

# Die Statik im Stahlbetonbau

# Beyer, Kurt

Berlin [u.a.], 1956

48. Der durchlaufende Träger mit elastisch drehbaren Stützen

urn:nbn:de:hbz:466:1-74292

Visual Library

4. Festpunkte. Zeichnerisch nach Abb. 395. 5. Belastung. p = 6 t/m auf Feld  $l_3$  u.  $l_5$ . Belastungszahlen für J = const. Tab. 35.

$$\begin{split} & 6\,\delta_{10}=0\;, \qquad 6\,\delta_{20}=\frac{1}{4}\cdot 6\cdot 1000=1500=6\,\delta_{30}\;, \qquad 6\,\delta_{40}=\frac{1}{4}\cdot 6\cdot 64\cdot 16=1536=6\,\delta_{50}\,.\\ & \text{G1.}\;(676)\quad T_k=6\,\delta_{k\,0}/N_k, \quad T_1=0, \quad T_2=1500/52, 4=28, 6, \quad T_3=42, 1, \quad T_4=31, 9, \quad T_5=25, 0\;\text{mt}\,. \end{split}$$

Die Abschnitte  $T_k$  werden von den Punkten  $E_k$  im Momentenmaßstab aufgetragen (positiv nach oben, negativ nach unten). Die Geradenzüge  $\zeta_{0n}$  und  $\zeta_{n0}$  bestimmen die Punkte des Geradenzugs  $\xi_k$  auf den Festpunktsenkrechten und damit die Stützenmomente.

Hertwig, A.: Die Berechnung des Trägers auf mehreren Stützen mit gleichem und veränderlichem Querschnitt, mit frei drehbaren oder eingespannten Stützen. Arm. Beton 1913 S. 219. — Derselbe: Die Berechnung der Rahmengebilde. Eisenbau 1921 S. 122. — Müller-Breslau, H.: Die graphische Statik der Baukonstruktionen Bd. 2 5. Aufl. Stuttgart 1922. — Mörsch, E.: Der durchlaufende Träger. Stuttgart 1928. — Kleinlogel, A., u. G. Sigmann: Der durchlaufende Träger. Berlin 1929. — Domke, O.: Die Theorie des Eisenbetons. Handb. Eisenbetonbau Bd. 1 4. Aufl. Berlin 1930.

#### 48. Der durchlaufende Träger mit elastisch drehbaren Stützen.

Die einfache und zuverlässige Ausführung starrer Stabknoten im Eisenbetonbau erklärt die Bedeutung des durchlaufenden Trägers mit elastisch drehbaren Stützen im Bauwesen. Er unterscheidet sich von dem durchgehenden Rahmen (Abb. 396b) durch die unverschiebliche Lage der Stabknoten. Der Riegel des durchgehenden



Trägers ist daher stets horizontal gestützt. Er wird je nach der Bestimmung des Tragwerks gerade und waagerecht, gerade und schräg oder als gebrochener Stabzug ausgeführt, dessen Knoten gestützt sind (Abb. 396e). Die Pfosten stehen in der Regel senkrecht. Die Fußpunkte werden frei drehbar oder starr eingespannt angenommen. Der Stockwerkrah-

men kann als mehr-

facher durchgehender Rahmen angesehen werden. Die beiden einem mittleren Riegel zugeordneten Stützenreihen sind in den benachbarten Riegeln elastisch eingespannt. Um die Untersuchung in einer für die Beurteilung der Festigkeit zulässigen Form zu vereinfachen, werden die statischen oder geometrischen Randbedingungen am Anschluß der Pfosten mit den benachbarten Riegeln vorgeschrieben, indem die Knotendrehwinkel oder die Anschlußmomente Null gesetzt werden. Die Pfosten gelten dann als starr eingespannt oder frei drehbar gestützt. Außerdem kann eine elastische Einspannung beliebiger Größe geschätzt werden. Die waagerechte Verschiebung der Riegel ist bei senkrechter Belastung klein- und wird daher vernachlässigt.

Ansatz. Zur Berechnung der Stütz- und Schnittkräfte des Tragwerks werden die Anschlußmomente der Riegel als statisch überzählige Größen verwendet und aus den geometrischen Bedingungen für die Kontinuität der Formänderung eines statisch bestimmten oder statisch unbestimmten Hauptsystems bestimmt. Die Gleichungen enthalten je drei statisch überzählige Größen  $X_k$ . Auf diese Weise

#### Die Vorzahlen.

entsteht ein Ansatz nach (701). Die Nebenglieder einer Zeile der Matrix haben stets verschiedenes Vorzeichen.

Die Anschlußmomente der Riegel links und rechts der Stütze k werden durch die Fußzeichen k und (k + 1), die benachbarten Felder durch  $l_k$  und  $l_{k+2}$  unterschieden.  $X_1$  und  $X_n$  sind je nach der Abstützung der Trägerenden Riegelmomente rechts oder links von den Endstützen (Abb. 397b, c).

Die Hauptglieder der Matrix werden nach

IBLIOTHEK

$$\delta_{kk} = \delta_{kk,1} + \delta_{kk,2}; \qquad \delta_{(k+1)(k+1)} = \delta_{(k+1)(k+1),1} + \delta_{(k+1)(k+1),2}$$

zerlegt. Die Anteile  $\delta_{kk,1}$  und  $\delta_{(k+1)(k+1),1}$  bezeichnen die Verdrehung der Endquerschnitte k, (k+1) der Riegelstäbe  $l_k, l_{k+2}$ , die Beiträge  $\delta_{kk,2}, \delta_{(k+1)(k+1),2}$  die



Die zweiten Anteile der Hauptglieder gelten je nach Ausbildung und Lagerung des Pfostens für die statisch bestimmte oder statisch unbestimmte Anordnung (Abb. 397a, b).

**Die Vorzahlen.** Die Beiträge  $\delta_{kk,1}$ ,  $\delta_{(k+1)(k+1),1}$ ,  $\delta_{k(k-1)}$ ,  $\delta_{(k+1)(k+2)}$  werden durch die elastischen Eigenschaften der Riegelstäbe bestimmt. Die Veränderlichkeit des Trägheitsmomentes kann nach einer der Annahmen auf S. 394 approximiert, in zahlreichen Fällen aber auch vernachlässigt werden. Nach S. 393 ist (Abb. 398)

$$\begin{array}{ll}
6\,\delta_{k\,k,1} &= 2\,\mu_k\,l'_k, & 6\,\delta_{(k+1)\,(k+1),1} = 2\,\mu_{k+2}\,l'_{k+2}, \\
6\,\delta_{k\,(k-1)} &= \lambda_k\,l'_k, & 6\,\delta_{(k+1)\,(k+2)} &= \lambda_{k+2}\,l'_{k+2}.
\end{array}$$
(702)

Bei unveränderlichem Trägheitsmoment  $J_k$ ,  $J_{k+2}$  im Bereiche von  $l_k$ ,  $l_{k+2}$  ist  $\mu_k = \lambda_k = 1$  und  $\mu_{k+2} = \lambda_{k+2} = 1$ . Die Vorzahlen  $\delta_{kk,2} = \delta_{(k+1)(k+1),2} = -\delta_{k(k+1)}$  werden durch die Anordnung der Pfosten und durch die Art ihrer Stützung bestimmt.

1. Einteilige Stützen mit frei drehbarer Auflagerung (Abb. 398a). Ausbildung a) Die Stützen besitzen im Bereiche  $\overline{h_k}$  konstantes Trägheitsmoment. Im Bereich des Abschnittes  $h_k - \overline{h_k} = f_k$  wird das Trägheitsmoment unendlich groß angenommen (Abb. 399).

$$\delta_{kk,2} = 6 \,\delta_{(k+1)(k+1),2} = -6 \,\delta_{k(k+1)} = 2 \,\frac{h_k^2}{h_k^3} \,h_k'.$$
 (703)



Bei linear veränderlicher Stärke der Stütze wird der einer Stütze mit gleichbleibender Stärke (J = const) äquivalente mittlere Querschnitt  $J_k^*$  nach S. 99 bestimmt (Abb. 399).

2. Einteilige Stützen mit starrer Einspannung der Enden (Abb. 398b).

$$a_{\bar{k}k} = \frac{h_k}{3} \frac{h_k + 2f_k}{h_k + f_k},$$

$$6 \,\delta_{k\,k,2} = 6 \,\delta_{(k+1)\,(k+1),2} = -6 \,\delta_{k\,(k+1)} = \frac{3 \,h_k^2}{2 \,h_k \,[h_k^2 + h_k f_k + f_k^2]} \,h_k'. \tag{705}$$
ng b)  $a_{\bar{k}k} = h_k/3.$ 

Ausbildung b)

Ausbildung

BIBLIOTHEK PADERBORN

$$6\,\delta_{k\,k,\,2} = 6\,\delta_{(k+1)\,(k+1),\,2} = -\,6\,\delta_{k\,(k+1)} = \frac{3}{2}\,h'_k.\tag{706}$$

3. Zweiteilige Anordnung der Stützen  $s_k + h_k$ . Die Trägheitsmomente  $J_{ks}$ ,  $J_{kh}$  werden im Bereich der theoretischen Längen  $s_k$ ,  $h_k$  konstant angenommen. a) Die Enden der beiden Stützen sind frei drehbar gelagert (Abb. 400).

$$6\,\delta_{k\,k,2} = 6\,\delta_{(k+1)\,(k+1),2} = -\,6\,\delta_{k\,(k+1)} = \frac{2\,s'_k\,h'_k}{s'_k + \,h'_k}\,.\tag{707}$$

#### Belastungszahlen.

b) Die Enden der beiden Stützen sind starr eingespannt (Abb. 401).

$$6\,\delta_{k\,k,2} = 6\,\delta_{(k+1)\,(k+1),2} = -\,6\,\delta_{k\,(k+1)} = \frac{3\,s'_k\,h'_k}{2\,(s'_k + \,h'_k)}\,.\tag{708}$$

c) Die Enden der beiden Stützen sind elastisch eingespannt. Der Abstand  $a_{\overline{k}k}$  der Momentennullpunkte von den Enden der Stützen wird mit h/4 geschätzt.

$$6\,\delta_{k\,k,\,2} = 6\,\delta_{(k+1)\,(k+1),\,2} = -\,6\,\delta_{k\,(k+1)} = \frac{5\,s_k\,h_k}{3\,(s_k'+h_k')}\,.\tag{709}$$

d) Die obere Stütze  $s_k$  ist frei drehbar angeschlossen, die untere Stütze  $h_k$  starr eingespannt (Abb. 402).

$$6\,\delta_{k\,k,2} = 6\,\delta_{(k+1)\,(k+1),2} = -\,6\,\delta_{k\,(k+1)} = \frac{6\,s'_k\,h'_k}{4\,s'_k + 3\,k'_k}\,.\tag{710}$$

Belastungszahlen. Die Belastungszahlen  $\delta_{k\otimes}$ ,  $\delta_{(k+1)\otimes}$  werden als virtuelle Arbeiten aus der Verdrehung der Querschnitte k, k + 1 des Hauptsystems gebildet, welche bei der Belastung der Stäbe  $l_k$ ,  $l_{k+2}$ ,  $h_k$  oder durch Temperaturänderung und Stützenverschiebung entsteht. Die Riegel des Hauptsystems  $l_k$ ,  $l_{k+2}$  sind einfache Balkenträger, deren Endverdrehung bei konstantem Trägheitsmoment für alle in Betracht kommenden Belastungen in Tabelle 17 angegeben sind oder sich nach Tabelle 12 entwickeln lassen. Sie werden ebenso wie die Vorzahlen der statisch überzähligen Schnittkräfte im 6 fachen Betrage eingesetzt und für die häufigen Belastungsfälle nochmals angeschrieben.

Tabelle 36<sup>1</sup>. Belastungsglieder für  $J_k = \text{const}$  und Lastangriff am Riegel  $l_k$ ,  $l_{k+2}$ .

| K-1 R K+1 R+2<br>Ely L Ely L                                                                                       | $6 \delta_{k0} = l_k l'_k \sum_k P \omega_p , \qquad 6 \delta_{(k+1)0} = l_{k+2} l'_{k+2} \sum_{k+2} P \omega'_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\begin{array}{c} M_k & M_{k+2} \\ \hline \\ \hline \\ E l_k & \hline \\ E l_{k+2} \\ \end{array}$ Streckenbelastr | $6 \delta_{k0} = l'_k \sum M_k \omega_M , \qquad 6 \delta_{(k+1)0} = - l'_{k+2} \sum M_{k+2} \omega'_M$ $\log:  6 \delta_{k0} = c_k \phi_k l_k^2 l'_k , \qquad 6 \delta_{(k+1)0} = c'_{k+2} \phi_{k+2} l'_{k+2} l'_{k+2} d'_{k+2} d'$                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Pk Pk+2<br>k-1 k k+1 k+2<br>lk-2 lk+2                                                                              | $c_{k} = c'_{k+2} = \frac{1}{4} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Pk Pk+2<br>- lk - lk+2 - 1                                                                                         | $c_{k} = c'_{k+2} = \frac{5}{3^{2}}$ $p_{k}$ $p_{k+2}$ $c_{k} = c'_{k+2} = \frac{7}{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Ph Ph+2                                                                                                            | $c_k = \frac{1}{4} (1 - \zeta^2)^2, \qquad c'_{k+2} = \frac{1}{4} (1 - \zeta'^2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Pr Pr+2                                                                                                            | $c_k = \frac{1}{4} \zeta^2 (2 - \zeta^2), \qquad c'_{k+2} = \frac{1}{4} \zeta'^2 (2 - \zeta'^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Pro Proz                                                                                                           | $\begin{array}{c c} \delta_{k,0} = l_k l_k' \sum_k P \omega_p, \qquad 6 \delta_{(k+1)0} = l_{k+2} l_{k+2}' \sum_{k+2} P \omega_p' \\ \hline \delta_{k,0} = l_k l_k' \sum_k P \omega_p, \qquad 6 \delta_{(k+1)0} = l_{k+2} l_{k+2}' \sum_{k+2} P \omega_p' \\ \hline \delta_{k,0} = l_k' \sum_k M_k \omega_M, \qquad 6 \delta_{(k+1)0} = -l_{k+2}' \sum_{k+2} M_{k+2} \omega_M' \\ \hline \delta_{k,0} = c_k p_k l_k^2 l_k', \qquad 6 \delta_{(k+1)0} = c_{k+2}' p_{k+2} l_{k+2}' \omega_M' \\ \hline \delta_{k,0} = c_k p_k l_k^2 l_k', \qquad 6 \delta_{(k+1)0} = c_{k+2}' p_{k+2} l_{k+2}' \omega_M' \\ \hline \delta_{k,0} = c_k p_k l_k^2 l_k', \qquad 6 \delta_{(k+1)0} = c_{k+2}' p_{k+2} l_{k+2}' \omega_M' \\ \hline \delta_{k,0} = c_k p_k l_k^2 l_k', \qquad 6 \delta_{(k+1)0} = c_{k+2}' p_{k+2} l_{k+2}' \omega_M' \\ \hline \delta_{k,0} = c_k p_k l_k^2 l_k', \qquad 6 \delta_{(k+1)0} = c_{k+2}' p_{k+2} l_{k+2}' \omega_M' \\ \hline \delta_{k,0} = c_{k+2} = \frac{1}{4}  \boxed{p_k' p_{k+2}' p_$ |  |  |

Bei Lastangriff am Pfosten  $h_k$  ist dessen Abstützung zu beachten.

<sup>1</sup> Funktionswerte  $\omega$  auf S. 116ff.

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

28

| Tabell         | le 37 <sup>1</sup> . Belastungsglieder $6 \delta_{k0} = -6 \delta_{k0}$ am Pfoste              | $\delta_{(k+1)0}$ für $J = \text{const}$ und Lastangriff<br>in $h_k$ . |
|----------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Belastungsfall | $1 \boxed{\begin{array}{c} 1 \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | A Children of the state                                                |
| -              | $6 \delta_{k0}$ (frei drehbare Lagerung)                                                       | $\delta \delta_{k0}$ (starre Einspannung)                              |
| I              | $-\frac{1}{4} p_k  h_k^2  h_k'$                                                                | $-\frac{1}{8}p_kh_k^2h_k'$                                             |
| 2              | $-\frac{7}{60}\phi_kh_k^ah_k'$                                                                 | $-\frac{1}{20}p_k h_k^2 h_k'$                                          |
| 3              | $-\frac{1}{60}p_k h_k^2 h_k' \beta^2 (10-3\beta^2)$                                            | $-\frac{1}{40}p_kh_k^9h_k'\beta^3(5-3\beta)$                           |
| 4              | $-Ph_kh'_k\omega_p$                                                                            | $-\frac{3}{2}Ph_kh'_k\omega_r$                                         |
| 5              | $- P c h'_k \omega_M$                                                                          | $-\frac{3}{2} P c h_k^{\prime} \xi (2-3\xi)$                           |
| 6              | $-Ph_kh'_k[\omega_D(\xi_1)-\omega_D(\xi_2)]$                                                   | $-\frac{3}{2}Ph_kh'_k[\omega_\tau(\xi_1)-\omega_\tau(\xi_2)]$          |

Bei Belastung eines am Fuße  $\overline{k}$  eingespannten Pfostens mit  $f_k \neq 0$  nach Abb. 399 ist

$$6\,\delta_{k0}^{(1)} = 6 \int M_k^{(1)} \,M_k^{(0)} \,\frac{J_e}{J} \,ds \,, \quad M_k^{(1)} \text{ nach Abb. 398b mit} \quad a_{\bar{k}k} = \frac{\bar{h}_k}{3} \,\frac{h_k + 2\,f_k}{h_k + f_k} \,. \tag{711}$$

Die folgenden Belastungszahlen beschränken sich auf die Temperaturänderung t,  $\Delta t$  des Riegels und die ihr äquivalente Wirkung des Schwindens, auf die senkrechten Verschiebungen  $\Delta_k$  der Stützenfüße  $\overline{k}$  und die waagerechte Verschiebung  $\Delta_R$  des Riegels.

a) Frei drehbare Lagerung der Pfostenenden (beliebige Stützenform). Temperaturänderung:

 $6 \delta_{kt} = + 6 E J_c \frac{1}{h_k} \alpha_t t (l_1 + \cdots + l_k) + 3 E J_c \frac{\alpha_t \Delta t}{d_k} l_k,$  $6 \delta_{(k+1)t} = - 6 E J_c \frac{1}{h_k} \alpha_t t (l_1 + \cdots + l_k) + 3 E J_c \frac{\alpha_t \Delta t}{d_{k+1}} l_{k+1},$ 

senkrechte Stützenverschiebung:

$$\begin{cases}
6 \,\delta_{ks} = + 6 E J_{o} \frac{\Delta_{k-2} - \Delta_{k}}{l_{k}}, \\
6 \,\delta_{(k+1)s} = - 6 E J_{o} \frac{\Delta_{k} - \Delta_{k+2}}{l_{k+2}};
\end{cases}$$
(713)

(712)

waagerechte Verschiebung des Riegels um eine vorgeschriebene Strecke  $\Delta_R$ :

$$6\,\delta_{ks} = 6\,E\,J_s\,\frac{\Delta_R}{h_k} = -\,6\,\delta_{(k+1)\,s}\,. \tag{714}$$

<sup>1</sup> Funktionswerte  $\omega$  auf S. 116ff.

BIBLIOTHEK

Lösung.

b) Starre Einspannung der Pfostenenden.

Temperaturänderung (näherungsweise für beliebige Stützenform):

$$\begin{cases}
6 \,\delta_{kt} = 9 E J_c \frac{1}{h_k} \alpha_t t (l_1 + \cdots + l_k) + 3 E J_c \frac{\alpha_t \Delta t}{d_k} l_k, \\
6 \,\delta_{kt} = -9 E J_c \frac{1}{h_k} \alpha_t t (l_1 + \cdots + l_k) + 3 E J_c \frac{\alpha_t \Delta t}{d_k} l_k,
\end{cases}$$
(715)

$$6 \, o_{(k+1)t} = -9 E \int_c \frac{1}{h_k} \alpha_t t \, (l_1 + \cdots + l_k) + 3 E \int_c \frac{1}{d_{k+1}} l_{k+2},$$

senkrechte Stützenverschiebung (für beliebige Stützenform):

$$6 \,\delta_{ks} = + 6 \,E J_c \frac{\Delta_{k-2} - \Delta_k}{l_k} \,, \qquad 6 \,\delta_{(k+1)s} = - 6 \,E J_c \frac{\Delta_k - \Delta_{k-2}}{l_{k+2}} \,, \qquad (716)$$

waagerechte Verschiebung des Riegels, für J = const:

$$6 \,\delta_{ks} = 9 E J_e \frac{\Delta_R}{h_k} = -6 \,\delta_{(k+1)s}, \qquad (717)$$

für  $J = \infty$  im Bereich  $f_k = h_k - h_k$  der Stütze:

$$6 \,\delta_{ks} = 9 \,E J_c \,\Delta_R \,\frac{h_k + f_k}{h_k^2 + h_k \,f_k + f_k^2} = -6 \,\delta_{(k+1)s} \,. \tag{718}$$

Lösung. Die statisch überzähligen Größen  $X_k$  sind nach (701) die Wurzeln dreigliedriger linearer Gleichungen, die unter Einbeziehung der Belastungszahlen mit dem Gaußschen Algorithmus nach der Rechenvorschrift S. 232 aufgelöst werden. Die konjugierte Matrix entsteht auf dieselbe Weise oder nach S. 232 aus 2 Kettenbrüchen, die neben den Vorzahlen  $\beta'_{nn}$ ,  $\beta'_{11}$  die Kennbeziehungen  $\varkappa_{(k-1)k}$ ,  $\varkappa_{k(k-1)}$  und damit alle übrigen Glieder  $\beta'_{kk}$ ,  $\beta'_{ik}$  liefern.

werden. Die Konjugierte statut entsteht auf diesende weise oder hach er 202 aus 2 Kettenbrüchen, die neben den Vorzahlen  $\beta'_{nn}$ ,  $\beta'_{11}$  die Kennbeziehungen  $\varkappa_{(k-1)k}$ ,  $\varkappa_{k(k-1)}$  und damit alle übrigen Glieder  $\beta'_{kk}$ ,  $\beta'_{ik}$  liefern. Da die Verschiebungen  $\delta_{k(k-1)}$  positiv, dagegen die Verschiebungen  $\delta_{k(k+1)}$ negativ sind, werden die Kennbeziehungen  $\varkappa_{(k-1)k}$ ,  $\varkappa_{k(k-1)}$  zwischen den Endmomenten eines Trägers  $l_k$  ebenso wie beim durchgehenden Träger auf frei drehbaren Stützen stets positiv, dagegen die Kennbeziehungen  $\varkappa_{k(k+1)}$ ,  $\varkappa_{(k+1)k}$  der beiden Riegelmomente zu beiden Seiten der Stütze  $h_k$  negativ. Trotzdem gelten hier nach Abschn. 29 dieselben Vorschriften über die Verwendung der Kennbeziehungen zur Bildung der konjugierten Matrix und zur Berechnung der Stützenmomente wie beim durchgehenden Träger auf frei drehbaren Stützen.

Die konjugierte Matrix  $\beta'_{ik}$  ist den Elastizitätsgleichungen (701) mit den 6fachen Beträgen der Vorzahlen  $\delta_{ik}$  zugeordnet, so daß

$$X_{k} = \sum \beta'_{kh} (6 \,\delta_{h\otimes}), \qquad X_{k+1} = \sum \beta'_{(k+1)h} (6 \,\delta_{h\otimes}) \tag{719}$$

und damit auch alle übrigen Stütz- und Schnittkräfte des Tragwerks bestimmt sind. a) Querschnitt m im Riegel  $l_k$  (Abb. 398).

$$M_{m} = M_{m0} - X_{k-1} \,\xi'_{m} - X_{k} \,\xi_{m}, \qquad Q_{m} = Q_{m0} - \frac{X_{k} - X_{k-1}}{l_{k}}. \tag{720}$$

b) Querschnitt n im Pfosten  $h_k$  im Abstand  $y_n$  vom Stützenfuß k an gerechnet (Abb. 398).

Frei drehbare Lagerung des Pfostens. Starre Einspannung des Pfostens.

$$\begin{array}{c} M_{n} = M_{n0} - \frac{X_{k+1} - X_{k}}{h_{k}} y_{n}, \\ Q_{n} = Q_{n0} - \frac{X_{k+1} - X_{k}}{h_{k}}. \end{array} \right\} \begin{pmatrix} M_{n} = M_{n0}^{(1)} - \frac{X_{k+1} - X_{k}}{2 h_{k}} (3 y_{n} - h_{k}), \\ Q_{n} = Q_{n0}^{(1)} - \frac{3}{2} \frac{X_{k+1} - X_{k}}{h_{k}}. \end{array} \right\}$$
(721b)

Längskraft und senkrechte Stützkraft des Pfostens  $h_k$  mit den Querkräften  $Q'_k$ ,  $Q''_k$  des Riegels links und rechts vom Anschlußpunkt k:

$$C_{k} = -Q'_{k} + Q''_{k} = C_{k0} + \frac{X_{k} - X_{k-1}}{l_{k}} - \frac{X_{k+2} - X_{k+1}}{l_{k+2}}.$$
(722)

Waagerechte Stützkraft des Pfostens  $h_k$ :

436

frei drehbare Lagerung in 
$$k$$

$$H_{k} = H_{k0} - \frac{X_{k+1} - X_{k}}{h_{k}}, \quad (723) \qquad \qquad H_{k} = H_{k0}^{(1)} - \frac{3}{2} \frac{X_{k+1} - X_{k}}{h_{k}}. \quad (724)$$

starre Einspannung in k

Die Stütz- und Schnittkräfte des Hauptsystems sind bei einteiligen Pfosten und frei drehbarer Lagerung des Fußes statisch bestimmt, bei starrer Einspannung und bei Verwendung von zweiteiligen Stützen statisch unbestimmt. Sie werden dann nach S. 397 berechnet oder aus vorhandenen Tabellen 30 u. 32 entnommen. In der Regel sind die Pfosten unbelastet, also  $H_{k0}$ ,  $M_{n0}$ ,  $Q_{n0}$  Null.

Der Ansatz (719) liefert nach (328) auch die Einflußlinien der statisch überzähligen Größen. Dabei sind  $\delta_{h0} \equiv \delta_{mh}$  bei senkrechter Belastung und waagerechtem Riegel die Ordinaten der senkrechten Biegelinien der Riegelstäbe  $l_h$  des Hauptsystems für  $-X_h = 1$ . Die Einflußlinien setzen sich daher ebenso wie beim durchgehenden Träger auf frei drehbaren Stützen aus zwei Biegelinien zusammen. Die analytischen Ausdrücke für die Gleichungen der Einflußlinien auf S. 418 gelten auch für den durchgehenden Träger mit elastisch drehbaren Stützen. Darnach wird nach (667) die Einflußlinie einer statisch überzähligen Größe  $X_k$  im Felde  $l_h$  aus der Einflußlinie  $X_h$  dieses Feldes, im Felde  $l_r$  aus der Einflußlinie  $X_{r-1}$  dieses Feldes entwickelt. Aus demselben Grunde stimmen auch die Regeln für die ungünstigsten Belastungen mit denjenigen überein, die auf S. 424 für den durchgehenden Träger auf frei drehbaren Stützen abgeleitet worden sind.

**Zeichnerische Untersuchung.** Die Punkte  $A_k$ ,  $A_{k+1}$  der Achse  $A_1$ ,  $A_n$  der Lösung fallen in Übereinstimmung mit der relativen Lage der Stützenmomente  $X_k$ ,  $X_{k+1}$  zusammen. Die Abschnitte  $\Delta_k$ ,  $\Delta_{k+2}$  werden proportional zu den Riegellängen  $l_k$ ,  $l_{k+2}$  aufgetragen. Die Kennbeziehungen  $\varkappa_{(k-1)k}$ ,  $\varkappa_{k(k-1)}$  der analytischen Lösung des Ansatzes (701) bestimmen dann nach S. 255 die Strecken  $a_{(k-1)k}$ ,  $a_{k(k-1)}$  und damit die Festpunkte  $F_{(k-1)k}$ ,  $F_{k(k-1)}$ , die Kennbeziehungen  $\varkappa_{k(k+1)k}$ ,  $\varkappa_{(k+1)k}$  nach Abb. 225 die Übergangslinien  $\mathfrak{u}_{k(k+1)}$ ,  $\mathfrak{u}_{(k+1)k}$ .

Die Anschlußmomente  $X_{k-1}$ ,  $X_k$  des Riegelstabes  $l_k$  sind bei Belastung dieses Abschnitts allein aus zwei Gleichungen mit zwei Unbekannten (447), zeichnerisch durch Abb. 228 bekannt. Die Kreuzlinienabschnitte  $R_{(k-1)k}$ ,  $R_{kk}$  und die Ordinaten  $V_{(k-1)k}$ ,  $V_{kk}$  werden ebenso wie beim durchgehenden Träger auf frei drehbaren Stützen berechnet (672). Die übrigen Stützenmomente ergeben sich nach S. 258 und Abb. 228 aus den Festpunkten und Übergangslinien.

Die zeichnerische Bestimmung der Festpunkte und Übergangslinien ohne die Verwendung algebraisch berechneter Kennbeziehungen ist in Abschn. 32, S. 257 abgeleitet worden. Sie stützt sich auf die Wirkungslinien elastischer Gewichte, deren Lage für beliebige elastische Eigenschaften der Stäbe mit der Aufzeichnung der Biegelinien der Stäbe  $l_k$  für  $-X_k = 1$  bestimmt oder durch die folgenden Strecken eingerechnet wird.

$$c_{k\,k} = \frac{\delta_{k\,(k-1)}}{\delta_{k\,(k-1)} + \delta_{k\,k,1}} \, l_k \,, \qquad \bar{c}_{k\,k} = \frac{\delta_{k\,(k-1)}}{\delta_{k\,(k-1)} + \delta_{k\,k}} \, l_k \,,$$

$$c_{(k+2)\,(k+1)} = \frac{\delta_{(k+1)\,(k+2)}}{\delta_{(k+1)\,(k+1),1} + \delta_{(k+1)\,(k+2)}} \, l_{k+2} \,, \qquad \bar{c}_{(k+2)\,(k+1)} = \frac{\delta_{(k+1)\,(k+2)}}{\delta_{(k+1)\,(k+1)} + \delta_{(k+1)\,(k+2)}} \, l_{k+2} \,,$$

$$e_{k\,(k+1)} = \frac{\delta_{(k+1)\,(k+2)} \, l_{k+2} - \delta_{k\,(k-1)} \, l_k}{\delta_{k\,(k-1)} + \delta_{k\,k,1} + \delta_{(k+1)\,(k+1),1} + \delta_{(k+1)\,(k+2)}} \,.$$

Nach S. 431 kann mit der Approximation der elastischen Eigenschaften der Riegelstäbe nach Tabelle 29 und der Pfosten nach (703ff.) gerechnet und

$$\begin{array}{l}
6 \,\delta_{k\,(k-1)} = \lambda_k \,l'_k \,, \qquad 6 \,\delta_{(k+1)\,(k+2)} = \lambda_{k+2} \,l'_{k+2} \,, \\
6 \,\delta_{k\,k-1} = 2 \,\mu_k \,l'_k \,, \qquad 6 \,\delta_{(k+1)\,(k+1),1} = 2 \,\mu_{k+2} \,l'_{k+2} \,\end{array} \tag{725}$$

### Vereinfachung der Annahmen über die elastischen Eigenschaften.

gesetzt werden. Der Beiwert  $\hat{\lambda}$  ist nach S. 395 in zahlreichen Fällen 1. Dasselbe gilt auch von dem Beiwert  $\mu$ , wenn das Trägheitsmoment  $J_k$  im Bereiche eines jeden Riegelabschnittes konstant angenommen wird. Um die Rechenvorschrift formal zu vereinfachen, wird  $-6 \delta_{k(k+1)}$  stets durch  $+2 \psi_k h'_k$  ausgedrückt und  $\psi_k$  entsprechend der Art der Pfostenstützung nach (703 ff.) eingesetzt.

$$c_{kk} = \frac{\lambda_{k}}{\lambda_{k} + 2\mu_{k}} l_{k}, \quad c_{kk} = \frac{\lambda_{k}}{\lambda_{k} + 2\mu_{k} + 2\psi_{k} h_{k}^{\prime} l_{k}^{\prime}} l_{k}, \quad c_{(k+2)(k+1)} = \frac{\lambda_{k+2}}{\lambda_{k+2} + 2\mu_{k+2}} l_{k+2}, \\ c_{(k+2)(k+1)} = \frac{\lambda_{k+2}}{\lambda_{k+2} + 2\mu_{k+2} + 2\psi_{k} h_{k}^{\prime} l_{k+2}^{\prime}} l_{k+2}, \quad e_{k(k+1)} = \frac{\lambda_{k+2} l_{k+2} - \lambda_{k} l_{k}^{\prime} l_{k}}{l_{k}^{\prime} (\lambda_{k} + 2\mu_{k}) + l_{k+2}^{\prime} (\lambda_{k+2} + 2\mu_{k+2})}, \quad (726)$$

für  $J_k = \text{const}$  und  $J_{k+2} = \text{const}$  ist

$$c_{kk} = \frac{l_k}{3}, \quad \bar{c}_{kk} = \frac{l_k}{3+2\psi_k h'_k l'_k}, \quad c_{(k+2)(k+1)} = \frac{l_{k+2}}{3}, \\ \bar{c}_{(k+2)(k+1)} = \frac{l_{k+2}}{3+2\psi_k h'_k l'_{k+2}}, \quad e_{k(k+1)} = \frac{l'_{k+2} l_{k+2} - l'_k l_k}{3(l'_{k'} + l'_{k+2})}.$$
(727)

Zur zeichnerischen Untersuchung eines allgemeinen Belastungsfalles werden außerdem noch die Punkte  $E'_k$  durch die Koordinaten  $e_k = c_{kk}$  und

$$T_{k} = \frac{6 \,\delta_{k\,0}}{(\lambda_{k} + 2\,\mu_{k})\,l_{k}'}; \qquad \mu_{k} = \lambda_{k} = 1: \quad T_{k} = 2 \,\frac{\delta_{k\,0}}{l_{k}'} \tag{728}$$

eingerechnet (Abb. 232). Ungleichförmige Temperaturänderung und senkrechte Stützenverschiebungen ergeben

$$T_{k} = \frac{6E J_{c} \left[ \frac{\alpha_{t} \Delta l}{2d} l_{k} + \frac{1}{l_{k}} (\Delta_{k} - \Delta_{k-2}) \right]}{(\lambda_{k} + 2\mu_{k}) l_{k}'}.$$
 (729)

Die Ergebnisse für  $e_1$ ,  $T_1$  und  $e_n$ ,  $T_n$  lassen sich jeweils ebenso wie auf S. 421 ableiten. Für die Lösung nach Abb. 233 werden nach S. 263 die Punkte  $E_{k(k+1)}$  mit den Koordinaten  $e_{k(k+1)}$ ,  $T_{k(k+1)}$  und die Strecken  $S_k$  bestimmt.

Die Verwendung der Ordinaten  $V_{k(k-1)}$ ,  $V_{kk}$  zur zeichnerischen Bestimmung der Riegelmomente  $X_{k-1}$ ,  $X_k$  und der übrigen Stützenmomente ist in Abschn. 32 begründet und in Abb. 228 gezeigt worden. Der allgemeine Belastungsfall wird nach den Bemerkungen auf S. 262 und nach Abb. 232 untersucht.

Die Biegungsmomente und Querkräfte der Riegelstäbe werden nach (720) ebenso wie beim durchlaufenden Träger mit frei drehbaren Stützen aufgetragen, die Schnittkräfte der Pfosten nach (721) mit den Ergebnissen für Kopf und Fuß entwickelt. Dabei sind bei statisch unbestimmter Anordnung zunächst die Momente und Querkräfte im Hauptsystem zu berechnen.

Die Einflußlinien der Stützenmomente und der Schnittkräfte in Riegel und Pfosten lassen sich nach denselben Regeln entwickeln, die auf S. 422 für den durchlautenden Träger auf frei drehbaren Stützen abgeleitet worden sind.

Vereinfachung der Annahmen über die elastischen Eigenschaften. Die statisch unbestimmten Schnittkräfte sind nach (702) durch die elastisch wirksamen Längen  $l'_k$ ,  $\mu_k l'_k$ ,  $\lambda_k l'_k$  der Riegel und durch die Art und Abstützung der Pfosten bestimmt, die in den Ansatz nach (703 ff.) mit 2  $\psi_k h'_k$  eingehen. Werden diese mit dem Felde  $l_k$  und dem Pfosten  $h_k$  veränderlichen Strecken konstant angenommen, so entstehen einfache Näherungslösungen mit den folgenden Bedingungsgleichungen:

Sonderfall  $\lambda = \mu = 1$ :  $X_{k-1} + (2+b) X_k - b X_{k+1} = 6 \delta_{k0}/\ell$ . Bei unendlich vielen Stützen sind die Kennbeziehungen  $\varkappa_{(k-1)k}$ ,  $\varkappa_{k(k-1)}$  zwischen den Anschlußmomenten eines Riegels und die Kennbeziehungen  $\varkappa_{k(k+1)}$ ,  $\varkappa_{(k+1)k}$ 

zwischen den Anschlußmomenten der Riegel zu beiden Seiten einer Stütze konstant, und zwar

$$\varkappa_{(k-1)k} = \varkappa_{k(k-1)} = \varkappa$$
 und  $\varkappa_{k(k+1)} = \varkappa_{(k+1)k} = -\varepsilon$ .

Mit

$$\frac{a+b)(a-b)+\lambda^2}{2\ a\ \lambda} = \varrho \quad \text{ist} \quad \varkappa = \varrho - \sqrt{\varrho^2 - 1} = -\frac{X_{k-1}}{X_k}, \quad \varepsilon = \frac{b}{a-\varkappa\lambda} = \frac{X_k}{X_{k+1}}. \tag{730}$$
  
Sonderfall  $\lambda = \mu = 1$ :

$$\varrho = \frac{5+4b}{2(2+b)}$$

Da die Hauptglieder  $\beta_{kk}$  der konjugierten Matrix für  $\varkappa$  und  $\varepsilon$  konstant sind, genügt es, die Nebenglieder einer Zeile der Matrix anzuschreiben.

$$\beta_{(k-2)\,k} = -\frac{\varkappa^2 \varepsilon}{l' \lambda (1-\varkappa^2)}, \qquad \beta_{(k-1)\,k} = -\frac{\varkappa^2}{l' \lambda (1-\varkappa^2)}, \qquad \beta_{k\,k} = \frac{\varkappa}{l' \lambda (1-\varkappa^2)}, \beta_{(k+1)\,k} = \frac{\varkappa \varepsilon}{l' \lambda (1-\varkappa^2)}, \qquad \beta_{(k+2)\,k} = -\frac{\varkappa^2 \varepsilon}{l' \lambda (1-\varkappa^2)}.$$

Bei einer begrenzten Anzahl von Stützen haben die Endfelder die gleichen elastischen Eigenschaften wie die Zwischenfelder, wenn

für Endfelder nach Abb. 397a, b für Endfelder nach Abb. 397c

$$l'_{1} = \frac{2 \mu - \varkappa \lambda}{2 \overline{\mu}_{1}} l';$$
 (731a)  $l'_{2} = l'$  und (731b)  
 $2 \psi_{0} h'_{0} = 2 \psi h' (1 - \varepsilon).$ 

Bei symmetrischer Belastung (1) und antimetrischer Belastung (2) des Riegels  $l_k$  ist

1) 
$$X_{k-1} = X_k = 6 \frac{\alpha \delta_{(k-1)0}}{l'} \frac{\varkappa}{\lambda(1+\varkappa)}, \quad 2) \quad X_{(k-1)} = -X_k = 6 \frac{\alpha \delta_{(k-1)0}}{l'} \frac{\varkappa}{\lambda(1-\varkappa)}; \quad (732)$$

für Belastung eines Endfeldes nach Abb. 397a, b

$$X_1 = \frac{6 \,\delta_{10}}{l'} \,\frac{\varepsilon}{1 - \varepsilon^2}, \qquad X_n = \frac{6 \,\delta_{n\,0}}{l'} \,\frac{\varepsilon}{1 - \varepsilon^2}. \tag{733}$$

Die übrigen Anschlußmomente sind analytisch durch die Kennbeziehungen, zeichnerisch durch die Festpunkte und Übergangslinien bestimmt. Die Schnittkräfte aus einer allgemeinen Belastung des Trägers werden durch Superposition der Teilergebnisse aus feldweiser Belastung erhalten. Die Gleichungen der Einflußlinien von  $X_{k-1}$  und  $X_k$  im Felde  $l_k$  sind

$$X_{k-1} = l_k \frac{\varkappa}{\lambda (1-\varkappa^2)} \left(\overline{\omega}'_D - \varkappa \,\overline{\omega}_D\right), \qquad X_k = l_k \frac{\varkappa}{\lambda (1-\varkappa^2)} \left(\overline{\omega}_D - \varkappa \,\overline{\omega}'_D\right). \tag{734}$$

Sie werden nach S. 436 zur Aufzeichnung der Einflußlinien der übrigen Stützenmomente verwendet und bilden damit nach S. 435 auch die Grundlage für die Einflußlinien der übrigen Schnittkräfte.

Untersuchung der Pilzdecke (Abb. 406) mit vereinfachten Annahmen für die elastischen Eigenschaften.

1. Geometrische Grundlagen nach S. 441 u. 442.

$$\begin{split} l' &= 5,4 \text{ m}, \qquad \mu = 0,7 \;, \qquad \lambda = 0,93 \;, \qquad 2 \; \psi \; h' = 2,58 \;, \\ a &= 2 \cdot 0,7 \left( 1 + \frac{2,58}{2 \cdot 0,7 \cdot 5,4} \right) = 1,88 \;, \qquad b = \frac{2,58}{5,4} = 0,48 \;, \qquad \varrho = 1,192 \;, \\ \kappa &= 1,192 - \sqrt{1,192^2 - 1} = 0,544 \;, \qquad \varepsilon = \frac{0,48}{1,88 - 0,544 \cdot 0,93} = 0,348 \\ 2 \; \psi_0 \; h'_0 &= 2,58 \; (1 - 0,348) = 1,68 \;. \end{split}$$

BORN

Untersuchung durchlaufender Träger mit Hilfe der Knotendrehwinkel.

2. Bemessung der Endstützen nach (731b).

$$h = s = 4.2 \text{ m}$$
,  $J_0 = 21.33$ ,  $J_u = 76.26$ ,  $J_c = 36 \text{ dm}^4$ ;

nach (709) ist

$$2 \psi_0 h'_0 = \frac{5}{3} \frac{h'_0 s'_0}{h'_0 + s'_0} = \frac{5}{3} \frac{4.2 J_c}{J_{0s} + J_{0h}} = 1.68,$$

also

$$J_{0s} + J_{0h} = 4,16 J_e$$
 oder z. B.  $J_{0s} = 1,54 J_s$ ,  $J_{0h} = 1,54 J_h$ .

Für diese Abmessungen wird bei Belastung des Feldes  $l_2$  mit p = 1 t/m

$$\frac{6 \, \delta_{10}}{l'} = \frac{l_2^3}{4} = \frac{5.4^2}{4} = 7,29 \;, \qquad X_1 = X_2 = 7,19 \; \frac{0.544}{0.93\;(1+0.544)} = 2,75 \; \mathrm{mt} \;.$$

3. Belastung p = 1 t/m auf allen Feldern. Superposition:

$$\begin{split} X_1 &= 2,75\;(1-\varepsilon\,\varkappa+\varepsilon^2\,\varkappa^2-\varepsilon^3\,\varkappa^3) = 2,31\;\mathrm{mt}\;, \qquad X_2 &= 2,75\;(1+\varepsilon-\varepsilon^2\,\varkappa+\varepsilon^3\,\varkappa^2) = 3,56\;\mathrm{mt}\;, \\ X_3 &= 2,75\;(1+\varepsilon-\varepsilon\,\varkappa+\varepsilon^2\,\varkappa^2) = 3,29\;\mathrm{mt}\;, \qquad X_4 &= 2,75\;(1+\varepsilon-\varepsilon\,\varkappa-2^2\,\varkappa) = 3,09\;\mathrm{mt}\;. \end{split}$$

Untersuchung durchlaufender Träger mit Hilfe der Knotendrehwinkel. Die Stabdrehwinkel  $\vartheta_i$  des Tragwerks sind bei allen äußeren Ursachen Null oder vorgeschrieben (gleichförmige Temperaturänderung des Riegels  $\vartheta_{i0} = \vartheta_{it}$ , Stützenverschiebungen  $\vartheta_{i0} = \vartheta_{is}$ ). Die *n* Knotendrehwinkel  $\varphi_J (J = A \dots N)$ eines durchgehenden Trägers mit *n* Zwischenstützen werden daher nach Abschn. 39 bei beliebiger Abstützung der Pfosten aus *n* statischen Bedingungsgleichungen  $\delta A_J = 0$  berechnet.

$$\delta A_J = \varphi_{J-1} a_{J(J-1)} + \varphi_J a_{JJ} + \varphi_{J+1} a_{J(J+1)} + a_{J0} = 0.$$
(735)

Das Trägheitsmoment aller Träger  $l_i$  und Pfosten  $h_i$ ,  $s_i$  gilt im Bereich der geometrischen Stablänge als konstant.



Vorzahlen der Knotendrehwinkel. 1. Durchlaufender Träger mit frei drehbaren Stützen (Abb. 403a)

$$a_{J(J-1)} = -\frac{2}{l'_i}, \quad a_{JJ} = -\frac{4}{l'_i} - \frac{4}{l'_{i+1}}, \quad a_{J(J+1)} = -\frac{2}{l'_{i+1}},$$
 (736)

freie Auflagerung der Endstützen

$$a_{AA} = -\frac{3}{l'_a} - \frac{4}{l'_{a+1}}, \qquad a_{NN} = -\frac{4}{l'_n} - \frac{3}{l'_{n+1}}, \qquad (737\,\mathrm{a})$$

1

starre Einspannung der Endstützen

$$a_{A,1} = -\frac{4}{l'_a} - \frac{4}{l'_{a+1}}, \qquad a_{NN} = -\frac{4}{l'_n} - \frac{4}{l'_{n+1}}.$$
 (737 b)

2. Durchlaufender Träger mit elastisch drehbaren Stützen (Abb. 403b)

$$a_{J(J-1)} = -\frac{2}{l'_i}, \qquad a_{JJ} = -\frac{4}{l'_i} - \frac{4}{l'_{i+1}} - \frac{\lambda_h}{\lambda'_i} - \frac{\lambda_s}{s'_i}, \qquad a_{J(J+1)} = -\frac{2}{l'_{i+1}}.$$
 (738)

Die Beiwerte  $\lambda_h$ ,  $\lambda_s$  erhalten bei starrer Einspannung der Pfosten  $h_i$ ,  $s_i$  den Betrag 4, bei frei drehbarer Auflagerung der Pfosten den Betrag 3, bei elastischer Einspannung mit dem Momentennullpunkt in dem Viertelpunkt den Betrag 3,6. Bei frei drehbarer Auflagerung der Randträger  $l_a$ ,  $l_{n+1}$  ist

$$a_{AA} = -\frac{3}{l'_{a}} - \frac{4}{l'_{a+1}} - \frac{\lambda_{h}}{h'_{a}} - \frac{\lambda_{s}}{s'_{a}}, \qquad a_{NN} = -\frac{4}{l'_{n}} - \frac{3}{l'_{n+1}} - \frac{\lambda_{h}}{h'_{n}} - \frac{\lambda_{s}}{s'_{n}}.$$
 (739)

Abschluß des Tragwerks nach Abb. 403 c:  $1/l'_a = 1/l'_{n+1} = 0$ . Anordnung des Tragwerks nach Abb. 397: 1/s' = 0.

Belastungszahlen des Ansatzes. Die Belastungszahlen  $a_{J0}$  werden für die an den Trägern  $l_i$  und an den Pfosten  $h_i$ ,  $s_i$  angreifenden äußeren Kräfte nach (536) gebildet. Man bedient sich bei Stäben mit zwei eingespannten Enden der Tabelle 25, bei Stäben mit einem eingespannten Ende der Tabelle 26. Gemessene oder geschätzte senkrechte Verschiebungen der Stützpunkte ergeben

$$a_{J0} = + \frac{6}{l_i l_i'} \left( \varDelta_J - \varDelta_{J-1} \right) + \frac{6}{l_{i+1} l_{i+1}'} \left( \varDelta_{J+1} - \varDelta_J \right).$$
(740)

Bei gleichförmiger Temperaturänderung des Trägers um  $t^0$  und waagerechter Abstützung des linken Stützpunktes O (Abstand  $\overline{OJ} = L_J$  ist mit starrer Einspannung der Pfostenenden

$$a_{J0} = + \left(\frac{6}{h_i \, h'_i} - \frac{6}{s_i \, s'_i}\right) \alpha_t \, t \, L_J \,. \tag{741}$$

Für frei drehbare Pfostenenden wird die Ziffer 6 durch die Ziffer 3 ersetzt.

Der Ansatz zur Berechnung der Knotendrehwinkel  $\varphi_J$  (735) besteht aus Gleichungen mit je drei Unbekannten, die nach der Rechenvorschrift S. 230 ff. aufgelöst werden. Damit sind nach (529) auch die Stabanschlußmomente der Träger und Pfosten bekannt.

a) Elastische Einspannung beider Stabenden (530) b) Elastische Einspannung und frei drehbare Auflagerung (532)

$$M_J^{(i)} = M_{J0}^{(i)} + \frac{2}{l_i'} \left( 2 \, \varphi_J + \varphi_{J-1} - 3 \, \vartheta_{i\,0} \right) \,, \qquad M_J^{(i)} = M_{J0}^{(i)} + \frac{3}{l_i'} \left( \varphi_J - \vartheta_{i\,0} \right) \,.$$

Die Aufzeichnung der Einflußlinien der Knotendrehwinkel  $\varphi_J$  und der Stabanschlußmomente  $M_J^{(i)}$  ist in Abschn. 40 abgeleitet und für den durchlaufenden Träger auf elastisch drehbaren Stützen dargelegt worden.

Die Verwendung der Knotendrehwinkel liefert die Schnittkräfte im Gegensatz zur Lösung auf S. 435 in zwei Stufen. Sie ist übersichtlich und vor allem bei mehrteiliger Ausbildung der Zwischenstützen (Abb. 396d) von Bedeutung. Die Rechnung ist an einem Beispiel auf S. 328 ff. gezeigt worden.

Auch diese Untersuchung kann durch geometrische Auslegung der Kennbeziehungen zwischen je zwei Stabanschlußmomenten am Stabknoten und an einem

OTHEK RBORN

#### Berechnung einer Pilzdecke.

Systemstabe graphisch behandelt werden. Das ist in Abschn. 44 geschehen und dort auch durch Beispiele belegt worden, so daß sich besondere Angaben erübrigen, zumal die Lösung im Vergleich zu den ausführlichen Rechenvorschriften dieses Abschnitts weder sachliche noch formale Vorteile bietet.

#### Berechnung einer Pilzdecke.

Die Decke des zweiten Geschosses wird unter der Annahme berechnet, daß eine waagerechte Verschiebung der Riegel ausgeschlossen ist.

$$J_k = 5.4 \text{ m}$$
,  $J_k = J_c = 36.0 \text{ dm}^4$ .

$$l'_k = 5.4$$
,  $s' = 7.09$ ,  $h' = 1.983$  m.



1. Vorzahlen nach Gl. (738)

$$a_{AA} = a_{EE} = -\frac{4}{5,4} - \frac{3,6}{1,983} - \frac{3,6}{7,09} = -3,0639,$$
  
$$a_{JJ} = -\frac{4}{5,4} - \frac{4}{5,4} - \frac{3,6}{1,983} - \frac{3,6}{7,09} = -3,8047,$$
  
$$a_{J(J+1)} = -\frac{2}{5,4} = -0,3704.$$

Die Stabdrehwinkel sind Null.

| φ <sub>A</sub> | Фв       | φo       | φD       | $\varphi_E$ |                  |
|----------------|----------|----------|----------|-------------|------------------|
| - 3,0639       | - 0,3704 |          |          |             | a <sub>A0</sub>  |
| -0,3704        | - 3,8047 | - 0,3704 |          |             | a <sub>B0</sub>  |
|                | - 0,3704 | - 3,8047 | -0,3704  |             | a <sub>c 0</sub> |
| 1.             | -        | -0,3704  | - 3,8047 | - 0,3704    | a <sub>D 0</sub> |
|                |          |          | -0,3704  | - 3,0639    | a <sub>E0</sub>  |

2. Belastung p = 1 t/m auf allen Feldern. Tab. 25.

$$M_{J0}^{(k)} = -M_{k0}^{(k)} = -\frac{1\cdot 5.4^2}{12} = -2.43, \quad a_{J0} = -a_{E0} = +2.43, \quad a_{J0} = 0.$$

Infolge Symmetrie ist  $q_c = 0$ . Daher folgt aus den ersten beiden Gleichungen

$$\varphi_A = 0.80254$$
,  $\varphi_B = -0.07812$ .

Nach Gl. (530) wird

| $M_{A}^{(b)} = -$ | 2.43 + | 0,3704 (  | $2 \cdot 0,80254$ | - 0,07812) | =   | 1,864 mt, |
|-------------------|--------|-----------|-------------------|------------|-----|-----------|
| $M_{B}^{(b)} =$   | 2,43 + | 0,3704 (- | 2.0,07812         | +0,80254)  | = + | 2,669 mt, |
| $M_B^{(e)} = -$   | 2,43 + | 0,3704 (- | 2.0,07812         | + 0)       | =   | 2,488 mt, |
| $M_{c}^{(e)} =$   | 2.43 + | 0,3704 (0 | - 0,07812)        |            | = + | 2,401 mt. |

Die Anschlußmomente der Pfosten verhalten sich wie deren Trägheitsmomente.

B. Berechnung unter Berücksichtigung starrer Stützenköpfe beim Riegel. Elastische Einspannung der Pfostenenden  $(a_{\bar{k}k} = \hbar_k/4)$ . I. Approximation des Trägheitsmomentes der Riegel. Tab. 29 (für alle Felder gleich).

$$v = 0.6 \text{ m}, \quad v = \frac{1}{9}, \quad \mu = \left(1 - \frac{2}{9}\right) \left(1 - \frac{1}{9} \frac{8}{9}\right) = 0.7, \quad \lambda = 0.93$$



$$\delta_{k\,k,\,1} = 2 \cdot 0.7 \cdot 5.4 = 7.56, \quad 6 \ \delta_{(k+1)} \ _{(k+2)} = 0.93 \cdot 5.4 = 5.02,$$

$$6 \ \delta_{k\,k,\,2} = \frac{5}{3} \ \frac{7.09 \cdot 1.983}{9.073} = 2.58,$$

Abb. 406

BIBLIOTHEK PADERBORN

 $6 \, \delta_{kk} = 7,56 + 2,58 = 10,14 \, .$ 

| $X_1$ | $X_2$  | $X_3$  | $X_4$ | $X_5$  | $X_6$  | X7     | X <sub>8</sub> |                 |
|-------|--------|--------|-------|--------|--------|--------|----------------|-----------------|
| 10,14 | 5,02   |        |       |        |        |        |                | $\delta_{10}$   |
| 5,02  | 10,14  | - 2,58 |       |        |        |        |                | $\delta_{20}$   |
|       | - 2,58 | 10,14  | 5,02  |        |        |        |                | δ <sub>30</sub> |
|       |        | 5,02   | 10,14 | - 2,58 |        |        |                | $\delta_{40}$   |
|       |        |        | -2,58 | 10,14  | . 5,02 |        |                | δ50             |
|       |        |        |       | 5,02   | 10,14  | - 2,58 |                | δ60             |
|       |        |        |       |        | -2,58  | 10,14  | 5,02           | δ70             |
|       |        |        |       |        |        | 5,02   | 10,14          | $\delta_{80}$   |

3. Belastung p = 1 t/m auf allen Feldern. Tab. 36.  $6 \, \delta_{k0} = \frac{5.4^3}{4} = 39.366$ . Infolge Symmetrie ergibt sich aus den ersten 4 Gleichungen

 $X_1 = 2,038$ ,  $X_2 = 3,726$ ,  $X_3 = 3,355$ ,  $X_4 = 2,980$  mt.

C. Zeichnerische Lösung mit Berücksichtigung der starren Stützenköpfe beim Riegel. Elastische Einspannung der Pfostenenden  $(a_{\overline{k}k} = h_k/4)$ .

$$\begin{array}{ll} \text{Gl. (726)} & c_{kk} = c_{(k+2)\ (k+1)} = \frac{0.93}{0.93 + 2 \cdot 0.7} \cdot 5.4 = 2.156 = e_k = e_{k+1}, \\ 2\ \psi_k\ h_k' = 2.58\,, & \overline{c}_{kk} = \overline{c}_{(k+2)\ (k+1)} = \frac{0.93}{0.93 + 2 \cdot 0.7 + 2.58/5.4} \cdot 5.4 = 1.79\,, \\ & c_{21} = c_{88} = e_1 = e_8 = 1.79\,, \\ & T_k = \frac{39.366}{12.58} = 3.13\ \text{mt}\,, \qquad T_1 = T_8 = \frac{39.366}{15.16} = 2.59\ \text{mt}\,. \end{array}$$

Festpunkte zeichnerisch nach Abb. 226, Überzählige nach Abb. 407.

Rahmenstellung mit beliebig vielen Feldern, geraden Riegelstäben u. senkrechten Pfosten. 443



1. Geometrische Entwicklung der Festpunkte und Übergangslinien aus den Schwerlinien nach S. 257. 2. Eintragung der Punkte  $E'_k$  mit  $\epsilon_k$  und  $T_k$ .

3. Der Geradenzug  $\zeta_{0:n}$  bestimmt die linke Gruppe der den Festpunkten  $F_{k(k-1):k}$  zugeordneten Punkte der Geraden  $z_k$ , der Geradenzug  $\zeta_{n:0}$  die rechte Gruppe der den Festpunkten  $F_{k(k-1)}$  zugeordneten Punkte von  $\xi_k$ . Diese schneiden auf den Ordinaten zu  $A_{k-2}$ ,  $A_k$  die Stützenmomente  $X_{k-1}$ ,  $X_k$  ab.

Schächterle, W.: Beiträge zur Berechnung elastischer Bogen und Rahmen. Berlin 1914. — Leve, V.: Die Berechnung durchlaufender Träger und mehrstieliger Rahmen nach der Methode des Zahlenrechtecks. Borna 1916. — Straßner, A.: Neuere Methoden zur Statik der Rahmentragwerke. Bd. 1: Der durchlaufende Rahmen. Berlin 1922. — Derselbe: Tabellen für die Einflußlinien und die Momente des durchlaufenden Rahmens. Berlin 1922. - Kann, F.: Durchlaufende Eisenbetonkonstruktionen in elastischer Verbindung mit Zwischenstützen. Berlin 1926. — Crämer, H.: Der elastisch drehbare, gestützte Durchlaufbalken. Berlin 1927. - Mörsch, E.: Der durchlaufende Träger. Stuttgart 1928.

## 49. Die Rahmenstellung mit beliebig vielen Feldern, geraden Riegelstäben und senkrechten Pfosten.

Die Rahmenstellung entsteht durch Beseitigung der waagerechten Stützung a des Riegels eines durchlaufenden Trägers mit elastisch drehbaren Pfosten (Abb. 397), so daß die waagerechten Komponenten der Lasten am Riegel und der Unterschied der Querkräfte an den Pfostenköpfen den Stützpunkten durch die Biegungssteifigkeit der Pfosten zugeleitet werden. Hiermit ist eine Verschiebung der Stabknoten verbunden. Da jedoch stets die von den statisch überzähligen Größen abhängigen Längenänderungen der Stäbe vernachlässigt werden, sind die waagerechten Verschiebungen durch einen Parameter  $\psi_1$  bestimmt. Er ist beim durchgehenden Träger Null. Man verwendet für  $\psi_1$  den  $EJ_e$ fachen Betrag des Stab-drehwinkels  $\vartheta^*$  eines der beiden Endpfosten, bei Symmetrie der Rahmenstellung den  $EJ_e$ fachen Betrag des Drehwinkels der Mittelstütze oder der waagerechten Verschiebung des Symmetriepunktes des Riegels. Nach dem Superpositionsgesetz