

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Zahlenbeispiel

urn:nbn:de:hbz:466:1-74292

Visual Library

 $446\ 49.\ {\rm Rahmenstellung\,mit\,beliebig\,vielen\,Feldern,\,geraden\,Riegelst {\tt aben\,\,u.\,senkrechten\,Pfosten.}$

Nach (524) ist dann

Die Ordinaten ψ_{1m} der Einflußlinie des EJ_e fachen Betrages des ausgezeichneten Drehwinkels sind verhältnisgleich mit den EJ_e fachen Ordinaten $v_{m\psi}$ der Biegelinie des Trägers infolge von $\psi_1 = 1$. Sie wird aus den Endmomenten der Riegelstäbe, also aus den statisch unbestimmten Schnittkräften $X_{(h-1)1}$, X_{h1} aufgezeichnet, die nach (746) bekannt sind. Um die Ordinaten ψ_{1m} unmittelbar zu erhalten, werden die Schnittkräfte X_h zunächst durch den Nenner des Ausdrucks (755) geteilt.

Berechnung eines durchlaufenden Rahmens.

1. Geometrische Grundlagen.

BIBLIOTHEK PADERBORN

k	l_k	J_k	l'k	h_k	Jn, k	h'_k	h_k	t _k
13579	24,0 24,0 24,0 18,0 12,0	0,138 0,138 0,138 0,050 0,050	24,0 24,0 24,0 49,68 33,12	29,3 29,3 11,1 11,1 —	0,086 0,086 0,011 0,011 —	47,1 47,1 139,1 139,1 	27.9 27,9 9,7 9,7 —	1,4 1,4 1,4 1,4

16

1(

1(

2. Approximation des Trägheitsmomentes für gerade Vouten. Tab. 29, Fall 3.

$$\begin{split} \mathbf{v}_1 &= \mathbf{v}_3 = \mathbf{v}_5 = 0,2\;, \qquad \mathbf{v}_7 = 0,217\;, \qquad \mathbf{v}_9 = 0,323\;, \\ n_1 &= n_3 = n_5 = \frac{1,4^3}{2,8^3} = 0,125\;, \qquad n_7 = n_8 = \frac{1,0^3}{2,8^3} = 0,045\;, \\ \bar{\mu}_1 &= \mu_3 = \mu_5 = 1 - (1 - 0,125)\; [2 \cdot 0,2 \cdot 0,8 + 0,2/3] = 0,66\;, \qquad \mu_7 = 0,61\;, \qquad \bar{\mu}_9 = 0,48\;, \\ \lambda_3 &= \lambda_5 = 1 - 3\;(1 - 0,125) \cdot 0,2^2 = 0,90\;, \qquad \lambda_7 = 0,86\;, \\ \alpha_1 &= \alpha_3 = \frac{27,9\;(29,3 + 2 \cdot 1,4)}{2\;(29,3^2 + 29,3 \cdot 1,4 + 1,4^2)} = 0,4967\;, \qquad \beta_1 = \beta_3 = 1 - \frac{1,4^3}{29,3^3} \approx 1\;. \end{split}$$

Berechnung eines durchlaufenden Rahmens. 447

3. Vorzahlen der ersten Stufe (durchlaufender Träger) nach (702) u. (705).

Riegel:
$$6 \,\delta_{11,1} = 6 \,\delta_{22,1} = 6 \,\delta_{33,1} = 6 \,\delta_{44,1} = 6 \,\delta_{55,1} = 2 \cdot 0,66 \cdot 24 = 31,70$$

$$6 \, \delta_{66,1} = 6 \, \delta_{77,1} = 60,60$$
, $6 \, \delta_{88,1} = 31,80$,

 $6\,\delta_{23}=0,9\cdot 24=21,60\;,\qquad 6\,\delta_{45}=21,60\;,\qquad 6\,\delta_{67}=42,70\;.$

Pfosten: $6 \ \delta_{11,2} = \frac{3 \cdot 27,9^3 \cdot 47.1}{2 \cdot 29,3 \ (29,3^2 + 29,3 \cdot 1,4 + 1,4^2)} = 58,10,$

 $6\,\delta_{11,\,2}=6\,\delta_{44,\,2}=-\,6\,\delta_{34}=58,10\,,\qquad 6\,\delta_{33,\,2}=6\,\delta_{44,\,2}=-\,6\,\delta_{34}=58,10\,,$

$$6\,\delta_{55\ 2} = 2\,\frac{9.1^{\circ}}{11.13}\cdot 139.1 = 186.0, \qquad 6\,\delta_{66,\,2} = -\,6\,\delta_{56} = 6\,\delta_{77,\,2} = 6\,\delta_{88,\,2} = -\,6\,\delta_{78} = 186.0,$$

$$\delta_{k\,k} = \delta_{k\,k,\,1} + \delta_{k\,k,\,2}$$

Matrix der geometrischen Bedingungen $\delta_k = 0$.

X10	X20	X30	X40	X_{50}	X_{60}	X_{70}	X_{80}
89,8	— 58,1						
- 58,1	89,8	21,6		6.4.2			
	21,6	89,8	- 58,1				
		- 58,1	89,8	21,6			
			21,6	217.7	— 186,0		
1.18				— 186,0	246,6	42,7	
					42,7	*246,6	- 186,0
						- 186,0	217,8

Konjugierte Matrix 10³ β'_{ik} .

B	+ 0,72387	6 - 0,441.	569 + 0,70	3674 — 0,3 6 &	34880 + 0	,823652 -	0,486571 -	+ 0,853994	\rightarrow
w.	0 0 10	0.020	0 0 30	0.040	0.050	0.060	0.070	0.080	
A 10	+20,9456	+15,1621	- 6,6950	- 4,7112	+ 1,5777	+ 1,2995	- 0,6323	- 0,5400	106.6
X ₂₀	+15,1621	+23,4347	-10,3480	- 7,2816	+ 2,4385	+ 2,0085	- 0,9773	- 0,8346	+ 0,040
Y30	- 6,6950	-10,3480	+25,0124	+17,6006	- 5,8940	- 4,8547	+ 2,3621	+ 2,0173	-0,413
C40	- 4,7112	- 7,2816	+17,6006	+24,4965	- 8,2034	- 6,7568	+ 3,2876	+ 2,8076	+0,718
C ₅₀	+ 1,5777	+ 2,4385	- 5,8940	- 8,2034	+18,2509	+15,0324	- 7,3143	- 6,2464	-0,449
60	+ 1,2995	+ 2,0085	- 4,8547	- 6,7568	+15,0324	+16,8097	- 8,1791	- 6,9849	+ 0,894
70	- 0,6323	- 0,9773	+ 2,3621	+ 3,2876	- 7,3143	- 8,1791	+15,3748	+13,1300	-0,531
89	- 0,5400	- 0,8346	+ 2,0173	+ 2,8076	- 6,2464	- 6,9849	+13,1300	+15,8043	+ 0,830

4. Zustand $\psi_1 = 1$. Belastungszahlen nach (744) u. (743). $h^* = h_1$; $X_{k1} = \Sigma \beta'_{ki} 6 \delta_{is}$.

$$\delta \, \delta_{\mathbf{1}s} = - \, 6 \, \delta_{\mathbf{2}s} = 6 \, \delta_{\mathbf{3}s} = - \, 6 \, \delta_{\mathbf{4}s} = 9 \, \frac{29,3 \, (29,3+1,4)}{29,3^2+29,3\cdot 1,4+1,4^2} = 8,9804$$

$$6 \, \delta_{5s} = - \, 6 \, \delta_{6s} = 6 \, \delta_{7s} = - \, 6 \, \delta_{8s} = 6 \, \frac{235}{11,1} = 15,8378$$

448 4	9. Rahme	enstellung r	nit beliebig	vielen F	eldern, g	geraden	Riegelsta	aben u	.senkrechten	Plosten.
-------	----------	--------------	--------------	----------	-----------	---------	-----------	--------	--------------	----------

X11	X21	X31	X41	X ₅₁	X ₆₁	X ₇₁	X ₈₁
+0,03707	-0,09728	+0,08837	-0,05415	+0,04707	-0,03635	+0,04404	-0,03511 mt

 $M_1^{(h,\,1)} = 1,4967 \ (-0.09728 - 0.03707) - \frac{3 \cdot 29,3}{29,3 \cdot 47,1 \cdot 1} = -0.26478 \ , \qquad M_1^{(h,\,3)} = -0.27700 \ {\rm mt} \ ,$

 $M_1^{(\hbar,\,5)} = -\,0.03635 - 0.04707 = -\,0.08342 \;, \qquad M_1^{(\hbar,\,7)} = -\,0.07915\; {\rm mt} \;.$

$$\dot{v_{11}} = \dot{v_{31}} = 1$$
, $\dot{v_{51}} = \dot{v_{71}} = \frac{29,3}{11,1} = 2,6396$;
 $\sum M_1^{(i)} v_{i1} = -0,97089$.

 $M_{\tilde{1}\,1} = 0,4967\;(-\;0,09728 - 0,03707) - \frac{3}{47,1\cdot 1} = -\;0,13043\;, \qquad M_{\tilde{3}\,1} = -\;0,13448\;\mathrm{mt}.$

5. Belastung der Felder l_1 und l_3 mit p = 4 t/m. Belastungszahlen nach Tab. 36. $a \delta = 1 \cdot 4 \cdot 24^2 \cdot 24 = 13824$,

$$6 \,\delta_{10} = 6 \,\delta_{20} = 6 \,\delta_{30} = \frac{1}{4} \cdot 4 \cdot 24^2 \cdot 24 = 0$$

 $\delta_{40} = \delta_{50} = \delta_{60} = \delta_{70} = \delta_{80} = 0 \; .$

X10	X_{20}	X ₃₀	X_{40}	X_{50}	X 60	X ₇₀	X ₈₀
+406,59	+390,51	+110,16	+77,51	-25,96	-21,38	+10,42	+8,89 mt
ALCONDING AND AND A	an annananan a				3.5(3.2)	10.000	111

$$\begin{split} M_0^{(b,\,0)} &= 1,4967\,(390,51-406,59) = -24,067\,, \qquad M_0^{(b,\,0)} = -46,007\,\,\mathrm{mt}\,, \\ M_0^{(b,\,0)} &= -21\,38+25,96 = +4,58\,, \qquad \qquad M_0^{(b,\,7)} = -1,53\,\,\mathrm{mt}\,, \end{split}$$

 $M_0^{(b,\;5)} = -\;21,\!38 + 25,\!96 = +\;4,\!58$, N M(0) .: _____ 64 994

$$\psi_1 = -\frac{-64,884}{0.07080} = -66,829 \,.$$

$$-$$
 - 0.97089 = - 00,829.

 $X_1 = 406,59 - 66,829 \cdot 0,03707 = +404,11 \text{ mt usw}.$

X1	X_2	X_3	X_4	X_5	X ₆	X_7	·X ₈
+ 404,11	+ 397,01	+ 104,25	+ 81,13	- 29,11	- 18,95	+ 7,48	+ 11,24 mt
1.1.1	and and and and a second			0 10040	1 0 79	11 7	92 mt

 $M_{\overline{1}} = 0,4967 (390,51 - 406,59) + 66,829 \cdot 0,13043 = +0,73$ M_3^-

Die Biegungsmomente werden durch das Diagramm a der Abb. 410 dargestellt. Die Berücksichtigung der Vouten in den Belastungszahlen δ_{k0} durch numerische Integration nach Abschn. 18 ergibt 6 $\delta_{10} = 6 \delta_{20} = 6 \delta_{30} = 12150$ und $X_{10} = 357.36$, $X_{20} = 343.22$; $X_{30} = 96.82$; $X_{40} = 68.12$ mt usw. Damit entsteht in Abb. 410 das Diagramm *b* der Biegungsmomente.

6. Temperaturerhöhung des Riegels um 15°. Belastungszahlen nach (715) u. (712). $6 E J_e \alpha_t t = 6 \cdot 2100000 \cdot 0,138 \cdot 10^{-5} \cdot 15 = 43,47;$ $9 E J_e \alpha_t t = 65,21.$

$$\begin{split} & 6\,\delta_{1\,t} = -\,6\,\delta_{2\,t} = 65,\! 21\,\frac{24}{29,3} = 53,\! 41\,, \qquad 6\,\delta_{3\,t} = -\,6\,\delta_{4\,t} = 106,\! 82\,, \\ & 6\,\delta_{5\,t} = -\,6\,\delta_{6\,t} = 43,\! 47\cdot\frac{72}{111} = 281,\! 97\,, \qquad 6\,\delta_{7\,t} = -\,6\,\delta_{8\,t} = 352,\! 50\,. \end{split}$$

X10	X20	X 30	X40	X 50	X 60	X ₇₀	X 80
+0,14 286	-0,69 843	+0,81 533	-0,83804	+0,73 178	-0,75 679	+0,95 471	-0,80 314 mt
	$M_0^{(h, 1)} = 1,4$	967 (- 0,69	843 - 0,143	$(286) - \frac{43}{2 \cdot 29}$	$3,47 \cdot 24$ $0,3 \cdot 47,1 \cdot 1$	= - 1,6371	5,
	$M_0^{(h, 3)} = -$	3,23058,	$M_0^{(h, 5)} = -$	- 1,48857,	$M_0^{(h, 7)}$:	= - 1,7578	5 mt.
Σ	$M_0^{(i)} v_{i1} = -$	13,437,	$\psi_{1t} =$	- 13,840 .			

Berechnung eines durchlaufenden Rahmens.

X1	X_2	X_{3} .	X_4	X_5	X_6	X_7	X ₈
- 0,370	+0,648	0,408	- 0,089	+ 0,081	- 0,254	· + 0,345	— 0,317 mt

$$\begin{split} M_1 &= 0.4967 \left(-\ 0.69\,843 - 0.14\,286\right) - \frac{43.47\cdot 24}{2\cdot 29.3\cdot 47.1\cdot 1} + 13.840\cdot 0.13\,043 = +\ 1.009\ \mathrm{mt}\ ,\\ M_{\tilde{a}} &= +\ 0.284\ \mathrm{mt}\ , \end{split}$$

Die Momente sind in Abb. 411 aufgezeichnet.

Diese werden nach S. 124 als Momentenlinien der elastischen Gewichte der Abschnitte l_3 und l_5 berechnet und mit

$$\delta_{3m} = \frac{l_s l'_3}{6} \,\overline{\omega}_D \,, \qquad \delta_{2m} = \frac{l_s l'_3}{6} \,\overline{\omega}'_D$$

angeschrieben, Hierbei ergeben sich für $\overline{\omega}_D$ und $\overline{\omega}'_D$ folgende Werte:

m	0	0,1	0,2	0,4	0,6	0,8	0,9	1,0
$\overline{\omega}_{\scriptscriptstyle D} \ \overline{\omega}_{\scriptscriptstyle D}'$	0	0,0877 0,1244	0,1731 0,2367	0,3063 0,3435	0,3435 0,3063	0,2367 0,1731	0,1244 0,0877	0

Das Ergebnis gilt mit großer Annäherung auch für das Randfeld l_1 , da $\overline{\mu} \approx \mu$. Es kann für den Trägerabschnitt zwischen den Vouten nach der Tabelle 29 unmittelbar angeschrieben werden und unterscheidet sich innerhalb der Vouten nur unwesentlich von der auf S. 395 als Näherung bezeichneten geraden Linie. Die Biegelinien der Felder l_7 , l_9 entstehen in gleicher Weise.

bezeichneten geraden Linie. Die Biegelinien der Felder l_7 , l_9 entstehen in gleicher Weise. Die Biegelinie $v_{m\psi}$ wird mit den Biegungsmomenten X_{k1} aus $\psi_1 = 1$ (S. 448) gebildet, im Felde l_3 z. B. aus X_{21} und X_{31} . Die Einflußlinie ψ_{1m} folgt dann aus (755) (Abb. 412).

$$\begin{split} & \text{Feld} \ l_1; \ \psi_{1\,m} = -\frac{-X_{11}}{-0,97089} \cdot \frac{24^2}{6} \cdot \frac{6}{l_1 l_1'} \, \delta_{m\,1} \approx -\ 3,6654 \ \overline{\omega}_D \ , \\ & \text{Feld} \ l_3; \ \psi_{1\,m} = -\frac{-1}{-0,97089} \cdot \frac{24^2}{6} \left(X_{31} \ \overline{\omega}_D + X_{21} \ \overline{\omega}_D' \right) = -\ 98,8783 \left(0,08837 \ \overline{\omega}_D - 0,09728 \ \overline{\omega}_D' \right) \\ & \text{Feld} \ l_5; \ \psi_{1\,m} = -\frac{-1}{-0.97090} \frac{24^2}{6} \left(X_{51} \ \overline{\omega}_D + X_{41} \ \overline{\omega}_D' \right) = -\ 98,8783 \left(0,04707 \ \overline{\omega}_D - 0,05415 \ \overline{\omega}_D' \right) \, . \end{split}$$

Feld l_5 : $\psi_{1\,\mathfrak{m}} = -\frac{1}{-0.97089} \frac{2\pi}{6} (X_{51}\,\overline{\omega}_D + X_{41}\,\overline{\omega}_D') = -98,8783 (0.04707\,\overline{\omega}_D - 0.05415\,\overline{\omega}_D')$.

8. Einflußlinie X_3 . Einflußlinie X_{30} nach Gl. (665).

$$\begin{array}{lll} \mbox{Feld} \ l_1; & X_{30} = - \ 0,006 \ 695 \cdot 24^2 \cdot \frac{0}{l_1 \ l_1'} \ \delta_{m\,1} \approx - \ 3,856 \ 320 \ \overline{\omega}_D \ , \\ \mbox{Feld} \ l_3; & X_{30} = & 0,025 \ 012 \cdot 24^2 \ (\overline{\omega}_D - \varkappa_{23} \ \overline{\omega}_D') = 14,407 \ 142 \ (\overline{\omega}_D - 0,413716 \ \overline{\omega}_D') \\ \mbox{Feld} \ l_5; & X_{30} = & 0,017 \ 601 \cdot 24^2 \ (\overline{\omega}_D' - \varkappa_{54} \ \overline{\omega}_D) = 10,137 \ 946 \ (\overline{\omega}_D' - 0,334 \ 880 \ \overline{\omega}_D) \\ \mbox{usw.} \end{array}$$

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

29

50. Die Erweiterung der Aufgabe.

Die Einflußlinie X_3 ergibt sich durch Superposition von X_{30} und der um $X_{31} = 0.08837$ erweiterten Einflußlinie ψ_{1m} (Abb. 413). Dieses Beispiel wurde in Abschn. 40 für konstantes Trägheitsmoment gerechnet. Der Ver-

gleich zeigt den Einfluß der Vouten auf die Größe der Schnittkräfte.

Spiegel, G.: Mehrstielige Rahmen. Berlin 1920. - Nakonz, W.: Die Berechnung mehrstieliger Rahmen unter Anwendung statisch unbestimmter Hauptsysteme. Berlin 1924. – Kleinlogel, A.: Mehrstielige Rahmen 2. Aufl. Berlin 1927.

50. Die Erweiterung der Aufgabe.

Im Bauwesen sind zahlreiche Tragwerke im Gebrauch, die als bauliche Ausgestaltung eines durchlaufenden Trägers oder Rahmens angesehen und daher auch in ähnlicher Weise statisch untersucht werden. Die Anordnung schräger Stützen ist in Abb. 298 gezeigt und auf S. 328 nachgeprüft worden. An die Stelle einzelner End- oder Zwischenpfosten können zur Übertragung waagerechter Kräfte auch Stützböcke dienen. Die Schnittkräfte des Tragwerks werden in diesem Falle nach S. 319 aus den Knotendrehwinkeln abgeleitet. Die elastischen Verschiebungen der

Anschlußpunkte der Riegel in senkrechter Richtung besitzen nur in Ausnahmefällen Bedeutung.

Tragwerke nach Abb. 414 können als durchlaufende Träger oder durchlaufende Rahmen mit aufgelöstem Riegel angesehen werden, wenn die Änderung der Stützenentfernung durch die Belastung klein genug bleibt, um vernachlässigt zu werden. Die Berechnung der Schnittkräfte aus den Komponenten des Verschiebungszustandes der Knotenpunktfigur ist auf S. 310 erwähnt worden. Sie kann auch auf die Ansätze des Abschn. 24 zurückgeführt werden, wenn die Formänderungen δ_{k0} ,

 $\delta_{kk,1}$ usw. des innerlich statisch unbestimmten, als Balken gestützten Rahmenriegels bekannt sind. Das wird an der Untersuchung eines Shedbinders gezeigt, dessen Zuggurte zur Abstützung von Transmissionen biegungssteif ausgebildet worden sind, so daß mit der senkrechten Belastung p_a , p_b , p_c aller drei Stäbe gerechnet werder muß.

Die Lösung zerfällt in zwei Stufen. Die erste behandelt die statisch unbestimmten Schnittkräfte Y_A , Y_B , Y_C des Rahmenriegels l_k für dessen Belastung mit p_a , p_b oder p_e und durch die äußeren Kräfte $-X_{k-1} = 1, -X_k = 1$ und die Berechnung der Verdrehung der Endquerschnitte (k-1), k infolge dieser äußeren Ursachen. In der zweiten Stufe werden die nunmehr bekannten Verdrehungen δ_{k0} , $\delta_{kk,1}$, $\delta_{k(k-1)}$, $\delta_{(k-1)(k-1),1}$ zur Berechnung der Stützenmomente X_k , X_{k+1} rechts und links von einer Stütze k nach Abb. 414 verwendet. Mit diesen und den Schnitt-

450