

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

20. Die Biegelinie des geraden Stabes

urn:nbn:de:hbz:466:1-74292

Visual Library

Ableitung der Differentialgleichung aus den Schnittkräften.

Die Funktionen ω_R und ω''_P sind symmetrisch zur Mitte, die Funktion ω''_D ist antimetrisch; ω_D und ω'_D , ω_M und ω'_M , ω_{φ} und ω'_{φ} , ω_P und ω'_P , ω_r und ω'_r sind einander spiegelbildlich gleich. Die Funktionswerte sind in den Tabellen 22, 23, S. 116, 117 und 121 enthalten.

Ę	0	I	2	3	4	5	6	.7	8	9		
0,0	0,0000	0,0001	0,0004	0,0009	0,0015	0,0024	0,0034	0,0046	0,0059	0,0074	0,0090	0,9
I	0090	0108	0127	0147	0169	0191	0215	0240	0266	0292	0320	8
2	0320	0348	0378	0407	0438	0469	0500	0532	0564	0597	0630	7
3	0630	0663	0696	0730	0763	0796	0829	0862	0895	0928	0960	6
4	0960	0992	1023	1054	1084	III4	1143	1171	1198	1225	1250	5
5	1250	1274	1298	1320	1341	1361	1380	1397	1413	1427	1440	4
6	1440	1451	1461	1469	1475	1479	1481	1481	1480	1476	1470	3
7	1470	1462	1451	1439	1424	1406	1386	1363	1338	1311	1280	2
8	1280	1247	1210	1171	1129	1084	1035	0984	0929	0871	0810	I
0,9	0,0810	0,0745	0,0677	0,0605	0,0530	0,0451	0,0369	0,0282	0,0192	0,0098	0,0000	0,0
		9	8	7	6	5	4	3	2	I	0	Ę

Tabelle	23.	Funi	ktions	werte	ω_{τ}	und	ω'_{τ} .
			100				

38

976 965

)61

958

956

982

975

973

71

970

20. Die Biegelinie des geraden Stabes.

Der Verschiebungszustand eines Stabes, dessen Querschnittsabmessungen gegenüber der Stablänge klein sind und dessen Oberfläche durch parallele Erzeugende gebildet wird, ist durch die elastische Bewegung der Querschnitte, also nach (42) durch deren Komponenten u_0, v_0, w_0 und ψ_x, ψ_y, ψ_z bestimmt. Sie beschreiben die elastische Linie des Stabes durch die Ausbiegung, die Krümmung und Windung der Achse.

Beziehung zwischen Kraftebene und Biegungsebene. Die Verdrillung ψ_x der Stabachse wird meist durch die Form des Querschnitts und durch die Eintragung der äußeren Kräfte vermieden. Die Spur s der Kraftebene verläuft dann durch den Querpunkt des Stabquerschnitts, der in der Regel mit dem Schwerpunkt zusammenfällt, und schließt im allgemeinen mit der Hauptträgheitsachse z des Querschnitts einen Winkel (z, s) ein. Zwei benachbarte Querschnitte neigen sich relativ zueinander um eine die Stabachse winkelrecht kreuzende Achse. Sie ist die Nullinie nder Normalspannungen σ_x und damit der zu s zugeordnete Durchmesser der Trägheitsellipse, welcher mit der positiven Richtung der Hauptträgheitsachse z den Winkel (z, n) bildet.

$$\operatorname{tg}(\widehat{z,s}) \cdot \operatorname{tg}(\widehat{z,n}) = -\frac{J_s}{J_y}.$$
(192)

 J_{ν} und J_{z} sind die Hauptträgheitsmomente des Querschnitts. Die Biegungsebene mit der elastischen Linie steht senkrecht zur Nullinie.

In der Regel fällt die Spur s der Kraftebene mit einer Hauptträgheitsachse zusammen $(z, s = 0 \text{ oder } 180^{\circ})$. Dann ist die Kraftebene gleichzeitig Ebene der Biegung.

Ableitung der Differentialgleichung aus den Schnittkräften. Die Annahme einer eben en Verschiebung der Querschnitte schließt die Mitwirkung der Schubspannungen bei der Formänderung des Stabes aus. Die technische Theorie der Balkenbiegung ist daher nur brauchbar, wenn die Schubspannungen gegenüber den Normalspannungen so klein sind, daß die Annahme einer mittleren Gleitung $\gamma_{xy,0}$ und $\gamma_{xz,0}$ für alle infinitesimalen Prismen des Stabteils ds genügt.

Die beiden Querschnitte, welche einen infinitesimalen Stabteil ds begrenzen, sind beim geraden Stabe parallel, beim gekrümmten Stabe im Winkel $d\alpha$ geneigt. Decken sich die Spur s der Kraftebene und die Hauptträgheitsachse z, also auci.

Kraftebene und Ebene der Biegung, so ist die relative Verschiebung ε (z) ds zweier Punkte der beiden Querschnitte nach S. 28 durch die gegenseitige Verschiebung der benachbarten Schwerpunkte $\varepsilon_0 ds$ und die gegenseitige Neigung $d\psi_y$ bestimmt. Sie wird durch die inneren Kräfte σdF und eine Temperaturänderung hervorgerufen, die linear angenommen und durch die Änderung t im Schwerpunkt und den Temperaturabfall Δt zwischen den Randpunkten i und a beschrieben wird. $\Delta t = t_i - t_a$.

$$\varepsilon(z) \, ds = \left(\dot{\varepsilon}_0 + \frac{d\psi_v}{ds}z\right) ds + \left(\alpha_t t + \frac{\alpha_t \, \varDelta t}{h}z\right) ds \,. \tag{193}$$

Die Ausdrücke $d\psi_y/ds$ und $\alpha_t \Delta t/h$ sind die Anteile der Krümmung der elastischen Linie infolge der Normalspannungen σ_x und der Temperaturänderung Δt . Sie ist durch die Definition des positiv drehenden Biegungsmomentes M_y in bezug auf die Lage des Koordinatensystems Abb. 109 negativ. Wird mit φ der Winkel bezeichnet, welchen die Tangente an die Biegelinie mit der x-Achse einschließt, so bedeutet ein positives Biegungsmoment eine Abnahme von φ beim Fortschreiten in der

x-Richtung. Der Kontingenzwinkel $d\varphi$ ist daher negativ und mit Verwendung von (51)

$$\frac{d\varphi_{y}}{ds} = \left| -\frac{1}{\varrho} = -\frac{d\varphi}{ds} = \frac{M_{y}}{E J_{y}} + \frac{\alpha_{i} \, \Delta t}{h} \right|. \tag{194}$$

Für ds darf bei kleinen Ausbiegungen an Stelle des Bogenelements ds die Strecke dx gesetzt werden. Mit derselben Begründung wird in dem Ausdruck der Krümmung als Funktion von w die erste Ableitung vernachlässigt.

$$-\frac{1}{\varrho} \approx -\frac{d^2 w}{d x^2} = \frac{M_y}{E J_y} + \frac{\alpha_t \, \varDelta t}{h} \,. \tag{195}$$

Obwohl die Voraussetzungen des Ansatzes nur bei Stäben mit konstantem Querschnitt zutreffen, wird die Gleichung der Biegelinie nach (195) auch bei Stäben mit veränderlichem Querschnitt angewendet, um eine einfache und für technische Bedürfnisse brauchbare Lösung zu erhalten. Nach Einführung eines Vergleichsträgheitsmomentes J_e ist

$$-E J_{c} \frac{d^{2}w}{dx^{2}} = \frac{J_{c}}{J_{y}} M_{y} + E J_{c} \frac{\alpha_{t} \Delta t}{h}.$$
(196)

Da die Schubspannungen τ_{xz} bei einer ebenen Verschiebung des Querschnitts im Vergleich zu den Normalspannungen σ_x nurklein sein können, genügt die Abschätzung ihres Einflusses auf die Ausbiegung w durch eine mittlere Winkeländerung $\gamma_{xz,0}$. Die relative Verschiebung zweier benachbarter Querschnitte ist dann $dw = \gamma_{xz,0} dx$, so daß nach Abb. 110

$$\frac{d^2w}{dx^2} = \frac{d\gamma_{xz,0}}{dx} = \frac{d}{dx} \left(\frac{\varkappa Q_z}{GF}\right)$$

Beide Anteile können als lineare Differentialbeziehungen addiert werden:

$$-\frac{d\varphi}{dx} = -\frac{d^2w}{dx^2} = \frac{M_y}{EJ_y} + \frac{\alpha_t \,\Delta t}{h} - \frac{d}{dx} \left(\frac{\varkappa Q_z}{GF}\right) = w \,. \tag{197}$$

In der Regel wird auf den aus den Schubspannungen herrührenden relativ kleinen Anteil der Ausbiegung w verzichtet.

122

IBLIOTHER

Integration der Differentialgleichung.

Integration der Differentialgleichung. Die Differentialgleichung ist eine Beziehung zwischen Verschiebungszustand und Schnittkräften. Sie wird durch zweimalige Integration gelöst, wenn Biegungsmoment M und Querkraft Q als Funktionen von x bekannt sind. Die Integrationskonstanten C_1, C_2 ergeben sich aus den Bedingungen für w und φ an den Stützpunkten oder Anschlußquerschnitten.

$$-\varphi = -\frac{dw}{dx} = \int \frac{M}{E f} dx - \frac{\varkappa Q}{G F} + \int \frac{\alpha_t \Delta t}{h} dx + C_1, \qquad (198)$$

123

$$-w = \int dx \int \frac{M}{EJ} dx - \int \frac{\varkappa Q}{GF} dx + \int dx \int \frac{\alpha_{\star} \Delta t}{h} dx + C_1 x + C_2.$$
(199)

Die Aufteilung einer beliebigen Belastung nach $(P_1 \ldots P_m \ldots)$ führt zur Superposition $(M_1 \ldots M_m \ldots)$ und $(Q_1 \ldots Q_m \ldots)$, so daß der Verdrehungswinkel φ und die Ausbiegung w aus einzelnen Anteilen durch Superposition nach

 $\varphi = \varphi_1 P_1 + \varphi_2 P_2 + \cdots + \varphi_m P_m + \cdots$, $w = w_1 P_1 + w_2 P_2 + \cdots + w_m P_m + \cdots$ entwickelt werden können.

Bei konstanter Querschnittsfläche treten die Steifigkeitsziffern EJ und GF vor das Integrationszeichen. Dann sind die Anteile des Verdrehungswinkels φ_0 und der Ausbiegung w_0 aus Querkraft und Temperaturveränderung in (198), (199)

$$\varphi_0 = \frac{\varkappa Q}{GF} - \frac{\alpha_t \, \Delta t}{h} \, x \,, \qquad \psi_0 = \frac{\varkappa M}{GF} - \frac{\alpha_t \, \Delta t}{h} \, \frac{x^2}{2} \,. \tag{200}$$

Sie werden mit Rücksicht auf die Fehlerquellen des Ansatzes oft auch bei veränderlichem Querschnitt verwendet. Die Schubverteilungszahl \varkappa ist durch die Form des Querschnitts bestimmt, für die Fläche F wird ein mittlerer Betrag verwendet.

Die Formänderung des geraden Stabes mit gleichförmig verteilter Belastung. Statisch bestimmte Stützung. $J = J_e$ Ansatz: EJw'' = -M(x)

$$\begin{split} & \sum_{\substack{x = 1 \\ w = 0, w' = 0}}^{n} & \sum_{\substack{x = 0 \\ w = 0, w' = 0}}^{n} & \sum_{\substack{x = 0 \\ w = 0, w' = 0}}^{n} & \sum_{\substack{x = l/2 \\ w = 0 \\ inf. \text{ Symmetrie}}}^{n} & x = l \\ \text{Randbedingungen der Formänderungen.} & \text{Abb. 111.} \\ & M = -\frac{p x^2}{2}, & M = \frac{p x (l-x)}{2}, \\ -EJw'' = -\frac{p l^2}{2} \xi^2, & -EJw'' = \frac{p l^2}{2} \xi (1-\xi), \\ & w = \frac{p l^4}{24 E J} (3-4\xi+\xi^4), & w = \frac{p l^4}{24 E J} (\xi-2\xi^3+\xi^4). \\ & w' = \varphi = -\frac{p l^3}{2 E E^3} (1-\xi^3), & w' = \varphi = \frac{p l^3}{24 E J} (1-6\xi^2+4\xi^3) \end{split}$$

Rechnerische und zeichnerische Entwicklung der Biegelinie. Der Kontingenzwinkel der Biegelinie ist nach S. $122 - d\varphi = w dx = + d\psi$, so daß die Differentialgleichung (197) in der folgenden Weise gelöst werden kann:

 $\frac{d^2w}{dx^2} = -w = -\frac{d\psi}{dx}; \quad \frac{dw}{dx} = \varphi = -\psi + C_1; \quad w = -\int \psi \, dx + C_1 x + C_2.$ (201a)

An einer beliebigen Stelle $x = x_k$ der Biegelinie ist

$$w = w_k$$
, $\psi = \int_{x_a}^{x_k} w \, dx = \psi_k$, $\varphi_k = -\psi_k + C_1$, (201b)

BLIOTHEK

am Randpunkt $x = x_a$ (Abb. 112) ist $w = w_a$, $\varphi = \varphi_a$, $\psi = \psi_a = 0$. Daher wird

$$C_1 = \varphi_a$$
, $C_2 = w_a - x_a \varphi_a$, $w_k = w_a + \varphi_a (x_k - x_a) - \int_{x_a}^{x_a} \psi \, dx$.

Die partielle Integration der Lösung liefert

$$w_{k} = w_{a} + \varphi_{a}(x_{k} - x_{a}) - x_{k} \int_{x_{a}}^{x_{a}} d\psi + \int_{x_{a}}^{x} x \, d\psi$$

= $w_{a} + \varphi_{a}(x_{k} - x_{a}) - \int_{x_{a}}^{x_{k}} (x_{k} - x) \, d\psi$. (201 c)

Wird $k \to b$ und $(w_b - w_a)$ Null oder zunächst Null gesetzt, so ist mit $d\psi = \operatorname{tv} dx$ und $x_b - x_a = l$

$$\varphi_{a} = \varphi_{a,0} = \frac{1}{l} \int_{x_{a}}^{x_{b}} (x_{b} - x) w \, dx = A_{w}, \quad \varphi_{k} = \varphi_{k,0} = A_{w} - \int_{x_{a}}^{x_{k}} w \, dx = Q_{w,k},$$

$$w_{k} - w_{a} = w_{k,0} = A_{w} (x_{k} - x_{a}) - \int_{x_{a}}^{x_{k}} (x_{k} - x) w \, dx = M_{w,k}.$$
(202)

Erhält demnach der Ausdruck w(x) die Bedeutung einer ideellen, von den elastischen Eigenschaften des Stabes abhängigen Streckenlast, so kann für $w_b - w_a = 0$ die

ADERBORN

Verdrehung φ_a des Endquerschnitts a des Stabes als Stützkraft A_w eines Trägers l auf frei drehbaren Stützen, die Verdrehung φ_k eines Querschnitts k als dessen Querkraft Q_w, k , die Ausbiegung w_k eines Punktes kder Achse als Biegungsmoment M_w, k des Stabes infolge der ideellen Belastung w(x) berechnet werden. Hierfür stehen die zeichnerischen oder rechnerischen Methoden des Abschn. 13 zur Verfügung.

Diese Rechenvorschrift ergibt sich auch unmittelbar durch Vergleich der Differentialgleichung der Biegelinie mit derjenigen für das Biegungsmoment M eines Stabes als Funktion der Streckenlast p(x) (48).

$$\frac{d^2w}{dx^2} = -w(x), \qquad \frac{d^2M}{dx^2} = -p(x).$$
 (203)

Aus (201) wird mit dem Ausdruck w(x) nach (197)

$$E J_{c} \varphi_{k} = E J_{c} \varphi_{a} - \int_{x_{a}}^{x_{k}} M \frac{J_{e}}{J} dx + \varkappa \frac{E J_{c}}{G F_{c}} \left(Q_{k} \frac{F_{e}}{F_{k}} - Q_{a} \frac{F_{e}}{F_{a}} \right) - E J_{c} \int_{x_{a}}^{x_{k}} \frac{\alpha_{t} \Delta t}{h} dx, \quad (204a)$$

$$E J_{c} w_{k} = E J_{c} w_{a} + E J_{c} \varphi_{a} (x_{k} - x_{a}) - \int_{x_{a}}^{x_{k}} (x_{k} - x) M \frac{J_{e}}{J} dx + \frac{E J_{e}}{G F_{e}} \int_{x_{a}}^{x_{k}} \varkappa Q \frac{F_{c}}{F} dx$$

$$\cdot \qquad - E J_{c} \int_{x_{a}}^{x_{k}} (x_{k} - x) \frac{\alpha_{t} \Delta t}{h} dx. \quad (204b)$$

Werden die Verdrehung und die Verschiebung der Querschnitte k bei $w_b = w_a = 0$ mit $\varphi_{k,0}$, $w_{k,0}$ bezeichnet (Abb. 112), so ist mit

$$l = x_b - x_a, \quad \xi = \frac{x_k - x_a}{l}, \quad \xi' = \frac{l - (x_k - x_a)}{l}, \varphi_k = \frac{w_b - w_a}{l} + \varphi_{k,0}, \quad w_k = w_b \,\xi + w_a \,\xi' + w_{k,0}.$$
(205)

Rechnerische und zeichnerische Entwicklung der Biegelinie.

Um diese einfache Rechnung auch bei Stäben mit anderen Randbedingungen beizubehalten, werden die Verschiebungen der Endquerschnitte zunächst Null gesetzt und die auf die Sehne der Biegelinie bezogenen relativen Verschiebungen und Verdrehungen $w_{k,0}$, und $\varphi_{k,0}$ bestimmt. Der wirkliche Verschiebungszustand mit den absoluten Verschiebungen und Winkeländerungen ergibt sich durch die nachträgliche Erfüllung der Stützenbedingungen.

Die Biegelinie kann demnach zeichnerisch ebenso wie die Linie der Biegungsmomente nach (93) aus der gedachten Belastung $EJ_e \cdot \mathfrak{w}(x)$ oder der zu ihr äquivalenten Gruppe von Einzelkräften $EJ_e \cdot \mathfrak{W}_m$ mit Kraft- und Seileck entwickelt werden. Die Polweite ist in beiden Ansätzen (93) und (203) gleich der Einheit mit der Dimension $\mathfrak{m} \cdot \mathfrak{t}/\mathfrak{m}$ und $\mathfrak{m} \cdot \mathfrak{m}$ t. Die Ordinate des Seilecks wird in beiden Fällen im Maßstab der Zeichnung gemessen und liefert mit H = 1 t oder mit $H_{\mathfrak{w}} = 1$ tm² multipliziert das Moment in mt oder die Durchbiegung $EJ_e w$ in tm³. Die Wahl einer Polweite H in t oder $H_{\mathfrak{w}}$ in tm² ändert nur den Maßstab. Die Polweite $H_{\mathfrak{w}} = EJ_e$ ergibt mit der Belastung $EJ_e \mathfrak{w}(x)$ als Ordinate der Seilkurve $\eta = \frac{EJ_e w}{EJ_e} = w$ im

Maßstab der Zeichnung. Die Polweite EJ_c/n liefert dann als Ordinate der Seilkurve

 $EJ_cw:(EJ_c/n)$. Dies ist bei dem Zeichnungsmaßstab 1:n die wirkliche Größe der Ausbiegung w. Um demnach eine Biegelinie als Seilkurve zu entwickeln, deren Abszissen im Maßstab 1:n aufgetragen sind und deren Ordinaten w_k natürliche Größe erhalten sollen, wird zu den ideellen Kräften (elastischen Gewichten) $EJ_c\mathfrak{M}_m$ ein Richtungsbüschel mit einer Polweite EJ_c/n gezeichnet. Die Bezugsachse für die absoluten Verschiebungen ist durch die Bewegung der Stützpunkte bestimmt.

Diese zeichnerische Darstellung kann auch unmittelbar eingesehen werden, wenn w(x) dx nach (197) als der Kontingenzwinkel zweier um dx benachbarter Tangenten der Biegelinie verwendet wird. Sie ergeben ein Richtungsbüschel, das die erwähnten ideellen Gewichte w(x) dx als Strecken auf einer Parallelen zur Ausbiegungsrichtung im Abstand 1 vom Pol abschneidet.

Die EJ_c fachen Verdrehungen und Verschiebungen werden in der Regel nur für den Anteil der Biegungsmomente angegeben. Daher wird zunächst die der vorgelegten Belastung zugeordnete Funktion des reduzierten Moments $EJ_c w(x) = MJ_c/J$ punktweise gebildet, und durch eine Gruppe von äquivalenten Einzelkräften $\dots EJ_c \mathfrak{B}_{m-1}, EJ_c \mathfrak{B}_m \dots$ ersetzt, die in den Intervallgrenzen $\dots (m-1), m \dots$ einer Unterteilung des Integrationsbereiches a, b wirken. Die Angleichung der Funktion w(x) durch einen Geradenzug liefert ebenso wie in (91)

$$\mathfrak{B}_{m} = \frac{c_{m}}{6} \left(\mathfrak{w}_{m-1} + 2 \,\mathfrak{w}_{m} \right) + \frac{c_{m+1}}{6} \left(2 \,\mathfrak{w}_{m} + \mathfrak{w}_{m+1} \right) = \mathfrak{B}_{m,1} + \mathfrak{B}_{m,2},$$

$$\mathfrak{B}_{0} = \frac{c_{1}}{6} \left(2 \,\mathfrak{w}_{0} + \mathfrak{w}_{1} \right); \qquad \mathfrak{B}_{n} = \frac{c_{n}}{6} \left(\mathfrak{w}_{n-1} + 2 \,\mathfrak{w}_{n} \right).$$
(206)

Bei gleichgroßen Intervallen $c_m = c_{m+1} = c$ ist

$$\frac{1}{2}\mathfrak{W}_m = \mathfrak{W}_{m-1} + 4\mathfrak{W}_m + \mathfrak{W}_{m+1}.$$

Die Angleichung der Funktion als Parabelabschnitt durch 3 aufeinanderfolgende Punkte führt nach (92) bei gleichgroßen Intervallen c zur Verwendung von

$$\frac{\frac{12\,\mathfrak{W}_{m}}{c} = \mathfrak{w}_{m-1} + 10\,\mathfrak{w}_{m} + \mathfrak{w}_{m+1}, \\ \frac{12\,\mathfrak{W}_{0}}{c} = \frac{1}{2}\,(7\,\mathfrak{w}_{0} + 6\,\mathfrak{w}_{1} - \mathfrak{w}_{2}), \qquad \frac{12\,\mathfrak{W}_{n}}{c} = \frac{1}{2}\,(7\,\mathfrak{w}_{n} + 6\,\mathfrak{w}_{n-1} - \mathfrak{w}_{n-2}).$$

$$(207)$$

Damit ist die Grundlage gefunden, um die Form der Biegelinie mit $w_a = 0$, $w_b = 0$ durch Rechnung oder Zeichnung zu bestimmen. Die Strecke ab wird als einfacher Träger angesehen, an dem eine Gruppe von positiven oder negativen Kräften $\mathfrak{B}_0,\ldots,\mathfrak{B}_m,\ldots,\mathfrak{B}_n$ angreift. Die Rechnung liefert nach (202)

$$A_{\mathfrak{w}} = \varphi_{a,0}, \qquad B_{\mathfrak{w}} = \varphi_{b,0}, \qquad Q_{\mathfrak{w},k} = \varphi_{k,0}, \qquad M_{\mathfrak{w},k} = w_{k,0}.$$

Der wirkliche Verschiebungszustand φ_a , φ_b , w_k entsteht durch Berücksichtigung der Stützenbedingungen nach (205).

Untersuchung der Formänderung eines Auslegeträgers.

Abb. 114.

1. Zeichnerische Entwicklung der Biegelinie für eine vorgeschriebene Belastung (Abb. 114a):

Querschnittsgestaltung: J_c/J (Abb. 114b), $J_c = J_a = 0,806 \text{ m}^4$. Angabe der Momente: graphisch oder rechnerisch nach Abschn. 13. Reduzierte Ordinaten des Seilecks: $\eta' = \eta \cdot J_c/J$ (Abb. 114d). Reduzierte Momente: $M' = M \cdot J_c/J = \eta' \cdot H = \mathfrak{w}_m$.

Berechnung der EJ_c fachen elastischen Gewichte aus der ideellen Belastung M' nach (206):

$$\mathfrak{B}_{0} = \frac{c_{1}}{6} \left(2 \mathfrak{w}_{0} + \mathfrak{w}_{1} \right), \qquad \mathfrak{B}_{n} = \frac{c_{n}}{6} \left(\mathfrak{w}_{n-1} + 2 \mathfrak{w}_{n} \right),$$
$$\mathfrak{B}_{m} = \frac{c_{m}}{6} \left(\mathfrak{w}_{m-1} + 4 \mathfrak{w}_{m} + \mathfrak{w}_{m+1} \right).$$

Abbildung der elastischen Gewichte mit Hilfe der Werte $\sum_{0}^{\infty} \mathfrak{B}_{k}$ in einem Richtungsbüschel mit der Polweite Hm.

126

BIBLIOTHEK PADERBORN

Zahlenbeispiel.

	-											
992	c _m	M _m	$\frac{J_o}{J_m}$	$\mathfrak{w}_m = M_m J_c / J_m$	\mathfrak{W}_{m-1} + 2 \mathfrak{W}_m	c_m/6	$2 \mathfrak{W}_m$ $+\mathfrak{W}_{m+1}$	c _{m+1} /6	10 m, 1	B:m, 2	2B	$\sum_{k=1}^{m} \mathfrak{W}_{k}$
-					w	m-1 + ·	$4 m_m +$	\mathfrak{w}_{m+1}		$c_m/6$	and a	0
0	-	0,0	1,000	0,0	-	-	33,9	0,333	-	11,3	11,3	11,3
I	2,00	35,9	0,945	33,9			198,5		1	0,333	66,2	77.5
2	2,00	71,8	0,876	62,9	100		374.2			0,333	124.7	202,2
3	2,00	107,6	0,824	88,7			526,9			0,333	175,6	377,8
4	2,00	143,5	0,761	109,2			648,7			0,333	216,2	594,0
5	2,00	179,4	0,687	123,2		733,8 0,333						838,6
6	2,00	215,3	0,612	131,8		783,2 0,333						1099,6
7	2,00	251,1	0,529	132,8		774,6 0,333						1357,8
8	2,00	287,0	0,389	111,6	669,3 0,333						223,I	1580,9
9	2,00	322,9	0,279	90,I	541,2 0,333						180,4	1761,3
IO	2,00	358,8	0,193	69,2	419,0 0,					0,333	139,7	1901,0
II	2,00	394.7	0,132	52,I	314,2					0,333	104,7	2005,7
12	2,00	430,5	0,085	36,6	125,3	0,333	110,7	0,208	41,8	23,1	64,9	2070,6
12a	1,25	364,5	0,103	37,5	224,5					0,208	46,8	2117,4
13	1,25	300,8	0,126	37,9	113,3	0,208	113,1	0,250	23,6	28,3	51,9	2169,3
14	1.50	229,0	0,163	37.3	221,8					0,250	55,5	2224,8
14a	1,50	166,9	0,208	34.7	205,4					0,250	51,4	2276,2
15a	1.50	106,6	0,275	29,3	170,3 0,					0,250	42,6	2318,8
16a	1,50	52,5	0,351	18,4	The local		102,9			0,250	25,7	2344,5
-	-		-		-0.	1	1	1	1 0			

17 | 1,50 | 0,0 | 0,463 | 0,0 | 18,4 | 0,250 | - | - | 4,6 | - | 4,6 | 2349,1 Mit $H_{\mathfrak{W}} = E J_{e'}(n \cdot m)$ ergeben nach S. 125 die Ordinaten $\eta_{\mathfrak{W}}$ des Seileckes unmittelbar die m fach verzerrten Durchbiegungen w (Abb. 114 e).

$n = 100;$ $m = 10;$ $H_{10} = 1692,6 \text{ tm}^2;$ Durchbiegungen $w = \eta_{10}/10$ in mm:	E = 2100000	t/m^2 ;	$E J_e = 1692600 \mathrm{tm}^2;$
Durchbiegungen $w = \eta_{10}/10$ in mm:	n = 100;	m = 10;	$H_{10} = 1692,6 \text{ tm}^2;$
	Durchbiegungen	$w=\eta_{\rm 10}/10$	in mm:

 m
 o
 I
 2
 3
 4
 5
 6
 7
 8
 9
 10
 II
 I2
 I2a
 I3a
 I4
 I4a
 I5a
 I6a
 I7

 w
 0.0
 -1.2
 -2.2
 -3.2
 -3.9
 -4.3
 -4.5
 -4.4
 -3.9
 -3.2
 -2.3
 -1.2
 0.0
 0.8
 I.6
 2.7
 3.8
 4.9
 6.1
 7.3

2. Einflußlinie der EJ_c fachen Durchbiegung δ_m des Querschnittes d. Biegelinie des Trägers unter der Last 1 t in d nach (168). Ermittlung der \mathfrak{B} -Gewichte wie unter 1. Berechnung von $A_{\mathfrak{W}}$, $D_{\mathfrak{W}}$, $\delta_{\mathfrak{m},1}$ unabhängig von der vorgeschriebenen Stützung des Trägers als Auflagerkräfte und Durchbiegungen eines Balkens auf den Stützen a und d. Nachträgliche Einführung der Stützenbedingung $\delta_b = 0$ durch Drehen der Achse um a:

δ.	$\delta = \delta_b,$ $\delta = \delta_m$	1 + 6	$\delta_{b,2} = \delta_{b,1} \cdot \delta_{m,2}$	$+\vartheta \cdot l_1 =$	=0; ϑ= ξ=	$= - \delta_{b,1}/l_1$ $= x/l_1;$; 0	$\zeta = -x/\zeta$	$\begin{array}{l} \mathcal{P} \cdot x = -\\ l_1 + l_2 \end{array};$	0,1.5;
m	ζ	Ę m	- M m	Je/Jm	$-\mathfrak{w}_m = -M_m J_c/J_m$	— 193 m	ζ	5'	$-\mathfrak{W}_m\zeta_m$	- 233 m ζ;
0 1 2	0,0 1/17 2/17	0,0 1/1: 2/1:	0,00000 20,83333 21,66667	1,0000 0,9449 0,8761	0,00000 0,78741 1,46017	(0,26247) 1,53660 2,89611	0,00000 0,05882 0,11765	1,00000 0,94118 0,88235	0,09038 0,34073	1,44622 2,55538
m	$-Q_{n}$	v m	$-Q_{10} m c_m$	$-\delta_{m,1}$ $-M_{wn}$	$= \begin{vmatrix} -\delta_{m,2} \\ +\delta_{b,1} \cdot \xi \end{vmatrix}$	$-\delta_m$	D _{10,1}	$-\mathfrak{B}_{17} =$ - 23,734	$\frac{\sum_{0}^{16}\mathfrak{W}_m \zeta_m}{\sum_{0}} \zeta_m$	
0 1 2	0,00 31,17 29,63	000 220 560	0,00000 62,34440 59,27120	0,000 62,344 121,615	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0,0000 5 45,1829 87,2925	A _{10,1}	$-\mathfrak{W}_{0} =$ - 31,172	$\sum_{1}^{17}\mathfrak{B}_{m}\zeta'_{m}$	•
			$-\delta_l$, 1 = 205	$,9384 \text{ tm}^3$,		δ_m : Abb.	114 f.		

3. Einflußlinie der EJ_e fachen Verdrehung τ_m des Querschnittes d. Biegelinie des Trägers unter dem Angriff des Momentes $M_d = 1,0$ mt. Ermittlung der Gewichte wie unter 1. Die Verdrehungen φ_a , φ_b der Querschnitte a und b werden im Gegensatz zu 2. unter gleichzeitiger Berücksichtigung der Stützenbedingungen berechnet.

$$A_{\mathfrak{w}} - \mathfrak{W}_{0} = \sum_{1}^{12} \mathfrak{W}_{m} \xi_{m} = -2,25914 \text{ tm}^{3}. \qquad \qquad \mathcal{Q}_{\mathfrak{w},12} = \sum_{0}^{12} \mathfrak{W}_{m} \xi'_{m} = -2,37209 \text{ tm}^{3};$$

m	ξ_m	$-M_m$	J_c/J_m	$-\mathfrak{w}_m$	$-\mathfrak{W}_m$	ξ _m	ξ'_m	$-\mathfrak{B}_m\xi_m$	$-\mathfrak{B}_m \mathfrak{E}'_m$	$-Q_{\mathfrak{w},\mathfrak{m}}$	$-Q_{\mathfrak{w},m}c_m$	$-\delta_m$
0 I 2	0 1/12 2/12	0,00000 0,08333 0,16667	1,0000 0,9449 0,8761	0,00000 0,07874 0,14602	(0,02625) 0,15366 0,28961	0,00000 0,08333 0,16667	1,00000 0,91667 0,83333	 0,01280 0,04827	 0,14086 0,24134	0,00000 2,25914 2,10548	0,00000 4,51829 4,21097	0,0000 4,5183 8,7293
						•				•	•	2
	•		•	•	•			· ·	•	•	•	•

$$E J_{e}$$
 fache Verdrehung $\tau_{m} = \frac{\partial_{m}(100^{\circ})}{1,0 \text{ (m)}}$: Abb. 114g.

Ableitung der Biegelinie aus der Belastung. Die Biegelinie des geraden Stabes ist bisher aus den Schnittkräften M, Q entwickelt worden, die oft jedoch selbst nicht bekannt sind, sondern nur als Differentialbeziehung verwendet werden können.

$$\frac{dM}{dx} = Q, \qquad \frac{d^2M}{dx^2} = \frac{dQ}{dx} = -\phi(x).$$

Mit diesen lautet dann die Gleichung (197) der Biegelinie für $\Delta t = 0$ ohne Berücksichtigung der Querkraft:

$$\frac{J}{J_{e}}\frac{d^{2}(EJ_{e}w)}{dx^{2}} = -M, \quad \frac{d}{dx}\left(\frac{J}{J_{e}}\frac{d^{2}(EJ_{e}w)}{dx^{2}}\right) = -Q, \quad \frac{d^{2}}{dx^{2}}\left(\frac{J}{J_{e}}\frac{d^{2}(EJ_{e}w)}{dx^{2}}\right) = p(x), \quad (208)$$

für
$$J = J_o = \text{const}$$
 $E J \frac{d^2 w}{dx^2} = -M$, $E J \frac{d^3 w}{dx^3} = -Q$, $E J \frac{d^4 w}{dx^4} = p(x)$. (209)

Damit ist eine Differentialbeziehung zwischen Belastungsfunktion und Ausbiegung entstanden, deren Lösung für jeden stetigen Bereich getrennt mit vier Konstanten angeschrieben wird. Diese sind durch Bedingungen für die Formänderung und für die Schnittkräfte an den Stützen, den Stabenden und an den Unstetigkeitsstellen bestimmt.

Die Formänderung des geraden Stabes mit statisch unbestimmter Stützung. a) Gleichförmige Belastung $p, J = J_c$, Ansatz $EJw^{(IV)} = p$.

b) Unstetige Belastung durch eine Einzellast P. Der Angriffspunkt C der Last P teilt den Integrationsbereich in die Abschnitte a und b mit w_1 und w_2 . Für beide ist $E \int w^{(P)} = 0$. Die 8 Integrationskonstanten werden durch die Randbedingungen in A, B und C bestimmt. w und w' sind an den Stützpunkten Null, Auslenkung w und Biegungsmoment M an der Unstetigkeits-

Lösung der Differentialgleichung mit Differenzen

stelle C stetig und die Differenz der beiden Querkräfte Q, gleich der Last P (Abb. 116).

Lösung der Differentialgleichung mit Differenzen. Da ein geschlossenes Integral der Differentialgleichung in der Regel nicht angegeben werden kann, wird in die-

sem und ähnlichen Fällen eine Näherung verwendet, um die Funktionswerte wm einer regelmäßigen Punktfolge ... (m-1), m... des Integrationsbereiches lzu berechnen. An die Stelle der stetigen Integralkurve tritt damit ein der Kurve einbeschriebenes Vieleck. Die Differentialquotienten der stetigen Funktion werden durch Differenzenquotienten ersetzt. Die Differentialgleichung wird zur Differenzengleichung, deren Randbedingungen in bezug auf Richtung und Krümmung der elastischen Linie ebenfalls durch Differenzen ausgedrückt werden.

Der Integrationsbereich l der Funktion wird durch die regelmäßige Punktfolge ... (m-1), m... in n

gleiche Strecken geteilt. Der Teilpunkt m erhält die Abszisse $m \cdot \Delta x$ und die Ordinate $\overline{m m'} = w_m$. Wird die Integralkurve im Bereich von (m - 1), m, (m + 1)angenähert durch einen Parabelabschnitt durch die Punkte (m-1)', m', (m+1)'ersetzt, so ist im Punkte m

$$\frac{dw}{dx} = \frac{w_{m+1} - w_{m-1}}{2\Delta x}, \qquad \frac{d^2w}{dx^2} = \frac{w_{m-1} - 2w_m + w_{m+1}}{\Delta x^2}.$$
(210)

Die Richtung der Kurve in m', bestimmt durch dw/dx, wird damit angenähert durch die Richtung (m-1)', (m+1)' der Sehne beschrieben. Der zweite Differentialquotient kann bei flachen Kurven aus dem Kontingenzwinkel der Kurve in m'

Beyer, Baustatik, 2 Anfl., 2 Neudruck

- δ_m

0000 5183

7293

abgeleitet und angenähert durch den Unterschied der Richtungen der dem Punkte mbenachbarten Schnen ausgedrückt werden. Die gleichen Beziehungen gelten auch bei einer Funktion $d^2w/dx^2 = r$ für $d^3w/dx^3 = dr/dx$ und $d^4w/dx^4 = d^2r/dx^2$, so daß zur Beschreibung der geometrischen Eigenschaften der Funktion w in der Umgebung des Punktes m folgende Übergänge vollzogen werden:

$$\frac{dw}{dx} \rightarrow \frac{w_{m+1} - w_{m-1}}{2\Delta x}, \quad \frac{d^2w}{dx^2} \rightarrow \frac{w_{m+1} - 2w_m + w_{m-1}}{\Delta x^2}, \\ \frac{d^3w}{dx^3} = \frac{dr}{dx} \rightarrow \frac{r_{m+1} - r_{m-1}}{2\Delta x} = \frac{w_{m+2} - 2w_{m+1} + 2w_{m-1} - w_{m-2}}{2\Delta x^3}, \\ \frac{d^4w}{dx^4} = \frac{d^2r}{dx^2} \rightarrow \frac{r_{m+1} - 2r_m + r_{m-1}}{\Delta x^2} = \frac{w_{m+2} - 4w_{m+1} + 6w_m - 4w_{m-1} + w_{m-2}}{\Delta x^4}$$

$$(211)$$

Damit treten mit der Bezeichnung w_m für den EJ_c fachen Betrag der Durchbiegung ($w_m \equiv EJ_c w_m$) und mit $\overline{\zeta}_m$ für den reziproken Wert der Funktion $\zeta (\overline{\zeta}_m = J_m/J_c)$ die folgenden Differenzenbeziehungen an die Stelle der Differentialbeziehungen

$$- M_{m} \Delta x^{2} = \zeta_{m} (w_{m+1} - 2 w_{m} + w_{m-1}), - 2Q_{m} \Delta x^{3} = \overline{\zeta}_{m+1} w_{m+2} - 2\overline{\zeta}_{m+1} w_{m+1} + (\overline{\zeta}_{m+1} - \overline{\zeta}_{m-1}) w_{m} + 2\overline{\zeta}_{m-1} w_{m-1} - \overline{\zeta}_{m-1} w_{m-2}, \phi_{m} (x) \Delta x^{4} = \overline{\zeta}_{m+1} w_{m+2} - 2 w_{m+1} (\overline{\zeta}_{m+1} + \overline{\zeta}_{m}) + w_{m} (\overline{\zeta}_{m+1} + 4\overline{\zeta}_{m} + \overline{\zeta}_{m-1}) - 2 w_{m-1} (\overline{\zeta}_{m} + \overline{\zeta}_{m-1}) + w_{m-2} \overline{\zeta}_{m-1}.$$

$$(212)$$

Biegungsmoment M_m und Querkraft Q_m sind daher aus den Durchbiegungen w_m einer ausgezeichneten Punktfolge m bestimmt. \dot{p}_m ist die Ordinate der Belastungsfunktion im Punkt m. An die Stelle der stetigen Funktion $\dot{p}(x)$ tritt die unstetige Belastung nach einer Stufenlinie, die durch eine in den Intervallgrenzen angreifende Gruppe von Einzellasten $(\dot{p}\Delta x^3)\Delta x$ ersetzt wird (Abb. 119).

Die Randbedingungen w = 0 und M = 0 bedürfen keiner Diskussion, dagegen wird die Integralkurve zur Einführung der Randbedingung dw/dx in der Umgebung des Punktes 0 durch eine kubische Parabel ersetzt:

$$w_{m+1} = w_m + \frac{\Delta x}{1!} \left(\frac{dw}{dx}\right)_m + \frac{\Delta x^2}{2!} \left(\frac{d^2w}{dx^2}\right)_m + \frac{\Delta x^3}{3!} \left(\frac{d^3w}{dx^3}\right)_m$$
(213)

Bei Einspannung des Trägers im Querschnitt m = 0 ist $w_m = 0$ und $dw/dx_m = 0$, daher

$$w_1 = \frac{\Delta x^2}{2} \left(\frac{d^2 w}{d x^2} \right)_0 + \frac{\Delta x^3}{6} \left(\frac{d^3 w}{d x^3} \right)_0.$$

Für die kubische Parabel gilt

$$\left(\frac{d^2w}{dx^2}\right)_0 = \frac{w_1 - 2w_0 + w_{-1}}{\Delta x^2}, \quad \left(\frac{d^3w}{dx^3}\right)_0 = \text{const} = \frac{w_2 - 3w_1 + 3w_0 - w_{-1}}{\Delta x^3}, \quad (214)$$

so daß als Bedingung für die Einspannung des Trägers im Querschnitt m = 0 die folgende Beziehung entsteht:

$$w_{-1} = 3 w_1 - \frac{1}{2} w_2 \tag{215}$$

Die Rechenvorschrift wird an dem beiderseits eingespannten, gleichförmig belasteten Träger mit $\zeta = 1$ erläutert, um die Genauigkeit der Ergebnisse zu prüfen. Dabei wird der Integrationsbereich / durch die Punktreihe 0, 1, 2, 3, 4 in 4 Strecken Δx geteilt. Infolge

Symmetrie ist $w_1 = w_3$, so daß die Differenzengleichungen nur für die Punkte 1 und 2 aufgestellt werden (Abb. 118).

$$\frac{p}{EJ} \Delta x^4 = w_{-1} - 4 w_0 + 6 w_1 - 4 w_2 + w_3,$$

$$\frac{p}{EJ} \Delta x^4 = w_0 - 4 w_1 + 6 w_2 - 4 w_3 + w_4.$$

Hierzu treten die Randbedingungen $w_0 = 0$, $w_{-1} = 3w_1 - \frac{1}{2}w_2$. Die Verschiebungen w_1 und w_2 ergeben sich daher aus den folgenden beiden Gleichungen.

mit

$$w_{1} = 0.00171 \frac{p}{E} \frac{l^{4}}{I}, \qquad -8 w_{1} + 6 w_{2} = \frac{r}{E} \frac{J}{I} dx^{4}$$

$$w_{1} = 0.00171 \frac{p}{E} \frac{l^{4}}{I}, \qquad w_{2} = 0.00293 \frac{p}{E} \frac{l^{4}}{I}.$$

Die Momente werden mit w_1 und w_2 nach (212) berechnet.

 $10 w_1 -$

Trägermitte:
$$M_2 = -\frac{E J}{\Delta x^2} (w_1 - 2 w_2 + w_3) = \frac{15}{16} \frac{p l^2}{24} \approx \frac{p l^2}{24}$$
, (216)

Auflager:
$$M_0 = -\frac{E J}{\Delta x^2} (w_{-1} - 2 w_0 + w_1) = -\frac{33}{32} \frac{p l^2}{12} \approx -\frac{p l^2}{12}.$$
 (217)

Die Näherungsrechnung führt also trotz der geringen Anzahl der Intervalle auch für die Schnittkräfte zu relativ guten Ergebnissen, da die Unterschiede zwischen den Differential- und Differenzenquotienten selbst dann noch klein sind. Die Untersuchung muß nur im Bereiche von singulären Stellen der Funktion mit einer engeren Teilung wiederholt werden.

Ritter, A.: Die elastische Linie und ihre Anwendung auf den kontinuierlichen Balken. Zürich 1883. — Mohr, O.: Abhandlungen aus dem Gebiete der Techn. Mechanik 3. Aufl. Berlin 1928. — Hencky, H.: Die numerische Bearbeitung von partiellen Differentialgleichungen in der Technik. Z. angew. Math. Mech. 1922 S. 58. — Marcus, H.: Armierter Beton 1919 S. 107; außerdem: Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. Berlin 1924. — Runge, C., u. H. König: Vorlesungen über numerisches Rechnen. Berlin 1924. — Nádai, A.: Die elastischen Platten. Berlin 1925.

21. Die Biegelinie von gekrümmten Stäben und Stabzügen.

Die ebene Verschiebung eines Querschnitts wird auch bei gekrümmten Stäben als brauchbare Annahme verwendet, wenn eine Symmetrieebene vorhanden ist, die mit der Kraftebene zusammenfällt. Sie wird dann ebenso wie beim geraden Stabe durch die bezogene Längenänderung ε_0 der Stabachse und durch die gegenseitige Verdrehung $d\psi$ zweier benachbarter Querschnitte beschrieben. Die Veränderlichkeit von ds mit z schließt hier zwar die lineare Abhängigkeit der Normalspannungen $\sigma_x(z)$ aus. Die Spannungen σ , τ und die Verzerrungskomponenten ε_0 , $d\psi$ sind aber nach (70), (71) trotzdem wieder Funktionen der Schnittkräfte N, M, Qund der Temperaturänderung $t, \Delta t = t_i - t_a$.

und der Temperaturänderung t, $\Delta t = t_i - t_a$. **Ableitung der Differentialgleichung.** Während sich die Querschnitte gerader Stäbe durch die Belastung mit großer Genauigkeit winkelrecht zur Stabachse bewegen, sind zur Beschreibung der Verschiebung der Querschnitte gekrümmter Stäbe zwei Komponenten u, w notwendig. Sie werden hier im Gegensatz zu der früheren Definition waagerecht und senkrecht angenommen, um das für die geometrische Darstellung von Stabzügen übliche Koordinatensystem (Abb. 120) beizubehalten. In diesem Fall ist

$$dy = ds \sin \alpha, \quad dx = ds \cos \alpha.$$
 (218a)

Diese geometrischen Beziehungen ändern sich durch die Belastung des Stabes.

$$y \rightarrow y + \delta y, \quad x \rightarrow x + \delta x, \quad \alpha \rightarrow \alpha + \delta \alpha, \quad ds \rightarrow ds + \delta(ds).$$