

Die Statik im Stahlbetonbau

Beyer, Kurt Berlin [u.a.], 1956

Auflösung des Ansatzes durch Elimination

urn:nbn:de:hbz:466:1-74292

keiten entstehen unter Umständen nur durch die Fehlerfortpflanzung der Zahlenrechnung. Diese darf erst dann als beseitigt angesehen werden, wenn die Nennerdeterminante nicht wesentlich kleiner ist als das Produkt der Glieder der Haupt-

diagonale

Die Berechnung mit Determinanten nach S. 166 ist nur bei einer kleinen Anzahl von Wurzeln am Platze, die leicht mit Unterdeterminanten angeschrieben werden können. In allen anderen Fällen wird zunächst eine Wurzel durch Elimination oder Substitution der übrigen gewonnen. Diese selbst folgen dann durch Rekursion. Dabei verdient diejenige Rechenvorschrift den Vorzug, deren Zwischenergebnisse übersichtlich und nachprüfbar angeschrieben und deren Endergebnisse mit der kleinsten Stellenzahl einwandfrei erhalten werden. Die Lösungsfehler treten um so mehr zurück, je größer die Nennerdeterminanten aller Zwischenstufen bleiben. Daher ist die Elimination nach Gauß stets dann am Platze, wenn die Vorzahlen δ_{kk} in der Hauptdiagonale der Matrix groß gegenüber den Nebengliedern sind und diese selbst nach dem Rand zu der Größe nach abnehmen.

Auflösung des Ansatzes durch Elimination. a) Die vollständige Rechenvorschrift nach C. F. Gauß. Die Elimination beruht in der Rückbildung des Systems mit n Unbekannten auf ein System mit (n-1) Unbekannten. Man verwendet Vorwärts- oder Rückwärtselimination, um zunächst die nte oder die erste Unbekannte zu bestimmen und findet alle übrigen durch Rekursion der Lösung. Auf diese Weise entsteht eine Rechenvorschrift von großer Übersichtlichkeit.

Bei Substitution der Unbekannten wird eine Unbekannte als Funktion der übrigen in eine andere Gleichung eingesetzt und auf diese Weise in beliebiger, zumeist durch den Ansatz vorgeschriebener Reihenfolge zuerst eine Unbekannte X_k gefunden. Die übrigen ergeben sich wiederum durch Rekursion. Die Substitution eignet sich also bei unregelmäßiger Matrix. Sie führt unter Umständen auch dann noch zu brauchbaren Ergebnissen, wenn die Elimination nach gebundener Rechen-

vorschrift versagt.

Die Elimination ist als gebundene Rechenvorschrift von C. F. Gauß angegeben worden und als Gaußscher Algorithmus in der Geodäsie seit langem zur Lösung der Normalgleichungen bekannt. Hierbei wird bei n Unbekannten in n Eliminationsstufen stets die linksstehende Unbekannte ausgeschlossen, indem die in geeigneter Form erweiterte erste oder letzte Gleichung von den übrigen Gleichungen der Eliminationsstufe abgezogen wird. Zur Nachprüfung der Zahlenrechnung jeder Elimination werden die algebraischen Summen der Vorzahlen δ_{ik} jeder Zeile gebildet und als Zeilen- oder Quersummen $(\delta_{1}_{\Sigma} \dots \delta_{n}_{\Sigma})$ mitgeführt.

$$X_{1}\delta_{11} + X_{2}\delta_{12} + \cdots + X_{k}\delta_{1k} + \cdots + X_{n}\delta_{1n} = \delta_{10},$$

$$X_{1}\delta_{21} + X_{2}\delta_{22} + \cdots + X_{k}\delta_{2k} + \cdots + X_{n}\delta_{2n} = \delta_{20},$$

$$X_{1}\delta_{31} + X_{2}\delta_{32} + \cdots + X_{k}\delta_{3k} + \cdots + X_{n}\delta_{3n} = \delta_{30},$$

$$\vdots$$

$$X_{1}\delta_{n1} + X_{2}\delta_{n2} + \cdots + X_{k}\delta_{nk} + \cdots + X_{n}\delta_{nn} = \delta_{n0}.$$

$$\delta_{1\Sigma} = \delta_{11} + \delta_{12} + \cdots + \delta_{1n} \quad \text{oder} \quad \delta_{1\Sigma'} = \delta_{11} + \delta_{12} + \cdots + \delta_{1n} + \delta_{10}. \quad (370)$$

Bei Vorwärtselimination wird die erste Gleichung der Reihe nach mit

$$-\varkappa_{12} = -\frac{\delta_{21}}{\delta_{11}}, -\varkappa_{13} = -\frac{\delta_{31}}{\delta_{11}}, \dots, -\varkappa_{1n} = -\frac{\delta_{n1}}{\delta_{11}}$$
(371)

erweitert und zu den folgenden addiert.

$$X_{2}\left(\delta_{22}-\delta_{12}\frac{\delta_{21}}{\delta_{11}}\right)+X_{3}\left(\delta_{23}-\delta_{13}\frac{\delta_{21}}{\delta_{11}}\right)+\cdots+X_{k}\left(\delta_{2\,k}-\delta_{1\,k}\frac{\delta_{21}}{\delta_{11}}\right)+\cdots+X_{n}\left(\delta_{2\,n}-\delta_{1\,n}\frac{\delta_{21}}{\delta_{11}}\right)$$

$$=\delta_{20}-\delta_{10}\frac{\delta_{21}}{\delta_{11}};\quad\delta_{2\,\Sigma}-\delta_{1\,\Sigma}\frac{\delta_{21}}{\delta_{11}},\quad\text{oder}\quad\delta_{2\,\Sigma'}-\delta_{1\,\Sigma'}\frac{\delta_{21}}{\delta_{11}},$$

$$X_{2}\left(\delta_{32}-\delta_{12}\frac{\delta_{31}}{\delta_{11}}\right)+X_{3}\left(\delta_{33}-\delta_{13}\frac{\delta_{31}}{\delta_{11}}\right)+\cdots+X_{k}\left(\delta_{3\,k}-\delta_{1\,k}\frac{\delta_{31}}{\delta_{11}}\right)+\cdots+X_{n}\left(\delta_{3\,n}-\delta_{1\,n}\frac{\delta_{31}}{\delta_{11}}\right)$$

$$=\delta_{30}-\delta_{10}\frac{\delta_{31}}{\delta_{11}};\quad\delta_{3\,\Sigma}-\delta_{1\,\Sigma}\frac{\delta_{31}}{\delta_{11}},\quad\text{oder}\quad\delta_{3\,\Sigma'}-\delta_{1\,\Sigma'}\frac{\delta_{31}}{\delta_{11}}.$$

$$(372)$$

Auf diese Weise ist X_1 ausgeschlossen und die erste Eliminationsstufe mit (n-1) Gleichungen gebildet worden. Sie ist nach dem Ergebnis der Rechnung unter Beachtung des Maxwellschen Gesetzes ebenfalls zur Hauptdiagonale symmetrisch. Ihre Vorzahlen erhalten im Sinne von C. F. Gauß folgende Bezeichnung:

Die Richtigkeit der Zahlenrechnung wird durch die folgende Identität festgestellt:

$$\delta_{2\Sigma}^{(1)} = \delta_{22}^{(1)} + \delta_{23}^{(1)} + \cdots + \delta_{2n}^{(1)} = \delta_{2\Sigma} - \delta_{1\Sigma} \frac{\delta_{21}}{\delta_{11}}, \tag{374}$$

$$\delta_{2\Sigma'}^{(1)} = \delta_{2\Sigma}^{(1)} + \delta_{20}^{(1)}. \tag{375}$$

Hierauf wird X_2 ausgeschlossen, indem die erste Gleichung der ersten Stufe der Reihe nach mit $-\varkappa_{23} = -\delta_{32}^{(1)}/\delta_{22}^{(1)}$; $-\varkappa_{24} = -\delta_{42}^{(1)}/\delta_{22}^{(1)}$ erweitert und zu den folgenden addiert wird. Auf diese Weise wird die zweite Eliminationsstufe mit (n-2) Unbekannten $X_3 \dots X_n$ gebildet. Ihre Vorzahlen führen die Bezeichnung $\delta_{33}^{(2)} \dots \delta_{3n}^{(2)}$ usw. Die Richtigkeit der Rechnung folgt aus

$$\delta_{3\varSigma}^{(2)} = \delta_{33}^{(2)} + \delta_{34}^{(2)} + \cdots + \delta_{3n}^{(2)} = \delta_{3\varSigma}^{(1)} - \delta_{2\varSigma}^{(1)} \frac{\delta_{32}^{(1)}}{\delta_{32}^{(1)}}; \qquad \delta_{3\varSigma}^{(1)} = \delta_{3\varSigma} - \delta_{1\varSigma} \frac{\delta_{31}}{\delta_{11}}.$$

Die Elimination ergibt schließlich

$$X_n = \frac{\delta_{n\,0}^{(n-1)}}{\delta^{(n-1)}}.\tag{376}$$

In dem Ansatz (372) ist 1 δ_{21}/δ_{11} die überzählige Größe X_{12} , welche von $-X_2=1$ erzeugt wird. Demnach sind

$$\delta_{22} - \delta_{12} \frac{\delta_{21}}{\delta_{11}} = \delta_{22}^{(1)}, \qquad \delta_{2k} - \delta_{1k} \frac{\delta_{21}}{\delta_{11}} = \delta_{k2} - \delta_{k1} \frac{\delta_{21}}{\delta_{11}} = \delta_{2k}^{(1)}$$
(377)

die Verschiebungen der Punkte $2\ldots k$, welche aus $-X_2=1$ und gleichzeitig durch die $-X_2=1$ zugeordnete überzählige Größe X_{12} entstehen. $\delta_{22}^{(1)}\ldots\delta_{2k}^{(1)}$ sind also Verschiebungen in einem einfach statisch unbestimmten Hauptsystem, in dem X_1 nicht mehr als überzählige Größe auftritt. Ebenso können $\delta_{33}^{(2)}\ldots\delta_{3k}^{(2)}$ als die Verschiebungen der Punkte $3\ldots k$ eines zweifach statisch unbestimmten Hauptsystems angesehen werden, in dem X_1 und X_2 nicht mehr als überzählige Größen enthalten sind.

Vollständige Vorwärtselimination für fünf überzählige Größen (378).

		X_1	X_2	X_3	X_4	X_5	
	I	δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	δ_{10}
			×12	×13	×14	×15	_
	2	δ_{21}	δ_{22}	δ_{23}	δ_{24}	δ_{25}	δ_{20}
I	3	δ_{31}	δ_{32}	δ_{33}	δ_{34}	δ_{35}	δ_{30}
	4	δ_{41}	δ_{42}	δ_{43}	δ_{44}	δ_{45}	δ_{40}
	5	δ_{51}	δ_{52}	δ_{53}	δ_{54}	δ_{55}	δ_{50}
	2(1)		$\delta_{22}^{(1)}$	$\delta_{23}^{(1)}$	$\delta_{24}^{(1)}$	$\delta_{25}^{(1)}$	$\delta_{20}^{(1)}$
				×23	×24	×25	_
11	3(1)		$\delta_{32}^{(1)}$	$\delta_{33}^{(1)}$	$\delta_{34}^{(1)}$	$\delta_{35}^{(1)}$	$\delta_{30}^{(1)}$
	4(1)		$\delta_{42}^{(1)}$	$\delta_{43}^{(1)}$	$\delta_{44}^{(1)}$	$\delta_{45}^{(1)}$	$\delta_{40}^{(1)}$
	5(1)		$\delta_{52}^{(1)}$	$\delta_{53}^{(1)}$	$\delta_{54}^{(1)}$	$\delta_{55}^{(1)}$	$\delta_{50}^{(1)}$
	3(2)			$\delta_{33}^{(2)}$	$\delta_{34}^{(2)}$	$\delta_{35}^{(2)}$	8(2)
					×34	×35	_
III	4(2)			$\delta_{43}^{(2)}$	$\delta_{44}^{(2)}$	$\delta_{45}^{(2)}$	$\delta_{40}^{(2)}$
	5(2)			$\delta_{53}^{(2)}$	$\delta_{54}^{(2)}$	$\delta_{55}^{(2)}$	$\delta_{50}^{(2)}$
	4 ⁽³⁾			100	$\delta_{44}^{(3)}$	$\delta_{45}^{(3)}$	$\delta_{40}^{(3)}$
IV						×45	-
	5(3)				$\delta_{54}^{(3)}$	$\delta_{55}^{(3)}$	δ ⁽³⁾ ₅₀
v	5(4)					$\delta_{55}^{(4)}$	$\delta_{50}^{(4)}$

I	1	δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	δ_{10}
II	2(1)		$\delta_{22}^{(1)}$	$\delta_{23}^{(1)}$	$\delta_{24}^{(1)}$	$\delta_{25}^{(1)}$	$\delta_{20}^{(1)}$
III	3(2)			$\delta_{33}^{(2)}$	$\delta_{34}^{(2)}$	$\delta_{35}^{(2)}$	$\delta_{30}^{(2)}$
IV	4(3)				$\delta_{44}^{(3)}$	$\delta_{45}^{(3)}$	$\delta_{40}^{(3)}$
v	5(4)					8(4)	$\delta_{50}^{(4)}$

	$\delta_{22}^{(1)} = \delta_{22} - \varkappa_{12} \delta_{12}$,
	$\delta_{23}^{(1)} = \delta_{23} - arkappa_{12} \delta_{13}$,
	$\delta_{24}^{(1)} = \delta_{24} - \varkappa_{12} \delta_{14}$,
	$\delta_{25}^{(1)} = \delta_{25} - \kappa_{12} \delta_{15}$
	δ_{io}
	$ \kappa_{12} = \frac{\delta_{12}}{\delta_{11}}; $
	$\delta_{33}^{(2)} = \delta_{33}^{(1)} - \varkappa_{21} \delta_{23}^{(1)}$
	$= \delta_{33} - \varkappa_{13} \delta_{13} - \varkappa_{23} \delta_{23}^{(1)} ,$ $= \delta_{33} - \varkappa_{13} \delta_{13} - \varkappa_{23} \delta_{23}^{(1)} ,$
	$\delta_{34}^{(2)} = \delta_{34} - \kappa_{13} \delta_{14} - \kappa_{23} \delta_{24}^{(1)} ,$
	$\delta_{34}^{(2)} = \delta_{35} - \kappa_{13} \delta_{15}^{(1)} - \kappa_{23} \delta_{25}^{(1)}$,
	035 — 035 213 015 223 025 ,
	$arkappa_{13}=rac{\delta_{13}}{\delta_{11}}$;
	8(1)
	$ \varkappa_{23} = \frac{\delta_{23}^{(1)}}{\delta_{22}^{(1)}}; $
	$\delta_{44}^{(3)} = \delta_{44}^{(9)} - \varkappa_{34} \delta_{34}^{(9)}$
	$= \delta_{44}^{(1)} - \varkappa_{24} \delta_{24}^{(1)} - \varkappa_{34} \delta_{34}^{(2)}$
	$= \delta_{44} - \varkappa_{14} \delta_{14} - \varkappa_{24} \delta_{24}^{(1)} - \varkappa_{34} \delta_{34}^{(2)} ,$
	$\delta_{45}^{(3)} = \delta_{45} - \varkappa_{14} \delta_{15} - \varkappa_{24} \delta_{25}^{(1)} - \varkappa_{34} \delta_{35}^{(2)} ,$
	$ \kappa_{14} = \frac{\delta_{14}}{\delta_{11}}; $
	O ₁₁
	$arkappa_{24} = rac{\delta_{24}^{(1)}}{\delta_{22}^{(1)}}$;
	$lpha_{34} = rac{\delta_{34}^{(2)}}{\delta_{33}^{(2)}};$
	$\delta_{55}^{(4)} = \delta_{55}^{(3)} - arkappa_{45}^{(3)} \delta_{45}^{(3)}$
1	$= \delta_{55}^{(2)} - \varkappa_{35}\delta_{35}^{(2)} - \varkappa_{45}\delta_{45}^{(3)}$ $= \delta_{55}^{(2)} - \varkappa_{35}\delta_{35}^{(2)} - \varkappa_{45}\delta_{45}^{(3)}$
	$= \delta_{55}^{(1)} - \varkappa_{25}\delta_{25}^{(1)} - \varkappa_{35}\delta_{35}^{(2)} - \varkappa_{45}\delta_{45}^{(3)}$ $= \delta_{55}^{(1)} - \varkappa_{25}\delta_{25}^{(1)} - \varkappa_{35}\delta_{35}^{(2)} - \varkappa_{45}\delta_{45}^{(3)}$
	$= \delta_{55} - \varkappa_{15}\delta_{15} - \varkappa_{25}\delta_{25}^{(3)} - \varkappa_{35}\delta_{35}^{(2)} - \varkappa_{45}\delta_{45}^{(3)},$
	\$
	$arkappa_{15}=rac{\delta_{15}}{\delta_{11}}$;
	δ(1)
	$arkappa_{25} = rac{\delta_{25}^{(1)}}{\delta_{22}^{(1)}}$;
	$\delta_{35}^{(2)}$.
	$arkappa_{35} = rac{\delta_{35}^{(2)}}{\delta_{38}^{(2)}}$;

 $\varkappa_{45} = \frac{\delta_{45}^{(3)}}{\delta_{44}^{(3)}};$

$$\delta_{22}^{(1)} = \delta_{22} - \varkappa_{12} \delta_{12}; \qquad \delta_{33}^{(2)} = \delta_{33}^{(1)} - \varkappa_{23} \delta_{23}^{(1)} = \delta_{33} - \varkappa_{13} \delta_{13} - \varkappa_{23} \delta_{23}^{(1)},$$

$$\delta_{2k}^{(1)} = \delta_{2k} - \varkappa_{12} \delta_{1k}, \qquad \delta_{3k}^{(2)} = \delta_{3k}^{(1)} - \varkappa_{23} \delta_{2k}^{(1)} = \delta_{3k} - \varkappa_{13} \delta_{1k} - \varkappa_{23} \delta_{2k}^{(1)},$$

$$\delta_{k}^{(k-1)} = \delta_{kk} - \varkappa_{1k} \delta_{1k} - \varkappa_{2k} \delta_{2k}^{(1)} - \varkappa_{3k} \delta_{3k}^{(2)} - \cdots \times_{(k-1)k} \delta_{k-1)k}^{(k-2)},$$

$$\delta_{kn}^{(k-1)} = \delta_{kn} - \varkappa_{1k} \delta_{1n} - \varkappa_{2k} \delta_{2n}^{(1)} - \varkappa_{3k} \delta_{3n}^{(2)} - \cdots \times_{(k-1)k} \delta_{k-1)n}^{(k-2)},$$

$$\delta_{kn}^{(k-1)} = \delta_{k0} - \varkappa_{1k} \delta_{10} - \varkappa_{2k} \delta_{20}^{(1)} - \varkappa_{3k} \delta_{30}^{(2)} - \cdots \times_{(k-1)k} \delta_{k-1)n}^{(k-2)},$$

$$\delta_{k0}^{(k-1)} = \delta_{k0} - \varkappa_{1k} \delta_{10} - \varkappa_{2k} \delta_{20}^{(1)} - \varkappa_{3k} \delta_{30}^{(2)} - \cdots \varkappa_{(k-1)k} \delta_{k-1)n}^{(k-2)}.$$

$$(379)$$

Die vollständige Elimination bietet eine mehrfache Möglichkeit zur Substitution der Ergebnisse der einen Gleichung in einer anderen derselben Stufe und damit zur unmittelbaren Nachprüfung der Lösung.

b) Die abgekürzte Rechenvorschrift nach C. F. Gauß. Der Algorithmus von Gauß kann im Gegensatz zu (378) auf die erste Gleichung einer jeden Ehminationsstufe beschränkt werden, so daß ein reduzierter Ansatz von n Elastizitätsgleichungen entsteht, die n Hauptsystemen mit ansteigender statischer Unbestimmtheit zugeordnet sind.

$$X_{1} \delta_{11} + X_{2} \delta_{12} + X_{3} \delta_{13} + + X_{n} \delta_{1n} = \delta_{10},$$

$$X_{2} \delta_{22}^{(1)} + X_{3} \delta_{23}^{(1)} + + X_{n} \delta_{2n}^{(1)} = \delta_{20}^{(1)},$$

$$X_{3} \delta_{33}^{(2)} + + X_{n} \delta_{3n}^{(2)} = \delta_{30}^{(2)},$$

$$X_{n-1} \delta_{(n-1)(n-1)}^{(n-2)} + X_{n} \delta_{(n-1)n}^{(n-2)} = \delta_{(n-1)0}^{(n-2)},$$

$$+ X_{n} \delta_{nn}^{(n-1)} = \delta_{n0}^{(n-1)}.$$

$$(380)$$

Die abgekürzte Vorwärtselimination liefert X_n ebenso wie der vollständige Ansatz und genügt zur Berechnung aller anderen überzähligen Größen X_k ($k=n-1\ldots 1$) durch schrittweises Einsetzen der Ergebnisse in die übrigen Gleichungen des reduzierten Ansatzes (380). Er bedeutet mathematisch die Beseitigung aller Glieder der Matrix (319) unterhalb der Hauptdiagonale. Bei Rückwärtselimination verschwinden alle Glieder oberhalb der Hauptdiagonale. Die Rekursion kann auch als wiederholte Anwendung des Gaußschen Algorithmus in der entgegengesetzten Richtung angesehen werden. Ist die Matrix der Elastizitätsgleichungen symmetrisch zur Nebendiagonale, so ist die Vorwärtselimination mit der Rückwärtselimination identisch.

Die Rechenvorschrift wird an einem fünffach statisch unbestimmten System gezeigt (S. 220).

$$X_5 = \frac{\delta_{50}^{(4)}}{\delta_{55}^{(4)}}$$

Die anderen überzähligen Größen werden durch Rekursion aus den Gleichungen 4(3), 3(2), 2(1) und 1 gefunden (378):

, k	5	4	3	2	I	
$-X_2 \varkappa_{k2}$				-	$-X_2 \varkappa_{12}$	
$-X_3 \varkappa_{k3}$			•	$-X_3 \times_{23}$	- X ₃ × ₁₃	
- X4 × k4			$-X_{4} \times_{34}$	$-X_{4} \times_{24}$	- X4 ×14	(200)
$-X_5\varkappa_{k5}$		- X5 ×45	$-X_{5} \varkappa_{35}$	$-X_5 \varkappa_{25}$	- X5 ×15	(382)
$\delta_{k0}^{(k-1)}/\delta_{kk}^{(k-1)}$	$\delta_{50}^{(4)}/\delta_{55}^{(4)}$	$\delta_{40}^{(3)}/\delta_{44}^{(3)}$	$\delta_{30}^{(2)}/\delta_{33}^{(2)}$	$\delta_{20}^{(1)}/\delta_{22}^{(1)}$	$\delta_{10}^{(0)}/\delta_{11}^{(0)}$	
$\Sigma_{k0} = X_k$	X_5	X4	X_3	X ₂	X_1	
k	5	4	3	2	I	

Zur Nachprüfung der Ergebnisse können die Elastizitätsgleichungen (1)...(5) verwendet werden. (Fortsetzung des Textes S. 223.)

Abgekürzte Rechenvorschrift für die Vorwärtselimination von fünf überzähligen Größen (381)**.

	Kon- D.L.												
		-		X ₂ X ₃ X ₄			Kon- trollen		Ве	lastu	ngsg	lieder	810
		X_1	X ₂	X_3	X4	X 5	$\begin{bmatrix} \delta_{i\Sigma} = \\ k=5 \\ = \sum_{i=1}^{K} \delta_{i+1} \end{bmatrix}$	1	zur Bestimmur $X_k =$				Be- lastungs-
-							$= \sum_{k=1}^{\infty} \delta_{ik}$	β _{5 k}	β_{4k}	β_{3k}	β _{2 k}	β_{1k}	fall ()
i	k	I	2	3	4	5	Σ	0	0	0	0	0	0
1	δ_{1k}	δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	$\delta_{1\Sigma}$	0	0	0	0	1	δ_{10}
L	×1k		δ_{12}/δ_{11}	δ_{13}/δ_{11}	δ_{14}/δ_{11}	δ_{15}/δ_{11}	1 10 50					*	δ_{10}/δ_{11}
2	δ_{2k}	(δ_{21})	δ_{22}	δ_{23}	δ_{24}	δ_{25}	$\delta_{2\Sigma}$	0	0	0	1	0	δ_{20}
	-× ₁₂ δ _{1 k}		$-\varkappa_{12}\delta_{12}$	$-\varkappa_{12}\delta_{13}$	$-lpha_{12}\delta_{14}$	$-\varkappa_{12}\delta_{15}$	$- \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$						-×12 810
	$\Sigma_{2k} = \delta_{2k}^{(1)}$		δ(1) 22	$\delta_{23}^{(1)}$	$\delta_{24}^{(1)}$	δ ⁽¹⁾	$\delta_{2\Sigma}^{(1)}$	0	0	0	1		$\delta_{20}^{(1)}$
L	×2 h	•		$\delta_{23}^{(1)}/\delta_{22}^{(1)}$	$\delta_{24}^{(1)}/\delta_{22}^{(1)}$	$\delta_{25}^{(1)}/\delta_{22}^{(1)}$					*		$\delta_{20}^{(1)}/\delta_{22}^{(1)}$
3	δ _{3 k}	(δ_{31}) (δ_{32}) δ_{33} δ_{34}		δ_{35}	$\delta_{3\Sigma}$	0	0	1	0	0	δ_{30}		
	-× ₁₃ δ _{1 k}			-× ₁₃ δ ₁₃	$-\varkappa_{13}\delta_{14}$	$-\varkappa_{13}\delta_{15}$	$-\kappa_{13} \delta_{1 \Sigma}$						-× ₁₃ δ ₁₀
	-×23 82 k			$-\kappa_{23}\delta_{23}^{(1)}$ $-\kappa_{23}\delta_{24}^{(1)}$		$-\varkappa_{23}\delta_{25}^{(1)}$	$-\kappa_{23} \delta_{2}^{(1)}$						-×23 $\delta_{30}^{(1)}$
	$\Sigma_{3k} = \delta^{(2)}_{3k}$			δ ₃₈ ⁽²⁾	$\delta_{34}^{(9)}$	δ ⁽²⁾ ₈₅	$\delta_{8\Sigma}^{(2)}$	0	0	1			δ(8)
	×3h	•			$\delta_{34}^{(2)}/\delta_{33}^{(2)}$	$\delta_{35}^{(2)}/\delta_{33}^{(2)}$	9 .						$\delta_{30}^{(g)}/\delta_{33}^{(g)}$
4	δ_{4k}	(δ_{41})	(δ_{42})	(δ_{43})	844	δ_{45}	$\delta_{4\Sigma}$	0	1	0	0	0	840
	$-\varkappa_{14}\delta_{1k}$				$-\varkappa_{14}\delta_{14}$	$-\varkappa_{14}\delta_{15}$	$- \approx_{14} \delta_{1\Sigma}$						$-\varkappa_{14}\delta_{10}$
	$-\varkappa_{24}\delta_{2k}^{(1)}$				$-\kappa_{24}\delta_{24}^{(1)}$	$-\varkappa_{24}\delta_{_{25}}^{_{(1)}}$	-× ₂₄ δ ⁽¹⁾ ₂ Σ						$-\varkappa_{24}\delta_{20}^{(1)}$
	-× ₃₄ δ ⁽²⁾ _{3,k}				$-\kappa_{34}\delta_{34}^{(2)}$	-×34 $\delta_{35}^{(2)}$	$-x_{34} \delta_{3}^{(2)}$						-×34 8(8)
	$\varSigma_{4k}\!=\!\delta_{4k}^{(8)}$				8(3)	8(3)	$\delta_{4\Sigma}^{(3)}$	0	r				8(3)
	×42	•			-	$\delta_{45}^{(3)}/\delta_{44}^{(3)}$	-					. '	$\delta_{40}^{(3)}/\delta_{44}^{(3)}$
5	δ_{5k}	(δ_{51})	(δ ₅₂)	(δ_{53}) .	(δ_{54})	δ_{55}	$\delta_{5\Sigma}$	I	0	0	0	0	δ_{50}
	$-\kappa_{15}\delta_{1k}$					$-\varkappa_{15}\delta_{15}$	$-\varkappa_{15}\delta_{1\varSigma}$						$-\varkappa_{15} \delta_{10}$
	$-\kappa_{25}\delta_{9k}^{(1)}$					$-\varkappa_{25}\delta_{25}^{(1)}$	$-\varkappa_{25}\delta_{2\varSigma}^{(1)}$						-×25 $\delta_{20}^{(1)}$
	-×35 $\delta_{3k}^{(2)}$					-×35 8(8)	-κ ₃₅ δ ⁽⁹⁾ _{8Σ}						-×35 $\delta_{z0}^{(2)}$
	$-\varkappa_{45}\delta_{4k}^{(3)}$		•			$-lpha_{45}\delta_{45}^{(3)}$	$-lpha_{45}\delta_{4\varSigma}^{(3)}$						$-\kappa_{45}\delta_{40}^{(8)}$
	$\Sigma_{5k} = \delta_{5k}^{(4)}$	$\delta_{bk} = \delta_{bk}^{(4)}$			8(4)	δ ₅ Σ	1					δ ₅₀ ⁽⁴⁾	
								•					$\delta_{50}^{(4)}/\delta_{55}^{(4)}$

^{*} Die Quotienten $1/\delta_{kk}^{(k-1)}$ werden unmittelbar in die Rekursionstabelle (385) eingetragen. ** Die eingeklammerten Vorzahlen sind nur zur Erleichterung der Summenbildung $\delta_{k\Sigma}$ beigefügt.

Berechnung der Vorzahlen β_{ik} eines Ansatzes mit fünf überzähligen Größen (384).

		F 30	β_{45}	β_{55}	
δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	0
	×12	×13	×14	×15	
	$\delta_{22}^{(1)}$	$\delta_{23}^{(1)}$	$\delta_{24}^{(1)}$	$\delta_{25}^{(1)}$	0
		×23	×24	×25	
		$\delta_{33}^{(2)}$	$\delta_{84}^{(2)}$	$\delta_{85}^{(2)}$	0
			×34	×35	
			$\delta_{44}^{(3)}$	$\delta_{45}^{(3)}$	0
				×45	
Nº	2			$\delta_{55}^{(4)}$	1
	δ11	×12	$egin{array}{c cccc} \varkappa_{12} & \varkappa_{13} \\ \delta_{22}^{(1)} & \delta_{23}^{(1)} \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Aus a) folgt
$$eta_{\mathbf{55}} = rac{1}{\delta_{\mathbf{55}}^{(4)}}$$
 .

Durch Rekursion sind folgende Vorzahlen bestimmt:

$$\begin{split} \beta_{45} &= -\varkappa_{46}\,\beta_{55}; & \beta_{35} &= -\varkappa_{34}\,\beta_{45} - \varkappa_{35}\,\beta_{55}; \\ \beta_{25} &= -\varkappa_{23}\,\beta_{35} - \varkappa_{24}\,\beta_{45} - \varkappa_{25}\,\beta_{55}; \\ \beta_{15} &= -\varkappa_{12}\,\beta_{25} - \varkappa_{13}\,\beta_{35} - \varkappa_{14}\,\beta_{45} - \varkappa_{15}\,\beta_{55}; \\ \beta_{45} &= \beta_{54} \text{ usw}. \end{split}$$

Aus a):
$$\beta_{54} = \beta_{45}$$

b) β_{14} β_{24} β_{34} β_{44} β_{5} $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$\delta_{33}^{(2)}$ $\delta_{34}^{(3)}$ $\delta_{3}^{(3)}$	0
	0
×34 ×3	
$\delta_{44}^{(3)}$ $\delta_{4}^{(3)}$	1
×4	

$$\begin{split} \beta_{44} &= \frac{1}{\delta_{44}^{(3)}} - \varkappa_{45} \, \beta_{54}; \\ \beta_{34} &= -\varkappa_{34} \, \beta_{44} - \varkappa_{35} \, \beta_{54}; \\ \beta_{24} &= -\varkappa_{23} \, \beta_{34} - \varkappa_{24} \, \beta_{44} - \varkappa_{25} \, \beta_{54}; \\ \beta_{14} &= -\varkappa_{12} \, \beta_{24} - \varkappa_{13} \, \beta_{34} - \varkappa_{14} \, \beta_{44} - \varkappa_{15} \, \beta_{54}; \\ \beta_{34} &= \beta_{43} \quad \text{usw}. \end{split}$$

Aus a) u. b):
$$\beta_{53}=\beta_{35}$$
 , $\beta_{43}=\beta_{34}$.

$$\begin{split} \beta_{33} &= \frac{1}{\delta_{33}^{(2)}} - \varkappa_{34} \, \beta_{45} - \varkappa_{35} \, \beta_{53} \,, \\ \beta_{23} &= -\varkappa_{23} \, \beta_{33} - \varkappa_{24} \, \beta_{43} - \varkappa_{25} \, \beta_{53} \,, \\ \beta_{13} &= -\varkappa_{12} \, \beta_{23} - \varkappa_{13} \, \beta_{33} - \varkappa_{14} \, \beta_{43} - \varkappa_{15} \, \beta_{53} \,, \\ \beta_{23} &= \beta_{32} \, \text{usw}. \end{split}$$

Aus a), b) u. c):
$$\beta_{52} = \beta_{25} , \ \beta_{42} = \beta_{24} , \ \beta_{32} = \beta_{23} .$$

d)	β_{12}	β_{22}	β_{32}	β_{42}	β_{52}	
	δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	0
		×12	×13	×14	×15	
		$\delta_{22}^{(1)}$	$\delta_{23}^{\scriptscriptstyle(1)}$	$\delta_{24}^{(1)}$	$\delta_{25}^{(1)}$	1
			\varkappa_{23}	×24	×25	

$$\begin{split} \beta_{22} &= \frac{1}{\delta_{22}^{(1)}} - \varkappa_{23} \, \beta_{32} - \varkappa_{24} \, \beta_{42} - \varkappa_{25} \, \beta_{52} \,, \\ \beta_{12} &= -\varkappa_{12} \, \beta_{22} - \varkappa_{13} \, \beta_{32} - \varkappa_{14} \, \beta_{42} - \varkappa_{15} \, \beta_{52} \,, \\ \beta_{12} &= \beta_{21} \ \text{usw}. \end{split}$$

Aus a), b), c) u. d):
$$\beta_{51} = \beta_{15}, \ \beta_{41} = \beta_{14}, \ \beta_{31} = \beta_{13}, \ \beta_{21} = \beta_{12}.$$

$$\beta_{11} = \frac{1}{\delta_{11}} - \varkappa_{12} \beta_{21} - \varkappa_{13} \beta_{31} - \varkappa_{14} \beta_{41} - \varkappa_{15} \beta_{51} \,.$$

Rechenvorschrift in Verbindung mit (381) für die Rekursion eines Ansatzes mit fünf überzähligen Größen zur Bestimmung der Vorzahlen β_{ik} (385).

								_	
			δ_{50}	840	δ_{30}	δ_{20}	δ_{10}		
	i	k	5	4	3	2	I	i	
		$-\beta_{52}\kappa_{k2}$					$-\beta_{52}\varkappa_{12}$		
		$-\beta_{53} \times_{k3}$				$-\beta_{53}\varkappa_{23}$	$-\beta_{53} \varkappa_{13}$		
		$-\beta_{54} \varkappa_{k4}$			$-\beta_{54}\varkappa_{34}$	$-\beta_{54} \times_{24}$	$-\beta_{54}\varkappa_{14}$		
X_5	5	$-\beta_{55} \varkappa_{k5}$		$-\beta_{55} \varkappa_{45}$	$-\beta_{55} \varkappa_{35}$	$-\beta_{55} \varkappa_{25}$	$-\beta_{55} \varkappa_{15}$	5	
		$\delta_{k0}^{(k-1)}/\delta_{kk}^{(k-1)}$	$1/\delta_{55}^{(4)}$	0	0	0	0		
		$X_k = \beta_{5k}$	β_{55}	β ₅₄	β_{52}	β_{51}			
La Li		$-\beta_{42} \varkappa_{k2}$					$-\beta_{42} \varkappa_{12}$		
		$-\beta_{43} \varkappa_{k3}$				$-\beta_{43}\varkappa_{23}$	$-\beta_{43}\varkappa_{13}$		
7.	Variation of the same of the s	$-\beta_{44} \times_{k4}$			$-\beta_{44} \times_{34}$	$-\beta_{44} \varkappa_{24}$	$-\beta_{44} \times_{14}$		
X_4	4	$-\beta_{45} \varkappa_{k5}$		$-\beta_{45} \varkappa_{45}$	$-\beta_{45} \varkappa_{35}$	$-\beta_{45} \varkappa_{25}$	$-\beta_{45} \varkappa_{15}$	4	
	$\begin{aligned} \delta_k^{(k-1)}/\delta_{kk}^{(k-1)} \\ X_k &= \beta_{4k} \\ -\beta_{32} \varkappa_{k2} \end{aligned}$			$1/\delta_{44}^{(3)}$	0	0	0		
			β_{45}	β_{44}	β_{43}	β_{42}	β_{41}		
						•	$-\beta_{32}\varkappa_{12}$		
		$-\beta_{33}\varkappa_{k3}$				$-\beta_{33} \times_{23}$	$-\beta_{33}\varkappa_{13}$		
77		$-\beta_{34}\varkappa_{k4}$			$-\beta_{34}\varkappa_{34}$	$-\beta_{34} \times_{24}$	$-\beta_{34}\varkappa_{14}$		
A3	X ₃ 3	$-\beta_{35}\varkappa_{k5}$	· \beta_{35} \times_{35}		$-\beta_{35} \varkappa_{25}$	$-\beta_{35} \varkappa_{15}$	3		
		$\delta_{k0}^{(k-1)}/\delta_{kk}^{(k-1)}$.			$1/\delta_{33}^{(2)}$	0	0		
		$X_k = \beta_{3k}$	β_{35}	β_{34}	β_{33}	β_{32}	β_{31}		
		$-\beta_{22} \varkappa_{k2}$					$-\beta_{22}\varkappa_{12}$	1	
		$-\beta_{23} \varkappa_{k3}$				$-\beta_{23} \varkappa_{23}$	$-\beta_{23}\varkappa_{13}$		
v		$-\beta_{24}\varkappa_{k4}$				$-\beta_{24}\varkappa_{24}$	$-\beta_{26}\varkappa_{14}$	2	
X_2	2	$-\beta_{25}\varkappa_{k5}$				$-\beta_{25} \varkappa_{25}$	$-\beta_{25}\varkappa_{15}$	1	
		$\delta_{k0}^{(k-1)}/\delta_{kk}^{(k-1)}$	•	,		$1/\delta_{22}^{(1)}$	0		
-		$X_k = \beta_{2k}$	β_{25}	β_{24}	β_{23}	β_{22}	β_{21}		
		$-\beta_{12} \varkappa_{k_2}$					$-\beta_{12} \varkappa_{12}$		
E		$-\beta_{13} \varkappa_{k3}$					$-\beta_{13}\varkappa_{13}$		
X ₁	_	$-\beta_{14}\varkappa_{k4}$					$-\beta_{14}\varkappa_{14}$	I	
A1 -	I	$-\beta_{15}\varkappa_{k5}$				-	$-\beta_{15}\varkappa_{15}$		
		$\delta_{k0}^{(k-1)}/\delta_{kk}^{(k-1)}$					1/811		
		$X_k = \beta_{1k}$	β_{15}	β ₁₄	β_{13}	β_{12}	β_{11}	1	

(386)

k	1	2	3	4	5	
$X_1\delta_{k_1}$	$X_1 \delta_{11}$	$X_1\delta_{21}$	$X_1 \delta_{31}$	$X_1\delta_{41}$	$X_1\delta_{51}$	
$X_2\delta_{k_2}$	$X_2 \delta_{12}$	$X_2\delta_{22}$	$X_2 \delta_{32}$	$X_2 \delta_{42}$	$X_2\delta_{52}$	
$X_3\delta_{k3}$	$X_3\delta_{13}$	$X_3\delta_{23}$	$X_3\delta_{33}$	$X_3\delta_{43}$	$X_3\delta_{53}$	(383)
$X_4\delta_{k4}$	$X_4 \delta_{14}$	$X_4 \delta_{24}$	$X_4 \delta_{34}$	$X_4\delta_{44}$	$X_4\delta_{54}$	
$X_5 \delta_{k5}$	$X_5 \delta_{15}$	$X_5 \delta_{25}$	$X_5 \delta_{35}$	$X_5 \delta_{45}$	$X_5 \delta_{55}$	
$\Sigma_k = \delta_{k0}$	δ_{10}	δ_{20}	δ_{30}	δ_{40}	δ_{50}	

c) Die Berechnung der konjugierten Matrix. Um die überzähligen Größen für mehrere Belastungsfälle ohne Wiederholung der Elimination anzugeben, wird die konjugierte Matrix zu (319) berechnet. Mit dieser ist nach (326)

$$X_k = \sum_{h=1}^{h=n} \beta_{kh} \, \delta_{h0}$$
 und $\beta_{hk} = \beta_{kh}$.

Die Vorzahlen β_{hk} sind nach S. 166 die überzähligen Größen X_h $(h=1\dots n)$ für $\delta_{k0}=1$. Um die $1/2\cdot n$ (n+1) unabhängigen Glieder der konjugierten Matrix übersichtlich zu berechnen, wird entweder mit der Bestimmung der β_{kn} aus $\delta_{n0}=1$ durch Vorwärtselimination oder mit der Bestimmung der β_{kn} aus $\delta_{10}=1$ in Verbindung mit einer Rückwärtselimination begonnen. Die übrigen Vorzahlen ergeben sich auf Grund der Symmetrie der konjugierten Matrix zur Hauptdiagonale durch Rekursion. Zunächst sind mit β_{nn} die Vorzahlen $\beta_{kn}\dots\beta_{1n}$ bestimmt. Alle übrigen β_{hk} $(h=k\dots 1)$ werden stets aus den ersten k Gleichungen bestimmt, da die übrigen Vorzahlen $\beta_{(k+1)\,k}=\beta_{k(k+1)}\dots$ bekannt sind. Die Berechnung schließt mit dem Werte von β_{11} . Er wird bei allen unsymmetrischen Systemen, die keine zur Nebendiagonale symmetrische Matrix besitzen, durch Rückwärtselimination mit $\delta_{10}=1$ geprüft.

Die Untersuchung wird auf S. 221 an einem System mit fünf überzähligen Größen bei Vorwärtselimination nach (381) gezeigt [Rechenvorschrift in Verbindung mit (381): S. 222].

Die Elastizitätsgleichungen (319) müssen nach S. 167 durch die Vorzahlen der konjugierten Matrix erfüllt werden. Sie gelten als Rechenprobe; z. B. ist

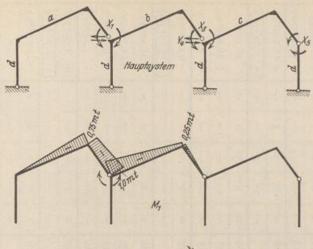
Kontrollen

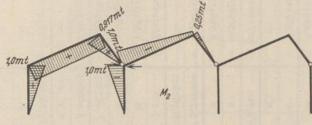
k	1	2	3	4	5
$\beta_{1k}\delta_{k1}$	$\beta_{11}\delta_{11}$	$eta_{12}\delta_{21}$	$\beta_{13}\delta_{31}$	$\beta_{14}\delta_{41}$	$\beta_{15}\delta_{51}$
$\beta_{2k}\delta_{k2}$	$\beta_{21}\delta_{12}$	$eta_{22} \delta_{22}$	$eta_{23}\delta_{32}$	$\beta_{24}\delta_{42}$	$eta_{25}\delta_{52}$
$\beta_{3k}\delta_{k3}$	$\beta_{31}\delta_{13}$	$\beta_{32}\delta_{23}$	$\beta_{33}\delta_{33}$	$\beta_{34}\delta_{43}$	$\beta_{35}\delta_{53}$
$\beta_{4k}\delta_{k4}$	$\beta_{41}\delta_{14}$	$eta_{42} \delta_{24}$	$\beta_{43}\delta_{34}$	$\beta_{44}\delta_{44}$	$\beta_{45}\delta_{54}$
$\beta_{5k}\delta_{k5}$	$eta_{51}\delta_{15}$	$eta_{52} \delta_{25}$	$\beta_{53}\delta_{35}$	$\beta_{54} \delta_{45}$	$\beta_{55} \delta_{55}$
$\Sigma_k = 1$	I	I	1	1	I

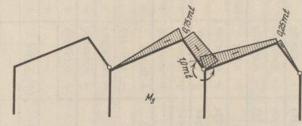
Die Bedingungen $\sum_{h} \beta_{hi} \delta_{kh} = 0$ für $\delta_{i0} = 1$ werden in der Regel nur dann geprüft, wenn nur ein Teil der Nebenglieder der Matrix vorhanden ist.

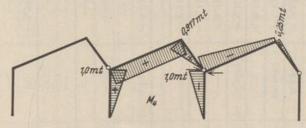
Anwendung des Gaußschen Algorithmus zur Untersuchung des Sägedachrahmens, Abb. 215. 1. Geometrische Grundlagen.

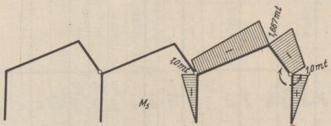
Abmessungen, Verhältniszahlen J_c/J , reduzierte Stablängen s', h' Abb. 215.


$$J_c = J_h$$
; $\zeta_h = 1$, $E_b = 210 \text{ t/cm}^2$, $\alpha_t = 0,00001$


2. Gleichförmig verteilte Belastung der Riegel a,b,c mit p=1 t/m. 3. Hauptsystem: Das Tragwerk ist fünffach statisch unbestimmt. Hauptsystem und statisch unbestimmte Schnittkräfte sind in Abb. 216 angegeben. Als überzählige Größen X_2 und X4 werden die 1/h fachen Beträge der waagerechten Komponenten Y2, Y4 der Schnittkräfte verwendet. Biegungsmomente des Hauptsystems in Abb. 216.


4. Die Vorzahlen δ_{ik} werden ohne die Mitwirkung der Quer- und Längskräfte angeschrieben und zur Abkürzung der Rechnung dabei in die Anteile zerlegt, die auf die Riegel (a,b,c)


und auf die Pfosten d entfallen.

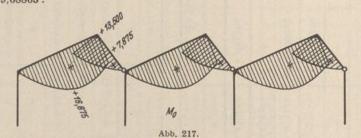

$$\begin{array}{lll} \delta_{11} = \delta_{33} = \delta_{11,a} + \delta_{11,b} & = 3,306 + 1,793 = 5,1 \\ \delta_{12} = \delta_{34} = \delta_{12,a} + \delta_{11,b} & = -2,668 + 1,793 = -0,875 \\ \delta_{13} = \delta_{23} = \delta_{13,b} & = +1,086 \\ \delta_{14} & = \delta_{14,b} & = -2,635 \\ \delta_{22} = \delta_{44} = \delta_{22,a} + \delta_{11,b} + 2 \delta_{22,d} = 4,556 + 1,793 + 4,0 = 10,349 \\ \delta_{24} & = \delta_{14,b} - \delta_{22,d} & = -2,635 - 2,0 = -4,635 \\ \delta_{35} & = \delta_{35,c} & = +3,72 \\ \delta_{45} & = \delta_{35,c} + \delta_{22,d} & = +3,72 + 2,0 = +5,72 \\ \delta_{35} & = \delta_{55,c} + 2 \delta_{22,d} & = +13,19 + 4,0 = +17,19 \\ \hline \delta_{11,a} = 3,94 \cdot \frac{1}{3} \cdot 0,75^2 + 3,33 \cdot \frac{1}{3} \cdot (0,75^2 + 0,75 \cdot 1,0 + 1,0^2) = 3,306 \\ \hline \delta_{11,b} = 3,94 \cdot \frac{1}{3} \cdot (1,0^2 + 1,0 \cdot 0,25 + 0,25^2) + 3,33 \cdot \frac{1}{3} \cdot 0,25^2 = 1,793 \\ \hline \delta_{12,a} = -3,94 \cdot \frac{1}{6} \cdot 0,75 \cdot (2 \cdot 0,917 + 1) - 3,33 \cdot \frac{1}{6} \cdot 0,917 \cdot (2 \cdot 0,75 + 1) = -2,668 \\ \hline \delta_{14,b} = -3,94 \cdot \frac{1}{6} \cdot (1,0 \cdot (2 \cdot 1,0 + 0,917) + 0,25 \cdot (2 \cdot 0,917 + 1,0)] - \frac{3,33}{3} \cdot 0,25 \cdot 0,917 = -2,635 \\ \hline \delta_{22,a} = 3,94 \cdot \frac{1}{3} \cdot (1,0^2 + 1,0 \cdot 0,917 + 0,917^2) + 3,33 \cdot \frac{1}{3} \cdot 0,917^2 = 4,556 \\ \hline \delta_{22,a} = 6,0 \cdot \frac{1}{3} \cdot 1,0^2 = 2,00 ; \quad \delta_{55,c} = (3.94 + 3.33) \cdot \frac{1}{3} \cdot [1,0^2 + 1,0 \cdot 1,667 + 1,667^2] = 13,19 \\ \hline \delta_{35,c} = \frac{3,94}{6} \cdot [1,0 \cdot (2 \cdot 1,0 + 1,667) + 0,25 \cdot (2 \cdot 1,667 + 1,0)] + \frac{3.33}{6} \cdot 0,25 \cdot (2 \cdot 1,667 + 1,0) = 3,72 \cdot (Fortsetzung des Textes auf S. 228.) \\ \hline \end{array}$$

Abb, 216.

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

Vorwartselimination nach dem Gaußschen Algorithmus (381).

	-			1	L		T.	1	1-	1		1			T	1000	1	L			1	-	1		Towns to	_	
	840	aus 4. für	fall 2.	- 78,16527	- 15,326523	+ 31,52335	- 13,410708	+ 18,112643	+ 1,775945	- 78,16527	+ 16,644604	- 2,259576	- 63,780242	- 13,541389	+ 31,52335	- 40,385390	+ 9,034379	+ 4,342999	+ 4,515338	+ 0,702408	- 109,68863	0	0	+ 50,373970	- 3,839851	- 63,154511	- 6,57,6513
	lieder		Bri	1	1	0	1	1	1	0	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	1
	Belastungsglieder	zur Bestimmung von	Brz	0	1	I	1	I	1	0	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	1
	Belast	timm:	Brs	0	1	0	1	0	1	I	1	1	I	1	0	1	1	1	1	1	0	1	1	1	1	1	1
. (ır Bes	Bra	0	1	0	1	0	1	0	1	1	0	1	н	1	1	1	1	1	0	1	1	1	1	1	1
(381)		12	Brs	0	1	0	1	0	1	0	1	1	0	1	0	1	1	1	0	1	ı	1	1	1	1	H	1
Algorithmus (551)		$\Sigma^{\delta_{i,\Sigma}}$		+ 2,676000	1	+ 5,925000	+ 0,459118	+ 6,384118	1	+ 10,117000	- 0,569831	- 0,796427	+ 8,750742	1	+ 7,924000	+ 1,382600	+ 3,184325	- 0,595866	+ 11,895059	1	+ 26,630000	0	0	- 6,911382	- IO,II5579	+ 9,603039	1
овираспеп	•	As	5	0	0	0	0	0	0	+ 3,720	0	0	+ 3,720000	+ 0,789805	+ 5,720	0	0	- 0,253307	+ 5,466693	+ 0,850402	+ 17,19000	0	0	- 2,938076	- 4,648886	+ 9,603039	1
or war to commination had natural	>	**	4	- 2,635	- 0,516667	- 4,635	- 0,452083	- 5,087083	- o,498789	- o,875	+ 0,561100	+ 0,634620	+ 0,320720	+ 0,068093	+ 10,349	- 1,361417	- 2,537379	- o,021839	+ 6,428366	-	(+ 5,720)	-	1	1	1	1	1
T CSCII III III III III III III III III I	4	ν ₃	3	+ 1,086	+ 0,212941	+ r,o86	+0,186324	+ 1,272324	+ 0,124751	+ 5,100	- 0,231254	- 0,158724	+ 4,710028	1	(-0,875)	1	1	1	1	1	(+ 3,720)	1	1	1	1	1	1
	*	A2	7	- 0,875	- 0,171569	+10,349	- 0,150123	10,198878	1	(+ 1,086)	1	1	_	-	(- 4,635)	-	1	1	1	-	(0)	1	1	1	1	1	-
	*	41	I	+ 5,100	-	(-0,875)	-	1	1	(+ r,o86)	1	1	1	-	(- 2,635)	1	1	1	1	1	(0)	1	1	1	1	-	1
	X	44	R	δ _{1,k}	×1,k	622	- ×12 812	δ _{2,k}	X 22 X	03.8	-x13 81k	- ×23 8(1)	δ(2) δ3 k	N3 k	Sak	- ×14 812	$-\varkappa_{24}\delta_{2k}^{(1)}$	- x34 8(2)	δ(3) δ 4 K	X4k	Ssk	- x15 81 x	- x25 8(1)	- ×35 8(2)	- x45 8(3)	δ(4) δ ₅ k	
L			.44	н		24				3					4						5						
																			-								


Rekursion zur Bestimmung der Vorzahlen \$1,2 (385).

_									
	I	+ 0,018597	- 0,011546	+ 0,119283	0	0	+ 0,126334	I	
	2	1	- 0,006762	+0,115154	0	0	+ 0,108392	2	Bak
4	3	1.	1	- 0,015720	+ 0,069944	0	+ 0,054224	3	$X_k = \beta_{4k}$
	4	1	1	1	+ 0,075311	0,155561	- 0,035474 + 0,230872 + 0,054224 + 0,108392	4	
	I	1-0,005947	+ 0,016228	- 0,045755	0	0	- 0,035474	I,	
	2	_	+ 0,009507	- 0,044172	0	0	- 0,034665	2	
5	3	Γ	_	+ 0,006035	- 0,082246	0	- 0,076211	3	$X_k = \beta_{\delta,k}$
	4	-	_	_	- 0,088559	0	- 0,088559	4	
	5	-	1	1	1	9,80303	+ 0,104134	5	
, 4	k	- B12 K22	- B 13 x 23	- Bigked	- Bis Xrs	8401/844	$X_k = \beta_{i,k}$	k	

		14	.8	33		00	00		
I	I	+ 0,01434	+ 0,006460	+ 0,06527	0	4 0,196078	+0,282158	I	$X_k = \beta_{1k}$
2	I	+ 0,026237 + 0,014347	- 0,033535 - 0,057242 + 0,000809 + 0,001381	- o,003693 + o,027046 + o,028016 + o,054065 + o,056003 + o,065273	0	0	+ 0,268812 - 0,006489 - 0,030339 + 0,152924 + 0,083621	1	$X_k = \beta_{2k}$
**	2	-	608000,0 +	+ 0,054065	0	+ 0,098050	+0,152924	7	$X_k =$
	. т	- 0,001113	- 0,057242	+ 0,028016	0	0	- 0,030339	ı	
3	2	1	- 0,033535	+ 0,027046	0	0	- 0,006489	2	$X_k = \beta_{3k}$
	3	1	1	- 0,003693	+ 0,060192	+ 0,212313	+ 0,268812	3	
**	k	- Pizxez	- Bisks	- Beakes	- Buskes	8 (4-1) /8 (4-1)	$X_k = \beta_{\ell k}$	k	

Belastungszahlen (Abb. 217):

$$\begin{array}{lll} \delta_{10} &=& \delta_{30} = \delta_{10,\,a} + \delta_{10,\,b} &= -44.18730 - 33.97797 &= -78.16527; \\ \delta_{20} &=& \delta_{40} = \delta_{20,\,a} + \delta_{20,\,b} &= 65.50132 - 33.97797 &= +31.52335; \\ \delta_{50} &=& -109.68863; \\ \delta_{10,\,a} &= -\left\{3.94 \cdot \frac{1}{6}\left[0.75 \cdot (13.5 + 2 \cdot 16.875)\right] + 3.33 \cdot \frac{1}{6}\left[0.75 \cdot (13.5 + 2 \cdot 7.875) + 1.0 \cdot 2 \cdot 7.875\right]\right\} \\ &= -44.18730; \\ \delta_{10,\,b} &= -\left\{3.94 \cdot \frac{1}{6}\left[0.25 \cdot 47.25 + 1.0 \cdot 2 \cdot 16.875\right] + 3.33 \cdot \frac{1}{6} \cdot 0.25 \cdot 29.25\right\} &= -33.97797; \\ \delta_{20,\,a} &=& 3.94 \cdot \frac{1}{6}\left[0.917 \cdot 47.25 + 1.0 \cdot 33.75\right] + 3.33 \cdot \frac{1}{6} \cdot 0.917 \cdot 29.25 &= +65.50132; \\ \delta_{20,\,b} &= \delta_{10,\,b}; \\ \delta_{50} &= -\left\{3.94 \cdot \frac{1}{6}\left[1.667 \cdot 47.25 + 1.0 \cdot 33.750\right] + 3.33 \cdot \frac{1}{6}\left[1.667 \cdot 29.25 + 1.0 \cdot 15.75\right]\right\} \\ &= -109.68863 \,. \end{array}$$

5. Matrix der geometrischen Bedingungen mit den Belastungszahlen für die in 2. vorgeschriebene Belastung.

	X_1	X_2	X_3	X_4	X_5	(δ_{k0})
(1)	5,100	- o,875	+ 1,086	- 2,635	0	- 78,16527
(2)	- o,875	+ 10,349	+ 1,086	- 4,635	0	+ 31,52335
(3)	+ 1,086	+ 1,086	+ 5,100	- 0,875	+ 3,720	- 78,16527
(4)	- 2,635	- 4,635	- o,875	+ 10,349	+ 5,720	+ 31,52335
(5)	0	0	+ 3.720	+ 5,720	+ 17,190	- 109,68863

6. Auflösung des Ansatzes. Die statisch überzähligen Größen werden entweder mit den Vorzahlen β_{ik} der konjugierten Matrix nach (324) berechnet oder mit Einbeziehung der Belastungszahlen δ_{i0} in den Gaußschen Algorithmus unmittelbar gewonnen. Beide Lösungen sind durch die Vorwärtselimination S. 226 vorbereitet. Rekursion zur Bestimmung der Vorzahlen β_{ik} auf S. 227.

Kontrolle (386):

k	1	2	3	4	5
$\beta_{1k} \cdot \delta_{1k}$	+ 1,439006	- 0,073168	- 0,032948	- 0,332890	0
$\beta_{2k} \cdot \delta_{2k}$	- 0,073168	+ 1,582610	- 0,007047	- 0,502397	0
$\beta_{3k} \cdot \delta_{3k}$	- 0,032948	- 0,007047	+ 1,370941	- 0,047446	- o,283505
$\beta_{4k} \cdot \delta_{4k}$	- 0,332890	- 0,502397	- 0,047446	+ 2,389294	- o,506557
$\beta_{5k} \cdot \delta_{5k}$	0	0	- 0,283505	- 0,506557	+ 1,790063
I	1,000000	0,999998	0,999995	1,000004	1,000001

Mit p=0.01 und $\varphi=\pm p\sum\limits_{i}\sum\limits_{k}|\beta_{ik}\delta_{ik}|=\pm p$ 12,1 wird nach (331) der mögliche Fehler von X_k aus der Nennerdeterminante der Bedingungsgleichungen ca. $\pm 0.12~X_k$.

Konjugierte Matrix der Vo	orzahlen Ben:
---------------------------	---------------

	δ_{10}	δ_{20}	δ_{30}	δ_{40}	δ_{50}
X_1	+ 0,282158	+ 0,083621	- 0,030339	+ 0,126334	- 0,035474
X_2	+ 0,083621	+ 0,152924	- 0,006489	+ 0,108392	- 0,034665
X_3	- 0,030339	- 0,006489	+ 0,268812	+ 0,054224	- 0,076211
X_4	+ 0,126334	+ 0,108392	+ 0,054224	+ 0,230872	- 0,088559
X_5	- 0,035474	- 0,034665	- 0,076211	- o,o88559	+ 0,104134

Anwendung der Matrix zur Berechnung der überzähligen Größen X_k .

 $X_1 = + \ 0,282158 \ \delta_{10} + \ 0,083621 \ \delta_{20} - \ 0,030339 \ \delta_{30} + \ 0,126334 \ \delta_{40} - \ 0,035474 \ \delta_{50} \ ,$

 $X_2 = +\ 0,083621\ \delta_{10} +\ 0,152924\ \delta_{20} -\ 0,006489\ \delta_{30} +\ 0,108392\ \delta_{40} -\ 0,034665\ \delta_{50}\ ,$

 $X_{\rm 3} = -0.030339 \ \delta_{10} - 0.006489 \ \delta_{20} + 0.268812 \ \delta_{30} + 0.054224 \ \delta_{40} - 0.076211 \ \delta_{50} \ ,$

 $X_{\rm 4} = +\ 0,\!126334\ \delta_{\rm 10} + 0,\!108392\ \delta_{\rm 20} + 0,\!054224\ \delta_{\rm 30} + 0,\!230872\ \delta_{\rm 40} - 0,\!088559\ \delta_{\rm 50}\ ,$

 $X_{\rm 5} = -\,0.035474\,\delta_{10} -\,0.034665\,\delta_{20} -\,0.076211\,\delta_{30} -\,0.088559\,\delta_{40} +\,0.104134\,\delta_{50}\,.$

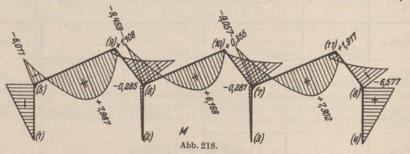
Mit den Belastungszahlen nach 4. aus der Belastung 2. ergeben sich folgende statisch überzählige Größen:

$$X_1 = -\,9,\!174075~\mathrm{mt}\;; \qquad X_2 = +\,6,\!010664~\mathrm{t}\;; \qquad X_3 = -\,8,\!775876~\mathrm{mt}\;;$$

$$X_4 = +\,6,\!295086~\mathrm{t}\;; \qquad X_5 = -\,6,\!576513~\mathrm{mt}\;.$$

Die Vorwärtselimination nach Gauß, S. 226, liefert unter Einbeziehung der Belastungszahlen $X_{\rm s} = -$ 6,576513 mt. Die anderen überzähligen Größen werden durch Rekursion gewonnen.

Rekursion mit Rechenprobe (382).


k	5	4	3	2	I
$-X_2 \varkappa_{k2}$	- Sygn				+ 1,031241
$-X_3\varkappa_{k3}$	74			+ 1,094802	+ 1,868746
$-X_4\varkappa_{k4}$			- 0,428652	+ 3,139917	+ 3,252461
$-X_5\varkappa_{k5}$		+ 5,592678	+ 5,194165	0	0
$X_k^{(k)} = \frac{\delta_{k \cdot 0}^{(k-1)}}{\delta_{k \cdot k}^{(k-1)}}$	- 6,576513	+ 0,702408	- 13,541389	+ 1,775945	- 15,326523
$\Sigma_{k0} = X_k =$	- 6,576513	+ 6,295086	- 8,775876	+ 6,010664	- 9,174075
$X_k \cdot \delta_{k_0}$	+ 721,368701	+ 198,442199	+ 685,968717	+ 189,476265	+ 717,094049
$X_k^{(k)} \cdot \delta_{k 0}^{(k-1)}$	+ 415,336463	+ 3,171610	+ 863,673067	+ 32,167058	+1198,001808
k	5	4	3	2	ı

Kontrolle: $\sum X_k \cdot \delta_{k0} = \sum X_k^{(k)} \cdot \delta_{k0}^{(k-1)}$ [vgl. (486) S. 295 mit X_k statt Y_k] 2512,3499 ≈ 2512,3500.

Kontrolle durch Einsetzen in die Bedingungsgleichungen (383):

k	I	2	3	4	5
$X_1 \cdot \delta_{1k}$	- 46,78778I	+ 8,027315	- 9,963045	+ 24,173687	0
$+ X_2 \cdot \delta_{2k}$	- 5,259331	+ 62,204361	+ 6,527581	- 27,859428	0
$+ X_3 \cdot \delta_{3k}$	- 9,530602	- 9,530602	- 44,756972	+ 7,678892	- 32,646262
$+X_4 \cdot \delta_{4k}$	- 16,587553	- 29,177726	- 5,508201	+ 65,147851	+ 36,007895
$+ X_5 \delta_{5k}$	0	0	- 24,464629	- 37,617655	- 113,050260
δ_{k0}	- 78,165267	+ 31,523348	- 78,165266	+ 31,523347	- 109,688627

7. Stütz- und Schnittkräfte des Stabwerks für die Belastung 2. Berechnung der Biegungsmomente in den Querschnitten 5, 6 und 9 durch Superposition des statisch bestimmten und statisch unbestimmten Anteils nach (288) (Abb. 218).

Auflösung dreigliedriger Ansätze. Ansätze in der allgemeinen Form (319) sind selten. Die Bedingungen für die Verträglichkeit der Formänderungen der Hauptsysteme hochgradig statisch unbestimmter Tragwerke liefern meist regelmäßige Ansätze von Gleichungen mit drei, fünf oder sieben Unbekannten, deren Anzahl am Anfang und Ende des Ansatzes abnimmt. Am einfachsten ist der dreigliedrige Ansatz. Er bildet mit der Matrix auf S. 231 die Grundlage für die Berechnung der wichtigsten hochgradig statisch unbestimmten Tragwerke.

wichtigsten hochgradig statisch unbestimmten Tragwerke. Die Vorzahlen δ_{ik} , δ_{i0} bezeichnen einzelne Verschiebungen eines statisch bestimmten oder statisch unbestimmten Hauptsystems. Während die Hauptglieder δ_{kk} der Matrix stets positiv sind, können beide Nebenglieder $\delta_{k(k-1)}$, $\delta_{k(k+1)}$ einer Gleichung (k) positiv oder negativ sein oder auch das Vorzeichen wechseln. Die Tragwerke mit dreigliedrigen Elastizitätsgleichungen können hiernach in drei Gruppen mit besonderen, von der Vorzeichenfolge abhängigen Eigenschaften des Kräftebildes zusammengefaßt werden.

Die Lösung wird in jedem Falle nach dem abgekürzten Gaußschen Algorithmus