

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Zahlenbeispiele

urn:nbn:de:hbz:466:1-74292

Visual Library

Schnittkräfte.

Diese Formulierung der Schnittkräfte kann mit Vorteil auf die beiderseits eingespannten und die ringsum geschlossenen Stabzüge angewendet und auch auf mehrteilige Tragwerke übertragen werden. Der Abschnitt 60 enthält Beispiele.

Untersuchung eines Brückenträgers auf 3 Stützen.

1. Geometrische Grundlagen: Theoretische Stützweite: $l_1 = l_2 = l = 18,0$ m. Abmessungen nach Abb. 156a, hieraus $\zeta = J_e/J$ (Abb. 156b)¹. $J_e = J_a = J_b = 0,2 J_k = 0,1150$ m⁴.

x und $\xi = x/l$ werden im Felde l_1 von a nach c, im Felde l_2 von b nach c gemessen.

Materialkonstanten: $E_b = 210 \text{ t/cm}^2$; $\alpha_t = 0,00001$.

2. Belastung: Aus der Anzahl der möglichen Belastungsfälle werden die folgenden herausgegriffen: a) ruhende Last p = 1,0 t (Abb. 157a); b) bewegliche Last P = 1,0 t (Abb. 157b); c) geschätzte Stützensenkung:

d) ungleichmäßige Erwärmung: $\Delta_e = 1 \text{ cm}; \quad \Delta_a = \Delta_b = 0;$

 $\Delta t = t_u - t_0 = -10^0.$ ¹ Zum Vergleich werden auch die Funktionen J_c/J auf S. 97 verwendet:

Verlauf der Trägheitsmomente:

 $\frac{4}{4-1}$ $\frac{4}{4-1}$ $\frac{4}{4-1}$ $\frac{4}{4}$ $\frac{4}{4}$

a)
$$\zeta = J_1/J = 1$$

b) $\zeta = J_1/J = 1 - (1 - J_1/J_a) (1-2\xi)^2$

c)
$$\zeta = J_a/J = 1 - (1 - J_a/J_k) (1 - \xi)^2$$

a)
$$\xi = J_1/J = 1 - (1 - J_1/J_k) (1 - \xi'/\nu_1)$$

onstantes Trägheitsmoment jedes Stabes
$$J_c = J_1$$
 für $x = 0.5 l$).

Die Querschnittszunahme ist stetig und symmetrisch zur Feldmitte.

Die Querschnittszunahme ist stetig und unsymmetrisch zur Feldmitte.

Die Querschnittszunahme beschränkt sich auf die Voute ($v_1 = v_1/l_1$).

3. Hauptsystem: Das Tragwerk ist einfach statisch unbestimmt. Ausbildung des Hauptsystems.

a) Träger auf zwei Stützen. X₁: Stützkraft der Mittelstütze (Abb. 160a).
b) Auslegerträger. X₁: Stützkraft einer Seitenstütze (Abb. 160b).

c) Zwei Träger auf zwei Stützen. X_1 : Moment der Normalspannungen in dem der Mittelstütze unmittelbar benachbarten Querschnitt (Abb. 160c).

Nach den Bemerkungen auf S. 170 verdient das Hauptsystem c) (Abb. 160) den Vorzug. Berechnung von X_1 nach (342):

$$X_{1} = \frac{\delta_{1\otimes}}{\delta_{11}} = \frac{\int_{0}^{t} M_{0} M_{1} \frac{J_{e}}{J} ds + E J_{e} \int_{0}^{t} M_{1} \frac{\alpha_{t} \Delta t}{h} ds - E J_{e} \sum C_{e1} \Delta_{e}}{\int_{0}^{t} M_{1} \frac{J_{e}}{I} ds} = \frac{\delta_{10} + \delta_{1t} + \delta_{1s}}{\delta_{11}}.$$

Die Mitwirkung der Querkraft wird nach S. 159 vernachlässigt, der Einfluß der Längskräfte ist Null.

Stütz- und Schnittkräfte im Hauptsystem (Kräfte in t, Momente in mt) (Abb. 161):

Numerische Integration für die punktweise vorgeschriebene Funktion J_c/J mit Hilfe der Simpsonschen Reihe nach (181) oder (182):

1

BIBLIOTHEK PADERBORN

$$\begin{aligned} \lambda & \delta_{11}' = 2 i \int_{0}^{1} \eta \, d\xi = 2 \, \frac{\Delta x}{3} \left(\eta_0 + 4 \, \eta_1 + 2 \, \eta_2 + \dots + 2 \, \eta_{2 \, n-2} + 4 \, \eta_{2 \, n-1} + \eta_{2 \, n} \right) = 2 \, \frac{\Delta x}{3} \, \Sigma_1 \\ \Delta x = 1.5 \, \mathrm{m}; \qquad \Sigma_1 = 7.10 \, 838; \qquad \delta_{11}' = 7.10 \, 838 \, . \end{aligned}$$

$$\beta) \ \delta_{11} = 2 I \int_{0}^{\infty} \eta d\xi = 2 \frac{s}{8} \Delta x (\eta_{0} + 3 \eta_{1} + 3 \eta_{2} + 2 \eta_{2} + \dots + 3 \eta_{n-2} + 3 \eta_{n-1} + \eta_{n}) = 2 \frac{s}{8} \Delta x \Sigma_{2},$$

$$\Delta x = 1.5 \text{ m}; \qquad \Sigma_{2} = 6.32425; \qquad \delta_{11} = 7.11477.$$

$$\boxed{\mathbf{m}} \quad \frac{\xi}{\mathbf{x}} \qquad \frac{\xi^{2}}{J} \qquad \frac{J_{e}}{J} \qquad \frac{\xi^{2} \frac{J_{e}}{J}}{\mathbf{x}} \qquad \frac{k_{1}}{k_{1}} \frac{k_{1}\xi^{2} \frac{J_{e}}{J}}{k_{2}} \qquad \frac{k_{2}}{k_{2}} \frac{\xi^{2} \frac{J_{e}}{J}}{k_{2}} \qquad \frac{k_{$$

Wird die Funktion $\zeta = J_c/J$ zwischen den Querschnitten *d* und *c* angenähert linear angenommen, so kann δ_{11} formal integriert werden¹. Nach Tabelle 14b Seite 108 ist mit $M_a = \overline{M}_a = 1,0$ mt, n = 0,2; v = v/l = 0,5 und l' = l = 18,0 m:

$$\begin{split} \delta_{11} = \int_{a}^{b} M_{1}^{e} \frac{J_{e}}{J} \, ds &= 2 \int_{a}^{b} M_{1}^{e} \frac{J_{e}}{J} \, ds = 2 \frac{1}{12} 1.0 \left\{ 4 - (1 - 0.2) \, 0.5 \left[2 + (2 - 0.5)^{2} \right] \right\} 18.0 = 6.9; \\ 5. \qquad \beta_{11} = \frac{1}{\delta_{11}} = \frac{1}{7.11477} = 0.14055; \end{split}$$

6. und 7. Überzählige Schnittkraft $X_1 = \frac{\delta_{10}}{\delta_{11}} = \beta_{11} \, \delta_{10}$. a) Belastung (2a):

T.

$$\delta_{10} = \int_{0}^{l} M_{0} M_{1} \frac{J_{c}}{J} ds = \frac{p I^{3}}{2} \int_{0}^{1} \xi^{2} \xi' \frac{J_{c}}{J} d\xi; \qquad \left(\xi^{2} \frac{J_{c}}{J}\right) \xi' = \eta \xi' = \eta';$$

Numerische Integration nach Simpson[(181) und (182)] mit p = 1,0 t/m, l = 18,0 m; $\Delta x = 1,5$ m; $\Sigma_3 = 2,41055$; $\Sigma_4 = 2,1444$.

$$\alpha) \qquad \qquad \delta_{10}' = \frac{p \, l^3}{2} \int_0^1 \eta' \, d\xi = \frac{p \, l^2}{2} \, \frac{\Delta x}{3} \, \Sigma_3 = 195,25455;$$

 1 Tabellen 12 ff.: S. 175 mit $l_1=l_2=18,0;~n_1=n_2=0,2;~\nu_1=\nu_2=0,25$ und Annahmen $a \div d$ für ζ nach

a)
$$\frac{J_{\bullet}}{J_{1}} l_{1} = l_{1}' = 18.0; \quad \frac{J_{\bullet}}{J_{2}} l_{2} = l_{2}' = 18.0; \quad \delta_{11} = \frac{1}{3} (l_{1}' + l_{2}') = 12.0;$$

b)
$$\frac{J_{1}}{J_{e}} = n_{1}; \quad \frac{J_{2}}{J_{b}} = n_{2}; \quad \frac{J_{e}}{J_{1}} l_{1} = l_{1}' = 18.0; \quad \frac{J_{e}}{J_{2}} l_{2} = l_{2}' = 18.0;$$

$$\delta_{11} = \frac{3+2n_{1}}{15} l_{1}' + \frac{3+2n_{2}}{15} l_{2}' = 8.16;$$

c)
$$\frac{J_{e}}{J_{k}} = n_{1}; \quad \frac{J_{b}}{J_{k}} = n_{2}; \quad \frac{J_{e}}{J_{a}} l_{1} = l_{1}' = 18.0; \quad \frac{J_{e}}{J_{b}} l_{2} = l_{2}' = 18.0;$$

$$\delta_{11} = \frac{2+3n_{1}}{15} l_{1}' + \frac{2+3n_{2}}{15} l_{2}' = 6.24;$$

d)
$$\frac{J_{1}}{J_{k}} = n_{1}; \quad \frac{J_{2}}{J_{k}} = n_{2}; \quad \frac{J_{e}}{J_{1}} l_{1} = l_{1}' = 18.0; \quad \frac{J_{e}}{J_{2}} l_{2} = l_{2}' = 18.0;$$

$$\delta_{11} = \frac{l_{1}'}{12} \{4 - (1 - n_{1}) v_{1} [2 + (2 - v_{1})^{2}]\} + \frac{l_{2}'}{12} \{4 - (1 - n_{2}) v_{2} [2 + (2 - v_{2})^{2}]\} = 8.95.$$

Beyer, Baustatik, 2. Aufl., 2. Neudruck. 12

Stabwerke mit wenigen überzähligen Größen.

β)

178

$$\delta_{10} = \frac{p l^3}{2} \int_0^{\gamma} \eta' \, d\xi = \frac{p l^2}{2} \frac{3}{8} \, dx \, \Sigma_4 = 195,41210;$$

$$X'_1 = \frac{\delta'_{10}}{\delta'_{11}} = 27,46\,822 \text{ mt}; \qquad X_1 = \frac{\delta_{10}}{\delta_{11}} = 27,46\,569 \text{ mt}.$$

Die lineare Angleichung¹ der Funktion $\zeta = J_c/J$ zwischen den Querschnitten *d* und *c* liefert mit $M_0 = 162 \cdot \frac{1}{2} \cdot \frac{1}{2} = 40.5$ und $M_1 = 1.0$; n = 0.2:

 $\delta_{\mathbf{10}} = \tfrac{1}{15} \, \mathbf{1}, \mathbf{0} \cdot 40, 5 \, \{ \mathbf{5} - (1 - 0, 2) \, \tfrac{1}{4} \, (10 - 10 \, \tfrac{1}{2} + 3 \, \tfrac{1}{4}) \} \, \mathbf{18} = \mathbf{187}, \mathbf{11}; \qquad X_1 = \mathbf{27}, \mathbf{11739} \; \mathrm{mt} \; .$

b) Belastung (2b).

Gleichung der Biegelinie δ_{m1} : $\frac{d^2 \, \delta_{m1}}{d \, x^2} = -M \, \frac{J_e}{J} = -\xi \, \frac{J_e}{J} = -\mathfrak{w}_m$. Berechnung und Vergleich der Ergebnisse aus (206) und (207):

$\begin{aligned} \alpha) \\ \mathfrak{W}'_0 &= c/6 \cdot (2 \mathfrak{w}_0 + \mathfrak{w}_1) , \\ \mathfrak{W}'_m &= c/6 \cdot (\mathfrak{w}_{m-1} + 4 \mathfrak{w}_m + \mathfrak{w}_{m+1}) . \\ \mathfrak{W}'_n &= c/6 \cdot (\mathfrak{w}_{n-1} + 2 \mathfrak{w}_n) . \end{aligned}$	m	10 m	2 W0	6/c · 28'0	2 W n	$6/c \cdot \mathfrak{W}'_n$	972.1	
			4 W m	\mathfrak{w}_m $\mathfrak{w}_{m-1} + 4 \mathfrak{w}_m + \mathfrak{w}_{m+1}$			~~m	
	0	0,00000	0,00000	0,08333	-	-	0,02083	
	1		0,33332		0,49999		0,12500	

$\beta) \mathfrak{B}_{0} = k/24 (7 \mathfrak{w}_{0} + 6 \mathfrak{w}_{1} - \mathfrak{w}_{2}), \mathfrak{B}_{m} = c/12 (\mathfrak{w}_{m-1} + 10 \mathfrak{w}_{m} + \mathfrak{w}_{m+1}), \mathfrak{B}_{n} = c/24 (7 \mathfrak{w}_{n} + 6 \mathfrak{w}_{n-1} - \mathfrak{w}_{n-2}).$	m	10 m	7 W0	6 101	24/6 230	
			\mathfrak{W}_{m-1}	283 m		
			7 10 n	6 w _{n-1}	24/0 23 m	
	0 I	0,00000 0,08333	0,00000	0,49998	0,33331	0,02083
			1,00 000			0,12 500
			P. Star Konstan			

Die Untersuchung wird mit den genaueren Werten 23 m fortgesetzt:

$$A_{\mathfrak{w}} = \sum_{0}^{n} \mathfrak{W}_{\mathfrak{m}} \xi_{\mathfrak{m}}'; \quad C_{\mathfrak{w}} = \sum_{0}^{n} \mathfrak{W}_{\mathfrak{m}} \xi_{\mathfrak{m}}; \quad \text{Probe:} \quad A_{\mathfrak{w}} + C_{\mathfrak{w}} = \sum_{0}^{n} \mathfrak{W}_{\mathfrak{m}}; \quad M_{\mathfrak{w}} = \delta_{\mathfrak{m},\mathfrak{m}}; \quad X_{\mathfrak{l}} = M_{\mathfrak{w}} / \delta_{\mathfrak{m}};$$

m	W3m	ξ'm	ξ_m	W3m Em	983 m E	Qw m	Q ₁₀ m c	$M_{\mathfrak{W}}$	$X_1[mt]$
a 0 1 2	(2,63180) 0,02083 0,12500 0,25000			0,02083 0,11458 0,20833		2,61097 2,48597	0,00000 3,91646 3,72896	0,00000 3,91646 7,64542	0,00000 0,55045 1,07455

¹ Mit den Annahmen über $\zeta = J_c/J$ im Sinne der Anmerkung auf S. 175, δ_{11} nach S. 177, $l_1 = l_2 = 18,0$, $n_1 = n_2 = 0,2$; $\varphi' = l_2'/l_1' = 1,0$; und $p_1 = 1,0$ t/m ist:

a)
$$X_1 = \frac{p_1 l_1^2}{8} \frac{1}{1 + \varphi'} = 20.25 \text{ mt};$$
 b) $X_1 = \frac{p_1 l_1^2}{8} \frac{4 + n_1}{(3 + 2n_1) + (3 + 2n_2)\varphi'} = 25.0 \text{ mt};$
 $x_1 = \frac{p_1 l_1^2}{8} \frac{4 + n_1}{(3 + 2n_1) + (3 + 2n_2)\varphi'} = 25.0 \text{ mt};$

$$f_{1} = \frac{1}{8} \frac{1}{(2+3n_{1}) + (2+3n_{2})} \varphi' = 26.5 \text{ mt};$$

$$X_1 = \frac{p_{1'1}}{8} \frac{3.01 \pm 0.38 n_1}{(2.734 \pm 1.266 n_1) + (2.734 \pm 1.266 n_2) \varphi'} = 25.0 \text{ mt};$$

BIBLIOTHEK PADERBORN

Lineare Annäherung¹ der Funktion $\xi = J_c/J$ zwischen den Querschnitten *d* und *c* (Abb. 156): $X_1 = \delta_{m_1}/\delta_{11} = \delta_{m_1}/6,9$;

$$P = 1$$
 innerhalb der Voute: $\delta_{m1} = 10.8 \xi' (5.75 - \xi' [(2 + \xi) + 4 (1 - \xi^2)]);$

P = 1 außerhalb der Voute: $\delta_{m1} = 27,0 \ \xi \ [2 \ (1 - \xi^2) - 0,3]$.

	Zahlenwerte der Einflußordinaten:									
			+		15 TO 10	$\xi =$	0,2	0,4	0,6	0,8
	α) Funk β) linear	tion ζ = re Annäl	$= J_e/J$ n herung z	ach Abb. wischen	156b (Fall e d und c	, Abb. 162)	1,27 1,27	2,17 2,17	2,35 2,30	1,55 1,53
	c) Belastung (2c) und (2d) ² .									
	α) $\delta_{11} =$	7,11477	I, ⊿₀:	= 1,0 cm	, $\Delta_a = \Delta_b =$	$= 0$, $C_1 = -$	$-\frac{2}{18.0}$, δ ₁ ,	= -E	$J_{\circ}(C_1 \Delta_{\circ})$.
δ11 :	Die virtuelle Arbeit $(C_1 \Delta_c)$ ist für $C_1 = -\frac{1}{18}$ positiv, daher $\delta_{1s} = -2100000 \cdot 0.115 \left(\frac{1}{18} \cdot 0.01\right) = -268,3333;$ $X_{1s} = \delta_{1s}/\delta_{11} = -37,71497 \text{ mt};$ $\beta) \Delta t = t_u - t_o = -10^\circ; \alpha_t = 10^{-5}; \text{Annahme } \alpha_t \cdot \Delta t/\hbar = \text{const}, h = 1,3 \text{ m}.$ $\delta_{1t} = E \int_c \frac{\alpha_t \Delta t}{\hbar} \left(\frac{l_1 + l_2}{2}\right) = -2100000 \cdot 0.115 \cdot \frac{10^{-5} \cdot 10}{1.3} \cdot 18,0 = -334,3846;$ $X_u = \delta_u/\delta_u = -46.99865 \text{ mt}.$									
-	1 Annah	men üb	er $\zeta = i$	// nach	Anmerkung	auf S 175	n - T	17	17 -	
	a) $\delta_{m1} =$	$= P \frac{l_1 l_1'}{6}$	$(\xi - \xi^3)$; b) d	$\delta_{m1} = P \frac{l_1 l_1'}{15} \xi$	$\xi \xi' \left[\frac{n_1 + 4}{2} \right]$	$l = J_1$ $l + \xi)$	+(1-	$= v_1/t_1:$ $n_1) \xi^2 (3)$	$\xi' = 1$;
	c) $\delta_{m1} =$	$= P \frac{l_1 l_1'}{60}$	ξ ξ' (1 +	ξ) [10 —	$3(1-n_1)(1$	$+ \xi^{2}$)];				-
(d) P inn	nerhalb o	ler Vout	e:						
	$\delta_{m1} =$	$P\frac{l_1l_1'}{12}\xi$	$'{4-(1)}$	$(-n_1)[v_1]$	$1(2+(2-v_1))$	$)^{2})] - \xi' \Big[2 n_{1} \Big]$	$(2 + \xi)$	$() + \frac{1}{1}$	$\frac{-n_1}{v_1}$ (1	$-\xi^2$)]};
	P auß	erhalb d	ler Vout	e:						
	$\delta_{m1} =$	$P\frac{l_1l_1'}{12}\xi$	[2 (1 -	$\xi^{2}) - (1 -$	$(-n_1) v_1^2 (2 -$	ν ₁)];				
$(P = v_1 = a)$	Gleichun = 1; $l_1 = 0,25; \delta$) $X_1 = 0$) $X_1 = 0$	g der Ein $= l'_1 = 18$ = 12 =	$\begin{array}{l} \text{nflußlinie}\\ 3,0 n_1 = \\ 177). \\ + 2.12.53 \end{array}$	für X_1 : = 0,2;		-	<u>A</u>			<u></u>
	+	$3\xi^2$;	10 70	(2 05	E. E.	-l=18,0- E'.1		l=18,	0	H
d	$A_1 = 0$ P inn	erhalb α_{D}	(0,76 — ler Vout	$0,24 \xi^{2}$; e:	E-0 92	Q4 Q5 Q8	70			
$X_1 = 4$	$= 3,02 \xi'$ - 3.2 (1	{2,98 -	- <i>ξ</i> ' [0,4	$(2 + \xi)$			A			7 1 1 1
$X_1 =$	außerh = 3,02 §	alb der $\left[2\left(1-\xi\right)\right]$	Voute:	88].	N	+	1	+	M	-1,728- 172 240
Zahlenwerte der Einfluß- ordinaten (Abb. 162):										
ξ=	0,2	0,4	0,6	0,8				1 Al	ZEEE	<u>x</u> _ <u>x</u>
a	0,864	1,512	1,728	1,296		Fall a:	Abb. 1	62.		
c	1,077	1,933	2,172	1,512		Fall b und d: Fall c: $- \cdot -$				
d	1,110	1,920	2,160	1,530		Fall ϵ : $\zeta(x)$ na - Eini	ach Abb. flußlinie	156b für X1.		Toronto
2	Mit a.	1t/h = co	onst ist	δ. ebens	o wie &. un	abhängig vor	n / =		aber is	t für alle

Querschnittsänderungen:

$$X_{1s} = E J_{c} \left[\frac{\Delta_{a}}{l_{1}} + \frac{\Delta_{b}}{l_{2}} - \Delta_{c} \left(\frac{1}{l_{1}} + \frac{1}{l_{2}} \right) \right] \frac{1}{\delta_{11}}; \qquad X_{1t} = E J_{c} \frac{\alpha_{t} \Delta t}{h} \cdot \frac{l_{1} + l_{2}}{2} \frac{1}{\delta_{11}}.$$

BIBLIOTHEK

Stabwerke mit wenigen überzähligen Größen.

Lineare Annäherung der Funktion $\zeta = J_e/J$ nach Seite 177:

$$X_{1i} = -\frac{268,3333}{6.9} = -38,8889 \text{ mt}, \qquad X_{1i} = -\frac{334,3840}{6.9} = -48,46153 \text{ mt}.$$

8. Stütz- und Schnittkräfte des statisch unbestimmten Systems. Die Stützoder Schnittkraft K des einfach statisch unbestimmten Systems ist nach (339): $K = K_0 - X_1 \cdot K_1$. Die Kräfte K_0 und K_1 sind in Abb. 161 angegeben. a) Belastung (2a) (Abb. 163).

 $A = 9,0 - 27,47 \frac{1}{18,0} = 7,47 t,$ $C = 9,0 + 27,47 \frac{2}{18,0} = 12,06 t,$ $B = 0,0 - 27,47 \frac{1}{18,0} = -1,53 t,$ Feld AC: $\begin{cases} Q = 18,0 (0,415 - \xi), \\ M = 1,62,\xi (0,83 - \xi), \\ Q = 1,53, \\ M = -27,47,\xi, \end{cases}$

Grenzwerte von M: Q = 0 für $\xi = 0,415$: $M_{\text{max}} = 27,9$ mt;

Q = 0 für $\xi = 1,0;$ $M_{\min} = -27,47 \text{ mt};$

b) Belastung (2b) (Abb. 164).

$$A = \xi'_m - X_1 \frac{1}{18,0}; \qquad C = \xi_m + X_1 \frac{2}{18,0}; \qquad B = -X_1 \frac{1}{18,0}$$

M und Q für den Schnitt $x = \xi l$.

$$\begin{array}{lll} \text{Feld} \ A\,C:\cdot & \left\{ \begin{array}{ccc} 0 < \xi < \xi_m: & \mathcal{Q} = \xi_m' - X_1 \frac{1}{18,0}\,; & M = \xi\,(18,0\,\xi_m' - X_1)\,; \\ & \xi_m < \xi < 1,0: & \mathcal{Q} = \xi_m' - X_1 \frac{1}{18,0} - 1\,; & M = \xi\,\left(18,0\,\frac{\xi'\,\xi_m}{\xi} - X_1\right)\,; \end{array} \right. \\ \text{Feld} \ B\,C: & \mathcal{Q} = +\,X_1 \frac{1}{18,0}\,; & M = -\,\xi\,X_1\,. \end{array}$$

Grenzwerte von M: Q = 0 für $\xi = \xi_m$; $M_{\max} = \xi_m (18, 0 \xi'_m - X_1)$; Q = 0 für $\xi = 1, 0$; $M_{\max} = -X_1$;

Einflußlinien¹: A, C und B sind zugleich die Gleichungen der Einflußlinien der Stütz-

¹ Für Annahme a) auf Seite 175 mit $X_1 = 4,5 \omega_D$ werden die folgenden Einflußlinien erhalten (Abb. 165 und 166):

180

BIBLIOTHER

kräfte. Einflußlinien für Q_m und M_m im Schnitt m:

 $Q_m =$

$$\begin{array}{ll} \text{ad} \ A \ C : & 0 < \xi < \xi_m : \ \mathcal{Q}_m = - \ \xi - X_1 \ \frac{1}{18,0} \ ; & M_m = \xi_m \left(18,0 \ \frac{\xi'_m \ \xi}{\xi_m} - X_1 \right) : \\ & \xi_m < \xi < 1 : \ \mathcal{Q}_m = -1 - \xi - X_1 \ \frac{1}{18,0} \ ; & M_m = \xi_m \left(18,0 \ (1 - \xi) - X_1 \right) : \end{array}$$

Feld CB:

Fe

$$+X_1 \frac{1}{18,0}; \quad M_m = -\xi_m X_1.$$

M (0)

a) th

b) Ic

c) Ta

-I/u

c) Belastungsfall (2c) und (2d):

	A	С	B	Fel	ld AC	Fel	d BC
	t	t	t	Q [t]	<i>M</i> [mt]	Q [t]	M [mt]
K, K,	+ 2,10 + 2,23	- 4,20 - 4,46	+ 2,10 + 2,23	+ 2,1 + 2,23	$+ 37.71\xi$ + 40.05 ξ	- 2,1 - 2,23	$+ 37,71 \xi$ + 40,05 \xi

9. Die Schnittkräfte des Stabwerkes ergeben Verschiebungen, die mit den Stützenbedingungen verträglich sein müssen. Dies wird nach (335) geprüft durch:

$$\tau = \int M^{(1)} \overline{M}^{(0)} \frac{J_o}{J} ds = 0.$$

Die Funktionen $\overline{M}^{(0)}$ aller hierfür geeigneten Ansätze zur Nachprüfung der gegenseitigen Verdrehung τ der Ufer eines beliebigen Querschnitts k(Abb. 168 a), der Ufer des Stützenquerschnittes c(Abb. 168 b) oder der Durchbiegungen Δ_a , Δ_b , Δ_c (Abb. 168 c) unterscheiden sich nur durch einen konstanten Faktor μ .

$$\overline{M}^{(0)} = \mu \xi , \quad \tau = 0 = \int M^{(1)} \xi \frac{J_o}{J} \, ds .$$

Belastung (2a):

Q

 $M^{(1)}$ wird als Funktion von ξ angeschrieben. Numerische Integration nach Simpson mit J_e/J nach 1. S. 175

$$\tau = \int_{0}^{1} \left(A \,\xi \,l - \frac{p \,\xi^2 \,l^2}{2} \right) \,\xi \, \frac{J_e}{J} \,d\xi + \int_{0}^{1} B \,\xi \,l \,\xi \, \frac{J_e}{J} \,d\xi = 9,649 - 9,649 = 0,0 \,.$$

$$C = C_0 + 2 \, \frac{X_1}{l} = \xi + \frac{2 \cdot 4,5}{18,0} \,(\xi - \xi^3) = \frac{1}{2} \,(3 \,\xi - \xi^3) \,; \qquad M_m = M_{0\,m} - \xi_m \,X_1$$

$$= C_0 - \frac{X_1}{l} = \int_{0}^{1} -\xi - \frac{4,5}{18,0} \,(\xi - \xi^3) = -\frac{1}{4} \,\xi \,(5 - \xi^2) \qquad \text{links von } m;$$

$$\left| \begin{array}{c} \xi_{0} m \\ \xi_{1} \end{array} \right| + 1 - \xi - \frac{4,5}{18,0} \left(\xi - \xi^{3} \right) = 1 - \frac{1}{4} \xi \left(5 - \xi^{2} \right) \text{ rechts von } m.$$

Es soll die Einflußlinie für dasjenige Feldmoment berechnet werden, das bei gleichförmiger Belastung am größten wird. An dieser Stelle ist (Fall a):

 $M_{m} = \begin{cases} \xi'_{m} l\xi - \xi_{m} X_{1} & \text{links von } m \text{ (Abb. 167)}, \\ \xi_{m} l\xi' - \xi_{m} X_{1} & \text{rechts von } m, \end{cases}$ $Q_{m} = 0 = \frac{p l}{16} (7 - 16 \xi_{m}); \qquad \xi_{m} = \frac{7}{16}.$

Stabwerke mit wenigen überzähligen Größen.

182

Belastung (2c) und (2d): Die Verschiebungen aus Temperatur und Stützensenkung im Hauptsystem und aus den zu-geordneten überzähligen Schnittkräften sind nach Abb. 168:

$$\begin{aligned} \tau &= \tau_t + \tau_{\sigma_t} = 0; \quad \tau = \tau_s + \tau_{\sigma_s} = 0; \\ \tau &= 2 E J_e \frac{\alpha_t \Delta t}{h} \cdot \frac{l^2}{u} \int_0^1 \xi d\xi + 2 X_1 \frac{l^2}{u} \int_0^1 \xi^2 \frac{J_e}{J} d\xi = 0, \\ 0 &= \frac{1}{2} E J_e \frac{\alpha_t \Delta t}{h} + X_1 \int_0^1 \xi^2 \frac{J_e}{J} d\xi = 9,28846 - 9,28846, \\ \tau_s &= \tau_s + \tau_b = E J_e \left\{ \frac{1}{l} \Delta_e + \left(\frac{2}{u} - \frac{1}{l}\right) \Delta_e \right\}; \quad \tau_{\sigma_s} = 2 X_1 \frac{l^2}{u} \int_0^1 \xi^2 \frac{J_e}{J} d\xi, \\ \tau &= E J_e \frac{2}{u} \Delta_e + 2 X_1 \frac{l^2}{u} \int_0^1 \xi^2 \frac{J_e}{J} d\xi = 0, \\ 0 &= E J_e \Delta_e + X_1 l^2 \int_0^1 \xi^2 \frac{J_e}{J} d\xi = 2415, 0 - 2414,9999; \end{aligned}$$

Dreifach statisch unbestimmtes System.

1. Geometrische Grundlagen: Abmessungen (Abb. 169a): $l_1 = 15,0$ m; $l_2 = 12,0$ m; $h_1 = s_1 = s_2 = 4,5$ m; $h_2 = 2h_1 = 9,0$ m. *J*. Trägheitsmoment des Riegels \overline{de} . Reduzierte Stablängen: $l'_1 = 15,0$ m; $l'_2 = 18,0$ m; $h'_1 = 27,0$ m; $h'_2 = 18,0$ m; $s'_1 = 9,0$; $s'_1 = 9,0$ m.

Retuzierte Statungen y $S'_2 = 9,0 \text{ m.}$ Materialkonstanten: $E_b = 210 \text{ t/cm}^2$; $\alpha_t = 0,00001.$ 2. Belastung: Gleichförmig verteilte Belastung der beiden Riegel mit p t/m.

BIBLIOTHEK PADERBORN

3. Hauptsystem: Das Tragwerk ist dreifach statisch unbestimmt. Als überzählige Größen wird neben den beiden Eckmomenten X_1 und X_2 , $X_3 = Y_3/2h_1$ verwendet, um die Zahlenrechnungen zu vereinfachen (Abb. 169b). Ansatz zur Berechnung der überzähligen Kräfte:

$$\begin{aligned} X_{1} \cdot \delta_{11} + X_{2} \cdot \delta_{12} + X_{3} \cdot \delta_{13} &= \delta_{10} + \delta_{1t} + \delta_{1s} = \delta_{1\otimes} , \\ X_{1} \cdot \delta_{21} + X_{2} \cdot \delta_{22} + X_{3} \cdot \delta_{23} &= \delta_{20} + \delta_{2t} + \delta_{2s} = \delta_{2\otimes} , \\ X_{1} \cdot \delta_{31} + X_{2} \cdot \delta_{32} + X_{3} \cdot \delta_{33} &= \delta_{30} + \delta_{3t} + \delta_{2s} = \delta_{3\otimes} . \end{aligned}$$

4. Die Vorzahlen werden nach (300) berechnet. Der Anteil der Quer- und Längskräfte wird nach Seite 92 und 159 vernachlässigt. h! s! 97 9

$$\begin{split} \delta_{11} &= \frac{n_1}{3} + \frac{s_2}{3} + l_1' = \frac{2l_1}{3} + \frac{s}{3} + 15 = 27,00; \\ \delta_{22} &= \frac{l_1'}{3} + \frac{l_2'}{3} + s_1' = \frac{15}{3} + \frac{18}{3} + 9 = 20,00; \\ \delta_{33} &= \frac{1}{4} \left\{ \frac{l_1'}{3} + \frac{s_2'}{3} + \frac{s_1'}{3} \left(\frac{s_1}{h_1} \right)^2 + \frac{h_2'}{3} \left(\frac{h_2}{h_1} \right)^2 + \frac{l_2'}{3} \left[\left(\frac{s_1}{h_1} \right)^2 + \frac{s_1}{h_1} \frac{h_2}{h_1} + \left(\frac{h_2}{h_1} \right)^2 \right] \right\} \\ &= \frac{1}{4} \left\{ \frac{15}{3} + \frac{9}{3} + \frac{9}{3} \left(\frac{4,5}{4,5} \right)^2 + \frac{18}{3} \left(\frac{9}{4,5} \right)^2 + \frac{18}{3} \left[\left(\frac{4,5}{4,5} \right)^2 + \frac{4,5}{4,5} \cdot \frac{9}{4,5} + \left(\frac{9}{4,5} \right)^2 \right] \right\} \\ &= 19,25; \\ \delta_{12} &= \frac{l_1'}{2} = \frac{15}{2} = 7,50; \qquad \delta_{13} = \frac{1}{2} \left\{ \frac{l_1'}{2} + \frac{s_2'}{3} \right\} = \frac{1}{2} \left\{ \frac{15}{2} + \frac{9}{3} \right\} = 5,25; \\ \delta_{23} &= \frac{1}{2} \left\{ \frac{l_1'}{3} - \frac{s_1'}{2} \frac{s_1}{h_1} - \frac{l_2'}{6} \cdot \left(2 \frac{s_1}{h_1} + \frac{h_2}{h_1} \right) \right\} = \frac{1}{2} \left\{ \frac{15}{3} - \frac{9}{2} \frac{4,5}{4,5} - \frac{18}{6} \left(2 \cdot \frac{4,5}{4,5} + \frac{9}{4,5} \right) \right\} \\ &= -5,75 . \end{split}$$

Matrix der Elastizitätsgleichungen und Abschätzung der Fehlerempfindlichkeit des Ansatzes nach (331):

	X1	X_2	X3		Mat	trix der Unte	erdeterminante	en D_{ik} aus 5.
(1)	27,00	7,50	5,25	δ_{10}	(1)	351,9375	- 174,5625	- 148,125
(2)	7,50	20,00	- 5,75	δ_{20}	(2)	- 174,5625	492,1875	194,625
(3)	5,25	- 5,75	19,25	δ_{30}	(3)	- 148,125	194,625	483,75

*

Matrix der Produkte $\delta_{ik} D_{ik}$

(1)	9502,313	- 1309,219	- 777,656	$\sum_{k} \delta_{1k} D_{1k} = 11589,188$,
(2)	- 1309,219	9843,750	- 1119,094	$\sum_{k} \delta_{2k} D_{2k} = 12272,063$,
(3)	- 777,656	- 1119,094	9312,188	$\sum_{k} \delta_{3k} D_{3k} = 11208,938.$

Mit D' = 7415,438 aus 5. und $\sum_{i} \sum_{k} |\delta_{ik} D_{ik}| = 35070,189$ wird

$$\varphi = (\pm p) \frac{\sum |\delta_{ik} D_{ik}|}{D'} = (\pm p) \frac{35070,189}{7415,438} = (\pm p) 4,73.$$

Für einen mittleren Fehler $\pm p = 0.01$ der Vorzahlen δ_{ik} ist der mögliche Fehler von X_k aus der Nennerdeterminante ca. $0.05 \cdot X_k$. 5. Konjugierte Matrix β_{ik} . Die Vorzahlen β_{ik} werden nach Seite 166 als Quotient zweier Determinanten berechnet. Dabei wird die Nennerdeterminante nach (352) mit 3 ver-

schiedenen Ansätzen angeschrieben:

$$\gamma = 27(20 \cdot 19,25 - 5,75^2) - 7,5(7,5 \cdot 19,25 + 5,25 \cdot 5,75) + 5,25(-7,5 \cdot 5,75 - 20 \cdot 5,25)$$

$$= -7.5(7.5 \cdot 19.25 + 5.25 \cdot 5.75) + 20(27 \cdot 19.25 - 5.25^2) + 5.75(-27 \cdot 5.75 - 7.5 \cdot 5.25)$$

= $5.25(-7.5 \cdot 5.75 - 5.25 \cdot 20) + 5.75(-27 \cdot 5.75 - 5.25 \cdot 7.5) + 19.25(27 \cdot 20 - 7.5^2)$

-7415.4375 Stabwerke mit wenigen überzähligen Größen:

$$\begin{array}{ll} \alpha) \ \beta_{k1}: & \delta_{10} = 1; \ \delta_{20} = 0; \ \delta_{30} = 0: \\ \beta_{11} = \frac{1 \cdot (20 \cdot 19, 25 - 5, 75^2)}{7415, 4375} = 0,0474601, \\ \beta_{21} = \frac{-1(7, 5 \cdot 19, 25 + 5, 25 \cdot 5, 75)}{7415, 4375} = -0,0235404, \\ \beta_{31} = \frac{1(-7, 5 \cdot 5, 75 - 5, 25 \cdot 20)}{7415, 4375} = -0,0199752, \\ \beta_{31} = \frac{1(-7, 5 \cdot 5, 75 - 5, 25 \cdot 20)}{7415, 4375} = -0,0199752, \\ \beta_{32} = \frac{1(-7, 5 \cdot 5, 75 - 5, 25 \cdot 20)}{7415, 4376} = 0,0262459, \\ \gamma) \ \beta_{k3}: \ \delta_{10} = 0; \ \delta_{20} = 0; \ \delta_{30} = 1; \\ \beta_{33} = \frac{+1(27 \cdot 20 - 7, 5^2)}{7415, 4375} = 0,0652355. \end{array}$$

Kontrolle (356): Die Werte β_{ik} erfüllen den Ansatz (351) identisch, z. B. ist

 $\begin{array}{ll} \beta_{11}\delta_{11}+\beta_{21}\delta_{12}+\beta_{31}\delta_{13}=0.0474601\cdot 27 & -0.0235404\cdot 7.5 & -0.0199752\cdot 5.25 & =0.99999999\approx 1,\\ \beta_{11}\delta_{21}+\beta_{21}\delta_{22}+\beta_{31}\delta_{23}=0.0474601\cdot 7.5 & -0.0235404\cdot 20 & +0.0199752\cdot 5.75 & =0.0000001\approx 0,\\ \beta_{11}\delta_{31}+\beta_{21}\delta_{32}+\beta_{31}\delta_{33}=0.0474601\cdot 0.25+0.0235404\cdot 5.75-0.0199752\cdot 19.25=0.0000002\approx 0. \end{array}$

6. Belastungszahlen nach (300) (Abb. 169):

$$\begin{split} \delta_{10} &= \frac{p \cdot l_1^2 \cdot l_1'}{12} = p \cdot \frac{15^2}{12} \ 15 = 281,25 \ p; \\ \delta_{20} &= \frac{p \cdot l_1^2 \cdot l_1'}{24} + \frac{p \cdot l_2^2 \cdot l_2'}{24} = p \left[\frac{281,25}{2} + \frac{12^2 \cdot 18}{24} \right] = 248,625 \ p; \\ \delta_{30} &= \frac{p \cdot l_1^2 \cdot l_1'}{2 \cdot 24} - \frac{p \cdot l_2^2 \cdot l_2'}{24} \ \frac{1}{2} \left(\frac{s_1}{h_1} + \frac{h_2}{h_1} \right) = p \left[\frac{281,25}{2 \cdot 2} - \frac{108}{2} \left(\frac{4,5}{4,5} + \frac{9}{4,5} \right) \right] = -91,6875 \ p. \end{split}$$

7. α) Ansatz der überzähligen Größen als Funktionen der Belastungszahlen:

 $\begin{array}{l} X_1 = + \; 0,0474601 \; \delta_{10} - \; 0,0235404 \; \delta_{20} - \; 0,0199752 \; \delta_{30} \; , \\ X_2 = - \; 0,0235404 \; \delta_{10} + \; 0,0663734 \; \delta_{20} + \; 0,0262459 \; \delta_{30} \; , \\ X_3 = - \; 0,0199752 \; \delta_{10} + \; 0,0262459 \; \delta_{20} + \; 0,0652355 \; \delta_{30} \; . \end{array}$

β) Lösung für die Belastungszahlen δ_{10} , δ_{20} , δ_{30} aus 6.: $X_1 = +9,3269 p; \qquad X_2 = +7,4746 p; \qquad X_3 = -5,0739 p.$

8. Superposition der Belastung p und der überzähligen Schnittkräfte zur Bildung der Stütz-

Vereinfachung der Lösung bei Symmetrie des Tragwerks.

in (8) und Abb. 171 Null. Nachweis durch

$$\begin{split} &1 \, \tau_1' = \int M^{(3)} \, \overline{M_1^{(3)}} \, \frac{J_e}{J} \, ds = \int M^{(3)} \, \overline{M_1^{(0)}} \, \frac{J_e}{J} \, ds \,, \qquad 1 \, \tau_2' = \int M^{(3)} \, \overline{M_2^{(0)}} \, \frac{J_e}{J} \, ds \quad \text{(Abb. 171 a, b)}, \\ &1 \, \tau_1' = -\frac{1}{8} \cdot 9,3269 \cdot 27 - \frac{1}{8} \, 6,7899 \cdot 9 + \frac{2}{8} \cdot 15 \cdot 28,125 - 15 \cdot 11,7957 = -0,002, \\ &1 \, \tau_2' = +\frac{1}{8} \cdot \frac{1}{2} \cdot 6,7899 \cdot 9 - \frac{1}{8} \left[\frac{1}{2} \, (2 \cdot 7,4746 + 10,0116) + 1 \, (7,4746 + 20,0232) \right] \cdot 9 = 0,004, \\ &\tau_1 = \tau_1' \cdot h_1 = -0,002 \cdot 4,5 = -0,009 \approx 0,0; \qquad \tau_2 = \tau_2' \, h_2 = 0,004 \cdot 9,0 = 0,036 \approx 0,0. \end{split}$$

Der Fehler in der Berechnung der Schnittkräfte kann wie in Abschnitt 25, S. 169 bestimmt werden.

27. Vereinfachung der Lösung bei Symmetrie des Tragwerks und Symmetrie oder Antimetrie der Belastung.

Je mehr statisch überzählige Schnittkräfte zur Berechnung eines statisch unbestimmten Tragwerks notwendig sind, um so ungünstiger ist die gegenseitige Abhängigkeit für die Fehlerempfindlichkeit und damit auch für die Brauchbarkeit der Lösung. Man versucht daher die gegenseitige Verknüpfung unabhängig von der Größe der einzelnen statisch unbestimmten Schnittkräfte durch Symmetriebetrach-

tungen über den vorhandenen Spannungsund Verschiebungszustand des Tragwerks zu klären und damit die Lösung zu vereinfachen.

Die Symmetrie des Tragwerks ist durch die Anzahl der Symmetrieachsen bestimmt. Man unterscheidet die Symmetrie zu einer Achse, zu mehreren Achsen und zyklische Symmetrie. Die äußeren Kräfte des Tragwerks können symmetrisch oder antimetrisch zu einer Achse zugeordnet oder in allgemeiner Form vorgeschrieben sein. Symmetrie oder Antimetrie der äußeren Kräfte bedeuten

auch Symmetrie oder Antimetrie des Spannungs- und Verschiebungszustandes, so daß die Komponenten von Schnittkraft und Verschiebung in symmetrisch zugeordneten Querschnitten gleich groß oder entgegengesetzt gleich sind und einzelne Komponenten in den Querschnitten der Achsen ausgezeichnete Werte annehmen.

Bei Symmetrie der Belastung sind die Längskräfte N, die Biegungsmomente Mund die Verschiebungen w parallel zur Achse in symmetrisch zugeordneten Querschnitten m, m' gleich groß, die Querkräfte Q, die Verschiebungen u senkrecht zur Achse und die Verdrehungen φ entgegengesetzt gleich (Abb. 172). Für die Querschnitte n in der Symmetrieachse sind die Querkräfte Q, die Verschiebungen u senkrecht zur Achse und die Drehwinkel φ Null oder entgegengesetzt gleich, die Glieder der ersten Gruppe (N, M, w) erhalten ausgezeichnete Werte.

Bei Antimetrie der Belastung sind die Querkräfte Q, die Verschiebungen u senkrecht zur Achse und die Verdrehungen φ in symmetrisch zugeordneten Querschnitten m, m' gleich groß, die Längskräfte N, die Biegungsmomente M und die Verschiebungen w parallel zur Achse entgegengesetzt gleich. Für die Querschnitte n in der Symmetrieachse sind die Längskräfte N, die Biegungsmomente M und die Verschiebungen w parallel zur Achse Null oder entgegengesetzt gleich, die Glieder der zweiten Gruppe (Q, u, φ) erhalten ausgezeichnete Werte.

Damit sind bei Symmetrie oder Antimetrie der Belastung eines durch Achsen ausgezeichneten Tragwerks einzelne Komponenten des Spannungs- und Verschiebungszustandes bekannt. Die Anzahl der statisch überzähligen Schnittkräfte wird