

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Tabelle der Schnittkräfte des durchlaufenden Trägers über 2 und 3 Felder

urn:nbn:de:hbz:466:1-74292

Visual Library

Abb. 363d: Beiderseits eingespannte Stütze.

Nach Tabelle 31 wird für
$$M = -10,0$$
 mt, $l = 10,0$ m, $\xi = 0.8$

$$A = -B = +6 \cdot 10,0 \cdot 0,8 (1 - 0.8) \frac{1}{10.0} = 0,96 \text{ t},$$

$$M_a = +10,0 [1 - 4 \cdot 0.8 + 3 \cdot 0.8^2] = -2.8 \text{ mt},$$

$$M_b = +10,0 \cdot 0.8 (2 - 3 \cdot 0.8) = -3.2 \text{ mt}.$$

$$M_b = +10.0 \cdot 0.8 (2 - 3 \cdot 0.8) = -3.2 \text{ mt}.$$

2. Träger über zwei Feldern. Allgemeine Anordnung nach Abb. 364. Hauptsystem: Zwei einfache Träger (I), (II). Statisch überzählige Größen: Einspannungs-momente $-M_a = X_1, -M_c = X_3$, Stützenmoment $-M_b = X_2$. Berechnung bei allgemeiner Anordnung nach Abschn. 26, bei x_1 (*** feldweise konstantem Trägheitsmoment mit Tabelle 32, Teil A. Teil B enthält Angaben bei veränderlichem Trägheitsmoment. Abb. 364.

> Tabelle 32. Träger über zwei Feldern. A. Das Trägheitsmoment ist feldweise konstant.

$$\begin{split} \alpha &= l_2 l_3 \,, \quad 2) \ \alpha' &= l_2' l_3' \,, \quad 3) \ \varphi &= 2 \ (1 + \alpha') \,, \\ 4) \ \psi &= \frac{4 + 3 \ \alpha'}{2} \,, \quad 5) \ \eta &= \frac{3 + 4 \ \alpha'}{2} \,. \end{split}$$

Klammerwerte $[\omega'_D - \varkappa_{k(k-1)} \omega_D]$ und $[\omega_D - \varkappa_{(k-1)k} \omega'_D]$ sind für $0,200 < \varkappa < 0,380$ in Tabelle 34 Seite 410 angegeben.

Formeln zur Ermittlung der Festpunktabstände aus den Kennbezeichnungen:

$$a_{(k-1)\,k} = \frac{\varkappa_{(k-1)\,k}\,l_k}{1 + \varkappa_{(k-1)\,k}}, \qquad a_{k\,(k-1)} = \frac{\varkappa_{k\,(k-1)\,k}}{1 + \varkappa_{k\,(k-1)\,k}}$$

Berechnung der Stützkräfte: vgl. Seite 396 und 424.

a) Anordnung Abb. 365.

1)

Kennbeziehungen:

3

$$\kappa_{a\,2} = 0$$
, $\kappa_{c\,2} =$
 $\kappa_{2\,c} = \frac{1}{m}$, $\kappa_{2\,a} =$

 $-M_{b} = X_{2}$

-1)

$$X_2 = \frac{1}{\varphi \, l_3'} \, 6 \, \delta_{20} \, .$$

Bereich
 I
 II

$$\varphi X_2$$
 $l_2 \alpha' \omega_D$
 $l_3 \omega'_D$

Einflußlinien:

Schnittkräfte für feldweise Belastung:

Belastung			- P	, and a second s
	X2	$\frac{p l_2^9}{4} \frac{\alpha'}{\varphi}$	$\frac{p l_3^2}{4} \frac{1}{\varphi}$	$\frac{\frac{p l_3^2}{4}}{4} \frac{1 + \alpha' \alpha^2}{\varphi}$
T	$\max M$	$\frac{p l_2^2}{2} \xi_0^2$		$\frac{p l_2^2}{2} \xi_0^2$
-	Ę,	<u>ψ</u> 2 φ		$\frac{1}{2} - \frac{1}{4\alpha^2} \frac{1 + \alpha' \alpha^2}{\varphi}$
п	max M		$\frac{p l_3^2}{2} \xi_0^{\prime 3}$	$\frac{p l_3^9}{2} \xi_0^{\prime 9}$
	£'0		$\frac{\eta}{2 \cdot \varphi}$	$\frac{1}{2} - \frac{1}{4} \frac{1 + \alpha' \alpha^2}{\varphi}$
	Beyer, Baust	atik, 2. Aufl., 2. Neudruck.	26	

46. Balkenträger mit statisch unbestimmter Stützung.

Überzählige Schnittkraft $X_{\rm 2}$ für besondere Belastungen:

Belastung $\beta_{z} = \beta_{z}$				2		HEELEH HELE		
X2	$\frac{p l_2^2}{4} \frac{\alpha'}{\varphi}$	$[2 (\beta^2 - \alpha)]$	²) —	$(\beta^4 - \alpha^4)]$		$-\frac{1}{\varphi}$	$[\omega_M M_I \alpha' - \omega'_M M_{II}]$	
Ungleichförmige Erwärmung $t_u - t_o = \Delta t$: $X_2 = \frac{3}{2} E \int_o \frac{\alpha_t \Delta t}{d} \frac{l_2 + l_3}{l_2' + l_3'}$.								
Stützensenkungen Δ_a , Δ_b , Δ_c : $X_2 = \frac{3 E \hat{f}_c}{l'_2 + l'_3} \left[\frac{\Delta_a}{l_2} - \Delta_b \left(\frac{\mathbf{T}}{l_2} + \frac{\mathbf{T}}{l_3} \right) + \frac{\Delta_c}{l_3} \right].$								
b) Anordnung Abb. 366. $-M_a = X_1, -M_b = X_2.$ Abb. 366.						$\begin{array}{c c} 2 & II & c\\ \hline b & II & c\\ \hline \hline c & \\ \hline c & \\ \hline c & \\ \hline c & \\ c &$		
Kennbeziehungen:				Konjugierte Matrix der β_{ik} :				
$\begin{aligned} \varkappa_{12} &= \frac{1}{2} , \qquad \varkappa_{c2} = 0 , \\ \varkappa_{2c} &= \frac{1}{\psi} , \qquad \varkappa_{21} = \frac{\alpha'}{\varphi} . \end{aligned}$					tal tal	$\int_{-1}^{1} l_{3}' \psi \cdot X_{1}$ $\int_{-1}^{1} l_{3}' \psi \cdot X_{2}$	$\begin{array}{c c} \delta_{10} & \delta_{20} \\ \hline \\ \varphi/\alpha' & -1 \\ \hline \\ 2 & -1 & 2 \end{array}$	
				Einflußlinie	n:			
	Bereich	-	I		II	And the second second		
	$\psi \cdot X_1$	$\frac{l_2}{2}$	$\varphi \ [\omega'_D - \varkappa_2]$	ι ω _D]	$-\frac{l_3}{2}\omega_2'$	 		
$\psi \cdot X_2$ l_2				$\alpha' [\omega_p - \varkappa_{12}]$	ω_D']	$l_3 \omega_D$	The second second	
Schnittkräfte für feldweise Belastung:								
Belastung	}			-	<i>p</i>		<u>}</u>	
			-		1. 10		4.79 . 9.4 . 4	

Belastung				June 2007	
	X ₁	$\frac{p l_2^2}{16} \frac{2+\varphi}{\psi}$	$-\frac{p l_3^2}{8} \frac{1}{\psi}$	$\frac{p l_3^2}{16} \frac{\alpha^2 (2+\varphi) - 2}{\psi}$	
1	X ₂	$\frac{p l_2^{\circ}}{8} \frac{\alpha'}{.\psi}$	$\frac{p l_3^2}{4} \frac{1}{\psi}$		
	max M	$\frac{\oint l_2^9}{8} \left(4 \xi_0^{\prime2} - \frac{\alpha'}{\varphi}\right)$		$\frac{p l_3^2}{8} \left(4 \xi_0^{\prime 2} - \frac{1}{\alpha^2} \frac{2 + \alpha^{\prime} \alpha^2}{\psi} \right)$	
	Ę0	$\frac{3\varphi}{8\psi}$		$\frac{1}{2}+\frac{3-2\alpha^2}{8\psi\alpha^2}$	
I	max M		$\frac{p l_3^9}{2} \xi_0^{\prime 9}$	$\frac{p l_3^2}{2} \xi_0^{\prime 2}$	
	ξ ₀ '		$\frac{3\varphi}{8\psi}$	$\frac{1}{2} - \frac{1}{8} \frac{2 + \alpha' \alpha^2}{\psi}$	

UNIVERSITÄTS-BIBLIOTHEK PADERBORN 402

۰.