

Die Statik im Stahlbetonbau

Beyer, Kurt Berlin [u.a.], 1956

Ableitung der Differentialgleichungen aus den Schnittkräften

urn:nbn:de:hbz:466:1-74292

Die Funktionen ω_R und ω_P'' sind symmetrisch zur Mitte, die Funktion ω_D'' ist antimetrisch; ω_D und ω_D' , ω_M und ω_M' , ω_{φ} und ω_{φ}' , ω_P und ω_P' , ω_r und ω_r' sind einander spiegelbildlich gleich. Die Funktionswerte sind in den Tabellen 22, 23, S. 116, 117 und 121 enthalten.

Tabelle 23. Funktionswerte ω_{τ} und ω_{τ}' .

5	0	I	2	3	4	5	6	7	8	9		
0,0	0,0000	0,0001	0,0004	0,0009	0,0015	0,0024	0,0034	0,0046	0,0059	0,0074	0,0090	0,9
1	0090	8010	0127	0147	0169	0191	0215	0240	0266	0292	0320	8
2	0320	0348	0378	0407	0438	0469	0500	0532	0564	0597	0630	1
3	0630	0663	0696	0730	0763	0796	0829	0862	0895	0928	0960	1
4	0960	0992	1023	1054	1084	1114	1143	1171	1198	1225	1250	1
5	1250	1274	1298	1320	1341	1361	1380	1397	1413	1427	1440	4
6	1440	1451	1461	1469	1475	1479	1481	1481	1480	1476	1470	3
7 8	1470	1462	1451	1439	1424	1406	1386	1363	1338	1311	1280	- 2
8	1280	1247	1210	1171	1129	1084	1035	0984	0929	0871	0810	3
0,9	0,0810	0,0745	0,0677	0,0605	0,0530	0,0451	0,0369	0,0282	0,0192	0,0098	0,0000	0,0
		9	8	7	6	5	4	3	2	I	0	Ę

20. Die Biegelinie des geraden Stabes.

Der Verschiebungszustand eines Stabes, dessen Querschnittsabmessungen gegenüber der Stablänge klein sind und dessen Oberfläche durch parallele Erzeugende gebildet wird, ist durch die elastische Bewegung der Querschnitte, also nach (42) durch deren Komponenten u_0 , v_0 , w_0 und ψ_x , ψ_y , ψ_z bestimmt. Sie beschreiben die elastische Linie des Stabes durch die Ausbiegung, die Krümmung und Windung der Achse.

Beziehung zwischen Kraftebene und Biegungsebene. Die Verdrillung ψ_x der Stabachse wird meist durch die Form des Querschnitts und durch die Eintragung der äußeren Kräfte vermieden. Die Spur s der Kraftebene verläuft dann durch den Querpunkt des Stabquerschnitts, der in der Regel mit dem Schwerpunkt zusammenfällt, und schließt im allgemeinen mit der Hauptträgheitsachse z des Querschnitts einen Winkel (z,s) ein. Zwei benachbarte Querschnitte neigen sich relativ zueinander um eine die Stabachse winkelrecht kreuzende Achse. Sie ist die Nullinie n der Normalspannungen σ_x und damit der zu s zugeordnete Durchmesser der Trägheitsellipse, welcher mit der positiven Richtung der Hauptträgheitsachse z den Winkel (z,n) bildet.

$$tg(\widehat{z,s}) \cdot tg(\widehat{z,n}) = -\frac{J_s}{J_y}.$$
 (192)

 J_y und J_z sind die Hauptträgheitsmomente des Querschnitts. Die Biegungsebene mit der elastischen Linie steht senkrecht zur Nullinie.

In der Regel fällt die Spur s der Kraftebene mit einer Hauptträgheitsachse zusammen (z, s = 0 oder 180°). Dann ist die Kraftebene gleichzeitig Ebene der Biegung.

Ableitung der Differentialgleichung aus den Schnittkräften. Die Annahme einer ebenen Verschiebung der Querschnitte schließt die Mitwirkung der Schubspannungen bei der Formänderung des Stabes aus. Die technische Theorie der Balkenbiegung ist daher nur brauchbar, wenn die Schubspannungen gegenüber den Normalspannungen so klein sind, daß die Annahme einer mittleren Gleitung $\gamma_{xy,0}$ und $\gamma_{xz,0}$ für alle infinitesimalen Prismen des Stabteils ds genügt.

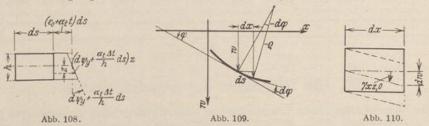
Die beiden Querschnitte, welche einen infinitesimalen Stabteil ds begrenzen, sind beim geraden Stabe parallel, beim gekrümmten Stabe im Winkel $d\alpha$ geneigt. Decken sich die Spur s der Kraftebene und die Hauptträgheitsachse z, also auci.

)52)46)41

Kraftebene und Ebene der Biegung, so ist die relative Verschiebung ε (z) ds zweier Punkte der beiden Querschnitte nach S. 28 durch die gegenseitige Verschiebung der benachbarten Schwerpunkte $\varepsilon_0 ds$ und die gegenseitige Neigung $d\psi_v$ bestimmt. Sie wird durch die inneren Kräfte σdF und eine Temperaturänderung hervorgerufen, die linear angenommen und durch die Änderung t im Schwerpunkt und den Temperaturabfall Δt zwischen den Randpunkten i und a beschrieben wird. $\Delta t = t_i - t_a$.

$$\varepsilon(z) ds = \left(\dot{\varepsilon}_0 + \frac{d\psi_y}{ds}z\right) ds + \left(\alpha_t t + \frac{\alpha_t \Delta t}{h}z\right) ds. \tag{193}$$

Die Ausdrücke $d\psi_y/ds$ und $\alpha_t \Delta t/h$ sind die Anteile der Krümmung der elastischen Linie infolge der Normalspannungen σ_x und der Temperaturänderung Δt . Sie ist durch die Definition des positiv drehenden Biegungsmomentes M_y in bezug auf die Lage des Koordinatensystems Abb. 109 negativ. Wird mit φ der Winkel bezeichnet, welchen die Tangente an die Biegelinie mit der x-Achse einschließt, so bedeutet ein positives Biegungsmoment eine Abnahme von φ beim Fortschreiten in der



x-Richtung. Der Kontingenzwinkel d \varphi ist daher negativ und mit Verwendung von (51)

$$\frac{d\psi_{\mathbf{y}}}{ds} = \left| -\frac{1}{\varrho} \right| = -\frac{d\varphi}{ds} = \frac{M_{\mathbf{y}}}{E J_{\mathbf{y}}} + \frac{\alpha_t \Delta t}{h}. \tag{194}$$

Für ds darf bei kleinen Ausbiegungen an Stelle des Bogenelements ds die Strecke dx gesetzt werden. Mit derselben Begründung wird in dem Ausdruck der Krümmung als Funktion von w die erste Ableitung vernachlässigt.

$$-\frac{1}{\varrho} \approx -\frac{d^2w}{d\,x^2} = \frac{M_y}{E\,J_y} + \frac{\alpha_t\,\Delta\,t}{h}\,. \tag{195}$$

Obwohl die Voraussetzungen des Ansatzes nur bei Stäben mit konstantem Querschnitt zutreffen, wird die Gleichung der Biegelinie nach (195) auch bei Stäben mit veränderlichem Querschnitt angewendet, um eine einfache und für technische Bedürfnisse brauchbare Lösung zu erhalten. Nach Einführung eines Vergleichsträgheitsmomentes $J_{\mathfrak{c}}$ ist

$$-E \int_{c} \frac{d^{2}w}{dx^{2}} = \frac{\int_{c}}{\int_{y}} M_{y} + E \int_{c} \frac{\alpha_{t} \Delta t}{h}. \tag{196}$$

Da die Schubspannungen τ_{xz} bei einer ebenen Verschiebung des Querschnitts im Vergleich zu den Normalspannungen σ_x nur klein sein können, genügt die Abschätzung ihres Einflusses auf die Ausbiegung w durch eine mittlere Winkeländerung $\gamma_{xz,\,0}$. Die relative Verschiebung zweier benachbarter Querschnitte ist dann $dw = \gamma_{xz,\,0} dx$, so daß nach Abb. 110

$$\frac{d^2w}{dx^2} = \frac{d\gamma_{xz,0}}{dx} = \frac{d}{dx} \left(\frac{\varkappa Q_z}{GF} \right).$$

Beide Anteile können als lineare Differentialbeziehungen addiert werden:

$$-\frac{d\varphi}{dx} = -\frac{d^2w}{dx^2} = \frac{M_y}{EJ_y} + \frac{\alpha_t \Delta t}{h} - \frac{d}{dx} \left(\frac{\varkappa Q_z}{GF}\right) = w.$$
 (197)

In der Regel wird auf den aus den Schubspannungen herrührenden relativ kleinen Anteil der Ausbiegung w verzichtet.