

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Tabellen zur Ermittlung der Schnittkräfte eines Zweigelenkbogenträgers mit analytisch bestimmter Mittellinie für verschiedene Funktionen Jc/J cos α

urn:nbn:de:hbz:466:1-74292

Visual Library

Tabelle 41. Zweigelenkbogenträger mit analytisch bestimmter Mittellinie.

1. Die Mittellinie ist eine Parabel mit $y = 4/\xi\xi'$; $\xi = x/l$. Die Stützweite des Bogenträgers ist l, der Querschnitt im Scheitel bestimmt durch J_o, F_o , am Kämpfer bestimmt durch α_k , J_k , F_k , n. Die elastischen Eigenschaften eines Zuggliedes ergeben sich aus dessen Länge z, dem Querschnitt F_z , dem Elastizitätsmodul des Baustoffes E_z . Die Ansätze (804) u. (807) für δ_{11} , δ_{10} lassen sich dann formal integrieren.

a) Bogenform: $J_c/J \cos \alpha = 1$; n = 1; l = z.

$$\delta_{1m} = \frac{f l^2}{3} (\xi - 2 \xi^3 + \xi^4) = \frac{f l^2}{3} \omega_R (1 + \omega_R) = \frac{f l^2}{3} \omega_P'', \quad (\omega_P'' \text{ Tab. 22}).$$

Gleichung der Einflußlinie: $X_1 = H_a = H_b$
 $H_a = \frac{5}{8} \frac{l}{f} \frac{1}{1 + v} \omega_P''; \qquad M_e = \frac{l}{8} \left(4 \xi - \frac{5}{1 + v} \omega_P'' \right).$

$$\begin{array}{ccc} t & H_{a} = -\frac{1}{2} \left[\pm 1 + \frac{5 - \eta'}{4 \left(1 + \nu \right)} \eta'^{\frac{3}{2}} \right]; \\ & M_{e} = -f \frac{\eta'}{2} \left[1 - \frac{5 - \eta'}{4 \left(1 + \nu \right)} \eta \eta' \right]. \end{array}$$

$$\begin{array}{c} H_{a} = \frac{p}{16f(1+v)} \beta^{2} (5-5\beta^{2}+2\beta^{3}), \\ H_{b} = \frac{p}{16f(1+v)}, \\ A = \frac{p}{2} \beta(2-\beta), \\ B = \frac{p}{2} \beta^{2}, \\ \\ H_{a} = 0.02279 \frac{p}{1^{2}} \beta^{2}, \\ \\ H_{a} = 0.02279 \frac{p}{1^{2}} \beta^{2}, \\ \\ H_{a} = \frac{5}{24} p^{2}, \\ \\ B = \frac{1}{24} p^{2}, \\ \\ B = \frac{1}{24} p^{2}, \\ \\ B = \frac{1}{24} p^{2}, \\ \\ H_{a} = -B = -\frac{M}{1}, \\ \\ H_{b} = -0.01587 p^{2}, \\ \end{array}$$

$$H_{a} = \frac{15 E J_{e} (\alpha_{t} t l - \Delta l)}{8 f^{2} l (1 + \nu)}, \quad A = B = 0, \quad M_{e} = -Hf.$$

33*

515

BIBLIOTHEK

55. Der Zweigelenkbogen.

b) Bogenform: $J_c/J\cos\alpha = 1 - (1-n)(1-2\xi)^2$. $y = 4f\xi\xi'; \quad n = J_c/J_k\cos\alpha_k; \quad l = z$. $\delta_{11} = \frac{8}{15}\frac{6+n}{7}f^2l(1+v);$ $\lambda = \frac{15}{8}\frac{7}{6+n}\frac{1}{f^2}\frac{J_c}{F_c} \quad \text{oder} \quad v = \frac{15}{8}\frac{7}{6+n}\frac{1}{f^2}\left(\frac{J_c}{F_c} + \frac{E_b}{E_z}\frac{J_c}{F_z}\right).$ $\delta_{1m} = \frac{fl^2}{3}\omega_P' + \frac{fl^2}{15}(n-1)(1+\omega_R - 8\omega_R^2).$ Gleichung der Einflußlinie: $H_a = H_b = X_1.$ $X_1 = \frac{l}{f(1+v)}\frac{7\omega_R}{8(6+n)}[5(1+\omega_R) + (n-1)(1+\omega_R - 8\omega_R^2)] = \frac{l}{f(1+v)}z.$

Die Funktion \varkappa ist symmetrisch. Sie wird für den Leitwert n und ausgezeichnete Abszissen ξl der Lastpunkte angegeben.

Funktion \varkappa fur $0,1 \leq n \leq 1,2$.									
n	Werte \varkappa für die Lastpunkte $\xi =$								
	0,1	0,2	0,25	0,3	1/3	0,4	0,5		
0.1	0.0585	0,1134	0,1377	0,1590	0,1710	0,1895	0,1994		
0.2	0.0588	0.1138	0,1379	0,1590	0,1708	0,1890	0,1990		
0.3	0.0501	0.1141	0,1382	0,1590	0,1707	0,1886	0,1986		
0.4	0.0505	0.1144	0.1385	0,1590	0,1706	0,1882	0,1982		
0.5	0.0508	0.1147	0.1387	0.1590	0,1705	0,1878	0,1978		
0.6	0.0602	0.1150	0.1388	0,1590	0,1703	0,1874	0,1973		
0.7	0.0605	0.1153	0.1389	0,1590	0,1701	0,1870	0,1968		
0.8	0.0608	0.1156	0.1300	0.1500	0,1699	0.1867	0,1963		
0,0	0.0010	0.1158	0.1300	0.1500	0,1697	0,1863	0,1959		
1.0	0.0013	0.1160	0.1301	0.1500	0,1696	0,1860	0,1954		
1,2	0,0619	0,1166	0,1392	0,1590	0,1693	0,1855	0,1948		

Streckenlast p. (Für $\beta = \frac{1}{2}$ und $\beta = 1$ wird X_1 von n unabhängig. Es gelten dann die Formeln auf S. 515): $X_1 = \frac{p l^2}{16 / (1 + n)} \frac{7}{6 + n} \beta^2$

 $\cdot \left[4 + n - 5 n \beta^{2} - (8 - 10 n) \beta^{3} + 8 (1 - n) \beta^{4} \left(1 - \frac{2}{7} \beta \right) \right]$

c) Bogenform zur vereinfachten Ableitung der Einflußlinien. Ohne Rücksicht auf die vorhandene Bogenform kann zur näherungsweisen Berechnung der Einflußlinien auch

und

$$\frac{J_e}{J\cos\alpha} \cdot y = \text{const} = f$$
$$\cos\alpha \frac{F_e}{F} = \text{const} = 1$$

gesetzt werden. Nach (803) ist dann mit

$$y = 4f\xi\xi', \quad \eta = y/f$$

$$X_{1} = \frac{\int M_{0} y \frac{J_{e}}{J \cos \alpha} dx}{\int y^{2} \frac{J_{e}}{J \cos \alpha} dx + \frac{J_{e}}{F_{e}} \int \cos \alpha \frac{F_{e}}{F} dx} = \frac{f \int M_{0} dx}{f \int y dx + \frac{J_{e}}{F_{e}} \int dx} = \frac{\int M_{0} dx}{\frac{2}{3} f l (1+\nu)}; \quad \nu = \frac{3}{2} \frac{J_{e}}{F_{e} f^{2}}.$$

Tabelle 41. Zweigelenkbogenträger mit analytisch bestimmter Mittellinie.

Gleichung der Einflußlinie:

$$X_{1} = \frac{3}{4} \frac{l}{f} \frac{\omega_{R}}{1+\nu} = \frac{3}{16} \frac{l}{f(1+\nu)} \frac{y}{f}.$$
 (Parabel.)

Die Stützkräfte K_a , K_b aus $P_m = 1$ (Abb. 494) schneiden sich auf der Kämpferdrucklinie, in diesem Falle einer Parallelen zu $a \div b$ im Abstande

$$f^* = \frac{l}{H} \omega_R = \frac{4}{3} f(1+\nu), \qquad H = X_1 = \frac{l}{f^*} \cdot \omega_R$$

$$X_1 = \frac{p l^2}{8f} \frac{1}{1+\nu} \beta'^2 (3-2\beta'), \qquad \beta' = 1,0: \qquad X_1 = \frac{p l^2}{8f} \frac{1}{1+\nu}.$$

Das Ergebnis ist trotz der Vereinfachung der Integranden brauchbar. Der Fehler läßt sich für die Einflußlinie X_1 und $J_c/J \cos \alpha = 1$ anschreiben: Mit

$$\begin{split} X_1 &= \frac{\int M_0 \, y \, dx}{\int y^2 \, dx \, (1+\nu)} = \frac{\int M_0 \, dx}{\frac{\gamma_1 \cdot fl \, (1+\nu)}{1-\kappa}} \left[1 + \frac{\varkappa - \chi}{1-\varkappa} \right] \quad \text{und} \quad y' = f - y \,, \\ \varkappa &= \frac{\int y \, y' \, dx}{f \int y \, dx} \,, \qquad \chi = \frac{\int M_0 \, y' \, dx}{f \int M_0 \, dx} \,, \quad \text{wird} \quad \varphi = \frac{\varkappa - \chi}{1-\varkappa} = \frac{5 \, \omega_R - 1}{6} \,. \end{split}$$

Der größte Fehler beträgt daher: $(\xi = \xi' = \frac{1}{2})$, $\varphi = 1/24 \approx 4\%$. Er wird für Bogenform b S. 516 mit wachsendem $n = J_c/J_k \cos \alpha$ (sichelförmige Träger) immer geringer und für n = 10/3nahezu Null.

Einflußlinie des Biegungsmomentes im Querschnitt r:

$$\psi = \frac{3}{16} \frac{l}{f(1+\nu)}, \qquad \eta_r = \frac{y_r}{f},$$
$$M_r = \psi \eta_r \left(\frac{M_{0r}}{\psi \eta_r} - y\right) = \psi \eta_r \cdot \overline{y},$$
$$M_{0r,r} = \frac{4}{2} \left((1+\nu) - \psi \right) = \psi \eta_r \cdot \overline{y},$$

Abb. 496.

mit

$$\frac{M_{0r,r}}{\psi \eta_r} = \frac{4}{3} f(1+\nu) = f^*$$

als ausgezeichnete Ordinate in r (Abb. 495). Die Einflußlinien der Biegungsmomente in den Quer-schnitten $r \to h$ mit ξ_h oder $\xi'_h \gtrless (1 + v)/3$ er-halten daher eine Lastscheide $E_h(\varepsilon_h, \varepsilon'_h)$ (Abb.496). Die Lastscheiden der übrigen Querschnitte $r \to k$ werden mit C (Z (Z)). Er ($r \to 0$) horzichest werden mit $C_k(\zeta_k, \zeta'_k)$; $E_k(\varepsilon_k, \varepsilon'_k)$ bezeichnet. Bestimmung der Lastscheiden:

 $\varepsilon_h = (1+\nu)/3\,\xi'_h$, $\varepsilon'_h = 1 - \varepsilon_h$, $arepsilon_k = (1+
u)/3\,\xi_k'$, $arepsilon_k = 1-arepsilon_k$, $\zeta_k = 1 - \zeta'_k$, $\zeta'_k = (1 + \nu)/3 \,\xi_k$.

Grenzwerte der Biegungsmomente für gleichförmig verteilte Nutzlast.

Für v = 0 sind der positive und negative Anteil der Einflußfläche einander gleich. Daher ist für gleichförmig verteilte Nutzlast p:

 $r \rightarrow h$: eine Lastscheide

$$\epsilon'_{h} = 1 - \frac{1}{3\xi'_{h}}, \qquad H_{h} = \frac{p l^{2}}{8f} \epsilon'^{2}_{h} (3 - 2\epsilon'_{h}),$$

 $\max |M_{h}| = \frac{p l^{2}}{2} \epsilon'^{2}_{h} \xi_{h} - H_{h} y_{h}.$

 $r \rightarrow k$: zwei Lastscheiden

$$\begin{aligned} \varepsilon_k' &= 1 - 1/3 \, \xi_k' \,, \qquad \zeta_k = 1 - 1/3 \, \xi_k \,, \\ H_k &= \frac{p \, l^2}{8 \, t} \left[\varepsilon_k'^2 \, (3 - 2 \, \varepsilon_k') + \zeta_k^2 \, (3 - 2 \, \zeta_k) \right] \,, \\ & \uparrow^{12} \end{aligned}$$

$$\max |M_k| = \frac{p \iota^s}{2} \left[(e_k^{\prime 2} - \zeta_k^2) \xi_k + \zeta_k^2 \right] - H_k y_k .$$

55. Der Zweigelenkbogen.

 ε_r' ; ζ_r ; H_r und max $|M_r|$ für p = const in den Schnitten $\xi_r = 0, 1 \dots 0, 5$.

Ër.	0,1	0,2	0,3	0,4	0,5
$ \begin{array}{c} \varepsilon_r' \\ \zeta_r \\ H_r \\ \max M_r \end{array} $	$ \begin{array}{r} 17/27 \\ 0,690 \ p \ l^2/8 \ f \\ 0,011 \ 23 \ p \ l^2 \end{array} $	$\frac{7/12}{0,624 \not p \ l^2/8 f}_{0,01587 \not p \ l^2}$	$ \begin{array}{c} 11/21 \\ - \\ 0,536 \ p \ l^2/8 \ f \\ 0,01508 \ p \ l^2 \end{array} $	4/9 1/6 0,491 \$\$\$ 12/8 f 0,01109 \$	

2. Die Mittellinie ist ein Kreisbogen mit gleichbleibendem Querschnitt (F, J), von dem $l = 2l_1$ und f gegeben sind.

 $\delta_{11} = r^3 \left(\alpha_0 - 3 \sin \alpha_0 \cos \alpha_0 + 2 \alpha_0 \cos^2 \alpha_0 \right) + r \frac{J}{F} \left(\alpha_0 + \sin \alpha_0 \cos \alpha_0 \right) + l \frac{E_b J}{E_z F_z};$

p

Einzellast 1 t im Punkt *m* (
$$\alpha$$
) ohne Berücksichtigung von N_0 .
$$\delta_{m\,1} = \frac{r\,l^2}{2}\,\omega_B + e\,r^2\left[(\cos\alpha + \alpha\sin\alpha) - (\cos\alpha_0 + \alpha_0\sin\alpha_0)\right].$$

Halbseitige Belastung durch p:

$$\delta_{10} = \frac{p r^4}{4} \left[\sin \alpha_0 \left(\frac{4}{3} \sin^2 \alpha_0 - \cos^2 \alpha_0 \right) + \alpha_0 \cos \alpha_0 \left(1 - 2 \sin^2 \alpha_0 \right) \right] - \frac{p l_1^3}{3 r} \frac{J}{F}$$

Bei vollständiger Belastung des Bogenträgers durch p ist δ_{10} doppelt so groß. Das Ergebnis gestattet, den Anteil der Längskräfte auch in allgemeinen Ansätzen für δ_{10} , δ_{11} abzuschätzen.

Winddruck. (Der Anteil der Längskräfte in δ_{10} wird vernachlässigt.) a) Einseitiger Winddruck w im Bereich a bis c. Das feste Auflager von Bogenträgern mit Zugband liegt bei a. Abb. 498.

Hauptsystem: Balkenträger mit festem Auflager in a.

Für $w = w_0 \sin^2 \alpha$ winkelrecht zur Mittellinie ist: $\delta_{10} = \frac{w_0 r^4}{2} \Phi$,

$$\begin{split} \varPhi &= -\sin\alpha_0 \left(\frac{2}{3} + 3\cos\alpha_0 - \frac{7}{6}\cos^2\alpha_0\right) + \alpha_0 \left(1 + \frac{1}{2}\cos\alpha_0 + 2\cos^2\alpha_0 - \cos^3\alpha_0\right). \\ &= -\sin\alpha_0 \left(\frac{2}{3} + 3\cos\alpha_0 - \frac{7}{6}\cos^2\alpha_0\right) + \alpha_0 \left(1 + \frac{1}{2}\cos\alpha_0 + 2\cos^2\alpha_0 - \cos^3\alpha_0\right). \\ &= \frac{1}{2} \left(1 + \frac{1}{2}\cos\alpha_0 + 2\cos^2\alpha_0 - \cos^2\alpha_0\right), \quad W_v = \frac{w_0 r}{3}\sin^3\alpha_0. \\ &= \frac{w_0 r}{3} \left[2 - \cos\alpha_0 \left(3 - \cos^2\alpha_0\right)\right], \quad W_v = \frac{w_0 r}{3}\sin^3\alpha_0. \\ &= \frac{1}{2} \left(1 + \frac{1}{2}\cos\alpha_0 + 2\cos^2\alpha_0\right) - e = \frac{3}{4} l_1 \frac{W_v}{W_h} - e, \\ &= \frac{1}{4} d_1 \frac{w_v}{W_h} - \frac{l_1}{4} d_2. \end{split}$$

$$B = \frac{1}{l} (W_v l_1 - W_k e); \qquad a \text{ bis } c: \ M_0 = B \, l \, \xi' - \frac{w_0 \, r^2}{3} \, (1 - \cos \alpha)^2; \qquad c \text{ bis } b: \ M_0 = B \, l \, \xi'.$$

Für die waagerechte Belastung $w = w_0 = \text{const}$ auf die Höhe / ist $\delta_{10} = \frac{w_0 r^4}{2} \Phi$.

$$W_{\lambda} = w_{0} \cdot f; \quad a \text{ bis } c: \ M_{0} = \frac{w_{0} f^{2}}{2} \left(2 \eta - \xi - \eta^{2}\right); \quad c \text{ bis } b: \ M_{b} = \frac{w_{0} f^{2}}{2} \xi'.$$

Statische Untersuchung eines Brückenträgers mit Zugband.

b) Einseitiger Winddruck w im Bereich c bis b eines Bogenträgers mit Zugband. Das feste Auflager liegt bei a. Der Belastungsfall entsteht durch Überlagerung des Kräftebildes aus Belastungsfall a mit dem Kräftebild aus W_h in b. Hauptsystem wie unter a. $\delta_{110}'' = 0$.

Statische Untersuchung eines Brückenträgers mit Zugband (Abb. 499).

Beispiel zur Anwendung der Tabelle 41 S. 514ff. unter Berücksichtigung folgender Ausführungsmöglichkeiten:

1. Genietetes Zugband. $F_z = F_{ez}$. Anschluß am Kämpfer vor Ausrüstung des Bogens. 2. Zugband aus Eisenbeton. Anschluß am Kämpfer vor Ausrüstung des Bogens.

3. Genietetes Zugband $F_z = F_{ez}$, vor dem Anschluß am Bogenkämpfer um die Länge Δz gereckt und nach Ausrüstung des Bogens einbetoniert.

$$l = 68,00 \text{ m}, \qquad f = 11,33 \text{ m}, \qquad F_e = 1,39 \text{ m}^2, \qquad J_e = 0,47 \text{ m}^4, \qquad J_e/J \cos \alpha = 1.$$

Zugband: $F_{ex} = 0.045 \text{ m}^2, \qquad F_{bx} = 1.40 \text{ m}^2, \qquad F_{ex} = F_{bx} + F_{ex} \cdot E_c/E_x = 1.85 \text{ m}^2$

$$E_{\rm b} = 2100000 \, {\rm tm}^2$$

 $E_t/E_e = 1/10$, $\alpha_t = 0,00001$.

A. Belastung durch gleichförmig verteiltes Eigengewicht (Gleichgewichtsgruppe q, H_q) unter Berücksichtigung des

Schwindens. q = 10, $H_q = q l^2/8 / = 545,861$ t; S wirkung nach S. 35 mit t

Nach (816) ist:

$$X_{1} = -\frac{\nu}{1+\nu} H_{q}, \qquad X_{1t} = \frac{15}{8} \frac{E J_{e} \alpha_{t} t l}{f^{2} l (1+\nu)},$$

 $Z = H_q + X_1 + X_{1t}$, $M = -y (X_1 + X_{1t})$, v nach S. 515.

Lösung 1. $\nu = \frac{15}{8} \frac{1}{11,33^2} \left(\frac{0,47}{1,39} + \frac{1}{10} \frac{0,47}{0,045} \right) = 0,00494 + 0,01526 = 0,02020$.

$$\begin{split} X_1 &= -10,808 \text{ t} , \qquad X_{1t} &= -2,120 \text{ t} , \qquad Z &= 532,933 \text{ t} , \\ M &= +12,928 \cdot y , \qquad \varDelta z &= Z \, l / E_e F_{ez} &= 0,0383 \text{ m} . \end{split}$$

Einsenkung der Scheitelquerschnitte. $\delta_{\epsilon} = \delta_{\epsilon,1} + \delta_{\epsilon,2} + \delta_{\epsilon,3}$. Nach (186) ist

$$\delta_{e,1} = \int \overline{M} \, M \, dx = -\frac{5}{48} \, f^{2} \left(X_1 + X_{1t} \right) = -5457,28 \, \left(X_1 + X_{1t} \right) = 70552 \, ,$$

Die Anteile $\delta_{c,2}$ und $\delta_{c,3}$ werden für einen Kreisbogen als Achse mit r = 56,65, $\cos \alpha_0 = 0.8$ und $F = F_e = \text{const}$ angegeben.

$$\begin{split} \delta_{\epsilon,2} &= \frac{\int_{\epsilon}}{F_{\epsilon}} \int \overline{N} N \; \frac{F_{\epsilon}}{F} \; ds = - \; \frac{\int_{\epsilon}}{F_{\epsilon}} \; H_{q} \; r \left[\ln \cos \alpha_{0} - \frac{X_{1} + X_{1} t}{H_{q}} \; \frac{l^{2}}{8 \; r^{2}} \right] \approx - \; \frac{\int_{\epsilon}}{F_{\epsilon}} \; H_{q} \; r \ln \cos \alpha_{0} = 2331, \\ \delta_{\epsilon,3} &= E J_{\epsilon} \int \overline{N} \; \alpha_{t} \; t \; ds = - \; E J_{\epsilon} \; \alpha_{t} \; t \; r \; (1 - \cos \alpha_{0}) = 1677 \; , \\ \delta_{\epsilon} / E J_{\epsilon} = 0,0715 + 0,0024 + 0,0017 = 0,0756 \; \mathrm{m} \; . \end{split}$$

Lösung 2. Die Längskraft Z des Verbundquerschnittes entfällt zum Teil auf die Rundeisenbewehrung (Z_{s}) , zum Teil auf den Betonquerschnitt (Z_{b}) . Da hierbei nach Versuchen von E. Mörsch die mittlere Beanspruchung σ_{bz} des Betons 80 t/m² nicht überschreitet, ist die mittlere Zugkraft in der Stahlbewehrung $Z_e = Z - 80 F_b$. Der Ansatz für ν Seite 515 enthält die Dehnung des Zugbandes mit $F_z E_z$ für den Verbundquerschnitt. Sie wird durch die Einführung eines ideellen Elastizitätsmoduls E^* auf die Dehnung der Stahlbewehrung bezogen ($F_z E_z = F_e E^*$).

$$\frac{1}{I} \int_{0}^{\mathfrak{r}} ds = \frac{Z}{F_{\mathfrak{e}}E^{\ast}} = \frac{Z_{\mathfrak{e}}}{F_{\mathfrak{e}}E_{\mathfrak{e}}} \quad \text{und daher} \quad \frac{1}{F_{\mathfrak{e}}E^{\ast}} = \frac{1}{F_{\mathfrak{e}}E_{\mathfrak{e}}} \frac{Z_{\mathfrak{e}}}{Z} \approx \frac{1}{F_{\mathfrak{e}}E_{\mathfrak{e}}} \frac{H_{\mathfrak{q}} - 80F_{\mathfrak{b}}}{H_{\mathfrak{q}}} = \frac{1}{0,0566E_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}E_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}E_{\mathfrak{e}}} \frac{H_{\mathfrak{q}}}{H_{\mathfrak{q}}} = \frac{1}{0,0566E_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}E_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak{e}}} \frac{1}{F_{\mathfrak$$

E,VE

$$7 \text{ t/m.}$$

Schwind-
= -15° .
Abb. 499.