

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

III. Die Formänderung des ebenen Stabzuges

urn:nbn:de:hbz:466:1-74292

Visual Library

Die allgemeinen Ansätze.

III. Die Formänderung des ebenen Stabzugs.

17. Die allgemeinen Ansätze.

Scheibe und Träger gelten bei ihrer Verwendung im Bauwesen in der Regel als Stäbe, deren Querschnitte bei der Formänderung eben bleiben und nicht in ihrer Ebene verzerrt werden. Diese Voraussetzung ist nur bei geschlossenem, unveränderlichem Querschnitt mit kleinen Abmessungen relativ zur Stablänge erfüllt. Die Formänderung des Stabes kann dann durch die Verschiebung des Schwerpunktes u_0, v_0, w_0 und durch die Verdrehung ψ_x, ψ_y, ψ_z des Querschnitts, also durch 6 Komponenten beschrieben werden. Die Verschiebung eines beliebigen Punktes des Querschnitts ist bei $\psi_x \approx 0$ und bei Vernachlässigung von kleinen Größen zweiter Ordnung $v = v_0$, $w = w_0, u + u_0$, so daß nach (26) die folgenden Beziehungen zwischen den Verschiebungen und den Komponenten des Verzerrungs- und Spannungszustandes bestehen:

$$\varepsilon_x = \frac{\partial u}{\partial x}, \qquad \varepsilon_y = \frac{\partial v}{\partial y} = 0, \qquad \varepsilon_z = \frac{\partial w}{\partial z} = 0,$$

$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}, \qquad \gamma_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} = 0, \qquad \gamma_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}, \qquad (143)$$

$$\sigma_{x} = E \varepsilon_{x}, \qquad \tau_{xy} = G \gamma_{xy}, \qquad \tau_{xz} = G \gamma_{xz}.$$

Die allgemeinen Ergebnisse des Abschnitts 8 für die Formänderungsarbeit und für das Clapeyronsche Gesetz lassen sich daher mit den äußeren Kräften \mathfrak{Q}_m , M_m und p_x , p_y , p_z je Längeneinheit folgendermaßen vereinfachen:

$$A_{i} = \frac{1}{2} \int (p_{x} u + p_{y} v + p_{z} w) ds + \frac{1}{2} \sum \mathfrak{Q}_{m} \tilde{s}_{m} + \frac{1}{2} \sum \mathsf{M}_{m} \varphi_{m}$$
$$= \frac{1}{2} \int (\sigma_{x} \varepsilon_{x} + \tau_{xz} \gamma_{xz} + \tau_{xy} \gamma_{xy}) dV, \qquad (144)$$

$$A_i(\varepsilon,\gamma) = G \int \left[(1+\mu) \,\varepsilon_x^2 + \frac{1}{2} \,(\gamma_{xz}^2 + \gamma_{xy}^2) \right] dV \,, \tag{145}$$

$$A_i(\sigma,\tau) = \frac{1}{2} \int \left[\frac{\sigma_x^2}{E} + \frac{\tau_{xy}^2 + \tau_{xz}^2}{G} \right] dV.$$
(146)

Variation nach den Verschiebungen (Prinzip der virtuellen Verrückungen):

 $\int (p_x \,\delta w + p_x \,\delta u + p_y \,\delta v) \,ds + \sum \mathfrak{Q}_m \,\delta \mathfrak{F}_m + \sum \mathsf{M}_m \,\delta \varphi_m = \int (\sigma_x \,\delta \varepsilon_x + \tau_{xz} \,\delta \gamma_{xz} + \tau_{xy} \,\delta \gamma_{xy}) \,dV.$ (147) Variation nach den Spannungen (Castiglianos Prinzip):

 $\int (\delta p_x w + \delta p_x u + \delta p_y v) \, ds + \sum \delta \mathfrak{Q}_m \mathfrak{s}_m + \sum \delta \mathsf{M}_m \varphi_m = \int (\delta \sigma_x \mathfrak{e}_x + \delta \tau_{xx} \gamma_{xx} + \delta \tau_{xy} \gamma_{xy}) \, dV. \tag{148}$

Bei einem Stab oder Stabzug mit einer Symmetrieebene, welche die Wirkungslinien aller äußeren Kräfte enthält, ist aus Symmetriegründen

$$p_y = 0;$$
 $v_0 = \psi_x = \psi_z = 0,$ $\gamma_{xy} = 0,$ $\tau_{xy} = 0$ (149)

und daher

$$A_{i} = \frac{1}{2} \int \left(\sigma_{x} \varepsilon_{z} + \tau_{xz} \gamma_{zz}\right) dV = G \int \left[\left(1 + \mu\right) \varepsilon_{x}^{2} + \frac{1}{2} \gamma_{xz}^{2} \right] dV = \frac{1}{2} \int \left(\frac{\sigma_{x}^{2}}{E} + \frac{\tau_{zz}^{2}}{G}\right) dV. \quad (150)$$

In den Variationsansätzen (147) und (148) scheiden die Glieder γ_{xy} , τ_{xy} , γ_{xz} , τ_{xz} aus. Die Variation der stetigen Belastung δp_x , δp_y , δp_z ist für die Anwendung ohne Bedeutung.

Die Variation des Verschiebungszustandes besteht aus den virtuellen Verschiebungen δu , δv , δw und aus den hiermit geometrisch verträglichen Verzerrungen $\delta \varepsilon_x$, $\delta \gamma_{xz}$, $\delta \gamma_{xz}$, $\delta \gamma_{xy}$ der differentialen Elemente des Stabes. Die Variation des Spannungszustandes besteht aus einer virtuellen Gruppe von äußeren Kräften $\delta \mathfrak{Q}_m$, δM_m ,

Die allgemeinen Ansätze.

die untereinander und mit den Spannungen $\delta \sigma_x$, $\delta \tau_{xz}$, $\delta \tau_{xy}$ im Gleichgewicht sind. In der Baustatik sind hierfür besondere Bezeichnungen üblich. Man setzt:

$$\delta u = \bar{u} , \quad \delta v = \bar{v} , \quad \delta w = \bar{w} , \quad \delta \varepsilon_x = \bar{\varepsilon}_x , \quad \delta \gamma_{xz} = \bar{\gamma}_{xz} , \quad \delta \gamma_{xy} = \bar{\gamma}_{xy} .$$

Die Projektion von δs_m auf die Kraftrichtung \mathfrak{Q}_m ist die virtuelle Verschiebung δ_m . Die Komponenten des virtuellen Belastungs- und Spannungszustandes sind

$$\delta \mathfrak{Q}_m = \overline{\mathfrak{Q}}_m, \quad \delta \mathsf{M}_m = \overline{\mathsf{M}}_m, \quad \delta \sigma_x = \overline{\sigma}_x, \quad \delta \tau_{xz} = \overline{\tau}_{xz}, \quad \delta \tau_{xy} = \tau_{xy}.$$

Die Gruppe der virtuellen äußeren Kräfte \mathfrak{Q}_m zerfällt in die virtuelle Belastung \overline{P}_m und in die zugeordneten Stützkräfte \overline{C}_e . Die Projektionen der Verschiebungen $(u_m + v_m + w_m) = \mathfrak{s}_m$ auf die Kraftrichtungen \overline{P}_m werden \mathfrak{d}_m , die Projektionen der bekannten Verschiebungen der Stützpunkte auf die Richtung der Stützkräfte Δ_e genannt. Die Variationsansätze (147) und (148) lauten dann nach (149) für Stäbe mit einer Symmetrieebene, welche nach Abb. 21 die Belastung enthält, folgendermaßen:

Variation der Formänderungsarbeit nach den Verschiebungen (Prinzip der virtuellen Verrückungen):

$$\sum P_m \,\overline{\delta}_m + \sum \mathsf{M}_m \,\overline{\varphi}_m + \sum C_e \,\varDelta_e = \int \left(\sigma_x \,\overline{\varepsilon}_x + \tau_{xz} \,\overline{\gamma}_{xz}\right) \,dV\,; \tag{151}$$

Variation der Formänderungsarbeit nach den Spannungen (Castiglianos Prinzip):

$$\sum P_m \,\delta_m + \sum \mathsf{M}_m \,\varphi_m + \sum C_e \,\Delta_e = \int \left(\bar{\sigma}_x \,\varepsilon_x + \bar{\tau}_{xz} \,\gamma_{xz} \right) \,dV \,. \tag{152}$$

Die Dehnung $\varepsilon_x = \varepsilon_x(z)$ ist durch die Symmetrie der vorgeschriebenen Belastung unabhängig von y und bei der angenommenen ebenen Verschiebung des Querschnitts durch die Kräfte (P, C_e) und einem linearen Temperaturgefälle t linear in z.

$$t(z) = t + (t_i - t_a) \frac{z}{h} = t + \frac{\Delta t}{h} z.$$

$$\varepsilon_x(z) = (\varepsilon_0 + \alpha_t t) + \left(\frac{d\psi_y}{ds} + \alpha_t \frac{\Delta t}{h}\right) z.$$
(153)

Durch Einführung der Schnittkräfte nach (51) und (59) wird daher bei geraden und mit genügender Annäherung auch bei gekrümmten Stäben

$$\varepsilon_{x}(z) = \frac{N}{EF} + \frac{M_{y}}{EJ_{y}}z + \alpha_{t}t + \alpha_{t}\frac{\Delta t}{h}z, \qquad \gamma_{xz} \approx \gamma_{xz,0} = \frac{\varkappa Q_{z}}{GF}, \qquad (154)$$

$$\bar{\sigma}_x = \frac{N}{F} + \frac{M_y}{J_y} z, \qquad \bar{\tau}_{xz} = \frac{Q_z S_{by}}{J_y b}.$$
(155)

Dabei ist für die Änderung der rechten Winkel $\gamma_{xz}(z)$ des differentialen Prismas durch die Schubspannungen τ_{xz} ein Mittelwert $\gamma_{xz,0}$ eingeführt worden. N, M_y, Q_z sind die Schnittkräfte aus der vorgeschriebenen Belastung $(P, C), \overline{N}, \overline{M}_y, \overline{Q}_z$ die Schnittkräfte aus der virtuellen Belastung $(\overline{P}, \overline{C})$. Sie werden nach den Angaben in den Abschnitten 13ff. berechnet, so daß die Variation der Formänderungsarbeit nach den Spannungen in der folgenden Form verwendet werden kann:

$$\sum P_{m} \delta_{m} + \sum M_{m} \varphi_{m} + \sum C_{e} \Delta_{e} =$$

$$= \int_{0}^{l} \left(\frac{N}{EF} + \alpha_{t} t\right) ds \int_{\overline{F}} \overline{\sigma}_{x} dF + \int_{0}^{l} \left(\frac{M_{y}}{EJ_{y}} + \alpha_{t} \frac{\Delta t}{h}\right) ds \int_{\overline{F}} \overline{\sigma}_{x} z dF + \int_{0}^{l} \frac{Q_{s}}{GF} ds \int_{\overline{F}} \overline{\tau}_{xz} dF.$$
Dabei ist $dV = F ds.$ Mit $\int_{\overline{F}} z dF = 0$, $\int_{\overline{F}} z^{2} dF = J_{y}$ und $\int_{\overline{F}} dF = F$ ist
$$\sum \overline{P}_{m} \delta_{m} + \sum \overline{M}_{m} \varphi_{m} + \sum \overline{C}_{e} \Delta_{e} =$$

$$= \int_{0}^{l} \frac{\overline{N}N}{EF} ds + \int_{0}^{l} \frac{\overline{M}_{y}M_{y}}{EJ_{y}} ds + \int_{0}^{l} x \frac{\overline{Q}_{s}Q_{s}}{GF} ds + \int_{0}^{l} \overline{N} \alpha_{t} t ds + \int_{0}^{l} \overline{M}_{y} \alpha_{t} \frac{\Delta t}{h} ds.$$
(156)

Die Erweiterung des Ansatzes für allgemeinere Belastungsannahmen nach (49) und (58) bedarf keiner besonderen Erläuterung.

Die Integration erstreckt sich über diejenigen Teile des Stabzugs, deren Spannungen und Dehnungen nach dem Geradliniengesetz angegeben werden können, so daß die Stabzugecken und Stabzugknoten streng genommen ausscheiden. Bei dem summarischen Charakter des Ansatzes wird jedoch in der Regel die theoretische Stablänge zugrunde gelegt und der Stababschnitt im Knoten nur in Ausnahmefällen mit $J = \infty$ als starr angenommen.

Der Clapeyronsche Ansatz für den Stabzug. Der allgemeine Ansatz des Abschnitts 8 kann nach den mit der Definition des Spannungszustandes eines Stabzugs verbundenen Annahmen folgendermaßen angeschrieben werden:

$$\frac{1}{2}\sum P_m \delta_m + \frac{1}{2}\sum M_m \varphi_m = A_i.$$
(157)

Bei vorgeschriebenen Stützenverschiebungen tritt an die Stelle der Formänderungsarbeit A_i nach (150) die Ergänzungsarbeit A_i^* . Sie ist nach (37)

$$A_i^* = A_i - \sum C_e \Delta_e. \tag{158}$$

Ändert sich während der Formänderung außerdem die Temperatur des Stabzugs, so ist mit $M_y = M$, $Q_z = Q$

$$\frac{1}{2}\sum P_m \delta_m + \frac{1}{2}\sum M_m \varphi_m = A_i - \sum C_e \Delta_e + \int N \alpha_t t \, ds + \int M \frac{\alpha_t \Delta t}{h} \, ds = A_i^{**}.$$
(159)

Auf Grund des Hookeschen Gesetzes kann jede Verschiebung δ_m und jede Winkeländerung φ_m als lineare Funktion der einzelnen Lasten und Kräftepaare entwickelt werden.

$$\delta_m = \delta_{m1} P_1 + \cdots + \delta_{mk} P_k + \cdots + \delta'_{m1} \mathsf{M}_1 + \cdots + \delta'_{mk} \mathsf{M}_k + \cdots ,$$

$$\varphi_m = \varphi'_{m1} P_1 + \cdots + \varphi'_{mk} P_k + \cdots + \varphi_{m1} \mathsf{M}_1 + \cdots + \varphi_{mk} \mathsf{M}_k + \cdots \}$$

$$(160)$$

Wird der Ansatz (159) mit dieser Superposition nach P_k oder M_k partiell differentiiert, so ist

$$\frac{\partial}{\partial P_{k}} \left[\frac{1}{2} \sum P_{m} \delta_{m} + \frac{1}{2} \sum M_{m} \varphi_{m} \right] = \delta_{k}, \\
\frac{\partial}{\partial M_{k}} \left[\frac{1}{2} \sum P_{m} \delta_{m} + \frac{1}{2} \sum M_{m} \varphi_{m} \right] = \varphi_{k}.$$
(161)

Die Komponenten δ_k oder φ_k des Verschiebungszustandes werden demnach als partielle Ableitungen einer der Funktionen A_i, A_i^* oder A_i^{**} nach der am Querschnitt k angreifenden Kraft P_k oder dem hier wirkenden Kräftepaar M_k gefunden.

Richtung und Sinn von δ_k und φ_k stimmen mit P_k und M_k überein.

$$\delta_k = \frac{\partial A_i}{\partial P_k}, \qquad \varphi_k = \frac{\partial A_i}{\partial M_k}. \tag{162}$$

Nach (51), (59) und (154) ist die Formänderungsarbeit des Stabzugs

$$A_{i} = \frac{1}{2} \int \left(\frac{N^{2}}{EF} + \frac{M^{2}}{EJ} + \varkappa \frac{Q^{2}}{GF} \right) ds , \qquad (163)$$

und demnach bei gleichzeitiger Änderung der Temperatur und Verschiebung der Stützen *i i*

$$\begin{split} \dot{P}_{k} &= \int_{0}^{1} N \frac{\partial N}{\partial P_{k}} \frac{ds}{EF} + \int_{0}^{1} M \frac{\partial M}{\partial P_{k}} \frac{ds}{EJ} + \int_{0}^{\infty} \varkappa Q \frac{\partial Q}{\partial P_{k}} \frac{ds}{GF} - \sum \frac{\partial C_{e}}{\partial P_{k}} \Delta_{e} \\ &+ \int_{0}^{l} \frac{\partial N}{\partial P_{k}} \alpha_{t} t \, ds + \int_{0}^{l} \frac{\partial M}{\partial P_{k}} \alpha_{t} \frac{\Delta t}{h} \, ds. \end{split}$$
(164)

Die allgemeinen Ansätze.

Jede Stütz- oder Schnittkraft kann nach dem Superpositionsgesetz als lineare Funktion der Belastung angeschrieben werden.

$$N = \sum_{1}^{n} N_{m} P_{m}, \qquad M = \sum_{1}^{n} M_{m} P_{m}, \qquad Q = \sum_{1}^{n} Q_{m} P_{m}, \qquad C = \sum_{1}^{n} C_{m} P_{m}.$$

Daher ist

$$\frac{\partial N}{\partial P_k} = N_k, \qquad \frac{\partial M}{\partial P_k} = M_k, \qquad \frac{\partial Q}{\partial P_k} = Q_k, \qquad \frac{\partial C}{\partial P_k} = C_k.$$
(165)

Die partielle Ableitung der Funktion A_i^{**} nach P_k führt also zu dem bereits bekannten Ergebnis (156) mit der virtuellen Belastung $\overline{P}_k = 1$.

Um die Verschiebung $k\dot{k}'$ als partielle Ableitung einer der Funktionen A_i zu berechnen, ist unter Umständen die vorgeschriebene Belastung \mathfrak{P} durch eine in Richtung $\vec{kk'}$ wirkende Kraft $P_k = 0$ oder ein im Drehsinn $\vec{kk'}$ wirkendes Kräfte-

a) (r') (r')

paar $M_k = 0$ zu ergänzen, um im Ansatz über die für die Ableitung der Funktion notwendige Veränderliche P_k , M_k zu verfügen.

Das Prinzip der Wechselwirkung für den Stabzug. Das Prinzip der Wechselwirkung von E. Betti ist für die virtuelle Arbeit zweier Kräftegruppen an einem elastischen Körper bewiesen worden. Es bedarf nach (156) für den Stabzug keiner besonderen Begründung, wenn die Anteile (M ds/E J); $(\overline{M} ds/E J)$ des Integranden als die Verzerrungskomponenten aus zwei Kräftegruppen (\mathfrak{P}, M) und ($\mathfrak{P}, \overline{M}$) angesehen werden. Die rechte Seite des Ansatzes (156) bedeutet dann entweder die virtuelle Arbeit der Kräftegruppe ($\mathfrak{P}, \overline{M}$) während der Formänderung (δ, φ) aus (\mathfrak{P}, M) oder die virtuelle Arbeit der Kräftegruppe (\mathfrak{P}, M) während der Formänderung ($\overline{\delta}, \overline{\varphi}$) aus ($\mathfrak{P}, \overline{M}$)

$$\sum \overline{P}_m \delta_m + \sum \overline{M}_m \varphi_m = \sum P_m \overline{\delta}_m + \sum M_m \overline{\varphi}_m.$$
(166)

Ist nur die Kraft P_r oder das Kräftepaar M, vorhanden und daher

$$P_r \delta_{rm} = \sum P_m \delta_{mr}, \qquad \mathsf{M}_r \varphi_{rm} = \sum P_m \delta_{mr}, \quad (167)$$

so wird der Ansatz in der Regel nach J. Cl. Maxwell benannt. Die virtuelle Arbeit der im Punkte r in Richtung $\overrightarrow{rr'}$ wirkenden Kraft \overrightarrow{P}_r während der Verschiebung δ_{rm} des Punk-

tes r in Richtung rr' durch $(P_1 \ldots P_m \ldots)$ ist gleich der virtuellen Arbeit, welche die Kräfte $(P_1 \ldots P_m \ldots)$ während der Verschiebungen δ_{mr} der Punkte m infolge \overline{P}_r leisten. Der zweite Ansatz kann ähnlich ausgesprochen werden. Die Beziehung gilt auch ür die virtuelle Arbeit $\overline{P}_r \cdot e_{rm}$ zweier gleichgroßer, entgegengesetzt gerichteter, an den beiden Punkten r wirkenden Kräfte \overline{P}_r und für die virtuelle Arbeit $\overline{M}_r \cdot \tau_{rm}$ zweier an den beiden Geraden r des Stabwerks angreifenden, im Gleichgewicht stehenden Kräftepaare \overline{M}_r . Dabei ist e_{rm} die gegenseitige Verschiebung des Punktepaares r und τ_{rm} die gegenseitige Verdrehung der beiden ausgezeichneten Geraden r infolge von $(P_1 \ldots P_m \ldots)$. Dagegen sind δ_{mr} je nach dem Ansatz die Verschiebungen der Punkte m des Stabzugs in Richtung von P_m , welche entweder von der Belastung \overline{P}_r des Punktes r, der Belastung \overline{M}_r der Geraden r, der Be-

Einflußlinie der Verschiebung und Winkelanderung.

lastung \overline{P}_r des Punktepaares r oder der Belastung \overline{M}_r des Geradenpaares r erzeugt werden (Abb. 96).

Einflußlinie der Verschiebung und Winkeländerung. Wird $P_r = 1$ t und $\overline{M}_r = 1$ mt gewählt und die beliebige Kräftegruppe $(P_1 \dots P_m \dots)$ durch eine wandernde, d. h. an einem beliebigen Punkt *m* des Lastgurtes angreifende Kraft $P_m = 1$ t ersetzt, so bedeuten $\delta_{\tau m}, \varphi_{\tau m}, e_{\tau m}, \tau_{\tau m}$ die Ordinaten der Einflußlinien dieser Komponenten des Verschiebungszustandes. Sie werden aus (167) nach dem folgenden Ansatz berechnet:

 $\overline{1}_r \delta_{rm} = 1_m \overline{\delta}_{mr}; \quad \overline{1}_r \varphi_{rm} = 1_m \overline{\delta}_{mr}; \quad \overline{1}_r e_{rm} = 1_m \overline{\delta}_{mr}; \quad \overline{1}_r \tau_{rm} = 1_m \overline{\delta}_{m\tau}.$ (168)

Jedes Produkt ist eine virtuelle Arbeit mit der Dimension mt. Die Drehwinkel φ_{rm}, τ_{rm} sind dimensionslos, die Einheit hat also je nach dem Ansatz die Dimension der Kraft oder des Kräftepaares.

Die Einflußgrößen δ_{rm} , e_{rm} , φ_{rm} , τ_{rm} werden daher als Projektionen der wirklichen Verschiebungen der Punkte *m* des Lastgurtes auf die Richtung der wandernden Einzellast P_m bestimmt. Sie sind damit Ordinaten der Biegelinie des Lastgurtes, welche je nach der Art der Einflußlinie für die Belastungseinheit $\overline{P}_r = 1$ am Punkte *r* oder für die Belastungseinheit $\overline{P}_r = 1$ am Punktepaare *r*, für die Belastungseinheit $\overline{M}_r = 1$ an der Geraden *r* oder für die Belastungseinheit $\overline{M}_r = 1$ am Geradenpaar *r* nach einer durch die wandernde Last bestimmten Richtung aufgezeichnet wird. Die Einflußlinien der Formänderungen werden daher nach den Abschnitten 20 und 21 über Biegelinien entwickelt.

18. Die Berechnung einzelner Komponenten des Verschiebungszustandes.

Die Form eines Stabzugs ändert sich durch Belastung, Temperaturwechsel und Stützenbewegung. Der Vorgang kann durch die Messung der Verschiebung ausgezeichneter Punkte oder durch die Messung der Verdrehung einzelner Stäbe und Querschnitte beobachtet werden. Der Vergleich mit den durch Rechnung gewonnenen Ergebnissen ermöglicht die Nachprüfung der Annahmen der Theorie oder ein Urteil über die Zuverlässigkeit des Spannungsnachweises. Die gerechneten Verschiebungen können außerdem zur Abschätzung der Steifigkeit der Konstruktion und deren niedrigster Eigenschwingungszahl oder zur Untersuchung von statisch unbestimmten Tragwerken verwendet werden.

Aus diesem Grunde wird die senkrechte oder waagerechte Verschiebung einzelner Punkte, also der Stabmitten, Gelenke und Rahmenecken bestimmt. Ebehso kann die Verdrehung von Stäben und Stabknoten, die gegenseitige Verschiebung von Punktepaaren oder die gegenseitige Verdrehung von Stäben und Gelenkteilen berechnet werden. Die geometrischen und elastischen Eigenschaften des Stabwerks werden in jedem Fall als bekannt vorausgesetzt.

Ansatz der Rechnung. Die Aufgabe wird durch die Variation der Formänderungsarbeit nach den Spannungen gelöst (156). Die virtuelle Belastung \overline{P} , \overline{M} ist frei wählbar und kann daher auch so festgesetzt werden, daß die gesuchte Verschiebung δ_k eines Punktes k nach einer ausgezeichneten Richtung $\overline{kk'}$ unmittelbar durch den Ausdruck der Arbeit der virtuellen eingeprägten Kräfte $\overline{1}_k \cdot \delta_k$ angegeben wird. Die virtuelle Belastung ist damit als einzelne Kraft $\overline{P}_k = 1$ t im Punkte k mit der Richtung $\overline{kk'}$ definiert. Dasselbe gilt bei der Berechnung der Verdrehung φ_k eines Querschnitts oder einer ausgezeichneten Geraden k des Stabzugs. Die virtuelle

Die Berechnung einzelner Komponenten des Verschiebungszustandes.

Arbeit $\Sigma \overline{M}_k \varphi_k$ wird in diesem Falle mit einem einzelnen Kräftepaar $\overline{M}_k = \overline{1}_k$ gebildet, das an k in dem für φ_k positiv angenommenen Drehsinn $\overline{kk'}$ wirkt. Mit der virtuellen Arbeit $\overline{1}_k \cdot \varphi_k$ ist die gesuchte Verdrehung unmittelbar bestimmt. Für die Berechnung der gegenseitigen Verschiebung zweier Punkte wird die virtuelle Be-

lastungseinheit des Punktepaares, für die gegenseitige Verdrehung zweier Geraden die virtuelle Belastungseinheit des Geradenpaares verwendet.

Die Formänderungen δ_k , φ_k werden im folgenden stets unter der Voraussetzung angegeben, daß die Verzerrung des Stabteils ds durch die Komponenten ε_0 , $d\psi_v$, $\gamma_{xz,0}$ und damit nach (154) durch die Stütz- und Schnittkräfte C, N, M, Q beschrieben werden kann, die mit der gegebenen Belastung im Gleichgewicht sind. Die Ebene der äußeren Kräfte

Abb. 97. Analytische Ermittlung der Verschiebungen und Verdrehungen ausgezeichneter Punkte und Querschnitte.
a) Stütz- und Schnittkräfte der gegebenen Belastung Σ P sind C, N, M, Q. Die folgenden Abbildungen stellen die virtuelle Belastung zur Berechnung der ausgezeichneten Formänderung dar.

b) Vertikale Verschiebung des Gelenkpunktes C. c) Horizontale Verschiebung des Gelenkpunktes C. d) Gegenseitige Verschiebung der Punkte A und C.
e) Verdrehung des Stützenquerschnittes A. f) Gegenseitige Verdrehung der dem Scheitelgelenk benachbarten Querschnitte.

fällt in diesem Falle mit der Symmetrieebene des Stabwerks zusammen. Der virtuellen Belastung $\overline{\mathbf{l}}_k$ sind Stützkräfte \overline{C}_k und Schnittkräfte $\overline{N}_k, \overline{M}_k, \overline{Q}_k$ zugeordnet. Beide Gruppen von Stütz- und Schnittkräften sind unabhängig voneinander und werden je nach der Struktur des Systems statisch bestimmt oder unbestimmt berechnet. Jede Komponente des Verschiebungszustandes kann daher folgendermaßen angegeben werden:

$$\overline{\mathbf{I}}_{\mathbf{k}}\delta_{\mathbf{k}} = \int \frac{N_{\mathbf{k}}N}{EF} ds + \int \frac{M_{\mathbf{k}}M}{EJ} ds + \int \varkappa \frac{Q_{\mathbf{k}}Q}{GF} ds + \int \overline{N}_{\mathbf{k}}\alpha_{t} t ds + \int \overline{M}_{\mathbf{k}}\frac{\alpha_{t}\Delta t}{h} ds - \Sigma \overline{C}_{\mathbf{e}\mathbf{k}}\Delta_{\mathbf{e}}.$$
(169)

Der Ansatz gilt grundsätzlich für alle Stabwerke. Er wird hier zunächst auf statisch bestimmte Systeme beschränkt, um bei statisch unbestimmten Aufgaben die Ergebnisse des Abschnitts 24 zu verwenden. Die Erweiterung des Ansatzes bei schiefer Biegung oder schiefer Biegung mit Verdrillung des Stabteils ds geschieht in Anlehnung an die Angaben (49). In zahlreichen Fällen wird der EJ_{e} fache Betrag der Verschiebungen berechnet. Das Vergleichsträgheitsmoment J_{e} wird dabei so gewählt, daß die Funktion J_{e}/J oder $J_{e}/J \cos \alpha$ in möglichst großen Integrationsabschnitten "1" ist. Im übrigen empfiehlt sich für J_{e} entweder das kleinste oder das größte Trägheitsmoment des ganzen Integrationsbereiches. F_{e} ist ein Vergleichsquerschnitt.

$$\overline{\mathbf{1}}_{k}(EJ_{c}\delta_{k}) = \frac{J_{e}}{F_{e}}\int \overline{N}_{k}N\frac{F_{e}}{F}ds + \int \overline{M}_{k}M\frac{J_{e}}{J}ds + \frac{J_{e}E}{F_{e}G}\int \varkappa \overline{Q}_{k}Q\frac{F_{e}}{F}ds$$
$$+ EJ_{e}\left[\int \overline{N}_{k}\alpha_{t}t\,ds + \int \overline{M}_{k}\frac{\alpha_{t}\Delta t}{h}\,ds\right] - EJ_{e}\sum \overline{C}_{ek}\Delta_{e}.$$
(170)

Die Anteile der Verschiebung aus Belastung, Temperaturänderung und bekannten oder geschätzten Stützenverschiebungen Δ_e sind unabhängig voneinander. Der Belastungsanteil der Verschiebung δ_k besteht aus drei Summanden, die sich in ihrer Größe wesentlich voneinander unterscheiden. Der Anteil aus den Querkräften ist stets sehr klein und besitzt nur in Ausnahmefällen Bedeutung. Auch der von den

92

BIBLIOTHEK

Der Integrand.

Längskräften herrührende Anteil darf für biegungssteife Bauteile meist vereinfacht oder vernachlässigt werden. Man verwendet daher für N und N_k oft die den einzelnen Abschnitten des Stabwerks zugeordneten Mittelwerte. Dagegen sind die Längenänderungen in Zug- oder Druckstäben, also die Anteile mit den Längskräften S, \overline{S}_k wesentlich.

In vielen Fällen ist die Formänderung eines biegungssteifen Tragwerks aus einer Belastung \mathfrak{B} bereits durch die Biegungsmomente mit genügender Genauigkeit bestimmt, so daß je nach dem Stabnetz und dessen Unterteilung

$$\delta_{k} = \int \frac{\overline{M}_{k}M}{EJ} ds; \quad EJ_{c} \,\delta_{k} = \sum \frac{J_{c}}{J_{k}} \int_{h} \overline{M}_{k} M \frac{J_{k}}{J} ds = \sum \frac{J_{c}}{J_{k}} \int_{h} \overline{M}_{k} M \frac{J_{k}}{J \cos \alpha} dx. \quad (171)$$

Enthält das Stabwerk auch unbelastete, gelenkig angeschlossene Stäbe mit den Längskräften S, \overline{S}_k , so ist

$$E J_{e} \delta_{k} = \sum \frac{J_{e}}{J_{h}} \int_{h} \overline{M}_{k} M \frac{J_{h}}{J} ds + \frac{J_{e}}{F_{e}} \sum \overline{S}_{k} S \frac{F_{e}}{F} s.$$
(172)

Die Ansätze (171) oder (172) dienen auch zur punktweisen Bestimmung der Einflußlinien der Verschiebungen δ_{km} . In diesem Fall sind N, M, S die Schnittkräfte des Stabwerks aus der Belastung mit $P_m = 1$ t in einem beliebigen Punkte m des Lastgurtes.

Die Angaben für die Verschiebung δ_{kt} infolge Temperaturänderung stützen sich auf die Annahme eines linear veränderlichen Temperaturgefälles Δt und beruhen meist nur auf groben Schätzungen des Temperaturunterschiedes $\pm t$. Daher genügen in der Regel auch die Mittelwerte von \overline{N}_k und $(\alpha_t \Delta t): (h \cos \alpha)$ eines größeren Integrationsabschnittes.

$$\delta_{kt} = \int \overline{N}_k \alpha_t t \, ds + \int \overline{M}_k \frac{\alpha_t \, \Delta t}{h} \, ds \approx \sum \overline{N}_k \alpha_t t \, s + \sum \frac{\alpha_t \, \Delta t}{h \cos \alpha} \int \overline{M}_k \, dx \,. \tag{173}$$

Die Verschiebung aus gemessenen oder geschätzten Stützenverschiebungen Δ_e allein ist

$$\delta_{ks} = -\sum C_{ek} \Delta_e. \tag{174}$$

Der Integrand. Der Integrationsbereich erstreckt sich über alle Teile des Stabwerks, deren Spannungen und Dehnungen nach dem Geradliniengesetz angegeben

werden können. In den Brechpunkten des Stabzuges und in den Rahmenecken sind diese Annahmen ungültig. Die Steifigkeit ist hier größer. Dasselbe gilt für die Knotenpunkte des Stabwerks, insbesondere bei Verbindung von Stützen mit hohen Trägern. Der Begriff des Querschnitts verliert hier

Baustoff	Elastizitäts- modul kg/cm ²	
Beton (nach amtl. Bestimmungen)	210000	
Beton erdfeucht 1:2½:5	446000	
Beton plastisch 1:2:3	256000	
Granit	195000	
Buntsandstein	75000	
Keupersandstein	36000	

seine Bedeutung. Trotzdem wird, abgesehen von einzelnen Ausnahmen, über die theoretische Stablänge integriert, um einfache und kurze Ansätze zu erhalten, die dem Wesen der Untersuchung entsprechen und die Erscheinung mit genügender Genauigkeit beschreiben.

Die Formänderungen von Bauteilen aus Eisenbeton werden für den Spannungszustand vor Eintritt von Zugrissen angegeben. Der Elastizitätsmodul des Betons beträgt dann im Mittel $E_b = 210000 \text{ kg/cm}^2$, so daß das Verhältnis $E_e: E_b = n = 10$ ist. Die Rundeisenbewehrung ist daher für das Trägheitsmoment des Querschnitts ohne große Bedeutung und kann meist vernachlässigt werden. Die Berechnung einzelner Komponenten des Verschiebungszustandes.

Die Rechenvorschrift (171) gilt nach der Ableitung für einzelne Stäbe und Träger, die nach den Angaben auf S. 27 belastet sind. Sie wird jedoch auch auf zusammenhängende elastische Gebilde mit parallel laufenden Trägern ausgedehnt, die durch Platten steif verbunden sind. Um deren Formänderung quer zur Stabrichtung zu

Abb. 98.

BIBLIOTHER

berücksichtigen, wird bei der Rechnung nach der elementaren Theorie nur ein beschränkter Abschnitt der Platte als mittragend angesehen. Er kann aus einem Vergleiche der Ergebnisse mit dem Spannungs- und Verzerrungszustand der zweidimensionalen Konstruktion oder aus beobachteten Formänderungen gefunden werden. Die mittragende Plattenbreite ist nach den Bestimmungen des Deutschen Ausschusses vom Jahre 1932, § A 25, 3b

a) beim beiderseitigen Plattenbalken nach Abb. 98a:

$$b = 6 d + 2 b_s + b_0, \tag{175}$$

aber nicht größer als der Abstand der Feldmitten, b) beim einseitigen Plattenbalken nach Abb. 98b:

$$b = 2,25 d + b_s + b_1, \tag{176}$$

aber nicht größer als die halbe lichte Rippenentfernung, vermehrt um b_1 .

Auf diese Weise entstehen die im Eisenbetonbau gebräuchlichen Querschnitte (Abb. 99). Das Trägheitsmoment J_y wird am besten nach einer Unterteilung in einzelne Rechtecke angegeben.

Das Trägheitsmoment J_{ν} eines Stabes ist zwischen je zwei Knotenpunkten, also im Bereich eines Stabes l_{h} , stetig oder unstetig veränderlich, in vielen Fällen auch konstant. Die Änderung wird meist auf ein Vergleichsträgheitsmoment J_{h} in Stabmitte bezogen und durch den Quotienten $J_{h}/J = \zeta_{h}$ beschrieben. Die Veränderlichkeit des Querschnitts hängt oft von konstruktiven oder ästhetischen Gesichtspunkten ab, so daß die Funktion ζ_{h} punktweise bestimmt ist. Die Stütz- und Schnittkräfte C, N, M, Q aus der gegebenen Belastung und

Die Stutz- und Schnittkräfte C, N, M, Q aus der gegebenen Belastung und $\overline{C}_k, \overline{N}_k, \overline{M}_k, \overline{Q}_k$ aus der virtuellen Belastung \overline{I}_k werden nach Abschnitt 13 zeichnerisch oder rechnerisch angegeben. Bei statisch unbestimmten Tragwerken treten hierzu die Angaben der Abschnitte 24 ff. Die Biegungsmomente M und \overline{M}_k werden als Schaulinien einzeln in Stabnetze derart eingetragen, daß sie nur an der gezogenen (i) oder an der gedrückten (a) Stabseite erscheinen, um bei der Bildung des Integranden $\overline{M}_k \cdot M$ Vorzeichenfehler zu vermeiden. Längs- und Querkräfte werden ebenso wie die Stützkräfte neben den Stababschnitten als Zahlenwerte eingetragen. Das Vorzeichen der Produkte $\overline{N}_k \alpha_t t$ und $\overline{C}_{ek} \Delta_e$ ist durch ihre Bedeutung als virtuelle Arbeit bestimmt.

Mechanische Auslegung des Ansatzes. Die Berechnung einer Verschiebung oder Verdrehung ist nach diesen Bemerkungen über den Integranden im wesentlichen eine mathematische Aufgabe. Sie erhält jedoch auch mechanischen Inhalt, wenn die

Numerische Integration.

Funktion M oder \overline{M}_k im Integrationsbereich l_h linear ist. Mit $\xi = \frac{x}{l_h}$, $\xi' = \frac{x'}{l_h}$ und

$$\overline{M}_{k} = \overline{M}_{a}\,\xi' + \overline{M}_{b}\,\xi \quad \text{ist} \quad \int_{0}^{t_{h}} \overline{M}_{k}\,M\,\frac{J_{h}}{J}\,d\,x = \overline{M}_{a}\int_{0}^{t_{h}} \xi'\left(M\,\frac{J_{h}}{J}\right)d\,x + \overline{M}_{b}\int_{0}^{t_{h}} \xi\left(M\,\frac{J_{h}}{J}\right)d\,x. \tag{177}$$

Die Integrale sind die analytischen Ausdrücke für die Stützkräfte $A_{\mathfrak{w}}$, $B_{\mathfrak{w}}$ eines einfachen Balkenträgers mit der Stützweite $l_{\mathfrak{h}}$ und einer ideellen Belastung im Betrage von $\mathfrak{w} = M J_{\mathfrak{h}}/J$. Hieraus entsteht die folgende Rechenvorschrift:

$$\int_{0}^{a} \overline{M}_{k} M \frac{J_{k}}{J} dx = \overline{M}_{a} A_{w} + \overline{M}_{b} B_{w}.$$
(178)

Die Verschiebung δ_k und die Verdrehung φ_k des Querschnitts k eines geraden Balkenträgers l_k mit freidrehbaren Enden werden nach (171) mit

$$\overline{1}_{k}(E J_{k} \delta_{k}) = \int_{0}^{t_{k}} \overline{M}_{k} M \frac{J_{k}}{J} dx, \quad \overline{1}_{k}'(E J_{k} \varphi_{k}) = \int_{0}^{t_{k}} \overline{M}_{k}' M \frac{J_{k}}{J} dx$$
(179)

bestimmt. Die Zustandslinien M_k und M'_k für 1_k und $1'_k$ (Abb. 100) können mit den Einflußlinien für das Moment M_k und die Querkraft Q_k des Trägers l_h im Querschnitt k verglichen werden. Daher wird die Durchbiegung

schnitt k verginchen werden. Daher wird die Durchbiegung $E J_h \delta_k$ als Moment M_{kw} , die Verdrehung $E J_h \varphi_k$ als Querkraft Q_{kw} im Querschnitt k des Balkenträgers l_h für die ideelle Belastung $w = M J_h/J$ gefunden. Aus den Auflagerkräften A_w und B_w wird die Verdrehung der Endquerschnitte abgeleitet. Unter Umständen kann diese Berechnung nach S. 125 auch auf Stabzüge mit angenommenen Randbedingungen angewendet werden.

Numerische Integration. Der mathematische Teil jeder Formänderungsberechnung besteht bei genauer Beachtung der Veränderlichkeit des Querschnitts in einer

3.

numerischen Integration. Hierbei werden diejenigen Methoden gewählt, die das Integral als Mittelwert von Funktionswerten des Intervalls bilden. Von diesen ist die Simpsonsche Regel am meisten gebräuchlich. Sie liefert den Mittelwert des bestimmten Integrals durch Unterteilung des Bereichs in 2n oder 3n Abschnitte von der konstanten Breite Δx . Die den Intervallgrenzen m zugeordneten Funktionswerte sind

$$\eta_m = \overline{M}_{m\,k} M_m \frac{J_k}{J_m} = \overline{M}_{m\,k} M_m \zeta_m \quad \text{oder} \quad \eta_m = \overline{N}_{m\,k} N_m \frac{F_k}{F_m}. \tag{180}$$

In der Regel genügt zu einem genauen Ergebnis die Unterteilung $l_h = 2 n \cdot \Delta x$ und damit der Ansatz:

$$\int_{a}^{a} \eta \, dx = \frac{\Delta x}{3} \left(\eta_{0} + 4 \eta_{1} + 2 \eta_{2} + 4 \eta_{3} + \cdots + 2 \eta_{2 n-2} + 4 \eta_{2 n-1} + \eta_{2 n} \right).$$
(181)

Die Genauigkeit ist bei Unterteilung von l_h in $3 n \cdot \Delta x$ etwas größer. Sie führt zu der folgenden Reihe:

$$\int_{a}^{b} \eta \, dx = \frac{3}{8} \Delta x \left(\eta_{0} + 3 \eta_{1} + 3 \eta_{2} + 2 \eta_{3} + 3 \eta_{4} + 3 \eta_{5} + 2 \eta_{6} + \cdots \right)$$

$$\cdots + 2 \eta_{3n-3} + 3 \eta_{3n-2} + 3 \eta_{3n-1} + \eta_{3n} \right).$$
(182)

Die Berechnung einzelner Komponenten des Verschiebungszustandes.

Beide Ansätze sind auf S. 176 angewendet und in ihren Ergebnissen verglichen worden.

Um die mit der Reihenentwicklung nach Simpson verbundene Zahlenrechnung zu umgehen, kann das Integral auch durch Zerlegung des Integrationsbereichs in n Stufen e_m mit geometrisch veränderlicher, jedoch elastisch konstanter Breite $c = e_m \zeta_m$ angeschrieben werden (Abb. 101). Mit

$$\int_{a} \eta \, dx = \sum_{a} \eta \, \Delta x = \sum_{1} \eta_{m} e_{m} = \sum_{1} \lambda_{m} \zeta_{m} e_{m} = \sum_{1} \lambda_{m} c = c \sum_{1} \lambda_{m}.$$
(183)

Der Betrag $c = e_m \zeta_m$ entsteht aus einer beliebigen Unterteilung Δx des Integrationsbereiches:

$$c = \frac{1}{n} \sum_{a}^{b} \zeta \Delta x = \frac{1}{n} \sum_{a}^{n} \frac{J_{h}}{J} \Delta x$$

Das Integral $\int_{a}^{b} \eta dx$ wird danach als Summe über die mittleren Ordinaten λ_{m} der Intervalle e_{m} erhalten (Rechenvorschrift Abschn. 56).

$$c = e_m \frac{F_h}{F_m}, \qquad c = e_m \frac{F_h}{F_m \cos \alpha_m}.$$
(184)

Hierzu treten die Funktionswerte λ_m .

$$\lambda_m = M_{m\,k} M_m \quad \text{oder} \quad \lambda_m = N_{m\,k} N_m$$

Die Glieder der Reihe (183) sind also im Vergleich zu (181) und (182) durch die besondere Art der Unterteilung einfacher geworden. Diese wird aus den Integralkurven zu den Funktionen J_h/J_m , $J_h/J_m \cos \alpha_m$ oder F_h/F_m , $F_h/F_m \cos \alpha_m$ abgeleitet (Abb. 101).

Berechnung mit Annahmen über die stetige Veränderlichkeit des Querschnitts. Verwendung von Integrationstabellen. Um die numerische Integration zu umgehen, begnügt man sich oft mit einem angenäherten Ergebnis und beschreibt die vorhandene Querschnittsänderung durch eine aus wenigen Gliedern bestehende Reihe. Hierbei werden dann die einfachsten Ansätze gewählt, um die In-

tegration für die Funktion $\zeta_h = J_h/J$ abzukürzen. In zahlreichen Fällen ist das Trägheitsmoment J_h eines Stabes l_h konstant oder durch einen Mittelwert J_h genügend beschrieben. Der Integrand besteht dann nur aus zwei Faktoren. Mit $x = \xi l_h$ und $l'_h = l_h \frac{J_e}{I_h}$ ist

$$EJ_{e}\delta_{k} = J_{e}\int \frac{\overline{M}_{k}M}{J} dx = \sum l_{h}\frac{J_{e}}{J_{h}}\int_{h}\overline{M}_{k}M d\xi = \sum l_{h}'\int_{h}\overline{M}_{k}M d\xi.$$
(185)

Bei gekrümmten Stäben mit $\frac{J_h}{\int \cos \alpha} = 1$ ist

$$EJ_{c}\delta_{k} = J_{c}\int \frac{\overline{M}_{k}M}{J} ds = \sum \frac{J_{e}}{J_{k}} \int_{k} \overline{M}_{k}M \frac{J_{k}}{J\cos\alpha} dx = \sum l_{h}' \int_{k} \overline{M}_{k}M d\xi.$$
(186)

 $\int_{0}^{\infty} \zeta \, dx = \varrho \int_{0}^{\infty} \frac{\zeta}{\varrho} \, dx.$

Berechnung mit Annahmen über die stetige Veränderlichkeit des Querschnitts. 97

Die Ergebnisse werden unter Umständen wesentlich genauer, wenn die Stabform im Ansatz mit zwei ausgezeichneten Querschnitten erscheint und Ch angenähert durch eine quadratische Parabel angegeben wird. Als Freiwerte dienen bei symmetrischen Stäben die Trägheitsmomente in Stabmitte J_h und am Stabende $J_{ha} = J_h/n_h$, bei unsymmetrischen Stäben die Trägheitsmomente $J_{hb} = J_h$, $J_{ha} = J_h/n_h$ der Endquerschnitte (Abb. 102), so daß mit $\xi = x/l_h$:

a) bei symmetrischen Stäben

$$\zeta_{h} = 1 - (1 - n_{h}) (1 - 2\xi)^{2},$$

b) bei unsymmetrischen Stäben

$$\zeta_{h} = 1 - (1 - n_{h}) (1 - \xi)^{2}.$$

Die Parabel höherer Ordnung enthält in dem willkürlich wählbaren Exponenten einen weiteren Freiwert, mit dem die Angleichung an einen gegebenen Funktionsverlauf noch mehr verbessert werden kann. Mit $\xi'' = \xi - 0.5$ ist

a) bei symmetrischen Stäben:
$$\zeta_{\hbar} = 1 - (1 - n) \left(2 \xi''\right)^{2r}$$
, (188)

b) bei unsymmetrischen Stäben: $\zeta_h = 1 - (1 - n) (1 - \xi)^r$.

Die Funktionen M_k und M sind meist linear, zweiten oder dritten Grades. Unstetige Funktionen werden in stetige Abschnitte geteilt oder durch Superposition der Biegungsmomente vereinfacht, indem deren Ordinaten geometrisch oder durch Überlagerung der Belastung zerlegt werden. In einzelnen Fällen wird die Rechnung auch durch Aufspaltung der beiden Funktionen in einen symmetrischen und antimetrischen Anteil abgekürzt.

z. B.
$$\overline{M}_{k} = \overline{M}_{k1} + \overline{M}_{k2}, \qquad M = M_{1} + M_{2}.$$
$$\int \overline{M}_{k} M \zeta d\xi = \int_{0}^{1} \overline{M}_{k1} M_{1} \zeta d\xi + \int_{0}^{1} \overline{M}_{k1} M_{2} \zeta d\xi + \int_{0}^{1} \overline{M}_{k2} M_{1} \zeta d\xi + \int_{0}^{1} \overline{M}_{k2} M_{2} \zeta d\xi. (189)$$

 $\int \overline{M}_k M \zeta d\xi = \int (\overline{M}_{k1} + \overline{M}_{k2} + \cdots) (M_1 + M_2 + \cdots) \zeta d\xi,$

Der Integrand ist in zahlreichen Aufgaben bei $\zeta_h = 1$ eine algebraische Funktion zweiten bis fünften Grades, so daß der Ansatz nach (181) oder (182) mit zwei oder drei Intervallen die strenge Lösung des Integrals liefert. Die Ergebnisse sind in der Integrationstabelle 12 zusammena) gefaßt worden. Sie genügen bei gleichbleibendem Trägheitsmoment J_h des Stabes zur unmittelbaren Berechnung zahlreicher Verschiebungskomponenten. Die Integrale können auch noch bei einer quadratischen, symmetrischen oder unsymmetrischen Funktion ζ_h leicht für zahlreiche Schaulinien M_k und M angegeben werden. Die Ergebnisse sind in den Tabellen 13a, b enthalten.

Zur Berechnung einzelner Komponenten des Verschiebungszustandes eines Stabwerks werden daher zunächst die geometrischen Größen n_h und ζ_h der Stäbe l_h festgestellt und die Schaulinien der Biegungsmomente M, Mk aus der vorgeschriebenen Belastung \mathfrak{P} und der virtuellen Belastung $\mathbf{1}_k$ unter Beachtung der Vorzeichen aufgetragen. Darauf wird

die Funktion $(MM_k\zeta_h)$ mit Hilfe der Tabellen integriert, falls nicht unter besonderen Umständen die numerische Integration notwendig ist. Ein positives Rechenergebnis bedeutet die gleiche Richtung oder den gleichen Drehsinn wie für die angenommene virtuelle Belastung 1_k .

Beyer, Baustatik. 2 Aufl., 2 Neudruch

(187)

Die Berechnung einzelner Komponenten des Verschiebungszustandes.

Bei Stäben mit gleichbleibender Krümmung ($r = \text{const} \gg d$) werden die Schnittkräfte als Funktionen des Tangentenwinkels α angegeben, so daß die Verschiebung bei konstantem Trägheitsmoment (J = const) nach (170) folgendermaßen berechnet wird:

$$\overline{1}_{k} (EJ \,\delta_{k}) = r \frac{J}{F} \int_{\alpha_{1}}^{\alpha_{n}} \overline{N}_{k} N \,d\alpha + r \int_{\alpha_{1}}^{\alpha_{n}} \overline{M}_{k} M \,d\alpha \,.$$
(190)

Die Ergebnisse sind für die wichtigsten Ansätze des Integranden bestimmt und in Tabelle 16 angeschrieben worden.

Berechnung der gegenseitigen Verdrehung $E J_c \delta_q$ der Stabquerschnitte am Gelenk g eines Gerberträgers (Abb. 103).

Das Trägheitsmoment wird als konstant angenommen. Die Biegungsmomente M aus der vorgeschriebenen gleichförmigen Belastung p sind in sechs Teile zerlegt worden (Abb. 103b). Die Biegungsmomente aus der virtuellen Belastungseinheit des Geradenpaares in g sind in Abb. 103c wiedergegeben. Beide Schaulinien zeigen die Momente an der gezogenen Randfaser, so daß der Integrand $M \overline{M}_g$ positiv ist, wenn beide Ordinaten an derselben Stabseite liegen.

Einflußlinien für die relative Verdrehung der Gelenkquerschnitte eines Bogenträgers.

Die Mittellinie ist eine Parabel,
$$\frac{f_o}{f_{oos}} = 1$$
.

a) Einflußlinie der Verdrehung des Scheitelgelenks c nach (168): Biegelinie infolge eines Momentenpaares $M_c = 1$ in c. Rechnung nach (186) mit Abb. 104 b. P = 1 über dem linken Bogenschenkel, $0 \le \xi \le \frac{1}{2}$:

$$E J_{e} \cdot \delta_{em} = l \int_{0}^{1} M_{e} \overline{M}_{m} d\xi = \frac{l^{2}}{15} \left(4\xi - 5 \omega_{P}^{\prime \prime} \right) = \frac{l^{2}}{6} k_{1}.$$

Die Einflußlinie Abb. 105a ist symmetrisch.

М,

Abb. 104.

b) Einflußlinie der Verdrehung des Kämpfergelenks *a* nach (168): Biegelinie infolge $M_a = 1$ in *a*. Rechnung nach (186) mit Abb. 104d. P = 1 über dem linken Bogenschenkel, $0 \le \xi \le \frac{1}{2}$:

$$E J_{\mathfrak{o}} \delta^{(1)}_{am} = l \int_{0} M_{a} M_{m} d\xi = \frac{l^{2}}{30} \left[5 \left(\omega'_{D} - \omega''_{P} \right) - \xi \right] = \frac{l^{2}}{30} \xi \left(5 \xi'^{3} - 1 \right) = \frac{l^{2}}{6} k_{2}^{(1)}.$$

Endverdrehung eines Stabes mit linear veränderlichem Querschnitt.

P = 1 über dem rechten Bogenschenkel, $\frac{1}{2} \leq \xi \leq 1$:

$$E J_{\mathfrak{o}} \, \delta^{(r)}_{am} = \frac{l^2}{30} \left[5 \left(\omega'_{B} - \omega''_{P} \right) - \xi' \right] = \frac{l^2}{30} \, \xi' \left(5 \, \omega'_{\mathfrak{c}} - 1 \right) = \frac{l^2}{6} \, k_2^{(r)}.$$

Die Funktionswerte k_1 , k_2 gelten für jeden Dreigelenkbogen mit einer Parabel als Mittellinie und $J_c/J \cos \alpha = 1$.

Unstetiger Verlauf von ζ . Die Steifigkeit des Stabwerks wird oft durch die Anordnung von Vouten und durch die biegungssteife Verbindung der Stützen mit hohen Trägern wesentlich verändert. Sie kann stets durch numerische Integration des Ansatzes verfolgt werden. Die Abb. 106 vergleicht derartige Anordnungen mit den zugeordneten Funktionen ζ . Man vereinfacht aber auch hier den Integranden, um für die wichtigsten Aufgaben geschlossene Lösungen zu erhalten und wählt ζ_h im Bereiche der Voute linear (Kurve 2 in Abb. 106).

Die wichtigsten Ergebnisse sind in den Tabellen. 14a, b eingetragen.

1. Linearer Verlauf der Trägerhöhe d_h,

2. Verlaufder Trägerhöhe für $\zeta_{h} = \frac{J_{h}}{I} = 1 - (1 - n) v$,

3. ,, ,, ,, ,,
$$\zeta_{\lambda} = \frac{J_{\lambda}}{J} = 1 - (1 - n)v^2$$
,
4. ,, ,, ,, $\zeta_{\lambda} = \frac{J_{\lambda}}{J} = 1 - (1 - n)v^3$.

Beim Anschluß hoher Träger an die Stützen kann deren Trägheitsmoment im Bereiche des Knotens zur Abschätzung der Steifigkeitsverhältnisse unendlich groß, also $\zeta_h = 0$ angenommen R=0,2, Rechteckquerschnitt Abb. 106.

vu

werden. Die Annahme ist in einzelnen Fällen auch bei Trägern brauchbar, die in breite Stützen eingebunden sind. Die Ansätze (171) sind daher auch mit diesen Funktionen ζ für die wichtigsten Aufgaben ausgerechnet und in die Tabellen 15a, b aufgenommen worden. Die Ergebnisse sind für die Untersuchung einzelner Klassen statisch unbestimmter Tragwerke von Bedeutung und daher noch in Abschn. 46 erweitert worden.

Endverdrehung eines Stabes mit linear veränderlichem Querschnitt (Abb. 107). Um bei Stützen mit linear veränderlichem Querschnitt $(J = bd^3/12)$ den herauszugreifen, der bei Stützen mit konstantem Querschnitt $(J_m = kJ_a)$ die gleiche Endverdrehung ergibt, läßt sich die Gl. (191) bilden und für die üblichen Verhältnisse $n = J_a/J_b$ der Endquerschnitte einer rechteckigen Stütze auswerten.

$$\begin{aligned} \frac{x}{l} &= \xi, \qquad \frac{J_a}{J_b} = n, \qquad J_m = k J_a \\ d &= d_a + (d_b - d_a) \xi, \\ J &= J_a \left[1 + \left(\sqrt[3]{\frac{1}{n}} - 1 \right) \xi \right]^3, \end{aligned}$$

100

Die Berechnung einzelner Komponenten des Verschiebungszustandes.

$$\int M \,\overline{M} \, \frac{J_a}{J} \, dx = M_b \,\overline{M}_b \, l \int_0^1 \frac{\xi^2}{\left[1 + \left(\sqrt[3]{\frac{1}{n}} - 1\right)\xi\right]^3} \, d\xi \,,$$

$$\int M \,\overline{M} \, \frac{J_a}{J_m} \, dx = \frac{1}{3} \, M_b \,\overline{M}_b \, \frac{J_a}{k \, J_a} \, l = M_b \,\overline{M}_b \, l \int_0^1 \frac{\xi^2}{\left[1 + \left(\sqrt[3]{\frac{1}{n}} - 1\right)\xi\right]^3} \, d\xi \,, \quad (191)$$

$$k = \frac{\left(\sqrt[3]{\frac{1}{n}} - 1\right)^3}{\ln\left(\frac{1}{n}\right) + 6\sqrt[3]{n} - \frac{3}{2}\sqrt[3]{n^2} - \frac{9}{2}}$$

Tabelle 11 für k mit $n = \frac{J_a}{J_b}$ als Leitwert.

n	0,10	0,11	0,12	0,I3	0,14	0,15	0,16	0,17	0,18	0,19	0,20	0,21
k	5,82	5,40	5,05	4,74	4,48	4,25	4,04	3,85	3,69	3,54	3,40	3,27
n	0,22	0,23	0,24	0,25	0,26	0,27	0,28	0,29	0,30	0,35	0,40	0,45
k	3,16	3,05	2,95	2,86	2,78	2,70	2,64	2,56	2,49	2,21	2,00	1,83
n k	0,50 1,69	0,55 1,57	0,60 1,47	0,65 1,38	0,70 1,31	0,75 1,24	0,80 1,18	0,85 1,13	0,90 1,08	0,95 1,04		

Verdrehungen der Endtangenten des Balkenträgers auf zwei Stützen.

Stützweite: *l*, Querschnitt $\frac{J_e}{J \cos \alpha} = \zeta$, $x = \xi l$, $x' = \xi' l$, $dx = ld\xi$ $\xi - \frac{1}{2} = \frac{1}{2} - \xi' = \xi''$, $\xi = \frac{1}{2} + \xi''$, $\xi' = \frac{1}{2} - \xi''$.

$$\varsigma - \overline{s} - \overline{s} - \overline{s} - \overline{s} = \varsigma$$
, $\varsigma = \overline{s} + \varsigma$, $\varsigma = \underline{s} - \varsigma$.

I. Belastung: Zwei an den Endquerschnitten angreifende Kräftepaare M_a, M_b : $M = M_a \, \xi' + M_b \, \xi \, .$

Verdrehung der Endquerschnitte φ_a , φ_b : für φ_a ist $\overline{M}_a = \xi'$; ebenso für φ_b $\overline{M}_b = \xi$,

$$E J_{e} \varphi_{a} = M_{a} l' \int_{0}^{1} \xi'^{2} \zeta d\xi + M_{b} l' \int_{0}^{1} \xi \xi' \zeta d\xi .$$

$$E J_{e} \varphi_{b} = M_{a} l' \int_{0}^{1} \xi \xi' \zeta d\xi + M_{b} l' \int_{0}^{1} \xi^{2} \zeta d\xi .$$

Endverdrehung $\varphi_{a\,a}, \varphi_{b\,a}$ aus $M_a = 1 \; {\rm mt} \; {\rm und} \; \; \varphi_{a\,b}, \; \; \varphi_{b\,b} \;$ aus $M_b = 1 \; {\rm mt}$, $\varphi_a = M_a \, \varphi_{a\,a} + M_b \, \varphi_{ab} \, , \ \ \varphi_b = M_a \, \varphi_{b\,a} + M_b \, \varphi_{b\,b} \, .$

1.
$$\zeta = 1$$
, $E J_e \varphi_{aa} = E J_e \varphi_{bb} = \frac{l'}{3}$, $E J_e \varphi_{ab} = E J_e \varphi_{ba} = \frac{l'}{6}$.

2. Symmetrischer Verlauf von ζ :

$$\begin{split} \zeta &= \frac{J_m}{J} = 1 - (1 - n) \, (2 \, \xi'')^{2r} \,, \qquad n = \frac{J_m}{J_a} = \frac{J_m}{J_b} \,, \\ E \, J_e \, \varphi_a &= M_a \, l' [\frac{1}{4} \int_{-\frac{1}{4}}^{+\frac{1}{4}} \zeta \, d\xi'' + \int_{-\frac{1}{4}}^{+\frac{1}{4}} \xi''^2 \zeta \, d\xi''] \,+ \, M_b \, l' [\frac{1}{4} \int_{-\frac{1}{4}}^{+\frac{1}{4}} \zeta \, d\xi'' - \int_{-\frac{1}{4}}^{+\frac{1}{4}} \xi''^2 \zeta \, d\xi''] \,, \\ E \, J_e \, \varphi_b &= M_a \, l' [\frac{1}{4} \int_{-\frac{1}{4}}^{+\frac{1}{4}} \zeta \, d\xi'' - \int_{-\frac{1}{4}}^{+\frac{1}{4}} \xi''^2 \zeta \, d\xi''] \,+ \, M_b \, l' \, [\frac{1}{4} \int_{-\frac{1}{4}}^{+\frac{1}{4}} \zeta \, d\xi'' + \int_{-\frac{1}{4}}^{+\frac{1}{4}} \xi''^2 \zeta \, d\xi''] \,, \\ E \, J_e \, \varphi_b &= M_a \, l' [\frac{1}{4} \int_{-\frac{1}{4}}^{+\frac{1}{4}} \zeta \, d\xi'' - \int_{-\frac{1}{4}}^{+\frac{1}{4}} \xi''^2 \zeta \, d\xi''] \,+ \, M_b \, l' \, [\frac{1}{4} \int_{-\frac{1}{4}}^{+\frac{1}{4}} \zeta \, d\xi'' + \int_{-\frac{1}{4}}^{+\frac{1}{4}} \xi''^2 \zeta \, d\xi''] \,, \\ E \, J_e \, \varphi_{aa} &= E \, J_e \, \varphi_{bb} \,= \, \frac{l'}{6} \, \frac{6 \, n \, (r+1) + 2 \, r \, (4 \, r+5)}{(2 \, r+1) \, (2 \, r+3)} \,= \, \frac{l'}{6} \, \varrho_1 \,, \\ E \, J_e \, \varphi_{ba} \,= E \, J_e \, \varphi_{ab} \,= \, \frac{l'}{6} \, \frac{3 \, n + 4 \, r \, (r+2)}{(2 \, r+1) \, (2 \, r+3)} \,= \, \frac{l'}{6} \, \varrho_2 \,. \end{split}$$

BIBLIOTHEK PADERBORN

Verdrehungen der Endquerschnitte des Balkenträgers auf zwei Stützen.

Für zwei lineare Funktionen M und \overline{M} wird hiermit

$$l' \int_{0}^{\infty} M \,\overline{M} \,\zeta \,d\xi = \frac{l'}{6} \left[M_a (\overline{M}_a \,\varrho_1 + \overline{M}_b \,\varrho_2) + M_b (\overline{M}_a \,\varrho_2 + \overline{M}_b \,\varrho_1) \right].$$

3. Unsymmetrischer Verlauf von ζ:

$$\begin{split} \zeta &= \frac{J_a}{J} = 1 - (1 - n) \,\xi^r \,, \qquad n = \frac{J_a}{J_b} \,, \\ E \, J_e \, \varphi_{aa} &= \frac{l'}{6} \left(2 - \frac{12 \, (1 - n)}{(r + 1) \, (r + 2) \, (r + 3)} \right) = \frac{l'}{6} \, \varrho_3 \,, \\ E \, J_e \, \varphi_{ba} &= E \, J_e \, \varphi_{ab} = \frac{l'}{6} \left(1 - \frac{6 \, (1 - n)}{(r + 2) \, (r + 3)} \right) = \frac{l'}{6} \, \varrho_4 \\ E \, J_e \, \varphi_{bb} &= \frac{l'}{6} \left(2 - \frac{6 \, (1 - n)}{r + 3} \right) = \frac{l'}{6} \, \varrho_5 \,. \end{split}$$

Für zwei lineare Funktionen M und \overline{M} wird

$$l' \int_{0}^{\infty} M \,\overline{M} \,\zeta \,d\xi = \frac{l'}{6} \left[M_{a} \left(\overline{M}_{a} \,\varrho_{3} + \overline{M}_{b} \,\varrho_{4} \right) + M_{b} \left(\overline{M}_{a} \,\varrho_{4} + \overline{M}_{b} \,\varrho_{5} \right) \right].$$

II. Belastung: Gruppe von Einzellasten $P_{\mathbf{A}}(h = 1, ..., n)$ in $x = a_{\mathbf{A}}, x' = a'_{\mathbf{A}}, a_{\mathbf{A}}/l = \alpha_{\mathbf{A}}, a'_{\mathbf{A}}/l = \alpha'_{\mathbf{A}}; M = M_1 P_1 \cdot \cdot \cdot + M_{\mathbf{A}} P_{\mathbf{A}} \cdot \cdot \cdot + M_n P_n.$

Für $P_h = 1$ t und $x < a_h$ ist $M_h = a'_h \xi$, für $x > a_h$ ist $M_h = a_h \xi'$.

Verdrehung φ_a , φ_b der Endquerschnitte mit $\zeta = 1$: $\overline{M_a} = \xi'$, $\overline{M_b} = \xi$,

$$E J_{e} \varphi_{ah} = l' a_{h}' \int_{0}^{1} \xi \xi' d\xi' - l' a_{h}' \int_{0}^{\alpha_{h}} \xi' \left(1 - \frac{\xi'}{\alpha_{h}'}\right) d\xi' = \frac{ll'}{6} (\alpha_{h}' - \alpha_{h}'^{a}) = \frac{ll'}{6} \omega_{D}',$$

$$E J_{e} \varphi_{bh} = l' a_{h} \int_{0}^{1} \xi' \xi d\xi - l' a_{h} \int_{0}^{\alpha_{h}} \xi \left(1 - \frac{\xi}{\alpha}\right) d\xi = \frac{ll'}{6} (\alpha_{h} - \alpha_{h}^{a}) = \frac{ll'}{6} \omega_{D}$$

$$E J_{e} \varphi_{a} = \frac{ll'}{6} \sum_{1}^{n} P_{h} \omega_{D}'; \qquad E J_{e} \varphi_{b} = \frac{ll'}{6} \sum_{1}^{n} P_{h} \omega_{D}.$$

 ω_{b} und ω_{D} bilden in Verbindung mit dem Multiplikator den analytischen Ausdruck für die Einflußlinien von φ_{a} und φ_{b} . Er wird für die Bestimmung der Verdrehung aus einer beliebigen Streckenlast p(x) verwendet.

$$\begin{split} P_{\mathbf{k}} &= p_{\mathbf{k}} \, dx = p_{\mathbf{k}} \, l \, d\xi \,. \quad \text{Fur } p\left(\xi\right) = \text{const im Bereich } \left(\alpha_{2} - \alpha_{1}\right) \text{ ist} \\ E \, J_{c} \, \varphi_{a} &= \frac{l^{2} \, l'}{6} \, \int_{\alpha_{2}'}^{\alpha_{1}'} p\left(\xi'\right) \left(\xi' - \xi'^{3}\right) \, d\xi' = p \, \frac{l^{2} \, l'}{24} \left(\alpha_{1}'^{2} - \alpha_{2}'^{2}\right) \left[2 - \left(\alpha_{1}'^{2} + \alpha_{2}'^{2}\right)\right], \\ E \, J_{c} \, \varphi_{b} &= \frac{l^{2} \, l'}{6} \, \int_{\alpha_{1}}^{\alpha_{2}} p\left(\xi\right) \, \left(\xi - \xi^{3}\right) \, d\xi = p \, \frac{l^{2} \, l'}{24} \left(\alpha_{2}^{2} - \alpha_{1}^{2}\right) \left[2 - \left(\alpha_{1}^{2} + \alpha_{2}'^{2}\right)\right]. \end{split}$$

Ritter, M.: Theorie und Berechnung der vollwandigen Bogenträger ohne Scheitelgelenk. Berlin 1909. — Schadek u. Demel: Hilfsmittel zur Berechnung von Formänderungen. Berlin 1915. — Domke, O.: Dachbauten. Handb. f. Eisenbetonbau Bd. 10. 2. Aufl. Berlin 1923. — Straßner, A.: Der durchlaufende Rahmen. Berlin 1925. — Pasternack, P.: Berechnung vielfach statisch unbestimmter, biegefester Stab- und Flächentragwerke. Dreigliedrige Systeme. Zürich 1927. — Heidinger, S.: Die Berechnung von $\int M\overline{M} \frac{dx}{EJ}$ für Stäbe mit veränderlichem Trägheitsmoment. Bauing. 1928. — Bühler, A.: Ziel, Ergebnisse und Wert der Messungen an Bauwerken. Bericht über die II. Int. Tagung für Brücken- und Hochbau S. 176. Wien 1929. — Kleinlogel, A.: Belastungsglieder. Berlin 1931.

Lösungen der Funktion $\int M \overline{M} (J_c/J) ds$ und Funktionswerte ω .

19. Lösungen der Funktion $\int M\overline{M}(J_c/J) ds$ und Funktionswerte ω . Lösung für gerade Stäbe mit konstantem J_h/J .

Tabelle 12. $\int_{0}^{l} M \overline{M} \frac{J_{e}}{J} dx = l' \int_{0}^{1} M \overline{M} d\xi , \qquad l' = l \frac{J_{e}}{J_{h}} .$						
	Ma					
Abszissen de	es Punktes $c: \xi l$ und $\xi' l$	s = Parabelscheitel	w = Wendepunkt			
Ra	$\frac{1}{3}M_a \overline{M}_a l'$		$\frac{\mathrm{I}}{6} M_a \widetilde{M}_b l'$			
Ra Ro	$rac{1}{6}M_a\left(2\overline{M}_a+\overline{M}_b ight)l'$	Ra	$rac{\mathbf{I}}{6}M_a(2\overline{M}_a-\overline{M}_b)l'$			
R-Plug	$rac{1}{6}M_a\overline{M}_e$ (1	$+ \xi') l' = \frac{\mathrm{I}}{6} M_a P l \omega'_D$	ľ			
Ra-Az	$\frac{1}{6}M_a\overline{M}_a\xi($	$(3-\xi) l' = \frac{1}{6} M_a P l \xi^3$	$(3-\xi)$ l'			
Mb = Ax'	$\frac{1}{6} M_a \overline{M}_b \xi'^2 l' = \frac{1}{6} M_a P l \xi'^3 l'$					
Re	$-\frac{\mathbf{I}}{6}\dot{M}_a\overline{M}_c\omega_M'l'$	Ra	$\frac{1}{2} M_a \overline{M}_a l'$			
A.	$\frac{1}{2} M_a \overline{M}_e \xi' l'$	Ale and a second	$\frac{1}{6}M_a\overline{M}_c\xi'l'$			
Render	$\frac{1}{3} M_a \overline{M}_a l' = \frac{1}{24} M_a \phi l^2 l'$	Re Ro	$\frac{1}{6} M_a (\overline{M}_a + 2 \overline{M}_e) l'$			
Rent s	$\frac{\mathbf{I}}{4} M_a \overline{M}_a l' = \frac{\mathbf{I}}{8} M_a p l^2 l'$	s_Rg=Rel2	$\frac{\mathrm{I}}{\mathrm{I2}} M_a \overline{M}_b l' = \frac{\mathrm{I}}{24} M_a p l^2 l'$			
S Rent	$\frac{5}{12} M_a \overline{M}_a l' = \frac{5}{24} M_a p l^2 l'$	Re-n-12 3	$\frac{\mathrm{I}}{4} M_a \overline{M}_b l' = \frac{\mathrm{I}}{8} M_a p l^2 l'$			
20	$\frac{1}{12}M_a\widetilde{M}_e\frac{1}{\xi}(2-\xi^\prime^2)l^\prime$		$rac{\mathbf{I}}{\mathbf{I}2}M_a\overline{M}_erac{\mathbf{I}}{\xi'}(2-\xi)^2l'$			
	$\frac{\mathbf{I}}{\mathbf{I}2} M_a \overline{M}_e \frac{\mathbf{I}}{\xi} \left(\mathbf{I} + 2 \omega_R\right) l'$	R. R.	$\frac{\mathrm{I}}{6}M_a(\overline{M}_a-2\overline{M}_c)l'$			
Kuta Parabel Rb	$\frac{1}{20}M_a\overline{M}_bl'$	Ma Kub Panabel	$\frac{1}{5} M_a \overline{M}_a l'$			
$\frac{R_{ub} Porabel}{R_a} = \frac{1}{120} M_a (13 \overline{M}_a + 36 \overline{M}_e + 9 \overline{M}_d + 2 \overline{M}_b) l'$						

	Ma	Ma	$\xi = \frac{x}{l} \qquad \xi' = \frac{x'}{l}$
Ra	$\frac{1}{3}M_a\overline{M}_al'$	Ra	$\frac{1}{6} M_a \left(\overline{M}_a - \overline{M}_b \right) l'$
HAR HA	$\frac{1}{3}M_a \overline{M}_c \xi' l'$	A Re-	$\frac{\mathrm{I}}{6} M_a \widetilde{M}_e \left(\mathrm{I} - 2\xi\right) l'$
R	$+\frac{\mathrm{I}}{6}M_{a}\overline{M}_{b}l'$	1A	$-\frac{1}{2}M_{a}\overline{M}_{b}l'$

Lösung für gerade Stäbe mit konstantem J_h/J .

Tabelle 12. (Fortsetzung)
$$\int M \overline{M} \frac{J_e}{I}$$

	Tabelle 12. (Fortsetzung) $\int_{0}^{t} M \overline{M} \frac{J_{e}}{J} dx = l' \int_{0}^{1} M \overline{M} d\xi, \qquad l' = l \frac{J_{e}}{J_{k}}.$				
	Abszissen des Punk $s = Paral$ $w = Wenc$	K			
- Area	$\frac{1}{6} (M_a + 2 M_b) \overline{M}_{k} l'$	Ra	$\frac{1}{6} \left[M_a \left(2 \ \overline{M}_a + \overline{M}_b \right) + M_b \left(\overline{M}_a + 2 \ \overline{M}_b \right) \right] l'$		
Ma Mo	$\frac{1}{3} \left(M_a^2 + M_a M_b + M_b^2 \right) l'$	Ra	$\frac{1}{2} (M_a + M_b) \overline{M}_a l'$		
R-Play	$\frac{1}{6} [M_a (1 + \xi') + M_b (1 +$	$[\xi]]\overline{M}_{\epsilon}l'=\frac{Pl}{6}(M$	$M_s \omega'_D + M_b \omega_D l'$		
Re X	$\frac{\mathrm{I}}{\frac{2}{2}}\widetilde{M}_e(M_a+M_b)\xi'l'$	R	$\frac{\mathrm{I}}{6}\xi[M_a(3-\xi)+M_b\xi]\widetilde{M}_al'$		
Ro	$\frac{\mathrm{I}}{\frac{1}{6}}\overline{M}_{\mathrm{e}}(M_{\mathrm{a}}-M_{\mathrm{b}})\xi'l'$	Re	$\frac{\mathbf{i}}{6} \overline{M}_{\epsilon} [M_{b} \omega_{M} - M_{a} \omega'_{M}] b' \qquad $		
Re-Up - Up -	$\frac{\mathrm{I}}{3}\overline{M}_{c}\left(M_{a}+M_{b}\right)l'$	Re Re Ro	$\frac{1}{6} \left[M_a \left(\widetilde{M}_a + 2 \widetilde{M}_c \right) + M_b \left(2 \widetilde{M}_c + \widetilde{M}_b \right) \right] l'$		
Ra s	$\frac{1}{12} \vec{M}_{a} (3 M_{a} + M_{b}) l'$	3	$\frac{\mathrm{I}}{\mathrm{I}2} \frac{\mathrm{I}}{\xi} (\mathrm{I} + 2 \omega_{\mathrm{R}}) (M_{a} + M_{b}) \overline{M}_{e} l'$		
R	$\frac{1}{12}\bar{M}_{a}(5M_{a}+3M_{b})l'$	30	$\frac{1}{12} \frac{1}{\xi} \left[M_a \left(2 - \xi'^2 \right) + M_b \left(2 - \xi' \right)^2 \right] \overline{M}_o t'$		
Re Mub. Aanabel	$\frac{1}{20} (4 M_a + M_b) \overline{M}_a l'$	Kub. Asrabel S.TU	$\frac{3}{20} (2 M_a + 3 M_b) \overline{M}_b l'$		
Rub Parabel Ra Re Rd Ro	$\frac{1}{120} [M_a (13 \overline{M}_a + 36 \overline{M}_e -$	$+9\overline{M}_d+2\overline{M}_b)+$	$-M_b \left(2\overline{M}_a + 9\overline{M}_c + 36\overline{M}_d + 13\overline{M}_b\right)\right] l'$		

$$\xi = \frac{x}{1}, \quad \xi' = \frac{x}{1}$$

sRb	$\frac{\mathrm{I}}{5} M_e \overline{M}_b l'$	Ra	$\frac{7}{15}M_e\overline{M}_al'$
Ro	$\frac{8}{15} M_e \overline{M}_e l'$	Re-Plug	$\frac{\mathrm{I}}{3} M_{e} \overline{M}_{e} (\mathrm{I} + \omega_{R}) l' = \frac{\mathrm{I}}{3} M_{e} P l \omega_{P}'' l'$
	$\frac{5}{12} M_{\varepsilon} \overline{M} l'$	TR	$\frac{2}{3}M_{e}\overline{M}_{e}\xi'(\mathbf{I}+\omega_{B})l'$

103

104 Lösungen der Funktion $\int M \overline{M} (J_{\epsilon}/J) ds$ und Funktionswerte ω .					
• Ta	• Tabelle 12 (Fortsetzung). $\int_{0}^{l} M \overline{M} \frac{J_{\epsilon}}{J} dx = l' \int_{0}^{1} M \overline{M} d\xi, \qquad l' = l \frac{J_{\epsilon}}{J_{\lambda}}.$				
	*				
	$\xi = \frac{x}{l} , \qquad \xi' = \frac{x'}{l} ,$	$\zeta = \frac{u}{l}, \qquad \zeta' = \frac{l-1}{l}$	- 11 1		
Re	$\frac{1}{3} M_e \widetilde{M}_e (1 + \omega_R) l'$	Ra	$\frac{\mathrm{I}}{\mathrm{I}^2} M_e \overline{M}_a [5 - \xi (1 + \xi)] l'$		
3R_b	$\frac{1}{12} M_e \overline{M}_b [1 + \xi (1 + \xi)] l'$	Re	$\frac{1}{6} M_e \overline{M}_e \left[2 - \frac{(\xi' - \zeta')^2}{\xi' \zeta} \right] l'$		
Ret u'	$\frac{1}{6} M_e \overline{M}_e \left[2 - \frac{(\xi - \zeta)^2}{\xi \zeta'} \right] l'$	Re	$\frac{1}{12} M_c \overline{M}_c \frac{3-4\xi^2}{\xi'} l'$		
	$\frac{\mathbf{T}}{\mathbf{G}} M_e \overline{M}_e \left(3 \frac{\zeta'}{\xi'} - \frac{\xi^{3}}{\xi' \zeta} \right) l'$		$\frac{1}{6} M_c \overline{M}_c \left(3 - \frac{\zeta^2}{\xi \xi'}\right) t'$		
. The second	$\frac{\mathbf{I}}{6} M_e \overline{M}_e \frac{\zeta'}{\xi'} \left(\mathbf{I} - \frac{\xi^2}{\zeta \zeta'} \right) l'$	Re	$\frac{\mathbf{I}}{6} M_e \overline{M}_e \frac{\xi' - \xi}{\zeta' - \zeta} \left(\mathbf{I} - \frac{\zeta^2}{\xi \xi'} \right) t'$		
Re	$\frac{1}{6} M_e \overline{M}_e \left(1 + \xi - 3 \frac{\zeta'^2}{\xi'} \right) l'$	-u R	$\boxed{-\frac{\mathrm{I}}{6} M_{e} \overline{M}_{e} \left(\mathrm{I} + \xi' - 3 \frac{\zeta^{2}}{\xi}\right) t'}$		
R	$\frac{1}{2} M_e \overline{M}_a l'$				
	Ma	$\xi = \frac{x}{l}$	$\xi' = \frac{x'}{l}$		
R	$\frac{1}{5} M_a \overline{M}_a l'.$	sR	$\frac{1}{30} M_a \overline{M}_b l'$		
R	$\frac{3}{10}M_a\overline{M}_al'$	R	$\frac{2}{15}M_a\overline{M}_bl'$		
Ra	$\frac{1}{12}M_{a}\widetilde{M}_{a}\xi[2+(1+\xi')^{2}]l'$	Ab a'	$\frac{1}{12} M_a \overline{M}_b \xi'^3 l'$		
Ra	$\frac{1}{6} M_a \overline{M}_a l'$	Ra s	$\frac{1}{30}M_o \overline{M}_a \xi [10-\xi (5-\xi)]l'$		
	K KI M				
Ma He Mo	$\left[M_{c}^{2} + \frac{(M_{b} - M_{a})^{2}}{12} - 2\frac{M_{c2}M_{c}}{3} + \frac{M_{c2}^{2}}{5}\right]l'$				
Ra Rez Ro	$\left[M_e \overline{M}_e + \frac{(M_b - M_a)(\overline{M}_b - \overline{M}_a)}{12} - \frac{M_{e2}\overline{M}_e}{3} - \frac{\overline{M}_{e2}M_e}{3} + \frac{M_{e2}\overline{M}_{e2}}{5}\right]l'$				
Rass	$\frac{1}{60} (15 M_a + 5 M_b + 12 M_{e2}) \overline{M}_a l'$				
$\frac{1}{60} (15 M_a + 25 M_b + 28 M_{c2}) \overline{M}_b ''$					

Lösung für gerade Stäbe mit stetig veränderlichem J_{λ}/J .

Lösung für gerade Stäbe mit stetig veränderlichem J_h/J .

Tabelle 13a:
$$\int_{0}^{1} M \,\overline{M} \, \frac{J}{J} \, dx$$
 für symmetrisches, stetig veränderliches $\frac{J_{1}}{J}$.

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0}^{1} J = \zeta = x - (1 - n) (1 - 2\xi)^{2}$$

$$\int_{0$$

105

UNIVERSITÄTS BIBLIOTHEK PADERBORN

-

*

,

-

-

-

-

-

-

- , -

-

-

-

-

Lösungen der Funktion $\int M \overline{M} (J_c/J) ds$ und Funktionswerte ω .

Lösung für gerade Stäbe mit unstetig veränderlichem J_h/J .

Lösung für gerade Stäbe mit unstetig veränderlichem
$$J_h/J$$
.
Tabelle 142. $\int_{0}^{L} M \overline{M} \frac{J_e}{f} dx$ für veränderliches $\frac{J_h}{f}$ an beiden Stabenden.
 $\frac{M_h}{2} \frac{J_h}{2} \frac{J_h}{2} \frac{J_h}{2} = z - (z - n) \frac{v - x}{v} = z - (z - n) \left(z - \frac{\xi}{v}\right)$
 $\frac{J_h}{2} = \frac{\zeta}{z} = z - (z - n) \frac{v - x}{v} = z - (z - n) \left(z - \frac{\xi}{v}\right)$
 $\frac{J_h}{2} = \frac{\zeta}{z} = z - (z - n) \frac{v - x}{v} = z - (z - n) \left(z - \frac{\xi}{v}\right)$
 $\frac{J_h}{2} = \frac{\zeta}{z} = \frac{x}{l}, \quad \xi' = \frac{x'}{l}, \quad \frac{v}{v} = v, \quad l = v, \quad l' = v, \quad l' = \frac{J_h}{l}, \quad n = \frac{J_h}{J_h}$
 $\frac{J_h}{2} = \frac{z}{l} M_a \overline{M}_a [z - (z - n) v(2 + v'^2)]^l$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a [z - (z - n) v(2 + v'^2)]^l$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a [z - (z - n) v(2 + v'^2)]^l$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a [z - (z - n) v(2 + v'^2)]^l$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a [z - (z - n) v(2 + v'^2)]^l$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a [z - (z - n) v(2 + v'^2)] + \frac{\xi'}{2} [z v(2 + v'z) + \frac{\xi'}{v} (z + \xi') - 2\xi(2 + \xi')]]^l$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a \left\{ 2 (z + \xi') - (z - n) \frac{x}{\xi'} \left[2 v^2 (2 - v) + \frac{\xi'^3}{v} - 2\xi'^2 \right] \right] t'$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a \left\{ 2 (z + \xi') - (z - n) \frac{z}{\xi} \left[2 v^2 (2 - v) + \frac{\xi'^3}{v} - 2\xi'^2 \right] \right] t'$
 $\frac{J_h}{2} = \frac{1}{2} M_a \overline{M}_a \left\{ 3 - \frac{z - n}{\xi'} \left[3 (v - \xi) + \frac{\xi^2}{v} \right] \right\} t'$
 $\frac{J_h}{2} = \frac{1}{2} (M_a \overline{M}_a + M_b \overline{M}_b) [z - (z - n) v(2 + v'^2)] + (M_a \overline{M}_b + M_b \overline{M}_a) [z - (z - n) v^2 (z - v)]$
 $\frac{J_h}{2} = \frac{J_h}{2} (M_a + M_b) \overline{M}_a [z - (z - n) v(2 + v'^2)] + (M_a \overline{M}_b + M_b \overline{M}_a) [z - (z - n) v^2 (z - v)]$

1

,

-

UNIVERSITÄTS BIBLIOTHEK PADERBORN

$$\frac{\frac{1}{15}M_{e}\overline{M}_{e}\left\{5\left(1+\omega_{R}\right)-\left(1-n\right)\frac{1}{\xi'}\left[5\nu^{2}\left(2-\nu\right)+\xi^{2}\left(\frac{5}{\nu}\left(5-3\xi\right)-5\left(2-\xi\right)\right)\right]\right\}l'}{\frac{1}{15}M_{e}\overline{M}_{e}\left[5\left(1+\omega_{R}\right)-\left(1-n\right)\frac{\nu^{3}\left(5-3\nu\right)}{\omega_{R}}\right]l'}{\frac{8}{15}M_{e}\overline{M}_{e}\left[1-\left(1-n\right)\nu^{3}\left(5-6\nu+2\nu^{2}\right)\right]l'}$$

Lösungen der Funktion $\int M \overline{M} (J_{\epsilon}/J) ds$ und Funktionswerte ω . 108 Tabelle 14b. $\int_{0}^{t} M \overline{M} \frac{J_{e}}{I} dx$ für veränderliches $\frac{J_{h}}{I}$ an einem Stabende. $\frac{J_{\lambda}}{I} = \zeta = 1 - (1 - n) \frac{v - x}{v} = 1 - (1 - n) \left(1 - \frac{\xi}{v} \right),$ 2000 $\xi = \frac{x}{l}, \quad \xi' = \frac{x'}{l}, \quad \nu = \frac{v}{l}, \quad \nu' = \frac{l-v}{l}, \quad l' = l\frac{J_e}{J_b}, \quad n = \frac{J_h}{J_a}$ Ma $\left| \frac{1}{6} M_a \widetilde{M}_a [3 - (1 - n) \nu (3 - \nu)] l' \right| = \frac{1}{12} M_a \widetilde{M}_b [2 - (1 - n) \nu^2 (2 - \nu)] l'$ $\frac{1}{12} M_a \,\overline{M}_a \left\{ 4 - (1-n) \,\nu \left[2 + (2-\nu)^2 \right] \right\} l'$ $\frac{1}{12}M_{a}\overline{M}_{e}\left[2\left(1+\xi'\right)-\left(1-n\right)\frac{y^{2}}{\xi}\left(2-y\right)\right]l'$ $\left[\frac{1}{12}M_{a}\overline{M}_{c}\left\{2\left(1+\xi'\right)-\frac{1-n}{\xi'}\left[\nu\left(2+(2-\nu)^{2}\right)+\frac{\xi^{2}}{\nu}\left(1+\xi'\right)-2\xi\left(2+\xi'\right)\right]\right\}l'$ $\frac{1}{15}M_{a}\,\overline{M}_{c}\left[5-(1-n)\,\nu^{2}\,(10\,\nu'+3\,\nu^{2})\right]l'$ Re $\frac{1}{R_{b}} \left| \frac{1}{12} M_{b} \overline{M}_{b} \left[4 - (1-n) v^{3} \right] l' \right| R_{b} \left| \frac{1}{6} M_{b} \overline{M}_{a} \left[3 - (1-n) v^{2} \right] l'$ $\frac{1}{12}M_b \overline{M}_c \left\{ 2\left(1+\xi\right) - \left(1-n\right)\frac{1}{\xi'} \left[\nu^2 \left(2-\nu\right) - \xi^2 \left(2-\frac{\xi}{\nu}\right)\right] \right\} l'$ A $\frac{1}{15}M_e \overline{M}_e \left[5\left(1+\omega_R\right) - \left(1-n\right)\frac{\nu^3}{\xi}\left(5-3\nu\right) \right] l'$ $\frac{1}{15}M_e \,\overline{M}_e \left\{ 5\,(1+\omega_R) - \frac{1-n}{\xi'} \left[\frac{\xi^3}{\nu}\,(5-3\,\xi) - 5\,\xi^2\,(2-\xi) + \nu^2\,(10\,\nu'+3\,\nu^2) \right] \right\} l'$

 $\frac{4}{15}M_e\,\overline{M}_e\,[2-(1-n)\,(5-6\,\nu+2\,\nu^2)\,\nu^3]\,l'$

BIBLIOTHEK PADERBORN

Lösung für gerade Stäbe mit unstetig veränderlichem J_h/J_c .

-

-

-

-

-

-

-

-

1

4

-

BIBLIOTHEK

) Lösungen der Funktion $\int M \,\overline{M} \, (J_e/J) \, ds$ und Funktionswerte ω .

Tabelle 15b. $\int_{0}^{t} M$	Tabelle 15b. $\int_{0}^{t} M \overline{M} \frac{J_{\theta}}{J} dx$ für unendlich großes Trägheitsmoment an einem Stabende.				
a transformation of the second	J _A J	$l' = l \frac{J_e}{J_h}$	$\xi = \frac{x}{l} \qquad \qquad \xi' = \frac{x'}{l}$		
	Ma				
Ra	$\frac{1}{2} M_a \widetilde{M}_a \nu'^2 l'$	Ra	$\frac{1}{3}M_a\overline{M}_a\nu'^{3}b'$		
A	$\frac{1}{6} M_a \widetilde{M}_b v'^2 \left(3 - 2 v' \right) l'$	Re	$\frac{1}{3} M_a \widetilde{M}_c [4 \nu'^3 - 3 \nu'^4] l'$		
***	$\frac{1}{3} M_a \overline{M}_e \frac{\nu'^3}{\xi'} l'$	- Ale	$\frac{1}{6} M_a \overline{M}_c \frac{1}{\xi} \left[\nu'^2 \left(\mathfrak{z} \cdot \mathfrak{v}' \right) \cdot \nu \nu' \xi' \cdot \nu' \xi'^2 \right] l'$		
	4				
R	$\frac{1}{2} M_b \widetilde{M}_a (1-\nu^2) l'$	<i>H</i> ₀	$\frac{1}{3}M_b\overline{M}_b(1+\nu+\nu^2)\nu'l'$		
24	$\frac{1}{6} M_b \overline{M}_c \frac{\nu'^2}{\xi'} (\mathbf{I} + 2 \nu) l'$		$\frac{\mathbf{I}}{6} M_a \overline{M}_c \left(\mathbf{I} + \boldsymbol{\xi} - \frac{2 \boldsymbol{y}^3}{\boldsymbol{\xi}} \right) l'$		
Ro		$\frac{\mathrm{I}}{3} M_b \overline{M}_e [\mathrm{I} - \nu^3 (4 -$	3 v)] l'		
	Ма				
Ra	$M_a \overline{M}_a \nu' l'$	1/21	$\frac{1}{2} M_a \overline{M}_c \frac{\nu'^2}{\xi'} l'$		
- Ale		$\frac{\mathrm{I}}{2} M_a \overline{M}_e \Big(\mathrm{I} - \frac{ \mathrm{v}^2}{\xi} \Big)$) //		
	Ma	- M			
Ro Ro	$\frac{\nu'}{6} \{ M_a \nu' [2 \overline{M}_a \nu' + \overline{M}_b] \}$	$(1+2\nu)] + M_b [2\overline{M}_b ($	$I + v + v^2$) + $v' \overline{M}_a (I + 2v)$]} l'		
R.	$M_{a}\frac{\nu'}{2}\left[\overline{M}_{a}\left(\mathbf{I}-\nu\right)+\overline{M}_{b}\left(\mathbf{I}+\nu\right)\right]l'$				
R	$\frac{1}{3} \overline{M}_{a} [M_{a} (4 \nu'^{3} - 3 \nu'^{4}) + M_{b} (1 - 4 \nu^{3} + 3 \nu^{4})] l'$				
Rest	$\frac{1}{3}M_e\overline{M}_e$	$\frac{\nu'^3}{\xi'} (4-3\nu') l'$			
- Ale		$\frac{1}{3} \frac{M_{c} \overline{M}_{c}}{\omega_{R}} \left[\omega_{P}^{\prime \prime} - \xi^{\prime} \nu^{3} \right] $	3 - 4 v)] l'		

Lösung für gekrümmte Stäbe mit r = const und J = const.

Lösung für gekrümmte Stäbe mit r = const und J = const.

111

-

-

=]*t*

Lösungen der Funktion $\int M \overline{M} (J_c/J) ds$ und Funktionswerte ω .

Verdrehungen der Endquerschnitte mit Angaben über die Biegelinien für Balkenträger mit konstantem J_h/J .

Die Winkel φ_a , φ_b und die Ordinaten w, j der Biegelinie werden im EJ_e fachen Betrag angegeben. Tabelle 17. Träger auf zwei Stützen.

$\varphi_{a} \Big/ \frac{l'}{6} = R_{(k-1)k}, \varphi_{b} \Big/ \frac{l'}{6} = R_{kk}$	werden auf S. 258	als l	Kreuzlinienabschnitte	verwendet.

Abszissen der Belastung: ξl , $\xi' l$; Abszissen der Stabquerschnitte: ζl , $\zeta' l$; Schnitt *h* links der Last. Schnitt *r* rechts der Last. $l \cdot J_e/J_h = l'$

	$\varphi_a = \frac{l'}{6} P l \omega_B'; \qquad \varphi_b = \frac{l'}{6} P l \omega_B;$
- 22 - 22-	$w_{\rm A} = \frac{l'}{6} P l^2 \xi' \zeta [\xi (\mathbf{I} + \xi') - \zeta^2]; \qquad w_{\rm T} = \frac{l'}{6} P l^2 \xi \zeta' [\xi' (\mathbf{I} + \xi) - \zeta'^2]$
	w im Lastpunkt $(\zeta = \xi)$: $w = f = \frac{l'}{3} P l^2 \xi^2 \xi'^2;$
-1	$\varphi_a = \frac{l'}{6} \frac{10}{27} Pl; \varphi_b = \frac{l'}{6} \frac{8}{27} Pl$ $\varphi_a = \varphi_b = \frac{l'}{6} \frac{3}{8} Pl$
f-y1-f €1-€1-€1-€	$\varphi_{a} = \frac{l'}{6} 2 P l \xi' \left(\mathbf{I} - \xi'^{2} - \frac{3}{4} \gamma^{2} \right); \qquad \varphi_{b} = \frac{l'}{6} 2 P l \xi \left(\mathbf{I} - \xi^{2} - \frac{3}{4} \gamma^{2} \right)$
AEL - INSEL JEL	$\varphi_a = -\frac{l'}{6} P l \omega_D''; \varphi_b = \frac{l'}{6} P l \omega_D'' \qquad $
(n-1)P C+C+C+C+C A-1-nc	$\varphi_a = \varphi_b = \frac{l'}{6} P l \frac{n}{4} \left(\mathbf{I} - \frac{\mathbf{I}}{n^2} \right) \qquad $
-SIELELELE SIELELELE	$\varphi_a = \varphi_b = \frac{l'}{6} P l \frac{n}{4} \left(1 + \frac{1}{2 n^2} \right) \qquad \Rightarrow \frac{p}{2} = \frac{p}{4} \frac{p}{2} = \frac{p}{2} \qquad \qquad$
np 51 0 + 0 + 0 + 0	$\varphi_a = \frac{l'}{6} P l \frac{2n+1}{8} \left[1 - \frac{1}{(2n+1)^4} \right];$
-1-(2n+1)§ →	$\varphi_b = \frac{l'}{6} P l \frac{2n+1}{8} \left[1 - \frac{2}{(2n+1)^2} + \frac{1}{(2n+1)^4} \right]$
	$\varphi_{a} = \frac{l'}{6} \not p l^{2} 2 \gamma \xi' (\mathbf{I} - \gamma^{2} - \xi'^{2}); \qquad \varphi_{b} = \frac{l'}{6} \not p l^{2} 2 \gamma \xi (\mathbf{I} - \gamma^{2} - \xi^{2})$
Ayland (1-y)la	$\varphi_{a} = \frac{l'}{6} \not p l^{2} 4 \gamma^{2} (\mathbf{I} - \gamma)^{2}; \qquad \varphi_{b} = \frac{l'}{6} \not p l^{2} 2 \gamma^{2} (\mathbf{I} - 2 \gamma^{2})$
At los flat	$\varphi_{a} = \varphi_{b} = \frac{l'}{6} p l^{2} \frac{\gamma}{4} (3 - 4\gamma^{2}) \qquad \qquad$
<u> </u>	$\varphi_a = \varphi_b = \frac{l'}{6} \frac{p l^2}{4}; w = \frac{l'}{24} p i^3 \omega_P''; w \text{ in Stabmitte: } w = f = \frac{5}{3^{84}} l' p l^3$
A	$\varphi_a = \varphi_b = \frac{l'}{6} \rho l^2 \frac{\beta}{4} (3 - \beta^2 - 3 \alpha^2)$
AL- DIA	$\varphi_{a} = \varphi_{b} = \frac{l'}{6} p l^{2} \frac{\beta^{2}}{2} (3 - 2\beta) \qquad \qquad$

	Tabelle 17 (Fortsetzung).
$\gamma = \frac{c}{l}$	$\varphi_{a} = \frac{l'}{6} \frac{3}{2} \not p l^{2} \gamma \xi' \left[\xi \left(\mathbf{i} + \xi' \right) - \frac{\mathbf{i} 5 \xi' + 2 \gamma}{\mathbf{i} 0 \xi'} \gamma^{2} \right];$ $\varphi_{b} = \frac{l'}{6} \frac{3}{2} \not p l^{2} \gamma \xi \left[\xi' \left(\mathbf{i} + \xi \right) - \frac{\mathbf{i} 5 \xi - 2 \gamma}{\mathbf{i} 0 \xi} \gamma^{2} \right]$
A_al_> A	$\varphi_{a} = \frac{l'}{6} \frac{p l^{2}}{60} \alpha^{2} (40 - 45 \alpha + 12 \alpha^{2}); \qquad \varphi_{b} = \frac{l'}{6} \frac{p l^{2}}{15} \alpha^{2} (5 - 3 \alpha^{2})$
A BI-A	$\varphi_{a} = \frac{l'}{6} \frac{\not p l^{2}}{60} \beta^{2} \left(10 - 3 \beta^{2}\right); \qquad \varphi_{b} = \frac{l'}{6} \frac{\not p l^{2}}{60} \beta^{2} \left(20 - 15 \beta + 3 \beta^{2}\right)$
A	$\varphi_{a} = \frac{l'}{6} \frac{7 \not p l^{2}}{60}; \qquad \varphi_{b} = \frac{l'}{6} \frac{2 \not p l^{2}}{15}; \qquad w = \frac{\not p l^{4}}{360} \zeta \left(7 - 10 \zeta^{2} + 3 \zeta^{4}\right)$
EL EL	$\begin{split} \varphi_{a} &= \frac{l'}{6} \frac{1}{2} p l^{2} \gamma \xi' \left[2 \xi \left(1 + \xi' \right) - \gamma^{2} \right]; \\ \varphi_{b} &= \frac{l'}{6} \frac{1}{2} p l^{2} \gamma \xi \left[2 \xi' \left(1 + \xi \right) - \gamma^{2} \right] \end{split}$
A JI JIA	$\varphi_{a} = \varphi_{b} = \frac{l'}{6} \frac{p}{8} \frac{l^{2}}{\gamma} (3 - 2\gamma^{2}) \qquad \qquad$
n n n n n n n n n n n n n n n n n n n	$\varphi_{a} = \frac{l'}{6} \frac{p l^{2}}{60} (1 + \alpha') (7 - 3 \alpha'^{2}); \qquad \varphi_{b} = \frac{l'}{6} \frac{p l^{2}}{60} (1 + \alpha) (7 - 3 \alpha^{2})$
- vian - via	$\varphi_{a} = \varphi_{b} = \frac{l'}{6} \frac{p}{4} \frac{l^{2}}{\gamma^{2}} (4 - 3\gamma) \qquad \qquad$
A to the film	$\varphi_{a} = \frac{l'}{6} \frac{p}{2} \frac{l^{2}}{2} \gamma \xi' [2 \xi (1 + \xi') - 3 \gamma^{2}]$ $\varphi_{b} = \frac{l'}{6} \frac{p}{2} \frac{l^{2}}{2} \gamma \xi [2 \xi' (1 + \xi) - 3 \gamma^{2}]$
A J J J J	$\varphi_a = \varphi_b = \frac{l'}{6} \frac{3}{8} p l^2 \gamma (1 - 2\gamma^2) \qquad \qquad$
False a'l	$\varphi_{a} = \frac{l'}{6} \frac{p l^{2}}{60} \left[15 - (1 + \alpha') (7 - 3 \alpha'^{2}) \right]; \varphi_{b} = \frac{l'}{6} \frac{p l^{2}}{60} \left[15 - (1 + \alpha) (7 - 3 \alpha^{2}) \right]$
Anylan mylan	$\varphi_{a} = \varphi_{b} = \frac{l'}{6} \frac{p}{4} \frac{l^{2}}{\gamma^{2}} (2 - \gamma) \qquad $
rs rs	$\varphi_{a} = \frac{l'}{6} \frac{l^{2}}{60} (8 p_{a} + 7 p_{b}); \qquad \varphi_{b} = \frac{l'}{6} \frac{l^{2}}{60} (7 p_{a} + 8 p_{b})$
Ry1 = (1-84)2 - 72=	$\varphi_{a} = \varphi_{b} = \frac{l'}{6} \frac{p l^{2}}{4} [1 - \gamma^{2} (2 - \gamma)] \qquad \qquad$
A EL - EL-A	$\varphi_a = \frac{l'}{6} M \omega'_{\mathcal{M}}; \ \varphi_b = -\frac{l'}{6} M \omega_{\mathcal{M}} \qquad $
Ana Ma	$\varphi_a = \frac{l'}{6} (2 M_a + M_b); \qquad \varphi_b = \frac{l'}{6} (M_a + 2 M_b)$

8

Verdrehungen der Endquerschnitte mit Angaben über die Biegelinien für Balkenträger. 113

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

Lösungen der Funktion $\int M \overline{M} (J_c/J) ds$ und Funktionswerte ω .

114

Tabelle 18. Freiträger.

+= t1	Abszissen der Belastung: $\xi l, \xi' l$; Abszissen der Stabquerschnitte: $\zeta l, \zeta' l$.
	Schnitt h links, Schnitt r rechts der Last. $l \int_c / f_h = l^r$. φ_b und die Ordinaten w, $w_b = f$ der Biegelinie sind $E \int_c$ fache Beträge.
E-adl	$\varphi_b = \frac{l'}{2} P l \xi^2; \qquad f = \frac{l'}{6} P l^2 \xi^2 (3 - \xi);$
1-1-	$w_{h} = \frac{l'}{6} P l^{2} \zeta^{2} (3 \xi - \zeta); \qquad w_{r} = \frac{l'}{6} P l^{2} \xi^{2} (3 \zeta - \xi)$
	$\varphi_b = \frac{l'}{6} _3 P _i; \qquad f = \frac{l'}{3} P _i^2; \qquad w = \frac{l'}{6} P _i^2 _\zeta^2 _(3 - \zeta)$
A-52-	$\varphi_b = \frac{l'}{6} p l^2 \xi' (3 - 3 \xi' + \xi'^2); \qquad f = \frac{l'}{24} p l^3 \xi' (8 - 6 \xi' + \xi'^3)$
<u><u><u>s</u></u><u>n</u></u>	$\varphi_b = \frac{l'}{6} p l^2 \xi^3; \qquad l = \frac{l'}{24} p l^3 \xi^3 (4 - \xi)$
p	$\varphi_b = \frac{l'}{6} \not p l^2; \qquad f = \frac{l'}{8} \not p l^3; \qquad w = \frac{l'}{24} \not p l^3 \zeta^2 (6 - 4 \zeta + \zeta^2)$
P-1	$\varphi_b = \frac{l'}{24} p l^2 \xi' (6 - 8 \xi' + 3 \xi'^2); \qquad t = \frac{l'}{30} p l^3 \xi' (5 - 5 \xi' + \xi'^3)$
P	$\varphi_b = \frac{l'}{24} \not p l^2; \qquad f = \frac{l'}{30} \not p l^3; \qquad w = \frac{l'}{120} \not p l^3 (4 - 5 \zeta' + \zeta'^5)$
1	$\varphi_b = \frac{l'}{24} p l^2 \xi' (6 - 4 \xi' + \xi'^2); \qquad f = \frac{l'}{120} p l^3 \xi' (20 - 10 \xi' + \xi'^3)$
}4	$\varphi_b = \frac{l'}{8} p l^2; f = \frac{11}{120} p l^3; w = \frac{l'}{120} p l^3 (11 - 15\zeta' + 5\zeta'^4 - \zeta'^5)$
FEI A	$\varphi_b = M l \xi; f = \frac{M l^2}{2} (I - \xi'^2)$ $w = \frac{M l^2}{2} \zeta^2$

Tabelle 19. Auslegeträger.

 $\begin{array}{c} \zeta_{l} = -\zeta_{l} = -\zeta_{l} = -\zeta_{d} = -\zeta_{d}$

2	$w_{h} = -\frac{l'}{6} P l^{2} \gamma (\zeta_{1} - \zeta_{1}^{\eta}) = -\frac{l'}{6} P l^{2} \gamma' \omega_{D};$	$\varphi_d = \frac{l'}{6} P l \gamma (2 + 3 \gamma)$
~ y-o/l ~	$w_{k} = \frac{l'}{6} P l^{2} \gamma^{2} \zeta_{2} [2 + \zeta_{2} \gamma (3 - \zeta_{2})];$	$I = \frac{l'}{3} P l^2 \gamma^2 (1 + \gamma)$
7	$w_{k} = -\frac{l'}{12} p l^{3} \gamma^{2} (\zeta_{1} - \zeta_{1}^{3}) = -\frac{l'}{12} p l^{3} \gamma^{2} \omega_{D};$	$\varphi_d = \frac{l'}{6} \not p \ l^2 \gamma^2 \left(\mathbf{I} + \gamma \right)$
y-o/l ==-c =	$w_{k}^{i} = \frac{l'}{24} p l^{3} \gamma^{3} \zeta_{2} [4 + \gamma \zeta_{2} (2 + (1 + \zeta_{2}^{i})^{2})];$	$l = \frac{l'}{24} p l^3 \gamma^3 (4 + 3 \gamma)$

Verdrehungen der Endquerschnitte und Biegelinien für Balkenträger mit veränderlichem J_h/J aus einem Kräftepaar $M_a = 1$ mt am Endquerschnitt a.

Tabelle 20.

A. Trägheitsmoment stetig veränderlich.

1. Verdrehungen der Endquerschnitte: a) Symmetrischer Träger, $M_a = 1$ mt

		$\frac{J_{h}}{J} =$	$\zeta = 1$	-(1 -	n) (1 -	$\left(2\frac{x}{l}\right)^2$	=1-	(1 - n)	(1 - 2)	ξ) ²			
n	1			$\delta_{aa} =$	$\frac{l'}{6 E J_{\mathfrak{c}}}$	k ₁ ; δ	$ba = -\frac{1}{6}$	$\frac{l'}{E J_c} k_2$; l' =	$= l \frac{J_e}{J_h},$	<i>n</i> =	$\frac{J_{\mathbf{N}}}{J_{a}}.$	
	n n n n n n n n n n n n n n n n n n n n												
k ₁ k ₂	1,680 0,920	1,600 0,900	1,520 0,880	1,440 0 860	1,360 0,840	1,320 0,830	1,296 0,824	1,280 0,820	·,264 0,816	1,248 0,812	1,240 0,810	1,232 0,808	

b) Unsymmetrischer Träger.

$$\frac{J_{h}}{J} = \zeta = 1 - (1 - n) \left(1 - \frac{x}{l}\right)^{2} = 1 - (1 - n) (1 - \xi)^{2}; \quad J_{h} = J_{b}$$

für $M_{a} = 1$ mt: $\delta_{aa} = \frac{l'}{6EJ_{e}} k_{1}; \quad \delta_{ba} = \frac{l'}{6EJ_{e}} k_{2}, \quad l' = l \frac{J_{e}}{J_{h}};$
 $\int J$
für $M_{b} = 1$ mt: $\delta_{ab} = \frac{l'}{6EJ_{e}} k_{2}; \quad \delta_{bb} = \frac{l'}{6EJ_{e}} k_{3}; \quad n = \frac{J_{h}}{J_{a}}.$

	and the	12													
	0,6	0,5	0,4	0,3	0,2	0,15	0,12	0,10	0,08	0,06	0,05	0,04			
$\substack{k_1\\k_2\\k_3}$	1,520 0,880 1,920	1,400 0,850 1,900	1,280 0,820 1,880	1,160 0,790 1,860	1,040 0,760 1,840	0,980 0,745 1,830	0,944 0,736 1,824	0,920 0,730 1,820	0,896 0,724 1,816	0,872 0,718 1,812	0,860 0,715 1,810	0,848 0,712 1,808			

2. Ordinaten der Biegelinie für $M_a = 1 \text{ mt}$: $\delta_m = \frac{ll'}{6EJ_e}k$; $l' = l\frac{J_e}{J_h}$. Werte k: a) Symmetrischer Träger.

n			-			1	5						
11.2.3	0,1	0,2	0,25	0,3	3	0,4	0,5	0,6	2 Sigs	0,7	0,75	0,8	0,9
0,60	0,1492	0,2584	0,2977	0,3268	0,3407	0,3560	0,3500	0,3140	0,2765	0,2545	0,2180	0,1781	0,0913
0,30	1328	2362	2748	3041	3185	3351	3312	2976	2617	2406	2057	1676	0856
0,20	1273	2288	2672	2966	3111	3281	3250	2921	2568	2360	2016	1641	0836
0,10	1219	2214	2596	2890	3037	3211	3188	2866	2519	2313	1975	1607	0817
0,05	1191	2177	2558	2853	3000	3176	3156	2838	2494	2290	1954	1589	0808

b) Unsymmetrischer Träger.

n							Ę						
	0,1	0,2	0,25	0,3	13	0,4	0,5	0,6	23	0,7	0,75	0,8	0,9
0,60 0,30 0,20 0,10 0,05	0,1339 1060 0967 0874 0828	0,2313 1888 1746 1605 1534	0,2666 2205 2051 1897 1820	0,2932 2453 2293 2134 2054	0,3062 2580 2420 2259 2179	0,3213 2743 2587 2430 2352	0,3188 2766 2625 2484 2414	0,2892 2542 2425 2308 2249	0,2568 2272 2173 2074 2025	0,2373 2105 2016 1927 1882	0,2045 1821 1746 1671 1634	0,1680 1501 1441 1381 1351	0,0870 0780 0750 0720 0705

Für Zwischenwerte von n können die Ordinaten geradlinig eingeschaltet werden.

UNIVERSITÄTS BIBLIOTHEK PADERBORN

0,00	0,0000	0,0000	0,0000	0,0000	0,0000	- 0,00000	- 1,0000	0,0000	0,0000	0,0000	1,00
OT	1000 T	0000	0000	0000	0100	- 0,00970	- 0,9997	0001	0100	0100	99
02	0004	0000	0000	0196	0200	- 0,01882	- 0,9988	0004	0200	0200	98
03	0000	0000	0000	0291	0300	- 0,02736	- 0,9973	0009	0300	0299	97
04	0016	1000	0000	0384	0399	- 0,03532	- 0,9952	0016	0400	0399	96
05	0025	1000	0000	0475	0499	- 0,04275	- 0,9925	0025	0500	0498	95
05	0000	0000	0000	0564	0508	- 0.04064	- 0.9892	0036	0600	0506	94
00	0030	0002	0000	0504	0607	- 0.05508	- 0.9863	0049	0700	0693	93
07	0049	0003	0000	0736	0705	- 0,06182	- 0,9808	0064	0800	0790	92
00	0081	0007	0001	0819	0893	- 0,06716	- 0,9757	0081	0899	0886	91
og	0001	00070	COOT	0000	0000	- 0.07200	- 0.0700	0100	0000	0081	0.00
0,10	0100	0010	0001	0900	10990	0,07500	0.0627	0120	1000	TOTE	80
II	0121	0013	1000	0979	1007	- 0,07030	- 0,9037	0120	1099	10/5	88
12	0144	0017	0002	1050	1103	- 0,08020	- 0,9500	0143	1207	1250	87
13	0109	0022	0003	1131	12/0	- 0.08668	- 0.0412	0104	1306	1340	86
14	0190	1027	0004	1204	+3/3	- 0,00000	0,9412	0194	-390	- 349	0-
15	0225	0034	0005	1275	1466	- 0,08925	- 0,9325	0222	1495	1438	05
16	0256	0041	0007	1344	1559	- 0,09140	- 0,9232	0253	1593	1525	84
17	0289	0049	0008	1411	1651	- 0,09312	- 0,9133	0285	1692	1610	83
18	0324	0058	0010	1476	1742	- 0,09446	- 0,9028	0319	1790	1694	82
19	0361	0069	0013	1539	1831	- 0,09542	- 0,8917	0354	1887	1770	81
0,20	0400	0080	0016	1600	1920	- 0,09600	- 0,8800	0392	1984	1856	0,80
21	0441	0093	0019	1659	2007	- 0,09622	- 0,8676	0432	2081	1934	79
22	0484	0106	0023	1716	2094	- 0,09610	- 0,8548	0472	2177	2010	78
23	0529	0122	0028	1771	.2178	- 0,09564	- 0,8413	0515	2272	2085	77
24	0576	0138	0033	1824	2262	- 0,09484	- 0,8272	0559	2367	2157	76
25	0625	0156	0039	1875	2344	- 0,09375	- 0,8125	0605	2461	2227	75
26	0676	0176	0046	1924	2424	- 0,09236	- 0,7972	0653	2554	2294	74
27	0729	0197	0053	1971	2503	- 0,09066	- 0,7813	0702	2647	2359	73
28	0784	0220	0061	2016	2580	- 0,08870	- 0,7648	0753	2739	2422	72
29	0841	0244	0071	2059	2656	- 0,08648	- 0,7477	0806	2829	2483	71
0,30	0900	0270	0081	2100	2730	- 0,08400	- 0,7300	0860	2919	2541	0,70
31	0961	0298	0092	2139	2802	- 0,08128	- 0,7117	0915	3008	2597	69
32	1024	0328	0105	2176	2872	- 0,07834	- 0,6928	0972	3095	2649	68
0,33	1089	0359	0119	2211	2941	- 0,07518	- 0,6733	1030	3181	2700	0,67
1/3	IIII	0370	0123	2222	. 2963	- 0,07407	- 0,6667	1049	3210	2716	2/3
0,34	1156	0393	0134	2244	3007	- 0,07180	- 0,6532	1089	3266	2748	0,00
35	1225	0429	0150	2275	3071	- 0,06825	- 0,6325	1150	3350	2793	65
36	1296	0467	0168	2304	3133	- 0,06452	- 0,6112	1212	3432	2835	64
37	1369	0507	0187	2331	3193	- 0,06060	- 0,5893	1275	3513	2874	63
38	1444	0549	0209	2356	3251	- 0,05654	- 0,5668	1340	3591	2911	62
39	1521	0593	0231	2379	3307	- 0,05234	- 0,5437	1405	3669	2945	01
0,40	1600	0640	0256	2400	3360	- 0,04800	- 0,5200	1472	3744	2976	0,60
41	1681	0689	0883	2419	3411	- 0,04354	- 0,4957	1540	3817	3004	59
42	1764	0741	0311	2436	3459	- 0,03898	- 0,4708	1608	3889	3029	58
43	1849	0795	0342	2451	3505	- 0,03432	- 0,4453	1678	3958	3052	57
44	1936	0852	0375	2464	3548	- 0,02956	- 0,4192	1749	4025	3071	50
45	2025	0911	0410	2475	3589	- 0,02475	- 0,3925	1820	4090	3088	55
46	2116	0973	0448	2484	3627	- 0,01988	- 0,3652	1892	4152	3101	54
47	2209	1038	0488	2491	3662	- 0,01494	- 0,3373	1965	4212	3112	53
48	2304	1106	0531	2496	3694	- 0,00998	- 0,3088	2039	4269	3119	52
49	2401	1176	0576	2499	3724	- 0,00500	- 0,2797	2113	4324	3124	51
0,50	0,2500	0,1250	0,0625	0,2500	0,3750	- 0,00000	- 0,2500	0,2188	0,4375	0,3125	0,50
Ę	Ę' 2	Ę' 3	£'4	WR	ω'_D	$-\omega_D^{\prime\prime}$	ω'n	ωφ	ω' _P	ω_P''	Ę

Tabelle 22. Funktionswerte ξ^r und ω nach S. 120

WD

 ω_R

 $\omega_D^{\prime\prime}$

 ω_M

 ω_P''

ωp

ωφ

ξ'

Lösungen der Funktion $\int M \overline{M} (J_e/J) ds$ und Funktionswerte ω .

116

÷.

 ξ^2

 $\tilde{\xi}^3$

Tabelle 22. (Fortsetzung.)

ξ	ξ^2	ξ ³	<u></u> ξ4	ω_R	ω_D	$\omega_D^{\prime\prime}$	ω_M	ωφ	ω _P	ω_P''	<i>Ę</i> ′
0,50	0,2500	0,1250	0,0625	0,2500	0,3750	+ 0,00000	- 0,2500	0,2188	0,4375	0,3125	0,50
51	2601	1327	0677	2499	3773	+ 0,00500	- 0,2197	2263	4423	3124	49
52	2704	1406	0731	2496	3794	+ 0,00998	- 0,1888	2338	4470	3119	48
53	2809	1489	0789	2491	3811	+ 0,01494	- 0,1573	2414	4511	3112	47
54	2916	1575	0850	2484	3825	+ 0,01988	- 0,1252	2491	4550	3101	46
55	3025	1664	0915	2475	3836	+ 0,02475	- 0,0925	2567	4585	3088	45
56	3136	1756	0983	2464	'3844	+ 0,02956	- 0,0592	2644	4617	3071	44
57	3249	1852	1056	2451	3848	+ 0,03432	- 0,0253	2721	4644	3052	43
58	3364	1951	1132	2436	3849	+0,03898	+ 0,0092	2798	4668	3029	42
59	3481	2054	1212	2419	3840	+ 0,04354	+ 0,0443	2875	4088	3004	41
0,60	3600	2160	1296	2400	3840	+ 0,04800	+ 0,0800	2952	4704	2976	0,40
61	3721	2270	1385	2379	3830	+ 0,05234	+ 0,1103	3029	4715	2945	39
62	3844	2383	1478	2350	3817	+ 0,05054	+ 0,1532	3105	4722	2911	30
63	3909	2500	1575	2331	3800	+ 0,00000	+0,1907	3101	4725	2074	37
04	4090	2021	1078	2304	3779	+ 0,00452	+ 0,2200	3257	4722	2035	30
05	4225	2740	1705	2275	3754	+ 0,00025	+ 0,2075	3334	4/15	*/93	35
0,66	4356	2875	1897	2244	3725	+ 0,07180	+ 0,3008	3407	4703	2748	0,34
2/3	4444	2963	1975	2222	3704	+ 0,07407	+ 0,3333	3457	4091	2710	1/3
0,67	4489	3008	2015	2211	3092	+ 0,07518	+ 0,3407	3481	4085	2700	0,33
68	4024	3144	2138	2170	3050	+ 0,07834	+ 0,3872	3555	4002	2049	32
69	4701	3285	2207	2139	3015	+ 0,00120	+ 0,4203	3020	4033	2597	31
0,70	4900	3430	2401	2100	3570	+ 0,08400	+ 0,4700	3700	4599	4341	0,30
71	5041	3579	2541	2059	3521	+ 0,08048	+ 0,5123	3770	4559	2403	29
72	5184	3732	2087	2010	3408	+ 0,08870	+ 0,5552	3040	4513	2422	20
73	5329	3890	2840	1971	3410	+ 0,00000	+ 0,5907	3909	4400	2204	26
74	5470	4052	2999	1924	3340	+ 0,09230	+ 0,0420	3977	4401	2294	20
75	5625	4219	3164	1875	3281	+ 0,09375	+ 0,6875	4043	4330	2227	25
76	5776	4390	3336	1824	3210	+ 0,09484	+ 0,7328	4108	4204	2157	24
77	5929	4505	3515	1771	3135	+ 0,09504	+ 0,7787	4171	4105	2005	23
78	0084	4740	3702	1710	3054	+ 0,09010	+ 0,0552	4433	4090	1024	21
79	0241	4930	3895	1059	2970	+ 0,09022	+ 0,0/23	4293	4005	1934	
0,80	6400	5120	4096	1000	2880	+ 0,09000	+ 0,9200	4352	3904	1050	0,20
81	0501	5314	4305	1539	2780	+ 0,09542	+ 0,9003	4409	3795	1/10	19
82	0724	5514	4521	1470	2080	+ 0,09440	+ 1,01/2	4403	30/9	1610	17
03	0009	5710	4740	1411	2302	+ 0,09312	+ 1,0007	4510	3421	1525	16
04 8r	7050	5927	4979	1344	2250	+ 0,09140	+ 1 1675	4507	3280	1438	15
05	1443	0141	5220		~333	1 0,00919	1	1667	2720	7240	TA
80	7390	0301	5470	1204	2239	+ 0,08000	+ 1,2100	4001	3130	1349	12
07	7509	6875	5729	1131	1085	+ 0,08370 + 0.08026	+ 1,2/0/	4705	2803	1168	12
80	7744	0015	5997	1050	1905	+0,00020 +0.07636	+ 1,3252	4740	2626	1075	II
09	7921	7050	6-6-	0979	1030	+ 0,07000	+ 1,3703	4820	2430	0081	0.10
0,90	8100	7290	69.00	0900	1710	+ 0,0/200	+ 1,4300	4020	2439	0886	0,10
91	8.6	7530	0057	0019	1504	+ 0.06782	+ 1 5202	4882	2026	0700	08
92	8640	8044	7104	0/30	1413	+ 0,00102	+ 1,5392	4000	1810	0603	07
93	8826	8206	7807	0564	1004	+ 0.04064	+ 1.6508	4032	1503	0596	06
94	0030	8574	8145	0475	0026	+ 0.04275	+ 1.7075	4052	1355	0498	05
95	9025	89.17	8:00	028	0750	+ 0.02522	+ 1 7649	4060	IIOT	0300	04
90	9210	0047	884	0304	0753	+ 0,03532	+ 1,7040	4909	0847	0200	07
97	9409	9127	0224	0106	0288	+ 0.01882	+ 1 8812	4002	0576	0200	02
90	0 0801	0 0702	0 0606	0000	0107	+ 0,00070	+ 1.0403	4908	0204	0100	OI
1,00	1,0000	1,0000	1,0000	0,0000	0,0000	+ 0,00000	+ 2,0000	0,5000	0,0000	0,0000	0,00
		640	24					- at			
5	5 -	50	5	WR	WD	$-\omega_D$	W M	wa	WP	(OP	S

118

Tabelle 21.

B. Trägheitsmoment unstetig veränderlich.

$$\frac{J_{\mathbf{A}}}{J} = \zeta = 1 - (1 - n) \left(1 - \frac{\xi}{\nu}\right)$$

1'

AUT

 $l' = l \frac{J_c}{J_h} \qquad \begin{array}{c} h_h \\ n \\ a \\ \end{array}$

1 0

1. Verdrehungen der Endquerschnitte.

a) Symmetrischer Träger, $M_a = 1$ mt

		$\delta_{aa} = -$	$6 E J_e$	ł ₁ ;	$\delta_{ba} = -\epsilon$	$E J_c$	2 •	l' = l -	In	a vi-	1-1-1	5	
	v						п						
		0,60	0,50	0,40	0,30	0,20	0,15	0,12	0,10	0,08	0,06	0,05	0,04
$\overline{k_1}$ k_2	0,35	1,661 0,919	1,576 0,899	1,491 0,879	1,406 0,858	1,322 0,838	1,279 0,828	1,254 0,822	1,237 0,818	1,220 0,814	1,203 0,810	1,195 0,808	1,186 0,806
$\begin{array}{c} k_1 \\ k_2 \end{array}$	1 3	1,674 0,926	1,593 0,907	1,511 0,889	1,430 0,870	1,348 0,852	1,307 0,843	1,283 0,837	1,267 0,833	1,250 0,830	1,234 0,826	1,226 0,824	1,218 0,822
$k_1 \\ k_2$	0,30	1,701 0,939	1,626 0,924	1,552 0,908	1,477 0,893	1,402 0,878	1,365 0,870	1,343 0,865	1,328 0,862	1,313 0,859	1,298 0,856	1,290 0,855	1,282 0,853
$k_1 \\ k_2$	0,25	1,744 0,956	1,680 0,945	1,616 0,934	1,552 0,923	1,488 0,912	1,455 0,907	1,436 0,904	1,423 0,902	1,411 0,899	1,398 0,897	1,391 0,896	1,385 0,895
$\substack{k_1\\k_2}$	0,20	1,789 0,971	1,736 0,964	1,683 0,957	1,630 0,950	1,578 0,942	1,551 0,939	1,535 0,937	1,525 0,935	1,514 0,934	1,504 0,932	1,498 0,932	1,493 0,931

b) Unsymmetrischer Träger

für $M_a = 1$ mt:

$$\delta_{aa} = \frac{l'}{6 E J_{\varepsilon}} k_1; \qquad \delta_{ba} = \frac{l'}{6 E J_{\varepsilon}} k_2;$$

für $M_b = 1$ mt:

$$\delta_{ab} = \frac{l'}{6 E J_c} k_2; \qquad \delta_{bb} = \frac{l'}{6 E J_c} k_3$$

	1/						92						
		0,60	0,50	0,40	0,30	0,20	0,15	0,12	0,10	0,08	0,06	0,05	0,04
k1 k2 k3	0,35	1,669 0 960 1,991	1,587 0,949 1,989	1,504 0,939 1,987	I,42I 0,929 I,985	1,339 0,919 1,983	1,298 0,914 1,982	1,273 0,911 1,981	1,256 0,909 1,981	1,240 0,907 1,980	1,223 0,905 1,980	1,215 0,904 1,980	1,207 0,903 1,979
k1 k2 k3	3	1,681 0,963 1,993	1,602 0,954 1,991	1,522 0,944 1,989	1,443 0,935 1,987	1,363 0,926 1,985	1,323 0,921 1,984	1,299 0,919 1,984	1,283 0,917 1,983	1,267 0,915 1,983	1,251 0,913 1,983	1,243 0,912 1,982	1,236 0,911 1,982
k1 k2 k3	0,30	1,707 0,969 1,995	1,633 0,961 1,993	1,560 0,954 1,992	1,487 0,946 1,991	1,413 0,939 1,989	1,377 0,935 1,989	1,355 0,933 1,988	1,340 0,931 1,988	1,325 0,930 1,988	1,311 0,928 1,987	1,303 0,927 1,987	1,296 0,927 1,987
k1 k2 k3	0,25	I,747 0,978 I,997	1,683 0,973 1,996	1,620 0,967 1,995	1,557 0,962 1,995	1,494 0,956 1,994	1,462 0,954 1,993	I,443 0,952 I,993	1,430 0,951 1,993	1,418 0,950 1,993	1,405 0,949 1,993	1,399 0,948 1,993	1,392 0,947 1,992
k1 k2 k3	0,20	1,790 0,986 1,998	1,738 0,982 1,998	1,686 0,978 1,997	1,633 0,975 1,997	1,581 0,971 1,996	1,555 0,969 1,996	1,539 0,968 1,996	1,528 0,968 1,996	1,518 0,967 1,996	1,507 0,966 1,995	1,502 0,966 1,995	1,497 0,965 1,995

Für Zwischenwerte von n können die Werte k geradlinig eingeschaltet werden.

Verdrehungen der Endquerschnitte und Biegelinien für Balkenträger.

Tabelle 21.

2. Ordinaten δ_m der Biegelinie für $M_a = 1$ mt.

a) Symmetrischer Träger.

$$\int_{a} \frac{J_{\ell}}{d - \lambda_{\ell}} n \qquad \delta_{m} = \frac{l l'}{6 E J_{c}} k; \qquad l' = l \frac{J_{c}}{J_{h}}; \qquad \text{Werte } k:$$

								tes						
ν	2	0,1	0,2	0,25	0,3	1 3	0,4	0,5	0,6	3	0,7	0,75	0,8	0,9
	0,60	0,1476	0,2567	0,2965	0,3262	0,3406	0,3561	0,3503	0,3145	0,2771	0,2549	0,2182	0,1781	0,0913
	0,30	1300	2323	2727	3031	3182	3352	3318	2984	2627	2414	2060	1677	0855
0,35	0,20	1242	2255	2648	2955	3108	3282	3256	2930	2579	2368	2020	1642	0835
	0,10	1184	2177	2569	2876	3033	3213	3194	2876	2531	2323	1979	1608	0816
	0,05	1154	2138	2529	2839	2996	3178	3164	2849	2507	2300	1959	1590	0806
	0,60	1489	2590	2990	3289	3432	3588	3528	3167	2790	2567	2198	1794	0920
	0,30	1323	2372	2771	3078	3228	3399	3361	3023	2660	2445	2088	1700	0867
1	0,20	1268	2299	2698	3008	3160	3336	3306	2975	2617	2404	2050	1668	0849
, in the second se	0,10	1212	2227	2626	2937	3093	3273	3250	2927	2574	2364	2015	1637	0831
	0,05	1185	2191	2589	2902	3059	3242	3222	2903	2552	2343	1997	1621	0823
	0,60	1515	2634	3039	3340	3482	3635	3570	3205	2825	2600	2227	1819	0932
	0,30	1368	2450	2858	3167	3315	3481	3435	3089	2721	2503	2140	1743	0889
0,30	0,20	1319	2389	2798	3109	3260	3430	3390	3050	2687	2471	2111	1718	0874
	0,10	1270	2327	2737	3052	3204	3378	3345	3012	2652	2438	2082	1693	0860
	0,05	1246	2297	2707	3023	3176	3353	3322	2992	2635	2422	2067	1680	0853
	0,60	1555	2700	3109	3408	3547	3696	3625	3254	2869	2643	2266	1852	0949
	0,30	1438	2566	2980	3286	3430	3588	3531	3174	2799	2577	2208	1800	0919
0,25	0,20	1399	2521	2937	3245	3391	3552	3500	3148	2775	2555	2189	- 1783	0909
	0,10	1360	2476	2895	3204	3352	3517	3469	3121	2752	2533	2170	1766	0899
	0,05	1341	2453	2873	3184	3333	3499	3453	3108	2740	2522	2160	1758	0894
	0,60	1596	2762	3169	3464	3602	3747	3670	3293	2904	2676	2296	1878	0964
	0,30	1510	2673	3085	3385	3526	3678	3610	3242	2860	2635	2260	1847	0945
0,20	0,20	1482	2643	3057	3359	3501	3654	3590	3226	2846	2621	2248	1837	0938
	0,10	1453	2614	3029	3332	3476	3631	3570	3209	2831	2608	2236	1826	0932
	0,05	1439	2599	3015	3319	3463	3620	3560	3200	2824	2601	2230	1821	0929
	0,60	1649	2812	3217	3510	3646	3787	3705	3323	2931	2700	2318	1898	0976
	0,30	1604	2761	3169	3464	3603	3748	3671	3295	2907	2678	2298	1881	0966
0,15	0,20	1589	2744	3153	3449	3588	3735	3660	3285	2898	2671	2292	1876	0962
	0,10	1573	2727	3137	3434	3574	3722	3649	3276	2890	2663	2286	1870	0959
	0,05	1566	2719	3129	3427	3567	3715	3643	3271	2886	2659	2282	1868	0957

Für Zwischenwerte von n können die Werte k geradlinig eingeschaltet werden.

		D) U	nsymme	etrische	r 11age	1.								
	A na	V 1 vl- 1	_ ,	δ .n =	$= \frac{l l'}{6 E}$	$\overline{J_e}^{k};$	<i>l'</i> =	$= l \frac{J_c}{J_h};$	W	erte k:				
ν	92	0,1	0,2	0,25	0,3	1 1/3	0,4	Ę 0,5	0,6	cije Cije	0,7	0,75	0,8	0,9
0,35	0,60 0,30 0,20 0,10 0,05	0,1485 1315 1259 1203 1175	0,2585 2363 2289 2215 2178	0,2986 2765 2691 2617 2580	0,3288 3076 3006 2935 2900	0,3434 3232 3165 3097 3064	0,3597 3416 3355 3294 3264	0,3548 3396 3346 3295 3270	0,3198 3077 3037 2996 2976	0,2828 2727 2693 2660 2643	0,2609 2518 2487 2457 2442	0,2243 2167 2142 2116 2104	0,1839 1779 1758 1738 1728	0,0950 0910 0900 0890 0890

Für Zwischenwerte von n können die Werte k geradlinig eingeschaltet werden.

Lösungen der Funktion $\int M \overline{M} (J_e/J) ds$ und Funktionswerte ω .

Ordinaten δ_m der Biegelinie für $M_{\mathfrak{a}} = 1$ mt. b) Unsymmetrischer Träger (Fortsetzung).

				δ"	$=\frac{l}{6E}$	$\frac{p'}{J_e}k;$	l' =	$l \frac{J_o}{J_h};$	W	erte k:				
v	n							Ę						
	100	0,1	0,2	0,25	0,3	3	0,4	0,5	0,6	3	0,7	0,75	0,8	0,9
-	0.60	1406	2605	3008	3311	3457	3618	3565	3212	2840	2619	2251	1846	0953
	0.30	1336	2308	2804	3117	3272	3451	3426	3101	2747	2536	2182	1790	0925
1	0.20	1283	2320	2736	3052	3210	3396	3380	3064	2716	2508	2159	1772	0916
3	0.10	1220	2260	2667	2987	3148	3340	3333	3027	2685	2480	2135	1753	0907
	0,05	1202	2226	2633	2955	3117	3312	3310	3008	2670	2466	2124	1744	0902
	0.60	1520	2645	3053	3356	3500	3656	3597	3238	2861	2638	2267	1859	0959
	0.30	1377	2469	2882	3195	3347	3519	3482	3146	2784	2569	2210	1813	0936
0,30	0,20	1330	2410	2825	3142	3296	3473	3444	3115	2759	2546	2191	1798	0929
	0,10	1282	2352	2768	3088	3245	3427	3406	3085	2733	2523	2172	1782	0921
	0,05	1259	2322	2739	3061	3219	3404	3387	3069	2721	2512	2162	1775	0917
	0.60	1558	2707	3117	3417	3558	3709	3641	3272	2890	2664	2289	1876	0968
	0,30	1443	2576	2994	3302	3448	3610	3559	3207	2835	2615	2248	1843	0952
0,25	0,20	1405	2533	2953	3264	3412	3576	3531	3185	2817	2599	2234	1832	0946
	0,10	1367	2490	2912	3225	3376	3545	3504	3163	2799	2582	2221	1822	0941
	0,05	1348	2468	2892	3206	3357	3528	3490	3152	2790	2574	2214	1816	0938
	0,60	1597	2765	3173	3469	3612	3754	3678	3302	2915	2687	2308	1891	0976
	0,30	1513	2678	3092	3394	3543	3689	3624	3259	2879	2654	2281	1870	0965
0,20	0,20	1485	2650	3065	3368	3520	3667	3606	3245	2867	2644	2272	1862	0961
	0,10	1457	2621	3038	3343	3497	3646	3588	3230	2855	2633	2263	1855	0958
	0,05	1443	2606	3025	3331	3485	3635	3579	3223	2849	2627	2258	1852	0956
	0,60	1638	2813	3219	3512	3648	3790	3708	3327	2935	2705	2323	1903	0982
	0,30	1584	2763	3172	3438	3607	3753	3677	3302	2914	2686	2307	1891	0975
0,15	0,20	1566	2747	3156	3453	3593	3740	3667	3293	2907	2680	. 2302	1887	0973
	0,10	1548	2730	3141	3439	3579	3728	3656	3285	2901	2674	2297	1883	0971
	0,05	1539	2722	3133	3432	3572	3721	3651	3281	2897	2671	2294	1880	0970

Für Zwischenwerte von n können die Werte k geradlinig eingeschaltet werden.

Funktionswerte.

 $\omega_R = \xi \, \xi' = \xi - \xi^2 = \xi' - \xi'^2,$ $\omega_D = \xi - \xi^3 = \xi (1 - \xi^2) = \xi' (2 - 3\xi' + \xi'^2) = 3 \omega_R - \omega'_D = \omega_R (1 + \xi) = \omega_R (2 - \xi'),$
$$\begin{split} \omega_D &= \xi \circ \xi = \xi (1 - \xi) = \xi (2 - 3\xi + \xi) = 3 \omega_R - \omega_D = \omega_R (1 + \xi) = \omega_R (2 - \xi), \\ \omega'_D &= \xi' - \xi'^3 = \xi' (1 - \xi'^2) = \xi (2 - 3\xi + \xi^2) = 3 \omega_R - \omega_D = \omega_R (1 + \xi') = \omega_R (2 - \xi), \\ \omega''_D &= \omega_D - \omega'_D = -\xi (1 - 3\xi + 2\xi^2) = 2 \omega_D - 3 \omega_R = 3 \omega_R - 2 \omega'_D, \\ \omega_M &= 3\xi^2 - 1 = 2 - 6\xi' + 3\xi'^2 = \omega'_M - 3(2\xi' - 1) = 1 - 6 \omega_R - \omega'_M, \\ \omega'_M &= 3\xi'^2 - 1 = 2 - 6\xi + 3\xi^2 = \omega_M - 3(2\xi - 1) = 1 - 6 \omega_R - \omega_M, \end{split}$$
 $\omega_{\varphi} = \xi^{2} - \frac{1}{2} \xi^{4} = \frac{1}{2} [1 - \xi'^{2} (2 - \xi')^{2}] = 2 \int_{0}^{5} \omega_{D} d\xi,$ $\omega_{\varphi}' = \xi'^{2} - \frac{1}{2}\xi'^{4} = \frac{1}{2}[1 - \xi^{2}(2 - \xi)^{2}] = 2\int_{0}^{\xi'} \omega_{D}' d\xi',$
$$\begin{split} \omega_P &= \xi - \xi^4 = 3 \, \xi' - 6 \, \xi'^2 + 4 \, \xi'^3 - \xi'^4, \\ \omega'_P &= \xi' - \xi'^4 = 3 \, \xi - 6 \, \xi^2 + 4 \, \xi^3 - \xi^4, \end{split}$$

$$egin{aligned} &\omega_{P}^{*}=\xi-2\,\xi^{3}+\xi^{4}=\omega_{R}\,(1+\omega_{R})\,, \ &\omega_{\tau}=\omega_{R}\,\xi=\xi^{2}\,\xi^{\prime}=\xi^{2}-\xi^{3}\,, \end{aligned}$$

$$\omega_r' = \omega_R \, \xi' = \xi \, \xi'^2 = \xi'^2 - \xi'^3 = \xi - 2 \, \xi^2 + \xi^3.$$

Ableitung der Differentialgleichung aus den Schnittkräften.

Die Funktionen ω_R und ω''_P sind symmetrisch zur Mitte, die Funktion ω''_D ist antimetrisch; ω_D und ω'_D , ω_M und ω'_M , ω_{φ} und ω'_{φ} , ω_P und ω'_P , ω_r und ω'_r sind einander spiegelbildlich gleich. Die Funktionswerte sind in den Tabellen 22, 23, S. 116, 117 und 121 enthalten.

Ę	0	I	2	3	4	5	6	.7	8	9		
0,0	0,0000	0,0001	0,0004	0,0009	0,0015	0,0024	0,0034	0,0046	0,0059	0,0074	0,0090	0,9
I	0090	0108	0127	0147	0169	0191	0215	0240	0266	0292	0320	8
2	0320	0348	0378	0407	0438	0469	0500	0532	0564	0597	0630	7
3	0630	0663	0696	0730	0763	0796	0829	0862	0895	0928	0960	6
4	0960	0992	1023	1054	1084	III4	1143	1171	1198	1225	1250	5
5	1250	1274	1298	1320	1341	1361	1380	1397	1413	1427	1440	4
6	1440	1451	1461	1469	1475	1479	1481	1481	1480	1476	1470	3
7	1470	1462	1451	1439	1424	1406	1386	1363	1338	1311	1280	2
8	1280	1247	1210	1171	1129	1084	1035	0984	0929	0871	0810	I
0,9	0,0810	0,0745	0,0677	0,0605	0,0530	0,0451	0,0369	0,0282	0,0192	0,0098	0,0000	0,0
		9	8	7	6	5	4	3	2	I	0	Ę

Tabelle	23.	Funi	ktions	werte	ω_{τ}	und	ω'_{τ} .
			100				

38

976 965

)61

958

956

982

975

973

71

970

20. Die Biegelinie des geraden Stabes.

Der Verschiebungszustand eines Stabes, dessen Querschnittsabmessungen gegenüber der Stablänge klein sind und dessen Oberfläche durch parallele Erzeugende gebildet wird, ist durch die elastische Bewegung der Querschnitte, also nach (42) durch deren Komponenten u_0, v_0, w_0 und ψ_x, ψ_y, ψ_z bestimmt. Sie beschreiben die elastische Linie des Stabes durch die Ausbiegung, die Krümmung und Windung der Achse.

Beziehung zwischen Kraftebene und Biegungsebene. Die Verdrillung ψ_x der Stabachse wird meist durch die Form des Querschnitts und durch die Eintragung der äußeren Kräfte vermieden. Die Spur s der Kraftebene verläuft dann durch den Querpunkt des Stabquerschnitts, der in der Regel mit dem Schwerpunkt zusammenfällt, und schließt im allgemeinen mit der Hauptträgheitsachse z des Querschnitts einen Winkel (z, s) ein. Zwei benachbarte Querschnitte neigen sich relativ zueinander um eine die Stabachse winkelrecht kreuzende Achse. Sie ist die Nullinie nder Normalspannungen σ_x und damit der zu s zugeordnete Durchmesser der Trägheitsellipse, welcher mit der positiven Richtung der Hauptträgheitsachse z den Winkel (z, n) bildet.

$$\operatorname{tg}(\widehat{z,s}) \cdot \operatorname{tg}(\widehat{z,n}) = -\frac{J_s}{J_y}.$$
(192)

 J_{ν} und J_{z} sind die Hauptträgheitsmomente des Querschnitts. Die Biegungsebene mit der elastischen Linie steht senkrecht zur Nullinie.

In der Regel fällt die Spur s der Kraftebene mit einer Hauptträgheitsachse zusammen $(z, s = 0 \text{ oder } 180^{\circ})$. Dann ist die Kraftebene gleichzeitig Ebene der Biegung.

Ableitung der Differentialgleichung aus den Schnittkräften. Die Annahme einer eben en Verschiebung der Querschnitte schließt die Mitwirkung der Schubspannungen bei der Formänderung des Stabes aus. Die technische Theorie der Balkenbiegung ist daher nur brauchbar, wenn die Schubspannungen gegenüber den Normalspannungen so klein sind, daß die Annahme einer mittleren Gleitung $\gamma_{xy,0}$ und $\gamma_{xz,0}$ für alle infinitesimalen Prismen des Stabteils ds genügt.

Die beiden Querschnitte, welche einen infinitesimalen Stabteil ds begrenzen, sind beim geraden Stabe parallel, beim gekrümmten Stabe im Winkel $d\alpha$ geneigt. Decken sich die Spur s der Kraftebene und die Hauptträgheitsachse z, also auci.

Die Biegelinie des geraden Stabes.

Kraftebene und Ebene der Biegung, so ist die relative Verschiebung ε (z) ds zweier Punkte der beiden Querschnitte nach S. 28 durch die gegenseitige Verschiebung der benachbarten Schwerpunkte $\varepsilon_0 ds$ und die gegenseitige Neigung $d\psi_y$ bestimmt. Sie wird durch die inneren Kräfte σdF und eine Temperaturänderung hervorgerufen, die linear angenommen und durch die Änderung t im Schwerpunkt und den Temperaturabfall Δt zwischen den Randpunkten i und a beschrieben wird. $\Delta t = t_i - t_a$.

$$\varepsilon(z) \, ds = \left(\dot{\varepsilon}_0 + \frac{d\psi_v}{ds}z\right) ds + \left(\alpha_t t + \frac{\alpha_t \, \varDelta t}{h}z\right) ds \,. \tag{193}$$

Die Ausdrücke $d\psi_y/ds$ und $\alpha_t \Delta t/h$ sind die Anteile der Krümmung der elastischen Linie infolge der Normalspannungen σ_x und der Temperaturänderung Δt . Sie ist durch die Definition des positiv drehenden Biegungsmomentes M_y in bezug auf die Lage des Koordinatensystems Abb. 109 negativ. Wird mit φ der Winkel bezeichnet, welchen die Tangente an die Biegelinie mit der x-Achse einschließt, so bedeutet ein positives Biegungsmoment eine Abnahme von φ beim Fortschreiten in der

x-Richtung. Der Kontingenzwinkel $d\varphi$ ist daher negativ und mit Verwendung von (51)

$$\frac{d\varphi_{y}}{ds} = \left| -\frac{1}{\varrho} = -\frac{d\varphi}{ds} = \frac{M_{y}}{E J_{y}} + \frac{\alpha_{i} \, \Delta t}{h} \right|. \tag{194}$$

Für ds darf bei kleinen Ausbiegungen an Stelle des Bogenelements ds die Strecke dx gesetzt werden. Mit derselben Begründung wird in dem Ausdruck der Krümmung als Funktion von w die erste Ableitung vernachlässigt.

$$-\frac{1}{\varrho} \approx -\frac{d^2 w}{d x^2} = \frac{M_y}{E J_y} + \frac{\alpha_t \, \varDelta t}{h} \,. \tag{195}$$

Obwohl die Voraussetzungen des Ansatzes nur bei Stäben mit konstantem Querschnitt zutreffen, wird die Gleichung der Biegelinie nach (195) auch bei Stäben mit veränderlichem Querschnitt angewendet, um eine einfache und für technische Bedürfnisse brauchbare Lösung zu erhalten. Nach Einführung eines Vergleichsträgheitsmomentes J_e ist

$$-E J_{c} \frac{d^{2}w}{dx^{2}} = \frac{J_{c}}{J_{y}} M_{y} + E J_{c} \frac{\alpha_{t} \Delta t}{h}.$$
(196)

Da die Schubspannungen τ_{xz} bei einer ebenen Verschiebung des Querschnitts im Vergleich zu den Normalspannungen σ_x nurklein sein können, genügt die Abschätzung ihres Einflusses auf die Ausbiegung w durch eine mittlere Winkeländerung $\gamma_{xz,0}$. Die relative Verschiebung zweier benachbarter Querschnitte ist dann $dw = \gamma_{xz,0} dx$, so daß nach Abb. 110

$$\frac{d^2w}{dx^2} = \frac{d\gamma_{xz,0}}{dx} = \frac{d}{dx} \left(\frac{\varkappa Q_z}{GF}\right)$$

Beide Anteile können als lineare Differentialbeziehungen addiert werden:

$$-\frac{d\varphi}{dx} = -\frac{d^2w}{dx^2} = \frac{M_y}{EJ_y} + \frac{\alpha_t \,\Delta t}{h} - \frac{d}{dx} \left(\frac{\varkappa Q_z}{GF}\right) = w \,. \tag{197}$$

In der Regel wird auf den aus den Schubspannungen herrührenden relativ kleinen Anteil der Ausbiegung w verzichtet.

122

IBLIOTHER

Integration der Differentialgleichung.

Integration der Differentialgleichung. Die Differentialgleichung ist eine Beziehung zwischen Verschiebungszustand und Schnittkräften. Sie wird durch zweimalige Integration gelöst, wenn Biegungsmoment M und Querkraft Q als Funktionen von x bekannt sind. Die Integrationskonstanten C_1, C_2 ergeben sich aus den Bedingungen für w und φ an den Stützpunkten oder Anschlußquerschnitten.

$$-\varphi = -\frac{dw}{dx} = \int \frac{M}{E f} dx - \frac{\varkappa Q}{G F} + \int \frac{\alpha_t \Delta t}{h} dx + C_1, \qquad (198)$$

123

$$-w = \int dx \int \frac{M}{EJ} dx - \int \frac{\varkappa Q}{GF} dx + \int dx \int \frac{\alpha_{\star} \Delta t}{h} dx + C_1 x + C_2.$$
(199)

Die Aufteilung einer beliebigen Belastung nach $(P_1 \ldots P_m \ldots)$ führt zur Superposition $(M_1 \ldots M_m \ldots)$ und $(Q_1 \ldots Q_m \ldots)$, so daß der Verdrehungswinkel φ und die Ausbiegung w aus einzelnen Anteilen durch Superposition nach

 $\varphi = \varphi_1 P_1 + \varphi_2 P_2 + \cdots + \varphi_m P_m + \cdots$, $w = w_1 P_1 + w_2 P_2 + \cdots + w_m P_m + \cdots$ entwickelt werden können.

Bei konstanter Querschnittsfläche treten die Steifigkeitsziffern EJ und GF vor das Integrationszeichen. Dann sind die Anteile des Verdrehungswinkels φ_0 und der Ausbiegung w_0 aus Querkraft und Temperaturveränderung in (198), (199)

$$\varphi_0 = \frac{\varkappa Q}{GF} - \frac{\alpha_t \, \Delta t}{h} \, x \,, \qquad \psi_0 = \frac{\varkappa M}{GF} - \frac{\alpha_t \, \Delta t}{h} \, \frac{x^2}{2} \,. \tag{200}$$

Sie werden mit Rücksicht auf die Fehlerquellen des Ansatzes oft auch bei veränderlichem Querschnitt verwendet. Die Schubverteilungszahl \varkappa ist durch die Form des Querschnitts bestimmt, für die Fläche F wird ein mittlerer Betrag verwendet.

Die Formänderung des geraden Stabes mit gleichförmig verteilter Belastung. Statisch bestimmte Stützung. $J = J_e$ Ansatz: EJw'' = -M(x)

$$\begin{split} & \sum_{\substack{x = 1 \\ w = 0, w' = 0}}^{n} & \sum_{\substack{x = 0 \\ w = 0, w' = 0}}^{n} & \sum_{\substack{x = 0 \\ w = 0, w' = 0}}^{n} & \sum_{\substack{x = l/2 \\ w = 0 \\ inf. \text{ Symmetrie}}}^{n} & x = l \\ \text{Randbedingungen der Formänderungen.} & \text{Abb. 111.} \\ & M = -\frac{p x^2}{2}, & M = \frac{p x (l-x)}{2}, \\ -E J w'' = -\frac{p l^2}{2} \xi^2, & -E J w'' = \frac{p l^2}{2} \xi (1-\xi), \\ & w = \frac{p l^4}{24 E J} (3-4\xi+\xi^4), & w = \frac{p l^4}{24 E J} (\xi-2\xi^3+\xi^4). \\ & w' = \varphi = -\frac{p l^3}{2 E E^3} (1-\xi^3), & w' = \varphi = \frac{p l^3}{24 E J} (1-6\xi^2+4\xi^3) \end{split}$$

Rechnerische und zeichnerische Entwicklung der Biegelinie. Der Kontingenzwinkel der Biegelinie ist nach S. $122 - d\varphi = w dx = + d\psi$, so daß die Differentialgleichung (197) in der folgenden Weise gelöst werden kann:

 $\frac{d^2w}{dx^2} = -w = -\frac{d\psi}{dx}; \quad \frac{dw}{dx} = \varphi = -\psi + C_1; \quad w = -\int \psi \, dx + C_1 x + C_2.$ (201a)

An einer beliebigen Stelle $x = x_k$ der Biegelinie ist

$$w = w_k$$
, $\psi = \int_{x_a}^{x_k} w \, dx = \psi_k$, $\varphi_k = -\psi_k + C_1$, (201b)

BLIOTHEK

Die Biegelinie des geraden Stabes.

am Randpunkt $x = x_a$ (Abb. 112) ist $w = w_a$, $\varphi = \varphi_a$, $\psi = \psi_a = 0$. Daher wird

$$C_1 = \varphi_a$$
, $C_2 = w_a - x_a \varphi_a$, $w_k = w_a + \varphi_a (x_k - x_a) - \int_{x_a}^{x_a} \psi \, dx$.

Die partielle Integration der Lösung liefert

$$w_{k} = w_{a} + \varphi_{a}(x_{k} - x_{a}) - x_{k} \int_{x_{a}}^{x_{a}} d\psi + \int_{x_{a}}^{x} x \, d\psi$$

= $w_{a} + \varphi_{a}(x_{k} - x_{a}) - \int_{x_{a}}^{x_{k}} (x_{k} - x) \, d\psi$. (201 c)

Wird $k \to b$ und $(w_b - w_a)$ Null oder zunächst Null gesetzt, so ist mit $d\psi = \operatorname{tv} dx$ und $x_b - x_a = l$

$$\varphi_{a} = \varphi_{a,0} = \frac{1}{l} \int_{x_{a}}^{x_{b}} (x_{b} - x) w \, dx = A_{w}, \quad \varphi_{k} = \varphi_{k,0} = A_{w} - \int_{x_{a}}^{x_{k}} w \, dx = Q_{w,k},$$

$$w_{k} - w_{a} = w_{k,0} = A_{w} (x_{k} - x_{a}) - \int_{x_{a}}^{x_{k}} (x_{k} - x) w \, dx = M_{w,k}.$$
(202)

Erhält demnach der Ausdruck w(x) die Bedeutung einer ideellen, von den elastischen Eigenschaften des Stabes abhängigen Streckenlast, so kann für $w_b - w_a = 0$ die

ADERBORN

Verdrehung φ_a des Endquerschnitts a des Stabes als Stützkraft A_w eines Trägers l auf frei drehbaren Stützen, die Verdrehung φ_k eines Querschnitts k als dessen Querkraft Q_w, k , die Ausbiegung w_k eines Punktes kder Achse als Biegungsmoment M_w, k des Stabes infolge der ideellen Belastung w(x) berechnet werden. Hierfür stehen die zeichnerischen oder rechnerischen Methoden des Abschn. 13 zur Verfügung.

Diese Rechenvorschrift ergibt sich auch unmittelbar durch Vergleich der Differentialgleichung der Biegelinie mit derjenigen für das Biegungsmoment M eines Stabes als Funktion der Streckenlast p(x) (48).

$$\frac{d^2w}{dx^2} = -w(x), \qquad \frac{d^2M}{dx^2} = -p(x).$$
 (203)

Aus (201) wird mit dem Ausdruck w(x) nach (197)

$$E J_{c} \varphi_{k} = E J_{c} \varphi_{a} - \int_{x_{a}}^{x_{k}} M \frac{J_{e}}{J} dx + \varkappa \frac{E J_{c}}{G F_{c}} \left(Q_{k} \frac{F_{e}}{F_{k}} - Q_{a} \frac{F_{e}}{F_{a}} \right) - E J_{c} \int_{x_{a}}^{x_{k}} \frac{\alpha_{t} \Delta t}{h} dx, \quad (204a)$$

$$E J_{c} w_{k} = E J_{c} w_{a} + E J_{c} \varphi_{a} (x_{k} - x_{a}) - \int_{x_{a}}^{x_{k}} (x_{k} - x) M \frac{J_{e}}{J} dx + \frac{E J_{e}}{G F_{e}} \int_{x_{a}}^{x_{k}} \varkappa Q \frac{F_{c}}{F} dx$$

$$\cdot \qquad - E J_{c} \int_{x_{a}}^{x_{k}} (x_{k} - x) \frac{\alpha_{t} \Delta t}{h} dx. \quad (204b)$$

Werden die Verdrehung und die Verschiebung der Querschnitte k bei $w_b = w_a = 0$ mit $\varphi_{k,0}, w_{k,0}$ bezeichnet (Abb. 112), so ist mit

$$l = x_b - x_a, \quad \xi = \frac{x_k - x_a}{l}, \quad \xi' = \frac{l - (x_k - x_a)}{l}, \varphi_k = \frac{w_b - w_a}{l} + \varphi_{k,0}, \quad w_k = w_b \,\xi + w_a \,\xi' + w_{k,0}.$$
(205)

Rechnerische und zeichnerische Entwicklung der Biegelinie.

Um diese einfache Rechnung auch bei Stäben mit anderen Randbedingungen beizubehalten, werden die Verschiebungen der Endquerschnitte zunächst Null gesetzt und die auf die Sehne der Biegelinie bezogenen relativen Verschiebungen und Verdrehungen $w_{k,0}$, und $\varphi_{k,0}$ bestimmt. Der wirkliche Verschiebungszustand mit den absoluten Verschiebungen und Winkeländerungen ergibt sich durch die nachträgliche Erfüllung der Stützenbedingungen.

Die Biegelinie kann demnach zeichnerisch ebenso wie die Linie der Biegungsmomente nach (93) aus der gedachten Belastung $EJ_e \cdot \mathfrak{w}(x)$ oder der zu ihr äquivalenten Gruppe von Einzelkräften $EJ_e \cdot \mathfrak{W}_m$ mit Kraft- und Seileck entwickelt werden. Die Polweite ist in beiden Ansätzen (93) und (203) gleich der Einheit mit der Dimension $\mathfrak{m} \cdot \mathfrak{t}/\mathfrak{m}$ und $\mathfrak{m} \cdot \mathfrak{m}$ t. Die Ordinate des Seilecks wird in beiden Fällen im Maßstab der Zeichnung gemessen und liefert mit H = 1 t oder mit $H_{\mathfrak{w}} = 1$ tm² multipliziert das Moment in mt oder die Durchbiegung $EJ_e w$ in tm³. Die Wahl einer Polweite H in t oder $H_{\mathfrak{w}}$ in tm² ändert nur den Maßstab. Die Polweite $H_{\mathfrak{w}} = EJ_e$ ergibt mit der Belastung $EJ_e \mathfrak{w}(x)$ als Ordinate der Seilkurve $\eta = \frac{EJ_e w}{EJ_e} = w$ im

Maßstab der Zeichnung. Die Polweite EJ_c/n liefert dann als Ordinate der Seilkurve

 $EJ_cw:(EJ_c/n)$. Dies ist bei dem Zeichnungsmaßstab 1:n die wirkliche Größe der Ausbiegung w. Um demnach eine Biegelinie als Seilkurve zu entwickeln, deren Abszissen im Maßstab 1:n aufgetragen sind und deren Ordinaten w_k natürliche Größe erhalten sollen, wird zu den ideellen Kräften (elastischen Gewichten) $EJ_c\mathfrak{W}_m$ ein Richtungsbüschel mit einer Polweite EJ_c/n gezeichnet. Die Bezugsachse für die absoluten Verschiebungen ist durch die Bewegung der Stützpunkte bestimmt.

Diese zeichnerische Darstellung kann auch unmittelbar eingesehen werden, wenn w(x) dx nach (197) als der Kontingenzwinkel zweier um dx benachbarter Tangenten der Biegelinie verwendet wird. Sie ergeben ein Richtungsbüschel, das die erwähnten ideellen Gewichte w(x) dx als Strecken auf einer Parallelen zur Ausbiegungsrichtung im Abstand 1 vom Pol abschneidet.

Die EJ_c fachen Verdrehungen und Verschiebungen werden in der Regel nur für den Anteil der Biegungsmomente angegeben. Daher wird zunächst die der vorgelegten Belastung zugeordnete Funktion des reduzierten Moments $EJ_c w(x) = MJ_c/J$ punktweise gebildet, und durch eine Gruppe von äquivalenten Einzelkräften $\dots EJ_c \mathfrak{B}_{m-1}, EJ_c \mathfrak{B}_m \dots$ ersetzt, die in den Intervallgrenzen $\dots (m-1), m \dots$ einer Unterteilung des Integrationsbereiches a, b wirken. Die Angleichung der Funktion w(x) durch einen Geradenzug liefert ebenso wie in (91)

$$\mathfrak{B}_{m} = \frac{c_{m}}{6} \left(\mathfrak{w}_{m-1} + 2 \,\mathfrak{w}_{m} \right) + \frac{c_{m+1}}{6} \left(2 \,\mathfrak{w}_{m} + \mathfrak{w}_{m+1} \right) = \mathfrak{B}_{m,1} + \mathfrak{B}_{m,2},$$

$$\mathfrak{B}_{0} = \frac{c_{1}}{6} \left(2 \,\mathfrak{w}_{0} + \mathfrak{w}_{1} \right); \qquad \mathfrak{B}_{n} = \frac{c_{n}}{6} \left(\mathfrak{w}_{n-1} + 2 \,\mathfrak{w}_{n} \right).$$
(206)

Bei gleichgroßen Intervallen $c_m = c_{m+1} = c$ ist

$$\frac{1}{2}\mathfrak{W}_m = \mathfrak{W}_{m-1} + 4\mathfrak{W}_m + \mathfrak{W}_{m+1}.$$

Die Angleichung der Funktion als Parabelabschnitt durch 3 aufeinanderfolgende Punkte führt nach (92) bei gleichgroßen Intervallen c zur Verwendung von

$$\frac{\frac{12\,\mathfrak{W}_{m}}{c} = \mathfrak{w}_{m-1} + 10\,\mathfrak{w}_{m} + \mathfrak{w}_{m+1}, \\ \frac{12\,\mathfrak{W}_{0}}{c} = \frac{1}{2}\,(7\,\mathfrak{w}_{0} + 6\,\mathfrak{w}_{1} - \mathfrak{w}_{2}), \qquad \frac{12\,\mathfrak{W}_{n}}{c} = \frac{1}{2}\,(7\,\mathfrak{w}_{n} + 6\,\mathfrak{w}_{n-1} - \mathfrak{w}_{n-2}).$$

$$(207)$$

Die Biegelinie des geraden Stabes.

Damit ist die Grundlage gefunden, um die Form der Biegelinie mit $w_a = 0$, $w_b = 0$ durch Rechnung oder Zeichnung zu bestimmen. Die Strecke ab wird als einfacher Träger angesehen, an dem eine Gruppe von positiven oder negativen Kräften $\mathfrak{B}_0,\ldots,\mathfrak{B}_m,\ldots,\mathfrak{B}_n$ angreift. Die Rechnung liefert nach (202)

$$A_{\mathfrak{w}} = \varphi_{a,0}, \qquad B_{\mathfrak{w}} = \varphi_{b,0}, \qquad Q_{\mathfrak{w},k} = \varphi_{k,0}, \qquad M_{\mathfrak{w},k} = w_{k,0}.$$

Der wirkliche Verschiebungszustand φ_a , φ_b , w_k entsteht durch Berücksichtigung der Stützenbedingungen nach (205).

Untersuchung der Formänderung eines Auslegeträgers.

Abb. 114.

1. Zeichnerische Entwicklung der Biegelinie für eine vorgeschriebene Belastung (Abb. 114a):

Querschnittsgestaltung: J_c/J (Abb. 114b), $J_c = J_a = 0.806 \text{ m}^4$. Angabe der Momente: graphisch oder rechnerisch nach Abschn. 13. Reduzierte Ordinaten des Seilecks: $\eta' = \eta \cdot J_c/J$ (Abb. 114d). Reduzierte Momente: $M' = M \cdot J_c/J = \eta' \cdot H = \mathfrak{w}_m$.

Berechnung der EJ_c fachen elastischen Gewichte aus der ideellen Belastung M' nach (206):

$$\mathfrak{B}_{0} = \frac{c_{1}}{6} \left(2 \mathfrak{w}_{0} + \mathfrak{w}_{1} \right), \qquad \mathfrak{B}_{n} = \frac{c_{n}}{6} \left(\mathfrak{w}_{n-1} + 2 \mathfrak{w}_{n} \right),$$
$$\mathfrak{B}_{m} = \frac{c_{m}}{6} \left(\mathfrak{w}_{m-1} + 4 \mathfrak{w}_{m} + \mathfrak{w}_{m+1} \right).$$

Abbildung der elastischen Gewichte mit Hilfe der Werte $\sum_{0}^{\infty} \mathfrak{B}_{k}$ in einem Richtungsbüschel mit der Polweite Hm.

126

BIBLIOTHEK PADERBORN

Zahlenbeispiel.

	-											
992	c _m	M _m	$\frac{J_o}{J_m}$	$\mathfrak{w}_m = M_m J_c / J_m$	\mathfrak{W}_{m-1} + 2 \mathfrak{W}_m	c_m/6	$2 \mathfrak{W}_m$ $+\mathfrak{W}_{m+1}$	c _{m+1} /6	10 m, 1	B:m, 2	2B	$\sum_{k=1}^{m} \mathfrak{W}_{k}$
-					w	m-1 + ·	$4 m_m +$	\mathfrak{w}_{m+1}		$c_m/6$	and a	0
0	-	0,0	1,000	0,0	-	-	33,9	0,333	-	11,3	11,3	11,3
I	2,00	35,9	0,945	33,9			198,5		1	0,333	66,2	77.5
2	2,00	71,8	0,876	62,9	100		374.2			0,333	124.7	202,2
3	2,00	107,6	0,824	88,7			526,9			0,333	175,6	377,8
4	2,00	143,5	0,761	109,2			648,7			0,333	216,2	594,0
5	2,00	179,4	0,687	123,2			733,8			0,333	244,6	838,6
6	2,00	215,3	0,612	131,8	783,2					0,333	261,0	1099,6
7	2,00	251,1	0,529	132,8			774,6			0,333	258,2	1357,8
8	2,00	287,0	0,389	111,6	1.000		669,3			0,333	223,I	1580,9
9	2,00	322,9	0,279	90,I			541,2			0,333	180,4	1761,3
IO	2,00	358,8	0,193	69,2	7.0		419,0		1.1	0,333	139,7	1901,0
II	2,00	394.7	0,132	52,I	1		314,2			0,333	104,7	2005,7
12	2,00	430,5	0,085	36,6	125,3	0,333	110,7	0,208	41,8	23,1	64,9	2070,6
12a	1,25	364,5	0,103	37,5			224,5			0,208	46,8	2117,4
13	1,25	300,8	0,126	37,9	113,3	0,208	113,1	0,250	23,6	28,3	51,9	2169,3
14	1.50	229,0	0,163	37.3		1	221,8			0,250	55,5	2224,8
14a	1,50	166,9	0,208	34.7			205,4			0,250	51,4	2276,2
15a	1.50	106,6	0,275	29,3	170,3				0,250	42,6	2318,8	
16a	1,50	52,5	0,351	18,4	102,9				0,250	25,7	2344,5	
-	-		-		-0.	1	1	1	1 0			

17 | 1,50 | 0,0 | 0,463 | 0,0 | 18,4 | 0,250 | - | - | 4,6 | - | 4,6 | 2349,1 Mit $H_{\mathfrak{W}} = E J_{e'}(n \cdot m)$ ergeben nach S. 125 die Ordinaten $\eta_{\mathfrak{W}}$ des Seileckes unmittelbar die m fach verzerrten Durchbiegungen w (Abb. 114 e).

$n = 100;$ $m = 10;$ $H_{10} = 1692,6 \text{ tm}^2;$ Durchbiegungen $w = \eta_{10}/10$ in mm:	E = 2100000	t/m^2 ;	$E J_e = 1692600 \mathrm{tm}^2;$
Durchbiegungen $w = \eta_{10}/10$ in mm:	n = 100;	m = 10;	$H_{10} = 1692,6 \text{ tm}^2;$
	Durchbiegungen	$w=\eta_{\rm 10}/10$	in mm:

 m
 o
 I
 2
 3
 4
 5
 6
 7
 8
 9
 10
 II
 I2
 I2a
 I3a
 I4
 I4a
 I5a
 I6a
 I7

 w
 0.0
 -1.2
 -2.2
 -3.2
 -3.9
 -4.3
 -4.5
 -4.4
 -3.9
 -3.2
 -2.3
 -1.2
 0.0
 0.8
 I.6
 2.7
 3.8
 4.9
 6.1
 7.3

2. Einflußlinie der EJ_c fachen Durchbiegung δ_m des Querschnittes d. Biegelinie des Trägers unter der Last 1 t in d nach (168). Ermittlung der \mathfrak{B} -Gewichte wie unter 1. Berechnung von $A_{\mathfrak{W}}$, $D_{\mathfrak{W}}$, $\delta_{\mathfrak{m},1}$ unabhängig von der vorgeschriebenen Stützung des Trägers als Auflagerkräfte und Durchbiegungen eines Balkens auf den Stützen a und d. Nachträgliche Einführung der Stützenbedingung $\delta_b = 0$ durch Drehen der Achse um a:

δ.	$\delta = \delta_b,$ $\delta = \delta_m$	1 + 6	$\delta_{b,2} = \delta_{b,1} \cdot \delta_{m,2}$	$+\vartheta \cdot l_1 =$	ε0; ϑ : ξ :	$= - \delta_{b,1}/l_1$ $= x/l_1;$; 0	$\zeta = -x/\zeta$	$\begin{array}{l} \mathcal{P} \cdot x = -\\ l_1 + l_2 \end{array};$	0,1.5;
m	ζ.,	Ę m	- M m	Je/Jm	$-\mathfrak{w}_m = -M_m J_c/J_m$	— 193 m	ζ	5'	$-\mathfrak{W}_m\zeta_m$	- 233 m ζ;
0 1 2	0,0 1/17 2/17	0,0 1/1: 2/1:	0,00000 2 0,83333 2 1,66667	1,0000 0,9449 0,8761	0,00000 0,78741 1,46017	(0,26247) 1,53660 2,89611	0,00000 0,05882 0,11765	1,00000 0,94118 0,88235	0,09038 0,34073	1,44622 2,55538
m	$-Q_{n}$	v m	$-Q_{10} m c_m$	$-\delta_{m,1}$ $-M_{wn}$	$= \begin{vmatrix} -\delta_{m,2} \\ +\delta_{b,1} \cdot \xi \end{vmatrix}$	$-\delta_m$	D _{10,1}	$-\mathfrak{B}_{17} =$ - 23,734	$\frac{\sum_{0}^{16}\mathfrak{B}_m \zeta_m}{\sum_{0}} \zeta_m$	•
0 1 2	0,00 31,17 29,63	000 220 560	0,00000 62,34440 59,27120	0,000 62,344 121,615	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0,0000 5 45,1829 87,2925	A _{10,1}	$-\mathfrak{W}_{0} =$ - 31,172	$\sum_{1}^{17}\mathfrak{W}_{m}\zeta'_{m}$	
			$-\delta_l$, 1 = 205	$,9384 \text{ tm}^3$,		δ_m : Abb.	114 f.		

Die Biegelinie des geraden Stabes.

3. Einflußlinie der EJ_e fachen Verdrehung τ_m des Querschnittes d. Biegelinie des Trägers unter dem Angriff des Momentes $M_d = 1,0$ mt. Ermittlung der Gewichte wie unter 1. Die Verdrehungen φ_a , φ_b der Querschnitte a und b werden im Gegensatz zu 2. unter gleichzeitiger Berücksichtigung der Stützenbedingungen berechnet.

$$A_{\mathfrak{w}} - \mathfrak{W}_{0} = \sum_{1}^{12} \mathfrak{W}_{m} \xi_{m} = -2,25914 \text{ tm}^{3}. \qquad \qquad \mathcal{Q}_{\mathfrak{w},12} = \sum_{0}^{12} \mathfrak{W}_{m} \xi_{m}' = -2,37209 \text{ tm}^{3};$$

m	ξ_m	$-M_m$	J_c/J_m	$-\mathfrak{w}_m$	$-\mathfrak{W}_m$	ξ _m	ξ'_m	$-\mathfrak{B}_m\xi_m$	$-\mathfrak{B}_m \mathfrak{E}'_m$	$-Q_{\mathfrak{w},m}$	$-Q_{\mathfrak{w},m}c_m$	$-\delta_m$
0 I 2	0 1/12 2/12	0,00000 0,08333 0,16667	1,0000 0,9449 0,8761	0,00000 0,07874 0,14602	(0,02625) 0,15366 0,28961	0,00000 0,08333 0,16667	1,00000 0,91667 0,83333	 0,01280 0,04827	 0,14086 0,24134	0,00000 2,25914 2,10548	0,00000 4,51829 4,21097	0,0000 4,5183 8,7293
						•				•	•	1
	•		•	•	•			· ·	•	•	•	•

$$E J_{e}$$
 fache Verdrehung $\tau_{m} = \frac{\partial_{m}(100^{\circ})}{1,0 \text{ (m)}}$: Abb. 114g.

Ableitung der Biegelinie aus der Belastung. Die Biegelinie des geraden Stabes ist bisher aus den Schnittkräften M, Q entwickelt worden, die oft jedoch selbst nicht bekannt sind, sondern nur als Differentialbeziehung verwendet werden können.

$$\frac{dM}{dx} = Q, \qquad \frac{d^2M}{dx^2} = \frac{dQ}{dx} = -\phi(x).$$

Mit diesen lautet dann die Gleichung (197) der Biegelinie für $\Delta t = 0$ ohne Berücksichtigung der Querkraft:

$$\frac{J}{J_{e}}\frac{d^{2}(EJ_{e}w)}{dx^{2}} = -M, \quad \frac{d}{dx}\left(\frac{J}{J_{e}}\frac{d^{2}(EJ_{e}w)}{dx^{2}}\right) = -Q, \quad \frac{d^{2}}{dx^{2}}\left(\frac{J}{J_{e}}\frac{d^{2}(EJ_{e}w)}{dx^{2}}\right) = p(x), \quad (208)$$

für
$$J = J_o = \text{const}$$
 $E J \frac{d^2 w}{dx^2} = -M$, $E J \frac{d^3 w}{dx^3} = -Q$, $E J \frac{d^4 w}{dx^4} = p(x)$. (209)

Damit ist eine Differentialbeziehung zwischen Belastungsfunktion und Ausbiegung entstanden, deren Lösung für jeden stetigen Bereich getrennt mit vier Konstanten angeschrieben wird. Diese sind durch Bedingungen für die Formänderung und für die Schnittkräfte an den Stützen, den Stabenden und an den Unstetigkeitsstellen bestimmt.

Die Formänderung des geraden Stabes mit statisch unbestimmter Stützung. a) Gleichförmige Belastung $p, J = J_c$, Ansatz $EJw^{(IV)} = p$.

b) Unstetige Belastung durch eine Einzellast P. Der Angriffspunkt C der Last P teilt den Integrationsbereich in die Abschnitte a und b mit w_1 und w_2 . Für beide ist $E \int w^{(P)} = 0$. Die 8 Integrationskonstanten werden durch die Randbedingungen in A, B und C bestimmt. w und w' sind an den Stützpunkten Null, Auslenkung w und Biegungsmoment M an der Unstetigkeits-

Lösung der Differentialgleichung mit Differenzen

stelle C stetig und die Differenz der beiden Querkräfte Q, gleich der Last P (Abb. 116).

Lösung der Differentialgleichung mit Differenzen. Da ein geschlossenes Integral der Differentialgleichung in der Regel nicht angegeben werden kann, wird in die-

sem und ähnlichen Fällen eine Näherung verwendet, um die Funktionswerte wm einer regelmäßigen Punktfolge ... (m-1), m... des Integrationsbereiches lzu berechnen. An die Stelle der stetigen Integralkurve tritt damit ein der Kurve einbeschriebenes Vieleck. Die Differentialquotienten der stetigen Funktion werden durch Differenzenquotienten ersetzt. Die Differentialgleichung wird zur Differenzengleichung, deren Randbedingungen in bezug auf Richtung und Krümmung der elastischen Linie ebenfalls durch Differenzen ausgedrückt werden.

Der Integrationsbereich l der Funktion wird durch die regelmäßige Punktfolge ... (m-1), m... in n

gleiche Strecken geteilt. Der Teilpunkt m erhält die Abszisse $m \cdot \Delta x$ und die Ordinate $\overline{m m'} = w_m$. Wird die Integralkurve im Bereich von (m - 1), m, (m + 1)angenähert durch einen Parabelabschnitt durch die Punkte (m-1)', m', (m+1)'ersetzt, so ist im Punkte m

$$\frac{dw}{dx} = \frac{w_{m+1} - w_{m-1}}{2\Delta x}, \qquad \frac{d^2w}{dx^2} = \frac{w_{m-1} - 2w_m + w_{m+1}}{\Delta x^2}.$$
(210)

Die Richtung der Kurve in m', bestimmt durch dw/dx, wird damit angenähert durch die Richtung (m-1)', (m+1)' der Sehne beschrieben. Der zweite Differentialquotient kann bei flachen Kurven aus dem Kontingenzwinkel der Kurve in m'

Beyer, Baustatik, 2 Anfl., 2 Neudruck

- δ_m

0000 5183

7293

Die Biegelinie des geraden Stabes.

abgeleitet und angenähert durch den Unterschied der Richtungen der dem Punkte mbenachbarten Schnen ausgedrückt werden. Die gleichen Beziehungen gelten auch bei einer Funktion $d^2w/dx^2 = r$ für $d^3w/dx^3 = dr/dx$ und $d^4w/dx^4 = d^2r/dx^2$, so daß zur Beschreibung der geometrischen Eigenschaften der Funktion w in der Umgebung des Punktes m folgende Übergänge vollzogen werden:

$$\frac{dw}{dx} \rightarrow \frac{w_{m+1} - w_{m-1}}{2\Delta x}, \quad \frac{d^2w}{dx^2} \rightarrow \frac{w_{m+1} - 2w_m + w_{m-1}}{\Delta x^2}, \\ \frac{d^3w}{dx^3} = \frac{dr}{dx} \rightarrow \frac{r_{m+1} - r_{m-1}}{2\Delta x} = \frac{w_{m+2} - 2w_{m+1} + 2w_{m-1} - w_{m-2}}{2\Delta x^3}, \\ \frac{d^4w}{dx^4} = \frac{d^2r}{dx^2} \rightarrow \frac{r_{m+1} - 2r_m + r_{m-1}}{\Delta x^2} = \frac{w_{m+2} - 4w_{m+1} + 6w_m - 4w_{m-1} + w_{m-2}}{\Delta x^4}$$

$$(211)$$

Damit treten mit der Bezeichnung w_m für den EJ_c fachen Betrag der Durchbiegung ($w_m \equiv EJ_c w_m$) und mit $\overline{\zeta}_m$ für den reziproken Wert der Funktion $\zeta (\overline{\zeta}_m = J_m/J_c)$ die folgenden Differenzenbeziehungen an die Stelle der Differentialbeziehungen

$$- M_{m} \Delta x^{2} = \zeta_{m} (w_{m+1} - 2 w_{m} + w_{m-1}), - 2Q_{m} \Delta x^{3} = \overline{\zeta}_{m+1} w_{m+2} - 2\overline{\zeta}_{m+1} w_{m+1} + (\overline{\zeta}_{m+1} - \overline{\zeta}_{m-1}) w_{m} + 2\overline{\zeta}_{m-1} w_{m-1} - \overline{\zeta}_{m-1} w_{m-2}, \phi_{m} (x) \Delta x^{4} = \overline{\zeta}_{m+1} w_{m+2} - 2 w_{m+1} (\overline{\zeta}_{m+1} + \overline{\zeta}_{m}) + w_{m} (\overline{\zeta}_{m+1} + 4\overline{\zeta}_{m} + \overline{\zeta}_{m-1}) - 2 w_{m-1} (\overline{\zeta}_{m} + \overline{\zeta}_{m-1}) + w_{m-2} \overline{\zeta}_{m-1}.$$

$$(212)$$

Biegungsmoment M_m und Querkraft Q_m sind daher aus den Durchbiegungen w_m einer ausgezeichneten Punktfolge m bestimmt. \dot{p}_m ist die Ordinate der Belastungsfunktion im Punkt m. An die Stelle der stetigen Funktion $\dot{p}(x)$ tritt die unstetige Belastung nach einer Stufenlinie, die durch eine in den Intervallgrenzen angreifende Gruppe von Einzellasten $(\dot{p}\Delta x^3)\Delta x$ ersetzt wird (Abb. 119).

Die Randbedingungen w = 0 und M = 0 bedürfen keiner Diskussion, dagegen wird die Integralkurve zur Einführung der Randbedingung dw/dx in der Umgebung des Punktes 0 durch eine kubische Parabel ersetzt:

$$w_{m+1} = w_m + \frac{\Delta x}{1!} \left(\frac{dw}{dx}\right)_m + \frac{\Delta x^2}{2!} \left(\frac{d^2w}{dx^2}\right)_m + \frac{\Delta x^3}{3!} \left(\frac{d^3w}{dx^3}\right)_m$$
(213)

Bei Einspannung des Trägers im Querschnitt m = 0 ist $w_m = 0$ und $dw/dx_m = 0$, daher

$$w_1 = \frac{\Delta x^2}{2} \left(\frac{d^2 w}{d x^2} \right)_0 + \frac{\Delta x^3}{6} \left(\frac{d^3 w}{d x^3} \right)_0.$$

Für die kubische Parabel gilt

$$\left(\frac{d^2w}{dx^2}\right)_0 = \frac{w_1 - 2w_0 + w_{-1}}{\Delta x^2}, \quad \left(\frac{d^3w}{dx^3}\right)_0 = \text{const} = \frac{w_2 - 3w_1 + 3w_0 - w_{-1}}{\Delta x^3}, \quad (214)$$

so daß als Bedingung für die Einspannung des Trägers im Querschnitt m = 0 die folgende Beziehung entsteht:

$$w_{-1} = 3 w_1 - \frac{1}{2} w_2 \tag{215}$$

Die Rechenvorschrift wird an dem beiderseits eingespannten, gleichförmig belasteten Träger mit $\zeta = 1$ erläutert, um die Genauigkeit der Ergebnisse zu prüfen. Dabei wird der Integrationsbereich / durch die Punktreihe 0, 1, 2, 3, 4 in 4 Strecken Δx geteilt. Infolge

Symmetrie ist $w_1 = w_3$, so daß die Differenzengleichungen nur für die Punkte 1 und 2 aufgestellt werden (Abb. 118).

$$\frac{p}{EJ} \Delta x^4 = w_{-1} - 4 w_0 + 6 w_1 - 4 w_2 + w_3,$$

$$\frac{p}{EJ} \Delta x^4 = w_0 - 4 w_1 + 6 w_2 - 4 w_3 + w_4.$$

Hierzu treten die Randbedingungen $w_0 = 0$, $w_{-1} = 3w_1 - \frac{1}{2}w_2$. Die Verschiebungen w_1 und w_2 ergeben sich daher aus den folgenden beiden Gleichungen.

mit

$$w_{1} = 0.00171 \frac{p}{E} \frac{l^{4}}{I}, \qquad -8 w_{1} + 6 w_{2} = \frac{r}{E} \frac{J}{I} dx^{4}$$
$$w_{1} = 0.00171 \frac{p}{E} \frac{l^{4}}{I}, \qquad w_{2} = 0.00293 \frac{p}{E} \frac{l^{4}}{I}.$$

Die Momente werden mit w_1 und w_2 nach (212) berechnet.

 $10 w_1 -$

Trägermitte:
$$M_2 = -\frac{E J}{\Delta x^2} (w_1 - 2 w_2 + w_3) = \frac{15}{16} \frac{p l^2}{24} \approx \frac{p l^2}{24}$$
, (216)

Auflager:
$$M_0 = -\frac{E J}{\Delta x^2} (w_{-1} - 2 w_0 + w_1) = -\frac{33}{32} \frac{p l^2}{12} \approx -\frac{p l^2}{12}.$$
 (217)

Die Näherungsrechnung führt also trotz der geringen Anzahl der Intervalle auch für die Schnittkräfte zu relativ guten Ergebnissen, da die Unterschiede zwischen den Differential- und Differenzenquotienten selbst dann noch klein sind. Die Untersuchung muß nur im Bereiche von singulären Stellen der Funktion mit einer engeren Teilung wiederholt werden.

Ritter, A.: Die elastische Linie und ihre Anwendung auf den kontinuierlichen Balken. Zürich 1883. — Mohr, O.: Abhandlungen aus dem Gebiete der Techn. Mechanik 3. Aufl. Berlin 1928. — Hencky, H.: Die numerische Bearbeitung von partiellen Differentialgleichungen in der Technik. Z. angew. Math. Mech. 1922 S. 58. — Marcus, H.: Armierter Beton 1919 S. 107; außerdem: Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. Berlin 1924. — Runge, C., u. H. König: Vorlesungen über numerisches Rechnen. Berlin 1924. — Nádai, A.: Die elastischen Platten. Berlin 1925.

21. Die Biegelinie von gekrümmten Stäben und Stabzügen.

Die ebene Verschiebung eines Querschnitts wird auch bei gekrümmten Stäben als brauchbare Annahme verwendet, wenn eine Symmetrieebene vorhanden ist, die mit der Kraftebene zusammenfällt. Sie wird dann ebenso wie beim geraden Stabe durch die bezogene Längenänderung ε_0 der Stabachse und durch die gegenseitige Verdrehung $d\psi$ zweier benachbarter Querschnitte beschrieben. Die Veränderlichkeit von ds mit z schließt hier zwar die lineare Abhängigkeit der Normalspannungen $\sigma_x(z)$ aus. Die Spannungen σ , τ und die Verzerrungskomponenten ε_0 , $d\psi$ sind aber nach (70), (71) trotzdem wieder Funktionen der Schnittkräfte N, M, Qund der Temperaturänderung $t, \Delta t = t_i - t_a$.

und der Temperaturänderung t, $\Delta t = t_i - t_a$. **Ableitung der Differentialgleichung.** Während sich die Querschnitte gerader Stäbe durch die Belastung mit großer Genauigkeit winkelrecht zur Stabachse bewegen, sind zur Beschreibung der Verschiebung der Querschnitte gekrümmter Stäbe zwei Komponenten u, w notwendig. Sie werden hier im Gegensatz zu der früheren Definition waagerecht und senkrecht angenommen, um das für die geometrische Darstellung von Stabzügen übliche Koordinatensystem (Abb. 120) beizubehalten. In diesem Fall ist

$$dy = ds \sin \alpha, \quad dx = ds \cos \alpha.$$
 (218a)

Diese geometrischen Beziehungen ändern sich durch die Belastung des Stabes.

$$y \rightarrow y + \delta y, \quad x \rightarrow x + \delta x, \quad \alpha \rightarrow \alpha + \delta \alpha, \quad ds \rightarrow ds + \delta(ds).$$

Die Biegelinie von gekrümmten Stäben und Stabzügen.

Nach Abb. 120 ist

132

$$\delta x = u$$
, $\delta y = -w$, $\delta \alpha = -\varphi$, $\delta(d\alpha) = d(\delta \alpha) = d\psi$.

Durch Variation von (218a) entsteht

$$\begin{array}{l}
\left. \delta(dy) = \delta(ds)\sin\alpha + ds\cos\alpha\delta\alpha = d(\delta y) = -dw, \\
\left. \delta(dx) = \delta(ds)\cos\alpha - ds\sin\alpha\delta\alpha = d(\delta x) = -du, \\
\left. \frac{d}{dx}(\delta y) = \varepsilon_0 \operatorname{tg} \alpha + \delta\alpha, \quad \frac{d}{dy}(\delta x) = \varepsilon_0 \operatorname{ctg} \alpha - \delta\alpha. \end{array} \right\}$$
(218b)

Damit sind die Differentialgleichungen für die senkrechte und waagerechte Ausbiegung gefunden:

$$-\frac{d^{2}w}{dx^{2}} = \frac{d}{dx} (\delta \alpha) + \frac{d}{dx} (\varepsilon_{0} \operatorname{tg} \alpha); \\ -\frac{d^{2}u}{dy^{2}} = \frac{d}{dy} (\delta \alpha) - \frac{d}{dy} (\varepsilon_{0} \operatorname{ctg} \alpha). \end{cases}$$
(219)

Die Verzerrungskomponenten $d(\delta \alpha) = d\psi$ und ε_0 sind in Abschnitt 10 für den gekrümmten Stab als Funktionen der Schnittkräfte abgeleitet worden. Bei $\varrho \gg h$ ist jedoch mit großer Genauigkeit ebenso wie für den geraden Stab

$$d\psi = \left(\frac{M}{EJ} + \frac{\alpha_t \,\Delta t}{\hbar}\right) ds , \qquad d\varepsilon_0 = d\left(\frac{N}{EF} + \alpha_t t\right)$$
$$-\frac{d^2 w}{dz^2} = \left(\frac{M}{EJ} + \frac{\alpha_t \,\Delta t}{\hbar}\right) \frac{1}{acc_F} + \frac{d}{dz} \left[\left(\frac{N}{EF} + \alpha_t t\right) \frac{dy}{dz}\right], \qquad (220)$$

also

ADERBORI

$$-\frac{d^2 u}{dy^2} = \left(\frac{M}{EJ} + \frac{\alpha_t \,\Delta t}{h}\right) \frac{1}{\sin \alpha} - \frac{d}{dy} \left[\left(\frac{N}{EF} + \alpha_t t\right) \frac{dx}{dy} \right], \tag{221}$$

Der Ansatz wird bei gleichbleibender Temperatur (t = 0, $\Delta t = 0$) und kleinem ε_0 meist in der folgenden Abkürzung verwendet:

$$-\frac{d^2w}{dx^2} = \frac{M}{E J \cos \alpha}; \qquad -\frac{d^2(E J_e w)}{dx^2} = M \frac{J_e}{J \cos \alpha}, \qquad (222)$$

$$-\frac{d^2 u}{dy^2} = \frac{M}{E J \sin \alpha}; \qquad -\frac{d^2 (E J_e u)}{dy^2} = M \frac{J_e}{J \sin \alpha}.$$
(223)

Die Ausbiegungen u_k , w_k werden daraus formal ebenso wie in (199) berechnet oder durch Integration von (220) und (221) nach (201) entwickelt. Die Integrationskonstanten sind wie in (201) durch die Verschiebungskomponenten u_a , w_a , φ_a des linken Endquerschnitts *a* bestimmt. Auf diese Weise entsteht mit $\varepsilon_a = N_a/EF_a + \alpha_t t$

$$w_{k} = w_{a} + (x_{k} - x_{a}) \varphi_{a} - \varepsilon_{a} (y_{k} - y_{a}) - \int_{x_{a}}^{x_{k}} (x_{k} - x) d\psi - \int_{x_{a}}^{x_{k}} (y_{k} - y) d\varepsilon_{0},$$

$$u_{k} = u_{a} + (y_{k} - y_{a}) \varphi_{a} + \varepsilon_{a} (x_{k} - x_{a}) - \int_{x_{a}}^{x_{k}} (y_{k} - y) d\psi + \int_{x_{a}}^{x_{k}} (x_{k} - x) d\varepsilon_{0}$$

$$\varphi_{k} = \varphi_{a} - \int_{x_{a}}^{x_{k}} d\psi.$$
(225)

Ableitung der Differentialgleichung.

Die Verdrehung des Endquerschnitts a ist für $w_b - w_a = 0$ und mit $x_b - x_a = l$, $y_b - y_a = e$

$$\varphi_a = \varphi_{a,0} = \frac{c}{l} \varepsilon_a + \frac{1}{l} \int_{x_a}^{x_b} (x_b - x) \, d\psi + \frac{1}{l} \int_{x_a}^{x_b} (y_b - y) \, d\varepsilon_0 \,. \tag{226}$$

Sie erhält wiederum die Bedeutung des Stützendruckes $A_{\mathfrak{w}}$ eines Stabzuges ab aus einer Gruppe von senkrecht gerichteten ideellen Drehungsgewichten $d\psi$ und einer Gruppe von waagerecht gerichteten ideellen Dehnungsgewichten ε_a , $d\varepsilon_0$. Demnach darf die Verdrehung φ_k eines beliebigen Querschnitts k des Stabes als die Querkraft $Q_{\mathfrak{w},k}$ der Drehungsgewichte $d\psi$, die Ausbiegung w_k als das statische Moment $M'_{\mathfrak{w},k}$ von $A_{\mathfrak{w}}$, den senkrecht gerichteten Drehungsgewichten $d\psi$ und den waagerecht gerichteten Dehnungsgewichten $d\varepsilon_0$, die Ausbiegung u_k als das statische Moment $M''_{\mathfrak{w},k}$ von derselben, jedoch um 90° im Sinne von $\delta\alpha$ gedrehten Kräftegruppe $d\psi$, $d\varepsilon_0$ berechnet werden.

Die Dehnungsgewichte ε_a , $d\varepsilon_0$ sind im Vergleich zu den Drehungsgewichten $d\psi$ meist ohne großen Einfluß auf die Verschiebungen w_k , u_k . Sie werden daher in der Regel vernachlässigt. Die EJ_c fachen Verschiebungen werden für $\Delta t = 0$ folgendermaßen bezeichnet:

$$E J_{e} w_{k} = w_{k}^{*}, \qquad E J_{e} u_{k} = u_{k}^{*}, \qquad E J_{e} \varphi_{a} = \varphi_{a}^{*},$$

$$w_{k}^{*} = w_{a}^{*} + (x_{k} - x_{a}) \varphi_{a}^{*} - \int_{x_{a}}^{x_{k}} (x_{k} - x) M \frac{J_{e}}{J \cos \alpha} dx, \qquad (227)$$

$$u_{k}^{*} = u_{a}^{*} + (y_{k} - y_{a}) \varphi_{a}^{*} - \int_{y_{a}}^{y_{k}} (y_{k} - y) M \frac{J_{\epsilon}}{J \sin \alpha} dy, \qquad (228)$$

für
$$w_a = w_b = 0$$
 ist $\varphi_a^* = \varphi_{a,0}^* = \frac{1}{l} \int_{x_a}^{y} (x_b - x) M \frac{J_e}{J \cos \alpha} dx.$ (229)

Für die zeichnerische und rechnerische Auswertung der Ansätze dienen die Angaben auf S. 125, so daß

$$M \frac{J_o}{J \cos \alpha} = w', \qquad M \frac{J_o}{J \sin \alpha} = w''$$

wiederum ideelle Streckenlasten bedeuten, welche nach (206) und (207) durch zwei Gruppen äquivalenter Einzellasten \mathfrak{B}'_m , \mathfrak{B}''_m ersetzt werden. Mit diesen wird dann

für
$$w_a = w_b = 0$$
 $\varphi_{a,0}^* = A'_{\mathfrak{w}}; \quad \varphi_{k,0}^* = Q'_{\mathfrak{w},k}; \quad w_{k,0}^* = M'_{\mathfrak{w},k}; \quad u_{k,0}^* = M''_{\mathfrak{w},k}$

nach bekannten Regeln (Abschn. 13) numerisch berechnet oder graphisch durch Kraft- und Seileck bestimmt. Um hierbei w_k und u_k in natürlicher Größe anzugeben, wird nach S. 125 die Polweite $H_w = E J_c/n$ gewählt. Da unter den Voraussetzungen der Rechnung $t, \Delta t = 0, \varepsilon_0 \approx 0$, also nach (218b)

$$\frac{dw}{dx} \cdot \frac{dy}{du} = 1 \tag{230}$$

ist, stehen einander zugeordnete Tangenten der beiden Biegelinien, also auch einander zugeordnete Seilstrahlen der beiden Richtungsbüschel senkrecht aufeinander, so daß die waagerechte Biegelinie als Normalenzug zu den Tangenten der senkrechten Biegelinie oder zu den Seilstrahlen ihres Richtungsbüschels gezeichnet werden kann.

Die Biegelinie von gekrümmten Stäben und Stabzügen.

Längenänderung einer Stabzugsehne. Zur Bestimmung der Längenänderung einer Stabzugsehne wird die x-Achse mit dieser zusammengelegt. Dann ist in (224)

 $y_{k} = y_{b}, y_{b} = y_{a} = 0, y_{b} - y = -y,$ $x_{a*} = 0, x_{k} = x_{b} = l \text{ (Abb. 121)}$ $u_{b} - u_{a} = \Delta l = l\varepsilon_{a} + \int_{0}^{l} y \, d\psi + \int_{0}^{l} (l - x) \, d\varepsilon_{0}.$ (231)

Biegelinie des Dreigelenkbogens. Die Biegelinie kann ebenfalls nach der Anweisung auf S. 133 gezeichnet werden, wenn die Verschiebungen u_o , w_o des Gelenkpunktes c oder die relative Drehung ψ_o der beiden Bogenschenkel bekannt sind. Diese wird dann als Drehungsgewicht \mathfrak{B}_o ebenso verwendet wie die übrigen Drehungsgewichte \mathfrak{B}'_m , \mathfrak{B}''_m (Abb. 122). Aus diesem Grunde kann $\psi_o = \mathfrak{B}_o$ auch aus der als Stützenbedingung vorgeschriebenen Längenänderung Δl der Sehne des Dreigelenkbogens berechnet werden. Bei unverschieblichen Widerlagern ist $\Delta l = 0$ und

$$\begin{aligned}
\varphi_{e} &= -\frac{1}{t} \left(l \,\varepsilon_{a} + \int_{0}^{t} y \, d \,\psi + \int_{0}^{t} \left(l - x \right) \, d \,\varepsilon_{0} \right); \\
\varphi_{a} &= \frac{1}{t} \left(\psi_{e} \, l_{2} + \int_{0}^{t} \left(l - x \right) \, d \,\psi - \int_{0}^{t} y \, d \,\varepsilon_{0} \right).
\end{aligned}$$
(232)

Ableitung aus einem Differenzenansatz. Die Verschiebung w_m und u_m einer ausgezeichneten Punktfolge ... $m, m + 1 \dots$ des Stabes können auch als die Un-

bekannten von Differenzengleichungen abgeleitet werden. Der Stab wird in diesem Falle durch eine Stabkette aus geraden Elementen ... s_m , s_{m+1} ... ersetzt, welche konstantes Trägheitsmoment ... J_m , J_{m+1} ... besitzen und gelenkig verbunden sind (Abb. 123). An dem Spannungszustand ändert sich nichts, wenn an der Gelenkkette neben der vorgegebenen Belastung \mathfrak{B} die Biegungsmomente des Stabes in den Punkten ... m, m + 1... als äußere Kräfte wirken. Die Belastung besteht dann aus zwei Teilen.

Die Endpunkte der senkrechten und waagerechten Verschiebungen w_m , u_m der Gelenkpunkte m werden durch je einen Geradenzug miteinander verbunden, dessen Elemente Sehnen der Biegeließen Winkel \mathfrak{B}' \mathfrak{B}'' ein die aus den

linien des Stabes sind. Ihre Richtungen schließen Winkel \mathfrak{B}'_m , \mathfrak{B}''_m ein, die aus den Verschiebungen w_m , u_m berechnet werden können.

$$\mathfrak{B}'_{m} = \frac{w_{m} - w_{m-1}}{c_{m}} - \frac{w_{m+1} - w_{m}}{c_{m+1}}, \qquad \mathfrak{B}''_{m} = \frac{u_{m} - u_{m-1}}{c_{m}} - \frac{u_{m+1} - u_{m}}{c_{m+1}}.$$
 (233)

Werden beide Seiten des Ansatzes durch Multiplikation mit der Belastungseinheit des anliegenden Sehnenpaares (in mt) erweitert, so ist der Ausdruck für die virtuelle Arbeit auf der rechten Seite das Produkt der virtuellen äußeren Kräfte $1/c_m$, $1/c_{m+1}$

Ableitung aus einem Differenzenansatz.

und $1/e_m$, $1/e_{m+1}$ mit den senkrechten oder waagerechten Verschiebungen w_m , u_m (Abb. 123). Sie kann in beiden Fällen als Funktion der Stabdrehwinkel ϑ_m , ϑ_{m+1} und der Längenänderung der Stäbe Δs_m , Δs_{m+1} angegeben werden.

$$\mathfrak{B}'_{m} = \vartheta_{m} - \vartheta_{m+1} - \frac{\Delta s_{m}}{s_{m}} \operatorname{tg} \alpha_{m} + \frac{\Delta s_{m+1}}{s_{m+1}} \operatorname{tg} \alpha_{m+1},$$

$$\mathfrak{B}''_{m} = \vartheta_{m} - \vartheta_{m+1} + \frac{\Delta s_{m}}{s_{m}} \operatorname{ctg} \alpha_{m} - \frac{\Delta s_{m+1}}{s_{m+1}} \operatorname{ctg} \alpha_{m+1}.$$
(234)

Die Differenz der Stabdrehwinkel, gleichbedeutend mit der Änderung der Stabzugwinkel, wird für die beiden Belastungsanteile getrennt berechnet. Der Anteil $\vartheta_{m,1} - \vartheta_{(m+1),1} = \psi_{m,1}$ wird von den Biegungsmomenten ... M_m, M_{m+1} ..., nunmehr äußeren Kräften der Stabketten, hervorgerufen (Tabelle 12). Die Belastung \mathfrak{P} der einzelnen Elemente s_m, s_{m+1} erzeugt den Anteil ($\vartheta_{m,2} - \vartheta_{(m+1),2}$) = $\psi_{m,2}$. Jedes Element wirkt nach Abb. 123 als frei drehbar gestützter Stab.

$$\psi_m = \psi_{m,1} + \psi_{m,2}; \qquad M_r = M_{m-1} \frac{a'_r}{s_m} + M_m \frac{a_r}{s_m} + M_{0r}; \qquad (235)$$

$$6EJ_{c}(\vartheta_{m,1} - \vartheta_{(m+1),1}) = \frac{J_{c}}{J_{m}} \frac{c_{m}}{\cos \alpha_{m}} (M_{m-1} + 2M_{m}) + \frac{J_{c}}{J_{m+1}} \frac{c_{m+1}}{\cos \alpha_{m+1}} (2M_{m} + M_{m+1}); (236)$$

$$6EJ_{c}(\vartheta_{m,2} - \vartheta_{(m+1),2}) = \frac{J_{e}}{J_{m}} \frac{c_{m}}{\cos \alpha_{m}} \int_{m} M_{or} \xi d\xi + \frac{J_{e}}{J_{m+1}} \frac{c_{m+1}}{\cos \alpha_{m+1}} \int_{m+1} M_{or} \xi' d\xi'.$$
(237)

Der Ansatz kann nach S. 96ff. auch für stetig veränderliches Trägheitsmoment der Elemente s_m angeschrieben werden. Besteht \mathfrak{P} aus einer Gruppe von Einzellasten, deren Angriffspunkte mit $\ldots m, m + 1 \ldots$ zusammenfallen, so ist $\vartheta_{m,2} - \vartheta_{(m+1),2} = \varphi_{m,2} = 0$ und mit Berücksichtigung der Längskräfte N und einer Temperaturänderung $t, \Delta t$

$$6 E J_{o} \mathfrak{B}'_{m} = \frac{J_{e}}{J_{m}} \frac{c_{m}}{\cos \alpha_{m}} \left(M_{m-1} + 2 M_{m} \right) + \frac{J_{e}}{J_{m+1}} \frac{c_{m+1}}{\cos \alpha_{m+1}} \left(2 M_{m} + M_{m+1} \right) \\ - 6 \frac{J_{e}}{F_{e}} \left(N_{m} \frac{F_{e}}{F_{m}} \operatorname{tg} \alpha_{m} - N_{m+1} \frac{F_{e}}{F_{m+1}} \operatorname{tg} \alpha_{m+1} \right) \\ - 6 E J_{e} \left[\alpha_{t} t \left(\operatorname{tg} \alpha_{m} - \operatorname{tg} \alpha_{m+1} \right) - \frac{\alpha_{t} \Delta t}{2} \left(\frac{s_{m}}{h_{m}} + \frac{s_{m+1}}{h_{m+1}} \right) \right], \quad (238)$$

$$6 E J_{e} \mathfrak{B}_{m}^{\prime\prime} = \frac{J_{e}}{J_{m}} \frac{c_{m}}{\cos \alpha_{m}} \left(M_{m-1} + 2 M_{m} \right) + \frac{J_{e}}{J_{m+1}} \frac{c_{m+1}}{\cos \alpha_{m+1}} \left(2 M_{m} + M_{m+1} \right) + 6 \frac{J_{e}}{F_{e}} \left(N_{m} \frac{F_{e}}{F_{m}} \operatorname{ctg} \alpha_{m} - N_{m+1} \frac{F_{e}}{F_{m+1}} \operatorname{ctg} \alpha_{m+1} \right) + 6 E J_{e} \left[\alpha_{t} t \left(\operatorname{ctg} \alpha_{m} - \operatorname{ctg} \alpha_{m+1} \right) + \frac{\alpha_{i} \Delta t}{2} \left(\frac{s_{m}}{h_{m}} + \frac{s_{m+1}}{h_{m+1}} \right) \right].$$
(239)

Die Integrale für $\vartheta_{m,2}$, $\vartheta_{(m+1),2}$ sind in der Tabelle 12 enthalten und werden hier für lotrechte Einzellasten und lotrechte, gleichförmige Streckenlast wiederholt: Einzellasten:

$$6EJ_{\mathfrak{o}}\left(\vartheta_{m,2}-\vartheta_{(m+1),2}\right)=\frac{J_{\mathfrak{o}}}{J_{m}}\frac{c_{m}^{2}}{\cos\alpha}\Sigma_{m}P\,\omega_{D}+\frac{J_{\mathfrak{o}}}{J_{m+1}}\frac{c_{m+1}^{2}}{\cos\alpha_{m+1}}\Sigma_{m+1}P\,\omega_{D}'.$$
(240)

Gleichförmige Streckenlast:

$$6EJ_{c}\left(\vartheta_{m,2} - \vartheta_{(m+1),2}\right) = \frac{J_{c}}{4J_{m}} \frac{c_{m}^{3}}{\cos^{2}\alpha_{m}} \, p_{m} + \frac{J_{c}}{4J_{m+1}} \frac{c_{m+1}^{3}}{\cos^{2}\alpha_{m+1}} \, p_{m+1} \,. \tag{241}$$

Sind die Abschnitte s_m des Stabzugs gekrümmt, so erzeugen die Längskräfte Biegungsmomente, welche bei der Berechnung der Stabdrehwinkel in einem Anteil $\vartheta_{m,3}$ berücksichtigt werden. Ähnliches gilt von der Entwicklung der Biegelinie für den Gurt eines mehrteiligen Stabwerks. Bei geraden Abschnitten s_m sind die Beiträge der Längskräfte N_m zu den Stabdrehwinkeln in der Regel so unbedeutend, daß sie vernachlässigt werden. In diesem Falle ist $\mathfrak{B}'_m = \mathfrak{B}''_m$.

Die Biegelinie von gekrümmten Stäben und Stabzügen.

Die Größen \mathfrak{B}'_m , \mathfrak{B}''_m sind Kontingenzwinkel der Sehnen der Biegelinien w, u. Um sie in einem Richtungsbüschel zusammenzufassen, werden ihre positiven Werte als gerichtete Strecken \mathfrak{B}'_m , \mathfrak{B}''_m im Sinne von \vec{w}, \vec{u} auf einer Parallelen im Abstand 1 vom Pol des Richtungsbüschels und zwar in der Regel mit dem 6 EJ_o fachen Betrage aufgetragen. Wird daher bei einem Längenmaßstab 1:n die Polweite 6 EJ_e/n an Stelle der Einheit verwendet, so liefert das Seileck wie auf S. 125 unter Beachtung der Stützenbedingungen die absoluten Verschiebungen in natürlicher Größe. Ebenso gelten die übrigen Bemerkungen der S. 125 zur rechnerischen Lösung der Aufgabe. Die Längenänderung der Stabzugsehne ist z. B.

$$\Delta l = \sum \mathfrak{B}_m'' y_m \quad \text{(Abb. 121)}. \tag{242}$$

Die Biegelinie eines gekrümmten Trägers mit r = const. Der Verschiebungszustand eines Bogenträgers mit r = const läßt sich einfacher durch die radiale Ausbiegung $\Delta r(r \rightarrow r + \Delta r)$ beschreiben (Abb. 124). Die Biegelinie mit ρ als Krümmungshalbmesser wird dann auf Polarkoordinaten $(R, \alpha + \Delta \alpha, \Delta \alpha \approx 0)$ bezogen. Nach bekannten Regeln der Geometrie ist

$$\frac{1}{\varrho} = \frac{R^2 + 2R'^2 - RR''}{(R^2 + R'^2)^{3/2}}; \quad R = r + \Delta r,
R' = \frac{dR}{d\alpha} = \Delta r', \quad R'' = \frac{d^2R}{d\alpha^2} = \Delta r''.$$
(243)

Bei Vernachlässigung von kleinen Größen zweiter Ordnung entsteht daher die folgende Differentialgleichung:

$$\frac{1}{\varrho} - \frac{1}{r} = \frac{d\psi}{ds} = \frac{-\Delta r - \Delta r''}{r^2} = \frac{1}{EJ} M(\alpha) .$$
(244)

Um ihre Lösung mit den Ergebnissen (224) und (225) zu vergleichen, wird Δr durch Integration nach bekannten Regeln berechnet (Abb. 125).

$$\Delta r = \left(C_1 - \int_0^\alpha M \frac{r^2}{EJ} \sin \alpha \, d\alpha\right) \cos \alpha + \left(C_2 + \int_0^\alpha M \frac{r^2}{EJ} \cos \alpha \, d\alpha\right) \sin \alpha \,. \tag{245}$$

$$r d\alpha = ds$$
, $r \sin \alpha = r \sin \alpha_k - (y_k - y)$, $r \cos \alpha = r \cos \alpha_k + (x - x_k)$,

$$\Delta r_k = \left(C_1 + \int_0^{y_k} M \frac{y_k - y}{E J} ds\right) \cos \alpha_k + \left(C_2 + \int_0^{x_k} M \frac{x - x_k}{E J} ds\right) \sin \alpha_k, \qquad (246)$$

$$\Delta r_k = \Delta x_k \cos \alpha_k + \Delta y_k \sin \alpha_k$$

Abb. 124.

Abb. 125.

Spannungszustand in Rohren und Ringen. Um die Differentialgleichung (244) zur eindimensionalen Berechnung der Spannungen in Rohren und Ringen zu verwenden, werden die statisch unbekannten Schnittkräfte M_s , N_s , Q_s im Scheitelquerschnitt (Abb. 126) zunächst bekannt angenommen und zu den Integrationskonstanten gezählt. Bei einer zur senkrechten Achse symmetrischen Belastung und Punktstützung in C nach Abb. 126 sind $Q_s = 0$ und mit $-\pi < \alpha < \pi$ die

Biegungsmomente aus Eigengewicht $\gamma_0 \delta = q$:

$$M = (M_s + N_s r - q r^2) - (N_s r - q r^2) \cos \alpha + q r^2 \alpha \sin \alpha$$

Spannungszustand in Rohren und Ringen.

Biegungsmomente aus Wasserdruck $\gamma(h - r \cos \alpha)$:

$$M = (M_s + N_s r - \gamma h r^2) - (N_s r - \gamma h r^2) \cos \alpha + \frac{1}{2} \gamma r^3 \alpha \sin \alpha;$$

Biegungsmomente aus einer zur waagerechten Achse antimetrischen Windbelastung $\phi = \phi_0 \cos \alpha$:

$$M = (M_s + N_s r) - N_s r \cos \alpha + \frac{1}{2} p_0 r^2 \alpha \sin \alpha.$$

Mit der Abkürzung für $M = A_0 + A_1 \cos \alpha + A_2 \alpha \sin \alpha$ wird aus (245)

$$\frac{E J}{r^2} \varDelta r_k = A_0 + \frac{1}{4} (2 A_1 + A_2) \alpha_k \sin \alpha_k - \frac{A_2}{4} \alpha_k^2 \cos \alpha_k + (C_1 - A_0) \cos \alpha_k + C_2 \sin \alpha_k, \quad (247)$$

$$\frac{E J}{r^2} \varDelta r'_k = \frac{1}{4} (2 A_1 + A_2) (\sin \alpha_k + \alpha_k \cos \alpha_k) - \frac{A_2}{4} (2 \alpha_k \cos \alpha_k - \alpha_k^2 \sin \alpha_k) - (C_1 - A_0) \sin \alpha_k + C_2 \cos \alpha_k. \quad (248)$$

Die vier Konstanten M_s , N_s , C_1 , C_2 der Lösung sind zunächst durch drei Bedingungen :

$$\Delta r' = 0$$
 für $\alpha = 0$ und $\Delta r = 0$, $\Delta r' = 0$ für $\alpha = \pi$

bestimmt. Wird außerdem die Längenänderung der Mittelebene des Rohres vernachlässigt, so gilt als vierte Bedingung $\int_{0}^{\pi} \Delta r d\alpha = 0$. Daher ist

$$A_0 = -A_2$$
, $A_1 = \frac{1}{2}A_2$, $-C_1 = \frac{8-\pi^2}{4}A_2$, $C_2 = 0$

Eigengewicht:

2

$$M_{s} = -\frac{q r^{2}}{2}, \qquad N_{s} = +\frac{q r}{2}, \\M = -q r^{2}(1 - \alpha \sin \alpha - \frac{1}{2} \cos \alpha), \qquad \max M = +0.6408 q r^{2}, \\\Delta r = -\frac{q r^{4}}{E f} \left(1 - \left(\frac{\pi^{2}}{4} - 1\right) \cos \alpha - \frac{\alpha}{2} \sin \alpha + \frac{\alpha^{2}}{4} \cos \alpha\right);$$
(249)

Wasserdruck:

$$M_{s} = -\frac{\gamma r^{3}}{4}, \qquad N_{s} = +\frac{\gamma r}{4} (4 h - r),$$

$$M = -\frac{\gamma r^{3}}{2} \left(1 - \alpha \sin \alpha - \frac{1}{2} \cos \alpha\right), \qquad \max M = +0.3204 \gamma r^{3},$$

$$\Delta r = \frac{\gamma r^{5}}{2E J} \left(1 - \left(\frac{\pi^{2} - \alpha^{2}}{4} - 1\right) \cos \alpha - \frac{\alpha}{2} \sin \alpha\right);$$
(250)

Windbelastung nach Abb. 126:

$$M_{s} = -\frac{1}{4} \phi_{0} r^{2}, \qquad N_{s} = -\frac{1}{4} \phi_{0} r , M = -\frac{1}{2} \phi_{0} r^{2} (1 - \alpha \sin \alpha - \frac{1}{2} \cos \alpha) .$$
(251)

Das Biegungsmoment erhält daher mit $\mu_1 = 1 - \alpha \sin \alpha - \frac{1}{2} \cos \alpha$ (Abb. 127) die Form von $M = -\mu_1 R r/2 \pi$. Die Biegungsmomente unterscheiden sich nur durch den Betrag der Resultierenden R aus der Belastung. Dieser ist bei Eigengewicht $R = 2 \pi r q$, Wasserinhalt $R = \pi \gamma r^2$, Wind $R = \pi \dot{p}_0 r$.

Die Lösung gelingt dank der besonderen Stützung ohne Unterteilung des Integrationsbereiches π . Um daraus den Spannungszustand M^* für die normale Abstützung (Abb. 128) zu entwickeln, werden geeignete Gleichgewichtsgruppen von

Die Biegelinie von gekrümmten Stäben und Stabzügen.

138

Kräften mit den Biegungsmomenten M überlagert, für welche die Schnittkräfte nach S. 195 berechnet werden. Auf diese Weise entstehen die folgenden Ergebnisse: a) Senkrechte Belastung: P = R/2 (Abb. 128). Eigengewicht: $R=2\pi rq;$ Wasserinhalt: $R = \pi \gamma r^2$. Abb. 129 Abb. 127. Abb. 128. Function: $(\mu_1 - \mu_1)$ für $\left(\beta = \frac{\pi}{4}\right)$. . Funktion: μ_3 für $\beta = \frac{\pi}{4}$ Funktion: µ1. 000 1800 00 000 600 1350 00 300 $\mu_2 - \mu_1 = -0,263 + 0,308 = -0,304$ + 0,500 - 0,571 + 1,500 µ3 + 0,596 + 0,771 - 1,462
$$\begin{split} 0 < \alpha < \alpha_1 : & M_0 = 0, \quad \alpha_1 < \alpha < \pi : \quad M_0 = + \Pr\left(\sin\beta - \sin\alpha\right), \\ X_1 = -\frac{1}{\pi} \, P \sin^2\beta \,, \quad X_2 = 0, \quad X_3 = -\frac{1}{\pi} \, \Pr\left(\beta\,\sin\beta + \cos\beta - 1\right). \end{split}$$
 $M_s = +\frac{1}{2\pi} R r \left(1 + \sin^2\beta - \beta \sin\beta - \cos\beta\right), \qquad N_s = X_1.$ $\overline{M} = M_0 + M_s + N_s r \left(1 - \cos \alpha\right);$ $M^* = M + \overline{M} = (\mu_2 - \mu_1) R \cdot r/2 \pi;$ $0 < \alpha < \alpha_1$: $\mu_2 = 1 - \beta \sin \beta - \cos \beta + \sin^2 \beta \cos \alpha$; (252) $\alpha_1 < \alpha < \pi: \qquad \mu_2 = 1 - \beta \sin \beta - \cos \beta + \sin^2 \beta \cos \alpha + \pi (\sin \beta - \sin \alpha).$ b) Antimetrische Belastung durch Wind: $R = \pi p_0 r$ (Abb. 129). Die Stützung ist ebenfalls antimetrisch $P = R/2 \sin \beta$. $\frac{\pi}{2} < \alpha < \alpha_1: \qquad M_0 = +Rr\cos\alpha; \qquad \alpha_1 < \alpha < \alpha_2: \qquad M_0 = -Pr\sin(\alpha_2 - \alpha);$ $X_1 = + \frac{\pi}{4} p_0 r$, $X_2 = + \frac{1}{2} p_0 r \beta \operatorname{ctg} \beta$, $X_3 = + \frac{1}{2} p_0 r^2$, $M_s = -\frac{1}{2} \, \phi_0 \, r^2 \left(\frac{\pi}{2} - 1 \right), \qquad N_s = + \frac{\pi}{4} \, \phi_0 \, r \,, \qquad Q_s = + \, \frac{1}{2} \, \phi_0 \, r \, \beta \, \operatorname{ctg} \beta$ $\overline{M} = M_0 + M_s + N_s r (1 - \cos \alpha) + Q_s r \sin \alpha.$ $M^* = M + \overline{M} = \mu_3 \cdot R \cdot r/2 \pi = \mu_3 \frac{p_0 r^2}{2};$ (253) $-\alpha_1 < \alpha < +\alpha_1$: $\mu_3 = (\beta \operatorname{ctg} \beta - \frac{1}{2}) \sin \alpha + \alpha \cos \alpha$; $\alpha_1 < \alpha < \quad \alpha_2: \qquad \mu_3 = (\beta \operatorname{ctg} \beta - \frac{1}{2}) \sin \alpha + \alpha \cos \alpha - \pi (\operatorname{ctg} \beta \sin \alpha - \cos \alpha)$ In (253) bedeutet M das Biegungsmoment nach (251) für $\alpha \rightarrow \alpha + 90^{\circ}$ und $-\pi < (\alpha + 90^{\circ}) < \pi$.

Die wirkliche Verschiebung der Punkte des Stabzugs.

Die wirkliche Verschiebung der Punkte des Stabzugs. Die wirklichen Verschiebungen $u_m + w_m$ der Punkte *m* des Stabzugs sind durch die Biegelinien für die senkrechte und waagerechte Richtung bestimmt. Sie können aber auch unmittelbar aufgezeichnet werden, nachdem der Stab in einen Stabzug mit *n* geraden Elementen $s_1 \dots s_m \dots s_n$ unterteilt worden ist, deren Verschiebungskomponenten $\Delta s_m, \vartheta_m$ berechnet sind. Dabei ergeben sich die Stabdrehwinkel ϑ_m aus ϑ_1 und den Änderungen Δm der Stabzugwinkel. Der Verschie

rungen $\Delta \varphi_m$ der Stabzugwinkel. Der Verschiebungsvektor des Endpunktes m des Stabes s_m wird aus der Verschiebung des Endpunktes (m-1), der Längenänderung Δs_m und der Bogenlänge $s_m \vartheta_m = \varrho_m$ erhalten (Abb. 130). Diese ist bei Vernachlässigung von kleinen Größen zweiter Ordnung als Abschnitt der Tangente senkrecht zu sm. Der Verschiebungsplan kann daher durch Wiederholung dieser Konstruktion unabhängig vom Maßstab des Lageplans in einem Polplan entwickelt werden. In diesem muß daher die Verschiebung eines Punktes und die Verdrehung eines anschließenden Stabes bekannt sein oder angenommen werden. In der Regel ist das letztere nötig, so daß zunächst drei geeignete Parameter des Plans Null gesetzt werden. Ihre wirk-

liche Größe wird nachträglich aus einer Drehung des Stabzugs derart bestimmt, daß die Stützenbedingungen erfüllt sind. Die Punkte beschreiben dabei Wege, die den zweiten Verschiebungsplan bilden (Abb. 131).

Abb. 131.

Hiernach liefert der erste Plan für Punkt 5 die Verschiebung O5', für den Punkt adie Verschiebung $\overrightarrow{Oa'}$, für den Punkt b die Verschiebung $\overrightarrow{Ob'}$. Um die Stützenbedingung a zu erfüllen, tritt zu allen Verschiebung des ersten Plans der Verschiebungsvektor $\overrightarrow{a'O}$, so daß für b die Verschiebung $\overrightarrow{a'O} + \overrightarrow{Ob'} = \overrightarrow{a'b'}$ erhalten wird. Da jedoch die wirkliche Verschiebung von b parallel zur Rollenbewegung gerichtet ist, treten zu den Verschiebungen $\overrightarrow{a'5'}$ usw. $\overrightarrow{a'b'}$ die Wege aus einer Drehung des Stabzugs um den Punkt a. Der Weg $\overrightarrow{b''a''}$ des Punktes b steht senkrecht zum zugeordneten Fahrstrahl ab. Die Länge des Drehweges $\overrightarrow{b''a''}$ ist bestimmt durch die bekannte Richtung der resultierenden Verschiebung $\overrightarrow{b''b'}$. Mit $\overrightarrow{a'a''}$ und $\overrightarrow{b''b'}$ ist

Der gerade Stab auf elastischer Unterlage.

der zweite Verschiebungsplan als eine zur Grundfigur ähnliche, um 90° gedrehte Figur $(a'' \ldots 3'' \ldots b'')$ bestimmt. Die wirkliche Verschiebung des Punktes k ist daher $\overline{k''k'}$.

Boussinesq, J.: Compt. rend. Bd. 96 (1883) S. 843. — Forchheimer, Ph.: Über die Festigkeit weiter Rohre. Z. öst. Ing.- u. Arch.-Ver. 1904 S. 133. — Müller-Breslau, H.: Die neueren Methoden der Festigkeitslehre 4. Aufl. 1913. — Mayer, R.: Über Elastizität und Stabilität des geschlossenen und offenen Kreisbogens. Z. Math. Physik Bd. 61 (1913) S. 246. — Derselbe: Versuche über die ebene Biegung gekrümmter Stäbe. Z. angew. Math. Mech. 1926 S. 216.

22. Der gerade Stab auf elastischer Unterlage.

Elastizitätsgesetz. Der durchgehend elastisch gestützte Stab kann als Grenzfall eines Trägers auf unendlich vielen elastisch senkbaren Stützen angesehen werden. Eine beliebige Teilbelastung, unter anderem die Einzellast P über einer Stütze, führt auch zur senkrechten Verschiebung der benachbarten Stützpunkte. Ihre Abstände sind im Grenzfall verschwindend klein, so daß das Gleichgewicht

der Schnittkräfte für einen infinitesimalen Abschnitt dx des Stabes nach (48) angegeben werden kann:

$$-\frac{d^2 M}{d x^2} = [p(x) - p(x)] b.$$
 (254)

b ist die Breite des Stabes, p(x) die Auflast und $\overline{p}(x)$ der auf die Flächeneinheit bezogene Widerstand der Unterlage. Dieser ist eine Funktion der Ausbiegung des Stabes und der physikalischen Eigenschaften des stützenden Mittels und wird nach der Begründung in Abschn. 7 mit

$$\overline{p}(x) = c w(x) \tag{255}$$

eingeführt. c ist ein von den Eigenschaften der Unterlage und von der Form und Größe der stützenden Fläche abhängiger konstanter Leitwert. Der waagerechte Widerstand in der Grenzschicht gegen eine Richtungsänderung der Stabtangente wird nicht berücksichtigt.

Ansatz und Lösung der Differentialgleichung. Die Krümmung des Stabes ist nach $(209)\frac{d^2w}{dx^2} = -\frac{M}{El}$, und damit die Gleichgewichtsbedingung (254)

 $\frac{d^4 M}{dx^4} = -b \frac{d^2}{dx^2} [p(x) - p(x)], \quad \frac{d^4 M}{dx^4} - c b \frac{d^2 w}{dx^2} = -b \frac{d^2 p(x)}{dx^2}$

$$\frac{d^2}{dx^2} \left(E \int \frac{d^2 w}{dx^2} \right) + c \, b \, w = b \, \phi \left(x \right) \,, \tag{256}$$

oder

also

BIBLIOTHER

$$\frac{d^4 M}{dx^4} + \frac{c b}{E I} M = -b \frac{d^3 p(x)}{dx^2}.$$
 (257)

Die Differentialquotienten werden bei veränderlichem Trägheitsmoment oder bei wechselndem Leitwert c am einfachsten durch Differenzenquotienten ersetzt und nach (212) zu linearen algebraischen Gleichungen entwickelt. Die Anzahl der unbekannten Einsenkungen w_k oder der Biegungsmomente M_k ist ebenso groß wie die Anzahl der verfügbaren Bedingungen.

Bei konstantem Trägheitsmoment ist

$$E \int \frac{d^4 w}{dx^4} + c \, b \, w = b \, p(x) \quad \text{oder} \quad \frac{d^4 M}{dx^4} + \frac{b \, c}{E \, J} M = -b \, \frac{d^2 p(x)}{dx^2}. \tag{258}$$

Die Lösung w, M besteht aus einem partikulären Integral w_0 , M_0 der vollständigen

Ansatz und Lösung der Differentialgleichung.

Gleichung und der allgemeinen Lösung w_1, M_1 der homogenen Gleichung. Diese wird aus

$$\frac{4 E J}{b c} \frac{d^4 w_1}{d x^4} + 4 w_1 = 0, \qquad \frac{4 E J}{b c} \frac{d^4 M_1}{d x^4} + 4 M_1 = 0,$$

oder mit

$$L^4 = \frac{4EJ}{bc}, \qquad L = \sqrt[4]{\frac{4EJ}{bc}}, \qquad \xi = \frac{x}{L}$$
(259)

aus

$$\frac{d^4 w_1}{d\xi^4} + 4 w_1 = 0, \qquad \frac{d^4 M_1}{d\xi^4} + 4 M_1 = 0$$

erhalten. Aus dem Ansatz w_1 oder $M_1 = e^{\mu\xi}$ folgt die charakteristische Gleichung $\mu^4 + 4 = 0$ mit den vier Wurzeln $\mu_1 = (1 + i), \ \mu_2 = (1 - i), \ \mu_3 = -(1 + i), \ \mu_4 = -(1 - i)$. Die Lösung lautet nach einer Umformung:

$$\begin{split} w &= w_0 + w_1 = w_0 + [U_1 \cos \xi \mathbb{C}0]\xi + U_2 \cos \xi \mathbb{C}in\xi + U_3 \sin \xi \mathbb{C}0]\xi + U_4 \sin \xi \mathbb{C}in\xi], \ (260)^1 \\ M &= M_0 + M_1 = M_0 + [C_1 \cos \xi \mathbb{C}0]\xi + C_2 \cos \xi \mathbb{C}in\xi + C_3 \sin \xi \mathbb{C}0]\xi + C_4 \sin \xi \mathbb{C}in\xi]. \ (261)^1 \\ \text{Die Ableitungen werden für die Funktion } w \text{ angegeben:} \end{split}$$

$$\begin{split} \frac{dw}{dx} &= \frac{dw_0}{dx} + \frac{1}{L} \left[U_1(\cos\xi \, \mathbb{S} \, \mathrm{in} \, \xi - \sin\xi \, \mathbb{C} \, \mathrm{o} \, \mathrm{f} \, \xi) + U_2(\cos\xi \, \mathbb{C} \, \mathrm{o} \, \mathrm{f} \, \xi - \sin\xi \, \mathbb{S} \, \mathrm{in} \, \xi) \right] \\ &+ U_3(\sin\xi \, \mathbb{S} \, \mathrm{in} \, \xi + \cos\xi \, \mathbb{C} \, \mathrm{o} \, \mathrm{f} \, \xi) + U_4(\sin\xi \, \mathbb{C} \, \mathrm{o} \, \mathrm{f} \, \xi + \cos\xi \, \mathbb{S} \, \mathrm{in} \, \xi], \end{split}$$

$$-M = E \int \frac{d^2 w_0}{dx^2} = E \int \frac{d^2 w_0}{dx^2} - \frac{2 E \int}{L^2} [U_1 \sin \xi \, \Im \, i \xi \, \Im \, \xi \, \Im \, \xi \, \Im \, \xi \, [U_1 \sin \xi \, \Im \, \xi \, \Im \, \xi \,], \qquad (262)$$
$$-Q = E \int \frac{d^3 w}{dx^3} = E \int \frac{d^3 w_0}{dx^3} - \frac{2 E \int}{L^3} [U_1 (\sin \xi \, \Im \, \xi \,] \, \xi \,] \, (\sin \xi \, \Im \, \xi \,], \qquad (262)$$

$$+ U_2 (\sin \xi \operatorname{Sin} \xi + \cos \xi \operatorname{Co} \xi) - U_3 (\cos \xi \operatorname{Co} \xi - \sin \xi \operatorname{Sin} \xi) - U_4 (\cos \xi \operatorname{Sin} \xi - \sin \xi \operatorname{Co} \xi)]$$

Aus dem zweiten Ansatz kann folgendes Ergebnis angeschrieben werden:

$$Q = \frac{dM_0}{dx} + \frac{1}{L} \frac{dM_1}{d\xi}, \quad cw = p(x) + \frac{1}{b} \frac{d^2M_0}{dx^2} + \frac{1}{bL^2} \frac{d^2M_1}{d\xi^2}, \\ c\frac{dw}{dx} = \frac{dp(x)}{dx} + \frac{1}{b} \frac{d^3M_0}{dx^3} + \frac{1}{bL^3} \frac{d^3M_1}{d\xi^3}$$
(263)

Die Integrationskonstanten U, C werden aus den Randbedingungen bestimmt, von denen zwei an jedem Stabende und vier an jeder Unstetigkeitsstelle vorgeschrieben sind. L ist die für einen elastisch gestützten Stab charakteristische Länge.

Die Diskussion des homogenen Anteils der Lösung wird durch eine andere Zusammenfassung der Integrationskonstanten und damit durch den folgenden Ansatz M_1 oder \dot{w}_1 erleichtert:

$$w_1 = C_1 e^{\xi} \cos{(\xi + \sigma_1)} + C_2 e^{-\xi} \cos{(\xi + \sigma_2)}$$

Verschiebung und Spannung klingen nach einer gedämpften harmonischen Schwingung ab, deren Nullstellen um die gleichbleibende Strecke

$$x_0 = \pi L = \pi \sqrt[4]{\frac{4EJ}{bc}}$$

voneinander entfernt sind. Die logarithmische Abnahme der Amplituden w_1 und M_1 ist π . Sie klingen um so schneller ab, je kleiner x_0 , also je kleiner J und je größer der Leitwert c ist.

¹ Hayashi, K.: Fünfstellige Tafeln der Kreis- und Hyperbelfunktionen. Berlin 1921.

Der gerade Stab auf elastischer Unterlage.

Lösung für den unendlich langen Stab. Die Lösung ist für den vom Nullpunkt aus nach einer oder beiden Seiten unendlich langen Stab bei Belastung durch die Einzellast P_0 oder das Kräftepaar M_0 besonders einfach. Nach dem Ansatz w = w' = 0für $\xi = \infty$ wird $U_2 = -U_1, U_4 = -U_3$. U_1 und U_3 ergeben sich dann aus zwei Randbedingungen für $\xi = 0$. Das Ergebnis enthält zwei charakteristische Funktionen: $\zeta_1 = e^{-\xi} \cos \xi, \qquad \zeta_2 = e^{-\xi} \sin \xi,$

in denen die Veränderliche ξ stets mit ihrem absoluten Werte einzusetzen ist, um den Ansatz auch für negative Werte ξ verwenden zu können.

a) Der nach beiden Seiten unendlich lange Stab mit einer Einzellast P_0 in $\xi = 0$.

$$w = \frac{P_0}{2Lbc}(\zeta_1 + \zeta_2), \quad \frac{dw}{dx} = -\frac{P_0}{L^2bc}\zeta_2, \quad M = \frac{P_0L}{4}(\zeta_1 - \zeta_2), \quad Q = -\frac{P_0}{2}\zeta_1;$$
(264)

$$x = \xi = 0;$$
 $w = \frac{P_0}{2Lbc},$ $\frac{dw}{dx} = 0,$ $M = \frac{P_0L}{4},$ $Q = -\frac{P_0}{2}.$ Abb. 133

b) Der nach beiden Seiten unendlich lange Stab mit einem Kräftepaar M_0 in $\xi = 0$.

$$w = \frac{M_0}{L^2 b c} \zeta_2, \qquad \frac{d w}{d x} = \frac{M_0}{L^3 b c} (\zeta_1 - \zeta_2), \qquad M = \frac{M_0}{2} \zeta_1, \qquad Q = -\frac{M_0}{2L} (\zeta_1 + \zeta_2);$$

$$x = \xi = 0; \qquad w = 0, \qquad \frac{d w}{d x} = \frac{M_0}{L^3 b c}, \qquad M = \frac{M_0}{2}, \qquad Q = -\frac{M_0}{2L}.$$
(265)
Abb. 134

c) Der einseitig unendlich ausgedehnte Stab mit einer Einzellast P_0 in $\xi = 0$.

$$w = \frac{2P_0}{L b c} \zeta_1, \quad \frac{dw}{d z} = -\frac{2P_0}{L^2 b c} (\zeta_1 + \zeta_2), \quad M = -P_0 L \zeta_2, \quad Q = -P_0 (\zeta_1 - \zeta_2);$$

$$x = \xi = 0; \quad w = \frac{2P_0}{L b c}, \quad \frac{dw}{d z} = -\frac{2P_0}{L^2 b c}, \quad M = 0, \quad Q = -P_0.$$

(266)
Abb. 135

d) Der einseitig unendlich ausgedehnte Stab mit einem Kräftepaar M_0 in $\xi = 0$.

$$= -\frac{2M_0}{L^2 b c} (\xi_1 - \xi_2), \quad \frac{dw}{dx} = \frac{4M_0}{L^3 b c} \zeta_1, \quad M = M_0 (\xi_1 + \xi_2), \quad Q = -\frac{2M_0}{L} \zeta_2;$$

$$x = \xi = 0; \quad w = -\frac{2M_0}{L^2 b c}, \quad \frac{dw}{dx} = \frac{4M_0}{L^3 b c}, \quad M = M_0, \quad Q = 0.$$
(267)
Abb 136

Abb. 138.

20

BIBLIOTHER

Lösung für den starren Stab. Ein anderer Grenzfall ist der durchlaufend elastisch gestützte Stab von der Länge *a* und einem $J \approx \infty$. Die Durchbiegung *w* ist dann eine lineare, durch die Randwerte w_1 und w_2 bestimmte Funktion. a) Lastangriff P_4 , M_6 in Stabmitte (Abb 137)

a) Lastangriff P_0 , M_0 in Stabmitte (Abb. 137). $c w_1 = \frac{P_0}{ab} \mp \frac{6M_0}{a^2b}$, $c \frac{dw}{dx} = \frac{12M_0}{a^3b}$. (268)

$$c w_{1} = -\frac{2 P_{0}}{a b} - \frac{6 M_{0}}{a^{2} b}, \qquad c w_{2} = \frac{4 P_{0}}{a b} + \frac{6 M_{0}}{a^{2} b},$$

$$c \frac{d w}{d x} = \frac{6 P_{0}}{a^{2} b} + \frac{12 M_{0}}{a^{3} b},$$
(269)

Lösung der homogenen Gleichung des kurzen Stabes für vorgeschriebene Randkräfte. Zur einfachen Verwendung der Theorie im Bauwesen wird die allgeLösung der homogenen Gleichung des kurzen Stabes für vorgeschriebene Randkräfte. 143

meine Lösung (260) der homogenen Gleichung für symmetrische und antimetrische Randkräfte angegeben. Bei Symmetrie verschwinden die ungeraden Funktionen der Lösung (260) mit U_2 und U_3 , bei Antimetrie die geraden Funktionen mit U_1 und U_4 . Das Ergebnis lautet mit den Abkürzungen*

 $\cos \xi \operatorname{\mathfrak{Coj}} \xi = \eta_1, \quad \sin \xi \operatorname{\mathfrak{Sin}} \xi = \eta_4, \quad \cos \xi \operatorname{\mathfrak{Sin}} \xi = \eta_2, \quad \sin \xi \operatorname{\mathfrak{Coj}} \xi = \eta_3, \quad \lambda = \frac{\iota}{L}$ folgendermaßen:

b

U

Symmetrischer Belastungsfall:

a)

$$w = \frac{4 P_0}{L b c} (U_1 \eta_1 + U_4 \eta_4), \quad (270)$$

$$w = \frac{4 P_0}{L^2 b c} [U_1 (\eta_2 - \eta_3) + U_4 (\eta_2 + \eta_3)], \quad (270)$$

$$M = 2 P_0 L (U_1 \eta_4 - U_4 \eta_1), \quad (270)$$

$$M = 2 P_0 [U_1 (\eta_2 - \eta_3) - U_4 (\eta_2 - \eta_3)], \quad (270)$$

$$U_1 = \frac{\cos \frac{\lambda}{2} \operatorname{Col} \frac{\lambda}{2}}{\operatorname{Cin} \lambda + \operatorname{Sin} \lambda}, \quad (310)$$

$$U_4 = \frac{1}{\sin \lambda + \sin \lambda}$$

a)

Antimetrischer Belastungsfall:

Abb. 141.

$$w = \frac{4 P_0}{L b c} (U_2 \eta_2 + U_3 \eta_3), \qquad (272)$$

$$\frac{dw}{dx} = \frac{4 P_0}{L^2 b c} [U_2 (\eta_1 - \eta_4) + U_3 (\eta_1 + \eta_4)]$$

$$M = 2 P_0 L (U_2 \eta_3 - U_3 \eta_2), \qquad Q = 2 P_0 [U_2 (\eta_1 + \eta_4) - U_3 (\eta_1 - \eta_4)]$$

$$U_2 = -\frac{\cos \frac{\lambda}{2} \sin \frac{\lambda}{2}}{\sin \lambda - \sin \lambda}, \qquad U_3 = -\frac{\sin \frac{\lambda}{2} \cos \frac{\lambda}{2}}{\sin \lambda - \sin \lambda}.$$

$$w = \frac{4 M_0}{L^2 b c} (U_1 \eta_1 + U_4 \eta_4), \qquad (271)$$

$$\begin{split} & \frac{d \, w}{d \, x} = \frac{4 \, M_0}{L^3 \, b \, c} \left[U_1(\eta_2 - \eta_3) + U_4(\eta_2 + \eta_3) \right], \\ & M = 2 \, M_0 \left(U_1 \, \eta_4 - U_4 \, \eta_1 \right), \\ & 2 \, M_0 \left(U_1 \, \eta_4 - U_4 \, \eta_1 \right), \end{split}$$

$$Q = \frac{\frac{1}{L} \left[U_1(\eta_2 + \eta_3) - U_4(\eta_2 - \eta_3) \right],}{\left[U_1 = \frac{\sin\frac{\lambda}{2} \operatorname{Col}\left[\frac{\lambda}{2} - \cos\frac{\lambda}{2} \operatorname{Col}\left[\frac{\lambda}{2} \right] \right]}{\operatorname{Col}\left[\lambda + \sin\lambda \right]},$$
$$\frac{\sin\frac{\lambda}{2} \operatorname{Col}\left[\frac{\lambda}{2} + \cos\frac{\lambda}{2} \operatorname{Col}\left[\frac{\lambda}{2} \right] \right]}{\left[\operatorname{Col}\left[\frac{\lambda}{2} + \cos\frac{\lambda}{2} \operatorname{Col}\left[\frac{\lambda}{2} \right] \right]},$$

$$a = -\frac{\sin \frac{1}{2} \cos \frac{1}{2} + \cos \frac{1}{2} \sin \frac{1}{2}}{\sin \lambda + \sin \lambda}$$

$$\begin{split} w &= \frac{4 M_0}{L^2 b c} (U_2 \eta_2 + U_3 \eta_3), \quad (273) \\ \frac{d w}{d x} &= \frac{4 M_0}{L^3 b c} [U_2 (\eta_1 - \eta_4) + U_3 (\eta_1 + \eta_4)], \\ M &= 2 M_0 (U_2 \eta_3 - U_3 \eta_2), \\ Q &= \frac{2 M_0}{L} [U_2 (\eta_1 + \eta_4) - U_3 (\eta_1 - \eta_4)], \\ U_2 &= -\frac{\sin \frac{\lambda}{2} \operatorname{\mathfrak{Sin}} \frac{\lambda}{2} - \cos \frac{\lambda}{2} \operatorname{\mathfrak{Cof}} \frac{\lambda}{2}}{\operatorname{\mathfrak{Sin}} \lambda - \sin \lambda}, \\ U_3 &= \frac{\sin \frac{\lambda}{2} \operatorname{\mathfrak{Sin}} \frac{\lambda}{2} + \cos \frac{\lambda}{2} \operatorname{\mathfrak{Cof}} \frac{\lambda}{2}}{\operatorname{\mathfrak{Sin}} \lambda - \sin \lambda} \end{split}$$

Abb. 142.

$$\eta_{1} = 1 - \frac{2^{2}}{41}\xi^{4} + \frac{2^{4}}{81}\xi^{8} - \frac{2^{6}}{121}\xi^{12} \pm \cdots, \qquad \eta_{2} = \xi - \frac{2}{31}\xi^{3} - \frac{2^{2}}{51}\xi^{5} + \frac{2^{3}}{71}\xi^{7} + \frac{2^{4}}{91}\xi^{9} - \frac{2^{5}}{111}\xi^{11} - \frac{2^{6}}{131}\xi^{13} \pm \cdots$$
$$\eta_{4} = \xi^{2} - \frac{2^{3}}{61}\xi^{6} + \frac{2^{5}}{101}\xi^{10} - \frac{2^{7}}{141}\xi^{14} + \cdots, \qquad \eta_{3} = \xi + \frac{2}{31}\xi^{3} - \frac{2^{2}}{51}\xi^{5} - \frac{2^{3}}{71}\xi^{7} + \frac{2^{4}}{91}\xi^{9} + \frac{2^{5}}{111}\xi^{11} \mp \cdots.$$

BIBLIOTHEK PADERBORN

Der gerade Stab auf elastischer Unterlage.

Unstetige Ansätze: a) für Einzellasten, b) für veränderliches Trägheitsmoment. a) Bei einem nach beiden Seiten unendlich ausgedehnten Stabe darf der Angriffspunkt einer jeden Einzellast P_k und eines jeden Kräftepaares M_k als Symmetriepunkt angesehen werden, so daß der Verschiebungs- und Spannungszustand eines ausgezeichneten Querschnitts im Abstand x_k , (ξ_k) von dem Lastangriff P_k , M_k durch Superposition gefunden wird (Abb. 143).

$$w = \frac{1}{2 L b c} \sum P_{k} (\zeta_{1k} + \zeta_{2k}), \qquad \frac{d w}{d x} = -\frac{1}{L^{2} b c} \sum P_{k} \zeta_{2k}, \\ M = \frac{L}{4} \sum P_{k} (\zeta_{1k} - \zeta_{2k}), \qquad Q = -\frac{1}{2} \sum P_{k} \zeta_{1k}. \end{cases}$$
(274)

Bei stetiger Belastung werden die Kräfte P_k durch $p(x)Ld\xi$ und die Summenbildung durch Integration ersetzt.

Die Schnittkräfte aus der beliebigen Belastung eines unendlich langen Stabes gelten auch für den Stab mit einer vorgeschriebenen Länge l, wenn neben der

Belastung die den Enden a, b zugeordneten Schnittkräfte M_a , Q_a , M_b , Q_b des unendlich langen Stabes als äußere Kräfte wirken. Überlagert man diese Schnittkräfte nachträglich mit einer Zusatzlösung, welche für die negativen Kräfte $(M_a \dots Q_b)$ als Randkräfte des Stabes l berechnet wird, so sind die Bedingungen für Gleichgewicht, Elastizität und geometrische Verträglichkeit unter den Einzellasten erfüllt. Damit kann die Lösung für den kurzen Stab ohne Zerlegung in stetige Integrationsbereiche angegeben werden. Die Randkräfte werden nach Abschn. 27 in symmetrische und antimetrische Anteile zerlegt, um das Ergebnis aus den bekannten Teillösungen (270) bis (273) unmittelbar zu entwickeln.

b) Die Bestimmung der Integrationskonstanten läßt sich auch bei wechselndem Trägheitsmoment umgehen, wenn die Lösung (260) für jeden Abschnitt (i-1), ides Trägers mit der vorgeschriebenen Belastung und den Schnittkräften M_{i-1} , Q_{i-1} , M_i , Q_i als äußeren Kräften angeschrieben wird. Diese zunächst unbekannten Schnittkräfte sind aus der Kontinuität der Formänderung des Stabes an den Intervallgrenzen bestimmt. An jedem Querschnitt i ist die gegenseitige Verschiebung $\delta_1^{(4)}$ und die gegenseitige Verdrehung $\delta_2^{(4)}$ der beiden i benachbarten Querschnitte Null. Bei zwei verschiedenen Trägheitsmomenten, also einfacher Unterteilung des Stabes ist daher nach dem Superpositionsgesetz

$$\delta_{1} = \delta_{10} - Q_{i} \,\delta_{11} - M_{i} \,\delta_{12} = 0, \qquad (275)$$

$$\delta_{2} = \delta_{20} - Q_{i} \,\delta_{21} - M_{i} \,\delta_{22} = 0.$$

Hierbei bezeichnen δ_{11} , δ_{12} nach S. 159 die gegenseitigen Verschiebungen der Querschnitte infolge $-Q_i = 1$ und $-M_i = 1$, δ_{22} , δ_{21} die gegenseitigen Verdrehungen der beiden Querschnitte infolge von $-M_i = 1$ und $-Q_i = 1$ (Abb. 144).

Beispiel zu a).

Die Schnittkräfte in dem Träger eines Brückenrahmens. (Abb. 145, 146.) Abmessungen 'des Trägers: l = 11.5 m, b = 2.0 m, h = 0.8 m, J = 0.0853 m⁴, E = 210000 kg/cm². Der Leitwert c des Ansatzes (255) liegt zwischen den Grenzen 10 < c < 200 kg/cm³. Die Untersuchung

Unstetige Ansätze: a) für Einzellasten, b) für veränderliches Trägheitsmoment. 145

wird daher für die beiden Grenzwerte durchgeführt, die Rechnung für $c = 10 \text{ kg/cm}^3$ angegeben und das Ergebnis für $c = 200 \text{ kg/cm}^3$ in () hinzugefügt. Nach Gl. (259) ist

$$L = \sqrt[4]{\frac{4 \cdot 2100\,000 \cdot 0,0853}{2,0 \cdot 10\,000}} = 2,447 \,\mathrm{m} \,(1,157 \,\mathrm{m}) \,.$$

Die Stützen des Rahmens übertragen die Belastung des Überbaues aus Eigengewicht, Nutzlast und Wind. Hierbei ergeben sich die folgenden Längskräfte der Pfosten:

$$P_1 = 83 \text{ t}, \quad P_2 = 91 \text{ t}, \quad P_3 = 99 \text{ t}, \quad P_4 = 107 \text{ t}$$

1. Lösung für den unendlich langen Stab. Nach (274) wird

$$c\,\overline{w} = \frac{1}{2 \cdot 2,447 \cdot 2,0} \sum_{k=1}^{k-4} P_k \left(\zeta_{1k} + \zeta_{2k} \right) = 0,1022 \sum_{k=1}^{k-4} P_k \left(\zeta_{1k} + \zeta_{2k} \right),$$

$$\overline{M} = \frac{2,447}{4} \sum_{k=1}^{k-4} P_k \left(\zeta_{1k} - \zeta_{2k} \right) = 0,6116 \sum_{k=1}^{k-4} P_k \left(\zeta_{1k} - \zeta_{2k} \right), \qquad \overline{Q} = -\frac{1}{2} \sum_{k=1}^{k-4} P_k \zeta_{1k}$$

Die Lasten wirken in gleichen Abständen, die auf ein Vielfaches einer Länge $a = \alpha L$ bezogen werden. Daher werden die Funktionen

weiden. Daher weiden die Funktionen $c\overline{w}(\xi), \overline{M}(\xi), \overline{Q}(\xi)$ auch nur für eine Last P = 1 t berechnet $(c\overline{w}_0, \overline{M}_0, \overline{Q}_0)$ und an jedem Querschnitt die mit den einzelnen Lasten $P_1 \dots P_4$ erweiterten Beträge vorzeichengemäß addiert.

Abb. 146.

 $x = n \cdot a$, $n = 0, 1, 2 \dots 23$, a = 0.5 m, $\xi = n \alpha = x/L$.

n	x	Ę	e ^{- Ę}	sin Ş	cos Ę	ζ1	ζ2	$(\zeta_1+\zeta_2)$	$(\zeta_1-\zeta_2)$	$c \overline{w}_0$	\overline{M}_0	$\overline{Q_0}$
0	0	0	I	0	I	I	0	I	I	0,1022	0,6116	- 0,500
1	0,5	0,204	0,815	0,202	0,979	0,798	0,105	0,903	0,033	0,0984	0,3875	-0,399
		0,409	0,004	0,390	0,910	0,010	0,204	0,074	0,340	0,0094	0,2120	-0,305
•					· .							
			$c \overline{w} =$	$\sum_{k=1}^{k=4} P_k$	c \overline{w}_{0k} ,	$\overline{M} =$	$=\sum_{k=1}^{k=4} P_k$	<i>M</i> _{0k} ,	$\overline{Q} = \sum_{k=1}^{k=1}^{k=1}$	$\sum_{i=1}^{4} P_k \overline{Q}_{0k}$		

Die Superposition mit $P_1 = 83$ t. ..., $P_4 = 107$ t ergibt:

n	0	4	9	10	II	12	13	14	19	23	
c w M Q	5,6 -16,5 + 7,07	13,2 30,6 +44,7 -38,3	20,5 37,8 +53,5 -45,6	16,1 46,3 +48,8 -58,2	7.3 -17,3 -10,9	t/m ² mt t					
B	eyer, Baust	tatik, 2. A			10						

Der gerade Stab auf elastischer Unterlage.

2. Zusatzlösung für den kurzen Stab. Die negativen Schnittkräfte des unendlich langen Stabes für

 $n = 0: -\overline{M} = -16,5 \text{ mt}, -\overline{Q} = 7,07 \text{ t};$ $n = 23: -\overline{M} = -17,3 \text{ mt}, -\overline{Q} = -10,9 \text{ t}$ werden als Randkräfte des kurzen Stabes eingeführt und nach (270) bis (273) in symmetrische (1) und antimetrische (2) Anteile zerlegt:

$$^{(1)}P_0 = 9.0 \text{ t}, \quad {}^{(1)}M_0 = 16.9 \text{ mt}, \quad {}^{(2)}P_0 = -1.93 \text{ t}, \quad {}^{(2)}M_0 = -0.4 \text{ mt}.$$

Berechnung von $\eta_1 \ldots \eta_4$, bezogen auf die Abszisse $u = \mu \cdot L$

12	14	μ	$\sin \mu$	$\cos \mu$	Sin μ	Coj µ	η_1	η_4	η_2	η_3
12 13	0,25 0,75	0,102 0,307	0,101 0,302	0,995 0,953	0,102 0,311	1,005 1,047	I 0,998	0,010 0,094	0,101 0,296	0,102 0,316
λ =	$=\frac{l}{L}=$	$\frac{11,5}{2,447} =$	4,70,	$\sin \lambda = -$	- 0,999,	$\sin \frac{\lambda}{2}$	= 0,711,	cos -	$\frac{\lambda}{2} = -0,$	703,
$\frac{\lambda}{2} =$	$=\frac{4,70}{2}=$	= 2,35,	($\sin \lambda = 5$	4,969,	$\mathfrak{Sin} \; \frac{\lambda}{2}$	= 5,195 ,	Coj ·	$\frac{\lambda}{2} = 5,29$	0.

Symmetrische Lasten ${}^{(1)}P_0=9,0$ t. Gl. (270)

$$U_1 = \frac{-0.703 \cdot 5.290}{54,969 - 0.999} = -0.0689, \qquad U_4 = \frac{0.711 \cdot 5.195}{54,969 - 0.999} = 0.0684.$$

n	$U_1 \eta_1$	$U_4 \eta_4$	(1) _C W _P	$U_1 \eta_4$	$U_4 \eta_1$	(1) <i>M</i> _P	$U_1(\eta_2\!+\!\eta_3)$	$U_4(\eta_2{-}\eta_3)$	(1)Q _P
12 13	-0,069 -0,069	0,001 0,006	-0,50 -0,46	-0,001 -0,006	0,068 0,068	-3,04 -2,82	-0,014 -0,042	0 0,001	-0,25 -0,74
				•				•	•

Symmetrische Lasten $^{(1)}M_0 = 16,9$ mt. Gl. (271)

$$U_1 = \frac{0,711 \cdot 5,290 + 0,703 \cdot 5,195}{54,969 - 0,999} = 0,1374\,, \quad U_4 = \frac{-0,711 \cdot 5,290 + 0,703 \cdot 5,195}{54,969 - 0,999} = -0,0020.$$

n	$U_1 \eta_1$	$U_4 \eta_4$	(1) _C WM	$U_1 \eta_4$	$U_4 \eta_1$	(1) M _M	$]U_1(\eta_2+\eta_3)$	$U_4(\eta_2\!-\!\eta_3)$	⁽¹⁾ Q _M
12	0,137	0	0,77	0,001	-0,002	0,10	0,028	0	0,39
13	0,137	0	0,77	0,013	-0,002	0,51	0,084	0	1,16
		•							•10
		· ·							

In der gleichen Weise wird die Berechnung für die antimetrischen Anteile durchgeführt. Das Ergebnis ist für die andere Stabhälfte symmetrisch oder antimetrisch.

n	0	4	9	IO	11	12	13	14	19	23	
(1) _C W _P	3,74	1,07	-0,37	-0,46	-0,50	-0,50	-0,46	-0.37	1.07	3.74	t/m ²
(1)C WM	-2,93	0,05	0,76	0,77	0,77	0,77	0,77	0,76	0,05	-2,93	
(2) C WP	-0,78	-0,25	-0,01	-0,00	-0,00	0,00	0,00	0,01	0,25	0;78	
(2)C WM	0,07	-0,00	-0,01	-0,01	-0,00	0,00	0,01	0,01	0,00	-0,07	
$^{(1)}M_{P}$	0	-6,96	-3,79	-2,82	- 3,04	-3,04	-2,82	-3.79	-6,96	0	mt
$^{(1)}M_M$	16,90	10,26	1,29	0,51	0,10	0,10	0,51	1,29	10,26	16,90	
(2) Mp	0	1,55	0,63	0,39	0,13	-0,13	-0,39	-0,63	-1.55	0	
(2) M M	-0,40	-0,26	-0,06	-0,03	-0,01	0,01	0,03	0,06	0,26	0,40	
$^{(1)}Q_{P}$	-9,00	0,23	1,15	0,74	0,25	-0,25	-0.74	- 1.15	-0.23	9,00	t
(1)QM	0	-4,69	-1,94	-1,16	-0,39	0,39	1,16	1,94	4,69	0	
(2)QP	1,93	-0,03	-0,50	-0,51	-0,51	-0,54	-0,51	-0.03	-0,49	1.93	
(2)QM	0	0,10	0,05	0,05	0,04	0,04	0,05	0,05	0,10	0	

BIBLIOTHEK PADERBORN Unstetige Ansätze: a) für Einzellasten, b) für veränderliches Trägheitsmoment. 147

3. Die Superposition der Ergebnisse aus 1. und 2. liefert Bodendruck und Schnittkräfte: Für $c = 10 \text{ kg/cm}^3$

n	0	2	4	5	6	7	8	9	10	11	
$c w = \overline{p}$ M Q	5,7 0 0	10,3 7,9 16,3	14,1 35,2 40,3 -42,7	15,5 17,3 -28,2	16,7 7,2 -11,8	17,8 6,1 5,7	18,7 11,7 23,5	19,5 29,4 42,6 -48,4	20,0 10,5 -28,6	20,4 0,6 8,4	t/m ² mt t
n	12	13	14	15	16	17	18	19	21	23	
$cw = \bar{p}$ M Q	20,7 1,4 11,9	20,8 13,2 32,8	$ \begin{array}{r} 20,9 \\ 33,1 \\ 53,8 \\ -45,2 \end{array} $	20,7 17,0 -24,3	20,3 10,4 -4,2	19,5 13,1 16,0	18,8 26,0 35,4	17.5 48.3 53.3 -53.7	·13,6 11,0 -22,8	8,8 0 0	t/m ² mt t

Für $c = 200 \text{ kg/cm}^3$

			and the second design of the s								
n	0	2	4	5	6	7	8	9	IO	II	
$c w = \bar{p}$ M Q	-2,9 0 0	9,6 1,2 6,6	19,0 21,1 36,5 -46,5	18,5 2,7 -27,5	17,0 -6,6 -9,8	17,0 -7,4 6,9	19,0 0,6 24,9	20,5 18,0 44,8 -46,2	19,0 - 0,1 - 26,3	17,2 -8,7 -8,3	t/m ² mt t
n	12	13	14	15	16	17	18	19	21	23	
$c w = \overline{p}$ M Q	17,6 -8,7 8,7	20,2 0,4 27,6	22,4 19,5 49,1 	21,3 0,1 -27,9	20,0 -8,8 -7,3	20,8 -7,4 12,8	23,4 4,5 34,9	24,5 28,0 59,2 -47,8	12,5 1,2 -8,7	-3,6 0	t/m ² mt t

> a-7,5

 \overline{p} und M sind in Abb. 146 dargestellt. Bei Anwendung des Geradliniengesetzes für \overline{p} als Näherungslösung ergeben sich die in der Abb. 146 mit - - -- gezeichneten Bodenpressungen und Biegungsmomente.

Beispiel zu b).

BIBLIOTHEK PADERBORN

Die Berechnung der Sohle eines Trockendocks. (Abb. 147.) Spannungen bei gefüllter Dock-kammer infolge Eigengewicht, Wasser und Erd-druck. Ein Unterdruck auf die Sohle soll nicht vorhanden sein. Der Leitwert c des Ansatzes (255) liegt zwischen den Grenzen $10 < c < 200 \text{ kg/cm}^3$. Die Untersuchung wird daher für die beiden Grenzwerte durchgeführt, die Rechnung für $c = 10 \text{ kg/cm}^3$ angegeben und das Ergebnis für $c = 200 \text{ kg/cm}^3$ in () hinzugefügt.

$$l = 38,0$$
 m, $a = 7,5$ m, $b = 1,0$ m,

$$J_{1} = 9,22 \text{ m}^{4}, \quad J_{a} = \infty, \quad E = 210\,000 \text{ kg/cm}^{2},$$

Gl. (259)
$$L = \sqrt[4]{\frac{4 \cdot 2100\,000 \cdot 9,22}{1,0 \cdot 10\,000}} = 9,38 \text{ m (4,44 m)}.$$

$$G = 230 \text{ t/m}, \quad (c = 0,605 \text{ m}), \quad W = 77 \text{ t/m},$$

$$E_h = 78 \text{ t/m}, \quad E_v = 26 \text{ t/m},$$

$$g = 10.8 \text{ t/m}^2$$
, $p_w = 12.4 \text{ t/m}^2$, $p = g + p_w = 23.2 \text{ t/m}^2$.

Die äußeren Kräfte an der Seitenwand werden im Schnittpunkt der beiden Achsen I, II Abb. 144 zusammengefaßt.

$$P_0 = 256 \text{ t/m}, \quad H_0 = 1 \text{ t/m}, \quad M_0 = 85,5 \text{ mt/m}.$$

10*

-53.0m

2-38.0

c-200 kg/cm3

-10 kg/cm3

n-g+n

5,44 10,80

TEL)

10 kg/cm 3

Abb. 147.

版粉

 $\bar{n}(x)$ 25

-80 -60

-40 -20 0 +20 +40

30 35 mt/m

t/m

Der gerade Stab auf elastischer Unterlage.

Bodendruck für Seitenwand und Sohle und Formänderungsgrößen δ_{11} , δ_{12} usw. für die rechte Hälfte des Systems (andere Hälfte symmetrisch) infolge:

$$\bar{p}_{30} = \frac{P_0}{ab} - \frac{6M_0}{a^2b} = \frac{256}{7,5 \cdot 1,0} - \frac{6(-85,5)}{7,5^2 \cdot 1,0} = 43,280 \text{ t/m}^2, \quad \bar{p}_{10} = p = 23,200 \text{ t/m}^2,$$

$$\frac{c \, d \, w_{a\,0}}{dx} = \frac{12\,M_0}{a^3b} = \frac{12\,(-85,5)}{7,5^3 \cdot 1,0} = -2,440, \quad \frac{c \, d \, w_{10}}{dx} = 0;$$

$$\delta_{10} = \bar{p}_{30} - p_{10} = 43,280 - 23,200 = 20,080 \text{ t/m}^2 (20,080 \text{ t/m}^2),$$

$$\delta_{20} = \frac{c \, d \, w_{a\,0}}{dx} - \frac{c \, d \, w_{10}}{dx} = -2,440 - 0 = -2,440 \text{ t/m}^3 (-2,440 \text{ t/m}^3).$$

$$2. - Q_1 = 1 \text{ t/m}, \quad -Q_2 = -1 \text{ t/m}.$$

Seitenwand:

77

 $\overline{p}_{31} = -\frac{4Q_2}{ab} = -\frac{4\cdot 1}{7,5\cdot 1,0} = -0.534 \text{ t/m}^2, \\ \frac{c \, d \, w_{a\,1}}{d \, x} = \frac{6Q_2}{a^2 \, b} = \frac{6\cdot 1}{7,5^2\cdot 1,0} = 0.107 \text{ t/m}^3.$

Sohle (symmetrischer Belastungsfall, Abb. 139, $P_0 = 1$ t) Gl. (270):

Für $x = \frac{l}{2}$ wird nach Gl. (270):

 $\overline{\eta}_1 = \cos{\frac{\lambda}{2}}$ Coj $\frac{\lambda}{2} = -0,439 \cdot 3,853 = -1,693$, $\overline{\eta}_2 = \cos{\frac{\lambda}{2}}$ Sin $\frac{\lambda}{2} = -0,439 \cdot 3,723 = -1,638$, $\bar{\eta}_4 = \sin \frac{\lambda}{2} \, \Im \ln \frac{\lambda}{2} = 0.898 \cdot 3.723 = 3.345, \ \bar{\eta}_3 = \sin \frac{\lambda}{2} \, \Im \ln \frac{\lambda}{2} = 0.898 \cdot 3.853 = 3.460,$ $U_1 = \frac{-1,693}{27,901} = -0,061$, $U_4 = \frac{3,345}{27,901} = 0,120$, $\bar{p}_{l_1} = \frac{4 \cdot 1}{9,38 \cdot 1,0} \ (0,061 \cdot 1,693 + 0,120 \cdot 3,345) = 0,215 \ t/m^2$, $\frac{c \, d \, w_{l_1}}{d \, x} = \frac{4 \cdot 1}{9.38^2 \cdot 1.0} \, (0.061 \cdot 5.098 + 0.120 \cdot 1.822) = 0.024 \, \text{t/m}^3;$ dx $\delta_{11} = \bar{p}_{31} - \bar{p}_{l_1} = -0.534 - 0.215 = -0.749 \text{ t/m}^2 (-0.983 \text{ t/m}^2)$, $\delta_{21} = \frac{c \, d \, w_{\sigma_1}}{d \, x} - \frac{c \, d \, w_{l_1}}{d \, x} = 0,107 - 0,024 = 0,083 \, \text{t/m}^3 \, (0,005 \, \text{t/m}^3) \, .$

3. $-M_1 = 1 \text{ mt/m}, -M_2 = 1 \text{ mt/m}.$ Seitenwand:

 $\bar{p}_{32} = -\frac{6\,M_2}{a^2b} = -\frac{6\,(-1)}{7,5^2\cdot 1} = 0,107\,\mathrm{t/m^2}\,, \quad c\frac{d\,w_{a_2}}{d\,x} = +\frac{12\,M_0}{a^3\,b} = \frac{12\,(-1)}{7,5^3\cdot 1,0} = -0,029\,\mathrm{t/m^3}\,.$ Sohle (symmetrischer Belastungsfall, Abb. 140, $M_0 = -1$ mt) Gl. (271): $U_1 = \frac{3,460 + 1,638}{27,901} = 0,183 \;, \quad U_4 = -\; \frac{3,460 - 1,638}{27,901} = -\; 0,065 \;,$

$$\begin{split} \bar{p}_{l_2} &= \frac{4 \, (-1)}{9,38^2 \cdot 1,0} \, (-0,183 \cdot 1,693 - 0,065 \cdot 3,345) = 0,024 \, \text{t/m}^2 \,, \\ \frac{c \, d \, w_{l_2}}{d \, x} &= \frac{4 \, (-1)}{9,38^3 \cdot 1,0} \, (-0,183 \cdot 5,098 - 0,065 \cdot 1,822) = 0,005 \, \text{t/m}^3 \,; \\ \delta_{12} &= \bar{p}_{32} - \bar{p}_{l_2} = 0,107 - 0,024 = 0,083 \, \text{t/m}^2 \, (0,005 \, \text{t/m}^2) \,, \\ \delta_{22} &= \frac{c \, d \, w_{a_2}}{d \, x} - \frac{c \, d \, w_{l_2}}{d \, x} = -0,029 - 0,005 = -0,034 \, \text{t/m}^3 \, (-0,074 \, \text{t/m}^3) \,. \end{split}$$

Unstetige Ansätze: a) für Einzellasten, b) für veränderliches Trägheitsmoment.

Bedingungen für die Schnittkräfte aus der Kontinuität (275):

 $\begin{array}{l} 20,080 + 0,749\,Q_2 - 0,083\,M_2 = 0 \;, \\ - \;\; 2,440 - 0,083\,Q_2 + 0,034\,M_2 = 0 \;, \end{array}$

woraus

$$M_2 = M_1 = 8,67 \text{ mt/m} (31,40 \text{ mt/m})$$

 $-Q_2 = Q_1 = -25,85 \text{ t/m} (-20,25 \text{ t/m}).$

$$-Q_2 = Q_1 = -25,85 \text{ t/m} (-20,25 \text{ t/m})$$

4. Schnittkräfte in der Sohle aus $p = 23,2 \text{ t/m}^2$.

C

 $\bar{p}(x) = p = 23.2 \text{ t/m}$, M = 0, Q = 0.

5. Schnittkraite in dei	Sonie aus $M_1, M_2, Q_1, -Q_2$.	Berechnung von $\eta_1 \ldots \eta_4$.
-------------------------	-----------------------------------	---

x	45	$\sin \xi$	cos ξ	Sin &	Coję	η_1	η_4	η_2	η_3	$\eta_2 + \eta_3$	$\eta_2 - \eta_3$
0 2,72 5,44	0 0,29 0,58	0 0,286 0,548	1 0,958 0,836	0 0,294 0,613	I 1,042 1,173	1 1 0,981	0 0,084 0,336	0 0,282 0,513	0 0,298 0,644	0 0,580 1,157	0 -0,016 -0,131
							•			1	

Symmetrische Belastung $^{(1)}P_{0}=-$
 $Q_{2}=-$ 25,85 t/m. Gl. (270). Nach 2. ist
 $U_{1}=-$ 0.061, $U_{4}=0,120$.

1/1 - 4/14	PP P	$U_1\eta_4$	$U_4 \eta_1$	$^{(1)}M_P$	$U_1(\eta_2+\eta_3)$	$U_4(\eta_2 - \eta_3)$	$^{(1)}Q_{P}$
0,061 0 0,061 0,010 0,060 0,040	-0,67 -0,56 -0,22	0 0,005 0,021	0,120 0,110 0,118	-58,3 -60,7 -67,6	0 0,035 0,070	0 0,002 0,016	0 -1,71 -2,79
	0,061 0 0,061 0,010 0,060 0,040 	$\begin{array}{c ccccc} 0,061 & 0 & -0,67 \\ 0,061 & 0,010 & -0,56 \\ 0,060 & 0,040 & -0,22 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,061 0 -0,67 0 0,120 0,061 0,010 -0,56 -0,005 0,110 0,060 0,040 -0,22 -0,021 0,118 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetrische Belastung ${}^{(1)}M_0=M_2=8,47~{\rm mt/m},$ Gl. (271). Nach 3. ist $U_1=0,183,$ $U_4=-0,065.$

x	$U_1 \eta_1$	$U_4 \eta_4$	(1) PM	$U_1\eta_4$	$U_4 \eta_1$	⁽¹⁾ <i>M</i> _M	$U_1(\eta_2+\eta_3)$	$U_4(\eta_2-\eta_3)$	(1)Q _M
0	0,183	0	0,07	0	-0,065	1,10	0	0	0
2,72	0,183	-0,005	0,07	0,002	-0,065	1,14	0,106	0,001	0,19
5,44	0,180	-0,022	0,06	0,061	-0,064	2,12	0,212	0,009	0,37

6. Die Superposition der Ergebnisse aus 4. und 5. liefert Bodendruck und Schnittkräfte: Für $c = 10 \text{ kg/cm}^3$

x	0	2,72	5,44	8,08	10,8	13,5	16,16	19,0	26,5	m
$ \begin{array}{c} \bar{p}(x) \\ M(x) \\ Q(x) \end{array} $	22,6	22,7	23,I	23,7	24,5	25,6	27,0	28,6	32,8	t/m ²
	-57,2	-59,6	-65,5	-72,0	-75,5	-69,5	-45,0	8,7	—	mt/m
	0	- 1,5	- 2,4	- 2,1	0,6	5,2	13,4	25,9	—	t/m

x	0	2,72	5,44	8,08	10,8	13,5	16,16	19,0	26,5	m
$ \begin{array}{c} \bar{p}(x) \\ M(x) \\ Q(x) \end{array} $	23,0 I;2 0	23,0 0,5 -0,4	23,0 I,4 - I,0	23,0 -5,2 -1,7	23,4 - 10,0 - 1,8	24,6 -13,1 - 0,2	23.7 - 5,0 6,6	29,1 +31,4 20,3	33,7	t/m ² mt/m t/m

Für $c = 200 \text{ kg/cm}^3$

p und M sind in Abb. 147 dargestellt.

Bei Anwendung der Näherungsrechnung nach Foerster: Taschenb. f. Bauing. Bd. 2, 5. Aufl. S. 585 ergeben sich die in der Abb. 147 mit --- gezeichneten Bodenpressungen und Biegungsmomente.

Der gerade Stab auf elastischer Unterlage.

Anwendung der Theorie auf die angenäherte Berechnung des Trägerrostes. Wird eine Anzahl von Nebenträgern (a) winkelrecht zu n Unterzügen (b)

Abb. 148.

derart in gleichen Abständen e angeordnet, daß e im Verhältnis zur Länge l der Unterzüge klein ist, so kann die von einem Nebenträger H auf den Unterzug k übertragene Kraft $X_{H,k}$ durch $q_{H,k} \cdot e$ ausgedrückt werden. Nach einem Grenzübergang $e \equiv \Delta x \rightarrow dx$ erhält $q_{H,k} = q_k(x)$ die Bedeutung einer stetigen Belastung des Unterzuges k. Die Einsenkung des Schnittpunktes (H, k) als Punkt des Nebenträgers H ist

$$w_{H,k} = \delta_{H,k\,0} - \sum_{i=1}^{i=n} X_{H,i} \,\delta_{H,k\,i} = \delta_{H,k\,0} - \sum_{i=1}^{i=n} q_{H,i} e \,\delta_{H,k\,i}.$$
 (276)

Hierbei bedeuten $\delta_{H,k0}$, $\delta_{H,ki}$ die Einsenkung des Punktes k des Nebenträgers H infolge dessen Belastung ϕ , P und $-X_i = 1$. Da die Nebenträger gleichartig ausgebildet

werden, sind die Vorzahlen $\delta_{H,ki}$ stets die gleichen, also $\delta_{H,ki} = \delta_{ki}$. Bei einer allgemeinen Belastung ist $\delta_{H,k0} = \delta_{k0}(x)$ für veränderliches H eine Funktion von x. Für die Einsenkung des Punktes (H, i) als Punkt des Unterzuges i gilt

Für die Einsenkung des Punktes (H, i) als Funkt des Onterzüges i gift $EJ_i w_{i,H}^{(IP)} = q_{i,H} = q_{H,i}$. Setzt man dieses in den Ansatz (276) ein, so entstehen mit einem Übergang von H auf die Variable x und mit $\delta_{ki}^* = eEJ_i \delta_{ki}$ insgesamt n simultane Differentialgleichungen vierter Ordnung von der Form

$$\sum_{i=1}^{n} \delta_{ki}^* w_i^{(IV)}(x) + w_k(x) = \delta_{k0}(x) , \qquad k = 1 \dots n .$$
 (277)

Ist die Belastung in x konstant, stetig oder unstetig, so gilt von $\delta_{k0}(x)$ dasselbe. Für den Trägerrost mit einem Unterzug lautet der Ansatz (277) folgendermaßen:

$$EJ \frac{d^4w(x)}{dx^4} + \frac{w(x)}{e\,\delta_{11}} = \frac{\delta_{10}(x)}{e\,\delta_{11}}.$$
(278)

Winkler, E.: Die Lehre von der Elastizität und Festigkeit. Prag 1867. — Zimmermann, H.: Die Berechnung des Eisenbahnoberbaues. Berlin 1888. — Schwedler, J. W.: Beiträge zur Theorie des Eisenbahnoberbaues. Z. Bauverw. 1889 S. 86. — Freund, A.: Theorie der gleichmäßig elastisch gestützten Körper. Beton u. Eisen 1917 S. 144; 1918 S. 105. — Hayashi, K.: Theorie des Trägers auf elastischer Unterlage. Berlin 1921. — Derselbe: Fünfstellige Tafeln der Kreis- und Hyperbelfunktionen. Berlin 1921. — Wieghardt, K.: Über den Balken auf elastischer Unterlage. Z. angew. Math. Mech. 1922 S. 165. — Müller, E.: Über die lastverteilende Wirkung von Brückenbelägen. Bauing. 1923. — Freund, A.: Beitrag zur Berechnung der biegsamen Gründungssohlen. Z. Bauwes. 1924 S. 109. — Craemer, H.: Zur Berechnung geschlossener Kastenrahmen auf elastischem Baugrund. Bauing. 1925 S. 527. — Derselbe: Zur praktischen Statik der Kranbahnfundamente. Bauing. 1925 S. 417. — Schilling, W.: Statik der Bodenkonstruktion der Schiffe. Berlin 1925. — Pasternack, P.: Die baustatische Theorie biegefester Balken und Platten auf elastischer Bettung. Beton u. Eisen 1926. — Sanden, K., u. F. Schleicher: Zur Theorie des Balkens auf elastischer Unterlage. Beton u. Eisen 1926 S. 83. — Freund, A.: Erweiterte Theorie für die Berechnung von Schleusenböden und ähnlichen Gründungskörpern. Z. Bauwes. 1927 S. 73. — Chwalla, E.: Die Stabilität eines elastisch gelagerter Konstruktionen. Z. angew. Math. Mech. 1927 S. 354. — Neményi, P.: Theorie durchlaufender trägerloser Fundamentstreifen auf elastischer Bettung. Beton u. Eisen 1928 S. 448. — Geckeler, J. W.: Elastostatik, Kap. 3 im Handb. Physik Bd. 6: Mechanik der elastischen Körper S. 178. Berlin 1928. — Fritz, H.: Einflußfläche des biegefesten Balkens auf elastischer Bettung. Beton u. Eisen 1930 S. 442. — Scheidig: Die Berechnungsgrundlagen durchgehender Fundamente und die neue Baugrundforschung. Bautechn. 1931 S. 275. — Neményi, P.: Tragwerke auf elast. Unterlage. Z. angew. Math. Mech. 1931 S. 450.