

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Die statische Untersuchung ohne Berücksichtigung der drehsteifen Verbindung der Träger

urn:nbn:de:hbz:466:1-74292

Visual Library

65. Der Trägerrost.

Trägerrost a zählt daher bei frei drehbarer Abstützung der Trägerenden (Abb. 591a) $m \cdot r = n$ statisch überzählige Schnittkräfte, während beim Trägerrost b 3n statisch überzählige Kräfte berechnet werden müssen. Der Verschiebungszustand ist in beiden Fällen durch die n senkrechten Verschiebungen und durch 2n Drehwinkel φ_k, φ_k der Tangenten an die Biegelinien der Träger I, II in den Stabknoten k. im ganzen also durch 3n unabhängige Komponenten bestimmt. Es liegt daher nahe, die Schnittkräfte des Trägerrostes a als Funktion der Belastung und der statisch überzähligen Größen nach Abschn. 24ff. zu berechnen, dagegen die Schnittkräfte des Trägerrostes b nach Abschn. 38 aus den 3n Komponenten w_k , φ_k , ψ_k des Verschiebungszustandes abzuleiten.

Die statische Untersuchung ohne Berücksichtigung der drehsteifen Verbindung der Träger. 1. Die Längskräfte in den gedachten Verbindungsstäben Abb. 593 a zwischen den Trägern der Gruppe I und den Trägern der Gruppe II sind die

statisch überzähligen Größen Y_k des Ansatzes. Ein positiv definiertes Yk erzeugt in den Verbindungsstäben Druckspannungen und daher in den Trägern I positive, in den Trägern II negative Biegungsmomente. Das Hauptsystem besteht mit $Y_k = 0$, je nach

der Abstützung des Rostes am Rande des Feldes, aus Trägern mit frei drehbaren Enden, aus Rahmen oder aus Trägern mit starr eingespannten Enden. Die erste Anordnung ist statisch bestimmt, die beiden anderen sind statisch unbestimmt. Die Kreuzungswinkel der Gruppen I, II und der Abstand der Träger sind ohne Bedeutung für die Lösung. Die überzähligen Schnittkräfte werden nach Abschn. 24 aus n geometrischen Bedingungsgleichungen berechnet.

$$\sum Y_h \delta_{kh} = \delta_{k0}, \qquad k = 1 \dots n.$$
(903)

In jeder von ihnen (k) sind alle Verbindungskräfte Y am Träger H der Gruppe I und alle Verbindungskräfte Y am Träger J der Gruppe II enthalten. Ansatz für den Trägerrost mit m = 3, r = 3, n = 9, Abb. 595.

Der Ansatz ist bei Symmetrie des Rostes zu einer, zwei oder vier Achsen wesentlich einfacher, da die Belastung in Teile aufgespalten werden kann, die zu den Achsen I und II oder III und IV symmetrisch oder antimetrisch sind. Das endgültige Ergebnis entsteht durch Superposition.

Ansatz bei gleichmäßiger Belastung des symmetrischen Rostes (Abb. 596).

$$\begin{split} Y_2 &= 0, \quad Y_6 = 0, \quad Y_{12} = 0, \quad Y_8 = 0, \quad Y_7 = 0; \\ (Y_1 &= -Y_{11} = Y_{13} = -Y_3) \equiv X_1, \\ (Y_4 &= -Y_9 = Y_{10} = -Y_5) \equiv X_2. \end{split}$$

Abb. 596. Trägerrost mit schlefer Symmetrie

Die überzähligen Verbindungskräfte werden also nach Abschn. 28 zu zwei symmetrischen Gruppenlasten X_1 , X₂ zusammengefaßt.

2. Das Ergebnis der Untersuchung kann durch die Fehlerempfindlichkeit der Zahlenrechnung bei Auflösung des Ansatzes und bei der Superposition der Anteile der Biegungsmomente aus der Belastung und den überzähligen Größen Y_k wesentlich beeinträchtigt werden. Diese Schwierigkeiten lassen sich zum Teil durch eine andere Rechenvorschrift umgehen, in die neben den statisch unbestimmten Schnittkräften

626

Die statische Untersuchung ohne Berücksichtigung der drehsteifen Verbindung der Träger. 627

auch Komponenten ϱ_k des Verschiebungszustandes als Unbekannte eingehen. Sie werden nach Abschn. 38 derart ausgewählt, daß sich die statisch unbestimmten Schnittkräfte eines Stabwerks mit $\varrho_k = 0$ durch einfache Ansätze ableiten lassen. Die ausgezeichneten Parameter ϱ_k sind hier die *n* senkrechten Verschiebungen w_k der Stabknoten, da die Schnittkräfte aller Träger H der Gruppe I und aller Träger \overline{J} der Gruppe II mit $w_k = 0$, (k = 1, ..., n) unabhängig voneinander erhalten werden. Jeder von ihnen wirkt statisch als durchlaufender Träger auf starren, frei drehbaren Lagern. Die Stützenmomente werden mit Abb. 597 nach Abschn. 47 bei vorgeschriebenen Verschiebungen w_k aus den geometrischen Bedingungen (650) berechnet. Diese erscheinen stets im EJ_c fachen Betrage $w_k \equiv w_k / EJ_c$

$$M_{I,(k-1)} \ l'_{k} + 2M_{I,k} \ (l'_{k} + l'_{k+1}) + M_{I,(k+1)} \ l'_{k+1} - 6\left(\frac{w_{k} - w_{k-1}}{l_{k}} - \frac{w_{k+1} - w_{k}}{l_{k+1}}\right) = -6 \delta_{I,k0} \ , \ (904)$$

 $M_{II,(k-r)}s'_{k}+2M_{II,k}(s'_{k}+s'_{k+r})+M_{II,(k+r)}s'_{k+r}-6\left(\frac{w_{k}-w_{k-r}}{s_{k}}-\frac{w_{k+r}-w_{k}}{s_{k+r}}\right)=-6\delta_{II,k0}.$ (905)

M

Da jedoch die senkrechten Verschiebungen w_k der Knoten

unbekannt sind, fehlen zur Berechnung der 3n Wurzeln des Ansatzes zunächst noch n Gleichungen. Diese lassen sich mit dem Prinzip der virtuellen Verrückungen aus dem Gleichgewicht der Schnittkräfte des Rostes am Abb. 598. Kinematische Kette Γ_k .

Knoten ableiten. Die statischen

Bedingungen werden daher nach (523) für die äußeren Kräfte an n voneinander unabhängigen kinematischen Ketten Γ_k (Abb. 598) angeschrieben, die mit $w_k = 1$ angetrieben sind.

$$\frac{I_{l,k} - M_{I,k-1}}{l_{k}} - \frac{M_{I,k+1} - M_{I,k}}{l_{k+1}} + \frac{M_{II,k} - M_{II,k-r}}{s_{k}} - \frac{M_{II,k+r} - M_{II,k}}{s_{k+r}} - T_{k} = 0,$$

$$-\frac{1}{l_{k}} M_{I,k-1} + \left(\frac{1}{l_{k}} + \frac{1}{l_{k+1}}\right) M_{I,k} - \frac{1}{l_{k+1}} M_{I,k+1}$$

$$-\frac{1}{s_{k}} M_{II,k-r} + \left(\frac{1}{s_{k}} + \frac{1}{s_{k+r}}\right) M_{II,k} - \frac{1}{s_{k+r}} M_{II,k+r} - T_{k} = 0.$$
(906)

$$T_{k} = \mathfrak{P}_{I,k}\,\xi_{I,k} + \,\mathfrak{P}_{I,k+1}\,\xi'_{I,k+1} + \,\mathfrak{P}_{II,k}\,\xi_{II,k} + \,\mathfrak{P}_{II,k+r}\,\xi'_{II,k+r}.\tag{907}$$

Der Ansatz wird nach Abschn. 29 in zwei Stufen aufgelöst. Dabei gelten die Verschiebungen w_k in den Gleichungen (904), (905) zunächst als Teile der Belastungsglieder, so daß der Reihe nach die Schnittkräfte $M_{I,ko}$ $M_{I,kh}$ und $M_{II,ko}$, $M_{II,kh}$ eines durchlaufenden Trägers mit der beliebigen Belastung $\mathfrak{P}_{I,k}$, $\mathfrak{P}_{II,k}$ oder für $w_h = 1$ berechnet werden.

$$M_{I,k} = M_{I,ko} + \sum M_{I,kh} w_h, \qquad M_{II,k} = M_{II,ko} + \sum M_{II,kh} w_h.$$

Das Ergebnis liefert in Verbindung mit den Gleichungen (906) der zweiten Stufe die Verschiebungen w_k und durch Rekursion die Biegungsmomente $M_{I,k}$, $M_{II,k}$.

Die statische Untersuchung des Trägerrostes wird daher am besten mit der Entwicklung der konjugierten Matrix für die dreigliedrigen Gleichungen (904), (905) begonnen, in denen die senkrechten Verschiebungen wk der Knoten Null sind. Sie zerfällt in Gruppen, die den einzelnen Trägern des Rostes zugeordnet sind und sich voneinander unterscheiden, wenn Knotenzahl und Abmessungen der Träger verschieden sind. Daher genügen bei seitenparalleler Anordnung in der Regel zwei voneinander unabhängige Ansätze. Die Rechnung ist bei Symmetrie des Rostes nach Umordnung der Belastung (Abschn. 27) wesentlich kürzer.

65. Der Trägerrost.

Berechnung eines seitenparallelen, quadratischen Trägerrostes a für gleichmäßig verteilte Belastung q t/m².

Die Verbindungskräfte Y_1 bis Y_9 sind statisch unbestimmt. Infolge Symmetrie des Tragwerks ist bei gleichmäßig verteilter Belastung:

 $Y_{1} = Y_{3} = Y_{9} = Y_{7} = Y_{5} = 0 \; , \qquad Y_{2} = - \; Y_{6} = Y_{8} = - \; Y_{4} \, .$

BIBLIOTHEK PADERBORN

Berechnung eines seitenschiefen, quadratischen Trägerrostes.

Die Kräfte $Y_2, -Y_6, Y_8, -Y_4$ werden zu einer symmetrischen Gruppenlast X_1 zusammengefaßt. Der Zustand $-X_1 = 1$ besteht nach Abschn. 28 aus

$$F_{2} = + T_{6} = -Y_{8} = + Y_{4} = 1.$$
Das Trägheitsmoment ist für alle Träger gleich groß, daher (Abb. 599b, c)

$$F_{11} = 4 \frac{4l'}{3}l^{2} + 2\left(2l'\frac{l^{2}}{3} + 2l'l^{2}\right) = \frac{32}{3}l'l^{2},$$

$$F_{10} = -4 \cdot \frac{5}{12}4l'l \cdot 2pl^{2} + 2\left(\frac{5}{12}4l' \cdot 2l \cdot 2pl^{2} - 2l' \cdot \frac{l}{2}\frac{3pl^{2}}{2} - \frac{5}{12} \cdot 2l' \cdot l \cdot \frac{pl^{2}}{2}\right) = -\frac{23}{6}l'l^{3}pt$$

$$X_{1} = \frac{-23l'l^{3}p \cdot 3}{6 \cdot 32l'l^{2}} = -\frac{23}{64}pl,$$

$$M_{0}$$

$$K_{11} = \frac{1}{10} \frac{1}{10}$$

$$\begin{split} M_{I_{1}1} &= M_{I_{1}3} = \frac{3 \not p \, l^{2}}{2} - \frac{23}{64} \not p \, l \cdot \frac{l}{2} = \frac{169}{128} \not p \, l^{2}, \qquad M_{I_{1}2} = 2 \not p \, l^{2} - \frac{23}{64} \not p \, l^{2} = \frac{105}{64} \not p \, l^{2}, \\ M_{I_{1}4} &= M_{I_{1}6} = \frac{3 \not p \, l^{2}}{2} + \frac{23}{64} \not p \, l \cdot \, l \ = \frac{119}{64} \not p \, l^{2}, \qquad M_{I_{1}5} = 2 \not p \, l^{2} + \frac{23}{64} \not p \, l^{2} = \frac{151}{64} \not p \, l^{2}. \end{split}$$

Die Biegungsmomente für l = 3,0 m und q = 1 t/m² sind in Abb. 599a aufgetragen.

Berechnung eines seitenschiefen, quadratischen Trägerrostes a für gleichmäßig verteilte Belastung $q t/m^2$.

$$\delta_{10} = \frac{5}{6} \not p \, l^3 \left(41 \, l'_3 - l'_1 \right), \qquad \delta_{20} = \frac{4}{3} \not p \, l^3 \left(44 \, l'_3 - 10 \, l'_2 \right).$$

629