

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Zahlenbeispiele

urn:nbn:de:hbz:466:1-74292

Visual Library

Die Komponenten ψ_e des Verschiebungszustandes.

Die Wurzeln ψ_c ($c = 1 \dots f$) werden durch den Gaußschen Algorithmus oder durch Iteration bestimmt. Bei mehreren Belastungsfällen wird die reziproke Matrix β_{bc} zu den Vorzahlen a_{bc} angegeben und ψ_c nach (633) berechnet

$$-\psi_c = \sum \beta_{c\,b} \, a_{b\,0}. \tag{633}$$

Rahmenträger einer Brücke als Beispiel eines offenen Stabzugs.

Die Berechnung der Schnittkräfte ist für drei Belastungsfälle nach Abb. 350 und für eine gleichförmige Erwärmung der Riegelstäbe und Schrägstützen durchgeführt worden.

1. Kennbeziehungen und Festpunkte. Anwendung der Beziehungen (619) und (622). Randbedingungen: $a_1 = a'_7 = 0$, $a_3 = a'_5 = 12.6/3 = 4.2$ m.

Festpunkte und Anschlußzahlen:

$$\begin{split} \varrho_{\mathbf{F}}^{(1)} &= \varrho_{\mathbf{F}}^{(2)} = \frac{3}{l_1'} = 0.5, \qquad \varrho_{\mathbf{0}}^{(3)} = \varrho_{\mathbf{D}}^{(5)} = \frac{4}{l_3'} = 1.27, \\ r_{\mathbf{E}\,\mathbf{0}} &= 1: \left(3 + \frac{6}{l_2'\,\varrho_{\mathbf{D}}^{(1)}}\right) = 0.2, \qquad a_{\mathbf{E}\,\mathbf{0}} = a_2 = 2.4, \qquad \varrho_{\mathbf{0}}^{(2)} = \frac{2}{l_2'} \frac{1 - v_{\mathbf{E}\,\mathbf{0}}}{\frac{2}{3} - v_{\mathbf{E}\,\mathbf{0}}} = 0.5714, \\ r_{\sigma\,\mathbf{D}} &= 1: \left(3 + \frac{6}{l_4'\,(\varrho_{\mathbf{0}}^{(2)} + \varrho_{\mathbf{0}}^{(3)})}\right) = 0.272, \quad a_{\sigma\,\mathbf{D}} = a_4 = 6.524, \qquad \varrho_{\mathbf{D}}^{(4)} = \frac{2}{l_4'} \frac{1 - v_{\sigma\,\mathbf{D}}}{\frac{2}{3} - v_{\sigma\,\mathbf{D}}} = 0.7684. \\ r_{\mathbf{D}\,\mathbf{F}} &= 1: \left(3 + \frac{6}{l_4'\,(\varrho_{\mathbf{D}}^{(4)} + \varrho_{\mathbf{D}}^{(5)})}\right) = 0.286, \quad a_{\mathbf{D}\,\mathbf{F}} = a_6 = 3.438, \quad \varrho_{\mathbf{D}}^{(6)} = \varrho_{\mathbf{0}}^{(2)} = 0.5714, \\ r_{\mathbf{D}\,\mathbf{E}} &= 1: \left(3 + \frac{6}{l_4'\,(\varrho_{\mathbf{D}}^{(4)} + \varrho_{\mathbf{D}}^{(5)})}\right) = 0.226, \quad a_{\mathbf{D}\,\mathbf{B}} = a_5 = 2.850, \quad \varrho_{\mathbf{F}}^{(6)} = \varrho_{\mathbf{E}}^{(2)} = \frac{2}{l_4'} \frac{1 - v_{\mathbf{D}\,\mathbf{F}}}{\frac{2}{3} - v_{\mathbf{D}\,\mathbf{F}}} = 0.6256, \\ r_{\mathbf{F}\,\mathbf{H}} &= 1: \left(3 + \frac{6}{l_4'\,(\varrho_{\mathbf{D}}^{(4)} + \varrho_{\mathbf{D}}^{(6)})}\right) = 0.2175, \qquad a_{\mathbf{F}\,\mathbf{H}} = a_7 = 1.305. \end{split}$$

Kennbeziehungen und Übergangszahlen:

 $\begin{aligned} & \kappa \text{ennbeziehungen und Ubergangszahlen:} \\ & \kappa_{\mathcal{O}\mathcal{E}} = \kappa_{\mathcal{D}\mathcal{F}} = \begin{array}{c} \frac{a_6}{l_6 - a_6} = 0, \dot{4}015, \\ & \kappa_{\mathcal{D}\mathcal{C}} = \kappa_{\mathcal{O}\mathcal{D}} = \frac{a_4}{l_4 - a_4} = 0, 3733, \\ & \kappa_{\mathcal{F}\mathcal{D}} = \kappa_{\mathcal{E}\mathcal{O}} = \begin{array}{c} \frac{a_2}{l_2 - a_2} = 0, 25, \\ & \kappa_{\mathcal{A}\mathcal{O}} = \kappa_{\mathcal{B}\mathcal{D}} = \kappa_{\mathcal{B}\mathcal{D}} = \begin{array}{c} \frac{a_4}{l_4 - a_4} = 0, 3733, \\ & \kappa_{\mathcal{A}\mathcal{O}} = \kappa_{\mathcal{B}\mathcal{D}} = \frac{a_3}{l_3 - a_3} = 0, 5, \\ & \mu_{42} = \mu_{46} = -\frac{\varrho_{\mathcal{O}}^{(4)}}{\varrho_{\mathcal{O}}^{(3)} + \varrho_{\mathcal{O}}^{(4)}} = -0, 3770, \\ & \mu_{32} = \mu_{56} = -\frac{\varrho_{\mathcal{O}}^{(3)}}{\varrho_{\mathcal{O}}^{(3)} + \varrho_{\mathcal{O}}^{(4)}} = -0, 68230, \\ & \mu_{54} = \mu_{34} = -\frac{\varrho_{\mathcal{D}}^{(5)}}{\varrho_{\mathcal{O}}^{(5)} + \varrho_{\mathcal{D}}^{(6)}} = -0, 6897, \\ & \mu_{43} = \mu_{45} = -\frac{\varrho_{\mathcal{O}}^{(4)}}{\varrho_{\mathcal{O}}^{(2)} + \varrho_{\mathcal{O}}^{(4)}} = -0, 5735 \end{aligned}$

381

.

Stab	l _h	l'h	ah	a'h	$l_{h} = a_{h} = a'_{h}$	$\overline{M}_{C\vartheta,\hbar}^{(h)}$	$\overline{M}_{D\vartheta,h}^{(h)}$
I	6,0	6,0	0	1,305	4,695	0	- 0,2780
2	12,0	6,0	2,4	3,438	6,162	$\overline{-\frac{6}{6,0}\frac{2,4}{6,162}} = -0,3895$	- 0,5579
3	12,6	3,15	4,2	2,850	5,550	$-\frac{6}{3,15}\frac{4,2}{5,550} = -1,4414$	- 0,9781
4	24,0	4,8	6,524	6,524	10,952	$-\frac{6}{4,8}\frac{6,524}{10,952} = -0,7446$	- 0,7446

2. Stabendmomente für $l_{h} = C D$ bei einer Drehung $\vartheta_{h} = 1$ nach (624).

Die Momente $\overline{M}_{J\vartheta,h}^{(k)}$, d. h. die Stabendmomente für l_k infolge $\vartheta_k = 1$, werden mit den Kennbeziehungen und Übergangszahlen aus obigen Werten bestimmt.

Stab	h	I	2	3	4
T	$\overline{M}_{Gartheta,h}^{(1)}$	0	0	0	0
	$\overline{M}_{E\vartheta,h}^{(1)}$	- 0,2780	+ 0,3895	- 0,1043	- 0,0578
2	$\widetilde{M}^{(2)}_{E\vartheta,h}$	+ 0,2780	- 0,3895	+ 0,1043	+ 0,0578
-	$\overline{M}^{(2)}_{C\vartheta\hbar}$	+ 0,1116	- 0,5579	+ 0,4172	+ 0,2310
	$\overline{M}^{(3)}_{A\vartheta,\hbar}$	- 0,0348	+ 0,1738	- 1,4414	+ 0,2568
3	$\overline{M}^{(3)}_{C\vartheta,\hbar'}$	- 0.0695	+ 0,3476	- 0,9781	+ 0,5136
	$\overline{M}^{(4)}_{C\vartheta,h}$	- 0,0421	+ 0,2103	+ 0,5609	- 0,7446
+	$\overline{M}^{(4)}_{\mathcal{D}\vartheta,h}$	- 0,0157	+ 0,0785	+ 0,2094	- 0,7446
	$\overline{M}_{D\vartheta,h}^{(5)}$	+ 0,0108	- 0,0541	- 0,1444	+0,5136
2	$\widetilde{M}^{(5)}_{B\vartheta,\hbar}$	+ 0,0054	- 0,0270	- 0,0722	+ 0,2568
6	$\widetilde{M}_{D\vartheta,h}^{(6)}$	+ 0,0049	- 0,0244	0,0650	+ 0,2310
	$\widetilde{M}_{F\vartheta,h}^{(6)}$	+ 0,0012	- 0,0061	- 0,0162	+ 0,0578
7	$\overline{M}_{F^{\vartheta},h}^{(7)}$	- 0,0012	+0,0061	+ 0,0162	- 0,0578
1	<i>M</i> ⁽⁷⁾ <i>H</i> ∂, <i>h</i>	0	0	0	0

In diesen Tabellen sind die Endmomente aller Stäbe aus der Verdrehung $\vartheta_h = 1$ des einzelnen Stabes k enthalten (vgl. S. 378). Sie bilden die Grundlage zur Bestimmung von $\overline{M}_{Jt}^{(h)}$ und $\overline{M}_{J1}^{(h)}$ nach (629).

382

BIBLIOTHEK PADERBORN

Zahlenbeispiel.

383

Stab	l _h	an	$\begin{aligned} \varkappa_{CD} = \\ \frac{a_{\lambda}}{l_{\lambda} - a_{\lambda}} \end{aligned}$	λσρ	a'h	$\begin{aligned} &\varkappa_{Dc} = \\ & \frac{a'_h}{l_h - a'_h} \end{aligned}$	λρο	λ _{σ D} λ _{D σ} — 1	λο × σ	λ _D c — × _{C D}
I	6,00	0	0	00	1,305	0,2780	3,597	00	00	3,597
2	12,00	2,40	0,25	4	3,438	0,4015	2,491	8,964	3,598	2,241
3	12,60	4,20	0,50	2	2,850	0,2923	3,421	5,842	1,708	2,921
4	24,00	6,524	0,3733	2,679	6,524	0,3733	2,679	6,177	2,306	2,306

3. Stabendmomente des belasteten Stabes $l_{\lambda} = C D$ nach (627). $1/\varkappa = \lambda$.

Die vorgeschriebenen Belastungsfälle werden in die den einzelnen Stäben zufallenden Teilbelastungen α bis ε zerlegt.

Teilbelastung	$R_D^{(h)}$	$R_{\mathcal{O}}^{(h)}$	$\frac{R_{\sigma}^{(h)}}{\lambda_{\sigma D} - \varkappa_{D \sigma}}$	$\frac{R_D^{(h)}}{\lambda_{CD}\lambda_{DC}-1}$	$\overline{M}^{(b)}_{0\ 0}$	R _D ^(h) λ _D c - × c D	R ₀ ^(h) λ _{0 D} λ _{D 0} -1	$\overline{M}_{D0}^{(h)}$
α <u>1 t/m</u> E 2 C	- 36	36	10,00	- 4,016	- 5,98	- 16,06	+ 4,016	+12,05
β <i>1 t/m</i> C 4 D	-144	144	62,45	-23,31	- 39,14	-62,45	+23,31	+39,14
2 2 2 2 4 4 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	- 60,86	60,86	26,39	- 9,853	-16,54	-26,39	+ 9,853	+16,54
8 cost of ot D 4	- 0,1125	-0,1125	-0,049	- 0,018	+ 0,067	- 0,049	- 0,018	+ 0,067
e 2,5 t/m a,5 t/m	- 12,900	_	-	o	0	- 3,586		+ 3,586

Die übrigen Stabendmomente einer Teilbelastung werden mit den Kennbeziehungen oder

graphisch mit den Festpunkten berechnet. Die Belastung des Stabes I_4 liefert im Falle β und γ symmetrische, im Falle δ antimetrische Ergebnisse. Die Momente aus der Belastung *a* (Abb. 350b) werden durch Superposition der Ergeb-nisse α , β , γ erhalten. Der Belastungsfall *b* (Abb. 350c) ist mit der Teilbelastung δ identisch. Der Belastungsfall *c* (Abb. 350d) ist symmetrisch. Die Schnittkräfte entstehen durch Super-position der Ergebnisse ε mit denjenigen aus der spiegelbildlich gleichartigen Belastung des Stabes *FH*.

Belastung	$\overline{M}_{E0}^{(2)}$	M(2)	M(3)	M(4)	M(4) D0	$\overline{M}_{D0}^{(5)}$	$\overline{M}_{D 0}^{(6)}$	$\overline{M}_{F0}^{(6)}$
α β γ δ ε	$ \begin{array}{r} -5.98 \\ +3.04 \\ +1.28 \\ -0.005 \\ -3.59 \end{array} $	+12,05 +12,15 +5,13 -0,021 -1,44	$\begin{array}{r} -7.51 \\ +26,99 \\ +11,41 \\ -0,046 \\ +0,99 \end{array}$	-4.54 -39,14 -16,54 +0,067 +0,54	-1,70 +39,14 +16,54 +0,067 +0,20	+1,17 -26,99 -11,41 -0,046 -0,14	+0,53 -12,15 -5,13 -0,021 -0,06	+0,13 -3,04 -1,28 -0,005 -0,02
a b c	-1,66 -0,005 -3,57	+29,33 -0,021 -1,38	+ 30,89 -0,046 +1,04	-60,22 +0,067 +0,34	+53,98 +0,067 -0,34	-37,23 -0,046 -1,04	16,75 0,02 I 1,38	-4,19 -0,005 -3,57

Die Stabendmomente aus den Belastungen a, b, c gelten für das unverschiebliche Knotennetz und sind daher nur für den symmetrischen Belastungsfall c endgültig (Abb. 351).

4. Temperaturmomente. Die Temperaturänderung des Tragwerks ist symmetrisch, der Symmetriepunkt des Riegels l_4 erleidet daher keine waagerechte Verschiebung. Unter der An-

Abb. 351. Biegungsmomente aus Belastung c.

nahme, daß die Riegelstäbe ihre Temperatur um $+20^{\circ}$, die Schrägstützen l_3 und l_5 um $+10^{\circ}$ und die Endstützen um 0° ändern, sind die Längenänderungen $\alpha_t t l$ der Stäbe l_h für

Die Stabdrehwinkel ϑ_{ht} werden mit dem Prinzip der virtuellen Verrückungen nach Abschn. 18 berechnet. Hiernach ist $1 \vartheta_{ht} = E \int_{t} \Sigma \overline{N} \alpha_t t l$. Die gedachten Kräfte sind mit den ihnen zugeordneten Längskräften in Abb. 352 eingetragen.

Dann ist mit $E J_e = 16670 \text{ tm}^2$: $\vartheta_{4i} = 0$. $\vartheta_{4i} = -\vartheta_{4i} = \frac{E J_e}{2} + 1.47 = 0.0024$

$$\begin{split} \vartheta_{5t} &= -\vartheta_{3t} = \frac{-\vartheta_{3t}}{l_3} (+1,47\cdot 0,0024 + 1,07\cdot 0,00126) = + 6,45 ,\\ \vartheta_{6t} &= -\vartheta_{2t} = \frac{E f_e}{l_2} (+1,07\cdot 0,0024 + 1,47\cdot 0,00126) = + 6,13 ,\\ \vartheta_{7t} &= -\vartheta_{1t} = \frac{E f_e}{L} (+1,00\cdot 0,0024 + 1,00\cdot 0,0024) = + 13,33 , \end{split}$$

Nach (629) ergeben sich die Anschlußmomente aus

 $\overline{M}_{Jt}^{(k)} = \sum \overline{M}_{J\vartheta,h}^{(k)} \vartheta_{ht} . \quad \text{(Abb. 353.)}$

Stab	h =	I	2	3	4	5	6	. 7	$\overline{M}_{Jt}^{(k)}$
T	$\overline{M}^{(1)}_{G\vartheta,h}\vartheta_{ht}$	0	0	0	0	0	o	0	0
	${{\overline{M}}}^{(1)}_{{\cal E}\vartheta,h}\vartheta_{ht}$	+ 3,71	- 2,39	+ 0,67	0	+ 0,10	+ 0,04	- 0,02	+ 2,11
2	${\smash{\overline{\!$	- 3,7I	+ 2,39	- 0,67	0	- 0,10	- 0,04	+ 0,02	- 2,11
2	${\smash{\overline{\!$	- 1,49	+ 3,42	- 2,69	0	- 0,42	-0,15	+ 0,06	- 1,27
2	$\overline{M}^{(3)}_{A\vartheta,h}\vartheta_{ht}$	+ 0,46	1,06	+ 9,30	0	- 0,46	-0,17	+ 0,07	+ 8,14
2	$\overline{M}^{(3)}_{C\vartheta,\hbar}\vartheta_{ht}$	+ 0,93	- 2,13	+ 6,31	0	- 0,93	-0,33	+0,14	+ 3,99
	$\overline{M}^{(4)}_{C\vartheta,h}\vartheta_{ht}$	+ 0,56	- 1,29	- 3,62	0	+ 1,35	+ 0,48	- 0,21	- 2,73
4	$\overline{M}^{(4)}_{D\vartheta,h}\vartheta_{ht}$	+ 0,21	- 0,48	- 1,35	0	+-3,62	+ 1,29	- 0,56	+ 2,73

384

Zahlenbeispiel.

/E

0	0	~
- 2	~	200
	\sim	÷ 1
-	~	-

	(Forsetzing),													
Stab	h =	I	2	3	4	5	6	7	$\overline{M}_{Jt}^{(k)}$					
	$\overline{M}^{(5)}_{D\vartheta,\hbar}\vartheta_{\hbar t}$	- 0,14	+ 0,33	+ 0,93	0	- 6,31	+ 2,13	- 0,93	- 3,99					
2	${\widetilde {\cal M}}^{(5)}_{B\vartheta,\hbar}\vartheta_{ht}$	- 0,07	+ 0,17	+ 0,46	0	- 9,30	+ 1,06	- 0,46	- 8,14					
	$\overline{M}^{(6)}_{D\vartheta,h}\vartheta_{ht}$	- 0,06	+0,15	+ 0,42	0	+ 2,69	- 3,42	+ 1,49	+ 1,27					
0	${\smash{\overline{\!$	- 0,02	+ 0,04	+ 0,10	0	+ 0,67	- 2,39	+ 3,71	+ 2,11					
	$\overline{M}_{F\vartheta,h}^{(7)}\vartheta_{ht}$	+ 0,02	- 0,04	- 0,10	0	- 0,67	+ 2,39	- 3,71	- 2,11					
7	$\overline{M}_{H\vartheta,h}^{(7)}\vartheta_{ht}$	0	0	o	0	0	0	0	0					

5. Momente $\overline{M}_{J1}^{(k)}$ des einfach geometrisch unbestimmten Systems für $\psi_1 = 1$. Da die Stabdrehwinkel für die Belastungsfälle a und b (Abb. 350 b, c) von Null verschieden sind, wird die zweite Stufe der Berechnung notwendig. Die Knotenpunktfigur besitzt einen Freiheitsgrad. Als Parameter ψ_1 der Formänderung wird der Drehwinkel ϑ_1 gewählt. Statische Bedingung: $\psi_1 a_{11} + a_{10} = 0$

Stab	h =	I	2	3	4	5	6	7	$\overline{M}_{J1}^{(k)}$
	${\smash{\overline{\!$	0	0	0	0	0	0	0	0
1	$\overline{\mathcal{M}}^{(1)}_{E\vartheta,h}\vartheta_{h1}$	-0,2780	+0,2085	-0,0727	+0,0309	+0,0113	+0,0033	-0,0012	-0,0979
	$\overline{M}^{(2)}_{E\vartheta,\hbar}\vartheta_{\hbar1}$	+0,2780	-0,2085	+0,0727	-0,0309	-0,0113	-0,0033	+0,0012	+0,0979
2	$\overline{M}^{(2)}_{C\vartheta,h}\vartheta_{h1}$	+0,1116	-0,2986	+0,2910	-0,1236	-0,0453	-0,0131	+0,0049	-0,0731
	$\overline{M}^{(3)}_{A\vartheta,h}\vartheta_{h1}$	-0,0348	+0,0930	-1,0054	-0,1374	-0,0504	-0,0144	+0,0054	-1,1440
3	$\overline{M}^{(3)}_{C\vartheta,h}\vartheta_{h1}$	-0,0695	+0,1860	-0,6822	-0,2749	-0,1007	-0,0290	+0,0108	-0,9595
	$\overline{M}^{(4)}_{C\vartheta,h}\vartheta_{h1}$	-0,0421	+0,1126	+0,3912	+0,3985	+0,1461	+0,0420	-0,0157	+1,0326
4	$\overline{M}^{(4)}_{D\vartheta,h}\vartheta_{h1}$	-0,0157	+0,0420	+0,1461	+0,3985	+0,3912	+0,1126	-0,0421	+1,0326
	$\widetilde{M}^{(5)}_{D\vartheta,h}\vartheta_{h1}$	+0,0108	-0,0290	-0,1007	-0,2749	-0,6822	+0,1860	-0,0695	-0,9595
5	$\overline{M}_{B\vartheta,h}^{(5)}\vartheta_{h1}$	+0,0054	-0,0144	-0,0504	-0,1374	- 1,0054	+0,0930	-0,0348	-1,1440
	$\overline{M}^{(6)}_{D\vartheta,\hbar}\vartheta_{\hbar1}$	+0,0049	-0,0131	-0,0453	-0,1236	+0,2910	-0,2986	+0,1116	-0,0731
0	$\overline{M}^{(6)}_{F\vartheta,h}\vartheta_{h1}$	+0,0012	-0,0033	-0,0113	-0,0309	+0,0727	-0,2085	+0,2780	+0,0979
	$\overline{M}_{F\vartheta,h}^{(7)}\vartheta_{h1}$	-0,0012	+0,0033	+0,0113	+0,0309	-0,0727	+0,2085	-0,2780	-0,0979
7	$\overline{M}_{H\vartheta,h}^{(7)}\vartheta_{h1}$	0	0	0	0	0	0	0	0

Die Momente $\overline{M}_{1}^{(k)}$ werden nach (629) aus den Werten $\overline{M}_{J1}^{(k)} = \sum \overline{M_{J}}_{\vartheta, h} \vartheta_{h1}$ bestimmt (Abb. 355).

. Ermittlung von ψ	für die	Belastungen	a und	ь.
-------------------------	---------	-------------	-------	----

В	elastung		a≡(α, β	, γ)		$b\equiv\delta$		ψ1 =	= 1
k	v _{k1}	M*1	$\overline{M}_{0}^{(k)}$	$(M_{k1} + \overline{M}_0^{(k)}) v_{k1}$	M*1	$b \equiv \delta$ $M_{k1} \qquad \overline{M}_{0}^{(k)} \qquad (M_{k1} + \overline{M}_{0}^{(k)}) v_{k}$ $0 + 0,005 + 0,005 - 0,014 \\ 0 - 0,069 - 0,014 \\ - 0,069 - 0,048 \\ - 0,059 - 0,048 \\ 0 - 0,026 - 0,014 \\ 0 + 0,005 - 0,014 \\ 0 + 0,005 + 0,005 \\ - 0,014 \\ - 0,005 - 0,014 \\ - 0,005 - 0,014 \\ - 0,005 - 0,014 \\ - 0,005 - 0,014 \\ - 0,005 - 0,005 \\ - 0,$	$_{k1} \overline{M}_{1}^{(k)} \overline{M}_{1}^{(k)}$		
I	+1	0	+ 1,66	+ 1,66	0	+0.005	+0,005	-0,0979	-0,0979
2	+0,5352	$1 \cdot 12 \cdot \frac{12}{9} = 72$	+27,67	+53,34	0	-0,026	-0,014	+0,0248	+0,0133
3	+0,6975	0	+46,34	+ 32,32	0	-0,069	-0,048	-2,1035	-1,4672
4	-0,5352	o	- 6,24	+ 3,34	-6.0,3.10,21 -18,378	+0,134	+9,764	+2,0652	-1,1053
5	+0,6975	0	-55,85	- 38,96	0	-0,069	-0,048	-2,1035	-1,4672
6	+0,5352	0	-20,94	-11,21	· 0	-0,026	-0,014	+0,0248	+0,0133
7	+1	0	+ 4,19	+ 4,19	0	+0,005	+0,005	-0,0979	-0,0975
			a	10=+44,63		a	10=+9,650	a ₁₁ =	- 4,209
	Belastung	a: $\psi_1 = -$	+44,68 -4.209	gb: ψ_1	$=-\frac{+9,650}{-4,209}=$	=+2,293			

Die endgültigen Stabmomente werden aus der folgenden Superposition gefunden:

$$M_J^{(h)} = M_{J0}^{(h)} + \psi_1 M_{J1}^{(h)}.$$

6

BIBLIOTHEK PADERBORN

Festpunkte und Übergangszahlen eines geschlossenen Rahmens.

-		$M_{E}^{(2)}$	$M_{0}^{(2)}$	M ₀ ⁽³⁾	$M_{\sigma}^{(4)}$	$M^{(3)}_{A}$	$M_{D}^{(4)}$	$M_{D}^{(5)}$	$M_{D}^{(6)}$	$M_{B}^{(5)}$	$M_{F}^{(6)}$
	$\overline{M}_{J0}^{(h)}$	-1,66	+29,53	+30,89	-60,22	+15,44	+53,98	-37,23	-16,75	-18,62	-4,19
n gut	$\overline{M}_{J1}^{(b)}$	+0,098	-0,073	-0,960	+1,033	-1,144	+1,033	-0,960	-0,073	-1,144	+0,098
elasti	$\psi_1 \overline{M}_{J1}^{(h)}$	+1,04	-0,78	-10,20	+10,97	-12,15	+10,97	-10,20	-0,78	-12,15	+1,04
Bel	$\mathcal{M}_{J0}^{(h)}$	-0,62	+28,55	+20,69	-49,25	+3,29	+64,95	-47,43	- 17,53	-30,77	-3,15
9 5	$\overline{\mathcal{M}}_{J0}^{(h)}$	-0,005	-0,021	-0,046	+0,067	-0,023	+0,067	-0,046	-0,021	-0,023	-0,005
stung	$\psi_1 \overline{M}_{J1}^{(h)}$	+0,225	-0,167	-2,201	+2,369	-2,623	+2,369	-2,201	-0,167	-2,623	+0,225
Bela	$M_{J0}^{(h)}$	+0,220	-0,188	-2,247	+2,436	-2,646	+2,436	-2,247	-0,188	-2,646	+0,220

Die Ergebnisse sind in Abb. 356 und 357 enthalten. Die Richtigkeit wird mit den Gleichgewichtsbedingungen der Schnittkräfte an einem Knoten oder Stabteil nachgeprüft.

Abb. 356. Biegungsmomente aus Belastung a.

Abb. 357. Biegungsmomente aus Belastung b.

Festpunkte und Übergangszahlen eines geschlossenen Rahmens.

Die Festpunkte werden durch allmähliche Annäherung gewonnen.

1. Randbedingungen für die Festpunktermittlung

vk1

979 133 572

53

572

133

09

BIBLIOTHEK PADERBORN

$$\begin{aligned} &[a_{AO} = a_{BB} = 0, \qquad a_{FD} = 3,0, \\ &\varrho_O^{(1)} = \varrho_B^{(1)} = \frac{3}{l_1'} = 1,290; \quad \varrho_D^{(4)} = \frac{4}{l_4'} = 1,778 \end{aligned}$$

2. Festpunkte der linken Zelle beim Fortschreiten im Uhrzeigersinn: Die Werte $\nu_{RJ} = 0.25$ und $\nu_{ED} = 0.25$ werden zunächst geschätzt und führen zu den Anschlußzahlen $\varrho_J^{(10)} = 0.798$ und $\varrho_D^{(8)} = 2.39$. Ausgangswert: $\nu_{JD} = 0.25$.

25*

387

$$\begin{split} \varrho_{D}^{(5)} &= \frac{2}{l_{5}'} \frac{1 - v_{JD}}{\frac{3}{2} - v_{JD}} = 1,20 , \qquad v_{D\sigma} = 1: \left(3 + \frac{6}{l_{2}'(\varrho_{D}^{(4)} + \varrho_{D}^{(5)})}\right) = 0,267 , \\ \varrho_{\sigma}^{(2)} &= \frac{2}{l_{2}'} \frac{1 - v_{D\sigma}}{\frac{3}{2} - v_{D\sigma}} = 2,44 , \qquad v_{\sigma H} = 1: \left(3 + \frac{6}{l_{3}'(\varrho_{\sigma}^{(1)} + \varrho_{C}^{(2)})}\right) = 0,246 , \\ \varrho_{H}^{(3)} &= \frac{2}{l_{3}'} \frac{1 - v_{\sigma H}}{\frac{3}{2} - v_{\sigma H}} = 2,39 , \qquad v_{HJ} = 1: \left(3 + \frac{6}{l_{6}'(\varrho_{H}^{(3)})}\right) = 0,281 , \end{split}$$

$$\varrho_J^{(6)} = \frac{2}{l'_6} \frac{1 - \nu_{HJ}}{\frac{2}{3} - \nu_{HJ}} = 0.828 , \qquad \nu_{JD} = 1 : \left(3 + \frac{6}{l'_5 \left(\varrho_J^{(6)} + \varrho_J^{(10)}\right)}\right) = 0.236 .$$

Die Rechnung wird mit $v_{JD} = 0,236$ wiederholt und der geschätzte Wert v_{KJ} wegen der Symmetrie des Systems durch den verbesserten Wert $v_{KJ} = v_{HJ} = 0,281$ ersetzt. Der Wert $v_{ED} = 0,250$ wird beibehalten. v_{KJ} und v_{ED} liefern die Anschlußzahlen $\varrho_{J}^{(10)} = 0,828$, $\varrho_{D}^{(8)} = 2.39$ und diese nach dem ersten Ansatz die Werte $\varrho_{D}^{(5)} = 1,18$, $v_{D\sigma} = 0,267$. Da $v_{D\sigma}$ sich gegenüber der ersten Rechnung nicht geändert hat, gilt das gleiche für $\varrho_{\sigma}^{(9)}$, v_{CH} , $\varrho_{H}^{(3)}$, v_{HJ} , $\varrho_{J}^{(6)}$ und v_{JD} . 3. Festpunkte der linken Zelle beim Fortschreiten entgegen dem Uhrzeigersinn. Die Werte $v_{KJ} = 0,281$ und $v_{ED} = 0,250$ mit den Anschlußzahlen $\varrho_{J}^{(10)} = 0,828$ und $\varrho_{D}^{(8)} = 2,39$ werden wieder verwendet. Als Ausgangswert dient $v_{DJ} = 0,255$.

$$\varrho_{J}^{(6)} = \frac{2}{l_{b}^{\prime}} \frac{1 - \nu_{DJ}}{\frac{2}{3} - \nu_{DJ}} = 1,20, \qquad \nu_{JH} = 1: \left(3 + \frac{6}{l_{\theta}^{\prime}(\varrho_{J}^{(6)} + \varrho_{J}^{(10)})}\right) = 0,273,$$

$$\rho_{JH}^{(6)} = 2 \frac{1 - \nu_{JH}}{\frac{1 - \nu_{JH}}{\frac{1$$

$$r_{H}^{(3)} = \frac{2}{l'_{3}} \frac{1 - v_{HC}}{2 - v_{HC}} = 2.15, \qquad v_{CD} = 1: \left(3 + \frac{6}{l'_{3}(\rho_{H}^{(6)})}\right) = 0.240,$$

$$\varrho_D^{(2)} = \frac{2}{l_2'} \frac{1 - \nu_{\sigma D}}{\frac{2}{3} - \nu_{\sigma D}} = 2,37, \qquad \nu_{DJ} = 1: \left(3 + \frac{6}{l_b' \left(\varrho_D^{(2)} + \varrho_D^{(4)} + \varrho_D^{(8)}\right)} = 0,302\right)$$

 $l'_1 = 2,325 \text{ m}, \ l'_4 = 2,25 \text{ m}, \ l'_2 = 1,5 \text{ m}, \ l'_3 = 1,5 \text{ m}, \ l_6 = 4,5 \text{ m}.$

Der neue Ausgangswert $\nu_{DJ} = 0.302$ und die verbesserten $\nu_{EJ} = 0.281$, $\nu_{ED} = 0.240$ führen in Verbindung mit $\varrho_J^{(10)} = 0.828$ und $\varrho_D^{(8)} = 2.37$ der Reihe nach zu

$$\varrho_J^{(5)} = 1,274, \quad \nu_{JH} = 0,275, \quad \varrho_H^{(0)} = 0,822, \quad \nu_{HG} = 0,127.$$

Da v_{HO} sich im Vergleich zur ersten Rechnung nicht geändert hat, gelten für $\varrho_{O}^{(3)}$, v_{OD} und $\varrho_D^{(2)}$ die bekannten Ergebnisse.

4. Die Rechnung ist im Uhrzeigersinn mit $\nu_{ED} = 0.250$ und $\varrho_D^{(8)} = 2.39$ entwickelt worden. Die verbesserten Werte $\nu_{ED} = 0.240$ und $\varrho_D^{(8)} = 2.37$ führen innerhalb der Genauigkeit des Rechenschiebers zu keiner Änderung der Ergebnisse

$$\begin{aligned} \nu_{\sigma,A} &= 1: \left(3 + \frac{6}{l'_1 \left(\varrho_{\sigma}^{(8)} + \varrho_{\sigma}^{(3)}\right)}\right) &= 0,281, \qquad \varrho_A^{(4)} = \frac{2}{l'_1} \frac{1 - \nu_{\sigma,A}}{\frac{2}{3} - \nu_{\sigma,A}} = 1,60, \\ \nu_{D,F} &= 1: \left(3 + \frac{6}{l'_4 \left(\varrho_D^{(2)} + \varrho_D^{(5)'} + \varrho_D^{(8)}\right)}\right) = 0,290, \qquad \varrho_F^{(4)} = \frac{2}{l'_4} \frac{1 - \nu_{D,F}}{\frac{2}{3} - \nu_{D,F}} = 1,67. \end{aligned}$$

388

5. Übersicht der Ergebnisse:

Kno- ten	ν				ę			
	links	rechts	oben	unten	links	rechts	oben	unten
A	-	_	0	_	-	-	1,60	_
В	-	-	0	-	-	1	1,60	-
С	-	0,240	0,246	0,281	-	2,44	2,15	1,29
D	0,267	0,267	0,302	0,290	2,37	2,37	1,18	1,78
Ε	0,240	-	0,246	0,281	2,44	-	2,15	1,29
F	-	-	0,333		-	-	1,67	-
Η	- 1	0,281	-	0,127	-	0,82		2,39
Ĩ	0,275	0,275		0,236	0,83	0,83	-	1,27
K	0,281	-	-	0,127	0,82	-	-	2,39

6. Übergangszahlen $-\mu_{ik}$ nach (616).

C												
1		2		3								
2	3	I	3	I	2							
$\frac{2,44}{4,59} = 0,53$	$\frac{2,15}{4,59} = 0,47$	$\frac{1,29}{3,44} = 0,37$	$\frac{2,15}{3,44} = 0,63$	$\frac{1,29}{3,73} = 0,35$	$\frac{2,44}{3,73} = 0,65$							
J												
3	;	6		10								
6	IO	5	IO	5	6							
$\frac{0,83}{1,66} = 0,50$	$\frac{0,83}{1,66} = 0,50$	$\frac{1,27}{2,10} = 0,60$	$\frac{0,83}{2,10} = 0,40$	$\frac{1,27}{2,10} = 0,60$	$\frac{0,83}{2,10} = 0,40$							
D												
Parker 38	2		4									
4	4 - 5		2	5	8							
$\frac{1,78}{5,33} = 0,33$	$\frac{78}{33} = 0,33 \frac{1,18}{5,33} = 0,22$		$\frac{2,37}{5,92} = 0,40$	$\frac{1,18}{5,92} = 0,20$	$\frac{2,37}{5,92} = 0,40$							
D												
	5		8									
2 4		8	2	4	5							
$\frac{2,37}{6,52} = 0,36 \frac{1,78}{6,52} = 0,28$		$\frac{2,37}{6,52} = 0,36$	$\frac{2,37}{5,33} = 0,45$	$\frac{1,78}{5,33} = 0,33$	$\frac{1,18}{5,33} = 0,22$							

Ritter, W.: Anwendung der graphischen Statik, III. Teil: Der kontinuierliche Balken. Zürich 1900. — Schächterle, W.: Elastische Bogen, Bogenstellungen und mehrstielige Rahmen. Berlin 1912. — Ritter, A.: Berechnung rechteckiger Silozellen. Stuttgart 1916. — Straßner, A.: Statik der Rahmentragwerke und der elastischen Bogenträger. Berlin 1916. — Hoost, K: Beitrag zur Berechnung rechteckiger Rahmen und Rahmenträger. Dissertation Danzig 1917. — Pichl, E.: Der durchgehende gelenklose Bogen auf elastischen Stützen. Stuttgart 1919. — Suter, E.: Die Methode der Festpunkte. Berlin 1923.

389

.

