

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

51. Der Stockwerkrahmen

urn:nbn:de:hbz:466:1-74292

Visual Library

Der Stockwerkrahmen mit zwei Pfosten.

Bei antimetrischer Belastung des Tragwerks durch Winddruck sind das Biegungsmoment und die senkrechte Verschiebung der Querschnitte 4 und 8 der Symmetrieachse Null. Die Schnittkräfte werden daher mit dem Hauptsystem Abb. 421 berechnet.

$$\begin{split} Y_1 &= -M_2 = M_6, \qquad Y_2 = -M_3 = M_5, \qquad M_4 = 0; \\ \delta_{11} &= \frac{l'_1}{3} + l'_2 + \frac{l'_3}{3}, \qquad \delta_{12} = \frac{l'_3}{6}, \qquad \delta_{12} = \frac{l'_3 + l'_4}{2}. \end{split}$$

51. Der Stockwerkrahmen.

Der Stockwerkrahmen ist in der Gegenwart ein wichtiges Traggerüst des Brückenund Hochbaues. Während die Verbindung von Zwischenstütze und Riegel bei Ausführungen in Stahl für den Festigkeitsnachweis in der Regel frei drehbar angenommen wird, gilt sie bei der einfachen Ausbildung der Rahmenknoten im Eisenbetonbau als steif. Die Unterteilung in Tragwerke mit zwei und mehr als zwei Pfosten ist durch die Verwendung des Stockwerkrahmens im Bauwesen entstanden; sie läßt sich noch besser durch die statische Untersuchung begründen.

Der Stockwerkrahmen mit zwei Pfosten. Die Rahmenknoten liegen beliebig zueinander oder symmetrisch zu einer Mittellinie. Unter diesen Stockwerkrahmen ist die Anordnung mit senkrechten Pfosten ausgezeichnet.

Die Schnittkräfte des Tragwerks lassen sich stets aus den überzähligen Größen X_k eines statisch bestimmten oder statisch unbestimmten Hauptsystems ableiten. Der statisch bestimmte Aufbau von Dreigelenkrahmen führt zu geometrischen Bedingungsgleichungen mit acht oder fünf überzähligen Größen. Die geometrischen Bedingungen für die Formänderung eines statisch unbestimmten Hauptsystems aus Zweigelenkrahmen enthalten je sechs oder drei statisch überzählige Größen. Die Auflösung des Ansatzes leidet in beiden Fällen durch ungünstige Fehlerfortpflanzung. Daher werden bei einem Stabnetz mit beliebiger Knotenpunktfigur nach Abschn. 38 ff. zunächst die Knoten- und Stabdrehwinkel φ_J , ϑ_h aus den Gleichgewichtsbedingungen (523) der Schnittkräfte berechnet und diese dann selbst als Funktionen der Komponenten φ_J , ϑ_h des Verschiebungszustandes an-gegeben. Die Gleichgewichtsbedingung $\delta A_J = 0$ enthält vier unbekannte Knotendrehwinkel φ_J und zwei unabhängige Parameter ψ_e des Verschiebungszustandes, die Gleichgewichtsbedingung $\delta A_c = 0$ je vier Knotendrehwinkel φ_J und einen Parameter ψ_e . Da diese nach S. 311 voneinander unabhängig sein sollen, werden dafür die relativen Drehwinkel eines der beiden Pfosten h_k zum Riegelstab l_k der Stabkette (k) verwendet. Die Gleichungen lassen sich für jeden Belastungsfall am besten durch Iteration auflösen.

Berechnung der waagerechten Verschiebung u_F und der Verdrehung ϑ_i des Stabes i des Gerüstes Abb. 422 infolge einer exzentrisch zur Stabachse angreifenden $\neg |\mathcal{A}_i|_{\overline{W} \otimes \mathbb{J}}$ waagerechten Kraft W.

Strt	1.	Geometriscl	he Grun	dlagen.	
10 h 500	k	<i>l</i> _k [m]	J_c/J_k	l'_k	$1/l'_k$
of the t	a	7,211102	I	7,211102	0,1387
10 000	b	7,211102	I	7,211102	0,1387
at g lav	с	7,211102	I	7,211102	0,1387
7	d	6,000000	I	6,000 000	0,1667
10 200	e	6,000000	I	6,000000	0,1667
G/ a	f	6,000000	I	6,000000	0,1667
	g	12,000000	3/3	4,000000	0,2500
	h	8,000,000	1/3	2,666667	0,3750
1 30 - 1 90 - 1 90 - 40 - 40 - 1	i	4,000 000	I	4,000 000	0,2500

im Sinne von S. 311 werden neben den 6 Knotendrehwinkeln $\varphi_A \dots \varphi_k$ und dem Stabdrehwinkel $\vartheta_d = \psi_1$ die gegenseitigen Verdrehungen $\vartheta_* - \vartheta_g = \psi_2$ und $\vartheta_J - \vartheta_k = \psi_3$ verwendet. Sie bilden die Wurzeln der 9 statischen Bedingungen.

$$\delta A_{J} = \sum a_{J,K} \varphi_{K} + \sum a_{J,c} \psi_{c} + a_{J,0} = 0 \qquad J = A \dots F,$$

$$\delta A_{c} = \sum a_{L,c} \varphi_{c} + \sum a_{L,c} \psi_{c} + a_{L,0} = 0 \qquad h = 1, 2, 3,$$

Die Vorzahlen bedeuten nach Abschn. 38 die virtuelle Arbeit der äußeren Kräfte an neun verschiedenen zwangläufigen Gebilden Γ_J , Γ_h im Geschwindigkeitszuständ $\dot{\varphi}_J = 1$, $\dot{\psi}_h = 1$. Diese äußeren Kräfte in a_{JK} , a_{Je} sind Anschlußmomente des Hauptsystems infolge von $\varphi_K = 1$ oder aus den Stabdrehwinkeln ϑ_{he} infolge von $\psi_c = 1$. Die äußeren Kräfte in a_{J0} , a_{h0} bestehen aus der Belastung \mathfrak{P} und den ihr zugeordneten Anschlußmomenten des Hauptsystems. Diese werden nach (507) oder der Tabelle 25 gebildet (S. 457).

a) Bewegungszustände $\psi_1 = 1$, $\psi_2 = 1$, $\psi_3 = 1$ (Abb. 423).

Kinematische Kette
$$T_1$$
 (Abb. 423a): $\psi_1 = \vartheta_d = 1$, $\psi_2 = \vartheta_e - \vartheta_g = 0$, $\psi_3 = \vartheta_f - \vartheta_h = 0$.
 $\vartheta_I = 1$, $\vartheta_{II} = -\vartheta_I \frac{6.0}{18.0} = -\frac{1}{3}$, $\vartheta_{III} = -\vartheta_{II} \frac{3}{1} = +1$.

$$u_{F1} = -\vartheta_{II} \cdot 6,00 = +2,00.$$

 $\beta) \text{ Kinematische Kette } I'_2 \text{ (Abb. 423 b): } \psi_1 = \vartheta_d = 0 \text{ , } \psi_2 = \vartheta_e - \vartheta_g = 1 \text{ , } \psi_3 = \vartheta_f - \vartheta_h = 0.$

$$\vartheta_I = 1, \qquad \vartheta_{II} = - \vartheta_I \frac{6.0}{12.0} = -\frac{1}{2}, \qquad \vartheta_{III} = - \vartheta_{II} \frac{2}{1} = +1$$

 $u_{F2} = - \vartheta_{II} \cdot 6.00 = + 3.00.$

 $\gamma) \text{ Kinematische Kette } \Gamma_3 \text{ (Abb. 423 c): } \psi_1 = \vartheta_d = 0 \text{ , } \psi_2 = \vartheta_s - \vartheta_g = 0 \text{ , } \psi_3 = \vartheta_f - \vartheta_h = 1 \text{ .}$

$$\vartheta_I = 1$$
, $\vartheta_{II} = - \vartheta_I \frac{0.0}{6.0} = -1$, $\vartheta_{II} = +1$, $u_{F3} = - \vartheta_{II} \cdot 6,00 = +6,00$.

b) Tabelle der Anschlußmomente nach (530).

1	$\varphi_A = 1$	$\varphi_B = 1$	$\varphi_c = 1$	$\varphi_D = 1$	$\varphi_E = 1$	$\varphi_F = 1$	$\psi_1 = \mathbf{I}$	$\psi_2 = \mathbf{I}$	$\psi_3 = 1$
$M^{(a)}_{A} \\ M^{(b)}_{A} \\ M^{(b)}_{A}$	+ 0,5548 + 0,5548 + 1,0000	0 + 0,2774 0	0 0 0	0 0 + 0,5000	0 0 0	0 0	$^{-0,8322}_{+0,2774}_{+0,5000}$	0 0,8322 0	0 0 0
$\begin{array}{c} M_{B}^{(b)} \\ M_{B}^{(c)} \\ M_{B}^{(b)} \\ M_{B}^{(b)} \end{array}$	+ 0,2774 0 0	$^{+0,5548}_{+0,5548}_{+1,5000}$	0 + 0,2774 0	0 0 0	0 0 + 0,7500	0 0 0	+ 0,2774 + 0,2774 + 0,7500	$^{-0,8322}_{+0,4161}_{+1,1250}$	0 - 0,8322 0
$M_c^{(c)} M_c^{(i)}$	0 0	+ 0,2774 0	$^{+0,5548}_{+1,0000}$	0 0	0 0	0 + 0,5000	+0,2774 + 0,5000	$^{+0,4161}_{+0,7500}$	- 0,8321 + 1,5000
$\begin{array}{c} M_{D}^{(d)} \\ M_{D}^{(e)} \\ M_{D}^{(g)} \end{array}$	0 0 + 0,5000	0 0 0	0 0 0	+ 0,6668 + 0,6668 + 1,0000	o + 0,3334 0	0 0 0	$- \begin{array}{c} - 1,0002 \\ + 0,3334 \\ + 0,5000 \end{array}$	0 - 1,0002 0	0 0 0
$\begin{array}{c} M_{E}^{(e)} \\ M_{E}^{(f)} \\ M_{E}^{(h)} \end{array}$	0 0 0	0 0 + 0,7500	0 0 0	+ 0,3334 0 0	+ 0,6668 + 0,6668 + 1,5000	0 + 0.3334 0	$^{+ 0,3334}_{+ 0,3334}_{+ 0,7500}$	$- \begin{array}{c} 1,0002 \\ + 0,5001 \\ + 1,1250 \end{array}$	0 0 0 0
$\begin{array}{c} M_F^{(\prime)} \\ M_F^{(i)} \end{array}$	0	0 0	0 + 0,5000	0	+ 0,3334 0	+ 0,6668 + 1,0000	$^{+0,3334}_{+0,5000}$	+ 0,5001 + 0,7500	-1,0002 + 1,5000
$M_{g}^{(d)} \ M_{H}^{(d)}$	+ 0,2774 0	0 0	0	o + 0,3334	0 0	· 0 0	- 0,8322 - 1,0002	0 0	0 0

BIBLIOTHEK PADERBORN

456

x

Der symmetrische Stockwerkrahmen mit zwei geneigten Pfosten.

c) Die Vorzahlen der statischen Bedingungen.

$$a_{AK} = -\mathbf{1}_{A} \left(M_{AK}^{(a)} + M_{AK}^{(b)} + M_{AK}^{(0)} \right), \qquad a_{BK} = -\mathbf{1}_{B} \left(M_{BK}^{(b)} + M_{BK}^{(c)} + M_{BK}^{(b)} \right).$$

Mit $M_{aK} = M_{AK}^{(a)} + M_{GK}^{(a)}$, der Summe der Stabendmomente im positiven Drehsinn aus $K \equiv A \dots F$, 1, 2, 3, ist

$$a_{1K} = \mathbf{i}_1 M_{aK} + \mathbf{i}_1 M_{dK} - \frac{1}{2} \cdot \mathbf{i}_1 (M_{bK} + M_{eK} + M_{eK} + M_{fK} + M_{gK} + M_{hK} + M_{iK}),$$

$$a_{2K} = \mathbf{i}_2 M_{bK} + \mathbf{i}_2 M_{eK} - \frac{1}{2} \cdot \mathbf{i}_2 (M_{eK} + M_{fK} + M_{hK} + M_{iK}).$$

d) Die Belastungszahlen (Abb. 424).

 $\underbrace{M_{C0}^{(l)}}_{\text{Abb. 424.}} \underbrace{M_{F0}^{(l)}}_{a_{C\,0} = -\dot{1}_{\mathcal{C}}} \cdot M_{C\,0}^{(d)} = M_{F\,0}^{(d)} = + \frac{W \cdot 1,0}{4} \quad \text{(Tabelle 25)},$ $a_{10} = \dot{1}_1 \left(-\frac{1}{3} \right) \left(2 \cdot 0,25 \ W - 5,0 \ W \right),$ $a_{20} = \dot{1}_2 \left(-\frac{1}{2} \right) \left(2 \cdot 0,25 \ W - 5,0 \ W \right),$ $a_{30} = \dot{1}_3 (-1) (2 \cdot 0.25 W - 5.0 W).$

e) Matrix der statischen Bedingungen. (W = 1).

	ΨA	φ_B	φ_c	φ_D	φ_E	φ_F	Ψ1	ψ_2	ψ_3	a _{J0}
A	-2,1096	- 0,2774	•	-0,5000	• •		+0,0548	+0,8322		
В	-0,2774	- 2,6095	- 0,2774		-0,7500		- 1,3048	- 0,7089	+0,8322	
С	•	-0,2774	-1,5548			- 0,5000	- 0,7774	-1,1661	- 0,6678	-0,25
D	-5,000			- 2,3336	- 0,3334		+0,1668	+1,0002		
E	•	- 0,7500		-0.3334	- 2,8336	-0,3334	- 1,4168	- 0,6249	+1,0002	
F		•	-0,5000	1997 (S. 1997)	- 0,3334	- 1,6668	- 0,8334	-1,2501	- 0,4998	-0,25
I	+0,9548	-1,3048	- 0,7774	+0,1668	- i,4168	- 0,8334	- 5,6459	- 0,6392	+0,2216	+1,50
2	+0,8322	- 0,7089	-1,1661	+1,0002	- 0,6249	- 1,2501	- 0,6392	- 6,4560	+0,3324	+2,25
3		+0,8322	- 0,6678		+1,0002	- 0,4998	+0,2216	+0,3324	- 6,6648	+ 4,50

3. Auflösung durch Iteration (Abschn. 30).

QE. φ_F W1 ψ_2 \$3 QA. φ_{B} Pe (PD +0,2788 -0,1178 -1,1160 +0,3444 -0,0378 -0,9834 +0,5546 +0,8379 +0,9006

4. EJefache waagerechte Verschiebung des Knotens F (Stabi).

 $u_F = \psi_1 \, u_{F1} + \psi_2 \, u_{F2} + \psi_3 \, u_{F3} = \psi_1 \cdot 2,00 + \psi_2 \cdot 3,00 + \psi_3 \cdot 6,00 = 9,0265 \; .$

 EJ_e fache Verdrehung des Stabes *i*.

 $\vartheta_i = \psi_1 \, \vartheta_{i\,1} + \psi_2 \, \vartheta_{i\,2} + \psi_3 \, \vartheta_{i\,3} = \psi_1 \left(-\frac{1}{3} \right) + \psi_2 \left(-\frac{1}{2} \right) + \psi_3 \left(-1 \right) = -1.5045 \, .$

Der symmetrische Stockwerkrahmen mit zwei geneigten Pfosten. Die äußeren Ursachen des Spannungs- und Verschiebungszustandes des Tragwerks (Belastung B, Temperaturänderung t und die Stützenverschiebungen) werden nach S. 186 in den symmetrischen und antimetrischen Anteil zerlegt. Die Schnittkräfte sind nach Abschn. 28 Funktionen von statisch überzähligen Gruppenlasten eines statisch bestimmten Hauptsystems, die aus den Schnittkräften am unteren Ende

der Pfosten h_r eines jeden Stockwerks (r) gebildet werden. Dies sind links die Kräfte $A^{(r)}$, $H_a^{(r)}$, $M_a^{(r)}$, rechts die Kräfte $B^{(r)}$, $H_b^{(r)}$, $M_b^{(r)}$ (Abb. 425).

Die Kräfte $A^{(r)}$, $B^{(r)}$, $C^{(r)} = (H_a^{(r)} - H_b^{(r)})/2$ sind statisch bestimmt. Die Stützkräfte $A_0^{(r)}$, $B_0^{(r)}, C_0^{(r)}$ stehen mit den Lasten $\Sigma P, \Sigma W$ im Gleichgewicht. Bei symmetrischer Belastung ist

(756)

$$C_0^{(r)} = 0$$
, $A_0^{(r)} = B_0^{(r)}$,

bei antimetrischer Belastung

$$\begin{aligned} A_0^{(r)} &= -B_0^{(r)}, \\ C_0^{(r)} &= H_a^{(r)} = -H_b^{(r)} = \frac{1}{2}\sum_{i=1}^n W. \end{aligned}$$

Die statisch unbestimmten Größen Xr, Xr, Y, ergeben sich nach Abschn. 28 aus den geometrischen Bedingungen für die Formänderung des Hauptsystems. Diese werden aus den Schaubildern für die Schnittkräfte infolge von $-X_r = 1$, $-X'_r = 1$, $-Y_r = 1$ (Abb. 426) abgeleitet und bilden zwei Gruppen voncinander unabhängiger Gleichungen mit den Unbekannten X_r , X'_r und

mit Yr. Bei symmetrischer Belastung sind die Kräfte Yr, bei antimetrischer Belastung die Kräfte X_r , X'_r Null. Symmetrischer Anteil:

$$X'_{r-1} \tau_{(r-1)'(r-1)'} + X_{r-1} \tau_{(r-1)'(r-1)} + X_r \tau_{(r-1)'r} = \tau_{(r-1)'\otimes r} \\ X_{(r-1)} \tau_{r(r-1)} + X_r \tau_{rr} + X_{(r+1)} \tau_{r(r+1)} + X'_{r-1} \tau_{r(r-1)'} + X'_r \tau_{rr'} = \tau_r \otimes , \\ X'_r \tau_{r'r'} + X_r \tau_{r'r} + X_{r+1} \tau_{r'(r+1)} = \tau_{r'\otimes }. \end{cases}$$
(757)

Die Regelgleichung entsteht durch Elimination von X'_{r-1} und X'_r .

$$X_{r+1} \left[\tau_{r(r+1)} - \frac{\tau_{(r-1)r(r+1)}}{\tau_{(r+1)r(r+1)r}} \tau_{r(r+1)r} \right] + X_r \left[\tau_{rr} - \frac{\tau_{rrr}^2}{\tau_{rrr'}} - \frac{\tau_{r(r-1)r}^2}{\tau_{(r-1)r(r+1)r}} \right] + X_{r+1} \left[\tau_{r(r+1)} - \frac{\tau_{rrr'}}{\tau_{rrr'}} \tau_{rrr'} \right] = \tau_r \otimes - \frac{\tau_{r(r-1)r}}{\tau_{(r-1)r(r-1)r}} \tau_{(r-1)r} \otimes - \frac{\tau_{rrr'}}{\tau_{rrrr'}} \tau_{r'} \otimes .$$
(758a)

Sie kann auch unmittelbar als geometrische Bedingung (285) für die Formänderung eines statisch unbestimmten Hauptsystems angeschrieben werden, das aus Zweigelenkrahmen besteht. Diese lautet in der üblichen Schreibweise (294) $X_{r-1} \, \tau^{(1)}_{r(r-1)} + X_r \, \tau^{(1)}_{rr} + X_{r+1} \, \tau^{(1)}_{r(r+1)} = \tau^{(1)}_{r \otimes} \, .$ (758b)

Der symmetrische Stockwerkrahmen mit zwei geneigten Pfosten.

Die Vorzahlen und Belastungszahlen dieser Gleichungen sind bereits in (758a) als Funktionen der Verschiebungen eines statisch bestimmten Stabzugs entwickelt worden. Antimetrischer Anteil:

 $Y_{(r-1)} \delta_{r(r-1)} + Y_r \delta_{rr} + Y_{(r+1)} \delta_{r(r+1)} = \delta_{r\otimes}.$ (759) Ableitung der Vorzahlen nach Abb. 426.

$$l_{r} \frac{J_{e}}{J_{r}} = l'_{r}, \qquad h_{r} \frac{J_{e}}{J_{rh}} = h'_{r}, \qquad \frac{l_{r}}{l_{r-1}} = \lambda_{r},$$

$$\tau_{r'r'} = l'_{r} + \frac{2}{3} h'_{r} \sec \alpha_{r} = b_{r}, \qquad \tau_{r'r} = l'_{r} + h'_{r} \sec \alpha_{r} = a_{r},$$

$$\tau_{r(r-1)} = \tau_{r(r-1)'} = -l'_{r-1}, \qquad \tau_{r(r+1)} = \tau_{r'(r+1)} = -l'_{r},$$

$$\tau_{rr} = l'_{r} + 2 h'_{r} \sec \alpha_{r} + l'_{r-1} = a_{r} + h'_{r} \sec \alpha_{r} + l'_{r-1},$$

$$\delta_{r(r-1)} = -\frac{\lambda_{r-1}l'_{r-1}}{3}, \qquad \delta_{r(r+1)} = -\frac{\lambda_{r}l'_{r}}{3},$$
(760)

 $\delta_{rr} = \frac{1}{3} [\lambda_r^2 l'_r + l'_{r-1} + 2h'_r \sec \alpha_r (1 + \lambda_r + \lambda_r^2)].$ Sonderfall senkrechter Pfosten:

$$a_r = 0$$
, sec $a_r = 1$, tg $a_r = 0$, $\lambda_r = 1$,
 $b_r = l'_r + \frac{2}{3}h'_r$, $a_r = l'_r + h'_r$.

Ableitung der Belastungszahlen. a) Symmetrische Belastung. 1. Eigengewicht. Das Eigengewicht g_k eines jeden Rahmens kwird gleichförmig über die Strecke $l_k+2h_k \operatorname{tg} \alpha_k$ $= l_{k-1}$ verteilt und das Biegungsmoment im Bereich der Pfosten näherungsweise linear angenommen (Abb. 427).

$$\begin{aligned} \tau_{r0} &= a_r h_r \operatorname{tg} \alpha_r \cdot \frac{1}{2} \sum_r^n g_k \, l_{k-1} - l_{r-1}' h_{r-1} \operatorname{tg} \alpha_{r-1} \\ &\cdot \frac{1}{2} \sum_{r-1}^n g_k \, l_{k-1} + \frac{1}{12} \left(g_r \, l_r^2 \, l_r' - g_{r-1} \, l_{r-1}^2 \, l_{r-1}' \right); \\ \tau_{r'0} &= b_r \, h_r \operatorname{tg} \alpha_r \cdot \frac{1}{2} \sum_{r}^n g_k \, l_{k-1} + g_r \, \frac{l_r^2 \, l_r'}{12} \, . \end{aligned}$$

2. Gleichförmig über jeden Riegel l_k verteilte Nutzlast ϕ_k (Abb. 428).

$$\begin{aligned} \tau_{r\,0} &= a_r \, h_r \, \mathrm{tg} \, \alpha_r \cdot \frac{1}{2} \sum_r^n \not p_k \, l_k - l_{r-1}' \, h_{r-1} \, \mathrm{tg} \, \alpha_{r-1} \cdot \frac{1}{2} \sum_{r-1}^n \not p_k \, l_k \\ &+ \frac{1}{12} \left(\not p_r \, l_r^2 \, l_r' - \not p_{r-1} \, l_{r-1}^2 \, l_{r-1}' \right); \\ \tau_{r'\,0} &= b_r \, h_r \, \mathrm{tg} \, \alpha_r \cdot \frac{1}{2} \sum_r^n \not p_k \, l_k + \frac{1}{12} \, \not p_r \, l_r^2 \, l_r' \, . \end{aligned}$$

3. Symmetrische Anordnung von Einzellasten ΣP über jedem Riegel.

$$\tau_{r0} = a_r h_r \operatorname{tg} \alpha_r \cdot \frac{1}{2} \sum_{r}^{n} \sum_{k} P - l'_{r-1} h_{r-1} \operatorname{tg} \alpha_{r-1} \cdot \frac{1}{2} \sum_{r-1}^{n} \sum_{k} P + \frac{1}{2} (l_r l'_r \sum_{r} P \omega_R - l_{r-1} l'_{r-1} \sum_{r-1} P \omega_R);$$

$$\tau_{r'0} = b_r h_r \operatorname{tg} \alpha_r \cdot \frac{1}{2} \sum_{r}^{n} \sum_{k} P + \frac{l_r l'_r}{2} \sum_{r} P \omega_R;$$

Die $\sum_{k} P$ und $\sum_{k} P \omega_{R}$ enthalten alle Lasten des Riegels l_{k} .

Abb. 427.

ADERBORN

花石

4. Symmetrische, gleichförmig verteilte horizontale Belastung $w_k/2$ der Pfosten (Abb. 429).

5. Symmetrische, hydrostatische horizontale Belastung w_k der Pfosten.

$$\begin{aligned} \tau_{r\,0} &= -\frac{1}{24} \, w_r \, h_r^2 \, (3 \, a_r + l_r') + \frac{1}{3} \, w_{r-1} \, h_{r-1} \, l_{r-1}'; \\ \tau_{r\,0} &= -\frac{1}{60} \, w_r \, h_r^2 \, (11 \, a_r + 9 \, l_r') \, . \end{aligned}$$

6. Zwei entgegengesetzt drehende Momente M_k am Riegel l_k (Abb. 430).

BIBLIOTHEK

 $\vec{F}_{p}(p_{k}t_{k}^{\sharp})$ 7. Gleichförmige Erwärmung des Rahmens um t^{0} . Bei statisch bestimmter Stützung nach Abb. 434c treten keine Schnittkräfte auf, bei statisch unbe- $\vec{st_{r+f}}(p_{k}t_{k}^{\sharp})$ stimmter Stützung nach Abb. 434a oder b wird

 $\tau_{r\,0} = -\,\mathsf{M}_r\,l_r' +\,\mathsf{M}_{r-1}\,l_{r-1}'; \qquad \tau_{r'\,0} = -\,\mathsf{M}_r\,l_r'.$

$$\tau_{1t} = 0; \quad \tau_{1't} = E J_c \alpha t l_0.$$

Die übrigen Formänderungen τ_{rt} sind Null. b) Antimetrische Belastung.

1. Antimetrische, senkrecht gerichtetegleichförmige Belastung $p_k/2$ der Riegel (Abb. 431).

$$\begin{split} \delta_{r\,0} &= \frac{1}{3} \, \mathfrak{M}_{p\,r} [\lambda_r (2\,a_r - l'_r) + (a_r - l'_r)] - \frac{\mathfrak{M}_{p\,(r-1)} \, l'_{r-1}}{3} \\ &+ \frac{p_r \, \lambda_r \, l_r^2 \, l'_r - p_{r-1} \, l_{r-1}^2 \, l'_{r-1}}{192}, \end{split}$$

$$\mathfrak{M}_{pr} = \frac{h_r \operatorname{tg} \alpha_r}{8 \, l_{r-1}} \, \sum_r^n \phi_k \, l_k^2, \qquad \mathfrak{M}_{p(r-1)} = \frac{h_{r-1} \operatorname{tg} \alpha_{r-1}}{8 \, l_{r-2}} \, \sum_{r-1}^n \phi_k \, l_k^2.$$

2. Antimetrische, zum Riegel senkrechte Gruppe von Einzellasten P/2.

$$\delta_{r\,0} = \frac{1}{3} \mathfrak{M}_{P\,r} \left[\lambda_r \left(2\,a_r - l_r' \right) + \left(a_r - l_r' \right) \right] - \frac{1}{3} \mathfrak{M}_{P\,(r-1)} \, l_{r-1}' \\ - \frac{\lambda_r \, l_r \, l_r'}{6} \sum_r P \, \omega_D'' + \frac{l_{r-1} \, l_{r-1}'}{6} \sum_{r-1} P \, \omega_D'' \,, \qquad (\text{Tabelle 22})$$

$$\mathfrak{M}_{Pr} = \frac{h_r \operatorname{tg} \alpha_r}{l_{r-1}} \sum_{r}^{n} \sum_{k}^{n} P c , \qquad \mathfrak{M}_{P(r-1)} = \frac{h_{r-1} \operatorname{tg} \alpha_{r-1}}{l_{r-2}} \sum_{r-1}^{n} \sum_{k}^{n} P c \quad (Abb. 432) .$$

Der symmetrische Stockwerkrahmen mit zwei geneigten Pfosten.

3. Antimetrische Belastung des Riegels durch horizontale Einzellasten $W_k/2$.

$$\begin{split} \delta_{r\,0} &= \frac{1}{3} \mathfrak{M}_{Wr} \left[\lambda_{r} \left(2\,a_{r} - l_{r}^{\prime} \right) + \left(a_{r} - l_{r}^{\prime} \right) \right] - \frac{1}{3} \mathfrak{M}_{W(r-1)} \, l_{r-1}^{\prime} \, , \\ \mathfrak{M}_{Wr} &= \frac{h_{r}}{2} \sum_{r}^{n} W_{k} - \frac{h_{r} \operatorname{tg} \alpha_{r}}{l_{r-1}} \sum_{r}^{n} W_{k} \left(e_{k} - e_{r-1} \right) \quad \text{(Abb. 433)} \, , \\ \mathfrak{M}_{W\,(r-1)} &= \frac{h_{r-1}}{2} \sum_{r-1}^{n} W_{k} - \frac{h_{r-1} \operatorname{tg} \alpha_{r-1}}{l_{r-2}} \sum_{r-1}^{n} W_{k} \left(e_{k} - e_{r-2} \right) \, . \\ \mathfrak{M}_{W\,(r-1)} &= \frac{h_{r-1}}{2} \sum_{r-1}^{r} W_{k} - \frac{h_{r-1} \operatorname{tg} \alpha_{r-1}}{l_{r-2}} \sum_{r-1}^{n} W_{k} \left(e_{k} - e_{r-2} \right) \, . \\ \mathfrak{M}_{W,r} &= \frac{h_{r}}{2} \sum_{r-1}^{n} \frac{l_{r}}{l_{r}} \sum_{r} \frac{l_{r}}{l_{r}} \frac{l_{r}}$$

Abb. 432,

Abb. 433.

4. Antimetrische, waagerechte und gleichförmige Belastung $w_k/2$ der Pfosten (Abb. 433).

$$\begin{split} \delta_{r\,0} &= \frac{1}{3} \,\mathfrak{M}_{w\,r} \left[\lambda_r \left(2\,a_r - l_r' \right) + \left(a_r - l_r' \right) \right] - \frac{1}{3} \,\mathfrak{M}_{w\,(r-1)} \,l_{r-1}' + \frac{w_r \,h_r^2}{24} \left(a_r - l_r' \right) \,\lambda_{r+1} \,, \\ \mathfrak{M}_{w\,r} &= \frac{h_r}{2} \,\sum_r^n w_k \,h_k - \frac{h_r \,\operatorname{tg} \alpha_r}{l_{r-1}} \,\sum_r^n w_k \,h_k \left(e_k - e_{r-1} - \frac{h_k}{2} \right) - \frac{w_r \,h_r^2}{4} \,, \end{split}$$

bei konstantem $w_k = w$,

$$\mathfrak{M}_{wr} = \frac{w h_r}{2} \sum_r^n h_k - \frac{w h_r \operatorname{tg} \alpha_r}{2 \, l_{r-1}} \left(\sum_r^n h_k \right)^2 - \frac{w \, h_r^2}{4}$$

5. Antimetrisch wirkende Momente $M_k/2$ an den Rahmenknoten.

 $\delta_{r0} = \frac{1}{3} \mathfrak{M}_{Mr} \left[\lambda_r \left(2 \, a_r - l'_r \right) + \left(a_r - l'_r \right) \right] - \frac{1}{3} \mathfrak{M}_{M(r-1)} \, l'_{r-1} + \frac{1}{3} \left(\lambda_r \, l'_r \, \mathsf{M}_r - l'_{r-1} \, \mathsf{M}_{r-1} \right),$

$$\mathfrak{M}_{\mathsf{M}r} = -\frac{h_r \operatorname{tg} \alpha_r}{l_{r-1}} \sum_r \mathsf{M}_k.$$

Sind die Riegel am Anschluß mit den Pfosten durch Vouten verstärkt, deren Einfluß nicht vernachlässigt werden soll, so lassen sich die Vorzahlen mit einer Approximation der elastischen Eigenschaften nach den Tabellen 13 bis 15 berichtigen. Dasselbe gilt auch bei anderen Riegelformen, die vor allem zum oberen Abschluß des Tragwerks dienen. In diesem Falle wird mit Vorteil die Tabelle 12 zu Rate gezogen.

Ansatz und Lösung. Die statisch unbestimmten Gruppenlasten X_r , Y_r werden aus zwei voneinander unabhängigen Ansätzen berechnet, von denen jeder bei n Feldern des Tragwerks und starrer Einspannung oder Auflagerung nach

Abb. 434 cn Gleichungen enthält. Bei frei drehbarem Anschluß der Pfosten h_1 nach Abb. 434 a sind (n-1). Gleichungen aufzulösen. Die Nebenglieder der Matrix des symmetrischen Anteils sind positiv, diejenigen des antimetrischen Anteils negativ. Durch die Belastung eines Riegels l_k oder eines Pfostens h_k sind die Belastungs-

zahlen δ_{10} bis δ_{k0} von Null verschieden, dagegen

 $\delta_{(k+1)0} = 0, \dots \delta_{n0} = 0.$ Die statisch unbestimmten Größen X_r , Y_r werden nach der Vorschrift S. 236 berechnet. Bei zahlreichen Belastungsfällen wird die Lösung mit den Vorzahlen $\beta_{rk}^{(a)}$ und $\beta_{rk}^{(w)}$ der den beiden Ansätzen zugeordneten konjugierten Matrix angeschrieben.

$$X_r = \sum \beta_{rk}^{(x)} \tau_{k\otimes},$$

$$Y_r = \sum \beta_{rk}^{(y)} \delta_{k\otimes}.$$

Die Vorzahlen ergeben sich nach S. 237 aus je 2 Kettenbrüchen. Die statisch unbestimmten Einzelkräfte der Ableitung auf S. 458 sind

$$M_a^{(r)} = X_r + Y_r, \qquad M_b^{(r)} = X_r - Y_r$$

Aus (757) und (760) wird

$$\begin{aligned} \frac{X'_r}{h_r} &= \frac{H_a^{(r)} + H_b^{(r)}}{2} = \frac{1}{h_r b_r} \left(\tau_{r'\otimes} - X_r a_r + X_{r+1} l'_r \right) \\ H_a^{(r)} &= \frac{X'_r}{h_r} + C_0^{(r)}, \qquad H_b^{(r)} = \frac{X'_r}{h_r} - C_0^{(r)}. \end{aligned}$$

Die Schnittkräfte werden mit den Gleichgewichtsbedingungen aus den Lasten und den in Abb. 435 eingetragenen Anschlußkräften rechnerisch oder zeichnerisch bestimmt.

Die Rechenvorschrift wird für einzelne ausgezeichnete Belastungsfälle an dem Binder einer Aufbereitungsanlage (Abb. 436) erläutert. Sie behandeln die gleichförmige Belastung $p_1 = 1$ t/m einer Bühne, Einzellasten $P_0 = 1$ t aus Maschinengewichten, Wind-belastung W = 1 t und einseitige Sonnenbestrahlung $t = 10^{\circ}$ (Abb. 437 bis 440). Die Vorzahlen der Bedingungsgleichungen für

das obere Stockwerk mit gekrümmtem Abschlußriegel werden mit Hilfe der Tabelle 12 abgeleitet. Darnach ist ohne besondere Begründung

$$\begin{split} \tau_{3'3'} &= l'_3 + \frac{2}{3} \, h'_3 + \frac{8}{15} \left(\frac{f}{h_3}\right)^2 l'_3 + \frac{4}{3} \, \frac{f}{h_3} \, l'_3 = b_3 + \frac{8}{15} \left(\frac{f}{h_3}\right)^2 l'_3 + \frac{4}{3} \, \frac{f}{h_3} \, l'_3 \, , \\ \tau_{3'3} &= l'_3 + h'_3 + \frac{2}{3} \, \frac{f}{h_3} \, l'_3 = a_3 + \frac{2}{3} \, \frac{f}{h_3} \, l'_3 \, . \end{split}$$

462

ADERBORN

Der symmetrische Stockwerkrahmen mit zwei geneigten Pfosten.

Die übrigen Vorzahlen ergeben sich aus den Ansätzen (758) und (760). Die Zahlenrechnung wird folgendermaßen entwickelt:

*	0	1	2	3
1,	18,00	9,00	6,00	6,00
h _r	-	8,50	7,00	3.00
$l'_r = -\tau_{r(r+1)} = -\tau_{r'(r+1)}$	4,00	3,00	3,00	6,00
h'r	-	2,833	3,500	3,000
tg α _r		0,529412	0,214286	0,0000
sec ar	-	1,131493	1,022701	1,0000
$h'_r \sec \alpha_r$	-	3,20590	3,57945	3,0000
$a_r = l'_r + h'_r \sec \alpha_r$	-	6,20590	6,57945	9,0000
$b_r = l'_r + 2/3 \cdot h'_r \sec \alpha_r$	-	5,13727	5,38630	8,0000
τ,,,	-	6,20590	6,57945	11,0000
τ,,,	-	5,13727	5,38630	12,8000
$\tau_{rr} = a_r + h'_r \sec \alpha_r + l'_{r-1}$	-	13,41180	13,15891	15,0000
$-rac{ au_{r'(r+1)}}{ au_{r'r'}} au_{r'r'}$	-	3,62405	3,66455	5,15625
$\tau_{r'(r+1)}^{(3)} = \tau_{r'(r+1)} - \frac{\tau_{r'(r+1)}}{\tau_{r'r'}} \tau_{rr'}$	-	0,62405	0,66455	-
$\tau_{rr'}^2/\tau_{r'r'}$		7,49682	8,03690	9,45313
$\tau_{r(r-1)'}^2/\tau_{(r-1)'(r-1)'}$	-	-	1,75190	1,67091
$\tau_{r,r}^{(3)} = \tau_{r,r} - \frac{\tau_{r,r}^2}{\tau_{r,r'}} - \frac{\tau_{r,(r-1)'}^2}{\tau_{(r-1)'(r-1)'}}$	-	5,91498	3,37011	3,87597
λ,	-	0,500	0,66667	1,0000
$3 \delta_{r(r+1)} = -\lambda_r l_r'$	- 1	-1,500	-2,000	-
$1 + \lambda_r + \lambda_r^2$	-	1,7500	2,11111	3,0000
$2 h'_r \sec \alpha_r (1 + \lambda_r + \lambda_r^2)$	-	11,22065	15,11323	18,0000
$\lambda_r^{e} l'_r$	-	0,7500	I,33333	6,0000
$3 \delta_{rr} = \lambda_r^2 l'_r + l'_{r-1} + 2 h'_r \sec \alpha_r \left(1 + \lambda_r + \lambda_r^2\right)$	-	15,97065	19,44656	27,0000

Die beiden voneinander unabhängigen Gruppen der Bedingungsgleichungen (758b) und (759) sind daher für

Antimetrische Belastung Y_2

- 1,500

+ 19,447

- 2,00

 Y_1

+ 15,971

- 1,500

1

2

3

Symmetrische Belastung

463

Y_3		<i>X</i> ₁	X_2	X_3
_	I	+ 5,9150	+ 0,6240	
2,00	2	+0,6240	+ 3,3701	+0,6645
27,00	3		+0,6645	+ 3,8760

Kettenbrüche zur Ermittlung der Kennbeziehungen und der Vorzahlen $\beta'^{(y)} = \beta^{(y)}/3$:

+

$$\begin{split} \beta_{11}' &= \frac{1}{15,971-(-1,50)} \frac{1}{19,447-(-2,0)} \frac{(-2,0)}{27,00} \,, \\ \beta_{53}' &= \frac{1}{27,0-(-2,00)} \frac{(-2,00)}{19,447-(-1,50)} \frac{(-1,50)}{15,969} \,, \end{split}$$

BIBLIOTHEK PADERBORN

Kettenbrüche zur Ermittlung der Kennbeziehungen und der Vorzahlen $\beta^{(x)}$:

Die vorgeschriebenen Belastungen werden in den symmetrischen und antimetrischen Anteil aufgespalten (Abb. 437 bis 440). Ansatz und Größe der Belastungsglieder für p_1 , P_0 , W sind auf S. 465, für die Temperaturänderung t auf S. 466 angegeben.

Abb. 437.

Auswertung der überzähligen Größen

$$X_{r} = \sum \beta_{rh}^{(x)} \tau_{h0}^{(3)}, \qquad Y_{r} = \sum \frac{\beta_{rh}^{(y)}}{3} \cdot 3 \,\delta_{h0} = \sum \beta_{rh}^{\prime(y)} \cdot 3 \,\delta_{h0},$$
$$\frac{1}{h_{r}} X_{r}^{\prime} = \frac{1}{h_{r} \tau_{rrr}} \left(\tau_{rr0} - X_{r} \tau_{rrr} - X_{r+1} \tau_{r'(r+1)} \right).$$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	1						D	iiii iii	2 24	l gen	ergten	Pioste:	u.	46	D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Sym	metris	cher A	nteil	$\frac{p_1}{2}$,	$\frac{P_0}{2}, -$	W 2		Ant	imetris	cher A	inteil $\frac{p_1}{2}$,	$\frac{P_0}{2}$,	$\frac{W}{2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W=1	0	o	$-\frac{W}{3}f\cdot l_{\mathrm{g}}^{\prime}$ =- 3,00	0	0	$-\frac{W}{15} l l_{\rm s}^{\rm q} \left(5 + 4 \frac{f}{h_{\rm s}} \right) = -4,20$	0	0	$-3,00 + 0,8593 \cdot 4,20 = + 0,609375$	$\frac{h_1 \cdot 3W}{2} - \frac{h_1 \tan \alpha_1}{l_0} (8.5 + 15.5 + 18.5)W = + 2.125$	$\frac{h_2 \cdot 2W}{2} - \frac{h_2 \tan \alpha_2}{l_1} (7, 0 + 10, 0)W = + 4, 16667$	$\frac{h_3 \cdot W}{2} - \frac{h_3 \tan \alpha_3}{l_3} \cdot 3.0 W = + 1.500$	$\mathfrak{M}_{W1}\left[\left(2 a_{1}-l_{1}^{\prime}\right) \lambda_{1}+\left(a_{1}-l_{1}^{\prime}\right)\right] =+16,8126$	$\mathfrak{M}_{W_2}[(2a_2-l_2^*)\lambda_2+(a_2-l_2^*)]-\mathfrak{M}_{W_1}l_1'=+36,7585$	$\mathfrak{M}_{W3}\left[\left(2a_{3}-l_{3}'\right)\lambda_{3}+\left(a_{3}-l_{3}'\right)\right]-\mathfrak{M}_{W2}l_{3}'=+10,00$
$p_1 = 1$ $p_1 = 1$ r_{10} $a_1(h_1 \tan a_1) \frac{p_1 I_1}{4} + \frac{p_1 I_1^2 I_1}{24}$ r_{20} $a_1(h_1 \tan a_1) \frac{p_1 I_1}{4} - \frac{p_1 I_1^2 I_1}{24}$ r_{30} $b_1(h_1 \tan a_1) \frac{p_1 I_1}{4} + \frac{p_1 I_1^2 I_1}{24}$ e_2 r_{30} $b_1(h_1 \tan a_1) \frac{p_1 I_1}{4} + \frac{p_1 I_1^2 I_1}{24}$ e_2 e_2 r_{10} $b_1(h_1 \tan a_1) \frac{p_1 I_1}{4} + \frac{p_1 I_1^2 I_1}{24}$ e_2 e_2 r_{10} $b_1(h_1 \tan a_1) \frac{p_1 I_1}{4} + \frac{p_1 I_1^2 I_1}{24}$ e_2 e_2 r_{20} o o o o o r_{30} $D_1 I_1^2 I_1 (1 - \frac{p_1 I_1^2 I_1}{24} (1 - \frac{p_1)}{24} = -2,53125$ e_2 e_1 g_{10} $D_2 I_1 I_2 I_1 (1 - \frac{p_1 I_1^2 I_1}{24} (1 - \frac{p_1 I_1}{24} = -2,53125$ e_2 e_2 g_{10} $D_1 I_2^2 I_1 I_1 (1 - \frac{p_1 I_1^2 I_1}{2} = -2,10516$ e_2 e_2 e_2 g_{10} $D_1 I_1^2 I_1 I_1 = -1$ e_2 e_2 e_2 e_2 g_{10} $D_1 I_1^2 I_1 I_2 = -1$ D_2 e_2 e_2 e_2 e_2 g_{10}	relastungsgileder.	$P_0 = 1$	$-\frac{l_0 l_0'}{4} P_0(0, 16 + 0, 21) \cdot 2$	o	o	o	0	0	$-\frac{l_0 l_0'}{4} P_0(0, 16+0, 21) \cdot 2 = -13, 32$	0	. 0	0	0	0	$-\frac{l_0 l_0'}{4} P_0(0,192 + 0,168) = -6,48$	0	0
τ τ		$p_1 = 1$	$\frac{a_1(h_1 \tan \alpha_1) \frac{p_1 l_1}{4} + \frac{p_1 l_2^{2} l_1'}{24}}{24}$	$-l'_1(h_1 \tan \alpha_1) \frac{p_1 l_1}{4} - \frac{p_1 l_1^2 l'_1}{24}$	0	$b_1(h_1 \tan \alpha_1) \frac{p_1 l_1}{4} + \frac{p_1 l_1^n l_1'}{24} = 62,13981$	0	0	$-\frac{p_1 l_1^2 l_1'}{24} \left(\frac{a_1}{b_1} - 1 \right) = -2,106161$	$-\frac{p_1 l_1^p l_1'}{24} \left(1 - \frac{l_1}{b_1}\right) = -4,212322$	0	$\frac{p_1 l_1^2 (h_1 \tan \alpha_1)}{8 l_0} = + 2.53125$	o	o	$\begin{aligned} \mathfrak{M}_{p_1}[\lambda_1(2a_1 - l'_1) + (a_1 - l'_1)] \\ &+ \lambda_1 \frac{p_1 l_1^2 l'_1}{64} = +21,92517 \end{aligned}$	$-\mathfrak{M}_{p1}l_{1}' - \frac{p_{1}l_{1}^{2}l_{1}'}{6_{4}} = -11,39062$	0
	-	Berro	T10	t20	τ ₃₀	T1'0	T2'0	T310	T ⁽³⁾	$\tau_{20}^{(3)}$	T ⁽³⁾	m,	90(2	W3	3 Å 10	3 820	3 8 30

Der symmetrische Stockwerkrahmen mit zwei geneigten Pfosten.

ver, Baustatik, 2. Aufl., 2. Neudruck

UNIVERSITÄTS-BIBLIOTHEK PADERBORN

Belastung p_1 (Abb. 437). Antimetrischer Anteil.

466

Belastung P_0 (Abb. 438). Antimetrischer Anteil.

 $Y_1 = -\ 0,0630739 \cdot 6,48 = -\ 0,4087$, $Y_2 = -0,0049024 \cdot 6,48 = -0,0318$,

$$Y_2 = -0.003631 \cdot 6.48 = -0.0024$$
. (Fortsetzung auf S. 467.)

Belastungsglieder für symmetrische und antimetrische Temperaturänderung $t = 10^{0}$. $J_c = 0.012825 \text{ m}^4$ $E \alpha_t = 21 \text{ t/m}^2$

Be- lastung	$t = 10^{0} \mathrm{C}$		-
$\tau_{1't}$	$E J_e \alpha_i t \cdot tg \alpha_1$	=+ 1,42584	der sten
τ2,1	$E J_e \alpha_t t \cdot tg \alpha_2$	=+ 0,57712	ober .
$\tau_{3't}$	$E \dot{f}_e \alpha_t t \cdot l_3/h_3$	=+ 5,38650	rwärr , des um <i>t</i>
	- 1,208015 • 1,42584	=- 1,72244	he Ei $1/2$, seels
$ au_{2t}^{(3)}$	$-1,221516\cdot 0,57712 + \frac{3,00}{5,13727}$	1,42584 = + 0,12768	metrisc ten un Rie
τ ⁽³⁾	$-0,859375\cdot 5,38650+\frac{3,00}{5,38630}$	o,57712 = - 4,31872	Sym
3 811	$6E \int_{c} \alpha_{t} t \cdot \frac{h_{1}}{l_{0}}$	=+ 7,63087	he Er- der $1/2$.
3 <i>δ</i> _{2 t}	$6EJ_{o}\alpha_{i}t\cdot\frac{h_{2}}{l_{1}}$	=+12,56849	netriscl mung ten um
3 d _{3 t}	$6EJ_{e}\alpha_{t}t\cdot\frac{h_{3}}{l_{2}}$	=+ 8,07975	Antin wär Pfos

Der symmetrische Stockwerkrahmen mit zwei geneigten Pfosten.

Symmetrischer Anteil.

Biegungsmomente des Stabwerks in Abb. 442.

Antimetrischer Anteil.

Abb. 442.

$$\begin{split} Y_1 = & + 0,0630739 \cdot 16,8126 + 0,0049024 \cdot 36,7585 + 0,0003631 \cdot 10,00 = + 1,2443 , \\ Y_2 = & + 0,0049024 \cdot 16,8126 + 0,0521976 \cdot 36,7585 + 0,0038665 \cdot 10,00 = + 2,0398 , \\ Y_3 = & + 0,0003631 \cdot 16,8126 + 0,0038665 \cdot 36,7585 + 0,0373234 \cdot 10,00 = + 0,5215 . \\ \text{Symmetrischer Anteil.} \end{split}$$

$$\begin{split} X_1 &= +\ 0,005\ 670\cdot 0,609\ 375 = +\ 0,0035\ ,\\ X_2 &= -\ 0,053\ 742\cdot 0,609\ 375 = -\ 0,0327\ ,\\ X_3 &= +\ 0,267\ 214\cdot 0,609\ 375 = +\ 0,1628\ .\\ \frac{X_1'}{h_1} &= \frac{1}{8,5\cdot 5,1373}\ (\ -\ 0,0035\cdot 6,2059 -\ 0,0327\cdot 3,00) = -\ 0,0027\ ,\\ \frac{X_2'}{h_2} &= \frac{1}{7,0\cdot 5,3863}\ (\ +\ 0,0327\cdot 6,5795 +\ 0,1628\cdot 3,00) = +\ 0,0187\\ \frac{X_3'}{h_3} &= \frac{1}{3,0\cdot 12,8000}\ (-4,20 -\ 0,1628\cdot 11,0000) \qquad = -\ 0,1560\ . \end{split}$$

Biegungsmomente des Stabwerks in Abb. 443.

Temperaturänderung (Abb. 440).

Antimetrischer Anteil.

$$\begin{split} Y_1 &= + \ 0.063\ 073\ 9\cdot 7, 63087\ +\ 0.004\ 902\ 4\cdot 12, 56849\ +\ 0.000\ 363\ 1\cdot 8, 07975\ =\ +\ 0.54586\ ,\\ Y_2 &= +\ 0.004\ 902\ 4\cdot 7, 63087\ +\ 0.052\ 197\ 6\cdot 12, 56849\ +\ 0.003\ 866\ 5\cdot 8, 07975\ =\ +\ 0.72470\ ,\\ Y_3 &+\ 0. &=\ 0.00\ 363\ 1\cdot 7, 63087\ +\ 0.003\ 866\ 5\cdot 12, 56849\ +\ 0.037\ 323\ 4\cdot 8, 07975\ =\ +\ 0.35293\ .\\ 30^* \end{split}$$

Symmetrischer Anteil.

468

Biegungsmomente des Stabwerks in Abb. 444-

Symmetrischer Stockwerkrahmen mit gelenkig angeschlossenen Zwischenriegeln. Bei zahlreichen Bauaufgaben, zu deren Lösung Stockwerkrahmen herangezogen werden, dienen die Zwischenriegel nur zur Aussteifung und zur Knicksicherung der Pfosten. Ihre biegungssteife Verbindung ist dann unnötig. Der Stockwerkrahmen mit r Zwischenriegeln ist in diesem Falle bei symmetrischer

Belastung (r + 1) oder (r + 2) fach statisch unbestimmt, je nachdem die Pfostenenden frei drehbar gestützt oder eingespannt sind. Die Schnittkräfte werden dabei aus statisch unbestimmten Gruppenlasten berechnet, die aus der halben Summe symmetrisch liegender Pfostenmomente bestehen. Die Elastizitätsgleichungen erhalten dieselbe Form wie bei der Berechnung des durchlaufenden Trägers. Bei Antimetrie der Belastung sind das Biegungsmoment im Querschnitt c (Abb. 445a)

BIBLIOTHEK

und die Längskräfte in den Riegeln Null, die Schnittkräfte daher bei frei drehbaren Pfostenenden statisch bestimmt, bei starrer Einspannung der Pfostenenden einfach

statisch unbestimmt. Die statisch unbestimmte Querkraft im Scheitel oder das statisch unbestimmte Einspannmoment können nach Abschn. 26 berechnet werden. In zahlreichen Fällen genügen die Angaben der Tabelle 47.

Beispiel. Die Windbelastung des Rahmens (Abb. 445a) wird in den symmetrischen und den antimetrischen Anteil umgeordnet (Abb. 445b, c). Der symmetrische Anteil erzeugt bei Vernachlässigung der Längenänderung der Stäbe in den Riegeln nur Druckkräfte. Bei antimetrischer Belastung sind die

Riegel spannungslos. Querkraft im Scheitel: $Q_e = 2 W \frac{h/2}{l/2} = 2.04778 W$. Momente siehe

Abb. 446a. Bei eingespannten Pfosten wird das Einspannmoment $X_1 = \delta_{10}/\delta_{11}$ unter Verwendung der Momente M_1 nach Abb. 446b berechnet. $\delta_{10} = 32.832\,83 W, \ \delta_{11} = 7.397\,10, \ X_1 = 4.43851 W.$ Statisch unbestimmte Momente: Abb. 446c.

Der symmetrische Stockwerkrahmen mit zwei senkrechten Pfosten. Das Tragwerk kann als Sonderfall der Abb. 425 mit $\alpha_{\tau} = 0$ nach der allgemeinen Rechenvorschrift auf S. 457ff. statisch untersucht werden. Die Lösung ist aber mit anderen überzähligen Größen, die auf Grund der besonderen Eigenschaften des symmetrischen oder antimetrischen Verschiebungs- und Spannungszustandes ausgewählt werden, einfacher.

a) Symmetrische Belastung: Spannungs- und Verschiebungszustand sind symmetrisch. Daher sind in der Symmetrieachse die Tangenten an die Biegelinien der Riegel waagerecht und die Querkräfte Null. Die statische Untersuchung kann daher auf die linke Hälfte des Rahmens beschränkt und der Riegel in der Symmetrieachse mit Q = 0, dw/dx = 0 beweglich eingespannt angenommen werden. Die dem Riegelanschluß kbenachbarten Biegungsmomente X_k, X_{k+1} des Pfostens sind statisch unbestimmt. Auf diese Weise entsteht das Hauptsystem Abb. 447a mit den folgenden geometrischen Bedingungen für die Formänderung:

$$1 \delta_{k(k-1)} + X_k \delta_{kk} + X_{k+1} \delta_{k(k+1)}$$

(761)

$$\frac{1}{k} \frac{1}{kk} + \frac{1}{k+1} \frac{1}{k(k+1)}$$

 $X_k \, \delta_{(k+1)\,k} + X_{k+1} \, \delta_{(k+1)\,(k+1)} + X_{k+2} \, \delta_{(k+1)\,(k+2)} = \delta_{(k+1)\,0}$. J Sechsfacher Betrag der Vorzahlen unter Berücksichtigung einer Riegelverstärkung nach Tabelle 29:

$$\begin{cases} 6 \,\delta_{k\,(k-1)} = h'_k, & 6 \,\delta_{k\,k} = 2 \,h'_k + (2 \,\mu_k + \lambda_k) \,l'_k, \\ 6 \,\delta_{k\,(k+1)} = -(2 \,\mu_k + \lambda_k) \,l'_k = 6 \,\delta_{(k+1)\,k}, \\ \delta_{(k-1),k} = 2 \,h'_k + (2 \,\mu_k + \lambda_k) \,l'_k = 6 \,\delta_{(k+1)\,k}, \end{cases}$$
(762)

 $6 \,\delta_{(k+1)(k+1)} = 2 \,h'_{k+2} + (2 \,\mu_k + \lambda_k) \,l'_k, \qquad 6 \,\delta_{(k+1)(k+2)} = h'_{k+2}.$ Konstantes Trägheitsmoment des Riegels l_k : $\mu_k = 1, \lambda_k = 1.$

a $J_{k+2,h}$ J_{k+2} J_{k+2}

IBLIOTHEK

 X_{k-}

Die Belastung eines einzelnen Riegels lk liefert nur die Belastungszahlen $-6 \delta_{k0} = 6 \delta_{(k+1)0}$, die Belastung eines einzelnen Pfostens h_k nur $6 \delta_{(k-1)0}$ und $6 \delta_{k0}$. Das Kräftebild kann daher ebenso wie beim durchlaufenden Träger mit Festpunkten, Übergangslinien und Kreuzlinienabschnitten aufgezeichnet werden.

Belastungsglieder für symmetrische Belastung (Abb. 448a).

ñ TU

ADERBORN

Der dreigliedrige Ansatz wird rechnerisch nach S. 232, also ebenso wie für den durchlaufenden Träger mit elastisch drehbaren Stützen gelöst. Dasselbe gilt für die zeichnerische Behandlung eines allgemeinen Belastungsfalles nach Abschn. 32. Die Zahlenrechnung ist in dem folgenden Beispiel ausführlich erläutert worden.

b) Antimetrische Belastung. Spannungsund Verschiebungszustand sind antimetrisch. Daher sind nach S. 185 in der Symmetrieachse die Biegungsmomente und die senkrechten Verschiebungen der Querschnitte Null. Die Untersuchung kann daher auf die linke Hälfte des Tragwerks beschränkt und der Riegel mit M = 0, N = 0, w = 0 in der Symmetrieachse durchschnitten und in senkrechtem Sinne gestützt angenommen werden. Die Biegungsmomente $X_{k-1}, X_{k+1}, X_{k+3}$ am unteren Ende der Pfosten sind statisch unbestimmt. Auf diese Weise entsteht das statisch bestimmte Hauptsystem Abb. 447b. Die geometrischen Bedingungen lauten

$$X_{k-1} \,\delta_{(k+1)(k-1)} + X_{k+1} \,\delta_{(k+1)(k+1)} + X_{k+2} \,\delta_{(k+1)(k+2)} = \delta_{(k+1)(k-2)}$$
(763)

Abb. 448. Sechsfacher Betrag der Vorzahlen unter Berücksichtigung der Riegelverstärkung nach Tabelle 29:

$$\begin{array}{l} 6 \,\delta_{(k+1)\,(k-1)} = -\,l_k'(2\,\mu_k - \lambda_k)\,, \qquad 6 \,\delta_{(k+1)\,(k+3)} = -\,l_{(k+2)}'(2\,\mu_{k+2} - \lambda_{k+2})\,, \\ 6 \,\delta_{(k+1)\,(k+1)} = \,l_k'(2\,\mu_k - \lambda_k) + 6\,h_{k+2}' + l_{k+2}'(2\,\mu_{k+2} - \lambda_{k+2})\,. \end{array} \right\}$$
(764)

-

Konstantes Trägheitsmoment des Riegels l_k : $\mu_k = \lambda_k = 1$. Bei Belastung eines einzelnen Riegels l_k sind nur die Belastungszahlen $6 \, \delta_{(k+1)0} = - 6 \, \delta_{(k-1)0}$ von Null verschieden. Dagegen liefert die Belastung eines Pfostens h_k Belastungsglieder $\delta_{10} \neq 0$ bis $\delta_{(k+1)0} \neq 0$.

Statische Untersuchung eines Stockwerkrahmens mit 7 Geschossen.

Belastungsglieder für antimetrische Belastung (Abb. 448b).

₽ĸ.	$-6\delta_{(k-1)0} = 6\delta_{(k+1)0} = \frac{p_kl^2l'_k}{3^2}$
Pk	$-6\delta_{(k-1)0} = 6\delta_{(k+1)0} = P_kll_k'\omega_R(1-2\xi)$
Wĸ	$6 \delta_{(k+1)0} = \frac{w_k h_k^3 l'_k}{2} , \qquad 6 \delta_{(k-1)0} = -\frac{w_k h_k^2}{2} \left(l'_k + 4 h'_k - 2 \frac{h_{k-2}}{h_k} l'_{k-2}\right)$ $6 \delta_{(k-3)0} = -w_k h_k h_{k-2} \left(l'_{k-2} + 3 h'_{k-2} - \frac{h_{k-4}}{h_{k-2}} l'_{k-4}\right)$ $6 \delta_{(k-5)0} = -w_k h_k h_{k-4} \left(l'_{k-4} + 3 h'_{k-4} - \frac{h_{k-6}}{h_{k-4}} l'_{k-6}\right) \text{usw.}$
w _k	$\begin{split} 6 \delta_{(k+1)0} &= \frac{\overline{w}_k h_k^2 l'_k}{6} , \qquad 6 \delta_{(k-1)0} = -\frac{\overline{w}_k h_k^2}{12} \left(2 l'_k + 9 h'_k - 6 \frac{h_{k-2}}{h_k} l'_{k-2}\right) \\ 6 \delta_{(k-3)0} &= -\frac{\overline{w}_k h_k h_{k-2}}{2} \left(l'_{k-2} + 3 h'_{k-2} - \frac{h_{k-4}}{h_{k-2}} l'_{k-4}\right) \\ 6 \delta_{(k-5)0} &= -\frac{\overline{w}_k h_k h_{k-4}}{2} \left(\overline{l'_{k-4}} + 3 h'_{k-4} - \frac{h_{k-6}}{h_{k-4}} l'_{k-6}\right) \text{usw.} \end{split}$
Mk	$-6\delta_{ll}$, $\eta_0 = 6\delta_{ll}$, $\eta_0 = l'_{l}$ M,

 $-6\,\delta_{(k-1)\,0} = 6\,\delta_{(k+1)\,0} = l'_k\,\mathsf{M}_k$

Der dreigliedrige Ansatz (763) kann in ähnlicher Weise wie beim durchlaufenden Träger nach der bekannten Rechenvorschrift rechnerisch oder zeichnerisch gelöst werden.

Die Schnittkräfte ergeben sich aus dem statisch bestimmten Anteil und den Anschlußkräften in Abb. 449.

Statische Untersuchung eines Stockwerkrahmens mit 7 Geschossen für ständige Last und Windlast. Grenzwerte der Biegungsmomente bei voller Nutzlast in einzelnen Geschossen.

1. Geometrische Grundlagen. Abb. 450. Die Trägheitsmomente sind im Bereich eines jeden Stabes konstant. $J_c = 72 \ dm^4$.

A. Symmetrische Belastung. Berechnung nach S. 469. Die statisch überzähligen Größen sind die Anschlußmomente X_k , X_{k+1} der Pfosten,

2. Die geometrischen Bedingungsgleichungen (761). Momente M_k und M_{k+1} nach Abb. 447 a. Momente M_{13} und M_{14} nach Abb. 451, Vorzahlen der Matrix nach (762):

k	l_k	Jk	l'_k	k	h_k	Jĸ	h'_k
2	9,6	171	4,03	2	5.4	307	1,27
4	9,6	171	4.03	4	3,6	256	1,01
6	9,6	108	6,40	6	3,6	256	1,01
8	9,6	90	7,68	8	3,6	143	1,81
10	9,6	90	7,68	IO	3,6	143	1,81
12	9,6	72	9,60	12	3,6	72	3,60
14	9,6	. 72	9,90	14	3,0	60	3,60

UNIVERSITÄTS BIBLIOTHEK PADERBORN Statische Untersuchung eines Stockwerkrahmens mit 7 Geschossen.

$$\begin{split} & 6\,\delta_{k\,(k-1)} = h'_k, \qquad 6\,\delta_{k\,k} = 2\,h'_k + 3\,l'_k, \qquad 6\,\delta_{k\,(k+1)} = -\,3\,l'_k\,, \\ & 6\,\delta_{(k+1)\,(k+1)} = 2\,h'_{k+1} + 3\,l'_k\,, \qquad 6\,\delta_{(k+1)\,(k+2)} = h'_{k+2}\,, \\ & 6\,\delta_{13\,13} = 2\,h'_{14} + 3\,l'_{12} + l'_{14}\left(\frac{f}{h_{14}}\right)^2\,, \\ & 6\,\delta_{14\,14} = 2\,h'_{14} + l'_{14}\left[3 + 3\,\frac{f}{h_{14}} + \left(\frac{f}{h_{14}}\right)^2\right], \\ & 6\,\delta_{13\,14} = h'_{14} - \frac{l'_{14}}{2}\,\frac{f}{h_{14}}\left(3 + 2\,\frac{f}{h_{14}}\right). \end{split}$$

Ergebnis der Rechnung auf S. 472.

3. Die Auflösung des Ansatzes. Anwendung der Rechenvorschrift 3. Die Auflösung des Ansatzes. Anwendung der Rechenvorschrift auf S. 238 mit den Kennbeziehungen $-X_k/X_{k+1} = \varkappa_{k(k+1)}, -X_k/X_{k-1} = \varkappa_{k(k-1)}$ und den Vorzahlen $\beta_{i,k}^* = \beta_{i,k}/6$ der konjugierten Matrix. Da bei symmetris-scher Belastung p_k eines Riegels l_k nach S. 470 nur die Belastungsglieder $- 6\delta_{k0} = 6\delta_{(k+1)0}$ und bei symmetrischer gleichförmiger Belastung w_k eines Pfostenpaares nur die Belastungsglieder $6\delta_{(k-1)0} = 6\delta_{k0}$ entstehen, so genügen die Vorzahlen $\beta_{kk}/6$ der Hauptdiagonalen der konjugierten Matrix und die beiderseits benachbarten Nebenglieder $\beta_{k(k-1)}/6$, $\beta_{k(k+1)}/6$. Die konjugierte Matrix wird daher nur für diesen Bereich berechnet. Das Ergebnis der Auflösung nach S. 238 besteht in der Tabelle S. 474.

473

in der Tabelle S. 474. a) Symmetrische Belastung eines Riegels

$$X_{k} = \left(-\frac{\beta_{k\,k}}{6} + \frac{\beta_{k\,(k+1)}}{6}\right) \, 6 \, \delta_{(k+1)\,0} \,, \qquad X_{k+1} = \left(-\frac{\beta_{(k+1)\,k}}{6} + \frac{\beta_{(k+1)\,(k+1)}}{6}\right) \, 6 \, \delta_{(k+1)\,0} \,;$$

b) symmetrische Belastung eines Pfostenpaares

$$X_{k-1} = \left(\frac{\beta_{(k-1)(k-1)}}{6} + \frac{\beta_{(k-1)k}}{6}\right) 6 \delta_{k6}, \qquad X_k = \left(\frac{\beta_{k(k-1)}}{6} + \frac{\beta_{kk}}{6}\right) 6 \delta_{k0}.$$

Die übrigen statisch unbestimmten Größen sind für jede Belastung p_k , w_k durch die

kennbeziehungen $\varkappa_{k(k+1)}$, $\varkappa_{k(k+1)}$ bestimmt. 4. Die statisch unbestimmten Schnittkräfte bei gleichförmiger Belastung p_k der einzelnen Riegel l_k . Die Belastungsglieder sind nach S. 470 für $p_k = 1 \text{ t/m}$ $(k = 2, 4, \ldots, 12)$

$$-6\,\delta_{k\,0}=6\,\delta_{(k+1)\,0}=\frac{p_k\,l^2\,l'_k}{4}\,.$$

Die Belastung p_{14} erzeugt nach Abb. 451

$$6\,\delta_{13,\,0} = \frac{5}{32}\,\rho_{14}\,l^2\,l'_{14}\,\frac{f}{h_{14}} = 57,024\,, \qquad 6\,\delta_{14,\,0} = -\frac{1}{32}\,\rho_{14}\,l^2\,l'_{14}\,\left(8+5\,\frac{f}{h_{14}}\right) = -\,285,120\,.$$

Berechnung der l_k benachbarten Pfostenendmomente X_k , X_{k+1} $(k=2, 4, \ldots, 12)$ nach 3a:

	and the second			4	10	12
	1,00	1,00	1,00	1,00	1,00	1,00
<i>l'_k</i>	4,03	4,03	6,40	7,68	7,68	9,60
$-6\delta_{k0} = 6\delta_{(k+1)0}$	92,85	92,85	147,46	176,95	176,95	221,18
$=\frac{\beta_{kk}}{6}+\frac{\beta_{k(k+1)}}{6}$	- 0,036678	- 0,039198	- 0,031630	- 0,021131	- 0,026638	- 0,018275
X_k	- 3,4056	- 3,6395	- 4,6642	- 3,7391	- 4,7136	- 4,0421
$-\frac{\beta_{(k+1)k}}{6}+\frac{\beta_{(k+1)(k+1)}}{6}$	+ 0,040255	+ 0,037868	+ 0,017600	+ 0,019529	+ 0,013185	+ 0,012707
X	+ 3,7377	+ 3.5160	+ 2,5953	+ 3,4557	+ 2,3331	+ 2,8105

Die Belastung $p_{14} = 1 \text{ t/m}$ erzeugt

$$X_{13} = \frac{\beta_{13,13}}{6} \cdot 6 \, \delta_{13,0} + \frac{\beta_{13,14}}{6} \cdot 6 \, \delta_{14,0} = + \, 2,6031, \qquad X_{14} = - \, 5,4588$$

	1	4	- 0.500000	+ 0.863.880	- 0.255 528	+ 0.874.078	- 0.285 118	+0.017245	0.347405	± 0.885007	160 Coolo -	+ 0.881 500	or set of the	Conner of L	80898¢ 0 T	Y
14		61677											- Alt	1000	+ 5827	+20311
13	2 569	+ 0,0												+ 62 079	+ 74786	+ 5827
12	+ 0,77	I 818									a state		- 29131	+ 80354	+ 62 079	
II	6416	- 0,26										+ 98078	+111263	- 29131		
10	± 0,78	1 920									- 36018	+124716	+ 98078			
6	6832	- 0,21								+150430	+169959	- 36018				
20	+ 0,87	0281							- 39616	+171561	+150430					
4	7670	- 0,28				•		+ 195 102	+212702	- 59616						
0	+ 0,86	1964					- 64 645	+ 226732	+ 195 102							
2	0230	- 0,21				+ 262 858	+ 300726	- 64 645								
4	+ 0,87	1421			- 83225	+302056	+ 262858									
3	4454	- 0,28		+255476	+295731	- 83 225					-					
¢1	+ 0,87.	2 974	-146077	+292154	+ 255 476											
I)	-1) - 0,31:	+ 466739	- 146 077												
		× K (K	н	01	07	+	10	0	-	00	0	0	н	10	en.	+

474

10⁶-fache Vorzahlen $\beta'_{ik} = \frac{1}{6} \beta_{ik}$.

UNIVERSITÄTS-BIBLIOTHEK PADERBORN 51. Der Stockwerkrahmen.

Statische Untersuchung eines Stockwerkrahmens mit 7 Geschossen.

Die anderen überzähligen Schnittkräfte sind für jeden Belastungsfall p_k

 $X_{h-1} = -\varkappa_{(h-1)h} X_h, \quad \cdot X_r = -\varkappa_{r(r-1)} X_{r-1} \qquad (h < k, r > k+1),$

die Anschlußmomente der Riegel: $(X_{k+1} - X_k)$. Damit kann folgende Tabelle angeschrieben werden:

				and the second second			
	$p_2 = 1$	$p_4 = 1$	$p_6 = 1$	$p_8 = 1$	$p_{10} = 1$	$p_{12} = 1$	$p_{14} = 1$
' X ₁	+ 1,7028	- 0,4332	+ 0,1383	- 0,0354	+ 0,0114	- 0,0031	+ 0,0017
X_2	- 3,4056	+ 0,8663	- 0,2766	+ 0,0707	- 0,0228	+ 0,0062	- 0,0034
X_3	+ 3,7377	+ 1,0028	- 0,3202	+ 0,0818	- 0,0264	+ 0,0072	- 0,0039
X_4	- 1,0519	- 3,6395	+ 1,1623	- 0,2970	+ 0,0957	- 0,0262	+ 0,0140
X_{5}	- 0,9154	+ 3,5160	+ 1,3298	- 0,3398	+ 0,1095	- 0,0300	+ 0,0160
X_6	+ 0,1968	- 0,7558	- 4,6642	+ 1,1918	- 0,3841	+ 0,1052	- 0,0562
X7	+ 0,1693	- 0,6504	+ 2,5953	+ 1,2993	- 0,4187	+ 0,1147	— 0,0б13
· X ₈	- 0,0475	+ 0,1823	- 0,7274	- 3,7391	+ 1,2049	- 0,3302	+ 0,1765
X ₉	- 0,0416	+ 0,1598	- 0,6378	+ 3,4557	+ 1,3613	- 0,3731	+ 0,1994
X10	+ 0,0088	- 0,0339	+ 0,1352	- 0,7323	- 4,7136	+ 1,2918	- 0,6906
X11	+ 0,0069	- 0,0267	+ 0,1063	- 0,5759	+ 2,3331	+ 1,4654	- 0,7834
X ₁₂	- 0,0018	+ 0,0070	- 0,0278	+ 0,1508	- 0,6108	- 4,0421	+ 2,1608
X ₁₃	- 0,0014	+ 0,0054	- 0,0215	+ 0,1165	- 0,4719	+ 2,8105	+ 2,6031
X ₁₄	- 0,0001	+ 0,0004	- 0,0017	+ 0,0091	- 0,0368	+ 0,2190	- 5,4588
$X_2 - X_3$	- 7,1433	- 0,1365	+ 0,0436	- 0,0111	+ 0,0036	- 0,0010	+ 0,0005
$X_4 - X_5$	- 0,1365	- 7,1555	- 0,1675	+ 0,0428	- 0,0138	+ 0,0038	- 0,0020
$X_6 - X_7$	+ 0,0275	— 0,1054	- 7,2595	- 0,1075	+ 0,0346	- 0,0095	+ 0,0051
$X_{8} - X_{9}$	- 0,0059	+ 0,0225	- 0;0896	- 7,1948	- 0,1564	+ 0,0429	- 0,0229
$X_{10} - X_{11}$	+ 0,0019	- 0,0072	+ 0,0289	- 0,1564	- 7,0467	- 0,1736	+ 0,0928
$X_{12} - X_{13}$	- 0,0004	+ 0,0016	- 0,0063	+ 0,0343	- 0,1389	- 6,8526	- 0,4423
+ X14	- 0,0001	+ 0,0004	- 0,0017	+ 0,0091	- 0,0368	+ 0,2190	- 5,4588

5. Die statisch unbestimmten Schnittkräfte bei gleichförmiger, symmetrischer Windbelastung $w_k = 0.525$ t/m. Nach S. 470 entsteht bei symmetrischer Belastung des Pfostenpaares h_k durch w_k $(k = 2, 4, \ldots, 12)$

$$6\,\delta_{(k-1),0} = 6\,\delta_{k,0} = -\frac{w_k\,h_k^2\,h_k'}{w_k}$$

Nach Abb. 452 ist außerdem

 $6 \, \delta_{13,0} = - \, 9,11736, \qquad 6 \, \delta_{14,0} = + \, 18,38781.$

Berechnung der statisch unbestimmten Schnittkräfte $X_{k-1}, \, X_k$ nach 3b:

k	2	4	.6	8	10	12
w _k			0,52	5		
hk	5,4	3,6	3,6	3,6	3,6	3,6
h' _k	1,27	1,01	1,01	1,81	1,81	3,60
$6\delta_{(k-1)0}=6\delta_{k0}$	- 4,86061	- 1,71801	- 1,71801	- 3,07881	- 3,07881	- 6,12360
$\frac{\beta_{(k-1)(k-1)}}{6} + \frac{\beta_{(k-1)k}}{6}$	+ 0,320662	+ 0,212506	+ 0,236081	+ 0,153086	+ 0,133941	+ 0,082132
X _{k-1}	- 1,5586	- 0,3651	- 0,4056	- 0,4713	- 0,4124	- 0,5029
$\frac{\beta_{k(k-1)}}{6} + \frac{\beta_{kk}}{6}$	+ 0,146077	+ 0,218831	+ 0,162087	+ 0,111945	+ 0,088698	+ 0,051223
Xk	- 0,7100	- 0,3760	- 0,2785	- 0,3447	- 0,2731	- 0,3137
	$X_{13} = -$	0,5747 ,	$X_{14} = +$	0,3203 .		

Die anschließenden Pfostenmomente ergeben sich wiederum aus $X_{h-1} = -\varkappa_{(h-1)h} X_{h}$, $X_{r} = -\varkappa_{r(r-1)} X_{r-1}$. Das Ergebnis ist in der folgenden Zahlentafel enthalten.

	wz	<i>w</i> ₄	w_6	w ₈	w10	w ₁₂	w14	Σ
<i>X</i> ₁	- 1,5586	+0,1577	-0,0422	+0,0128	- 0,0034	+0,0011	- 0,0004	- 1,4330
X2	- 0,7100	- 0,3154	+0,0844	-0,0256	+0,0069	-0,0021	+0,0007	-0,9612
X ₃	- 0,6209	- 0,3651	+0,0977	- 0,0297	+0,0080	- 0,0025	+0,0009	-0,9116
X_4	+0,1747	- 0,3760	- 0,3545	+0,1077	- 0,0290	+0,0090	- 0,0031	-0,4711
X_5	+0,1521	-0,3272	- 0,4056	+0,1233	- 0,0332	+0,0103	-0,0035	- 0,4838
X_6	- 0,0327	+0,0703	-0,2785	-0,4323	+0,1163	- 0,0361	+0,0124	-0,5805
X_7	- 0,0281	+0,0605	- 0,2396	-0,4713	+0,1268	-0,0394	++0,0135	-0,5776
X ₈	+0,0079	-0,0170	+0,0672	-0,3447	- 0,3650	+0,1133	- 0,0390	- 0,5772
X_9	+0,0069	- 0,0149	+0,0589	- 0,3022	-0,4124	+0,1280	- 0,0440	- 0,5796
X ₁₀	- 0,0015	+0,0032	-0,0125	+0,0640	-0,2731	-0,4432	+0,1525	- 0,5107
X11	- 0,0012	+0,0025	- 0,0098	+0,0504	-0,2148	-0,5029	+0,1730	- 0,5029
X ₁₂	+0,0003	— р,000б	+0,0026	- 0,0132	+0,0562	-0,3137	-0,4771	- 0,7455
X ₁₃	+0,0002	- 0,0005	+0,0020	- 0,0102	+0,0434	- 0,2423	-0,5747	-0,7821
X14	+0,0000	- 0,0000	+0,0002	- 0,0008	+0,0034	-0,0189	+0,3204	+0,3042

B. Antimetrische Belastung. Berechnung nach S. 470. Die statisch überzähligen Größen sind die Anschlußmomente am unteren Pfostenende.

BIBLIOTHEK

6. Die geometrischen Bedingungsgleichungen (763). Die Vorzahlen sind nach (764) $6\delta_{(k+1)(k-1)} = -l'_k, \qquad 6\delta_{(k+1)(k+3)} = -l'_{k+2}, \qquad 6\delta_{(k+1)(k+1)} = l'_k + 6h'_{k+2} + l'_{k+2}.$

Abb. 453.

Der Ansatz gilt unverändert für das Dachgeschoß mit schrägem Riegel (Abb. 453).

Statische Untersuchung eines Stockwerkrahmens mit 7 Geschossen.

	Matrix der V X ₁	/orzahlen 6 δ X_3	1k: X5	X7	X ₉	X11	X ₁₃
I	+ 11,65	- 4,03					
3	- 4,03	+ 14,12	- 4.03				
5	- Section of	- 4,03	+ 16,49	- 6,40			
7			- 6,40	+ 24.94	- 7,68		
9				- 7,68	+ 26,22	- 7,68	
п					- 7,68	+ 38,88	- 9,60
13						- 9,60	+ 41,10

7. Auflösung des Ansatzes. a) Antimetrische Belastung eines Riegels l_k . Es treten nur zwei Belastungsglieder $-6 \,\delta_{(k-1)\,0} = 6 \delta_{(k+1)\,0}$ auf, so daß die gleiche Rechenvorschrift wie unter 3a verwendet wird.

b) Antimetrische Windlast. Antimetrische Windlast eines Pfostenpaares \boldsymbol{h}_k gibt Belastungszahlen $\delta_{10}, \delta_{30}, \ldots, \delta_{(k+1)0}$. Da jedoch in der Regel nur Windbelastung auf die ganze Pfostenlänge in Betracht kommt, werden die Bebeiastung auf die ganze Plostenlange in Betracht kommt, werden die Be-lastungszahlen δ_{k0} am besten nach (171) unmittelbar aus den Biegungs-momenten M_0 des Hauptsystems angegeben. Die statisch unbestimmten Schnittkräfte können nach S. 236 mit dem Gaußschen Algorithmus berech-net werden. Das Ergebnis läßt sich auch nach einer Superposition anschreiben, in dem jede überzählige Größe X_i zunächst für $6\delta_{k0}$ allein bestimmt wird $(X_i \rightarrow X_{ik})$. Hierzu genügen die Kennbeziehungen und die Hauptglieder $\beta_{kk}/6$ der konjugierten Matrix.

$$X_{hh} = 6 \,\delta_{h0} \cdot \frac{\beta_{hh}}{6} \,,$$

 $X_{(i-1)h} = -\varkappa_{(i-1)i} X_{ih} \text{ für } i \leq h$

 $X_{(i+1)h} = -\varkappa_{(i+1)i} X_{ih} \text{ für } i \ge h;$ $X_i = \sum_{h=1}^{h=n} X_{ih}.$

Kennbeziehungen und Vorzahlen $\beta_{(k+1)}$ (k+1)/6 zur Matrix am Kopf der Seite.

×31		31	×53		275		×	97	×1	19	*1311		
	-0,30	-0,309687 -0		4653	- 0,28	83898	-0,3	2067	- 0,20	09620	- 0,2	33 577	
	×11	13	×9	11	×	70	×	57	×	35	×	13	
	-0,263900		-0,325854		-0,345204		4 -0,4206		0671 -0,31		-0,3	- 0,345 923	
	β ₁₁	4	333	1	355	/	377	1	399	β1	111	β ₁₃	13
+0,0	961357	+0,0	860653	+0,0	746444	+0,0	50 3752	+0,0	15 5 3 9 5	+0,02	29 2954	+0,02	592

8. Die statisch unbestimmten Schnittkräfte für volle antimetrische Windlast. Die Momente des Hauptsystems sind in Abb. 454 ohne Einhaltung eines Maßstabes auf-getragen. In Verbindung mit Abb. 453 ist z. B.

$$6\,\delta_{70} = 6\int M_7\,M_0\,\frac{J_c}{J}\,d\,.$$

 $= w \left[l_{6}' \cdot 60,48 - h_{8}' \left(47,52 + 4 \cdot 25,38 \right) - l_{8}' \cdot 47,52 \right] = -130,013 \ w.$ Belastungszahlen und Superposition der Teilergebnisse:

Abb. 454.

477

oder

5 4

						the second s		
h	1	3	5	7	9	II	13	Σ
6840	- 563,159	+ 8,843	- 147,477	- 130,013	- 52,425	- 104,237	+ 11,397	-
BAN/6	+ 0,096 1357	+ 0,086 0653	+ 0,074 6444	+ 0,0503752	+ 0,045 5395	+ 0,029 2954	+ 0,025 9292	-
<i>X</i> ₁	- 54,1397	+ 0,2633	— I,2059	- 0,3018	- 0,0380	- 0,0158	+ 0,0004	- 55,4375
Xa	- 16,7663	+ 0,7611	- 3,4861	- 0,8725	- 0,1098	- 0,0458	+ 0,0012	- 20,5182
Xs	- 4,6049	+ 0,2090	- 11,0083	- 2,7551	- 0,3467	- 0,1445	+ 0,0037	- 18,6468
X7	- 1,3073	+ 0,0593	- 3,1252	- 6,5494	- 0,8241	- 0,3435	+ 0,0088	- 12,0814
X9	- 0,4080	+ 0,0185	- 0,9753	- 2,0439	- 2,3874	- 0,9951	+ 0,0254	- 6,7658
X11	→ 0,0855	+ 0,0039	- 0,2044	- 0,4284	- 0,5004	- 3,0537	+ 0,0780	- 4,1905
X13	- 0,0200	+ 0,0009	- 0,0477	- 0,1001	- 0,1169	— 0,7133	+ 0,2955	- 0,7016

C. Biegungsmomente aus Eigengewicht. g_2 bis $g_{12} = 1.8$ t/m, $g_{14} = 1.25$ t/m (Dach-

riegel). Die Teilergebnisse der Tabelle S. 475 aus p_2 bis p_{12} werden addiert und mit 1,8 multipliziert. Hierzu treten die mit g_{14} erweiterten Ergebnisse für $p_{14} = 1$.

- FUR	+ 227	Schnitt	$p_2 \div p_{12} = 1$	$p_2 \div p_{12} = 1.8$	$p_{14} = 1,25$	∑ [mt]
+ 7,64 - 5,44	. 255	1 2 3	+ 1,3808 - 2,7618 + 4,4829	+ 2,4854 - 4,9712 + 8,0692	+ 0,0021 - 0,0042 - 0,0049	+ 2,488 - 4,975 + 8,064
+ 4,98 - 8,14	+ 7,63	4 5 6	-3,7566 +3,6701 -4,3103 +3,1005	- 6,7619 + 6,6062 - 7,7585 + 5,5071	+ 0,0175 + 0,0200 - 0,0702 - 0.0766	- 6,744 + 6,626 - 7,829 + 5,520
+ 7,31 -6,00	1 . 242	8 9 10	-3,1095 -3,4570 +3,9243 -4,0440	+ 5,3974 - 6,2226 + 7,0637 - 7,2792	+ 0,2206 + 0,2492 - 0,8632	+ 5.320 - 6,001 + 7.313 - 8,144
+ 5,52 - 7,83	+7,39	11 12 13	+ 3,3091 - 4,5247 + 2,4376	+ 5,9564 - 8,1445 + 4,3877	-0,9792 + 2,7010 + 3,2539	+ 4.977 - 5.444 + 7.642
+ 6,63 - 6,74	+7,36	14 15 16	+ 0,1899 - 7,2447 - 7,4267	+ 0,3418 - 13,0405 - 13,3681	-6,8235 + 0,0006 - 0,0025	- 6,482 - 13,040 - 13,371
+ 8,05 -4,98	+ 270	17 18 19	- 7,4198 - 7,3813 - 7,3531	$ \begin{array}{r} -13,3556 \\ -13,2863 \\ -13,2356 \end{array} $	+ 0,0064 - 0,0286 + 0,1160	$ \begin{array}{r} -13,349 \\ -13,315 \\ -13,120 \end{array} $
+ 2,49	Abb. 455.	20 14 21	-6,9623 +0,1899	-12,5321 + 0,3418	- 0,5529 - 6,8235	-13,085 -6,482 +2,268

Die Momente sind in Abb. 455 dargestellt.

D. Grenzwerte der Biegungsmomente infolge Nutzlast von 2,5 t/m auf Geschoßbreite.

Die Belastungsvorschrift ergi	bt sich aus den Vor	rzeichen der Teilergebnisse de	er Tabelle S. 475.
Diese liefert auch die Schnittkr	lifte für $p = 1 \mathrm{t/m}$	a.	

Schnitt		M_{\max}			M_{\min}					
	Delecturg	Gren	zwert	Palaatung	Grenzwert					
	Delastung	p = 1	p = 2,5] Delastung	$\phi = 1$	$\phi = 2.5$				
5 6 17 17''	$\begin{array}{c} p_4, p_6, p_{10} \\ p_2, p_8, p_{12} \\ p_2, p_{10} \\ p_2, p_{6}, p_{10} \end{array}$	+ 4.9553 + 1.4938 + 0.0621 + 4.3226	+ 12,388 + 3.734 + 0.155 + 10,806	$\begin{array}{c} p_2, p_8, p_{12} \\ p_4, p_6, p_{10} \\ p_4, p_6, p_8, p_{12} \\ p_4, p_8, p_{12} \end{array}$	- 1,2852 - 5,8041 - 7,4819 - 0,2224	$ \begin{array}{r} - 3,213 \\ - 14,510 \\ - 18,705 \\ - 0,556 \\ \end{array} $				
	Balkenmo	oment für p_k =	$= 1 t/m: \frac{p_1}{p_2}$	$\frac{1 \cdot 9,6^2}{8} = \frac{1 \cdot 9,6^2}{8}$	= 11,52 tm .					

Biegungsmomente infolge Windbelastung w.

																		.000				415
Unsymmetr.	Belastung	+ 27,002	+ 9,803	+ 9,081	+ 5,752	+ 3,093	+ 1,844~	- 0'040	- 8,058	- 9,254	- 6,843	- 6,722	- 5,945	- 3,948	- 1,623	- 17,861	- 18,336	- 12.595	- 9,815	- 7.788	- 3,907	- 0,292
Unsymmetr.	Belastung 2 w	+ 54,0045	+ 19,6066	+ 18,1622	+ 13,5034	+ 6,1861	+ 3,6876	- 0,0805	- 16,1152	- 18,5089	- 13,6865	- 13.4440	- 11,8890	- 7,8950	- 3,2467	- 35,7218	- 36,6711	- 25,1899	- 19,6301	- 15.5766	- 7,8145	- 0,5843
33	Schni	τ,	3'	5,	1,1	,6	,11	13	2,	4,	6,	8,	,01	12'	14	15'	16'	17'	18'	19'	20'	21'
Unsymmetr.	Belastung w	- 28,435	- 10,715	- 9,565	- 6,330	- 3,673	- 2,347	- 0,742	+ 7,096	+ 8,783	+ 6,263	+ 6,145	+ 5.434	+ 3,202	+ 1,928	+ 17,811	+ 18,348	+ 12,592	+ 9,817	+ 7.780	+ 3,944	- 0,292
Unsymmetr.	Belastung 2 w	- 56,8705	- 21,4298	- 19,1298	- 12,6590	- 7,3453	- 4,6934	- 1,4837	+ 14,1928	+ 17,5667	+ 12,5255	+ 12,2896	+ 10,8676	+ 6,4040	· + 3,8551	+ 35,6226	+ 36,6965	+ 25,1845	+ 19,6349	+ 15,5610	+ 7,8877	-0,5843
w gun	R	- 55,4375	- 20,5182	- 18,6460	- 12,0812	- 6,7657	4,1905	- 0,7016	+ 15,1540	+ 18,0378	+ 13,1060	+ 12,8668	+ 11,3783	+ 7,1495	+ 3,5509	+ 35,6722	. + 36,6838	+ 25,1872	+19,6325	+ 15,5688	+ 7,8511	0
etrische Belast	Stat. unbest. Anteil	- 55,4375	- 20,5182	- 18,6460	- 12,0812	- 6,7657	- 4,1905	- 0,7016	- 55,4375	- 20,5182	- 18,6460	- 12,0812	- 6,7657	- 4,1905	- 0,7016	- 34,9193	- 1,8722	- 6,5648	- 5,3155	- 2,5752	- 3,4889	0
Antime	Stat. best. Anteil	0	0	0	0	0	0	0	+ 70,5915	+ 38,5560,	+ 31,7520	+ 24,9480	+ 18,1440	+ 11,3490	+ 4,2525	+ 70.5915	+ 38,5560	+ 31,7520	+ 24,9480	+ 18,1440	+ 11,3400	0
stung w	দ্য	- 1,4330	0116,0	- 0,4838	- 0,5778	- 0,5796	- 0,5029	- 0,7821	- 0,9612	- 0,4711	- 0,5805	- 0,5772	- 0,5107	- 0,7455	+'0,3042	- 0,0496	+ 0,0127	- 0,0027	+ 0,0024	- 0,0078	+ 0,0366	- 0,5843
netrische Bela	Stat. unbest. Anteil	- 1,4330	9116'0	- 0,4838	- 0,5778	- 0,5796	- 0,5029	- 0,7821	- 0,9612	- 0,4711	- 0,5805	- 0,5772	- 0,5107	0,7455	+ 0,3042	- 0,0496	+ 0,0127	- 0,0027	+ 0,0024	- 0,0078	+ 0,0366	+ 0.7387
Sym	Stat. best. Anteil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	• 0	0	0	- 1,3230
asi	Schn.	I	3	5	2	6	II	13	64	4	9	8	10	12	14	15	16	17	18	61	20	21

Statische Untersuchung eines Stockwerkrahmens mit 7 Geschossen.

E. Biegungsmomente aus Windbelastung. Das Ergebnis wird durch Superposition des symmetrischen und des antimetrischen Anteils in der Tabelle S. 479 erhalten. Die Momente sind in Abb. 456 aufgezeichnet.

Der symmetrische Stockwerkrahmen mit mehr als zwei Pfosten und frei drehbar angeschlossenen Zwischenstielen. Die Untersuchung des Stockwerkrahmens mit zwei Pfosten für symmetrische Belastung nach S. 469, für antimetrische Belastung nach S. 470 kann unmittelbar auf das erweiterte symmetrische System mit gelenkig angeschlossenen Zwischenpfosten übertragen werden. Die Riegel des Hauptsystems werden jedoch nicht mehr allein in der Symmetrieachse, sondern nach Abb. 457 auch durch Zwischenpfosten gestützt. Sie bilden daher bei beiden Lösungen durchlaufende

Träger mit frei drehbaren Zwischenstützen, das Hauptsystem ist also statisch unbestimmt. Trotzdem werden die überzähligen Größen ebenso wie nach (761) und (763) aus dreigliedrigen geometrischen Bedingungsgleichungen berechnet, nur daß die Vorzahlen $\delta_{kk}^{(r)}$, $\delta_{k(k-1)}^{(r)}$ und die Belastungszahlen $\delta_{k0}^{(r)}$ aus der Formänderung eines durchlaufenden nach Abb. 458a oder Abb. 458b gestützten Trägers k infolge $-X_k = 1$, $-X_{k+1} = 1$ und der Belastung \mathfrak{P} hervorgehen (311). Hierzu werden die Biegungsmomente $M_k^{(r)}$, $M_{k+1}^{(r)}$, $M_0^{(r)}$ für jeden Riegelabschnitt

Abb. 458a oder Abb. 458b nach Abschn. 47 bestimmt.

Das Ergebnis hat für Ausführungen in Eisenbeton keine Bedeutung, so daß die Lösung abgebrochen wird. Sie bietet bei Anwendung der Angaben des Abschn. 37, der sich mit statisch unbestimmten Hauptsystemen beschäftigt, keine Schwierigkeiten.

Stockwerkrahmen mit mehr als zwei Pfosten und biegungssteifer Verbindung von Pfosten und Riegel. Die Schnittkräfte werden aus den Knoten- und Stabdrehwinkeln des Tragwerks entwickelt (Abschn. 38ff.). Die Untersuchung ist auf S. 345ff. gezeigt und in Abschn. 42 auf die Berechnung von symmetrischen Stockwerkrahmen mit zwei, drei und vier Stützen angewendet worden. Der Ansatz bietet keine Schwierigkeiten. Die Zahlenrechnung ist zuverlässig, leider jedoch zeitraubend. Man begnügt sich aus diesem Grunde in der Regel mit Näherungslösungen auf Grund einer Abschätzung des Verschiebungszustandes.

Die Pfostendrehwinkel ψ_c sind bei senkrechter Belastung der Riegel stets klein, so daß sie bei der angenäherten Beschreibung des Spannungs- und Formänderungszustandes vernachlässigt werden können. Man beschränkt die Untersuchung in

ADERBORN

Stockwerkrahmen mit mehr als zwei Pfosten und biegungssteifer Verbindung. 481

diesem Falle oft nur auf einen durchlaufenden Riegel, dessen Pfosten an den benachbarten beiden Riegeln mit vorgeschriebenen statischen oder geometrischen Eigenschaften enden. Dabei werden die Anschlußmomente der Pfosten oder die Knotendrehwinkel der benachbarten Riegel Null gesetzt (frei drehbare Verbindung oder starre Einspannung der Pfosten). Die wahre Lösung für $\psi_c = 0$ wird durch das Ergebnis aus beiden Annahmen eingeschlossen. Sie entspricht einer elastischen Einspannung der Pfostenenden, die oft auch als Grundlage des Spannungsnachweises geschätzt wird. Dabei werden die Wendepunkte der elastischen Linien, also die Nullpunkte der Momentenlinien der dem Riegel benachbarten Pfosten, im Abstand $3/4 \cdot h$ vom Riegel angenommen.

Der durchlaufende Riegel ist in Abschn. 48 mit statisch unbestimmten Schnittkräften und mit Knotendrehwinkeln berechnet worden. Die Untersuchung bedarf nach geeigneten Annahmen über die elastische Einspannung der Pfosten keiner Ergänzung. Sie kann rechnerisch (S. 230) oder zeichnerisch (S. 262) durchgeführt werden. Die Momentenlinien schneiden dabei meist die Achsen der Pfosten im Abstand 0,25 h von dem benachbarten Riegel.

Zur Abschätzung der Schnittkräfte genügen die Ergebnisse auf S. 438 für den durchlaufenden Träger mit unendlich vielen Feldern $l'_k = l'$ oder Annahmen über

die Lage der Festpunkte in den Trägern l_{k-2} , l_{k+2} neben dem belasteten Felde l_k (Abb. 459). Man wählt ebenso wie bei den Pfosten

$a_{(k-3)(k-2)} = 0.25 l_{k-2}, \qquad a_{(k+2)(k+1)} = 0.25 l_{k+2}.$

Waagerechte Belastung. Man unterscheidet Lastangriff am Knoten und Pfosten, rechnet jedoch in der Regel den allgemeinen Fall nur für unverschiebliche Abstützung der Pfosten durch die Riegel, um dann die Stützkräfte gemeinsam mit den vorgeschriebenen Knotenlasten als äußere Kräfte des Stockwerkrahmens zu verwenden. Die Annahme $\psi_{\sigma} = 0$ ist dann auch in einer Näherungslösung unbrauchbar.

Das Schaubild der Biegungsmomente besteht bei Knotenbelastung aus geraden Linien, welche die Stabachsen schneiden, so daß die Schnittpunkte oft zur Abschätzung der Lösung in die Halbierungspunkte der Stäbe gelegt und die Querkräfte eines jeden Stockwerks proportional zu den Trägheitsmomenten der Pfosten auf diese verteilt werden. Damit sind dann die Stabendmomente bestimmt. Leider ist das Ergebnis selbst als Näherungslösung ohne große Bedeutung, da der Spannungszustand des Stockwerkrahmens durch die Annahme der Momentennullpunkte in den Pfostenmitten zu günstig beurteilt wird.

Bleibt die Näherungslösung auf Stockwerkrahmen mit rechteckigem Umriß und rechteckigen Feldern beschränkt, so wird man auch bei ungleicher Verteilung der Nutzlast damit rechnen können, daß die Trägheitsmomente der Säulen der Geschosse in einem konstanten Verhältnis stehen, die Trägheitsmomente der Säulen des ersten Geschosses also mit $J_a c_1, J_a c_2 \ldots J_a c_k$, diejenigen eines anderen mit $J_b c_1, J_b c_2 \ldots$ $J_b c_k$ beschrieben werden, wobei die Säulen $J_a c_2, J_b c_2$ demselben Strang (2) angehören.

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

³¹

Da nun die horizontalen Verschiebungen der Knotenpunkte eines Riegels gleich groß sind und die Schaubilder der Biegungsmomente aller Pfosten der Form nach übereinstimmen, können nach dem wirklich vorhandenen Verschiebungszustand die waagerechten Biegelinien der Pfosten in erster Annäherung als kongruent und daher die Knotendrehwinkel eines Riegels gleich groß angenommen werden ($\varphi_{J,r} = \varphi_{J}$, $r = 1 \dots s$).

Die Addition der Gleichungen $\delta A_J = 0$ für alle Knoten J eines Geschosses liefert unter Berücksichtigung der Kongruenz der Biegelinien (Abb. 460)

$$2 \varphi_{H} \sum_{r=1}^{r=s} \frac{1}{h_{i,r}^{r}} + \varphi_{J} \left(4 \sum_{r=1}^{r=s} \frac{1}{h_{i,r}^{r}} + 12 \sum_{r=2}^{r=s} \frac{1}{l_{i,r}^{r}} + 4 \sum_{r=1}^{r=s} \frac{1}{h_{k,r}^{r}} \right) \\ + 2 \varphi_{K} \sum_{r=1}^{r=s} \frac{1}{h_{k,r}^{r}} - 6 \psi_{i} \sum_{r=1}^{r=s} \frac{1}{h_{i,r}^{r}} - 6 \psi_{k} \sum_{r=1}^{r=s} \frac{1}{h_{k,r}^{r}} = 0.$$
 (a)

Die Gleichungen $\delta A_c = 0$ lauten für die beiden dem Riegel i benachbarten Stockwerke

$$6\sum_{r=1}^{r=s} \frac{1}{h'_{i,r}} (\varphi_{H} + \varphi_{J} - 2 \psi_{i}) + W_{i}h_{i} = 0, \quad W_{i} = \sum_{i}^{n} H_{m},$$

$$6\sum_{r=1}^{r=s} \frac{1}{h'_{k,r}} (\varphi_{J} + \varphi_{K} - 2 \psi_{i}) + W_{k}h_{k} = 0, \quad W_{k} = \sum_{k}^{n} H_{m}.$$
(b)
$$6\sum_{r=1}^{r=s} \frac{1}{h'_{k,r}} (\varphi_{J} + \varphi_{K} - 2 \psi_{k}) + W_{k}h_{k} = 0, \quad W_{k} = \sum_{k}^{n} H_{m}.$$
(c)
$$K_{i} = \frac{k_{i,1}}{k_{i,r}} \int_{i=1}^{k_{i,r}} \frac{k_{i,2}}{k_{i,1}} \int_{i=1}^{k_{i,r}} \frac{k_{i,2}}{k_{i,1}} \int_{i=1}^{k_{i,r}} \frac{k_{i,2}}{k_{i,1}} \int_{i=1}^{k_{i,1}} C = \sum_{r=1}^{r=s} c_{r}$$
(b)
$$K_{i} = \frac{k_{i,1}}{k_{i,r}} \int_{i=1}^{n} \frac{1}{k_{i,r}} \int_{i=1}^{k_{i,1}} \frac{1}{c_{r}} \int_{i=1}^{k_{i,1}} C = \sum_{r=1}^{i=s} c_{r}$$
(b)
$$K_{i} = \frac{1}{k_{i,r}} \int_{i=1}^{k_{i,r}} \frac{1}{k_{i,r}} \int_{i=1}^{k_{i,1}} \frac{1}{c_{r}} \int_{i=1}^{k_{i,1}} C = \sum_{r=1}^{i=s} c_{r}$$
(c)
$$\sum_{r=1}^{i=s} \frac{1}{k_{i,r}} \int_{i=1}^{r=s} c_{r} = \frac{1}{k_{i,1}} \int_{i=1}^{r=s} c_{r} = \frac{1}{k_{i,1}} \int_{i=1}^{r=s} c_{r} = \frac{1}{k_{i,1}} \int_{i=1}^{i=s} c_{r} =$$

 $\sum_{r=2}^{r=s} \frac{1}{l_{i,r}^r} = \frac{s-1}{l_{i,m}^r}$ liefert einen Mittelweft $l_{i,m}^r$. Die Substitution der Pfostendrehwinkel ψ_i , ψ_k nach (b)

$$\begin{array}{l}
6 \, \varphi_i \, \frac{C}{h'_{i,1}} = \frac{3 \, C}{h'_{i,1}} \left(\varphi_H + \varphi_J \right) + \frac{W_i \, h_i}{2} , \\
6 \, \varphi_k \, \frac{C}{h'_{k,1}} = \frac{3 \, C}{h'_{k,1}} \left(\varphi_J + \varphi_K \right) + \frac{W_k \, h_k}{2} \end{array} \right)$$
(765)

in (a) liefert die folgenden dreigliedrigen Beziehungen zwischen den Knotendrehwinkeln dreier benachbarter Riegel:

$$-\varphi_{H}\frac{1}{h_{i,1}'} + \varphi_{J}\left(\frac{1}{h_{i,1}'} + \frac{12(s-1)}{Cl_{i,m}'} + \frac{1}{h_{k,1}'}\right) - \varphi_{K}\frac{1}{h_{k,1}'} - \frac{W_{i}h_{i}}{2C} - \frac{W_{k}h_{k}}{2C} = 0, \quad (766a)$$

allgemein:

BIBLIOTHER

$$\varphi_H \,\overline{a}_{JH} + \varphi_J \,\overline{a}_{JJ} + \varphi_K \,\overline{a}_{JK} + \overline{a}_{J0} = 0. \tag{766 b}$$

Sie werden am einfachsten durch Iteration gelöst, da die Hauptglieder wesentlich größer als die Nebenglieder sind.

Die Ergebnisse dieser Näherungsrechnung lassen sich durch Iteration der statischen Bedingungen (599) bis (601) verbessern.

Stockwerkrahmen mit mehr als zwei Pfosten und biegungssteifer Verbindung. 483

Die Brauchbarkeit der Lösung wird an dem Stockwerkrahmen Abb. 331 nachgeprüft, dessen Stab- und Knotendrehwinkel nach Abschn. 42 bekannt sind. Er besitzt s = 4 Pfosten, also 12 (s - 1) = 36, und ist zur Mittellinie symmetrisch, daher $c_1 = c_4 = 1,00$, $c_2 = c_3 = 1,28$, $C = 2 (c_1 + c_2) = 4,56$. Für den Abschlußriegel l_g ist $1/l'_{g,m} = 1/3 \cdot (2 \cdot 0,105 + 0,211) = 0,140$, für alle übrigen Riegel $1/l'_{4,m} = 0,216$. Die reziproken Werte $1/h'_{g,1}$ werden nach S. 359 angeschrieben, so daß alle Vorzahlen und Belastungszahlen des Ansatzes (766) bekannt sind.

i	$1/h'_{i,1} = a_{(J-1)J}$	$1/h'_{(i+1),1} = \overline{a}_{J(J+1)}$	$\frac{\mathbf{I}}{l'_{\mathbf{f},m}}$	$\frac{36}{Cl_{i,m}'}$	ājj	Wi	Wihi	$\frac{W_i h_i}{2 C}$	ā _{J6}
g f e d c b a	$\begin{array}{c} - 0,059 \\ - 0,085 \\ - 0,198 \\ - 0,254 \\ - 0,254 \\ - 0,340 \\ - \end{array}$		0,140 0,216 0,216 0,216 0,216 0,216 0,216 0,216	1,105 1,705 1,705 1,705 1,705 1,705 1,705	1,164 1,849 1,988 2,157 2,213 2,299 2,607	1,105 3,380 5,720 8,060 10,400 12,740 14,885	3,757 12,168 20,592 29,016 37,440 45,864	0,41 1,34 2,26 3,20 4,10 5,02	- 0,41 - 1,75 - 3,60 - 5,46 - 7,30 - 9,12

Ansatz der Bedingungsgleichungen (766).

	ΨA	φ_B	φo	φD	φ_B	φ <i>r</i>	φ_{θ}	\overline{a}_{J_0}
A	2,607	- 0,340		1000				- 9,92
В	- 0,340	2,299	- 0,254	· · · · · · · · · · · · · · · · · · ·				- 9,12
С		- 0,254	2,213	- 0,254				- 7,30
D			- 0,254	2,157	- 0,198	-		- 5,46
E				- 0,198	1,988	- 0,085		- 3,60
F					- 0,085	1,849	- 0,059	- 1,75
G						- 0,059	1,164	- 0,41

Iteration der Lösung.

Фл	φ_B	<i>\$</i> 0	φD	φE	φF	φø
3,80 4,39 4,46 4,47 4,47	4,52 5,04 5,09 5,10 5,10	3,82 4,22 4,25 4,25 4,25	2,98 3,22 3,24 3,24	2,11 2,17 2,17 2,17 2,17	1,04 1,05 1,05 1,05	0,40 0,40 0,40 0,40

Fehler gegenüber dem genauen Ergebnis auf S. 365.

Winkel	<i>𝒫𝜆</i>	φ_B	φσ	φ _D	φE	φ_F	φø
Fehler in % .	- 12	- 17	- 18	- 19	- 28	- 40	- 50
Winkel	ФĦ	фз	φĸ	φL	Фм	φ_N	φ_R
Fehler in % .	+7	+9	+9	+ 10	+ 16	+ 30	+ 48

Berechnung der Stabdrehwinkel nach (765).

$$\psi_i = \frac{W_i h_i}{2 C} \frac{h'_{i,1}}{6} + \frac{1}{2} (\varphi_{J-1} + \varphi_J) .$$

31*

52. Der Rahmenträger.

$i \qquad \frac{W_i h_i}{2 C}$		$\frac{6}{h_{i,1}'}$	$\frac{W_i h_i}{2 C} \Big/ \frac{6}{h'_{i,1}}$	<i>mJ</i> -1	фј	Ψi	Fehler ψ_i %	
-	4.00	3 372	1.45	0	4,47	3,69	+ 1,1	
h	5.02	2.040	2,46	4,47	5,10	7,24	- I,3	
6	4.10	1.524	2,69	5,10	4,25	7,37	- 1,9	
d	3 20	1.524	2,10	4,25	3,24	5,84	- 2,2	
	2.26	1.188	1,90	3,24	2,17	4,70	- 2,I	
f	1.34	0.510	2,63	2,17	1,05	4,24	- 5,1	
g	0,41	0,354	1,16	1,05	0,40	1,88	- 16,1	

Werden diese Werte als Grundlage der Iteration der statischen Bedingungsgleichungen von S. 362/363 verwendet, so liefern die zweiten verbesserten Werte

Фи	φ_B	φσ	φD	φ_E	φ _F	<i>q</i> a
+ 5,08	+ 6,11	+ 5,14	+ 3,96	+ 3,08	+ 1,73	+ 0,75
ΨĦ	φs	φĸ	φL	Фм	φ_N	φ_{R}
+ 4,17	+ 4,65	+ 3,86	+ 2,94	+ 1,86	+ 0,80	+ 0,26
ψa	ψь	Ψo	Ψa	Ψe	ψı	Ψο
+ 2.65	+ 7 22	+ 7.46	+ 5.92	+4.79	+ 4,46	+ 2,21

bereits eine gute Annäherung für die Biegungsmomente.

$M_J^{(h)}$	Betrag	Fehler %	$M_J^{(h)}$	Betrag	Fehler %	$M_J^{(h)}$	Betrag	Fehler %	$M_J^{(h)}$	Betrag	Fehler %
M ₀ ^(c)	- 3,04	0,3	$M_F^{(\tilde{f})}$	- 1,16	0,0	$M_{H}^{(\overline{h})}$	- 4,11	0,5	$M_N^{(\overline{n})}$	- 2,10	0,0
M _c ^(e)	+ 4.72	1,3	$M_F^{(f)}$	+ 1,42	2,1	$M_{H}^{(a)}$	+ 4,48	0,0	$M_N^{(l)}$	+ 1,11	1,8
$M_c^{(\overline{d})}$	- 1,79	1,7	$M_F^{(\overline{g})}$	- 0,26	7,1	$M_{H}^{(h)}$	+ 7,86	0,1	$M_N^{(n)}$	+ 1,51	1,9
						$M_{II}^{(i)}$	- 8,16	0,3	$M_N^{(\overline{r})}$	- 0,52	8,8

Die Näherungslösung für die Stabdrehwinkel ψ_e auf S. 482 ist also auch zur strengen statischen Untersuchung des Tragwerks nützlich, da sie gute Anfangswerte zur Iteration der allgemeinen Lösung liefert. Ihre Konvergenz ist daher günstig, so daß die algebraische Auflösung der Bedingungen nach Abschn. 29 unnötig wird.

Spiegel, G.: Mehrstielige Rahmen. Berlin 1920. — Traub: Beitrag zur Berechnung von Stockwerkrahmen. Bauing. 1922 S. 18. — Fritsche: Die Berechnung des symmetrischen Stockwerkrahmens mit geneigten und lotrechten Ständern mit Hilfe von Differenzengleichungen. Berlin 1923. — Grüning, M.: Die Statik des ebenen Tragwerks. Berlin 1925. — Bleich-Melan: Die gewöhnlichen und partiellen Differenzengleichungen der Baustatik. Berlin 1927. — Pasternack, P.: Berechnung vielfach statisch unbestimmter biegefester Stab- und Flächentragwerke. Zürich 1927. — Worch, G.: Studie über die Wahl der Unbekannten bei der Berechnung hochgradig statisch unbestimmter Systeme. Beton u. Eisen 1928 S. 363. — Takabeya, F.: Rahmentafeln. Berlin 1930. — Bleich, F.: Stahlhochbauten Bd. 1. Berlin 1932. — Michnik, P.: Näherungsverfahren zur Berechnung von Stockwerkrahmen für vertikale und horizontale Belastungen. Bauing. 1932 S. 74.

52. Der Rahmenträger.

Der Rahmenträger ist ebenso wie der Stockwerkrahmen ein durch Stabführung und Stützung ausgezeichnetes Netz-steifer Vierecke. Die Stäbe sind gerade, die Pfosten parallel zueinander. Die Träger unterscheiden sich durch die Gurtführung und durch die Art ihrer Abstützung. Abb. 461.