

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Die Vorzahlen

urn:nbn:de:hbz:466:1-74292

Visual Library

Die Vorzahlen.

entsteht ein Ansatz nach (701). Die Nebenglieder einer Zeile der Matrix haben stets verschiedenes Vorzeichen.

Die Anschlußmomente der Riegel links und rechts der Stütze k werden durch die Fußzeichen k und (k + 1), die benachbarten Felder durch l_k und l_{k+2} unterschieden. X_1 und X_n sind je nach der Abstützung der Trägerenden Riegelmomente rechts oder links von den Endstützen (Abb. 397b, c).

Die Hauptglieder der Matrix werden nach

IBLIOTHEN

$$\delta_{kk} = \delta_{kk,1} + \delta_{kk,2}; \qquad \delta_{(k+1)(k+1)} = \delta_{(k+1)(k+1),1} + \delta_{(k+1)(k+1),2}$$

zerlegt. Die Anteile $\delta_{kk,1}$ und $\delta_{(k+1)(k+1),1}$ bezeichnen die Verdrehung der Endquerschnitte k, (k+1) der Riegelstäbe l_k, l_{k+2} , die Beiträge $\delta_{kk,2}, \delta_{(k+1)(k+1),2}$ die

Die zweiten Anteile der Hauptglieder gelten je nach Ausbildung und Lagerung des Pfostens für die statisch bestimmte oder statisch unbestimmte Anordnung (Abb. 397a, b).

Die Vorzahlen. Die Beiträge $\delta_{kk,1}$, $\delta_{(k+1)(k+1),1}$, $\delta_{k(k-1)}$, $\delta_{(k+1)(k+2)}$ werden durch die elastischen Eigenschaften der Riegelstäbe bestimmt. Die Veränderlichkeit des Trägheitsmomentes kann nach einer der Annahmen auf S. 394 approximiert, in zahlreichen Fällen aber auch vernachlässigt werden. Nach S. 393 ist (Abb. 398)

$$\begin{array}{ll}
6\,\delta_{k\,k,1} &= 2\,\mu_k\,l'_k, & 6\,\delta_{(k+1)\,(k+1),1} = 2\,\mu_{k+2}\,l'_{k+2}, \\
6\,\delta_{k\,(k-1)} &= \lambda_k\,l'_k, & 6\,\delta_{(k+1)\,(k+2)} &= \lambda_{k+2}\,l'_{k+2}.
\end{array}$$
(702)

Bei unveränderlichem Trägheitsmoment J_k , J_{k+2} im Bereiche von l_k , l_{k+2} ist $\mu_k = \lambda_k = 1$ und $\mu_{k+2} = \lambda_{k+2} = 1$. Die Vorzahlen $\delta_{kk,2} = \delta_{(k+1)(k+1),2} = -\delta_{k(k+1)}$ werden durch die Anordnung der Pfosten und durch die Art ihrer Stützung bestimmt.

48. Der durchlaufende Träger mit elastisch drehbaren Stützen.

1. Einteilige Stützen mit frei drehbarer Auflagerung (Abb. 398a). Ausbildung a) Die Stützen besitzen im Bereiche $\overline{h_k}$ konstantes Trägheitsmoment. Im Bereich des Abschnittes $h_k - \overline{h_k} = f_k$ wird das Trägheitsmoment unendlich groß angenommen (Abb. 399).

$$\delta_{kk,2} = 6 \,\delta_{(k+1)(k+1),2} = -6 \,\delta_{k(k+1)} = 2 \,\frac{h_k^2}{h_k^3} \,h_k'.$$
 (703)

Bei linear veränderlicher Stärke der Stütze wird der einer Stütze mit gleichbleibender Stärke (J = const) äquivalente mittlere Querschnitt J_k^* nach S. 99 bestimmt (Abb. 399).

2. Einteilige Stützen mit starrer Einspannung der Enden (Abb. 398b).

$$a_{\bar{k}k} = \frac{h_k}{3} \frac{h_k + 2f_k}{h_k + f_k},$$

$$6 \,\delta_{k\,k,2} = 6 \,\delta_{(k+1)\,(k+1),2} = -6 \,\delta_{k\,(k+1)} = \frac{3 \,h_k^2}{2 \,h_k \,[h_k^2 + h_k f_k + f_k^2]} \,h_k'. \tag{705}$$
ng b) $a_{\bar{k}k} = h_k/3.$

Ausbildung b)

Ausbildung

BIBLIOTHEK PADERBORN

$$6\,\delta_{k\,k,\,2} = 6\,\delta_{(k+1)\,(k+1),\,2} = -\,6\,\delta_{k\,(k+1)} = \frac{3}{2}\,h'_k.\tag{706}$$

3. Zweiteilige Anordnung der Stützen $s_k + h_k$. Die Trägheitsmomente J_{ks} , J_{kh} werden im Bereich der theoretischen Längen s_k , h_k konstant angenommen. a) Die Enden der beiden Stützen sind frei drehbar gelagert (Abb. 400).

$$6\,\delta_{k\,k,2} = 6\,\delta_{(k+1)\,(k+1),2} = -\,6\,\delta_{k\,(k+1)} = \frac{2\,s'_k\,h'_k}{s'_k + \,h'_k}\,.\tag{707}$$

432

Belastungszahlen.

b) Die Enden der beiden Stützen sind starr eingespannt (Abb. 401).

$$6\,\delta_{k\,k,2} = 6\,\delta_{(k+1)\,(k+1),2} = -\,6\,\delta_{k\,(k+1)} = \frac{3\,s'_k\,h'_k}{2\,(s'_k + \,h'_k)}\,.\tag{708}$$

c) Die Enden der beiden Stützen sind elastisch eingespannt. Der Abstand $a_{\overline{k}k}$ der Momentennullpunkte von den Enden der Stützen wird mit h/4 geschätzt.

$$6\,\delta_{k\,k,\,2} = 6\,\delta_{(k+1)\,(k+1),\,2} = -\,6\,\delta_{k\,(k+1)} = \frac{5\,\delta_k\,h_k}{3\,(s_k'+h_k')}\,.\tag{709}$$

d) Die obere Stütze s_k ist frei drehbar angeschlossen, die untere Stütze h_k starr eingespannt (Abb. 402).

$$6\,\delta_{k\,k,2} = 6\,\delta_{(k+1)\,(k+1),2} = -\,6\,\delta_{k\,(k+1)} = \frac{6\,s'_k\,h'_k}{4\,s'_k + 3\,k'_k}\,.\tag{710}$$

Belastungszahlen. Die Belastungszahlen $\delta_{k\otimes}$, $\delta_{(k+1)\otimes}$ werden als virtuelle Arbeiten aus der Verdrehung der Querschnitte k, k + 1 des Hauptsystems gebildet, welche bei der Belastung der Stäbe l_k , l_{k+2} , h_k oder durch Temperaturänderung und Stützenverschiebung entsteht. Die Riegel des Hauptsystems l_k , l_{k+2} sind einfache Balkenträger, deren Endverdrehung bei konstantem Trägheitsmoment für alle in Betracht kommenden Belastungen in Tabelle 17 angegeben sind oder sich nach Tabelle 12 entwickeln lassen. Sie werden ebenso wie die Vorzahlen der statisch überzähligen Schnittkräfte im 6 fachen Betrage eingesetzt und für die häufigen Belastungsfälle nochmals angeschrieben.

Tabelle 36¹. Belastungsglieder für $J_k = \text{const}$ und Lastangriff am Riegel l_k , l_{k+2} .

K-1 R K+1 R+2 Ely L Ely L	$6 \delta_{k0} = l_k l'_k \sum_k P \omega_p , \qquad 6 \delta_{(k+1)0} = l_{k+2} l'_{k+2} \sum_{k+2} P \omega'_p$
$\begin{array}{c} M_k & M_{k+2} \\ \hline \\ $	$6 \delta_{k0} = l'_k \sum M_k \omega_M , \qquad 6 \delta_{(k+1)0} = - l'_{k+2} \sum M_{k+2} \omega'_M$ $\log: 6 \delta_{k0} = c_k \phi_k l_k^2 l'_k , \qquad 6 \delta_{(k+1)0} = c'_{k+2} \phi_{k+2} l'_{k+2} l'_{k+2} d'_{k+2} d'$
Pk Pk+2 k-1 k k+1 k+2 lk-2 lk+2	$c_{k} = c'_{k+2} = \frac{1}{4} \qquad \qquad$
Pk Pk+2 Pk Lk+2	$c_{k} = c'_{k+2} = \frac{5}{3^{2}}$ p_{k} p_{k+2} $c_{k} = c'_{k+2} = \frac{7}{60}$
Ph Ph + 2 	$c_k = \frac{1}{4} (1 - \zeta^2)^2, \qquad c'_{k+2} = \frac{1}{4} (1 - \zeta'^2)^2$
Pr Pr+2	$c_k = \frac{1}{4} \zeta^2 (2 - \zeta^2), \qquad c'_{k+2} = \frac{1}{4} \zeta'^2 (2 - \zeta'^2)$
Pro Proz	$\begin{split} c_k &= \frac{1}{4} \left[\zeta_2^2 \left(2 - \zeta_2^2 \right) - \zeta_1^2 \left(2 - \zeta_1^2 \right) \right], \\ c'_{k+2} &= \frac{1}{4} \left[\zeta_2'^2 \left(2 - \zeta_2'^2 \right) - \zeta_1'^2 \left(2 - \zeta_1'^2 \right) \right] \end{split}$

Bei Lastangriff am Pfosten h_k ist dessen Abstützung zu beachten.

¹ Funktionswerte ω auf S. 116ff.

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

28