

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Zahlenbeispiele

urn:nbn:de:hbz:466:1-74292

Visual Library

65. Der Trägerrost.

Belastung des Trägerrostes ($\mathfrak{P}, \Delta t$), der Verschiebung $w_n = 1$ oder von der Verdrehung $\varphi_h = 1$ oder $\varphi_h = 1$ herrühren. Diese lassen sich aus den Ansätzen (533 ff.) entnehmen, so daß die Vorzahlen und Belastungszahlen mit der Abb. 602 unmittelbar angeschrieben werden können. Dabei zeigt sich, daß

$$\bar{a}_{\psi k,h} = a_{\psi k,h}^* = 0$$
 und $a_{\varphi k,h} = \bar{a}_{w k,h}$, $a_{\psi k,h} = a_{w k,h}^*$.

Die 27 unabhängigen statischen Bedingungen zur Berechnung eines unregelmäßigen Trägerrostes nach Abb. 595 bilden die Matrix auf S. 631.

Die Wurzeln w_k , φ_k , ψ_k können durch die Iteration einer Näherungslösung angeschrieben werden, wenn auch dabei langwierige, mühevolle Zahlenrechnungen nicht ausbleiben. Sie sind bei symmetrischen Rosten durch die Umordnung der Belastung (S. 186) wesentlich einfacher. In einzelnen Fällen ist außerdem die Verdrehung der Knoten um ausgezeichnete Achsen infolge der konstruktiven Ausgestaltung des Rostes Null. Die Vorteile der Lösung treten jedoch vor allem bei Trägerrosten mit mehr als zwei Trägerscharen in Erscheinung (Abb. 607), da dann zwar der Grad der statischen Unbestimmtheit zunimmt, dagegen die Anzahl der geometrisch unbekannten Komponenten w_k , φ_k , ψ_k unverändert 3n bleibt.

Der Trägerrost Abb. 603 ist bei Lagerung der Trägerenden nach Abb. 591 b und drehsteifen Knoten 33 fach statisch unbestimmt und 27 fach geometrisch unbestimmt. Infolge der Symmetrie von Tragwerk und Belastung genügt ein Ansatz mit 3 statischen oder 5 geometrischen Größen, um den vollständigen Spannungszustand anzugeben. Daher wird der statische Ansatz gewählt.

Als Überzählige dienen die Verbindungskräfte Y und die Verbindungsmomente Z_I , Z_{II} , deren Drehsinn nach Abb. 604 a positiv ist. Infolge der Symmetrie des Tragwerks ist bei gleichmäßig verteilter Belastung

III Biegungsmomente

🖾 Torsionsmomente in mt aus $q=1t/m^2$ Abb. 603.

11

Verbindungskräße

Abb. 604.

 $\begin{array}{l} Y_1 = Y_3 = Y_9 = Y_7 = Y_5 = 0 \,, \qquad (Y_2 = -Y_6 = Y_8 = -Y_4) \equiv X_1, \\ (Z_{I_1} \widehat{+} Z_{II_1 1} = Z_{I_3} \widehat{-} Z_{II_3} = -Z_{I_5} \widehat{-} Z_{II_5} 9 = -Z_{I_17} \widehat{+} Z_{II_77}) \equiv X_2, \\ Z_{II_1 2} = Z_{I_1 6} = Z_{II_8} = Z_{I_4} = Z_{I_5} = Z_{II_5} = 0 \,, \end{array}$ $(Z_{I,2} = -Z_{II,6} = -Z_{I,8} = Z_{II,4}) \equiv X_3.$ b C

Torsionsmomente

Das Trägheitsmoment ist hier für alle Träger gleich,

I

$$l' = l \frac{J_e}{J}, \quad l'' = \varrho l', \quad \varrho = \frac{E J_y}{G T}$$

$$\delta_{11} = \frac{32}{3} l' l^2, \quad \delta_{10} = -\frac{23}{6} l' l^3 p .$$

und daher nach S. 629

Mit Abb. 604 b, c wird: $\delta_{22} = 8 l' (1 + \varrho)$

$$\begin{array}{c} , \quad \delta_{33} = 4 \, l' \, (1 + \varrho) \,, \quad \delta_{12} = - \, 6 \, l \, l' \,, \quad \delta_{13} = 4 \, l \, l' \,, \quad \delta_{23} = 4 \, \varrho \, l \\ \delta_{20} = \frac{44}{3} \, \rho \, l^2 \, l' \,, \quad \delta_{30} = \frac{22}{3} \, \rho \, l^2 \, l' \,. \end{array}$$

632

-L = 4l - 72,0 m

Berechnung eines seitenschiefen, quadratischen Trägerrostes.

Für Träger, deren Höhe etwa gleich der doppelten Breite ist, ergibt sich nach S. 30 $\varrho \approx 3$ und nach Kürzung der Gleichungen mit $\frac{l'}{3}$ die folgende Matrix.

X1	X_2	X_3	
32 /2	- 18 <i>l</i>	121	$-11,5 p l^3$,
- 18 l	96	36	44 p l2,
12 /	36	48	22 p 12 ¹ .

Mit l = 3,0 m und q = 1 t/m²; $p = \frac{q \cdot l}{2} = 1,5$ t/m wird

$$X_1 = -1,523$$
 t, $X_2 = 3,591$ mt, $X_3 = 4,636$ mt.

Die Schnittkräfte ergeben sich durch Superposition; z. B.:

$$\begin{split} M^{(4)}_{yI,4} &= \frac{3}{2} \not p \, l^2 - X_1 \cdot l = 24,8 \; \mathrm{mt} \,, \qquad M^{(6)}_{yI,4} &= \frac{3}{2} \not p \, l^2 - X_1 l - X_3 \cdot 1 = 20,2 \; \mathrm{mt} \,, \\ M^{(4)}_{xII,4} &= M^{(6)}_{xI,2} = - X_3 \cdot \frac{1}{2} = -2,3 \; \mathrm{mt} \,. \end{split}$$

Die Biegungs- und Torsionsmomente sind in Abb. 603 eingetragen.

Berechnung eines seitenschiefen, quadratischen Trägerrostes b für gleichmäßig verteilte Belastung q t/m².

Der Trägerrost Abb. 605 ist bei Lagerung der Trägerenden nach Abb. 591 b und drehsteifen Knoten 49 fach statisch unbestimmt und 39 fach geometrisch unbestimmt. Infolge der Symmetrie des Tragwerks genügen jedoch 5 statische oder 7 geometrische Größen zur eindeutigen Angabe des Spannungszustandes. Um auch die Anwendung des Ansatzes (908) zu zeigen, werden die geometrisch unbestimmten Größen w_1 , w_2 , w_4 , w_7 , φ_1 , φ_2 , φ_3 berechnet und zu symmetrischen Gruppenbewegungen zusammengefaßt.

$$\begin{split} & (w_1 = w_3 = w_{13} = w_{11}) \equiv W_1, \quad (\varphi_1 = \varphi_3 = -\varphi_{13} = -\varphi_{11}) \equiv \varPhi_A, \\ & (w_4 = w_5 = w_{10} = w_9) \equiv W_2, \quad (\varphi_4 = \varphi_5 = -\varphi_{10} = -\varphi_9) \equiv \varPhi_B, \\ & (w_2 = w_8 = w_{12} = w_6) \equiv W_3, \quad (\varphi_2 \widehat{+} \varphi_2 = -\varphi_8 \widehat{+} \varphi_8 = -\varphi_{12} \widehat{-} \varphi_{12} = +\varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (w_2) \equiv W_4, \quad (\psi_1 = \psi_4 = \psi_5 = \psi_{10} = \psi_{12} = \varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (w_2) \equiv W_4, \quad (\psi_1 = \psi_4 = \psi_5 = \psi_{10} = \psi_{12} = \varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (w_2) \equiv W_4, \quad (\psi_1 = \psi_4 = \psi_5 = \psi_{10} = \psi_{12} = \varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (w_2) \equiv W_4, \quad (\psi_1 = \psi_4 = \psi_5 = \psi_{10} = \psi_{10} = \varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (w_2) \equiv W_4, \quad (\psi_1 = \psi_4 = \psi_5 = \psi_{10} = \psi_{10} = \varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (w_2) \equiv W_4, \quad (\psi_1 = \psi_4 = \psi_5 = \psi_{10} = \psi_{10} = \psi_{10} = \varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (\psi_1) \equiv W_4, \quad (\psi_2 = \psi_4 = \psi_5 = \psi_{10} = \psi_{10} = \psi_{10} = \varphi_6 \widehat{-} \varphi_6) \equiv \varPhi_G, \\ & (\psi_1) \equiv W_4, \quad (\psi_2 = \psi_4 = \psi_5 = \psi_{10} = \psi_{10} = \psi_{10} = \varphi_6 \widehat{-} \varphi_6) \equiv \varphi_{10} \widehat{-} \varphi_6 \widehat{-} \varphi_6$$

Die Vorzahlen der statischen Bedingungsgleichungen lassen sich nach Abb. 602 unmittelbar anschreiben. Mit

 $l = L \frac{\sqrt{2}}{6}, \quad l'_1 = l \frac{J_e}{J_1}, \quad l'_2 = l \frac{J_e}{J_2}, \quad l'_3 = l \frac{J_e}{J_3},$

ist

BIBLIOTHER

$$\begin{aligned} l_{1}^{\prime\prime} &= \varrho_{1} l_{1}^{\prime}, \quad l_{2}^{\prime\prime} &= \varrho_{2} l_{2}^{\prime}, \quad l_{3}^{\prime\prime} &= \varrho_{3} l_{3}^{\prime} \\ a_{11} &= 4 \left[-\frac{3}{l^{2} l_{3}^{\prime}} - 2 \frac{3}{l^{2} l_{1}^{\prime}} - \frac{12}{l^{2} l_{3}^{\prime}} \right] = -\frac{12}{l^{2} l_{3}^{\prime}} \left(5 + 2 \frac{l_{3}^{\prime}}{l_{1}^{\prime}} \right), \\ a_{12} &= 4 \frac{12}{l^{2} l_{3}^{\prime}} = \frac{48}{l^{2} l_{3}^{\prime}}, \quad a_{13} = 0, \quad a_{14} = 0, \\ a_{22} &= 4 \left[-2 \frac{12}{l^{2} l_{3}^{\prime}} - 2 \frac{12}{l^{2} l_{2}^{\prime}} \right] = -\frac{96}{l^{2} l_{3}^{\prime}} \left(1 + \frac{l_{3}^{\prime}}{l_{2}^{\prime}} \right). \\ a_{AA} &= 4 \left(-\frac{3}{l_{3}^{\prime}} - \frac{4}{l_{3}^{\prime}} - \frac{1}{l_{1}^{\prime}} - \frac{1}{l_{1}^{\prime}} \right) = -\frac{4}{l_{4}^{\prime}} \left(7 + 2 \frac{l_{3}^{\prime}}{\varrho_{1} l_{1}^{\prime}} \right), \\ a_{B} &= -4 \frac{2}{l_{3}^{\prime}} = -\frac{8}{l_{3}^{\prime}}, \quad a_{Ac} = 0, \quad a_{BB} = 4 \left(-2 \frac{4}{l_{3}^{\prime}} - \frac{2}{l_{2}^{\prime}} \right) = -\frac{8}{l_{3}^{\prime}} \left(4 + \frac{l_{3}^{\prime}}{\varrho_{2} l_{2}^{\prime}} \right), \\ a_{A1} &= 4 \left(-\frac{3}{l l_{3}^{\prime}} + \frac{4}{l l_{4}^{\prime}} + \frac{2}{l l_{3}^{\prime}} \right) = \frac{12}{l l_{3}^{\prime}}, \quad a_{A2} = -\frac{24}{l l_{3}^{\prime}}, \quad a_{A3} = 0, \quad a_{B4} = 0, \\ a_{B1} &= \frac{24}{l l_{4}^{\prime}}, \quad a_{B2} = 0, \quad a_{B3} = 0, \quad a_{B4} = -\frac{24}{l l_{4}^{\prime}}. \end{aligned}$$

633

634

65. Der Trägerrost.

			1 SP				
þ	<u>13</u>	0	$\frac{l^2}{3}$	$\frac{19}{2}l$	81	16 .	21
W4	0	$-\frac{24}{ll_{3}^{2}}$	0	0	$\frac{48}{l^2 l'_3}$	0	$-\frac{48}{l^2l_3}$
W ₃	0	0	$\frac{24}{ll_2^4}$	0.	96. <u>1º 1'</u>	$-\frac{120}{l^2l_2^2}$	0
M	$-\frac{24}{ll_a^3}$	0	$ \frac{48}{7l_{2}^{2}}$	$\frac{48}{l^2 l_3^2}$	$-\frac{96}{l^2l_3'}\left(1+\frac{l_3'}{\overline{l_3'}}\right)$	96 <u>1º1</u> 2	$\frac{48}{l^2 l_3'}$
I/I	- 12 113	$\frac{24}{ll_3^2}$	C ·	$-\frac{12}{l^2 l_0'} \left(5 + 2 \frac{l_0''}{l_1'}\right)$	$\frac{48}{l^2 l_3'}$	0	o
Φ_c	0	$\frac{8}{\varrho_2 l_2'}$	$-\frac{8}{l_2}\left(7+2\frac{1}{\varrho_2}\right)$	o	$-\frac{48}{1l_2^2}$	$\frac{24}{lB_2}$	o
Φ_{B}	$-\frac{8}{l_{a}^{2}}$	$-\frac{8}{l_{3}^{2}}\left(4+\frac{l_{3}^{2}}{\varrho_{2}l_{2}^{2}}\right)$	$\frac{8}{\varrho_2 l_2'}$	$\frac{24}{ll_3^2}$	0	O	$-\frac{24}{1l_3}$
\$N	$- \frac{4}{l_3^3} \left(7 + z \frac{l_3^3}{\varrho_1 l_1^\prime} \right)$	- <u>8</u> <u>1</u> 3	0	12 11/3	$-\frac{24}{1l_3}$	0	0

Für gleichmäßig verteilte Bela-
stung
$$p = \frac{ql}{2}$$
 ergeben sich die Ab-
solutglieder, z. B.:
 $a_{10} = 4 \cdot 3 \frac{pl^2}{8} \cdot \frac{1}{l} + 4 \cdot 4 \cdot \frac{pl}{2} = \frac{19}{2} pl$,
 $a_{20} = 4 \cdot 4 \cdot \frac{pl}{2} = 8 pl$,
 $a_{A0} = 4 \left(-\frac{pl^2}{12} + \frac{pl^2}{8} \right) = \frac{pl^2}{6}$,
 $a_{B0} = 0$.
Der vollständige Ansatz bildet die

Der vollständige Ansatz bildet die nebenstehende Matrix.

Die Anschlußkräfte ergeben sich nach (505) oder durch Superposition; z. B. ist mit $q = 1 \text{ t/m}^2$, $q \cdot l$

$$=\frac{q+r}{2}=1,414$$
 t/m:

p

Berechnung eines Trägerrostes mit drei Trägerscharen über einem gleichseitigen Dreieck. 635

$$\begin{split} M^{(0)}_{y,I2} &= -\frac{\not p\,l^2}{8} + W_3 \frac{3}{l\,l'} + \varPhi _{\sigma} \frac{3}{l'} = 14, \mathrm{l} \ \mathrm{mt} \ , \\ M^{(2)}_{y,I2} &= +\frac{\not p\,l^2}{8} - W_3 \frac{6}{l\,l'} + W_2 \frac{6}{l\,l'} + \varPhi _{\sigma} \frac{4}{l'} = -\ 10, 3 \ \mathrm{mt} \ , \\ M^{(0)}_{x,I2} &= - \ \varPhi _{c} \frac{1}{\rho\,l'} = 4, \mathrm{l} \ \mathrm{mt} \ , \qquad M^{(2)}_{x,I2} = \varPhi _{c} \frac{1}{\rho\,l'} - \varPhi _{B} \frac{1}{\rho\,l'} = 0 \end{split}$$

,3 mt .

Die Biegungs- und Torsionsmomente sind in Abb. 605 aufgetragen.

Seitenschiefer, quadratischer Trägerrost nach Abb. 606 mit gleichmäßig verteilter Belastung $q = 1 \text{ t/m}^2$.

Die Rechnung bietet nichts Neues. Die Biegungsmomente ohne Berücksichtigung des Drillungswiderstandes der Träger sind in Abb. 606a, mit Berücksichtigung desselben in Abb. 606b dargestellt (vgl. Fußnote S. 625).

Berechnung eines Trägerrostes mit drei Trägerscharen über einem gleichseitigen Dreieck.

Der Trägerrost Abb. 607 mit Abstützung der Trägerenden nach Abb. 591 b und drehsteifer Verbindung der Trägerscharen *I*, *II*, *III* ist 21 fach statisch unbestimmt und 9 fach geometrisch unbestimmt. Wegen der Symmetrieeigenschaften genügt bei gleichmäßig verteilter Last $q t/m^2$ die Berechnung von 3 Verbindungskräften (Lösung a) oder 2 Komponenten des Verschiebungszustandes (Lösung b), um den vollständigen Spannungszustand angeben zu können.

Lösung a) Die lotrechten Verbindungskräfte U_1 , U_2 , U_3 wirken an den Trägern Abb. 608 a nach unten, an den Trägern Abb. 608 b nach oben. Sie werden in der symmetrischen Gruppen-

last X_1 zusammengefaßt. Die zyklisch liegenden Verbindungsmomente Y_1 , Y_2 , Y_3 zwischen den Trägern der Abb. 608a und Abb. 608b bilden die Gruppenlast X_2 , die Verbindungsmomente Z_1 , Z_2 , Z_3 zwischen den Trägern der Abb. 608c, d und e die Gruppenlast X_3 . Das Trägheitsmoment ist für alle Träger gleich.

FI

Abb. 609:

δ11 =

$$l' = l \frac{J}{J_{\nu}}, \qquad l'' = \varrho \, l', \qquad \varrho = \frac{\mu}{G} \frac{J}{T},$$
$$3 \left[2 \, l' \cdot \frac{1}{3} \cdot \frac{l^2}{4} + 2 \, l' \cdot \frac{1}{3} \frac{l^2}{4} + 3 \, l' \cdot \frac{l^2}{4} \right] = \frac{7}{4} \, l^2 \, l',$$

T

$$\delta_{22} = l' \left(1 + \frac{3}{2} \varrho \right), \qquad \delta_{33} = \frac{3}{4} \, l' \left(1 + 6 \, \varrho \right), \qquad \delta_{12} = - \frac{l/3}{2} \, l \, l',$$

65. Der Trägerrost.

bei Betrachtung von der zur Stabschar gehörenden Ecke des Rostes im Uhrzeigersinn dreht.

$$\begin{aligned} \frac{a_{AA}}{3} &= -\frac{2}{l''} - \frac{2}{2l''} \cdot \frac{1}{2} - 2\frac{3\sqrt{3}}{2l'} \frac{3}{2\sqrt{3}} - 2\frac{\sqrt{3}}{l'} \frac{3}{2\sqrt{3}} = -\frac{5}{2l'} \left(3 + \frac{1}{\varrho}\right), \\ \frac{a_{11}}{3} &= -4 \cdot \frac{3}{ll'} \cdot \frac{1}{l} = -\frac{12}{l^2l'}, \quad \frac{a_{A1}}{3} = -2\frac{3}{ll'} \cdot \frac{3}{2\sqrt{3}} = -\frac{3\sqrt{3}}{ll'}, \\ \frac{a_{A0}}{3} &= 2\frac{pl^2}{8} \cdot \frac{3}{2\sqrt{3}} - 2\frac{pl^2}{12} \cdot \frac{3}{2\sqrt{3}} = \frac{1}{8\sqrt{3}} pl^2, \quad \frac{a_{10}}{3} = 4\frac{pl^2}{8} \cdot \frac{1}{l} + 4pl \cdot \frac{1}{2} + pl = \frac{7}{2}pl. \end{aligned}$$

636

Berechnung einer Balkenbrücke mit 3 Hauptträgern.

Mit $\rho = 3$ und l' = l = 3,464 entsteht folgende Matrix:

φ_A	W ₁	Þ	
- 2,4056	- 0,4330	0,8660	$\Phi_{A} = -9,8628 p$,
- 0,4330	- 0,2887	12,1244	$W_1 = 56,7890 p$.

Die Schnittkräfte ergeben sich nach (505) oder durch Superposition; z. B.

$$M_{yI,3}^{(2)} = \frac{p l^2}{12} + \frac{\sqrt{3}}{l} \Phi_A = -3.9 p \text{ mt}.$$

Die Momente sind in Abb. 607 dargestellt.

Trägerrost mit freien Rändern. Werden die Querträger von Brücken mit mehreren Hauptträgern nicht nur als Teile der Fahrbahntafel betrachtet, sondern in statischer Beziehung in derselben Weise bewertet wie die Hauptträger, so entsteht ebenfalls ein Trägerrost mit seitenparalleler Anordnung. Da jedoch nur die Hauptträger gestützt, dagegen die Enden der Querträger frei sind, besteht deren Aufgabe hier nur in der Verteilung der Belastung eines Haupt-

trägers auf mehrere von ihnen, jedoch nicht mehr in der Entlastung der Hauptträger. Diese sind entweder Balkenträger auf zwei und mehreren Stützen oder Querträge Rahmen. Die Knoten zwischen Haupt- und Querträger sind biegungs- und drehsteif, gelten aber zur Vereinfachung der Rechnung in der Regel nur als zug- und

druckfest. Der Brückengrundriß ist stets zu einer, meist aber auch zu zwei Achsen symmetrisch, so daß nach Abschn. 27 und 28 mit zwei- oder vierfacher Umordnung der Belastung und mit statisch unbestimmten Gruppenlasten gerechnet werden kann.

Die statische Untersuchung des Trägerrostes ist bei Annahme von sehr steifen Querträgern ($E J_{II} = \infty$) statisch bestimmt, wenn nur die Knotenpunkte und die Querträger belastet sind. Die Achsen der Querträger bleiben dann bei der Formänderung des Rostes gerade Linien. Auf einen Träger J der n Hauptträger entfällt bei Belastung eines Querträgers durch die resultierende Einzellast \$ (Abb. 611) der Anteil

$$P_J = \frac{\mathfrak{P}}{n} + \frac{\mathfrak{P}e}{\sum\limits_{k=1}^{n} a_k^2} a_J \,. \tag{909}$$

Diese Annahme ist aber um so weniger berechtigt, je weniger Hauptträger verwendet werden, um die wirtschaftlichen Vorteile einer kreuzweisen Bewehrung der Fahrbahnplatte auszunützen und Schalungskosten zu sparen. Daher genügt die Untersuchung der Trägerroste mit drei und vier Hauptträgern auf je zwei Stützen, die mit den Querträgern zug- und druckfest verbunden angenommen sind. Die Anschlußmomente der mittleren Hauptträger sind die statisch unbestimmten Schnittkräfte der Rechnung.

Berechnung einer Balkenbrücke mit 3 Hauptträgern, Abb. 612.

Geometrische Grundlagen.

$$l = 3,5, \qquad s = 3,6 \text{ m}, \qquad \varkappa = \frac{s}{l} = 1,0286,$$

$$r_1 = \frac{J_1}{J_*} = 7,1111; \qquad r_2 = \frac{J_1}{J_2} = 1,3846,$$

$$J_c = J_1.$$
Als statisch überzählige Schnittkräfte X_k dienen die Biegungsmomente des mittleren Trägers in den Knoten $k = 1...5$. Das Biegungsmoment X_3 ist in Abb. 612 als Vektor eingetragen.

$$R = 3,5, \qquad \varkappa = \frac{s}{l} = 1,0286,$$

$$\frac{100/85}{k} \qquad \frac{1}{3''} \qquad \frac{J_2}{J_2} = 1,3846,$$

$$\frac{1}{5} \qquad \frac{1}{5} \qquad \frac{1}{5$$

Abb. 612.