

Die Statik im Stahlbetonbau

Beyer, Kurt Berlin [u.a.], 1956

Die Entwicklung der Einflußlinien der Stützenmomente aus den Festpunkten

urn:nbn:de:hbz:466:1-74292

zugeben, werden nach dem Ansatz (637) die Biegungsmomente M_0 des einfachen Balkenträgers l_k von $\overline{A'_{k-1} A'_k} \equiv \xi_k$ als Bezugsgeraden aus abgetragen.

Die allgemeine zeichnerische Untersuchung einer beliebigen Belastung mit Hilfe der Festpunkte und der Punkte E_k' ist ausführlich auf S. 260 beschrieben, so daß darauf in Verbindung mit den beiden Abb. 380 und 381 verwiesen werden kann.

Die Entwicklung der Einflußlinien der Stützenmomente aus den Festpunkten. Das Stützenmoment X_k ist als überzählige Größe eines (n-1) fach statisch unbestimmten Hauptsystems

$$X_k = \delta_{k0}^{(n-1)}/\delta_{kk}^{(n-1)}$$
.

Die Einflußlinie wird daher aus der Biegelinie $\delta_{mk}^{(n-1)}$ des Hauptsystems für $-X_k=1$ abgeleitet und daher aus den Momenten $M_k^{(n-1)}$ berechnet, die für den Lastangriff $-X_k=1$ mit Hilfe der Festpunkte aufgezeichnet werden (Abb. 378b).

$$\begin{split} \delta_{k\,k}^{(n-1)} &= - \, \varkappa_{(k-1)\,k} \, \delta_{k\,(k-1)} + \delta_{k\,k} - \varkappa_{(k+1)\,k} \, \delta_{k\,(k+1)} \\ &= \delta_{k\,(k-1)} \left(\frac{b_{k\,(k-1)}}{a_{k\,(k-1)}} - \frac{a_{(k-1)\,k}}{b_{(k-1)\,k}} \right) + \delta_{k\,(k+1)} \left(\frac{b_{k\,(k+1)}}{a_{k\,(k+1)}} - \frac{a_{(k+1)\,k}}{b_{(k+1)\,k}} \right). \end{split}$$

Bei Approximation der Querschnittsveränderlichkeit nach Tabelle 29 ist

$$6 \, \delta_{kk}^{(n-1)} = l_k' \left(2 \, \mu_k - \lambda_k \, \frac{a_{(k-1)\,k}}{b_{(k-1)\,k}} \right) + l_{k+1}' \left(2 \, \mu_{k+1} - \lambda_{k+1} \, \frac{a_{(k+1)\,k}}{b_{(k+1)\,k}} \right). \tag{680}$$

Gleichung der Biegelinie 6 $\delta_{mk}^{(n-1)}$ für $J_k/J={\rm const.}$

Feld
$$l_{k}$$
: $6 \, \delta_{mk}^{(n-1)} = l_{k} \, l'_{k} \, (\omega_{D} - \varkappa_{(k-1) \, k} \, \omega'_{D}) \,,$

,, l_{k+1} : $6 \, \delta_{mk}^{(n-1)} = l_{k+1} \, l'_{k+1} \, (\omega'_{D} - \varkappa_{(k+1) \, k} \, \omega_{D}) \,,$

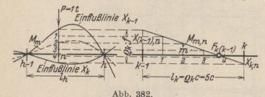
,, l_{h} : $6 \, \delta_{mk}^{(n-1)} = (-1)^{(k-h)} \, \varkappa_{(k-1) \, k} \cdot \cdot \cdot \varkappa_{h \, (h+1)} \, l_{h} \, l'_{h} \, (\omega_{D} - \varkappa_{(h-1) \, h} \, \omega'_{D}) \,,$

,, l_{r} : $6 \, \delta_{mk}^{(n-1)} = (-1)^{(r-1-k)} \, \varkappa_{(k+1) \, k} \cdot \cdot \cdot \varkappa_{(r-1) \, (r-2)} \, l_{r} \, l'_{r} \, (\omega'_{D} - \varkappa_{r \, (r-1)} \, \omega_{D}) \,.$

(681)

Für $\zeta_k=J_k/J$ nach S. 394 treten an die Stelle von ω_D , ω_D' die Werte $\overline{\omega}_D$, $\overline{\omega}_D'$ nach Tabelle 29.

Einflußlinien der Schnitt- und Stützkräfte. Die Einflußlinien der Schnittkräfte werden in der Regel auf eine Gruppe von Querschnitten m bezogen, welche das Feld l_k in eine Anzahl (ϱ_k) gleichgroßer Abschnitte c zerlegen $(l_k = \varrho_k c)$.



Die Abszissen x_m , x_m' eines Querschnitts m sind daher ebenfalls ein Vielfaches der Strecken c ($x_m = \varrho_k'c$, $x_m' = \varrho_k'c$, $x_m + x_m' = l_k$, $\varrho_k' + \varrho_k'' = \varrho_k$). Solange sich die Last P im Felde l_k des Trägers bewegt, dem der Querschnitt m angehört, ist das Biegungsmoment

$$M_m = M_{m\,0} - X_{k-1}\,\xi_m' - X_k\,\xi_m = M_{m\,0} - X_{k-1} - (X_k - X_{k-1})\,\xi_m\,. \eqno(682)$$

Greift P außerhalb von l_k an, so ist $M_{m0} = 0$ und

$$M_m = -X_{k-1} \, \xi_m' - X_k \, \xi_m = -X_{k-1} - \left(X_k - X_{k-1} \right) \, \xi_m = -X_k - \left(X_{k-1} - X_k \right) \, \xi_m' \, . \eqno(683)$$

Die Ordinaten der Einflußlinien von X_{k-1} und X_k besitzen hier stets entgegengesetztes Vorzeichen, so daß nach (683) die Einflußlinien der Feldmomente M_m die Summe der einem jeden Lastpunkt zugeordneten Ordinaten $|X_{k-1}| + |X_k|$ ebenfalls in ϱ_k gleichgroße Abschnitte f teilen (Abb. 382).

Die Einflußlinien M_m werden innerhalb des Feldes l_k am einfachsten aus den Zustandslinien gefunden, die für die Stellung der Last P in jedem Teilpunkt m der Strecke l_k mit Hilfe der vorhandenen Einflußlinien X_{k-1} und X_k aufgezeichnet