0-neighbourhoods as described in the lemma,
whence the latter for a subbasis.

Lemma 84. For i ∈ {1, . . . , n}, let Ei and X be locally convex spaces, Ui ⊆ Ei be
a locally convex subset with dense interior, F ⊆ X be a (sequentially) closed vector
subspace and αi ∈ N0 ∪ {∞} with α := (α1, . . . , αn). Then f : U1 × · · · × Un → F is a
Cα-map if and only if f : U1 × · · · × Un → X is a Cα-map.

Proof. The inclusion map j : F → X is continuous linear and hence smooth. If f :

U1 × · · · × Un → F is Cα, then also j ◦ f is Cα, by the Chain Rule (Lemma 81).
Conversely, assume that j ◦ f : U1 × · · · × Un → X is Cα.
Step 1. Assume that U1 × · · · × Un are open sets. Because directional derivatives can
be realized as limits of sequnces of directional difference quotiants, which lie in F, we
obtain

Dw∗f(x) = Dw∗(j ◦ f)(x) ∈ F
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for all x ∈ U1×· · ·×Un and w ∈ Ei such that αi ≥ 1, where w∗ ∈ ({0})i−1×Ei×({0})n−i

is as in Definition 65. Repeating this argument, we find that

dβf(x,w1, . . . , wn) = dβ(j ◦ f)(x,w1, . . . , wn) ∈ F

for all β ∈ Nn0 such that β ≤ α, x ∈ U1×· · ·×Un and wi ∈ Eβii for i = 1, . . . , n. Because
dβ(j ◦ f) is continuous and j ◦ dβf = dβ(j ◦ f), also dβf and thus f is Cα.
Step 2. If U1, . . . , Un are arbitrary, then f |U0

1×···×U0
n
is Cα by Step 1, and

dβ(j ◦ f)(x,w1, . . . , wn) ∈ F

for all β ∈ Nn0 such that β ≤ α, x ∈ U0
1 × · · · ×U0

n and wi ∈ Eβii for i = 1, . . . , n. Given
x = (x1, . . . , xn) ∈ U0

1 × · · ·×U0
n, let Vi ⊆ Ui be a convex neighbourhood of xi. Because

U0
i is dense in Ui there exists yi ∈ V 0

i . By convexity, zi,m := (1 − 1
m)xi + 1

myi ∈ Vi for
all m ∈ N, and indeed zi,m ∈ V 0

i . Hence zm := (z1,m, . . . , zn,m) ∈ U0
1 × · · · × U0

n for all
m and thus

dβ(j ◦ f)(zm, w1, . . . , wn) ∈ F.

Since zm → x as m→∞ and F is sequentially closed, we deduce that

dβ(j ◦ f)(x,w1, . . . , wn) ∈ F

thus
dβf := dβ(j ◦ f) : U1 × · · · × Un × Eβ11 × · · · × E

βn
n −→ F

is a continuous extension to dβ(f |U1×···×Un), and thus f is Cα.

Lemma 85. For i ∈ {1, . . . , n}, let Ei and F be locally convex spaces, Ui ⊆ Ei be a
locally convex subset with dense interior, F = lim←−Fj where Fj is a locally convex space
with the limit maps qj : F → Fj and αi ∈ N0 ∪ {∞} with α := (α1, . . . , αn). Then
f : U1 × · · · × Un → F is a Cα-map if and only if all the maps f ◦ qj are Cα.

Proof. After passing to an isomorphic locally convex space if necessary, we may assume
that F = lim←−Fj is realized as a closed vector subspace of

∏
j∈J Fi (as usual). The

asseration now follows from Lemma 72 and Lemma 84.

Lemma 86. For i ∈ {1, . . . , n}, let Ei, F be locally convex spaces, Ui be a locally convex
subset with dense interior of Ei, and (Fj)j∈J be a family of locally convex spaces with
direct product F :=

∏
j∈J Fj. Let α := (α1, . . . , αn) such that αi ∈ N0 ∪ {∞} . If the

topology on F is initial wit respect to the linear maps λi : F → Fi. Then the topology
on Cα(U,F ) is initial wit respect to the maps Cα(U, λi).
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Proof. Abbreviate U := U1×· · ·×Un. By definition, the topology on Cα(U,F ) is initial
with respect to the maps

dβ : Cα(U,F )→ C(U × Eβ11 × · · · × E
βn
n , F )c.o (4.17)

for all β ∈ Nn0 such that β ≤ α. By [18, Lemma 3.3], the compact-open topology on the
space on the right-hand side in (4.17) is initial with respect to the maps

C(U ×Eβ11 × · · · ×E
βn
n , λ) : C(U ×Eβ11 × · · · ×E

βn
n , F )→ C(U ×Eβ11 × · · · ×E

βn
n , Fi),

γ 7→ λi ◦ γ.

Hence by [18, Lemma B.4], the topology on Cα(U,F ) is initial with respect to the maps

C(U × Eβ11 × · · · × E
βn
n , λi) ◦ dβ (4.18)

Now the map in (4.18) coincides with dβ ◦ Cα(U, λi) by the Chain Rule (Lemma 81),
where

dβ : Cα(U,Fi)→ C(U × Eβ11 × · · · × E
βn
n , Fi). (4.19)

The topology on Cα(U,Fi) being initial with respect to the dβ from (4.19), we deduce
that the given topology on Cα(U,F ) is initial wit respect to the maps Cα(U, λi), by [18,
Lemma B.4].

Lemma 87. Let E1, . . . , En be locally convex spaces, Ui be a locally convex subset with
dense interior of Ei for i ∈ {1, . . . , n} and αi ∈ N0 ∪ {∞} with α := (α1, . . . , αn). If
λ : F1 → F2 is a continuous linear map between locally convex spaces, then also

Cα(U1 × · · · × Un, λ) : Cα(U1 × · · · × Un, F1)→ Cα(U1 × · · · × Un, F2), γ 7→ λ ◦ γ

is continuous linear.

Proof. Abbreviate U := U1 × · · · × Un. The topology on F1 is initial with respect to
λ and idF1 : F1 → F1. Hence by Lemmma 86, the topology on Cα(U,F1) is initial
with respect to Cα(U, λ) and Cα(U, idF1). In particular, Cα(U, λ) is continuous (and
obviously it is linear).

Lemma 88. Let E1, . . . , En be locally convex spaces, Ui be a locally convex subset with
dense interior of Ei for i ∈ {1, . . . , n}, (Fj)j∈J be a family of locally convex spaces with
direct product F :=

∏
j∈J Fj and αi ∈ N0 ∪ {∞} with α := (α1, . . . , αn). Then

Cα(U1 × · · · × Un, F ) ∼=
∏
j∈J

Cα(U1 × · · · × Un, Fj).

60



4.3 The Exponential Law for Cα-mappings

Proof. Abbreviate U := U1 × · · · × Un. Let prj : F → Fj be the projection onto the
j − th component It follows from Lemma 72 that the map

Φ : Cα(U,prj)j∈J : Cα(U,F )→
∏
j∈J

Cα(U,Fj), γ 7→ (prj ◦γ)j∈J

is a bijection.
Because the topology on F is initial with respect to the maps prj : F → Fj , Lemma 86
shows that the topology on Cα(U,F ) is initial with respect to the maps Cα(U,prj) for
j ∈ J. Thus Φ is a homeomorphism.

Lemma 89. Let E1, . . . , En, F be locally convex spaces, Ui be a locally convex subset
with dense interior of Ei for i ∈ {1, . . . , n}, (Fj)j∈J be a family of locally convex spaces
with F := lim←−Fj and αi ∈ N0 ∪ {∞} with α := (α1, . . . , αn). Then

Cα(U1 × · · · × Un, F ) = lim←−C
β(U1 × · · · × Un, Fj).

Proof. Abbreviate U := U1 × · · · × Un. Let ql : F → Fl be the limit maps and qlj :

Fj → Fl for l ≤ j be the bonding maps. We may assume that F is realized as a vector
subspace of

∏
l∈L Fl and ql := prl|F . As a consequence of Lemma 85, the map

Cα(U,F )→
∏
l∈L

Cα(U,Fl), γ 7→ (ql ◦ γ)l∈L

co-restricts to a bijection

Φ : Cα(U,F )→ lim←−C
α(U,Fl)

(Using the bonding maps Cα(U, qlj), l ≤ j). Now Lemma 86 imply that Φ is a homeo-
morphism.

Lemma 90. For i ∈ {1, . . . , n}, let Ei, F be locally convex spaces, Ui be a locally convex
subset with dense interior of Ei and αi ∈ N0 ∪ {∞} with α := (α1, . . . , αn). Then

Cα(U1 × · · · × Un, F ) = lim←−
Nn03β≤α

Cβ(U1 × · · · × Un, F ).

Proof. Abbreviate U := U1 × · · · × Un. Since Cα(U,F ) =
⋂

Nn03β≤α
Cβ(U,F ), it is

clear that Cα(U,F ) = lim←−C
β(U,F ) as a vector space, together with the inclusion

maps qβ : Cα(U,F ) → Cβ(U,F ). Let τ be the initial topoloy Cα(U,F ) with respect
to the maps qβ . The topology on Cβ(U,F ) being initial with respect to the maps
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dβ : Cβ(U,F )→ C(U ×Eβ11 × · · · ×E
βn
n , F ). By [18, Lemma B.4], τ is also initial with

respect to the maps

dβ ◦ qβ : Cα(U,F )→ C(U × Eβ11 × · · · × E
βn
n , F ), γ 7→ dβγ,

and hence coincides with the compact-open Cα-topology on Cα(U,F ).Hence Cα(U,F ) =

lim←−C
β(U,F ) also as a topologicla vector space.

Lemma 91. For i ∈ {1, . . . , n}, let Ei, F be locally convex spaces, Ui be a locally
convex subset with dense interior of Ei and αi ∈ N0 ∪ {∞} sucht that αn ≥ 1 and
α := (α1, . . . , αn). Abbreviate U := U1 × · · · × Un. Then

Φ : Cα(U,F )→ C(α1,...,αn−1,0)(U,F )× Cα−en(U1 × · · · × Un−1 × (Un × En), F ),

f 7→ (f, d(0,...,0,1)f)

is a linear topological embedding with closed image.

Proof. The linearity is clear.
Because Φ is injective, it will be an embedding if we can show that the initial topology
τ on Cα(U,F ) with respect to Φ coincides with the compact-open Cα-topology ϑ. By
transitivity of initial topologies, τ is initial with respect to the maps

dβ : Cα(U,F )→ C(U × Eβ11 × · · · × E
βn
n , F ), f 7→ dβf (4.20)

for β := (β1, . . . , βn) ∈ Nn0 with βi ≤ αi and βn = 0 and the map

ϕβ : Cα(U,F )→ C(U1×· · ·×Un−1× (Un×En)×Eβ11 ×· · ·×E
βn−1

n−1 × (En×En)βn , F ),

(4.21)
f 7→ dβ(denf),

for β ∈ Nn0 such that β ≤ α− en.

To see that ϑ ⊆ τ , we show that τ makes the maps

dγ : Cα(U,F )→ C(U × Eγ11 × · · · × E
γn
n , F )

continuous for each γ = (γ1, . . . , γn) ∈ Nn0 with γ ≤ α. If γn = 0, this is clear from
(4.20), applied with β := γ. If γn ≥ 1, define β := γ − en. Then ϕβ from (4.21) is
continuous . Also the map

h : U×Eγ11 ×· · ·×E
γn
n → U1×· · ·×Un−1×(Un×En)×Eβ11 ×· · ·×E

βn−1

n−1 ×(En×En)βn ,
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(x1, . . . , xn, w1, . . . , wn) 7→

(x1, . . . , xn−1, (xn, wn,1), w1, . . . wn−1, (wn,2, 0), . . . , (wn,γn , 0))

is continuos, where wn = (wn,1, . . . wn,γn). Note that

dγf(x,w1, . . . , wn) = dβ(denf)(h(x,w1, . . . , wn))

for f ∈ Cα(U,F ). Thus dγ = C(h, F ) ◦ ϕβ, where

C(h, F ) : C(U1 × · · · × Un−1 × (Un × En)× Eβ11 × · · · × E
βn−1

n−1 × (En × En)βn , F )→

C(U × Eγ11 × · · · × E
γn
n , F ),

g 7→ g ◦ h

is continuous. Hence dγ is continuous with respect to τ for all γ and thus ϑ ⊆ τ .

Also τ ⊆ ϑ (and thus τ = ϑ ): Becausw ϑ makes each of the maps dβ from (4.20)
continuous , it only remains to show that ϑ makes ϕβ freom (4.21) continuous for each
β ∈ Nn0 such that β ≤ α− en. This will follow from the formula

ϕβ = C(h, F ) ◦ dβ+en +

βn∑
j=1

C(hj , F ) ◦ dβ (4.22)

with dβ : Cα(U,F )→ C(U × Eβ11 × · · · × E
βn
n , F ) ,

dβ+en : Cα(U,F )→ C(U × Eβ11 × · · ·×, E
βn−1

n−1 , E
βn+1
n , F ),

h : U1 × · · · × Un−1 × (Un × En)× Eβ11 × · · · × E
βn−1

n−1 × (En × En)βn →

U × Eβ11 × · · · × E
βn−1

n−1 × E
βn+1
n ,

(x1, . . . , xn−1, (xn, u0), w1, . . . , wn−1, (u1, v1), . . . , (uβn , vβn)) 7→

(x1, . . . , xn, w1, . . . , wn−1, (u0, u1, . . . , uβn))

and

hj : U1×· · ·×Un−1×(Un×En)×Eβ11 ×· · ·×E
βn−1

n−1 ×(En×En)βn → U×Eβ11 ×· · ·×E
βn
n ,

(x1, . . . , xn−1, (xn, u0), w1, . . . , wn−1, (u1, v1), . . . , (uβn , vβn)) 7→

(x1, . . . , xn, w1, . . . , wn−1, (u1, . . . , uj−1, vj , uj+1, . . . , uβn)).
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It remains to prove (4.22). We first note that, because denf(x1, . . . , xn, u0) is linear in
u0, we have

den(denf)(x1, . . . , xn−1, (xn.u0), (0, u1)) = denf(x1, . . . , xn, u1) (4.23)

and hence
d2en(denf)(x1, . . . , xn−1, (xn.u0), (0, u1), (0, u2)) = 0. (4.24)

We now write

((u1, v1), . . . , (uβn , vβn)) = ((u1, 0) + (0, v1), . . . , (uβn , 0) + (0, vβn))

in the final argument of

dβ(de1f)(x1, . . . , xn−1, (xn, u0), w1, . . . , wn−1, ((u1, v1), . . . , (uβn , vβn))),

in which this function is symmetric βn-linear. We expand into the sum of the 2βn

corresponding contributions, omit the terms vanishing by (4.24) as they omit 2 or more
contributions (0, vj), and rewrite those containing one contribution (0, vj) using (4.23).
This gives (4.22).

The image of Φ is closed: Let (gi)i∈I be a net in imΦ which converges, say to (f, g)

with f ∈ C(α1,...,αn−1,0)(U,F ) and g ∈ Cα−en(U1 × · · · × Un−1 × (Un × En), F ). Let
fi ∈ Cα(U,F ) with Φ(fi) = gi.We claim that denf(x, y) exists for x = (x1, . . . , xn) ∈ U0

and y ∈ En, and is given by

denf(x, y) = g(x1, . . . , xn−1, (xn, y)). (4.25)

Because the righthand side of (4.25) makes sense and is a continuous also for (x, y) ∈
U × En, we see that f is Cen with

denf = g (4.26)

a Cα−en-map. Hence f is Cα, by Lemma 77. Using (4.26), we see that Φ(f) =

(f, denf) = (f, g), whence (f, g) ∈ imPhi and so imΦ is closed. It remains to ver-
ify the claim. Abbreviate y∗ := (0, y) ∈ E1 × · · · × En. For fixed t ∈ R \ {0} such that
x+ ty∗ ∈ U0, the functions

[0, 1]→ F, s 7→ denfi(x+ sty∗, y)

converge uniformly to s 7→ g(x+sty∗, y) (as (x+[0, 1]ty∗)×{y} is compact and denfi → g

uniformly on comact sets). The right-hand side of

fi(x+ ty∗)− fi(x) = t

∫ 1

0
denfi(x+ sty∗, y) ds
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4.3 The Exponential Law for Cα-mappings

therefore converges to t
∫ 1

0 g(x+ sty∗, y) ds, and the Left-hand side converges to f(x+

ty∗) − f(x), which lies in F (whence also the weak integral exists in F , not only in a
completion F̃ ). Thus

1

t
fi(x+ ty∗)− f(x) =

∫ 1

0
g(x+ sty, y) ds,

which converges to
∫ 1

0 g(x, y) ds = g(x, y) as t → 0, by continuity of g(x + sty, y) in
(s, t), the claim is established.

Lemma 92. Let E1, . . . , En and F be locally convex spaces, Ui ⊆ Ei be a locally convex
subset with dense interior for i ∈ {1, . . . , n}, α := (α1, . . . , αn) such that αi ∈ N0∪{∞}
and σ ∈ Sn and ασ := (ασ(1), . . . , ασ(n)). If f : U1 × · · · × Un → F is a Cα-map, then
the map

Φσ : Cα(U1 × · · · × Un, F )→ Cασ(Uσ(1) × · · · × Uσ(n), F )

taking f to Φσ(f) := g as in (4.9) is an isomorphism of topological vector spaces.

Proof. For each β ∈ Nn0 such that β ≤ α, we have dβσ ◦ Φσ = C(hβ, F ) ◦ dβ by (4.10)
where

hβ : Uσ(1) × · · · × Uσ(n) × E
βσ(1)
σ(1) × · · · × E

βσ(n)
σ(n) → U1 × · · · × Un × Eβ11 × · · · × E

βn
n

(xσ(1), . . . , xσ(n), wσ(1), . . . , wσ(n)) 7→ (x1, . . . , xn, w1, . . . , wn).

Since dβ and C(hβ, F ) are continuous, also dβσ ◦Φσ is continuous for each β as before,
and hence Φ is continuous. The same argument show that (Φσ)−1 = Φσ−1 is continuous.

Lemma 93. Let α := (α1, . . . , αn) ∈ (N0 ∪ {∞})n, E1, . . . , En, H1, . . . ,Hn and F be
locally convex spaces, Ui ⊆ Ei, Pi ⊆ Hi be locally convex subsets with dense interior
for i ∈ {1, . . . , n} and gi : Pi → Ei be Cαi-maps such that gi(Pi) ⊆ Ui. Abbreviate
P := P1 × · · · × Pn and U := U1 × · · · × Un. Then

Cα(g, F ) : Cα(U,F )→ Cα(P, F ), f 7→ f ◦ g

is continuous and linear.

Proof. The linearity is clear. The topologies on Cα(P, F ) and Cα(U,F ) are initial with
respect to the inclusion maps iβ : Cα(P, F )→ Cβ(P, F ) and jβ : Cα(U,F )→ Cβ(U,F ),

respectively, for β ∈ Nn0 such that β ≤ α. Since iβ ◦Cα(g, F ) = Cβ(g, F ) ◦ jβ, it suffices
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to show that each Cβ(g, F ) is continuous. Hence α ∈ Nn0 without loss of generality.
Now the proof is by induction on |α| .
|α| = 0, then Cα(g, F ) = C(g, F ) is continuous.
Induction step: Assume that |α| ≥ 1. Thus αj ≥ 1 for some j ∈ {1, . . . , n}. Let σ ∈ Sn
be the permutation which interchanges j and n. Define ασ,

Φσ : Cα(U,F )→ Cασ(Uσ(1), . . . , Uσ(n), F )

and an analogous isomorphism

Ψσ : Cα(P, F )→ Cασ(Pσ(1), . . . , Pσ(n), F )

as in Lemma 92. Then

Cα(g, F ) = Ψ−1
σ ◦ Cασ(gσ(1) × · · · × gσ(n), F ) ◦ Φα,

and it suffices to show that Cασ(gσ(1) × · · · × gσ(n), F ) is continuous. Hence αn ≥ 1

without loss of generality. By Lemma 91. Cα(g, F ) will be continuous if iα−en ◦Cα(g, F )

and den ◦ Cα(g, F ) are continuous (with iα−en as at the beginning of the proof). Now
iα−en◦Cα(g, F ) = Cα−en(g, F )◦jα−en is continuous by induction. Also for f ∈ Cα(P, F )

and (x1, . . . , xn−1, (xn, y)) ∈ P1 × · · · × Pn−1 × (Pn ×Hn) we have

den(f ◦ g)(x1, . . . , xn−1, (xn, y)) = (denf)(g1(x1), . . . , gn−1(xn−1), dgn(xn, y)),

i.e., den ◦ Cα(g, F ) = Cα−en(g1 × · · · × gn−1 × dgn, F ) ◦ den , which is continuous by
induction.

Theorem 94. Let F and Ei for i ∈ {1, . . . , n} be locally convex spaces, Ui ⊆ Ei be a
locally convex subset with dense interior, αi ∈ N0 ∪ {∞}. For j ∈ N, 2 ≤ j ≤ n, let
U := U1×· · ·×Uj−1 and V := Uj×· · ·×Un, γ := (α1, . . . , αj−1) and η := (αj , . . . , αn).
If f : U × V → F is C(γ,η), then
(a) The map fx : V → F, y 7→ f(x, y) is Cη for each x := (x1, . . . , xj−1) ∈ U.
(b) The map f∨ : U → Cη(V, F ), x 7→ fx is Cγ.
(c) The mapping Φ: C(γ,η)(U × V, F ) → Cγ(U,Cη(V, F )), f 7→ f∨ is linear and a

topological embedding.

Proof.

(a) γx : V → F is Cη for all x ∈ U, by Lemma 67.
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4.3 The Exponential Law for Cα-mappings

(b) We have
Cγ(U,Cη(V, F )) = lim←−

ζ∈(N0)n−j+1,
ζ≤η

Cγ(U,Cζ(V, F ))

by Lemmas 89 and 90. It therefore suffices to prove the assertion when η ∈ (N0)n−j+1

(cf. [4, Lemma 10.3]). We may assume that γ ∈ (N0)n−j+1. The proof is by induction
on |γ|.
The case γ = 0. If η = 0, then the assertion follows from [11, Theorem 3.4.1]. If η 6= 0,
the topology on Cη(V, F ) is initial with respect to the maps

d(βj ,βj+1,...,βn) : Cη(V, F )→ C(V × Eβjj × · · · × E
βn
n , F )c.o, g 7→ d(βj ,βj+1,...,βn)g,

for βi ∈ N0 such that βi ≤ αi. Hence, we only need that d(βj ,βj+1,...,βn) ◦ f∨ : U →
C(V × Eβjj × · · · × E

βn
n , F )c.o is continuous for βi ∈ {0, 1, . . . , αi}. Now

d(βj ,βj+1,...,βn)(f∨(x)) = d(βj ,βj+1,...,βn)(f(x, •))

= d(0,...,0,βj ,βj+1,...,βn)f(x, •) = (d(0,...,0,βj ,βj+1,...,βn)f)∨(x).

Thus d(βj ,βj+1,...,βn) ◦ f∨ = (d(0,...,0,βj ,βj+1,...,βn)f)∨ : U → C(V ×Eβjj × · · · ×E
βn
n , F )c.o,

which is continuous by induction. As a consequence, f∨ : U → Cη(V, F ) is continuous.
The case γ 6= 0. Using Corollary 70, we may assume that, αj−1 6= 0. If η = 0, then
f∨ : U → C(V, F ). Let x ∈ U0 := U0

1×· · ·×U0
j−1, z ∈ Ej−1 and z∗ ∈ ({0})j−2×Ej−1 be

the element with final component z. Since Uj−1×V → F, (u, v) 7→ f(x1, . . . , xj−2, u, v)

is C1,0, the proof of Theorem 59 show that

1

t
(f∨(x+ tz∗)− f∨(x))→ d(0,...,0,1,0...,0)f(x, •, z)

in C(V, F ) as t→ 0. Thus d(0,...,0,1)f∨(x, z) exists for all x ∈ U0, z ∈ Ej−1 and is given
by d(0,...,0,1)f∨(x, z) = d(0,...,0,1,0...,0)f(x, •, z).
Now U → C(V, F ), x 7→ d(0,...,0,1,0...,0)f(x, •, z) is a continuous function in all of U (by
γ = 0); so f∨ is C(0,...,0,1) on U, and d(0,...,0,1)f∨(x, z) = d(0,...,0,1,0...,0)f(x, •, z). Because

h : (U × Ej−1)× V → F, ((x, z), y) 7→ d(0,...,0,1,0...,0)f(x, y, z)

is C(α1,...,αj−2,αj−1−1,η) (see Lemma 76 and Corollary 70), by induction d(0,...,0,1)(f∨) =

h∨ : U × Ej−1 → C(V, F ) is C(α1,...,αj−2,αj−1−1). Moreover, f∨ is C(α1,...,αj−2,αj−1−1) by
induction. Hence Lemma 76 and Corollary 70 show that f∨ is Cγ .
If η 6= 0, again by Corollary 70, we may assume that αn 6= 0. By Lemmas 87 and 91

Cη(V, F )→ Cη−en(V, F )× C(αj ,...,αn−1,αn−1)(V × En, F ), ϕ 7→ (ϕ, d(0,...,0,1)ϕ)
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is a linear topological embedding with closed image, f∨ : U → Cη−en(V, F ) will be Cγ

if f∨ : U → C(V, F ) is Cγ (which holds by induction) and the map

h : U → C(αj ,...,αn−1,αn−1)(V × En, F ), x 7→ d(0,...,0,1)(f∨(x))

is Cγ . (see Lemma 84). For x ∈ U, y ∈ V and z ∈ En, we have

h(x)(y, z) = d(0,...,0,1)(f∨(x))(y, z) = d(0,...,0,1)(f(x, •))(y, z) = d(0,...,0,1)f(x, y, z),

thus h = (d(0,...,0,1)f)∨ for d(0,...,0,1)f : U × (V × En)→ F.

This function is C(γ,αj ,...,αn−1,αn−1), by Lemma 76. Hence h is Cγ , by induction.

(c) The linearity of Φ is clear. For y ∈ V, the point evaluation λ : Cη(V, F )→ F, ψ 7→
ψ(y) is continuous linear. Hence, for βi ∈ N0, βi ≤ αi, x ∈ U and w ∈ Eβ11 ×· · ·×E

βj−1

j−1 ,

(d(β1,β2,...,βj−1)f∨)(x,w)(y) = λ((d(β1,β2,...,βj−1)f∨)(x,w))

= d(β1,β2,...,βj−1)(λ ◦ f∨)(x,w)

= d(β1,β2,...,βj−1)(f(•, y)(x,w))

= d(β1,β2,...,βj−1,0,...,0)f(x, y, w),

using that (λ ◦ f∨)(x) = λ(f∨(x)) = f∨(x)(y) = f(x, y). Hence

(d(β1,β2,...,βj−1)f∨)(x,w) = (d(β1,β2,...,βj−1,0,...,0)f)(x, •, w).

Hence by Schwarz’ Theorem (Proposition 69), for v ∈ Eβjj × · · · × E
βn
n ,

d(βj ,βj+1,...,βn)((d(β1,β2,...,βj−1)f∨)(x,w))(y, v) = d(β1,β2,...,βn)f(x, y, w, v).

Φ is continuous at 0. LetW ⊆ Cγ(U,Cη(V, F )) be a 0 -neighbourhood. After shrinking
W, without loss of generality

W =
⋂
τ≤β
{f ∈ Cγ(U,Cη(V, F )) : dςf(Kς) ⊆ Pς}

for some β = (β1, β2, . . . , βj−1) ∈ Nj−1
0 with βi ≤ αi, ς = (τ1, τ2, . . . , τj−1) ∈ Nj−1

0 with
τi ≤ βi, Kς ⊆ U ×Eτ11 × · · · ×E

τj−1

j−1 compact and Pς ⊆ Cη(V, F ) 0 -neighbourhood (see
Lemma 83). Using Lemma 83 again, after shrinking Pς , we may assume that,

Pς =
⋂
ρ≤δ
{g ∈ Cη(V, F ) : dρg(Kς,ρ) ⊆ Pς,ρ}
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4.3 The Exponential Law for Cα-mappings

with δ = (δj , . . . , δn) ∈ Nn−j+1
0 such that δi ≤ αi, ρ := (τj , τj+1, . . . , τn), Kς,ρ ⊆ V ×

E
τj
j × · · · × Eτnn compact and Pς,ρ ⊆ F 0-neighbourhood. Then W is the set of all

f ∈ Cγ(U,Cη(V, F )) such that dρ(dςf(x,w))(y, v) ∈ Pς,ρ for all (x,w) ∈ Kς ⊆ U ×
Eτ11 × · · · × E

τj−1

j−1 and (y, v) ∈ Kς,ρ ⊆ V × Eτjj × · · · × Eτnn . The projections of U ×
Eτ11 × · · · × E

τj−1

j−1 onto the factors U,Eτ11 , . . . , E
τj−1

j−1 are continuous, hence the images
K1
ς ,K

2
ς , . . . ,K

j
ς of Kς under these projections are compact. After replacing Kς by

K1
ς × K2

ς × · · · × K
j
ς , without loss of generality Kς = K1

ς × K2
ς × · · · × K

j
ς . Likewise,

without loss of generality Kς,ρ = K1
ς,ρ×K2

ς,ρ×· · ·×K
n−j+2
ς,ρ with compact sets K1

ς,ρ ⊆ V
and K2

ς,ρ ⊆ E
τj
j , . . . ,K

n−j+2
ς,ρ ⊆ Eτnn .

Now if f ∈ Cγ,η(U×V, F ), then dρ(dςf∨(x,w))(y, v) = d(ς,ρ)f(x, y, w, v). Hence f∨ ∈W
if and only if d(ς,ρ)f(K1

ς ×K1
ς,ρ ×K2

ς × · · · ×K
j
ς ×K2

ς,ρ × · · · ×K
n−j+2
ς,ρ ) ⊆ Pς,ρ for all

ς ≤ β, ρ ≤ δ. This is a basic neighbourhood in C(γ,η)(U × V, F ) (see Lemma 83). Thus
Φ−1(W ) is a 0 -neighbourhood, whence Φ is continuous at 0, and hence Φ is continuous.
It is clear that Φ is injective. To see that Φ is an embedding, it remains to show that
Φ(W ) is a 0 -neighbourhood in im(Φ) for each W in a basis of 0 -neighbourhoods in
Cγ,η(U × V, F ). Let

W :=
⋂
ς≤β,
ρ≤δ

{f ∈ Cγ,η(U × V, F ) : d(ς,ρ)(Kς,ρ) ⊆ Pς,ρ}

for some β ∈ Nj−1
0 with βi ≤ αi, δ ∈ Nn−j+1

0 with δi ≤ αi, compact sets Kς,ρ ⊆ U×V ×
Eτ11 ×· · ·×Eτnn and 0 -neighbourhood Pς,ρ ⊆ F where (ς, ρ) = (τ1, . . . τn), after increasing
Kς,ρ, we may assume that Kς,ρ = L1

ς,ρ ×K1
ς,ρ × L2

ς,ρ × · · · × L
j
ς,ρ ×K2

ς,ρ × · · · ×K
n−j+2
ς,ρ

with compact sets L1
ς,ρ ⊆ U, K1

ς,ρ ⊆ V, L2
ς,ρ × · · · × Ljς,ρ ⊆ Eτ11 × · · · × E

τj−1

j−1 and
K2
ς,ρ×· · ·×K

n−j+2
ς,ρ ⊆ Eτjj ×· · ·×Eτnn . Then Φ(W ) := {ϕ ∈ im(Φ): dρ(dηϕ(x,w))(y, v) ∈

Pς,ρ} for all ς and ρ, x ∈ L1
ς,ρ, y ∈ K1

ς,ρ, w ∈ L2
ς,ρ×· · ·×L

j
ς,ρ and v ∈ K2

ς,ρ×· · ·×K
n−j+2
ς,ρ ,

which is a 0 -neighbourhood in im(Φ), by Lemma 83.

Lemma 95. Let Q be a topological space and i ∈ {1, . . . , n}, let Ei, F be locally convex
spaces, τi ∈ N and

f : Q× Eτ11 × · · · × E
τn
n → F

be a map such that f(x,w1, . . . , wi−1, •, wi+1, . . . , wn) : Eτii → F is symmetric τi-linear
for all x ∈ Q and wj ∈ E

τj
j with j 6= i. Then f is continuous if and only if g : Q ×

E1 × · · · × En → F, g(x, v1, v2, . . . , vn) := f(x, v1, . . . , v1︸ ︷︷ ︸
τ1−times

, v2, . . . , v2︸ ︷︷ ︸
τ2−times

, . . . , vn, . . . , vn︸ ︷︷ ︸
τn−times

) is

continuous.
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Proof. The continuity of g follows directly from the continuity of f . If, conversely, g is
continuous, then the assertion follows by n applications of the Polarization Identity [8,
Theorem A].

Theorem 96. (Exponential Law for Cα-mappings). Let F and Ei for i ∈ {1, . . . , n}
be locally convex spaces, Ui ⊆ Ei be a locally convex subset with dense interior, αi ∈
N0 ∪ {∞} and let Xi := {0} if αi = 0, otherwise Xi := Ei. For j ∈ {2, . . . , n} define
U := U1 × · · · × Uj−1, V := Uj × · · · × Un, γ := (α1, . . . , αj−1), η := (αj , . . . , αn).
Assume that V is locally compact or U × V ×X1 ×X2 × · · · ×Xn is a k-space. Then

Φ: C(γ,η)(U × V, F )→ Cγ(U,Cη(V, F )), f 7→ f∨

is an isomorphism of topological vector spaces. Moreover, if g : U → Cη(V, F ) is Cγ ,
then

g∧ : U × V → F, g∧(x, y) := g(x)(y)

is C(γ,η).

Proof. We only need to show the final assertion. Indeed, given g ∈ Cγ(U,Cη(V, F )),

the map g∧ will be C(γ,η) and hence g = (g∧)∨ = Φ(g∧). Thus Φ will be surjective. so,
by Theorem 94, Φ will be an isomorphism of topological vector spaces.
Locally compact condition. For x := (x1, . . . , xj−1) ∈ U and y := (yj , . . . , yn) ∈ V,

g∧(x, y) = g(x)(y) = ε(g(x), y) where ε : Cη(V, F ) × V → F, (ψ, y) 7→ ψ(y) is C(∞,η)

(Proposition 80). Hence g∧ is C(γ,η) by Chain Rule for Cα-mappings (Lemma 81).
k-space condition. If g : U → Cη(V, F ) is Cγ , define g∧ : U × V → F, g∧(x, y) =

g(x)(y). For fixed x ∈ U, we have g∧(x, •) = g(x) which is Cη, hence

(D̆j · · · D̆n g
∧)(x, y) = d(βj ,βj+1,...,βn)(g(x))(y, wj , . . . , wn)

= (d(βj ,βj+1,...,βn) ◦ g)(x)(y, wj , . . . , wn)

exists for βi ∈ N0 such that βi ≤ αi, y ∈ V 0 := U0
j × · · · × U0

n and wi ∈ Eβii . Also,

(D̆j · · · D̆n g
∧)(x, y) = (ε(y,wj ,...,wn) ◦ d(βj ,βj+1,...,βn) ◦ g)(x),

where ε(y,wj ,...,wn) : C(V × Eβjj × · · · × E
βn
n , F ) → F, f 7→ f(y, wj , . . . , wn). For fixed

(y, wj , . . . , wn), this is the function ε(y,wj ,...,wn)◦d(βj ,βj+1,...,βn)◦g of x, which is Cγ . Since

ε(y,wj ,...,wn) and d(βj ,βj+1,...,βn) : Cη(V, F ) → C(V × Eβjj × · · · × E
βn
n , F ) are continuous
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linear, we obtain the directional derivatives

(D̆1 · · · D̆n g
∧)(x, y)

= ε(y,wj ,...,wn)(d
(βj ,βj+1,...,βn)(d(β1,β2,...,βj−1)g(x,w1, . . . , wj−1)))

= d(βj ,βj+1,...,βn)(d(β1,β2,...,βj−1)g(x,w1, . . . , wj−1))(y, wj , . . . , wn)

= (d(βj ,βj+1,...,βn) ◦ (d(β1,β2,...,βj−1)g))(x,w1, . . . , wj−1)(y, wj , . . . , wn)

= (d(βj ,βj+1,...,βn) ◦ (d(β1,β2,...,βj−1)g))∧((x,w1, . . . , wj−1), (y, wj , . . . , wn))

for x ∈ U0 := U0
1 × · · · ×U0

n. To see that g∧ is C(γ,η), it therefore suffices to show that

h : (d(βj ,βj+1,...,βn) ◦(d(β1,β2,...,βj−1)g))∧ : U×Eβ11 ×· · ·×E
βj−1

j−1 ×V ×E
βj
j ×· · ·×E

βn
n → F

is continuous for all βi ∈ N0 such that βi ≤ αi. By Lemma 95, h will be continuous if
we can show that

f : U ×X1 × · · · ×Xj−1 × V ×Xj × · · · ×Xn → F,

(x,w1, . . . , wj−1, y, wj , . . . , wn)

7→ h(x,w1, . . . , w1︸ ︷︷ ︸
β1−times

, w2, . . . , w2︸ ︷︷ ︸
β2−times

, . . . , wj−1, . . . , wj−1︸ ︷︷ ︸
βj−1−times

, y, wj , . . . , wj︸ ︷︷ ︸
βj−times

, . . . , wn, . . . , wn︸ ︷︷ ︸
βn−times

)

is continuous. Now ψ : U×X1×· · ·×Xj−1 → U×Eβ11 ×· · ·×E
βj−1

j−1 , (x,w1, . . . , wj−1) 7→
(x,w1, . . . , w1︸ ︷︷ ︸

β1−times

, w2, . . . , w2︸ ︷︷ ︸
β2−times

, . . . , wj−1, . . . , wj−1︸ ︷︷ ︸
βj−1−times

) is continuous and ϕ : V ×Xj×· · ·×Xn →

V × Eβjj × · · · × E
βn
n , (y, wj , . . . , wn) 7→ (y, wj , . . . , wj︸ ︷︷ ︸

βj−times

, wj+1, . . . , wj+1︸ ︷︷ ︸
βj+1−times

, . . . , wn, . . . , wn︸ ︷︷ ︸
βn−times

)

is continuous and

θ := C0(ϕ, F )◦d(βj ,βj+1,...,βn) ◦d(β1,β2,...,βj−1)g ◦ψ : U ×X1×· · ·×Xj−1 → C0(V ×Y, F )

is continuous. Since U×X1×· · ·×Xj−1×V ×Xj×· · ·×Xn is a k-space by hypothesis,
it follows that θ∧ : U ×X1 × · · · ×Xj−1 × V ×Xj × · · · ×Xn → F is continuous (see
[20, Proposition B.15]). But θ∧ = f, and thus f is continuous.

4.4 The Exponential Law for Cα-mappings on manifolds

Definition 97. For i ∈ {1, . . . , n}, let Mi be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space, α := (α1, . . . , αn) with αi ∈ N0 ∪ {∞}
and F be a locally convex space. A map f : M1 × · · · × Mn → F is called Cα if
f ◦ (ϕ−1

1 × · · · × ϕ−1
n ) : Vϕ1 × · · · × Vϕn → F is Cα for all charts ϕi : Uϕi → Vϕi of Mi.

Then f is continuous in particular.
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Remark 98. In the preceding situation, assume that f ◦ (ϕ−1
1 × · · · × ϕ−1

n ) is Cα for
charts ϕi in a (not necessarily maximal) atlas of Mi, for i ∈ {1, . . . , n}. Then f is Cα,
using the Chain Rule (Lemma 81). In paticular, a map f as in Definition 66 is Cα as
defined there iff it is Cα in the sense of Definition 97.

Definition 99. IfM1×· · ·×Mn and N are smooth manifolds and α ∈ (N0∪{∞})n, we
say that a map f : M1×· · ·×Mn → N is Cα if it is continuous and ϕ◦f◦(ϕ−1

1 ×· · ·×ϕ−1
n ) :

V1 × · · · × Vn → V is Cα for all charts ϕ : U → V of M and charts ϕi : Ui → Vi of Mi

such that U1×· · ·×Un ⊆ f−1(U). Again using Lemma 81 we see that f is Cα if and only
if for each x = (x1, . . . , xn) ∈M1× · · · ×Mn, there exists a chart φ : U → V of M with
f(x) ∈ U and charts ϕi : Ui → Vi of Mi with xi ∈ Ui such that Ui × · · · ×Un ⊆ f−1(U)

and ϕ ◦ f ◦ (ϕ−1
1 × · · · × ϕ−1

n ) : V1 × · · · × Vn → V is Cα.

Definition 100. In the situation of Definition 97, let Cα(M1×· · ·×Mn, F ) be the space
of all Cα-maps f : M1 × · · · ×Mn → F. Endow Cα(M1 × · · · ×Mn, F ) with the initial
topology with respect to the maps Cα(M1×· · ·×Mn, F )→ Cα(Vϕ1×· · ·×Vϕn , F ), f 7→
f ◦ (ϕ−1

1 × · · · × ϕ−1
n ), for ϕi in the maximal smooth atlas of Mi with i = 1, . . . , n.

Lemma 101. Let F be a locally convex space. For i ∈ {1, . . . , n}, let Mi be a smooth
manifold modelled on a locally convex space, Ai be the maximal smooth atlas for Mi

with a chart ϕi : Uϕi → Vϕi and α := (α1, . . . , αn) with αi ∈ N0 ∪ {∞}. Then the map

Φ : Cα(M1 × · · · ×Mn, F ) ∼=
∏
ϕi∈Ai

Cα(Vϕ1 × · · · × Vϕn , F ), f 7→ f ◦ (ϕ−1
1 × · · · × ϕ

−1
n )

is an embedding with closed image.

Proof. It is clear that Φ is injective (and linear). The topology on Cα(M1×· · ·×Mn, F )

being initial with respect to the maps f 7→ f ◦ (ϕ−1
1 × · · · ×ϕ−1

n ), we deduce that Φ is a
topological embedding. To see that im(Φ) is closed, let (gβ)β∈B be a net in im(Φ) which
converges to some g ∈

∏
ϕi∈Ai C

α(Vϕ1 × · · · × Vϕn , F ). We have gβ = (gβ,ϕ1,...,ϕn)ϕi∈Ai
and g = (gϕ1,...,ϕn)ϕi∈Ai . Then gβ,ϕ1,...,ϕn → gϕ1,...,ϕn in Cα(Vϕ1 × · · · × Vϕn , F ) and
hence also pointwise. As a consequence,

gϕ1,...,ϕn = gψ1,...,ψn ◦ (ψ1, . . . , ψn) ◦ (ϕ−1
1 × · · · × ϕ

−1
n )

on ϕ1(Vϕ1∩Vψ1)×· · ·×ϕn(Vϕn∩Vψn), for all ϕi, ψi ∈ Ai. Hence the map f : M1×· · ·×
Mn → F is well-defined via f(x) := gϕ1,...,ϕn(ϕ1(x), . . . , ϕn(x)) for x ∈ Uϕ1 × · · · ×Uϕn .
Because

f ◦ (ϕ−1
1 × · · · × ϕ

−1
n ) = gϕ1,...,ϕn (4.27)

is Cα, the map f is Cα and by (4.27), we have Φ(f) = g. Hence im(Φ) is closed.
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4.4 The Exponential Law for Cα-mappings on manifolds

Lemma 102. Let M1, . . . ,Mn be smooth manifolds (possibly with rough boundary), F
and X be locally convex spaces, W ⊆ F be an open set and f : W → X be a smooth
map. Let α ∈ (N0 ∪ {∞})n. If W = F or M1, . . . ,Mn are compact, then

Cα(M1 × · · · ×Mn, f) : Cα(M1 × · · · ×Mn,W )→ Cα(M1 × · · ·×, X), γ 7→ f ◦ γ

is a C∞-map.

Proof. If W = F, we only need to show that Cα(M1 × · · · × Mn, F ) → Cα(Vϕ1 ×
· · · × Vϕn , X), γ 7→ (f ◦ γ) ◦ (ϕ−1

1 × · · · × ϕ−1
n ) is smooth for all charts ϕi of Mi, by

Lemma 101. As this map coincides with Cα(Vϕ1 × · · · × Vϕn , f) composed with the
continuous linear map γ 7→ γ ◦ (ϕ−1

1 × · · · × ϕ−1
n ), we may assume that Mi = Ui is a

locally convex subset with dense interior of a locally convex space Ei, for i = 1, . . . , n.

Because Cα(U1 × · · · × Un, X) = lim←−C
β(U1 × · · · × Un, X) with the inclusion maps

iβ : Cα(U1 × · · · × Un, X) → Cβ(U1 × · · · × Un, X) for β ∈ Nn0 such that β ≤ α, (see
Lemma 90), we only need too show that iβ ◦Cα(U1×· · ·×Un, f) is smooth (see Lemma
85 and [4]). Now iβ ◦Cα(U1×· · ·×Un, f) = Cβ(U1×· · ·×Un, f)◦jβ with the continuous
linear inclusion map jβ : Cα(U1 × · · · × Un, F )→ Cβ(U1 × · · · × Un, F ). Hence α ∈ Nn0
without loss of generality.
The proof is by induction on |α| . If |α| = 0, then Cα(U1 × · · · ×Un, f)→ C(U1 × · · · ×
Un, f) is smooth, see [21].
If |α| ≥ 1, there is j ∈ {1, . . . , n} such that αj ≥ 1. Let σ ∈ Sn be the permutation which
interchanges j and n. Define ασ and Φσ : Cασ(U1 × · · · × Un, F ) → Cα(Uσ(1) × · · · ×
Uσ(n), F ) and the analogous isomorphism Ψσ : Cασ(U1×· · ·×Un, X)→ Cα(Uσ(1)×· · ·×
Uσ(n), X) as in Lemma 92. Then Cα(U1×· · ·×Un, f) = Ψ−1

σ ◦Cασ(Uσ(1)×· · ·×Uσ(n), f)◦
Φσ. Hence αn ≥ 1 without loss of generality, By Lemma 91 and 84, it now suffices to
show that iα−en ◦Cα(U1×· · ·×Un, f) is smooth (which holds by induction as this map
coincides with Cα−en(U1 × · · · ×Un) ◦ jα−en) and den ◦Cα(U1 × · · · ×Un, f) is smooth.
Now den(f ◦ γ)(x1, . . . , xn−1, (xn, y)) = df(γ(x1, · · · , xn), denγ(x1, · · · , xn−1, (xn, y))),

i.e.,

den ◦ Cα(U1 × · · · × Un, f)

= Cα−en(U1 × · · · × Un−1 × (Un × En), df) ◦ (Cα−en(h, F ) ◦ jα−en , den) (4.28)

with h : U1 × · · · × Un−1 × (Un × En) → U1 × · · · × Un, h(x1, . . . , xn−1, (xn, y)) 7→
(x1, . . . , xn). By induction and Lemma 93, the right-hand side of (4.28) is smooth and
hence also den ◦ Cα(U1 × · · · × Un, f) is smooth, as required.
We only sketch the proof of the case that M1, . . . ,Mn are compact and W ⊆ F is
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an open set. Then C(M1 × · · · × Mn,W ) is open C(M1 × · · · × Mn,W ) and hence
Cα(M1 × · · · ×Mn,W ) is open in Cα(M1 × · · · ×Mn, F ). One can show that Lemma
101 is also valied for non-maximal atlases. The asseration will therefore follow if we can
show:
If Ei is a locally convex space, Ui ⊆ Ei a locally convex set with dense interior and
Vi ⊆ Ui relatively open with compact closure Ki := V̄i in Ui for i ∈ {1, . . . , n}, then the
map

{γ ∈ Cα(U1 × · · · × Un, F ) : γ(K1 × · · · ×Kn) ⊆W} → Cα(V1 × · · · × Vn, X),

γ 7→ f ◦ γ|V1×···×Vn

is smooth. But this can be shown like the case W = E.

Proposition 103. For i ∈ {1, . . . , n}, let Mi be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space, αi ∈ N0 ∪{∞} and F be a locally convex
space. Let j ∈ {2, . . . , n}. Define M := M1 × · · · ×Mj−1, N := Mj × · · · ×Mn, γ :=

(α1, . . . , αj−1) and η := (αj , . . . , αn). For x ∈ M and f ∈ C(γ,η)(M × N,F ), write
f∧(x) := fx := f(x, •) : N → F. Then
(a) f∨ ∈ Cγ(M,Cη(N,F )) for all f ∈ C(γ,η)(M ×N,F ).
(b) The map

Φ: C(γ,η)(M ×N,F )→ Cγ(M,Cη(N,F )), f 7→ f∨

is linear and a topological embedding.

Proof. (a) For x ∈ M , it is clear that f∨(x) = f(x, •) is a Cη-map N → F. It suffices
to show that f ◦ (ϕ−1

1 × · · ·×ϕ
−1
j−1) : Uϕ1 × · · ·×Uϕj−1 → Cη(N,F ) is Cγ for each chart

ϕk : Uϕk → Vϕk of M, where k ∈ {1, . . . , j − 1}. For all l ∈ {j, . . . , n}, let Al be the
maximal smooth atlas for Ml. Because the map

Ψ: Cη(N,F )→
∏

ϕl∈Al,
j≤l≤n

Cη(Uϕj × · · · × Uϕn , F ), h 7→ (h ◦ (ϕ−1
j × · · · × ϕ

−1
n ))ϕl∈Al,

j≤l≤n

is a linear topological embedding with closed image f∨ ◦ (ϕ−1
1 × · · ·×ϕ

−1
j−1) is Cγ if and

only if Ψ ◦ f ◦ (ϕ−1
1 × · · · ×ϕ

−1
j−1) is Cγ (see Lemma 101), which holds if all components

are Cγ . Hence we only need that

θ : Vϕ1 × · · · × Vϕj−1 → Cη(Vϕj × · · · × Vϕn , F ),

x 7→ f∨((ϕ−1
1 × · · · × ϕ

−1
j−1)(x)) ◦ (ϕ−1

j × · · · × ϕ
−1
n ) = (f ◦ (ϕ−1

1 × · · · × ϕ
−1
n )∨)(x)
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4.4 The Exponential Law for Cα-mappings on manifolds

is Cγ . But θ = (f ◦(ϕ−1
1 ×· · ·×ϕ−1

n ))∨ where f ◦(ϕ−1
1 ×· · ·×ϕ−1

n ) : Vϕ1×· · ·×Vϕn → F

is C(γ,η), hence θ is Cγ by Theorem 94.
(b) It is clear that Φ is linear and injective. Because Ψ is linear and a topological
embedding, also

Cγ(M,Ψ): Cγ(M,Cη(N,F ))→ Cγ(M,
∏

ϕl∈Al,
j≤l≤n

Cη(Vϕj × · · · × Vϕn , F )), f 7→ Ψ ◦ f

is a topological embedding, by Lemma 86. Let P :=
∏
ϕl∈Al,
j≤l≤n

Cη(Vϕj ×· · ·×Vϕn , F ) and

Ak be the maximal smooth atlas for Mk where k ∈ {1, . . . , j − 1}. The map

Ξ: Cγ(M,P )→
∏

ϕk∈Ak,
1≤k≤j−1

Cγ(Vϕ1 × · · ·×Vϕj−1 , P ), f 7→ (f ◦ (ϕ−1
1 × · · ·×ϕ

−1
j−1)) ϕk∈Ak,

1≤k≤j−1

is a linear topological embedding. Let

Q :=
∏

ϕk∈Ak,
1≤k≤j−1

∏
ϕl∈Al,
j≤l≤n

Cγ(Vϕ1 × · · · × Vϕj−1 , C
η(Vϕj × · · · × Vϕn , F )).

Using the isomorphism
∏

ϕk∈Ak,
1≤k≤j−1

Cγ(Vϕ1 × · · · × Vϕj−1 , P ) ∼= Q, (see Lemma 88) we

obtain a linear topological embedding

Γ := Ξ ◦ Cγ(M,Ψ): Cγ(M,Cη(N,F ))→ Q,

f 7→ (Cη(ϕ−1
j × · · · × ϕ

−1
n , F ) ◦ f ◦ (ϕ−1

1 × · · · × ϕ
−1
j−1))ϕi∈Ai,

1≤i≤n

where Cη(ϕ−1
j × · · · × ϕ−1

n , F ) : Cη(N,F ) → Cη(Vϕj × · · · × Vϕn , F ), f 7→ f ◦ (ϕ−1
j ×

· · · × ϕ−1
n ). Also the map

ω : C(γ,η)(M ×N,F )→
∏

ϕi∈Ai,
1≤i≤n

C(γ,η)(Vϕ1 × · · · × Vϕn , F ),

f 7→ (f ◦ (ϕ−1
1 × · · · × ϕ

−1
n ))ϕi∈Ai,

1≤i≤n

is a topological embedding, by Definition 100. Now we have the commutative dia-
gramme.

C(γ,η)(M ×N,F )
Φ−−−−→ Cγ(M,Cη(N,F ))yω yΓ∏

ϕi∈Ai,
1≤i≤n

C(γ,η)(Vϕ1 × · · · × Vϕn , F )
ζ−−−−→ Q
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where ζ is the map (fϕ1,...,ϕn)ϕi∈Ai,
1≤i≤n

7→ (f∨ϕ1,...,ϕn)ϕi∈Ai,
1≤i≤n

. Because the vertical arrows are

topological embeddings and also the horizontal arrow at the bottom (by Lemma 57 and
Theorem 94) is a topological embbeding, we deduce that the map Φ at the top has to
be a topological embedding as well.

Theorem 104. For i ∈ {1, . . . , n}, let Mi be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space Ei, F be a locally convex space and αi ∈
N0 ∪ {∞}. Let Xi := {0} if αi = 0, otherwise Xi := Ei. For j ∈ {2, . . . , n} define
M := M1×· · ·×Mj−1, N := Mj×· · ·×Mn, γ := (α1, . . . , αj−1) and η := (αj , . . . , αn).
Assume that N is locally compact or M ×N ×X1×X2× · · · ×Xn is a k-space. Then

Φ: C(γ,η)(M ×N,F )→ Cγ(M,Cη(N,F )), f 7→ f∨ (4.29)

is an isomorphism of topological vector spaces. Moreover, a map g : M → Cη(N,F ) is
Cγ if and only if

g∧ : M ×N → F, g∧(x, y) := g(x)(y)

is C(γ,η).

Proof. By Proposition 103, we only need to show that Φ is surjective. To this end, let
g ∈ Cγ(M,Cη(N,F )) and define f := g∧ : M × N → F, f(x, y) := g(x)(y). For all
i ∈ {1, . . . , n}, let ϕi : Uϕi → Vϕi be charts for Mi. Then

f ◦ (ϕ−1
1 × · · · × ϕ

−1
n ) : Vϕ1 × · · · × Vϕn → F,

(x1, . . . , xn) 7→ (Cη(ϕ−1
j × · · · × ϕ

−1
n , F ) ◦ g ◦ (ϕ−1

1 × · · · × ϕ
−1
j−1))∧(x1, . . . , xn)

with Cη(ϕ−1
j ×· · ·×ϕ−1

n , F ) : Cη(N,F )→ Cη(Vϕj×· · ·×Vϕn , F ), h 7→ h◦(ϕ−1
j ×· · ·×ϕ−1

n )

continuous linear. Hence Cη(ϕ−1
j × · · · × ϕ−1

n , F ) ◦ g ◦ (ϕ−1
1 × · · · × ϕ

−1
j−1) : Vϕ1 × · · · ×

Vϕj−1 → Cη(Vϕj × · · · × Vϕn , F ) is Cγ . Hence f ◦ (ϕ−1
1 × · · · × ϕ−1

n ) is C(γ,η) by the
exponential law (Theorem 96). Indeed:
Locally compact condition. For all l ∈ {j, . . . , n}, if N is locally compact, then the
open subset Uϕl is locally compact and hence also the Vϕl . Hence the Exponential Law
(Theorem 96) applies.
k-space condition. Vϕ1 × · · · × Vϕn ×X1 ×X2 × · · · ×Xn is homeomorphic to the open
subset Uϕ1×· · ·×Uϕn×X1×X2×· · ·×Xn of the k-space M ×N ×X1×X2×· · ·×Xn

and hence a k-space. Again, the Exponential Law (Theorem 96) applies.

Remark 105. The same conclusion holds in the following situations:
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4.4 The Exponential Law for Cα-mappings on manifolds

(a) Mj , . . . ,Mn are finite-dimensional manifolds without boundary, with smooth bound-
ary or with corners (then N is a locally compact).

(b) M1, . . . ,Mn are manifolds without boundary, with smooth boundary or with cor-
ners and E1 × · · · × En ×X1 × · · · ×Xn is a k-space.

Corollary 106. For i ∈ I := {1, . . . , n}, let Mi be a smooth manifold (possibly with
rough boundary) modelled on a locally convex space Ei, F be a locally convex space and
αi ∈ N0 ∪ {∞}. For j ∈ {2, . . . , n} define M := M1 × · · · ×Mj−1, N := Mj × · · · ×
Mn, γ := (α1, . . . , αj−1) and η := (αj , . . . , αn). Assume that (a), (b) or (c) is satisfied:

(a) For all i ∈ I, Ei is a metrizable.
(b) For all i ∈ I, Mi is manifold with corners and Ei is a hemicompact k-space.
(c) For all i ∈ {j, . . . , n}, Mi is a finite-dimensional manifold with corners.

Then

Φ: C(γ,η)(M ×N,F )→ Cγ(M,Cη(N,F )), f 7→ f∨

is an isomorphism of topological vector spaces. Moreover, a map g : M → Cη(N,F ) is
Cγ if and only if

g∧ : M ×N → F, g∧(x, y) := g(x)(y)

is C(γ,η).

Proof. Case Mj . . . ,Mn are finite-dimensional manifolds with corners. Let Ml be of
dimension ml for l ∈ {j, . . . , n}. Then each point of Ml has an open neighbourhood
homeomorphic to an open subset Vl of [0,∞[ml . Hence Vl is locally compact, thus Ml

is locally compact. Thus Theorem 104 applies.
Case Ei is a metrizable. Then for all i ∈ I, each point xi ∈Mi has an open neighbour-
hood Ui ⊆Mi homeomorphic to a subset Vi ⊆ Ei. Since V1 × · · · × Vn is metrizable, it
follows that U1× · · · ×Un×E1× · · · ×En is metrizable and hence a k-space. Hence by
Lemma 61 M1 × · · · ×Mn × E1 × · · · × En is a k-space and Theorem 104 applies.
Case E1, . . . , En are kω-spaces, Mi is a manifold with corners. For all xi ∈Mi there is
an open neighbourhood Ui ⊆Mi homeomorphic to an open subset Vi of finite intersec-
tions of closed half-space in Ei. Hence V1×· · ·×Vn×E1×· · ·×En is an (relatively) open
subset of a closed subset of (E1×· · ·×En)2. The latter product is kω since E1, . . . , En are
kω-spaces (see [22, Proposition 4.2(i)]), and hence a k-space. Since open subsets (and
also closed subsets) of k-spaces are k-spaces, it follows that V1×· · ·×Vn×E1×· · ·×En
is a k-space. Now Lemma 61 shows that M1 × · · · ×Mn × E1 × · · · × En is a k-space,
and thus Theorem 104 applies.
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Remark 107. (a) For the case when each Mi is a manifold with corners and (E1 ×
· · · ×En)2 is a k-space, the conclusion can be proved like the result for kω-spaces
in Corollary 106.

(b) Note that Cγ-maps U1 × · · · × Un → F can be defined just as well if, for all
j ∈ {1, . . . , n} with γj = 0, Uj is a Hausdorff topological space (rather than a
subset of some locally convex space Ej). All results carry over to this situation
(with obvious modifications).

(c) If F is a complex locally convex space, we obtain analogous results if Ej is a
locally convex space over Kj ∈ {R,C} and all directional derivatives in the j − th
variable are considered as derivatives over the ground field Kj . The corresponding
maps could be called CγK1,...,Kn-maps.
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Chapter 5

Regular Lie groups and the
Fundamental Theorem

In this chapter we discuss the Ck-regularity concept. After recalling some definitions
and results (mainly from [32], [27], [17] and [21]), we shall introduce a version of the
Fundamental Theorem for g-valued functions (Theorem 132).

Definition 108. The Maurer–Cartan form κG ∈ Ω1(G, g) is the unique left invariant
g-valued 1-form on G with κG,1 = idg, i.e., κG(xl) = x for each x ∈ g.

The logarithmic derivative of a map f can be described as a pull-back of the Maurer-
Cartan form.

Definition 109. LetM be a smooth manifold (with boundary) and K a Lie group with
Lie algebra k and Maurer-Cartan form κK ∈ Ω1(K, k). For an element f ∈ C1(M,K)

we call δ(f) := f∗κK =: f−1 · df ∈ Ω1
C0(M, k) the (left) logarithmic derivative of f .

Remark 110. Let E be a locally convex space, M be a smooth finite dimensional
manifold (possibly with boundary). We write Ω1

Cr(M,E) for the space of E-valued
1-forms on M defining Cr-functions TM → E. The space of E-valued smooth 1-forms
will be denoted by Ω1(M,E). We endow Ω1

Cr(M,E) with the topology induced by the
embedding

Ω1
Cr(M,E) ↪→ Cr(TM,E),

where TM is the tangent bundle and Cr(TM,E) is endowed with the compact open Cr-
topology, so that Ω1

Cr(M,E) is a closed subspace of Cr(TM,E). The space Ω1(M,E)

is endowed with the topology induced by the diagonal embedding

Ω1(M,E) ↪→
∞∏
r=1

Ω1
Cr(M,E).
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The left logarithmic derivative

is a k-valued 1-form on M . For k ∈ N0 ∪ {∞}, we thus obtain a map

δ : Ck(M,K)→ Ω1
Ck−2(M, k)

satisfying the following lemma.

Lemma 111. For f, g ∈ Ck(M,G), the following assertions hold:
(a) The map f−1 : M → G, m 7→ f(m)−1 is Ck with

δ(f−1) = −Ad(f)δ(f).

(b) We have the following product and quotient rules:

δ(fg) = Ad(g)−1δ(f) + δ(g).

and
δ(fg−1) = Ad(g)(δ(f)− δ(g)).

From this it easily follows that

Lemma 112. If M is connected and f, g ∈ Ck(M,G), then

δ(f) = δ(g) ⇐⇒ (∃h ∈ G) g = λh ◦ f.

In particular, δ(f) = δ(g) and f(m0) = g(m0) for some m0 ∈M imply f = g.

Definition 113. (Integrability and local integrability). We call α ∈ Ω1
C0(M, k)

integrable if there exists a C1-function f : M → K with δ(f) = α. We say that α is
locally integrable if each point m ∈ M has an open neighbourhood U such that α|U is
integrable.

Remark 114. Using induction on k, we can prove: If α ∈ Ω1
Ck

(M, k) is integrable and
α = δf with a C1-function f : M → K, then f is Ck+1.

In the following, we frequently abbreviate I := [0, 1].

Definition 115. (Left product integral and left evolution). Let ξ : I → L(G) be
a continuous curve, defined on an interval I ⊆ R. If γ : I → G is a C1-curve such that
δ(γ) = ξ, we call γ a left product integral for ξ. If γ(0) = 1, we call γ the left evolution
of ξ and write EvolG(ξ) := γ.
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Definition 116. (Ck-Regular Lie group). Let k ∈ N0 ∪ {∞}. A Lie group G with
Lie algebra g is called Ck-regular, if for each ξ ∈ Ck(I, g), the initial value problem

γ(0) = 1, δ(γ) = ξ (5.1)

has a solution γ = γξ ∈ Ck+1(I,G), and the evolution map

evolG : Ck(I, g)→ G, ξ 7→ γξ(1)

is smooth. We recall from Lemma 112 that the solutions of (5.1) are unique whenever
they exist. If G is Ck-regular, we write

EvolG : Ck(I, g)→ Ck+1(I,G), ξ 7→ γξ

for the corresponding map on the level of Lie group-valued curves.
The group G is called regular if it is C∞-regular.

Proposition 117. Let G be a connected, simply connected real Lie group and H be a
regular Lie group. Then every continuous Lie algebra homomorphism ψ : L(G)→ L(H)

integrates to a smooth group homomorphism ϕ : G→ H such that L(ϕ) = ψ.

Proof. For the proof we refer to [21].

Remark 118. Proposition 117 implies: If g is a locally convex, Mackey complete
topological Lie algebra, then there is (up to isomorphism) at most one simply connected,
regular Lie group G with L(G) ∼= g.

Proposition 119. Let M be a finite-dimensional smooth manifold and E a locally
convex space. Then Ck(M,E) is a locally convex space, and the evaluation map ε :

Ck(M,E) × M → E is C∞,k. If E is Mackey complete, then Ck(M,E) is Mackey
complete.

Proof. All the spaces C(TnM,TnE)c are locally convex. Therefore the corresponding
product topology is locally convex, and hence Ck(M,E) is a locally convex space.

The continuity of the evaluation map follows from the continuity of the evaluation
map for the compact-open topology because the topology on Ck(M,E) is finer. Next
we observe that directional derivatives exist and lead to a map

d ev : Ck(M,E)2 × T (M)→ E, ((f, ξ), vm) 7→ ξ(m) + Tm(f)vm

whose continuity follows from the first step, applied to the evaluation map of Ck(TM,E).
Hence ev is C1, and iteration of this argument yields Ck.
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In view of Proposition 58, we have

C∞(I, Ck(M,E)) ∼= C∞,k(I ×M,E) ∼= Ck(M,C∞(I, E)),

and if E is Mackey complete, then we have an integration map

Ck(M,C∞(I, E))→ Ck(M,E), ξ 7→
∫ 1

0
• dt ◦ ξ,

which implies that each Ck-curve with values in Ck(M,E) has a Riemann integral, i.e.,
that Ck(M,E) is Mackey complete.

Theorem 120. Let M be a C∞-manifold, K be a Lie group with Lie algebra k and
k ∈ N0 ∪{∞}. If M is compact, then Ck(M,K) carries a Lie group structure for which
any k-chart (φK , UK) of K yields a Ck(M, k)-chart (φ,U) with

U :=
{
f ∈ Ck(M,K) : f(M) ⊆ UK

}
, φ(f) := φK ◦ f,

and the evaluation map of ε : Ck(M,K) ×M → K is C∞,k. The corresponding Lie
algebra is Ck(M, k).

Proof. For the existence of the Lie group structure with the given charts we refer to
[15]. The evaluation map ε is Ck on U × M for each domain U as above, because
V := Ck(M,φK(UK)) is open in Ck(M, k) and the evaluation map of Ck(M, k) is Ck,
verified in Proposition 119.

If f ∈ Ck(M,K) is arbitrary, then ε(fφ−1(g), x) = f(x)φ−1(g)(x) is Ck in (g, x) ∈
V ×M , whence ε is Ck on fU ×M .

Lemma 121. Let G be a Lie group modelled on a locally convex space E, M be a
compact manifold (possibly with boundary) and k ∈ N0∪{∞}. Then the evaluation map

ε : Ck(M,G)×M → G

is C∞,k.

Proof. It suffices to show that each γ ∈ Ck(M,G) has an open neighbourhood W ⊆
Ck(M,G) such that ε|W×M is C∞,k. Let ϕ : U → V ⊆ E be a chart for G around 1 ∈ G
such that Ck(M,U) is open in Ck(M,G) and ϕ∗ : Ck(M,U)→ Ck(M,V ) ⊆ Ck(M,E)

is a chart of Ck(M,G). Then W := γ . Ck(M,U) is an open neighbourhood of γ in
Ck(M,G). By the Chain Rule 1 (Lemma 43), ε|W×M will be C∞,k if we we can show
that the map

Ck(M,U)×M → G, (η, x) 7→ ε(γ . η, x) = γ(x)η(x) = µ(γ(x), ε(η, x))

82



is C∞,k, where µ : G×G→ G is the the group multiplication which is smooth, γ(x) is
Ck in x and C∞,k in (η, x). By the Chain Rule 2 (Lemma 44), we only need to show
that

εU : Ck(M,U)×M → U ⊆ G, (η, x) 7→ η(x)

is C∞,k. Now we have a commutative diagram

Ck(M,U)×M εU−−−−→ Uyϕ∗×idm

yϕ
Ck(M,V )×M ε̃−−−−→ V

where ε̃ : Ck(M,V ) × M → V is a C∞,k-map as a restriction of the C∞,k-map
Ck(M,E) ×M → E, (η, x) 7→ η(x) (see Proposition 42). The vertical arrows being
charts, it followa that εU is C∞,k.

Proposition 122. Let G be a Lie group, N be a manifold, M be a compact manifold
(both possibly with boundary) and r, k ∈ N0 ∪ {∞}. Then a map

f : N → Ck(M,G)

is Cr if and only if
f∧ : N ×M → G

is Cr,k.

Proof. Let f : N → Ck(M,G) is Cr. Then f∧(x, y) := f(x)(y) = ε(f(x), y) where
ε : Ck(M,G)×M → G, (γ, y) 7→ γ(y) is C∞,k, by Lemma 121. Thus by Chain Rule 1
(Lemma 43), f∧ is Cr,k.
Conversely, assume that g := f∧ : N ×M → G is a Cr,k-map. Then the map g∨ =

(f∧)∨ = f is Cr if we can show that each x0 ∈ N has an open neighbourhood W ⊆ N

such that g∨|W is Cr. To achieve this, let ϕ : U → V ⊆ E be a chart of G around 1.
The set P := {(x, y) ∈ N ×M : g(x, y) g(x0, y)−1 ∈ U} is open in N ×M and contains
{x0} ×M . Because {x0} and M are compact, the Wallace Lemma (see [11, 3.2.10])
provides an open neighbourhood W ⊆ N of x0 such that W ×M ⊆ P. The map

h : W ×M → U ⊆ G, (x, y) 7→ g(x, y) g(x0, y)−1

is Cr,k by Chain Rules 1 and 2 (Lemmas 43 and 44), because g(x, y) , g(x0, y) are Cr,k in
(x, y) and h(x, y) = ν(g(x, y), g(x0, y)) where ν : G×G → G, (a, b) 7→ ab−1 is smooth.
We claim that

h∨ : W → Ck(M,U), x 7→ h(x, •)
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is Cr. If this is true, then also g∨|W is Cr, because g∨(x) = h∨(x) . γ = (ργ ◦ h∨)(x)

with γ := g(x0, •) ∈ Ck(M,G). Using that the right translation ργ : Ck(M,G) →
Ck(M,G), η 7→ η . γ is smooth. To prove the claim, consider the commutative diagram

W Ck(M,U)

Ck(M,V )

h∨

(ϕ ◦ h|W×M )∨
ϕ∗

where ϕ◦h|W×M : W×M → V ⊆ E is Cr,k by definition of Cr,k-maps between manifolds
and (ϕ ◦h|W×M )∨ is Cr by the Vector-Valued Exponential Law in locally compact case
(Theorem 59). Thus h∨ = (ϕ∗)

−1 ◦ (ϕ ◦ h|W×M )∨ is Cr as well.

Lemma 123. ([17, Lemma 2.2]) A map f : M → Ck+1(I,G) is Cr if and only if f is
Cr as a map to C(I,G) and D ◦ f : M → Ck(I, TG) is Cr, where D : Ck+1(I,G) →
Ck(I, TG), γ 7→ γ′.

Proposition 124. ([17, Theorem A]) Let G be a Lie group with Lie algebra g. If G is
a Ck-regular, then the map

EvolG : Ck(I, g)→ Ck+1(I,G)

is smooth.

Lemma 125. Let k ≥ 2. For each f ∈ Ck(M,G), the 1-form α := δ(f) satisfies the
Maurer-Cartan equation

dα+
1

2
[α, α] = 0.

Proof. First we show that κG = δ(idG) satisfies the Maurer-Cartan equation. It suffices
to evaluate dα on left invariant vector fields xl, yl, where x, y ∈ g. Since κG(zl) constant,
for each z ∈ g, we have

dκG(xl, yl) = xlκG(yl)− ylκG(xl)− κG([xl, yl]) = −κG([x, y]l) = − [x, y]

= −1

2
[κG, κG] (xl, yl).

Therefore α = f∗κG satisfies

dα = f∗dκG = −1

2
f∗ [κG, κG] = −1

2
[f∗κG, f

∗κG] = −1

2
[α, α] ,

which is the Maurer-Cartan equation.
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Remark 126. Assume that G is Ck-regular. For ξ ∈ Ck(I, g), 0 ≤ s ≤ 1, and
η(t) := γξ(st), we have δ(η)(t) = sξ(st). Therefore we obtain with S : Ck(I, g) × I →
Ck(I, g), S(ξ, s)(t) := sξ(st) the relation

EvolG(ξ)(s) = γξ(s) = evolG(S(ξ, s)).

Lemma 127. ([21]) If G is Ck-regular, x ∈ g and ξ ∈ Ck([0, 1] , g), then the initial
value problem

η′(t) = [η(t), ξ(t)] , η(0) = x

has a unique solution η : [0, 1]→ g given by

η(t) = Ad(γξ(t))
−1x.

Lemma 128. Consider a g-valued 1-form on I2 of class C1,

α = vdx+ wdy ∈ Ω1
C1(I2, g) with v, w ∈ C1(I2, g).

(a) α satisfies the Maurer-Cartan equation if and only if

∂v

∂y
− ∂w

∂x
= [v, w] . (5.2)

(b) Suppose that α satisfies the Maurer-Cartan equation.
i. Assume that G is Ck-regular for some k ∈ N0 ∪ {∞} and α of class Ck. If
f : I2 → G is C2 with δ(f)(∂y) = w and δ(f)(∂x)(x, 0) = v(x, 0) for all
x ∈ I, then δ(f) = α.

ii. Assume that G is Ck-regular for some k ∈ N0 ∪ {∞} and α of class Ck+2.

Then the C2-function f : I2 → G defined by

f(x, 0) := γv(•,0)(x) and f(x, y) := f(x, 0) · γw(x,•)(y)

satisfies δ(f) = α.

Proof. (a) To evaluate the Maurer-Cartan equation for α, we first observe that

1

2
[α, α] (

∂

∂x
,
∂

∂y
) =

[
α(

∂

∂x
), α(

∂

∂y
)

]
= [v, w]

and obtain

dα+
1

2
[α, α] =

∂v

∂y
dy ∧ dx+

∂w

∂x
dx ∧ dy + [v, w] dx ∧ dy

= (
∂w

∂x
− ∂v

∂y
+ [v, w])dx ∧ dy.
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(b) i. We have
δf = v̂dx+ wdy with v̂(x, 0) = v(x, 0) for x ∈ I.

The Maurer-Cartan equation for δf reads

∂v̂

∂y
− ∂w

∂x
= [v̂, w] ,

so that subtraction of this equation from (5.2) leads to

∂(v − v̂)

∂y
= [v − v̂, w] .

As (v − v̂)(x, 0) = 0, the uniqueness assertion of Lemma 127, applied to
ηx(t) := (v − v̂)(x, t), implies that (v − v̂)(x, y) = 0 for all x, y ∈ I, hence
that v = v̂, which means that δ(f) = vdx+ wdy = α.

ii. Because v(•, 0) ∈ Ck+2(I, g) and G is Ck+2-regular, we have
γv(•,0) ∈ Ck+3(I,G). Hence I2 → G, (x, y) 7→ γv(•,0)(x) is a Ck+3-map and
hence C2. By Proposition 58, the map

w∨ : I → Ck(I, g), w∨(x)(y) := w(x, y)

is C2, since w is Ck+2 and hence C2,k. Since

EvolG : Ck(I, g)→ Ck+1(I,G)

is smooth by Proposition 124, it follows that

EvolG ◦ w∨ : I → Ck+1(I,G), x 7→ EvolG(w∨(x)) = γw(x,•)

is C2. Hence (EvolG ◦ w∨)∧ : I × I → G, (x, y) 7→ γw(x,•)(y) is C2,k+1 by
Proposition 58. We can also consider w∨ as a C1-map to Ck+1(I, g). Since
G is also Ck+1-regular, arguing as before we see that

EvolG ◦ w∨ : I → Ck+2(I,G)

is C1, whence (EvolG ◦ w∨)∧ is C1,k+2 using Proposition 122. Being C2,k+1

(hence C2,1) and C1,k+2 (hence C1,2), the map (EvolG ◦ w∨)∧ is C2 in par-
ticular. Hence

f : I2 → G, f(x, y) := γv(•,0)(x)γw(x,•)(y)

is C2. Now (i) shows that δ(f) = α.
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Lemma 129. Let k ≥ 2, U be a convex subset of the locally convex space E with U◦ 6= ∅,
G a Ck−2-regular Lie group with Lie algebra g and α ∈ Ω1

Ck
(U, g) be a Ck-differential

form satisfying the Maurer-Cartan equation. Then α is integrable.

Proof. We may w.l.o.g. assume that x0 = 0 ∈ U . For x ∈ U we consider the Ck-curve

ξx : I → g, t 7→ αtx(x).

The map
U × I → g, (x, t) 7→ ξx(t)

is Ck hence C2,k−2. Therefore the map U → Ck−2(I, g), x 7→ ξx is C2. Hence the
function

f : U → G, x 7→ evol(ξx)

is C2.
First we show that f(sx) = γξx(s) holds for each s ∈ I. We have

S(s, ξx)(t) = sξx(st) = αstx(sx) = ξsx(t)

and hence f(sx) = γξx(s), by Remark 126.
For x, x+ h ∈ U , we consider the smooth map

β : I × I → U, (s, t) 7→ t(x+ sh)

and the C2-function F := f ◦ β. Then the preceding considerations imply F (s, 0) =

f(0) = 1,

∂F

∂t
(s, t) =

d

dt
f(t(x+ sh)) =

d

dt
γξx+sh(t) = F (s, t)ξx+sh(t)

= F (s, t)αt(x+sh)(x+ sh) = F (s, t)(β∗α)(s,t)(
∂

∂t
).

Also, ∂F∂s (s, 0) = 0 = (β∗α)(s,0)(
∂
∂s).

As we have seen in Lemma 128(b), these relations lead to

δ(F ) = β∗α on I × I.

We therefore obtain

d

ds
f(x+ sh) =

∂F

∂s
(s, 1) = F (s, 1)αx+sh(h) = f(x+ sh)αx+sh(h),

and for s = 0 this leads to Tx(f)(h) = f(x)αx(h), so that δ(f) = α.
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Proposition 130. Let M be a connected manifold, G a Lie group with Lie algebra g,
and α ∈ Ω1(M, g) a continuous 1-form. If α is locally integrable, then there exists a
connected covering q : M̂ →M such that q∗α is integrable. If, in addition, M is simply
connected, then α is integrable.

Proof. For the proof we refer to [21].

Definition 131. (a) For each locally integrable α ∈ Ω1
Ck

(M, g), the homomorphism

perm0
α : π1(M,m0)→ G, [γ] 7→ evolG(γ∗α),

for each piecewise smooth loop γ : I → M in m0, is called the period homomor-
phism of α with respect to m0.

(b) We write

MC(M, g) :=
{
α ∈ Ω1

C1(M, g) : dα+
1

2
[α, α] = 0

}
for the set of solutions of the Maurer–Cartan equation.

Theorem 132. (Fundamental Theorem for g-valued functions).
LetM be a smooth manifold (possibly with boundary and modelled on a locally convex

space), and G be a Lie group with a Lie algebra g. Then the following assertions hold:
(a) If k ≥ 2, G is Ck−2-regular and α ∈ Ω1

Ck
(M, g) satisfies the Maurer-Cartan

equation, then α is locally integrable.
(b) If M is 1-connected and α ∈ Ω1

C0(M, g) is locally integrable, then it is integrable.
(c) Suppose that M is connected, fix m0 ∈ M and let α ∈ MC(M, g) such that α is

locally integrable. Using piecewise smooth representatives of homotopy classes, we
obtain a well-defined group homomorphism

perm0
α : π1(M,m0)→ G, [γ] 7→ evolG(γ∗α),

and α is integrable if and only if this homomorphism is trivial.

Proof. (a) If α satisfies the Maurer-Cartan equation, then Lemma 129 implies its local
integrability, provided G is Ck−2-regular.

(b) Proposition 130.
(c) For the proof we refer to [21].

Remark 133. If M is one-dimensional, then each g-valued 2-form on M vanishes,
so that [α, β] = 0 = dα for α, β ∈ Ω1

C1(M, g). Therefore all 1-forms α ∈ Ω1
C1(M, g)

trivially satisfy the Maurer-Cartan equation.
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Lemma 134. Let M be a finite-dimensional manifold, V be a locally convex topological
vector space and γ : [0, 1]→M be a Cs+1-path with s ∈ N0 ∪ {∞}. Then

ψ : Ω1
Cs(M,V )→ Cs([0, 1], V ), ω 7→ γ∗(ω)

is a smooth map.

Proof. The evaluation map ε : Cs(TM, V )× TM → V, (g, ω) 7→ g(ω) is C∞,s, and

ψ∧(ω, t) = γ∗(ω)(t) = ω(γ′(t)) = ε(ω, γ′(t)).

Thus ψ∧ is C∞,s by Chain Rule 1 (Lemma 43). Hence ψ is C∞.

Lemma 135. Let M be a compact manifold, N be a locally convex manifold, K be a
Lie group with a Lie algebra k and i : Cr(M,K)→ C(M,K) be the inclusion map with
r, s ∈ N0 ∪ {∞}, r ≥ 1. A map f : N → Cr(M,K) is Cs if and only if i ◦ f : N →
C(M,K) is Cs and δ ◦ f : N → Ω1

Cr−1(M, k) is Cs.

Proof. It is well-known that i is a smooth homomorphism of groups. Also

δ : Cr(M,K)→ Ω1
Cr−1(M, k)

is smooth (see [36, Proposition A.4]). Hence if f is Cs, then also the compositions i ◦ f
and δ ◦ f are Cs.
Conversely, assume that i ◦ f and δ ◦ f are Cs. Let ϕ : U → V be a chart for K around
1, such that ϕ∗ := Cr(M,ϕ) : Cr(M,U) → Cr(M,V ) is a chart for Cr(M,K) and
C(M,ϕ) a chart for C(M,K). Because i◦f is continuous, after replacing N by an open
neighbourhood of a given point n of N, we may assume that f(N)f−1(n) ⊆ C(M,U).

It suffices to show that g : N → Cr(M,K), x 7→ f(x)f(n)−1 is Cs.
Let π : TM → M be canonical map. Now note that i ◦ g = ρc ◦ i ◦ f is Cs, where
we abbreviated c := f(n)−1 and the right translation ρc : C(M,K) → C(M,K), γ 7→
γc is a smooth map. Furthermore, δ ◦ g is Cs. Indeed, g(x) = f(x)f(n)−1 where
f(x), f(n)−1 ∈ Cr(M,K). Hence δ(g(x)) = Ad(f(n)). (δ(f(x)) − δ(f(n)−1)), and
δ(f(n)−1) is independent of x, hence Cs in x. Also Ad(f(n)).δ(f(x)) is Cs in x, be-
cause δ ◦ f : N → Ω1

Cr−1(M, k) ⊆ Cr−1(TM, k) is assumed Cs and (Ad(f(n)).ω).(v) =

Ad(f(n)(π(v)))ω(v) = h∗(ω)(v), where ω ∈ Ω1
Cr−1(M, k), v ∈ TM and h : TM ×

k → k, h(v, w) := Ad(f(n)(π(v)))w is a Cr-function and linear in ω, entailing that
h∗ : Cr−1(TM, k)→ Cr−1(TM, k), h∗(w)(v, w) := h(v, ω(v)) is continuous linear, hence
Cs. Hence f(N) ⊆ Cr(M,U) without loss of generality. Since i ◦ f is Cs, the map
ϕ∗ ◦ i ◦ f : N → C(M,V ) is Cs. We have (ϕ∗ ◦ f)(N) ⊆ Cr(M,V ). We show that
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ϕ∗◦f : N → Cr(M,V ) is Cs. As a tool, consider the set P := {(x, y) ∈ K×K : xy ∈ U}
which is open in U × U and contains {1} × U. Thus Q := (ϕ × ϕ)(P ) is open in
V × V and contains {0} × V. The map ν : Q → V, ν(x, y) := ϕ(ϕ−1(x)ϕ−1(y))

is smooth. Also the map θ : V × E → E, (x, u) 7→ dν(x, 0; 0, u) is smooth, and
we have dϕ(x.v) = θ(ϕ(x), dϕ(v)) for x ∈ U, v ∈ T1K = k. It is known that the
map (j, d) : Cr(M, k) → C(M, k) × Cr−1(TM, k), γ 7→ (γ, dγ) is a linear topologi-
cal embedding with closed image. Hence ϕ∗ ◦ f will be Cs if j ◦ ϕ∗ ◦ f is Cs and
ψ := d ◦ ϕ∗ ◦ f : N → Cr−1(TM, k) is Cs. Now j ◦ ϕ∗ ◦ f = ϕ∗ ◦ i ◦ f is Cs as just
observed. By the Exponential Law (Proposition 58), ψ will be Cs if ψ∧ : N × TM → k

is Cs,r−1. But

ψ∧(x, v) = d(ϕ ◦ f(x))(v)

= (dϕ ◦ T (f(x)))(v)

= dϕ(π(v).δ(f(x))(v))

= θ(ϕ(π(v)), dϕ((δf(x))(v)))

and θ is C∞, ϕ(π(v)) is C∞ in (x, v), hence Cs,r−1 in (x, v), dϕ is C∞ and (δf(x))(v)

is Cs,r−1 in (x, v) by the Exponential Law (Proposition 58). Thus ψ∧ is indeed Cs,r−1,
by Chain Rule 2 (Lemma 44).

Proposition 136. Let N be a locally convex manifold,M a connected finite-dimensional
manifold and K a Cs−1-regular Lie group. Then a function f : N ×M → K is Cr,s if
and only if
(a) there exists a point m0 ∈M such that fm0 : N → K, n 7→ f(n,m0) is Cr, and
(b) the functions fn : M → K, m 7→ f(n,m) are Cs and

F : N → Ω1
Cs−1(M, k), n 7→ δ(fn) is Cr.

Proof. If f is a Cr,s-map, then the map fm0 is Cr and each fn is Cs. Since Ω1
Cs−1(M, k)

is a closed vector subspace of Cs−1(TM, k), it only remains to show that the map
F : N → Cs−1(TM, k) is Cr. By Proposition 58, it suffices to show that

F∧ : N × TM → k, (n, v) 7→ δ(fn)v = κK(T (fn)v)

is Cr,s−1.
Now the Maurer-Cartan form κK is a smooth map TK → k and the map

N × TM → TK, (n, v) 7→ T (fn)(v)

is a Cr,s−1-map (cf. Lemma 36). In view of Lemma 44 the assertion follows.
BecauseM can be covered by compact submanifolds L with boundary and the Pullbacks
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Ω1
Cs−1(M, k)→ Ω1

Cs−1(L, k) induced by inclusion are continuous linear, we may assume
that M is compact for the proof of the conclusion. We first show that fm is Cr for each
m ∈M . Pick a smooth path γ : [0, 1]→M with γ(0) = m0 and γ(1) = m. Then

fm(n) = fn(m) = fn(m0)evolK(δ(fn ◦ γ)) = fn(m0)evolK(γ∗δ(fn))

= fm0(n)evolK(γ∗F (n)).

Since fm0 and F are Cr, the smoothness of evolK and the smoothness of

γ∗ : Ω1
Cs−1(M, k)→ Cs−1([0, 1], k)

(see Lemma 134) imply that fm is Cr. Now we show that f is Cr,s. Let m ∈ M and
choose a chart (φ,U) of M for which φ(U) is convex with φ(m) = 0. We have to show
that the map

h : N × φ(U)→ K, (n, x) 7→ f(n, φ−1(x))

is Cr,0. For γx(t) := tx, 0 ≤ t ≤ 1, we have

h(n, x) = h(n, γx(1)) = h(n, 0)evolK(δ(fn ◦ φ−1 ◦ γx))

= fm(n)evolK(γ∗x(φ−1)∗F (n)).

Since fm and F are Cr-maps and evolK is smooth and

(φ−1)∗ : Ω1
Cs−1(U, k)→ Ω1

Cs−1(φ(U), k)

is a topological linear isomorphism, in view of the Chain Rule 1 (Lemma 43) it suffices
to show that the map

Ω1
Cs−1(φ(U), k)× φ(U)→ Cs−1([0, 1], k), (α, x) 7→ γ∗xα

is Cr,0. In view of Theorem 94, this follows from the fact that the map

Ω1
Cs−1(φ(U), k)× (φ(U)× [0, 1])→ k, (α, x, t) 7→ γ∗xα(t) = αtx(x),

is C∞,s−1 and hence C∞,0,s−1 (as a function of three variables).

Lemma 137. Let M be a connected finite-dimensional smooth manifold (possibly with
boundary) and K a Ck-regular Lie group with Lie algebra k.
(a) If γ : [0, 1]→M is a piecewise smooth curve, then the map

Ω1
Ck(M, k)→ K, α 7→ evolK(γ∗α)

is smooth.
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(b) Let (ϕ,U) be a chart of M for which ϕ(U) is a convex 0-neighbourhood and
γx(t) := ϕ−1(tϕ(x)) for x ∈ U, t ∈ [0, 1]. Then the map

Ω1
Ck+l(M, k)× U → K, (α, x) 7→ evolK(γ∗xα)

is C∞,l.

Proof. (a) This follows from the smoothness of evolK and the fact that for each
smooth path η : [0, 1]→M the map

Ω1
Ck(M, k)→ Ck([0, 1], k), α 7→ η∗α = α ◦ η′

is smooth (see Lemma 134).
(b) We may assume that M = U = φ(U) and φ = idU . Since K is Ck-regular, we

only need to show that the map

Ω1
Ck+l(U, k)× U → Ck([0, 1], k), (α, x) 7→ γ∗xα

is C∞,l. By the linearity in the first argument, we only need to show that the map
is C0,l. By the Exponential Law for Cα maps (Proposition 103), we only need to
show that

Ω1
Ck+l(U, k)× U × [0, 1]→ k, (α, x, t) 7→ (γ∗xα)t = αγx(t)γ

′
x(t),

is C∞,l,k as a function of 3 variables, which holds if it is C∞,l+k as a function of
the 2 variables (α, (x, t)). But αγx(t)γ

′
x(t) = α(xt, x) = ε(α, (xt, x)) is C∞,l+k, like

ε : C l+k(TU, k)× TU → k.
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Chapter 6

The mapping group as an
infinite-dimensional Lie group

In this chapter we study Lie group structures on groups of the form Ck(M,K), where

M is a non-compact smooth manifold and K is a, possibly infinite-dimensional, Lie

group. All finite-dimensional manifolds considered in this chapter are assumed to be

paracompact, without further mentions.

6.1 Lie group structure on mapping groups

Proposition 138. Let M be a connected finite-dimensional smooth manifold and K a
regular Lie group. Assume that the group G := Ck(M,K) carries a Lie group structure
which is compatible with evaluations in the sense that g := Ck(M, k) is the corresponding
Lie algebra and all point evaluations evm : G→ K,m ∈M , are smooth with

L(evm) = evm : g→ k.

Then the following holds:
(a) The evaluation map ev : G×M → K, (f,m) 7→ f(m) is C∞,k.
(b) If N is a locally convex Cr-manifold and f : N → G is Cr, then f∧ : N ×M → K

is Cr,k.
(c) If, in addition, G is Cr−3-regular, where r ≥ 3, then a map f : N → G is Cr if

and only if the corresponding map f∧ : N ×M → K is Cr,k.

Proof. (a) Let N ⊆ M be a compact submanifold (possibly with boundary). Then
Ck(N,K) carries the structure of a regular Lie group (see [21]). Let qG : G̃0 → G0
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denote the universal covering of the identity component G0 of G. Consider the
continuous homomorphism of Lie algebras

ψ : L(G) = Ck(M, k)→ Ck(N, k), f 7→ f |N .

In view of the regularity of Ck(N,K), there exists a unique morphism of Lie
groups

ϕ̃ : G̃0 → Ck(N,K) with L(ϕ̃) = ψ.

Then, for each n ∈ N , the homomorphism evn ◦ ϕ̃ : G̃0 → K is smooth with
differential L(evn ◦ ϕ̃) = evn, so that evn ◦ ϕ̃ = evn ◦ qG. We conclude that

ker qG ⊆ ker ϕ̃,

and hence that ϕ̃ factors to the restriction map ρ : Ck(M,K)0 → Ck(N,K), i.e.,
ϕ̃ = ρ ◦ qG. In particular, the restriction map Ck(M,K)→ Ck(N,K) is a smooth
homomorphism of Lie groups. Since ε : Ck(N,K) × N → K is a C∞,k-map, by
Theorem 120, (a) follows.

(b) If f is Cr, then f∧ = ev ◦ (f × idM ) is Cr,k, using that ev is C∞,k by (a).
(c) We may w.l.o.g assume that N is 1-connected. If f∧ is Cr,k, we define β ∈

Ω1
Cr−1(N, g) by

β(ν)(m) = κK(T (f∧(·,m))(ν)),

which is a Cr−1,k-map TN ×M → k.
We claim that β satisfies the Maurer-Cartan equation. Since the evaluation map
evm : g→ k is a continuous homomorphism of Lie algebras, and the corresponding
maps (evm)∗ : Ω2

Cr−2(N, g) → Ω2
Cr−2(N, k), ω 7→ evm ◦ ω separate the points,

for m ∈ M it follows that β satisfies the Maurer-Cartan equation, using that
β(ν)(m) = δf∧(·,m)(ν).
Fix a point n0 ∈ N . The Fundamental Theorem (Theorem 132) implies the
existence of a unique Cr-map h : N → G with h(n0) = f(n0) and δ(h) = β. Then

δ(evm ◦ h) = evm ◦ δ(h) = evm ◦ β = δ(evm ◦ f),

so Lemma 112, applied to K-valued functions, yields evm ◦ h = evm ◦ f for each
m, which leads to h = f . This proves that f is a Cr-map.

Example 139. IfM is a compact manifold (possibly with boundary), then the ordinary
Lie group structure on G := Ck(M,K) is compatible with evaluations. To identify
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T1(G) with Ck(M, k), pick a chart ϕ : U → V ⊆ k of K around 1 such that ϕ(1) = 0

and dϕ|k= idk. Then ψ := d(ϕ∗)|T1G: T1G → Ck(M, k) is a suitable isomorphism (cf.
[15]).

Note that ψ−1 is the map Ck(M, k) → T1G, γ 7→ d
dt |t=0(ϕ−1 ◦ tγ). If K has a

smooth exponential function, then ψ−1 coincides with the map γ 7→ d
dt |t=0(expK ◦(tγ)),

because the smooth map (ϕ ◦ expK)∗ : Ck(M, k)→ Ck(M, k), γ 7→ ϕ ◦ expK ◦γ satisfies
d(ϕ ◦ expK)∗(0, •) = id and thus

d

dt
|t=0(expK ◦(tγ)) =

d

dt
|t=0(ϕ−1 ◦ ϕ ◦ expK ◦(tγ))

= d(ϕ−1)∗(0, d(ϕ ◦ expK)∗(γ))

= ψ−1.

Remark 140. If K is regular and M as in Proposition 138, then a Lie group structure
on G := Ck(M,K) compatible with evaluations is unique whenever it exists. In fact,
assume that there is another structure G̃. Let f : G̃ → G and g : G → G be the maps
x 7→ x. Because g is smooth, the map f∧ = g∧ is C∞,k by Proposition 138(b) and hence
f is smooth by Proposition 138(c). Likewise, f−1 is smooth and thus G̃ = G.

Proposition 141. If K is a Ck−1-regular Lie group, M a connected finite-dimensional
smooth manifold and k ≥ 2, then the map

δ : Ck∗ (M,K)→ Ω1
Ck−1(M, k)

is a topological embedding. Let EvolK := δ−1 : im(δ) → Ck∗ (M,K) denote its in-
verse. Then δ is an isomorphism of topological groups if we endow im(δ) with the group
structure defined by

α ∗ β := β + Ad(EvolK(β))−1 · α (6.1)

and
α−1 := −Ad(EvolK(α)) · α. (6.2)

Proof. By definition of the topology on Ck(M,K), the tangent map induces a continuous
group homomorphism

T : Ck(M,K)→ Ck−1(TM, TK), f 7→ T (f).

Let κK : TK 7→ k denote the (left) Maurer-Cartan form of K. Since δ(f) = f∗κK =

κK ◦ T (f), it follows that the composition

Ck(M,K)→ Ck−1(T (M), T (K))→ Ck−1(T (M), k), f 7→ T (f) 7→ δ(f)
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is continuous.
Next we show that δ is an embedding. Consider α = δ(f) with f ∈ Ck∗ (M,K), i.e.,

f(m0) = 1 holds for the base point m0 ∈ M . To reconstruct f from α, since M is
connected, we can find for m ∈ M a smooth path γ : [0, 1] → M with γ(0) = m0 and
γ(1) = m. Then δ(f ◦ γ) = γ∗δ(f) = γ∗α implies f(m) = evolK(γ∗α).

We now choose an open neighbourhood U of m and a chart (ϕ,U) of M such that
ϕ(U) is convex with ϕ(m) = 0. For each x ∈ U define γx : [0, 1] → U, γx(t) :=

ϕ−1(tϕ(x)). Then

δ(f(m)−1(f ◦ γx)) = δ(f ◦ γx) = γ∗x δf = γ∗x α

implies that f(m)−1f(x) = evolK(γ∗x α) and hence

f(x) = f(m). evolK(γ∗x α)

From Lemma 137, we immediately derive that the map

Ω1
Ck−1(M, k)× U → K, (α, x) 7→ evolK(γ∗α) · evolK(γ∗xα)

is continuous so that the corresponding map Ω1
Ck−1(M, k) 7→ C0(U,K) is continuous.

We conclude that the map

δ(Ck∗ (M,k))→ C0(U,K), δ(f) 7→ f |U

is continuous. We finally observe that for each open covering M =
⋃
j∈J Uj , the re-

striction maps to Uj lead to a topological embedding C0
∗ (M,K) ↪→

∏
j∈J C

0(Uj ,K).
Hence

δ(Ck∗ (M, k))→ C0(M,K), δ(f) 7→ f

is continuous.
Now, we show by induction that

θj : δ(Ck∗ (M, k))→ Cj(M,K), δ(f) 7→ f

is continuous for j = 0, . . . , k. The topology on Cj(M,K) is initial with respect to
inclusion Cj(M,K) → C0(M,K) and the map T : Cj(M,K) → Cj−1(TM, TK). Be-
cause incl◦θj = θ0 is continuous, the map θj will be continuous if we can show that also
T ◦ θj is continuous. Let m be the continuous group multiplication of Cj−1(TM, TK).

We have Tf = f · δf = f · α for α = δf and thus Tθj(α) = θj−1(α) · α inside
Cj−1(TU, TK). Because the inclusion Ω1

Ck−1(U, k) ↪→ Cj−1(TU, TK) is continuous, also
T ◦ θj = m ◦ (θj−1 × incl) is continuous (since θj−1 is continuous by induction).
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Theorem 142. Let s, k ∈ N0∪{∞} with k ≥ s+1, M be a connected finite-dimensional
smooth manifold (with boundary), m0 ∈M and K a Cs-regular Lie group. Assume that
the subset δ(Ck∗ (M,K)) is a smooth submanifold of Ω1

Ck−1(M, k). Endow Ck∗ (M,K) with
the smooth manifold structure for which δ : Ck∗ (M,K)→ im(δ) is a diffeomorphism and
endow

Ck(M,K) ∼= K n Ck∗ (M,K)

with the product manifold structure. Assume that Lj for j ∈ J are compact submanifolds
(with boundary) of M with m0 ∈ Lj whose interiors L◦j cover M, and such that

δj : Ck∗ (Lj ,K)→ Ω1
Ck−1(Lj , k)

is an embedding of smooth manifolds onto a submanifold of Ω1
Ck−1(Lj , k). Then the

following assertions hold:
(a) For each r ∈ N0∪{∞} and locally convex Cr-manifold N , a map f : N ×M → K

is Cr,k if and only if for all n ∈ N, fn : M → K, m 7→ f(n,m) are Ck and the
corresponding map

f∨ : N → Ck(M,K), n 7→ fn

is Cr.
(b) K acts smoothly by conjugation on Ck∗ (M,K), and Ck(M,K) carries a Cs-regular

Lie group structure compatible with evaluations.

Proof. (a) Let m0 be the base point of M . According to Proposition 136, f : N ×
M → K is Cr,k if and only if fm0 is Cr, all the maps fn are Ck, and δ ◦ f∨ :

N → Ω1
Ck−1(M, k) is Cr. In view of our definition of the manifold structure

on Ck∗ (M,K), the latter condition is equivalent to the Cr-property for the map
N → Ck∗ (M,K), n 7→ fn(m0)−1fn = fm0(n)−1fn. Since the evaluation in m0

coincides with the projection

G := Ck(M,K) ∼= K n Ck∗ (M,K)→ K,

we see that f is Cr,k if and only if all the maps fn are Ck and f∨ is Cr.
(b) For the evaluation map f = ev : Ck(M,K) ×M → K, we have ev∨ = idG with

G := Ck(M,K), and evg = g for each g ∈ G. Hence (a) implies that ev is C∞,k.
In view of Proposition 141, δ is an isomorphism of topological groups if im(δ) is

endowed with the group structure (6.1). We now show that the operations (6.1) and
(6.2) are smooth with respect to the submanifold structure on im(δ).

The Lie group structure: To see that Ck∗ (M,K) is a Lie group, it suffices to show
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that the map

θ : im(δ)× im(δ)→ Ω1
Ck−1(M, k), (α, β) 7→ Ad(EvolK(α)) · β

is smooth. Let (Lj)j∈J be a family of compact submanifolds (with boundary) of M
whose interiors L◦j cover M , as described in the theorem. Then

Ω1
Ck−1(M, k)→

∏
j∈J

Ω1
Ck−1(Lj , k), α 7→ (α |TLj )j∈J

is linear and a topological embedding with closed image. Let

ρj : Ω1
Ck−1(M, k)→ Ω1

Ck−1(Lj , k), α 7→ α |TLj

be the restriction map. Then θ will be smooth if we can show that ρj ◦ θ is smooth for
each j ∈ J . Now by the assumption and using the Lie group structure on Ck∗ (Lj ,K),
the map θj : im(δj)× im(δj)→ Ω1

Ck−1(Lj , k) analogous to θ is smooth.
Consider the commutative diagram, in which ψ is the restriction map

im(δ)× im(δ)
θ−−−−→ Ω1

Ck−1(M, k)yψ yρj
im(δj)× im(δj)

θj−−−−→ Ω1
Ck−1(Lj , k)

In the above diagram ρj ◦ θ = θj ◦ ψ is smooth, thus θ is smooth.
To see that Ck(M,K) = K nCk∗ (M,K) is a Lie group, it remains to show that the

action
σ : K × Ck∗ (M,K)→ Ck∗ (M,K), (g, γ) 7→ gγg−1

is smooth. This holds if and only if δ ◦ σ is smooth. Now for g ∈ K, γ ∈ Ck∗ (M,K).

δ(σ(γ)) = δ(γg−1) = Ad(g−1)−1δ(γ) + δ(g−1)︸ ︷︷ ︸
=0

= Ad(g)δ(γ)

(considering g as a constant path in Ck(M,K)). Equivalently, writing δ(γ) = α, we
thus have to show that

K × im(δ)→ im(δ), (g, α) 7→ Ad(g).α

is smooth. This follows if

τ : K × Ck−1(TM, k)→ Ck−1(TM, k), (g, γ) 7→ Ad(g).γ
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is smooth. Now τ∧(g, γ, v) = Ad(g)γ(v) = Ad(g)ε(γ, v) is C∞,∞,k−1 in (g, γ, v), by
the Chain Rule for Cα-maps (Lemma 81), with evaluation ε : Ck−1(TM, k)× TM → k

which is C∞,k−1 (Proposition 42). Hence τ∧ is C∞,k−1 in ((g, γ), v) and thus τ = (τ∧)∨

is C∞ indeed.
If M is compact, then the Lie group structure on Ck∗ (M,K) coincides with the

ordinary one. Indeed, write Ck∗ (M,K)ord for the latter.
Also, write f : Ck∗ (M,K)ord → Ck∗ (M,K), g : Ck∗ (M,K)ord → Ck∗ (M,K)ord and
h : Ck∗ (M,K) → Ck∗ (M,K) for the maps given by γ 7→ γ. Since h is smooth, h∧ = f∧

is C∞,k by (a). Hence f is smooth, by (a). Likewise, g is smooth, whence g∧ = (f−1)∧

is C∞,k (see Proposition 122). Hence f−1 is smooth, by Proposition 122. Thus f is
isomorphism and thus Ck∗ (M,K)ord = Ck∗ (M,K). To emphasize the dependence on M,

we occasionally write δM instead of δ. If M1 with m1 ∈M1 has properties analogous to
M and f : M1 →M is a smooth map with f(m1) = m0, then

f∗ : Ck(M,K)→ Ck(M1,K), γ 7→ γ ◦ f

is a smooth homomorphism of Lie groups and the diagram

Ck(M,K)
δM−−−−→ Ω1

Ck−1(M, k)yf∗ yf∗
Ck(M1,K)

δM1−−−−→ Ω1
Ck−1(M1, k)

(6.3)

commutes, where we also use the continuous linear (and hence smooth) map

f∗ : Ω1
Ck−1(M, k)→ Ω1

Ck−1(M1, k), ω 7→ f∗ω.

Indeed (6.3) commutes because

f∗(δM (γ)) = f∗(γ∗(κK)) = (γ ◦ f)∗(κK) = (f∗(γ))∗(κK) = δM1(f∗(γ))

using the Maurer-Cartan form κK on K. Since δM and δM1 are isomorphisms onto their
images, and f∗ on the left-hand side of (6.3) is a group homomorphism, also the smooth
map

f∗ : im(δM )→ im(δM1)

is a homomorphism of groups.

The Lie algebra: We first determine the Lie algebra of G∗ := Ck∗ (M,K) in the special
case M = [0, 1]. We know that

δ : G∗ → Ck−1([0, 1], k), γ 7→ δγ
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is an isomorphism of Lie groups. Also, it is known that L(δ) ◦ψ−1 = dδ|T1G◦ψ−1 is the
map γ 7→ γ′, where ψ := d(ϕ∗)|T1G is the ususal isomorphism between T1G and the Lie
algebra Ck∗ ([0, 1], k) (see [17]). Hence

L(δ) ◦ ψ−1 : Ck∗ ([0, 1], k)→ Ck−1([0, 1], k), γ 7→ γ′

is an isomorphism of topological Lie algebras, if the pointwise Lie bracket is used on
the left-hand side.
General case: For general M, We first determine the tangent space T0(im(δ)) to see the
Lie algebra of this group. Let η : I → im(δ) be a Ck-curve with η(0) = 0 and β := η′(0).
Then

1 = perm0

η(t)(γ) = evolK(γ∗η(t))

for each smooth loop γ in m0 and each t ∈ I. Taking the derivative in t = 0, we get:

0 = T0(evolK)(γ∗β) =

∫ 1

0
γ∗β =

∫
γ
β

(see [17]). Hence all periods of β vanish, so that β is exact. If, conversely, β ∈
Ω1
Ck−1(M, k) is an exact 1-form, then β = df for some f ∈ Ck∗ (M, k). We show that the

curve
α : [0, 1]→ im(δ), t 7→ δ(expK ◦(tf))

satisfies α′(0) = β. For x ∈M and v ∈ TxM, choose a smooth path γ in M from m0 to
x, such that γ′(1) = v. Then

α′(0)(v) =
d

dt

∣∣∣
t=0

δ(expK ◦ (tf))(v)

=
d

dt

∣∣∣
t=0

δ(expK ◦ (tf))(γ′(1))

=
d

dt

∣∣∣
t=0

γ∗(δ(expK ◦ tf))(1)

=
d

dt

∣∣∣
t=0

δ[0,1](expK ◦ t(f ◦ γ))(1)

= dδ[0,1](
d

dt

∣∣∣
t=0

(expK ◦ t(f ◦ γ)))(1) = dδ[0,1](ψ
−1(f ◦ γ))(1)

= (f ◦ γ)′(1) = df(γ′(1)) = df(v) = β(v)

thus α′(0) = β. This shows that

T0(im(δ)) = dCk∗ (M, k) ∼= Ck∗ (M, k)

as a topological vector space (apply Proposition 141 to the Lie group (k,+)). By the
preceeding, the map

d : Ck∗ (M, k)→ T0(im(δ))
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is an isomorphism of topological vector spaces. We now show that d is a homomorphism
(hence an isomorphism) of Lie algebras if Ck∗ (M, k) is endowed with the pointwise Lie
bracket. We already know this if M = [0, 1]. In the general case, note that the maps

γ∗ : T0(im(δ))→ Ck−1([0, 1], k), ω 7→ γ∗(ω)

separate points (for γ ranging through the set of all smooth paths in M starting in
m0). Moreover, γ∗ is a Lie algebra homomorphism, as it is the tangent map at 0 of the
analogous smooth group homomorphism

γ∗ : im(δ)→ Ck−1([0, 1], k).

It therefore suffices to show that γ∗ ◦ d is a Lie algebra homomorphism for each γ. But

(γ∗ ◦ d)(f) = γ∗(df) = df ◦ γ′ = (f ◦ γ)′ = (γ∗(f))′

for f ∈ Ck∗ (M, k), where γ∗ : Ck∗ (M, k) → Ck∗ ([0, 1], k) is a Lie algebra homomorphism
and so is

Ck∗ ([0, 1], k)→ Ck−1
∗ ([0, 1], k), f 7→ f ′,

by the special case of [0, 1]. Hence γ∗ ◦ d is a Lie algebra homomorphism. Consider the
map

Ψ : Ck∗ (M, k)→ T1(G∗), f 7→
d

dt

∣∣∣
t=0

(expK ◦ (tf)).

By the Chain Rule and the preceding, we have

T1δΨ(f) = T1δ
d

dt

∣∣∣
t=0

(expK ◦ tf) =
d

dt

∣∣∣
t=0

δ(t 7→ expK ◦ tf) = df

for f ∈ Ck∗ (M, k), i.e., T1(δ) ◦ Ψ = d. Since T1(δ) and d are isomorphisms of topological
Lie algebras, also Ψ is an isomorphism of topological Lie algebras. We mention that
the maps L(evx), for evx : Ck∗ (M,K) → K, f 7→ f(x), separate points on L(G∗)

1. It
suffices to show that the maps

L(evx) ◦ Ψ : Ck∗ (M, k)→ k

separate points on Ck∗ (M, k). This follows if we can establish

L(evx) ◦ Ψ = εx (6.4)

1 evx is smooth because x ∈ Ln for some n and the restriction map Ck∗ (M,K) → Ck∗ (Ln,K) is
smooth, as well as evaluation at x on Ck∗ (Ln,K).
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with εx : Ck∗ (M, k)→ k, f 7→ f(x). But indeed, using the Chain Rule twice,

L(evx)Ψ(f) = L(evx)
d

dt

∣∣∣
t=0

(expK ◦ tf)

=
d

dt

∣∣∣
t=0

evx(expK ◦ tf)

=
d

dt

∣∣∣
t=0

expK(tf(x))

= T0 expK f(x) = f(x) = εx(f).

Let i : K → Ck(M,K) be the map taking g ∈ K to the constant function x 7→ g.

Then
G = Ck(M,K) = Ck∗ (M,K) n i(K)

internally, entailing that

L(Ck(M,K)) = L(Ck∗ (M,K)) n L(i(K))

internally. Hence

H : Ck(M, k) = Ck∗ (M, k) n k→ L(Ck(M,K)), η = γ + v 7→ Ψ(γ) + L(i)(v) (6.5)

(for γ = η − η(m0) ∈ Ck∗ (M, k), v = η(m0) ∈ k) is an isomorphism of topological vector
spaces.

Consider the evaluation maps 1 evx : Ck(M,K) → K. Then the maps L(evx)

separate points on L(G). Indeed, ker(L(evm0)) = L(Ck∗ (M,K)) because G = G∗ o K

with evm0 the projection onto K. It therefore only remains to check that the maps
L(evx) separate points on L(Ck∗ (M,K)). But this has been already checked.

Since each L(evx) is a Lie algebra homomorphism, H will be a Lie algebra homo-
morphism (hence an isomorphism) if we can show that L(evx) ◦ H is a Lie algebra
homomorphism for each x ∈M. The restriction of this map to Ck∗ (M, k) is L(evx) ◦ Ψ,

hence a Lie algebra homomorphism. Moreover, the restriction to the constant functions
corresponds to L(evx) ◦ L(i) on k, and hence is a Lie algebra homomorphism. Because
Ck(M, k) = Ck∗ (M, k) o k, it only remains to show that

L(evx)H([γ, v]) = [L(evx)H(γ),L(evx)H(v)] (6.6)

for γ ∈ Ck∗ (M, k), v ∈ k. The left-hand side of (6.6) is L(evx)Ψ([γ, v]) = εx([γ, v]) =

[γ(x), v], (using (6.4)). The right-hand side of (6.6) is

[L(evx)Ψ(γ),L(evx)L(i)(v)] = [εx(γ),L(evx ◦ i︸ ︷︷ ︸
=id

)(v)] = [γ(x), v]

1These are smooth because evm0 is smooth and evx(f) = evx(f i(evm0(f))
−1)evm0(f), using the

smooth evaluation map evx on Ck∗ (M,K) on the right-hand side.
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as well. Hence H is an isomorphism of topological Lie algebras. Identifying Ck(M, k)

with L(G) via H, the map L(evx) corresponds to point evaluation

δx : Ck(M, k)→ k, f 7→ f(x),

i.e.,
L(evx) ◦ H = δx. (6.7)

In fact, it suffices to show that both sides of (6.7) coincide on both Ck∗ (M, k) and k. For
γ ∈ Ck∗ (M, k), we have L(evx)H(γ) = L(evx)Ψ(γ) = γ(x) indeed. For v ∈ k, we have
L(evx)H(v) = L(evx)L(i)(v) = v as well.

Remark 143. (a) The restriction maps ρn : Ck(M,K) → Ck(Ln,K), γ 7→ γ|Ln are
smooth, because their restrictions ρ′n to Ck∗ (M,K) are smooth and ρn = ρ′n× idK

if we identify Ck(M,K) with Ck∗ (M,K)oK and Ck(Ln,K) with Ck∗ (Ln,K)oK.
Now a map f : N → G from a manifold N to G is smooth if and only if ρn ◦ f :

N → Ck(Ln,K) is smooth for each n. In fact, assume that ρn ◦ f is smooth.
Then n 7→ f(m0) = (ρn ◦ f)(m0) is smooth, and after replacing f with n 7→
f(x)f(x)(m0)−1, we may assume that im(f) ⊆ G∗. δn ◦ ρn ◦ f = i∗n ◦ δ ◦ f
is smooth, where in : Ln → M is the inclusion map and i∗n : Ω1

Ck−1(M, k) →
Ω1
Ck−1(Ln, k). Since Ω1

Ck−1(M, k) = lim←−Ω1
Ck−1(Ln, k) with the limit maps i∗n, it

follows that δ ◦ f is smooth as a map to Ω1
Ck−1(M, k) and hence also smooth as

a map to the submanifold im(δ). Hence f = δ−1 ◦ (δ ◦ f) is smooth as well.
As a consequence, Ck(M, g) : Ck(M, k) → Ck(M,K), γ 7→ g ◦ γ is smooth
for each smooth map g : k → K, because Ck(Ln, g) is smooth (cf. [15]) and
ρn ◦ Ck(M, g) = Ck(Ln, g) ◦ ρn.

(b) If l ∈ N0 ∪ {∞} and a map θ : M → C l(I,K) is Ck, then θ∗ : I → Ck(M,K),

θ∗(t)(x) = θ(x)(t) is C l.
Because the point evaluation evt : C l(I,K) → K, γ 7→ γ(t) is smooth, we have
θ∗(t) = evt ◦ θ ∈ Ck(M,K) for each t ∈ I. By (a), θ∗ will be C l if we can
show that ρn ◦ θ∗ is C l for each n. But (ρn ◦ θ∗) = θ∗(t)|Ln= (θ|Ln)∗, where
(θ|Ln)∗ : I → Ck(Ln,K) is C l, as follows by two applications of Proposition 122.

Regularity: To verify the Cs-regularity of G, let us show first that each γ ∈ Cs(I, g)

has an evolution EvolG(γ). Identifying Cs(I, Ck(M, k)) with Cs(I, g) via the isomor-
phism Cs(I,H), we consider γ as a Cs-map I → Ck(M, k). Then γ∗ : M → Cs(I, k),

γ∗(x)(t) := γ(t)(x) is Ck, using the Exponential Law (Theorem 59) twice. Hence
EvolK ◦ γ∗ : M → Cs+1(I,K) is Ck, and therefore η := (EvolK ◦ γ∗)∗ : I → Ck(M,K),

η(t)(x) := (EvolK ◦ γ∗)(x)(t) is Cs+1 (see Remark (143)(b)). We claim that η is the
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evolution of γ. Indeed, η(0)(x) = EvolK(γ∗(x))(0) = 1 for all x ∈M, whence η(0) = 1.

To see that δη = γ, we only need to show that (δη)(t)(x) = γ(t)(x) = γ∗(x)(t) for all
x ∈ M and t ∈ [0, 1], i.e., evx ◦ δη = γ∗(x). However, recalling that L (evx) = evx, we
have

evx ◦ δη = L evx ◦ δ η

= δ(evx ◦ η)

= δ(t 7→ EvolK(γ∗(x))(t))

= δ(EvolK(γ∗(x))) = γ∗(x).

Thus EvolG(γ) = η. In particular, evolG(γ) = EvolG(γ)(1) = η(1) is the map M → K

taking x to EvolK(γ∗(x))(1) = evolK(γ∗(x)). Thus evolG(γ) = evolK ◦ γ∗, i.e.,

evolG = Ck(M, evolK) ◦ Φ,

where Ck(M, evolK) is smooth by Remark 143 (a) and

Φ : Cs(I, Ck(M, k))→ Ck(M,Cs(I, k)), γ 7→ γ∗

is an isomorphism of topological vector spaces by the Exponential Law (Theorem 59).
Thus evolG is smooth, which completes the proof.

Corollary 144. If M is a one-dimensional 1-connected real manifold (with boundary),
k, s ∈ N0∪{∞} with k ≥ s+1 and K a Cs-regular Lie group, then the group Ck∗ (M,K)

carries a unique Cs-regular Lie group structure for which

δ : Ck∗ (M,K)→ Ω1
Ck−1(M, k) ∼= Ck∗ (M, k)

is a C∞-diffeomorphism. Also, Ck(M,K) ∼= Ck∗ (M,K) oK carries the structure of a
Cs-regular Lie group compatible with evaluations and the compact-open Ck-topology.

Proof. We may assume that M = R, M = [0, 1] or M = [0, 1[.

Take Ln = [−n, n], Ln = [0, 1] and Ln = [0, 1 − 1
n ], respectively. Then im(δn) =

Ω1
Ck−1(Ln, k) and Theorem 142 applies.

6.2 Iterative constructions

Lemma 145. Let (Gn)n∈N be a sequence of Lie groups, φnm : Gm → Gn morphisms
of Lie groups defining an inverse system, G := lim←−Gn the corresponding topological
projective limit group and φn : G → Gn the canonical maps. Let r ∈ N0 ∪ {∞} and
assume that G carries a Lie group structure with the following properties:
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6.2 Iterative constructions

(a) A map f : M → G of a smooth manifold M with values in G is Cr if and only if
all the maps fn := φn ◦ f are Cr.

(b) L(G) ∼= lim←−L(Gn) as topological Lie algebras, with respect to the projective system
defined by the morphisms L(φmn) : L(Gn)→ L(Gm).

Then the map
Ψ : Cr(M,G) ∼= lim←−C

r(M,Gn), f 7→ (fn)n∈N

is an isomorphism of topological groups.

Proof. First we note that our assumptions imply that

TG ∼= L(G) oG ∼= lim←− (L(Gn) oGn) ∼= lim←−T (Gn)

as topological groups. Moreover, writing |L(G)| for the topological vector space under-
lying L(G), considered as an abelian Lie algebra, we have

L(TG) ∼= |L(G)|o L(G) ∼= lim←− (|L(Gn)|o L(Gn)) ∼= lim←−L(TGn),

so that the Lie group TG inherits all properties assumed for G. Hence we may iterate
this argument to obtain

T kG ∼= lim←−T
kGn

for each k
We thus have homeomorphisms

C(T kM,T kG)c.o. ∼= lim←−C(T kM,T kGn)c.o.,

which lead to a topological embedding

Cr(M,G) ↪→
∏
k∈N0

C(T kM,T kG)c.o. ∼=
∏
k∈N0

lim←−C(T kM,T kGn)c.o.

∼= lim←−
∏
k∈N0

C(T kM,T kGn)c.o.,

entailing that Ψ is a topological isomorphism.

For compact manifolds N and M, a Lie group Ck,r(N × M,K) can be defined
similarly to the classical construction of Ck(N,K).

Lemma 146. If K is a locally convex Lie group and N and M are compact manifolds
(possibly with boundary), then the map

Φ : Cr(N,Ck(M,K))→ Cr,k(N ×M,K), f 7→ f∧

is an isomorphism of Lie groups.
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Proof. The bijectivity of Φ follows from Proposition 122. To see that Φ is an isomor-
phism of Lie groups, let (φ,U) be a k-chart of K with φ(1) = 0. Then Ck(M,U) is an
open identity neighbourhood, so that Cr(N,Ck(M,U)) is an open identity neighbour-
hood, and so is Cr,k(N ×M,U). That Φ restricts to a diffeomorphism

Cr(N,Ck(M,U))→ Cr,k(N ×M,U)

now follows from Proposition 58 which asserts that

Cr(N,Ck(M, k))→ Cr,k(N ×M, k), f 7→ f∧

is an isomorphism of topological vector spaces, hence restricts to diffeomorphisms on
open subsets.

A Lie group structure on Cr,k(N ×M,K) compatible with evaluations is defined

analogously to the case of Cr(N,K).

Theorem 147. Let K be a Lie group and N and M finite-dimensional smooth man-
ifolds. We assume that G := Ck(M,K) carries a Cs-regular Lie group structure com-
patible with evaluations and the compact-open Ck-topology. Let r ∈ N0 ∪ {∞} with
r − 3 ≥ s. If Cr(N,G) carries a Cs-regular Lie group structure compatible with evalua-
tions and the compact-open Cr-topology, then Cr,k(N ×M,K) carries a Cs-regular Lie
group structure compatible with evaluations. Moreover, the canonical map

Φ : Cr,k(N ×M,K)→ Cr(N,G), f 7→ f∨

is an isomorphism of Lie groups.

Proof. In view of Proposition 138, the map Φ is a bijective group homomorphism. First
we show that it is an isomorphism of topological groups.

LetM =
⋃
nMn be an exhaustion ofM by compact submanifoldsMn with boundary

satisfying Mn ⊆M0
n+1. Then our definition of the group topology implies that

G = Ck(M,K) ∼= lim←−C
k(Mn,K)

as a topological group. Put Gn := Ck(Mn,K) and recall from Proposition 120 that it
carries a Lie group structure compatible with evaluations. We also have the isomorphism
of topological Lie algebras

L(G) = Ck(M, k) ∼= lim←−L(Gn) ∼= lim←−C
k(Mn, k).
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Now let (Nm)m∈N be an exhaustion of N by compact submanifolds with boundary.
Then Lemmas 145 and 146 lead to the following isomorphisms of topological groups:

Cr(N,G) ∼= lim←−C
r(N,Gn) = lim←−C

r(N,Ck(Mn,K))

∼= lim←−
n

lim←−
m

Cr(Nm, C
k(Mn,K)) ∼= lim←−

n

lim←−
m

Cr,k(Nm ×Mn,K)

∼= Cr,k(N ×M,K).

The preceding isomorphism leads to a Cs-regular Lie group structure on the topo-
logical group Cr,k(N ×M,K). To see that this Lie group structure is compatible with
evaluations, we first observe that ev(n,m) = evm ◦ evn ◦ Φ, where

evm ◦ evn : Cr(N,Ck(M,K))→ K

is smooth. Now

L(Cr,k(N ×M,K))
L(Φ)−−−→∼= L(Cr(N,G)) ∼= Cr(N,L(G))

∼= Cr(N,Ck(M, k)) ∼= Cr,k(N ×M, k).

The map L(evn) corresponds to evn : Cr(N,L(G))→ L(G). Also, identifying L(G) with
Ck(M, k), L(evm) corresponds to evm : Ck(M, k)→ k. Thus L(evm ◦ evn) = evm ◦ evn

on Cr(N,Ck(M, k)), which corresponds to ev(n,m) on Cr,k(N ×M, k).

Example 148. Let k, r, s ∈ N0 ∪ {∞} with k ≥ s+ 1 and r ≥ s+ 3. Then

Cr,k(R× R,K)

admits a Cs-regular Lie group structure compatible with evaluation and the compact-
open Cr,k-topology. In fact, G := Ck(R,K) admits a Cs-regular Lie group struc-
ture compatible with evaluations and the compact-open Ck-topology, by Corollary 144.
Hence Cr(R, G) admits a Cs-regular Lie group structure compatible with the evalua-
tions and the compact-open Cr-topology, by Corollary 144. The assertion now follows
from Theorem 147.

Remark 149. Continuing by induction, one could create Lie groups of the form
Cα(Rn ×M,K) with α ∈ Nn+1 if K is C l-regular with sufficiently small l.

The following problem remains:
Can Ck(M × Rn,K) be made a Lie group if n ≥ 1 and dim(M × Rn) ≥ 2 ?
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Chapter 7

Lie group structures on weighted
function spaces

The notions of weighted spaces of continuous functions were first introduced by L. Nach-
bin [28] , further investigations have been made by Bierstedt [5], Summers [38], Prolla
[35], and other authors. In this chapter, we study Lie group structures on weighted
spaces of continuous functions of the form CV(0)(X, g), where X is a completely regular
Hausdorff space and g is a Lie algebra.

7.1 Weighted function spaces

In this section, we assemble some basic material concerning weighted spaces. Let X
be a completely regular Hausdorff space and E be a locally convex space. Recall that
a subset B of E is said to be bounded if for every neighbourhood N of 0 there exists
ε > 0 such that B ⊆ εN. A function f : X → E is said to vanish at infinity if for
each neighbourhood N of origin in E there exists a compact subset K of X such that
f(x) ∈ N for all x in X \K, the complement of the set K in X. Then we define

Cb(X,E) = {f ∈ C(X,E) : f(X) is bounded in E}, where f(X) = {f(x) : x ∈ X},

C0(X,E) = {f ∈ C(X,E) : f vanishes at infinity on X}.

Definition 150. A set V of weights 1 on X is called a Nachbin family or a system of
weights iff
(a) For every x ∈ X there is a v ∈ V such that v(x) > 0,

1 A function v : X → [0,∞[ is called a weight if it is upper semicontinuous.
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(b) For λ > 0 v1, v2 ∈ V, there is a v ∈ V such that λv1 ≤ v and λv2 ≤ v (pointwise).

We define the weighted spaces CV (X,E) and CV0(X,E) of E-valued continuous
functions on X with respect to a given Nachbin family V as follows:

CV (X,E) = {f ∈ C(X,E) : fv is bounded for every v ∈ V },

CV0(X,E) = {f ∈ C(X,E) : fv vanishes at infinity for every v ∈ V }.

We will write CV(0)(X,E) to mean CV (X,E) (resp. CV0(X,E)). When E = K,
we write simply CV (X) instead of CV (X,K) and CV0(X) instead of CV0(X,K) .

The seminorms Pv, where Pv(f) = ‖f‖P,v := sup{v(x)P ((f(x))) : x ∈ X}, generate
a Hausdorff locally convex topology on each of these spaces for P ranging through the
continuous seminorms on E and v ∈ V. This topology is called the weighted topology,
and CV (X,E) and CV0(X,E) endowed with this topology is called the weighted space
of vector-valued continuous functions. If E = K and P = |.| , we also write ‖.‖v instead
of Pv.

Remark 151. CV (X,E) and CV0(X,E) are vector spaces with the pointwise linear
operations and CV0(X,E) is a closed vector subspace of CV (X,E).

Definition 152. (a) A Nachbin family is called admissible if ∀x ∈ X, ∃γ ∈ CV (X,R)

such that γ(x) 6= 0.
(b) A Nachbin family is called strongly admissible if ∀x ∈ X, ∃γ ∈ CV0(X,R) such

that γ(x) 6= 0.

Definition 153. If V,W are two Nachbin families on X, we say V ≤ W iff for every
v ∈ V there is a w ∈ W such that v ≤ w. In this case CW (X,E) is continuously
embedded in CV (X,E). W and V are called equivalent (W ∼ V ) if W ≤ V and
V ≤W holds.

Remark 154. For each f ∈ CV (X,E), the collection of N(v, U) = {g ∈ CV (X,E) :

(v(g − f))(X) ⊆ U}, where f ∈ CV (X,E), v ∈ V and U is a neighbourhood of 0 in E,
is a base of neighbourhoods of f in the weighted space CV (X,E).

Lemma 155. Let X be a topological space, V a Nachbin family with 1 ∈ V and E a
normed space, then the set

CV (X,U) = {f ∈ CV (X,E) : im(f) +BE
ε (0) ⊆ U for some ε > 0}

is an open 0-neighbourhood of CV (X,E) for every open 0-neighbourhood U of E.
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Remark 156. For each f ∈ CV0(X,E), the collection of Bε,v(f) = {g ∈ CV0(X,E) :

Pv(f − g) < ε}, where f ∈ CV0(X,E), v ∈ V and ε > 0, is a base of open neighbour-
hoods of f in the weighted space CV0(X,E).

Proposition 157. ([40]) Let X be a Hausdorff topological space, E and F be normed
spaces over K, U ⊆ X be an open 0-neighbourhood, V be a set of weights of X with
1U ∈ V, and f : U → F be K-analytic.
(a) If K = C, then

CV (E, f) : CV (X,U)→ CV (X,F ), γ 7→ f ◦ γ

is complex analytic.
(b) If K = R and f : U → F admits a complex analytic extension f̃ : Ũ → FC to

an open subset Ũ ⊆ EC, then CV (E, f) is real analytic, such an extension always
exists by definition of real analyticity.

7.2 Weighted topological Lie algebras

Definition 158. (a) A locally convex algebra is an algebra E endowed with a locally
convex topology such that the multiplication of E separately continuous 1.

(b) E is said to be a topological algebra with B-hypocontinuous multiplication (or that
E is B-hypotopological), where B is a family of subsets of E, if E is equipped
with both left and right B-hypocontinuous multiplication 2. By means of the
seminorms, this is equivalent to: for every P ∈ P, where P is a set of seminorms
on E defining its topology and B ∈ B, there exist P ′ ∈ P and M > 0 such that

max(P (xy), P (yx)) ≤MP ′(y), x ∈ B, y ∈ E.

In case B is the set of all bounded subsets of E, we just say that E has hypocon-
tinuous multiplication or is hypotopological.

Remark 159. ([9]) Every continuous bilinear map is hypocontinuous. The converse is
in general false.

Proposition 160. ([34]) Let E be a locally convex algebra.

1In the case of topological Lie algebras, we shall however assume that the Lie bracket is jointly
continuous.

2Multiplication in E is said to be left (right) B-hypocontinuous if for each 0-neighbourhood U in
E and B ⊆ B, there exists a 0-neighbourhood U ′ such that BU ′ ⊆ U (resp. U ′B ⊆ U).
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(a) C(X,E) is an algebra for every completely regular space X if and only if E has
continuous multiplication.

(b) If E is hypotopological, then Cb(X,E) is an algebra for every Hausdorff completely
regular space X.

Proposition 161. ([33])
(a) CV(0)(X) is a locally convex algebra iff for every g ∈ CV(0)(X), |g|W ≤W, i.e.,

∀v ∈ V, ∃v′ ∈ V : |g| v ≤ v′.

(b) CV(0)(X) has continuous product if and only if V ≤ V V .

The next proposition describes a condition on the weights that makes CV (X, g) a
topological Lie algebra.

Proposition 162. Let X be a completely regular Hausdorff space and V be a Nachbin
family on X. If V ≤ V · V , then CV (X, g) is topological Lie algebra, for every locally
convex topological Lie algebra g.

Proof. Let γ, η ∈ CV (X, g). Given v ∈ V and P ∈ P, by the hypothesis V ≤ V · V
there exists a weight w ∈ V such that v ≤ w · w.

Because [·, ·] is continuous there existsQ ∈ P such that P ([v, w]) ≤ Q(v)Q(w), ∀v, w ∈
g. Hence

v(x)P ([γ, η](x)) ≤ w(x)w(x)P ([γ(x), η(x)]

≤ w(x)w(x)Q(γ(x))Q(η(x))

= w(x)Q(γ(x))︸ ︷︷ ︸
≤Qw(γ)

w(x)Q(η(x))︸ ︷︷ ︸
≤Qw(η)

Hence v(x)P ([γ, η](x)) ≤ Qw(γ)Qw(η), independently of x. Passing to the supremum
over x on the left-hand side, we obtain

Pv([γ, η]) ≤ Qw(γ)Qw(η) <∞. (7.1)

Because Pv([γ, η]) <∞ for all v ∈ V and all P ∈ P, we have [γ, η] ∈ CV (X, g).Moreover
Pv([γ, η]) ≤ Qw(γ)Qw(η) by (7.1), hence the bilinear map

CV (X, g)× CV (X, g)→ CV (X, g), (γ, η) 7→ [γ, η]

is continuous at (0, 0) and thus continuous. The assertion follows.
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Lemma 163. Let X be a completely regular Hausdorff space and V be a Nachbin family
on X. If V ≤ V ·V , then CV0(X, g) is a Lie subalgebra of CV (X, g), moreover CV0(X, g)

is an ideal of CV (X, g).

Proof. Let γ ∈ CV (X, g) and η ∈ CV0(X, g). Given v ∈ V and P ∈ P, there exists
a weight w ∈ V such that v ≤ w · w and there exists a seminorm Q ∈ P such that
P ([v, w]) ≤ Q(v)Q(w), ∀v, w ∈ g. Now given ε > 0, there exists a compact set K ⊆ X

such that
w(x)Q(η(x)) ≤ ε

Qw(γ) + 1
(7.2)

for all x ∈ X\K. Then, for x ∈ X\K, by (7.2) we have

v(x)P ([γ, η](x)) ≤ w(x)w(x)P ([γ(x), η(x)])

≤ w(x)w(x)Q(γ(x))Q(η(x))

= w(x)Q(γ(x))︸ ︷︷ ︸
≤Qw(γ)

w(x)Q(η(x))︸ ︷︷ ︸
≤ ε
Qw(γ)+1

≤ εQw(γ)

Qw(γ) + 1

≤ ε.

Hence v(x)P ([γ, η](x)) vanishes at infinity. Thus [γ, η] ∈ CV0(X, g). Hence CV0(X, g)

is an ideal of CV (X, g).

7.3 The Lie group structure on CV (X,H)◦

Let H be any Banach Lie group with Lie algebra h. We show that if 1 ∈ V , then
P := {γ ∈ CV (X, h) : ‖γ‖∞ < ε} is a 0-neighbourhood. And if expH |Bh

ε (0)
is a

diffeomorphism onto an open 1-neighbourhood, then the map

Φ : P → HX , γ 7→ expH ◦γ

is injective, hence Φ(P ) can be made a manifold diffeomorphic to the open set P ⊆
CV (X, h), thus by the standard arguments 〈expH ◦γ : γ ∈ P ( or h)〉 is a Lie group.

Let W := Φ(Q) and Q := {γ ∈ CV (X, h) : ‖γ‖∞ < δ} where δ is so small that

Bh
δ (0) ∗Bh

δ (0) ⊆ Bh
ε′(0) with ε′ < ε, (7.3)

where ∗ is the Baker-Campbell-Hausdorff multiplication.
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Now expH(−x) = expH (x)−1. ThusW is symmetric and (7.3) ensures thatW ·W ⊆
P . Let G := 〈expG ◦γ : γ ∈ CV (X, h)〉 ⊆ HX . Then

CV (X, h) = ∪∞n=1nQ

and expH ◦(nγ) = (expH ◦γ)n ∈ 〈expH ◦γ : γ ∈ Q〉 = 〈W 〉 thus,

〈W 〉 = 〈expH ◦γ : γ ∈ CV (X, h)〉 =: CV (X,H)0 = G.

In particular, Φ(P ) ⊆ 〈W 〉.
We want to apply Proposition 16 to create a Lie group structure on G. Let us check

conditions (a) and (b) of Proposition 16.
Inversion is analytic on W . The continuous linear map

CV (X, h)→ CV (X, h), γ 7→ −γ

restricts to the analytic self-map

i : Q→ Q, γ 7→ −γ

of Q. Since Φ(−γ) = Φ(γ)−1, the inversion map G→ G restricts to a self-map

j : W →W, γ 7→ γ−1

and j ◦ Φ|Q= Φ ◦ i. We want to see that this map is analytic. We have a commutative
diagram

W
j−−−−→ WxΦ|Q

xΦ|Q

Q
i−−−−→ Q.

Since i is analytic, also j = Φ ◦ i ◦ (Φ|Q)−1 is analytic.
Multiplication is analytic on W . The multiplication map

G×G→ G

restricts to a map
W ×W → G.

Now CV (X,Bh
δ (0)) × CV (X,Bh

δ (0)) ∼= CV (X,Bh
δ (0) × Bh

δ (0)) and m := C(X, ν) :

CV (X,Bh
δ (0) × Bh

δ (0)) → P is an analytic mapping by Proposition 157, where ν :
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Bh
δ (0)×Bh

δ (0)→ Bh
ε′(0), ν(a, b) := a ∗ b is the Baker-Campbell-Hausdorff multiplica-

tion. Since Q = CV (X,Bh
δ (0)), we obtain a commutative diagram

W ×W µ−−−−→ GxΦ|Q×Φ|Q
xΦ

Q×Q m−−−−→ P

and µ(W×W ) ⊆ Φ(P ). Therefore the mapW×W → G induced by group multiplication
is analytic.

7.4 Weighted Lie algebras and continuous product

Lemma 164. Let X be a Hausdorff topological space. Assume that for each x0 ∈ X,
there exists a continuous function h : X → R such that h(x0) 6= 0 and h ∈ C0(X,R).
Then X is locally compact.

Proof. Since h ∈ C0(X,R), there exists a compact set K ⊆ X such that |h(x)| <
ε := |h(x0)| /2 for all x ∈ X\K. Now U := {x ∈ X : |h(x)− h(x0)| ≤ ε} is a closed
neighbourhood of x0 in X. For x ∈ U , we have |h(x)| ≥ |h(x0)| − |h(x)− h(x0)| ≥
2ε− ε = ε. Hence U ⊆ K and thus U is compact. Since U is a neighbourhood of x0, X

is locally compact.

Lemma 165. Let X be a Hausdorff topological space. Assume that V ⊆ C(X, [0,∞[)

and for each x0 ∈ X, there exists a function h ∈ CV0(X,R) such that h(x0) 6= 0. Then
X is locally compact.

Proof. By Definition 150 (a), there exists v ∈ V such that v(x0) > 0. Then v · h ∈
C0(X,R) and (v · h)(x0) = v(x0) · h(x0) 6= 0. Hence, by Lemma 164, X is a locally
compact.

Lemma 166. (a) If X is a completely regular Hausdorff space and V is an admissible
Nachbin family, then for each x0 ∈ X and each neighbourhood U ⊆ X of x0, there
exists γ ∈ CV (X,R) such that γ(x0) 6= 0 and γ|X\U 6= 0.

(b) If X is a locally compact Hausdorff space and V is an admissible Nachbin family,
then V is a strongly admissible Nachbin family.

Proof. (a) SinceX is a completely regular Hausdorff space, there exists h ∈ C(X, [0, 1])

such that h(x0) 6= 1 and h|X\U= 0.
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By dmissibility, there exists γ ∈ CV (X,R) such that γ(x0) 6= 0. Then h · γ ∈
CV (X,R). But (h · γ)(x0) = h(x0)γ(x0) 6= 0 and h · γ|X\U= 0.

(b) Let x0 ∈ X. Because X is locally compact, there exists a compact neighbourhood
U ⊆ X of x0.
Since every locally compact space is completely regular, by (a) we find γ ∈
CV (X,R) such that γ|X\U= 0 and γ(x0) 6= 0.

But K := U is compact and v · γ|X\K= 0, hence v(x) |γ(x)| ≤ ε for each ε and for
each x ∈ X\K. Thus γ ∈ CV0(X,R). Hence V is strongly admissible Nachbin
family.

Lemma 167. Let X be a completely regular space and V be an admissible Nachbin
family. Assume that v ∈ V and v1, . . . , vn ∈ V satisfy

‖γ1 · · · γn‖v ≤ ‖γ1‖v1 · · · ‖γn‖vn , for all γ1, . . . , γn ∈ CV (X).

Then

v(x) ≤ v1(x) · · · vn(x), for all x ∈ X. (7.4)

Proof. If v(x) = 0, then (7.4) is clear. Now assume that v(x) > 0. Let ε be arbitrary.
Since v1, . . . , vn are upper semicontinuous, there exists a neighbourhood U ⊆ X of x
such that vj(y) ≤ vj(x) + ε for all y ∈ U.

Since V is an admissible Nachbin family andX is a completely regular space, Lemma
166 shows that we find γ ∈ CV (X,R) such that γ|X\U= 0 and γ(x) 6= 0. Without loss
of generality im(γ) ⊆ [0, 1] and γ(x) = 1. For each j, we have

‖γ‖vj = sup{vj(y) |γ(y)| : y ∈ X}

= sup{vj(y) |γ(y)| : y ∈ U}

≤ vj(x) + ε.

Then
j copies of γ︷ ︸︸ ︷
‖γ · · · γ‖v ≥ v(x) |γ1(x) · · · γn(x)| = v(x)

and

‖ γ · · · γ ‖v ≤ ‖γ‖v1 · · · ‖γ‖vn
≤ (v1(x) + ε) · · · (vn(x) + ε)
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Because ε was arbitrary, we get

v(x) ≤ v1(x) · · · vn(x).

Lemma 168. Let α : E → F be a continuous linear map between locally convex spaces.
Then α ◦ γ ∈ CV(0)(X,F ) for each γ ∈ CV(0)(X,E), and the map

CV(0)(X,α) : CV(0)(X,E)→ CV(0)(X,F ), γ 7→ α ◦ γ

is continuous and linear.

Proof. Linearity is obvious. Now for each continuous seminorm P on F , there exists
continuous seminorm Q on E such that P (α(x)) ≤ Q(x) because α is continuous linear.
Then for each v ∈ V , x ∈ X and γ ∈ CV (X,E)

v(x)P (α(γ(x))) ≤ v(x)Q(γ(x))

hence ‖α ◦ γ‖P,v ≤ ‖α‖Q,v <∞ and α ◦ γ ∈ CV (X,F ). Thus CV (X,α) is continuous.
Now v(x)P (α(γ(x))) ≤ v(x)Q(γ(x)) shows that v ·(α◦γ) ∈ C0(X,F ) if v.γ ∈ C0(X,E),

hence α ◦ γ ∈ CV0(X,F ) if γ ∈ CV0(X,E).

Lemma 169. Let E be a locally convex space, X be a topological space, V a Nachbin
family and 0 6= w ∈ E. Then the map

Φ : CV (X,R)→ CV (X,E), γ 7→ γ · w

is linear and a topological embedding. Furthermore,

im(Φ) = {γ ∈ CV (X,E) : (∀x ∈ X)γ(x) ∈ Rw}.

Proof. If P is a continuous seminorm on E and v ∈ V , then

v(x)P (γ(x)w) = v(x) |γ(x)|P (w) ≤ ‖γ‖v · P (w),

thus γ · w ∈ CV (X,E) and ‖Φ(γ)‖P,v = ‖γ · w‖P,v ≤ P (w) ‖γ‖v, hence the linear map
Φ is continuous.

By Hahn-Banach Theorem, there exists λ ∈ E′ such that λ(w) 6= 0. W.l.o.g λ(w) =

1. Then CV (X,λ) : CV (X,E)→ CV (X,R) is continuous and linear.
(CV (X,λ) ·Φ)(γ) = CV (X,λ)(γ ·w) = λ ◦ (γ ·w). Here (λ ◦ γ ·w)(x) = λ(γ(x)w) =

γ(x)λ(w) = γ(x). Thus λ ◦ (γ · w) = γ, hence CV (X,λ) ◦ Φ = idCV (X,R), thus Φ is
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injective and Φ−1 = CV (X,λ)|imΦ is continuous, thus Φ is a homeomorphism onto its
image, i.e., a topological embedding.

Now let γ ∈ CV (X,E) and assume that γ(x) ∈ Rw for each x ∈ X. Since w 6= 0,
we have γ(x) = η(x)w with a unique real number η(x) ∈ R. Then η = CV (X,λ)(γ),
hence η ∈ CV (X,R). Hence γ = Φ(η) is in the image of Φ.

We can prove the following lemma in the same way.

Lemma 170. Let E be a locally convex space, X be a topological space, V a Nachbin
family and 0 6= w ∈ E. Then the map

Φ : CV0(X,R)→ CV0(X,E), γ 7→ γ · w

is linear and a topological embedding. Furthermore,

im(Φ) = {γ ∈ CV0(X,E) : (∀x ∈ X)γ(x) ∈ Rw}.

Theorem 171. Let n ∈ N with n ≥ 2, X be a topological space, V ⊆ [0,∞[X a Nachbin
family and β : E1 × · · · × En → F a continuous n-linear map between locally convex
spaces, such that β 6= 0. Consider the conditions:
(a) V ≤ V · V · · ·V︸ ︷︷ ︸

n factors.
(b) β ◦ (γ1, . . . , γn) ∈ CV (X,F ) for all γj ∈ CV (X,Ej) for j = 1, . . . , n and

CV (X,β) : CV (X,E1)× · · · × CV (X,En)→ CV (X,F ),

(γ1, . . . , γn) 7→ β ◦ (γ1, . . . , γn)

is continuous.
(c) β ◦ (γ1, . . . , γn) ∈ CV0(X,F ) for all γj ∈ CV0(X,Ej) for j = 1, . . . , n and

CV0(X,β) : CV0(X,E1)× · · · × CV0(X,En)→ CV0(X,F ),

(γ1, . . . , γn) 7→ β ◦ (γ1, . . . , γn)

is continuous.
Then (a) ⇒ (b) and (a) ⇒ (c). If X is a completely regular Hausdorff space and V is
an admissible Nachbin family, then (b) ⇒ (a).

If X is a completely regular Hausdorff space and V is a strongly admissible Nachbin
family, then (c) ⇒ (a).

Proof.
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(a) ⇒ (b): Let P be a continuous seminorm on F and v ∈ V.
By hypothesis, there exist v1, . . . , vn ∈ V such that v ≤ v1v2 · · · vn.
Because the n-linear map β is continuous, there exist continuous seminorms Qj on

Ej for j ∈ {1, . . . , n} such that

P (β(w1, . . . , wn)) ≤ Q1(w1) ·Q2(w2) · · ·Qn(wn).

Let γj ∈ CV (X,Ej) for j ∈ {1, . . . , n}. For x ∈ X, estimate

v(x)P ((β ◦ (γ1, . . . , γn))(x)) ≤ v1(x)v2(x) · · · vn(x)Q1(γ1(x))Q2(γ2(x)) · · ·Qn(γn(x))

= v1(x)Q1(γ1(x))︸ ︷︷ ︸
≤‖γ1‖Q1,v1

v2(x)Q2(γ2(x))︸ ︷︷ ︸
≤‖γ2‖Q2,v2

· · · vn(x)Qn(γn(x))︸ ︷︷ ︸
≤‖γn‖Qn,vn

≤ ‖γ1‖Q1,v1
‖γ2‖Q2,v2

· · · ‖γn‖Qn,vn
<∞.

Thus β ◦ (γ1, . . . , γn) ∈ CV (X,F ) and ‖β ◦ (γ1, . . . , γn)‖P,v ≤ ‖γ1‖Q1,v1
· · · ‖γn‖Qn,vn ,

hence the n-linear map CV (X,β) is continuous.

(a) ⇒ (c): In the same way as (a) ⇒ (b).

(b)⇒ (a): LetX be a completely regular Hausdorff space and assume that V admissible.
Because β 6= 0, there exist 0 6= wj ∈ Ej such that w := β(w1, . . . , wn) 6= 0. Let

Φj : CV (X,R)→ CV (X,Ej), γ 7→ γ · wj ,

which is a continuous linear map by Lemma 169.
Let Φ : CV (X,R)→ CV (X,F ), γ 7→ γ ·w. Then Φ is a linear topological embedding

by Lemma 169. Moreover,

(β ◦ (Φ1(γ1), . . . ,Φn(γn)))(x) = β(γ1(x)w1, . . . , γn(x)wn)

= γ1(x) · · · γn(x)β(w1, . . . , wn).

Hence (γ1 · · · γn) · w = β ◦ (Φ1(γ1), . . . ,Φn(γn)) ∈ CV (X,F ) by hypothesis and by
Lemma 169, γ1 · · · γn ∈ CV (X,R).

Now let µ : Rn → R, (r1, . . . , rn) 7→ r1 · · · rn. By the preceding,

CV (X,µ) : CV (X,R)n → CV (X,R), (γ1, . . . , γn) 7→ µ ◦ (γ1, . . . , γn)

is defined, and CV (X,β) ◦ (Φ1 × · · · × Φn) = Φ ◦ CV (X,µ). Since CV (X,β) ◦ (Φ1 ×
· · ·×Φn) is continuous, and Φ a topological embedding, it follows that also CV (X,µ) is
continuous. Hence, for the proof (b) ⇒ (a), without loss of generality E1 = · · · = En =
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F = R and β = µ. Thus assume γ1 · · · γn ∈ CV (X,R) for all γ1, . . . , γn ∈ CV (X,R)

and asume that

CV (X,µ) : CV (X,R)n → CV (X,R), (γ1, . . . , γn) 7→ γ1 · · · γn

is continuous. Let v ∈ V. We have to show there exist v1, . . . , vn ∈ V such that
v ≤ v1 · · · vn. Because CV (X,µ) is continuous, there exist continuous seminorms Qj on
CV (X,R) for j = 1, . . . , n such that

‖γ1 · · · γn‖ ≤ Q1(γ1) · · ·Qn(γn). (7.5)

Since V is Nachbin family, for each j, there exist vj ∈ V such that Qj ≤ ‖·‖vj . Now
(7.5) implies that

‖γ1 · · · γn‖v ≤ ‖γ1‖v1 · · · ‖γn‖vn .

Hence Lemma 167 shows that

v(x) ≤ v1(x) · · · vn(x), for all x ∈ X. (7.6)

The proof of "(c) ⇒ (a)" is similar.

Applying Theorem 171, we obtain:

Corollary 172. If (g, [·, ·]g) is a locally convex topological Lie algebra, X a Hausdorff
topological space and V any Nachbin family on X such that V ≤ V V, then CV (X, g) is
a locally convex topological Lie algebra with the Lie bracket

[·, ·] : CV (X, g)× CV (X, g)→ CV (X, g), (γ, η) 7→ [γ, η]

with
[γ, η](x) := [γ(x), η(x)]g.

Proof. Taking β := [·, ·]g in Theorem 171, the assertion follows.

Write gn for the n-th term of the descending central series of a Lie algebra g. By
the definition of the Lie bracket in Corollary 172, we obtain:

Corollary 173. If (g, [·, ·]g) is a nilpotent locally convex topological Lie algebra with
gn = {0}, X any Hausdorff topological space and V any Nachbin family on X such
that V ≤ V V, then CV (X, g) is a nilpotent locally convex topological Lie algebra with
CV (X, g)n = {0}.
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The Lie group structure on CV (X, g)

If CV (X, g) is a nilpotent locally convex topological Lie algebra and CV (X, g)n = 0,
then the Baker-Campbell-Hausdorff series (BCH-series) is a finite sum of terms involving
at most n − 1 brackets and being finite, the series converges on all of CV (X, g) ×
CV (X, g), thus

γ ∗ η = γ +
∑
k,m≥0
pi+qi>0

(−1)k
(adγ)p1(adη)q1 · · · (adγ)pk(adη)pk(adγ)m

(k + 1)(q1 + · · ·+ qk + 1)p1!q1! · · · pk!qk!m!
η

= γ + η +
1

2
[γ, η] +

1

12
[γ, [γ, η]] +

1

12
[η, [η, γ]]− 1

24
[γ, [η, [γ, η]]] + · · ·

can be defined for all γ, η ∈ CV (X, g). This is a continuous function

CV (X, g)× CV (X, g)→ CV (X, g)

in the variables (γ1, γ2) and a polynomial. Hence this is an analytic function of (γ, η).
It is known that the Baker-Campbell-Hausdorff formula defines a group structure on
any nilpotent Lie algebra [21]. By the preceding, the group multiplication is analytic.
The inversion is the continuous linear map

CV (X, g)→ CV (X, g), γ 7→ −γ

and therefore analytic as well. Thus (CV (X, g), ∗) is an analytic Lie group with Lie
algebra (CV (X, g), [., .]).

Remark 174. One can show this does not work any more in general if g is solvable. In
this case for finite-dimensional g, it is still possible to make g a Lie group G = (g, µ),
where µ : g × g → g is the analytic group multiplication (so G diffeomorphic to the
vector space g).

Thus CV (X, g) is a topological Lie algebra. But we can not make this a Lie group
using the multiplication

CV (X,µ) : CV (X, g)× CV (X, g)→ C(X, g), (γ, η) 7→ µ ◦ (γ, η),

because the latter may take values outside CV (X, g).

Example 175. Let X = R. V = {avα : α < 0, a > 0} is a Nachbin family, where
vα(x) := (1 + |x|)α. if

γ(x) :=

{
log x if x ≥ 1,

0 if x ≤ 1,
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then γ ∈ CV (R), using that a continuous function η is in CV (R) if and only if η =

O(|x|α) as x → ∞, for all α > 0. Let G = R2 as a manifold, which is a group with
analytic multiplication µ((a, b), (c, d)) := (a+eb ·c, b+d) and analytic inversion i(a, b) :=

(−ae−b,−b). We have then that τ(x) = (1, 0) defines a function τ ∈ CV (R,R×R) and

σ(x) :=

{
(0, log x) if x ≥ 1,

(0, 0) if x ≤ 1,

defines a function σ ∈ CV (R,R× R). For these functions and for x ≥ 1

(µ ◦ (σ, τ))(x) = µ(σ(x), τ(x)) = µ((0, log x), (1, 0)) = (elog x, log x) = ( x︸︷︷︸
is not O(

√
x)

, log x),

so µ ◦ (σ, τ) /∈ CV (R,R× R), ‖µ ◦ (γ, η)‖v− 1
2

=∞.
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