

## Die Statik im Stahlbetonbau

### Beyer, Kurt

Berlin [u.a.], 1956

68. Die Kreisplattte und die Kreisringplatte unter zentralsymmetrischer Belastung

urn:nbn:de:hbz:466:1-74292

Visual Library

Fällen gelingt. Mit der Funktion w(x, y) sind auch ihre Ableitungen und damit die Schnittkräfte in jedem Punkte der Platte bekannt.

Lévy, M.: C. R. Acad. Sci., Paris Bd. 129 (1899) S. 535. — Estanave, E.: Contribution à l'étude de l'équilibre elastique d'une plaque etc. Paris 1900. — Nadai, A.: Die elastischen Platten, Berlin 1925. — Geckeler, J. W.: Elastostatik, Handb. d. Physik Bd. VI: Mechanik der elastischen Körper, Kap. 3. Berlin 1928. — Bergsträßer, M.: Forsch.-Arbeiten Ing.-Wes. Heft 302. Berlin 1928.

## 68. Die Kreisplatte und die Kreisringplatte unter zentralsymmetrischer Belästung.

Platten mit gleichbleibender Dicke. Die Punkte der Mittelebene werden mit Rücksicht auf die Begrenzung der Platte auf Polarkoordinaten  $r, \alpha$  mit dem Mittelpunkt O als Ursprung bezogen. Die Schnittkräfte der Platte und die Ausbiegung wihrer Mittelfläche sind daher nach (935) aus der Belastung p bestimmt. Die Beziehungen sind jedoch bei Zentralsymmetrie der Plattenform, der Stützung und Belastung unabhängig vom Winkel  $\alpha$ , so daß die Ableitungen der Funktion  $w(r, \alpha) \rightarrow w(r)$  nach  $\alpha$  Null sind und die partielle Differentialgleichung in eine totale Differentialgleichung übergeht. Die Drillungsmomente  $M_{r\alpha} = M_{\alpha r}$  sind daher nach (933) ebenfalls Null. Im übrigen wird nach S. 647

$$M_{r} = -N\left(\frac{d^{2}w}{dr^{2}} + \mu \frac{1}{r} \frac{dw}{dr}\right), \qquad M_{\alpha} = -N\left(\mu \frac{d^{2}w}{dr^{2}} + \frac{1}{r} \frac{dw}{dr}\right),$$

$$Momentensumme \qquad M = \frac{M_{r} + M_{\alpha}}{1 + \mu} = -N\left(\frac{d^{2}w}{dr^{2}} + \frac{1}{r} \frac{dw}{dr}\right) = -N\Delta w.$$
(945)

Die Gleichgewichtsbedingungen für die äußeren Kräfte an dem Plattenabschnitt Abb. 627 liefern die Beziehungen

$$Q_{rz} = \frac{dM_r}{dr} + \frac{M_r - M_\alpha}{r} = -N \frac{d}{dr} \left(\Delta w\right); \qquad \frac{d(rQ_{rz})}{dr} = -pr \qquad (946)$$

und mit (945) die Differentialgleichung

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}\right)\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}\right)w = \Delta\Delta w = \frac{p}{N}.$$
 (947)

Das Ergebnis kann daher in der Form

$$\frac{d^4w}{dr^4} + 2\frac{1}{r}\frac{d^3w}{dr^3} - \frac{1}{r^2}\frac{d^2w}{dr^2} + \frac{1}{r^3}\frac{dw}{dr} = \frac{p}{N} \quad (948)$$

angeschrieben und nach (946) aus dem Ansatz

$$\frac{d}{dr}\left[r\frac{d}{dr}\left(\frac{d^2w}{dr^2} + \frac{1}{r}\frac{dw}{dr}\right)\right] = \frac{pr}{N}$$
(949)

abgeleitet werden. Es läßt sich daher mit  $\varphi = dw/dr$  auch folgendermaßen ausdrücken:

$$r \frac{d^2\varphi}{dr^2} + \frac{d\varphi}{dr} - \frac{1}{r} \varphi = r \frac{d}{dr} \left[ \frac{1}{r} \frac{d}{dr} \left( r \varphi \right) \right] = \frac{1}{N} \left( \int_0^r p r \, dr + C \right). \tag{950}$$

Die vollständige Lösung der Differentialgleichung 4. Ordnung besteht aus einem partikulären Integral  $w_0$  der inhomogenen Gleichung (947) und aus vier mit den Integrationskonstanten  $C_1$  bis  $C_4$  erweiterten Lösungen  $w_1$  bis  $w_4$  der homogenen Gleichung. Das partikuläre Integral  $w_0$  kann in diesem Falle aus (936), (937) durch eine zweimalige Wiederholung einer doppelten Quadratur bestimmt werden, denn

$$r\frac{d^{2}M}{dr^{2}} + \frac{dM}{dr} = \frac{d}{dr}\left(r\frac{dM}{dr}\right) = -pr, \qquad M = -\int \frac{dr}{r}\int pr\,dr, \qquad (951)$$

$$r\frac{d^{2}w_{0}}{dr^{2}} + \frac{dw_{0}}{dr} = \frac{d}{dr}\left(r\frac{dw_{0}}{dr}\right) = -\frac{Mr}{N}, \qquad w_{0} = -\int \frac{dr}{r}\int \frac{M}{N}r\,dr.$$

649



Als Lösungen der bomogenen Gleichung eignen sich, wie sich leicht durch Einsetzen in (947) prüfen läßt, die folgenden Ansätze:

$$w_1 = 1$$
,  $w_2 = \left(\frac{r}{a}\right)^2$ ,  $w_3 = \frac{r^2}{a^2} \ln \frac{r}{a}$ ,  $w_4 = \ln \frac{r}{a}$ . (952)

aist der Radius des Plattenrandes (Abb. 628c). Daher lautet die vollständige Lösung von (947) mit $r/a=\varrho$ 

$$\begin{split} w &= w_{0} + C_{1} + C_{2} \varrho^{2} + C_{3} \varrho^{2} \ln \varrho + C_{4} \ln \varrho , \\ \frac{dw}{dr} &= \frac{1}{a} \left[ \frac{dw_{0}}{d\varrho} + 2 C_{2} \varrho + C_{3} \varrho (1 + 2 \ln \varrho) + C_{4} \frac{1}{\varrho} \right] , \\ M_{r} &= -\frac{N}{a^{2}} \left\{ \frac{d^{3} w_{0}}{d\varrho^{2}} + \frac{\mu}{\varrho} \frac{dw_{0}}{d\varrho} + (1 + \mu) \left[ 2 C_{2} + C_{3} \left( \frac{3 + \mu}{1 + \mu} + 2 \ln \varrho \right) \right. \right. \\ &- C_{4} \frac{1 - \mu}{1 + \mu} \frac{1}{\varrho^{2}} \right] \right\} , \\ M_{\alpha} &= -\frac{N}{a^{2}} \left\{ \mu \frac{d^{2} w_{0}}{d\varrho^{2}} + \frac{1}{\varrho} \frac{dw_{0}}{d\varrho} + (1 + \mu) \left[ 2 C_{2} + C_{3} \left( \frac{1 + 3\mu}{1 + \mu} + 2 \ln \varrho \right) \right. \right. \\ &+ C_{4} \frac{1 - \mu}{1 + \mu} \frac{1}{\varrho^{2}} \right] \right\} , \end{split}$$
(953)  
$$&+ C_{4} \frac{1 - \mu}{1 + \mu} \frac{1}{\varrho^{2}} \right] \right\} , \\ M &= -\frac{N}{a^{2}} \left[ \frac{d^{2} w_{0}}{d\varrho^{2}} + \frac{1}{\varrho} \frac{dw_{0}}{d\varrho} + 4 C_{2} + 4 C_{3} (1 + \ln \varrho) \right] , \\ Q_{rz} &= -\frac{N}{a^{3}} \left( \frac{d^{3} w_{0}}{d\varrho^{3}} + \frac{d^{2} w_{0}}{\varrho^{2} d\varrho^{2}} - \frac{dw_{0}}{\varrho^{2} d\varrho} + 4 C_{3} \frac{1}{\varrho} \right) . \end{split}$$

Der Stützendruck A bei einer zentralsymmetrischen Belastung  $\mathfrak{P}$  wird

a

Abb. 628.

$$A = \mathfrak{P}/2\pi a \,. \tag{954}$$

Da jedoch die Durchbiegung w und die Biegungsmomente  $M_r, M_{\alpha}$  im Mittelpunkt O der Kreisplatte ( $\varrho = 0$ ,  $\ln \varrho = \infty$ ) für  $C_3 \neq 0$ ,  $C_4 \neq 0$  unendlich groß



$$w = w^* + M w^{**}.$$
 (955)

Bei starrer Einspannung mit  $M = M_0$  ist für r = a mit  $\varrho = 1$ 

$$\frac{w}{r} = \frac{dw^*}{dr} + M_0 \frac{dw^{**}}{dr} = 0$$
 (956)

und damit das Einspannungsmoment noch auf andere Weise bestimmt

Die Kreisringplatten werden entweder an beiden Rändern gestützt (Abb. 629a) oder als Kragplatten verwendet. Der freie Rand wird dann mit r = b,  $b/a = \beta$ , der gestützte Rand mit r = a,  $\rho = 1$  bezeichnet (Abb. 629b, c). Die Platte kann hier wieder frei aufgelagert oder eingespannt sein. Die Formänderung der Kreisringplatte wird durch die vollständige Differentialgleichung mit vier Integrationskonstanten beschrieben. Zu ihrer Berechnung stehen an jedem Rande zwei Bedingungen zur Verfügung. Am freien Rand  $\rho = \beta$  ist  $M_r = 0$ ,  $Q_r = 0$ .

Die Kreisplatte vom Durchmesser 2b kann außerdem in einem konzentrischen Kreis mit dem Durchmesser 2a gestützt sein und daher mit einer Ringplatte von der Breite b-a auskragen. Die äußeren an der Platte angreifenden Kräfte sind dann in r = a unstetig. Die Berechnung zerfällt in die Lösung I für die Formänderung w der Kreisplatte mit den beiden Integrationskonstanten  $C_1, C_2$  und in die Lösung II nach (953) für die Formänderung der Ringplatte von der Breite (b-a)mit vier Integrationskonstanten. Die sechs Integrationskonstanten werden aus den Randbedingungen an der äußeren Begrenzung (r = b) mit  $M_{b,II} = 0$ ,  $Q_{bz,II} = 0$ und aus den Bedingungen an dem abgestützten Kreis r = a berechnet. An dieser

Stelle ist  $w_{a,I} = 0$ ,  $w_{a,II} = 0$ ,  $dw_{a,I}/dr = dw_{a,II}/dr$  und  $M_{a,I} = M_{a,II}$ . Als Kontrolle gilt  $Q_{a,I} - Q_{a,II} + \mathfrak{P}/2\pi a = 0$  (Abb. 630) mit  $\mathfrak{P}$  als Plattenbelastung. Dasselbe gilt von der Berechnung einer Ringplatte von der Breite (b-c), nur daß in diesem Falle in die Rechnung acht Integrationskonstanten eingehen, die sich aus acht linearen Gleichungen ergeben (Abb. 631). Die Lösung läßt sich bei zentraler Symmetrie naturgemäß leicht auch für die statisch unbestimmte Stützung der Kreis- und Kreisringplatte erweitern.

Die Belastung  $\phi = \phi_0$  oder  $\phi = \phi(r)$  erstreckt sich über die ganze Breite, über einen Ringstreifen oder als Linienbelastung *P* über einen ausgezeichneten Breitenkreis der

Platte. Die Einzellast  $P_0$  im Ursprung O ist ein Sonderfall. Formänderung und Schnittkräfte der Platte lassen sich in diesem Falle nach den Ansätzen auf S. 650 in dem Bereich um den Plattenmittelpunkt nicht angeben. Unstetigkeiten im Verlauf der zentralsymmetrischen Belastung p führen zu einer Unterteilung des Integrationsbereiches. Dasselbe gilt bei einem Wechsel der Plattenstärke. Die



Untersuchung beginnt in jedem Falle mit der Berechnung der Integrationskonstanten aus ebenso vielen linearen Gleichungen. Damit ist die Ausbiegung w eindeutig bestimmt. Dasselbe gilt dann auch von den Schnittkräften,



# die sich nach (953) aus Ableitungen der Funktion w zusammensetzen. Die Lösung ist richtig, wenn sie die Differentialgleichung und die vorgeschriebenen Randbedingungen befriedigt.

Da Kreis- und Kreisringplatten für die konstruktive Ausgestaltung zahlreicher Bauaufgaben verwendet werden, ist das Ergebnis der notwendigen Untersuchungen in den Tabellen 63 u. 64 zusammengefaßt worden. Ihre Anwendung wird wesentlich vereinfacht, wenn die reziproke Poissonsche Zahl  $\mu$ , die bei Stahl mit 0,25, bei Eisenbeton zwischen 0,16 und 0,10 gemessen ist, vernachlässigt wird. Dies ist in der Regel zulässig.

Die Differentialgleichung vierter Ordnung läßt sich mit (945) ebenso wie in Abschn. 67 in zwei Differentialgleichungen zweiter Ordnung zerlegen

$$\frac{d^2 M}{dr^2} + \frac{1}{r} \frac{dM}{dr} = -p, \qquad \frac{d^2 w}{dr^2} + \frac{1}{r} \frac{dw}{dr} = -\frac{M}{N} = -w.$$
(957)

Da nach (945) und (946)

$$\frac{dM}{dr} = Q_{rz, w} = -\frac{1}{r} \int_{0}^{r} p r dr, \text{ also auch } \frac{dw}{dr} = Q_{rz, w} = -\frac{1}{r} \int_{0}^{M} \frac{M}{N} r dr$$

ist, entstehen nach H. Marcus die beiden simultanen Differentialgleichungen zweiter Ordnung

$$\frac{d^2 M}{dr^2} = -\left[p - \frac{1}{r^2} \int_0^r p \, r \, dr\right], \qquad \frac{d^2 w}{dr^2} = -\left[\frac{M}{N} - \frac{1}{r^2} \int_0^r \frac{M}{N} \, r \, dr\right], \qquad (958)$$

die wiederum eine Analogie zu den Differentialgleichungen der Seilkurve und der Biegelinie des biegungssteifen Stabes bilden und sich zur Berechnung des Spannungs- und Formänderungszustandes der Kreisplatte ebenfalls eignen.

Tabelle 63. Formänderungen und Schnittkräfte symmetrisch belasteter Kreisund Kreisringplatten.  $\varrho = \frac{r}{a}, \qquad \beta = \frac{b}{a}, \qquad N = \frac{E \, h^3}{12 \, (1 - \mu^2)}, \qquad w' = \frac{d \, w}{d \, r}.$  $\Phi_0 = 1 - \varrho^4, \qquad \Phi_1 = 1 - \varrho^2, \qquad \Phi_2 = \varrho^2 \ln \varrho, \qquad \Phi_3 = \ln \varrho, \qquad \Phi_4 = \frac{1}{\varrho^2} - 1.$ 

Die Funktionen  $\Phi_0$  bis  $\Phi_4$  sind in Tabelle 64 enthalten.

$$w = \frac{p a^{4}}{64N(1+\mu)} [2 (3+\mu) \Phi_{1} - (1+\mu) \Phi_{0}],$$

$$M_{r} = \frac{p a^{2}}{16} (3+\mu) \Phi_{1}; \qquad M_{t} = \frac{p a^{2}}{16} [2 (1-\mu) + (1+3\mu) \Phi_{1}], \qquad Q_{r} = -\frac{p a}{2} \varrho,$$

$$\varphi = 0; \qquad w = \frac{p a^{4}}{64N} \frac{5+\mu}{1+\mu}; \qquad M_{r} = M_{l} = \frac{p a^{2}}{16} (3+\mu),$$

$$\varphi = 1; \qquad w' = -\frac{p a^{3}}{8N(1+\mu)}; \qquad M_{l} = \frac{p a^{2}}{8} (1-\mu); \qquad Q_{r} = -\frac{p a}{2}.$$

$$\sum_{l=2}^{p} \sum_{l=2}^{p} \sum_{l=2$$

$$w = \frac{\oint a^4}{64 N (1 + \mu)} \varkappa_1.$$

$$w' = -\frac{\oint a^3}{8 N (1 + \mu)} (1 - \beta^2)^2, \quad M_i = \frac{\oint a^2}{8} (1 - \mu) (1 - \beta^2)^2, \quad Q_r = -\frac{\oint a}{2} (1 - \beta^2).$$

$$w' = \frac{\oint a^3}{2b - 2\beta a} \qquad \varkappa_1 = 4 - (1 - \mu) \beta^2, \quad \varkappa_2 = [\varkappa_1 - 4 (1 + \mu) \ln \beta] \beta^2,$$

$$\varkappa_3 = 4 (3 + \mu) - (7 + 3\mu) \beta^2 + 4 (1 + \mu) \beta^2 \ln \beta.$$

$$\begin{split} \varrho &\leq \beta \colon \quad w = \frac{\not p \ a^4}{6_4 N} \bigg\{ \mathbf{I} + \left[ 4 - 5 \ \beta^2 + 4 \ (2 + \beta^2) \ln \beta \right] \beta^2 + 2 \ \frac{\varkappa_2}{\mathbf{I} + \mu} \ \Phi_1 - \Phi_0 \bigg\}, \qquad Q_r = -\frac{\not p \ a}{2} \ \varrho \,. \\ M_r &= \frac{\not p \ a^2}{\mathbf{I} 6} \left[ \varkappa_2 - (3 + \mu) + (3 + \mu) \ \Phi_1 \right], \qquad M_t = \frac{\not p \ a^2}{\mathbf{I} 6} \left[ \varkappa_2 - (\mathbf{I} + 3 \ \mu) + (\mathbf{I} + 3 \ \mu) \ \Phi_1 \right]. \end{split}$$

BIBLIOTHEK

Platten mit gleichbleibender Dicke.

653

$$\begin{aligned} \varphi \geq \beta : & \psi = \frac{p_{0}^{2}q_{N}}{p_{0}^{2}} + 2\beta \left[ \frac{2(3+\frac{1}{1+\mu}) - (1-\mu)\beta^{2}}{1+\mu} \phi_{1} + 4\phi_{2} + 2\beta^{2} \phi_{3} \right], \\ & A_{1} = \frac{p_{0}^{2}a_{1}^{2}}{16} \left( (1-\mu)\beta^{2} \phi_{4} - 4(1+\mu)\beta^{2} \phi_{3} \right), \\ & Q_{1} = -\frac{p_{0}^{2}b}{2} \frac{\beta}{2}, \\ & A_{1} = \frac{p_{0}^{2}a_{1}^{2}}{16} \left( (1-\mu)\beta^{2} \phi_{4} - 4(1+\mu)\beta^{2} \phi_{3} + 2(1-\mu)\beta^{2} (1-\beta^{2}), \\ & A_{1} = \frac{p_{0}^{2}a_{1}^{2}}{16} \left( (1-\mu)\beta^{2} \phi_{4} - 4(1+\mu)\beta^{2} \phi_{3} + 2(1-\mu)\beta^{2} \phi_{3} - 2(1-\beta^{2}), \\ & A_{1} = \frac{p_{0}^{2}a_{1}^{2}}{16} \left( (1-\mu)\beta^{2} \phi_{4} - 4(1+\mu)\beta^{2} \phi_{3} + 2(1-\mu)\beta^{2} \phi_{3} - 2(1-\beta^{2}), \\ & A_{1} = \frac{p_{0}^{2}a_{1}^{2}}{16} \left( (1-\mu)\beta^{2} - (1-\beta^{2}), \\ & A_{1} = \frac{p_{0}^{2}a_{1}^{2}}{16} \left( (1-\beta^{2}) - (1-\beta^{2}) - (1-\beta^{2}), \\ & A_{2} = \frac{p_{0}^{2}a_{1}^{2}}{16} \left( (1-\beta^{2}) - (1-\beta^{2}) - (1-\beta^{2}), \\ & A_{2} = (1-\mu)(1-\beta^{2}) - 2(1+\mu)\beta^{2} h_{1}, \\ & A_{2} = (1-\mu)(1-\beta^{2}) - 2(1+\mu)\beta^{2} h_{1}, \\ & A_{2} = (1-\mu)(1-\beta^{2}) - 2(1+\mu)\beta^{2} h_{2}, \\ & A_{2} = (1-\mu)(1-\beta^{2}) - 2(1+\mu)\beta^{2} h_{1}, \\ & A_{2} = (1-\mu)(1-\beta^{2}) - 2(1+\mu)\beta^{2} h_{2}, \\ & A_{2} = \frac{p_{0}^{2}b_{1}}{16} - 2(1-\mu)\beta^{2} \phi_{1} - 2(1+\mu)\phi_{2}, \\ & A_{2} = \frac{p_{0}^{2}b_{1}}{16} - 2(1-\mu)\beta^{2} \phi_{1} - 2(1+\mu)\phi_{2}, \\ & A_{1} = \frac{p_{0}^{2}b_{1}}{16} - 2(1-\mu)\beta^{2} \phi_{1} - 2(1+\mu)\phi_{2}, \\ & A_{1} = \frac{p_{0}^{2}b_{1}}{12} - 2(1-\mu)\beta^{2} \phi_{1} - 2(1+\mu)\phi_{2}, \\ & A_{1} = \frac{p_{0}^{2}b_{1}}{12} - 2(1-\mu)\beta^{2} \phi_{1} - 2(1+\mu)\phi_{2}, \\ & A_{1} = \frac{p_{0}^{2}b_{1}}{12} - \frac{p_{0}^{2}}{12} - \frac{p_{0}^{2}}{12}$$

| $\varrho = 0$ :              | $w = \frac{P a^2}{64\pi N} \frac{7+3\mu}{1+\mu}.$                                                                                                                                                                  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\varrho = 1$ : w            | $M' = -\frac{P a}{8 \pi N (1 + \mu)}, \qquad M_i = \frac{P}{8 \pi} (1 - \mu).$                                                                                                                                     |
| . <b>P</b>                   | $w = \frac{p a^4}{64 N} (2 \Phi_1 - \Phi_0) , \qquad M_r = \frac{p a^2}{16} [(3 + \mu) \Phi_1 - 2] ,$                                                                                                              |
|                              | $M_{t} = \frac{p a^{2}}{16} \left[ (1 + 3 \mu) \Phi_{1} - 2 \mu \right], \qquad Q_{r} = -\frac{p a}{2} \varrho.$                                                                                                   |
| $\varrho = \circ$ : $w =$    | $= \frac{p a^4}{64 N}, \qquad M_r = M_t = \frac{p a^2}{16} (1 + \mu),$                                                                                                                                             |
| $\varrho = 1;  M_t =$        | $= \mu M_r = -\frac{p a^2}{8} \mu$ , $Q_r = -\frac{p a}{2}$ ,                                                                                                                                                      |
| р<br>2 <i>b</i> -2βа<br>< 2а | $\varkappa_{1} = 1 - 4 \beta^{2} + \beta^{4} (3 - 4 \ln \beta),$<br>$\varkappa_{2} = 1 - \beta^{2} (\beta^{2} - 4 \ln \beta).$                                                                                     |
| $\varrho \leq \beta$ :       | $w = \frac{p a^4}{64N} \left[ (\varkappa_1 - 2 \varkappa_2) + 2 \varkappa_2 \Phi_1 \right],  M_r = M_t = \frac{p a^2}{16} (1 + \mu) \varkappa_2,  Q_r = 0.$                                                        |
| $\varrho \geq \beta$ :       | $w = \frac{\rho a^4}{64N} \left[ 2 \left( 1 - 2\beta^2 - \beta^4 \right) \Phi_1 - \Phi_0 - 4\beta^4 \Phi_3 - 8\beta^2 \Phi_2 \right],$                                                                             |
| М                            | $I_r = \frac{p a^2}{16} \left[ -2 \left(1 - \beta^2\right)^2 + \left(3 + \mu\right) \Phi_1 - \left(1 - \mu\right) \beta^4 \Phi_4 + 4 \left(1 + \mu\right) \beta^2 \Phi_3 \right],$                                 |
| М                            | $I_{i} = \frac{p a^{2}}{16} \left[ -2 \mu \left( 1 - \beta^{2} \right)^{2} + \left( 1 + 3 \mu \right) \Phi_{1} + \left( 1 - \mu \right) \beta^{4} \Phi_{4} + 4 \left( 1 + \mu \right) \beta^{2} \Phi_{3} \right],$ |
|                              | $Q_r = -\frac{p a}{2} \left( \varrho - \frac{\beta^2}{\varrho} \right).$                                                                                                                                           |
| <i>ϱ</i> = ο :               | $w = \frac{p a^4}{6_4 N} \varkappa_1.$                                                                                                                                                                             |
| <i>ρ</i> = 1 :               | $M_{i} = \mu M_{r} = -\frac{p a^{2}}{8} \mu (1 - \beta^{2})^{2}, \qquad Q_{r} = -\frac{p a}{2} (1 - \beta^{2}).$                                                                                                   |
| 2b-2faza-                    | $\varkappa_1 = \beta^2 \left[ 4 - \beta^2 \left( 3 - 4 \ln \beta \right) \right],$ $\varkappa_2 = \beta^2 \left( \beta^2 - 4 \ln \beta \right).$                                                                   |
| $\varrho \leq \beta$ :       | $w = \frac{\phi  a^4}{64  N} \left[ (\varkappa_1 - 2  \varkappa_2 + 1) + 2  \varkappa_2  \Phi_1 - \Phi_0 \right],$                                                                                                 |
|                              | $M_r = \frac{p a^2}{16} \left\{ \left[ (1 + \mu) \varkappa_2 - (3 + \mu) \right] + (3 + \mu) \Phi_1 \right\},\$                                                                                                    |
|                              | $M_{t} = \frac{p a^{2}}{16} \left\{ \left[ (1 + \mu) \varkappa_{2} - (1 + 3 \mu) \right] + (1 + 3 \mu) \Phi_{1} \right\}.$                                                                                         |
| $\varrho \geq \beta$ :       | $w = rac{\oint a^2 b^2}{3^2 N} \left[ (2 + \beta^2)  \varPhi_1 + 2  \beta^2  \varPhi_3 + 4  \varPhi_2  ight],$                                                                                                    |
|                              | $M_{r} = \frac{p b^{2}}{10} \left[ -2 \left( 2 - \beta^{2} \right) + \left( 1 - \mu \right) \beta^{2} \Phi_{4} - 4 \left( 1 + \mu \right) \Phi_{3} \right], \qquad Q_{r} = -\frac{p b \beta^{2}}{2 \rho^{2}}$      |
|                              | $M_{i} = \frac{\beta b^{2}}{10} \left[ -2 \mu \left( 2 - \beta^{2} \right) - (1 - \mu) \beta^{2} \Phi_{4} - 4 \left( 1 + \mu \right) \Phi_{3} \right].$                                                            |

Platten mit gleichbleibender Dicke.

$$M \underbrace{\frac{2b-2\beta a}{2b-2\beta a}}_{2b-2\beta a} w = -\frac{Mb^2}{2N(1+\mu)} \frac{1}{1-\beta^2} \left( \Phi_1 - 2\frac{1+\mu}{1-\mu} \Phi_3 \right),$$

$$M_r = M \frac{\beta^2}{1-\beta^2} \Phi_4; \qquad M_t = -M \frac{\beta^2}{1-\beta^2} \left( \Phi_4 + 2 \right), \qquad Q_r = 0.$$

$$\varrho = \beta; \qquad w = -\frac{Mb^2}{2N(1+\mu)} \left( 1 - 2\frac{1+\mu}{1-\mu} \frac{\ln\beta}{1-\beta^2} \right),$$

$$q = \beta; \qquad W = -\frac{Mb^2}{2N(1+\mu)} \left( 1 - 2\frac{1+\mu}{1-\mu} \frac{\ln\beta}{1-\beta^2} \right),$$

$$w' = \frac{1}{N(1+\mu)} \frac{1}{1-\beta^2} \left(\beta^2 + \frac{1}{1-\mu}\right); \qquad M_t = -M \frac{1}{1-\beta^2},$$

$$\varrho = 1; \qquad w' = -2 \frac{Mb}{N(1-\mu^2)} \frac{\beta}{1-\beta^2}; \qquad M_t = -2M \frac{\beta^2}{1-\beta^2}.$$

$$M_{(1-\mu^2)} = -2M \frac{\beta^2}{1-\beta^2}.$$

$$w = \frac{Ma^{2}}{2N(1+\mu)(1-\beta^{2})} \left( \Phi_{1} - 2\frac{1+\mu}{1-\mu}\beta^{2} \Phi_{3} \right).$$

$$M_{r} = M\left(1 - \frac{\beta^{2}}{1-\beta^{2}} \Phi_{4}\right); \qquad M_{t} = M\left(\frac{1+\beta^{2}}{1-\beta^{2}} + \frac{\beta^{2}}{1-\beta^{2}} \Phi_{4}\right). \qquad Q_{r} = 0$$

$$\varphi = \beta; \qquad w = -\frac{Ma^{2}}{1-\beta^{2}} \left(1 - 2\frac{1+\mu}{1-\beta^{2}} - \frac{\beta^{2}}{1-\beta^{2}} + \frac{\beta^{2}}{1-\beta^{2}} \Phi_{4}\right).$$

$$\begin{split} & 2N(1+\mu) \setminus (1-\mu - \beta^2) + \gamma \\ & w' = -\frac{Mb}{N(1-\mu^2)} \frac{2}{1-\beta^2}; \qquad M_t = M \frac{2}{1-\beta^2}, \\ & \varrho = 1; \qquad w' = -\frac{Ma}{N(1+\mu)(1-\beta^2)} \left(1 + \frac{1+\mu}{1-\mu}\beta^2\right), \qquad M_t = M \frac{1+\beta^2}{1-\beta^2}. \end{split}$$

1

Platten mit gleichbleibender Dicke.

$$\begin{split} & x_{1} = (1 + \mu) + (1 - \mu) \beta^{2}, \quad y_{1} = 4 (1 + \mu) \beta^{2} \ln \beta, \\ & x_{2} = (1 - \mu) + (1 + \mu) \beta^{2}, \quad y = \frac{x_{1} + y_{1}}{x_{2}} \beta^{2}, \\ & w = \frac{p a^{4}}{b 4 N} [2 (1 - 2 \beta^{2} - \psi) \Phi_{1} - \Phi_{0} - 4 \psi \Phi_{3} - 8 \beta^{2} \Phi_{2}], \\ & M_{r} = -\frac{p a^{2}}{16} [2 (1 - 2 \beta^{2} + \psi) - (3 + \mu) \Phi_{1} + (1 - \mu) \psi \Phi_{4} - 4 (1 + \mu) \beta^{2} \Phi_{3}], \\ & M_{t} = -\frac{p a^{2}}{16} [2 (\mu (1 - 2 \beta^{2} + \psi) - (1 + 3 \mu) \Phi_{1} - (1 - \mu) \psi \Phi_{4} - 4 (1 + \mu) \beta^{2} \Phi_{3}], \\ & M_{t} = -\frac{p a^{2}}{16} [2 (\mu (1 - 2 \beta^{2} + \psi) - (1 + 3 \mu) \Phi_{1} - (1 - \mu) \psi \Phi_{4} - 4 (1 + \mu) \beta^{2} \Phi_{3}], \\ & g_{r} = -\frac{p a}{2} \left( \varrho - \frac{\beta^{2}}{\varrho} \right), \\ & g_{r} = -\frac{p a}{2} \left( \varrho - \frac{\beta^{2}}{\varrho} \right), \\ & g_{r} = -\frac{p a^{2}}{2} \left( (1 - \beta^{2})^{2} - 2 (1 - \beta^{2}) (\psi + 2 \beta^{2}) - 4 (\psi + 2 \beta^{4}) \ln \beta \right), \\ & w' = -\frac{p a^{2}}{8 N} [(1 - \beta^{2})^{2} - 2 (1 - \beta^{2}) (\psi + 2 \beta^{2}) - 4 (\psi + 2 \beta^{4}) \ln \beta], \\ & w' = -\frac{p a^{2}}{8 N} [(1 - 2 \beta^{2} + \psi)], \quad g_{r} = -\frac{p a}{2} (1 - \beta^{4} + 4 \beta^{2} \ln \beta), \\ & g = 1: \quad M_{t} = -\frac{p a^{2}}{8 N} \left[ (1 - 2 \beta^{2} + \psi) \right], \quad g_{r} = -\frac{p a}{2} (1 - \beta^{2}), \\ & M_{r} = -\frac{p a^{2} b}{8 N} [(1 - 2 \psi) - (1 - 2 \beta^{2} + \psi)], \quad g_{r} = -\frac{p a}{2} (1 - \beta^{2}), \\ & M_{r} = -\frac{p b}{2} [\mu (1 - 2 \psi) - (1 - \mu) \psi \Phi_{4} + (1 + \mu) \Phi_{3}], \\ & w = \frac{p a^{2} b}{8 N} [(1 + 2 \psi) (1 - \beta^{2}) + 2 (\beta^{2} + 2 \psi) \ln \beta], \\ & w' = -\frac{p a^{2} b}{8 N} [(1 - 2 \psi) + (1 - \mu) \psi \Phi_{4} + (1 + \mu) \Phi_{3}], \\ & g = \beta; \quad w = \frac{p a^{2} b}{8 N} [(1 - 2 \psi) + (1 - \mu) \psi \Phi_{4} + (1 + \mu) \Phi_{3}], \\ & w' = -\frac{p b}{2 N \times} (1 - \beta^{2} + 2 \ln \beta), \quad M_{t} = -\frac{P b}{2} \frac{1 - \mu^{2}}{\pi} (1 - \beta^{2} + 2 \ln \beta), \\ & w' = -\frac{P b}{2 N \times} (1 - \beta^{2} + 2 \ln \beta), \quad M_{t} = -\frac{P b}{2} \frac{1 - \mu^{2}}{\pi} (1 - \beta^{2} + 2 \ln \beta), \\ & \varphi = 1; \quad M_{t} = \mu M_{r} = -\frac{P b}{2} \mu (1 - 2 \psi), \end{aligned}$$

$$\begin{aligned} z &= (1 - \mu) + (1 + \mu) \beta^2, \\ w &= \frac{M b^2}{2N \times} [\Phi_1 + 2 \Phi_3]; \quad Q_r = 0, \\ M_r &= \frac{M \beta^2}{2N \times} [2 + (1 - \mu) \Phi_4]; \quad M_t = \frac{M \beta^2}{2} [2 \mu - (1 - \mu) \Phi_4]. \end{aligned}$$

$$e = \beta; \qquad w = \frac{M b^2}{2N \times} (1 - \beta^2 + 2 \ln \beta); \quad w' = \frac{M b}{N \times} (1 - \beta^2). \\ M_t &= -\frac{M}{2} [(1 - \mu) - (1 + \mu) \beta^2]. \end{aligned}$$

$$e = 1; \qquad M_t = \mu M_r = \frac{2 M \beta^2}{2} \mu. \end{aligned}$$

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

42

657

$$\begin{split} & \chi_{1} = 2 (1 - \mu) + (1 + 3 \mu) \beta^{2} - 4 (1 + \mu) \beta^{2} \ln \beta, \\ & \chi_{2} = 2 (1 - \mu) - (3 + -\mu) \beta^{2} - 4 (1 + \mu) \beta^{2} \ln \beta, \\ & \chi_{2} = 2 (1 - \mu) - (3 + -\mu) \beta^{2} - 4 (1 + \mu) \beta^{2} \ln \beta, \\ & \chi_{2} = 2 (1 - \mu) - (3 + -\mu) \beta^{2} - 4 (1 + \mu) \beta^{2} \ln \beta, \\ & \chi_{2} = 2 (1 - \mu) - (3 + -\mu) \beta^{2} - 4 (1 + \mu) \beta^{2} \ln \beta, \\ & \chi_{2} = 2 (1 - \mu) - (3 + -\mu) \beta^{2} - 4 (1 + \mu) \beta^{2} \ln \beta, \\ & M_{r} = \frac{p a^{4}}{64N} \left( \frac{2 \times 1}{1 + \mu} \Phi_{1} - \Phi_{0} \right), \\ & M_{r} = \frac{p a^{4}}{16} [\varkappa_{1} - (1 + 3 \mu) + (1 + 3 \mu) \Phi_{1}], \quad Q_{r} = -\frac{p a}{2} \varrho. \\ & \varrho \ge 1; \quad w = \frac{p a^{4}}{64N} \left( \frac{2 \times 1}{1 + \mu} \Phi_{1} - \Phi_{0} - 8 \beta^{2} \Phi_{3} - 8 \beta^{2} \Phi_{2} \right), \quad Q_{r} = \frac{p a}{2} \left( \frac{\beta^{2}}{\varrho} - \varrho \right). \\ & M_{r} = \frac{p a^{2}}{16} [\varkappa_{1} - (3 + -\mu) + (3 + -\mu) \Phi_{1} - 2 (1 - \mu) \beta^{2} \Phi_{4} + 4 (1 + \mu) \beta^{2} \Phi_{3}], \\ & M_{t} = \frac{p a^{2}}{16} [\varkappa_{1} - (1 + 3 \mu) + (1 + 3 \mu) \Phi_{1} - 2 (1 - \mu) \beta^{2} \Phi_{4} + 4 (1 + \mu) \beta^{2} \Phi_{3}]. \\ & \varrho = 0; \quad w = \frac{p a^{4}}{64N} \left( \frac{2 \times 1}{1 + \mu} - 1 \right), \quad M_{r} = M_{1} = \frac{p a^{2}}{16} \times 1. \\ & \varrho = 1; \quad w' = -\frac{p a^{3}}{16N} \left( \frac{\times 1}{1 + \mu} - 1 \right), \quad Q_{rt} = -\frac{p a}{2}, \quad Q_{rs} = \frac{p a}{2} (\beta^{2} - 1), \\ & M_{r} = \frac{p a^{2}}{16} [\varkappa_{1} - (3 + \mu)], \quad M_{t} = \frac{p a^{2}}{16} [\varkappa_{1} - (1 + 3 \mu)]. \\ & \varrho = \beta; \quad w = -\frac{p a^{4}}{64N} \left( (1 + \mu) \left\{ \left[ (3 - 5 \mu) - (7 + 3 \mu) \beta^{2} \right] (\beta^{2} - 1) + 16 (1 + \mu) \beta^{2} \ln \beta \right\}, \\ & w' = -\frac{p a^{2}}{3N (1 + \mu)} (2 - \beta^{2}), \quad M_{t} = \frac{p a^{2}}{8} (1 - \mu) (2 - \beta^{2}). \end{aligned}$$

$$\begin{split} & = \frac{p}{\beta^2} \frac{p}{2\beta a} = \frac{1}{\beta^2} \left[ (1-\mu) (1-2\beta^2) + (3+\mu)\beta^4 + 4 (1+\mu)\beta^4 \ln \beta \right] \\ & = 2 \pm 1; \quad w = -\frac{p}{3^2 N} \frac{a^4}{(1+\mu)} \varkappa_1 \Phi_1, \qquad M_r = M_t = -\frac{p}{16} \frac{a^2}{\kappa_1}, \qquad Q_r = 0 \\ & = 2 \pm 1; \quad w = -\frac{p}{64} \frac{a^4}{N(1+\mu)} \left[ 2 \varkappa_2 \Phi_1 + (1+\mu) \Phi_0 + 4 (1+\mu) (2\beta^2 - 1) \Phi_3 + 8 (1+\mu) \beta^2 \Phi_2 \right] \right], \\ & = \frac{p}{16} \frac{a^2}{16} \left[ \varkappa_1 - (3+\mu) \Phi_1 + (1-\mu) (2\beta^2 - 1) \Phi_4 - 4 (1+\mu) \beta^2 \Phi_3 \right] \\ & = -\frac{p}{16} \frac{a^2}{16} \left[ \varkappa_1 - (1+3\mu) \Phi_1 - (1-\mu) (2\beta^2 - 1) \Phi_4 - 4 (1+\mu) \beta^2 \Phi_3 \right] \\ & = \frac{p}{16} \frac{p}{2} \frac{a^4}{2} \left( \frac{\beta^2}{2} - \varrho \right) \\ & = 0; \quad w = -\frac{p}{3^2 N} \frac{a^4}{(1+\mu)} \varkappa_1, \qquad M_r = M_t = -\frac{p}{10} \frac{a^2}{\kappa_1} \\ & = \frac{p}{10} \frac{n}{N(1+\mu)} \varkappa_1, \qquad M_r = M_t = -\frac{p}{10} \frac{a^2}{\kappa_1} \\ & = \frac{p}{10} \frac{a^4}{N(1+\mu)} \varkappa_1, \qquad M_r = M_t = -\frac{p}{10} \frac{a^2}{\kappa_1} \\ & = \beta; \quad w = -\frac{p}{64} \frac{a^4}{\kappa_1 N(1+\mu)} \\ & \quad \cdot \left\{ \left[ 2 (1-\mu) - (3-5\mu) \beta^2 + (7+3\mu) \beta^4 \right] \frac{\beta^2 - 1}{\beta^2} - 4 (1+\mu) (4\beta^2 - 1) \ln \beta \right], \\ & = \frac{p}{8} \frac{n^4}{N(1+\mu)} \frac{(\beta^2 - 1)^2}{\beta}, \qquad M_t = -\frac{p}{8} \frac{a^2}{(1-\mu)} \frac{(\beta^2 - 1)^2}{\beta^2} \\ & = \frac{p}{8} \frac{a^4}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^4}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\beta} \\ & = \frac{p}{8} \frac{a^2}{\kappa_1 (1+\mu)} \frac{(\beta^2 - 1)^2}{\kappa_1 (1+\mu)} \\ & = \frac{p}{8} \frac{(\beta^2 - 1)^2}{\kappa_1$$

Platten mit gleichbleibender Dicke.

$$\begin{aligned} & x = \frac{1-\mu}{\beta^2} + 2(1+\mu) \, . \\ \varrho &\leq 1 \colon \qquad w = \frac{p \, a^4}{64N} \left( 2 \, \frac{x}{1+\mu} \, \Phi_1 - \Phi_0 \right) , \qquad M_r = \frac{p \, a^2}{16} \left[ x - (3+\mu) + (3+\mu) \, \Phi_1 \right] , \\ M_t &= \frac{p \, a^2}{16} \left[ x - (1+3\,\mu) + (1+3\,\mu) \, \Phi_1 \right] , \qquad Q_r = -\frac{p \, a}{2} \, \varrho \, . \end{aligned}$$

$$\varrho &\geq 1 \colon \qquad w = -\frac{p \, a^4}{22N} \left[ \frac{1-\mu}{1+\mu} \, \frac{1}{82} \, \Phi_1 - 2 \, \Phi_3 \right] , \qquad Q_r = 0 \, . \end{aligned}$$

$$M_r = -\frac{p a^2}{16} (1-\mu) \left( \frac{\beta^2 - 1}{\beta^2} + \Phi_4 \right), \qquad M_t = -\frac{p a^2}{16} (1-\mu) \left( -\frac{\beta^2 + 1}{\beta^2} - \Phi_4 \right).$$

$$\begin{split} \varrho &= 0: \qquad w = -\frac{p}{64} \frac{a^4}{64N} \left( 2 \frac{\varkappa}{1+\mu} - 1 \right), \qquad M_r = M_t = \frac{p}{16} \frac{a^3}{16} \varkappa, \\ \varrho &= 1: \qquad w' = -\frac{p}{16N} \left( -\frac{\varkappa}{1+\mu} - 1 \right), \qquad M_r = -\frac{p}{16} \frac{a^2}{16} \left( 1 - \mu \right) \frac{\beta^2 - 1}{\beta^2}, \\ M_t &= \frac{p}{16} \frac{a^2}{16} \left( 1 - \mu \right) \frac{\beta^2 + 1}{\beta^2}, \qquad Q_r = -\frac{p}{2} \frac{a}{2}. \end{split}$$

$$\varrho = \beta; \quad w = -\frac{p a^4}{3^2 N} \left[ \frac{1-\mu}{1+\mu} \frac{\beta^2 - 1}{\beta^2} + 2\ln\beta \right], \quad w' = -\frac{p a^3}{8 N (1+\mu) \beta}, \quad M_t = \frac{p a^2}{8} \frac{1-\mu}{\beta^2}.$$

$$\begin{aligned} & = (1-\mu)\left(\beta - \frac{1}{\beta}\right) + 2(1+\mu)\beta\ln\beta, \\ & = 0 \le 1; \\ & = -\frac{Pa^3}{8N}\frac{\varkappa}{1+\mu}\Phi_1, \quad M_r = M_t = -\frac{Pa}{4}\varkappa, \quad Q_r = 0, \\ & = \frac{Pa^3}{8N}\left\{-\left[\frac{\varkappa}{1+\mu}+2\beta\right]\Phi_1 - 2\beta\Phi_3 - 2\beta\Phi_2\right\}, \end{aligned}$$

$$w = \frac{W}{8N} \left\{ -\left[ \frac{\pi}{1+\mu} + 2\beta \right] \Phi_1 - 2\beta \Phi_3 - 2\beta \Phi_2 \right\},$$

$$M_r = -\frac{Pa}{4} \left[ \varkappa + (1-\mu)\beta \Phi_4 - 2(1+\mu)\beta \Phi_3 \right], \qquad Q_r = +P \frac{M}{4}$$

$$M_t = -\frac{Pa}{4} \left[ \varkappa - (1-\mu)\beta \Phi_4 - 2(1+\mu)\beta \Phi_3 \right].$$

 $\varrho = o$ :

$$= -\frac{P a^{s}}{8 N (\mathbf{r} + \mu)} \times .$$
$$M_{\mathbf{r}} = M_{t} = -\frac{P a}{t} \times .$$

$$\varrho = 1$$
:

 $\varrho \leqq$ 

UNIVERSITÄTS BIBLIOTHEK PADERBORN

$$\begin{split} \varrho &= \mathrm{r} \, ; & w' \stackrel{\sim}{=} \frac{P \, a^2}{4 \, N \, (\mathrm{r} + \mu)} \, \varkappa \, ; & M_r = M_t = - \frac{P \, a}{4} \, \varkappa \, , \\ \varrho &= \beta \, ; & w = \frac{P \, a^3}{8 \, N \, (\mathrm{r} + \mu)} \left\{ [(\mathrm{r} - \mu) + (3 + \mu) \, \beta^2] \left(\beta - \frac{\mathrm{r}}{\beta}\right) - 2 \, \varkappa \right\}, \\ & w' = \frac{P \, a^2}{2 \, N \, (\mathrm{r} + \mu)} \left(\beta^2 - 1\right) \, ; & M_t = \frac{P \, a}{2 \, \beta} \left(\mathrm{r} - \mu\right) \left(\mathrm{r} - \beta^2\right). \end{split}$$

W

$$\begin{aligned} & x = 2 (1 + \mu) \beta^2 \,. \\ & x = 2 (1 + \mu) \beta^2 \,. \\ & x = \frac{P \, a^2}{8 \, \pi \, N} \left[ \left( \frac{1 - \mu}{\varkappa} + 1 \right) \varPhi_1 + \varPhi_2 \right] \,, \\ & M_\tau = -\frac{P}{8 \, \pi \, \beta^2} \left[ (1 - \mu) \left( \beta^2 - 1 \right) + \varkappa \, \varPhi_3 \right] \,. \\ & M_t = -\frac{P}{8 \, \pi \, \beta^2} \left[ - \left( 1 - \mu \right) \left( \beta^2 + 1 \right) + \varkappa \, \varPhi_3 \right] \,. \end{aligned}$$

 $Q_r = -\frac{P}{2\pi a \varrho} \cdot \frac{42^*}{42^*}$ 

659

.

$$\begin{split} \varrho &\geq 1: \qquad w = \quad \frac{P \, a^2}{8 \, \pi \, N} \left( \frac{1 - \mu}{\varkappa} \, \varPhi_1 - \varPhi_3 \right), \qquad M_r = - \frac{P}{8 \, \pi \, \beta^2} \, (1 - \mu) \left[ (\beta^2 - 1) + \beta^2 \, \varPhi_4 \right], \\ M_t &= - \frac{P}{8 \, \pi \, \beta^2} \, (1 - \mu) \left[ - (\beta^2 + 1) - \beta^2 \, \varPhi_4 \right]; \qquad Q_r = 0 \, . \\ \varrho &= 0: \qquad w = \frac{P \, a^2}{8 \, \pi \, N} \left( \frac{1 - \mu}{\varkappa} + 1 \right) \, . \\ \varrho &= 1: \qquad w' = - \frac{P \, a}{8 \, \pi \, N} \left( 2 \, \frac{1 - \mu}{\varkappa} + 1 \right), \qquad M_r = - \frac{P}{8 \, \pi \, \beta^2} \, (1 - \mu) \, (\beta^2 - 1) \, ; \\ M_t &= \quad \frac{P}{8 \, \pi \, \beta^2} \, (1 - \mu) \, (\beta^2 + 1) \, . \\ \varrho &= \beta: \qquad w = - \frac{P \, a^2}{8 \, \pi \, N} \left[ \frac{1 - \mu}{\varkappa} \, (\beta^2 - 1) + \ln \beta \right]; \qquad w' = - \frac{P \, a}{4 \, \pi \, N \, (1 + \mu) \, \beta} \, . \\ M_t &= \quad \frac{P}{4 \, \pi \, \beta^2} \, (1 - \mu) \, . \end{split}$$

$$\begin{split} & \bigwedge_{\substack{a \neq b \neq 2\beta a \\ \hline c \neq b \neq b \\ \hline c \neq b \\ c \neq b \neq b \\ \hline c \neq b \\ c \neq b \\$$

#### Beispiel für die Anwendung der Tabelle 63.

| 6                |                                                                                     |                                      | $\Phi_2$                                     | Ø3                                           | Φ4                                                                                  |
|------------------|-------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|
| 0,0              | + 1,0000                                                                            | + 1,00                               | 0                                            | - ∞                                          | $+\infty$                                                                           |
| 1<br>2<br>3<br>4 | $\begin{array}{r} + & 0,9999 \\ + & 0,9984 \\ + & 0,9919 \\ + & 0,9744 \end{array}$ | + 0,99<br>+ 0,96<br>+ 0,91<br>+ 0,84 | - 0,0230<br>- 0,0644<br>- 0,1084<br>- 0,1556 | - 2,3026<br>- 1,6094<br>- 1,2040<br>- 0,9163 | + 99,0000<br>+ 24,0000<br>+ 10,1111<br>+ 5,2500                                     |
| 5                | + 0,9375                                                                            | + 0,75                               | - 0,1733                                     | - 0,6931                                     | + 3,0000                                                                            |
| 6<br>7<br>8<br>9 | $\begin{array}{r} + & 0,8704 \\ + & 0,7599 \\ + & 0,5904 \\ + & 0,3439 \end{array}$ | + 0,64 + 0,51 + 0,36 + 0,19          | - 0,1839<br>- 0,1748<br>- 0,1428<br>- 0,0853 | - 0,5108<br>- 0,3567<br>- 0,2231<br>- 0,1053 | $\begin{array}{r} + & 1,7778 \\ + & 1,0408 \\ + & 0,5625 \\ + & 0,2346 \end{array}$ |
| 1,0              | 0                                                                                   | 0                                    | 0                                            | 0                                            | 0                                                                                   |
| 1<br>2<br>3<br>4 | - 0,4641<br>- 1,0736<br>- 1,856I<br>- 2,8416                                        | - 0,21<br>- 0,44<br>- 0,69<br>- 0,96 | + 0,1153 + 0,2625 + 0,4434 + 0,6595          | + 0,0953 + 0,1823 + 0,2624 + 0,3365          | - 0,1736<br>- 0,3056<br>- 0,4083<br>- 0,4898                                        |
| 5                | - 4,0625                                                                            | - 1,25                               | + 0,9123                                     | + 0,4055                                     | - 0,5556                                                                            |
| 6<br>7<br>8<br>9 | - 5.5536<br>- 7,3521<br>- 9,4976<br>- 12,0321                                       | - 1,56<br>- 1,89<br>- 2,24<br>- 2,61 | + 1,2032<br>+ 1,5335<br>+ 1,9044<br>+ 2,3171 | + 0,4700 + 0,5306 + 0,5878 + 0,6419          | - 0,6094<br>- 0,6540<br>- 0,6914<br>- 0,7230                                        |
| 2,0              | - 15,0000                                                                           | - 3,00                               | + 2,7726                                     | + 0,6931                                     | - 0,7500                                                                            |
| 1<br>2<br>3<br>4 | - 18,4481 - 22,4256 - 26,9841 - 32,1776                                             | - 3,41<br>- 3,84<br>- 4,29<br>- 4,76 | + 3,2719<br>+ 3,8161<br>+ 4,4061<br>+ 5,0427 | + 0.7419 + 0.7885 + 0.8329 + 0.8755          | - 0,7732<br>- 0,7934<br>- 0,8110<br>- 0,8264                                        |
| 5                | - 38,0625                                                                           | - 5,25                               | + 5,7268                                     | + 0,9163                                     | - 0,8400                                                                            |

Tabelle 64. Funktionen  $\Phi_0$  bis  $\Phi_4$ .

Beispiel für die Anwendung der Tabelle 63.

Der Verlauf der Biegungsmomente wird für eine Kreisringplatte mit verschiedener Stützung aus der Tabelle 63 entwickelt ( $\mu = 1/6$ ).

l. Innen eingespannte Kreisringplatte (Abb. 632a). Mit  $\beta = b/a = 5.5/2.5 = 2.20$  ist nach S. 657

 $\varkappa_1 = 5,20 \;, \qquad \varkappa_2 = 6,48 \;, \qquad \psi_1 = 17,808 \;, \qquad \psi = 17,185 \;.$  Damit wird

 $M_r = -6,6445 + 1,2370 \ \Phi_1 - 5,5942 \ \Phi_4 + 8,8230 \ \Phi_3,$ 

 $M_t = -1,1074 + 0,5859 \ \Phi_1 + 5,5942 \ \Phi_4 + 8,8230 \ \Phi_3$  (Abb. 633a)

2. Innen frei gelagerte Kreisringplatte (Abb. 632 b). Mit $\beta=2,20$ ist nach S. 655

$$\varkappa_1 = -1,4710$$
,  $\varkappa_2 = 7,8043$ , und damit

$$\mu_{17} = 1,2370 \ \varphi_1 + 2,7811 \ \varphi_4 + 8,8230 \ \varphi_3$$

 $M_t = -0.5859 \, \varPhi_1 - 2.7811 \, \varPhi_4 + 8.8230 \, \varPhi_3 - 11.2132 \quad ({\rm Abb}, 633 \, {\rm b}).$ 

3. Außen eingespannte Kreisringplatte (Abb. 632c).

Mit 
$$\beta = \frac{b}{a} = \frac{2.5}{5.5} = 0,4545$$
 ist nach S. 657







Abb. 632 b.









Statische Untersuchung für die Decke eines kreisrunden Behälters mit Zwischenstützen.

Der Abstand der Stützen auf dem Parallelkreis r = a ist so klein, daß die Punkt- oder Flächenkräfte durch eine rotationssymmetrische Linienstützung ersetzt werden können. 1. Geometrische Grundlagen. Die Abmessungen des Tragwerks sind in Abb.634a ent-

1. Geometrische Grundlagen. Die Abmessungen des Tragwerks sind in Abb. 634a enthalten. Die Querdehnung wird mit  $\mu = 1/4$  eingesetzt. 2. Hauptsystem und Überzählige. Zur Berechnung dient das Hauptsystem Abb. 634b. Überzählige Größen sind die Linienstützkraft  $X_1$  über den ganzen äußeren Rand und die Stützkraft  $X_2$  der Mittelstütze.

kraft  $X_2$  der Mittelstütze. 3. Formänderung und Schnittkräfte des Hauptsystems. Die Verschiebungen werden im Nfachen Betrag angegeben und von den Schnittkräften nur die Biegungsmomente  $M_r$  berechnet.

Zustand  $X_1 = -1$  (Abb. 634c, Tabelle 63 S. 659).  $\beta = 2.0$ ,  $\ln \beta = 0.693147$ ,  $\varkappa = 4.48469$ ,  $\delta_{11} = 0.30216 \frac{a^2}{\pi}$ ,  $\delta_{21} = -0.12013 \frac{a^2}{\pi}$ ,

BLIOTHEK

Statische Untersuchung für die Decke eines kreisrunden Behälters mit Zwischenstützen. 663

$$\begin{split} w_i &= -\frac{a^2}{\pi} \ 0.12013 \ \varPhi_1 \ , \qquad \qquad w_a = -\frac{a^2}{\pi} \ (-0.24513 \ \varPhi_1 - 0.125 \ \varPhi_3 - 0.125 \ \varPhi_2) \\ M_{r\,i} &= -\frac{1}{\pi} \ 0.28029 \ , \qquad \qquad M_{r\,a} = -\frac{1}{\pi} \ (0.28029 + 0.10417 \ \varPhi_4 - 0.29167 \ \varPhi_3) \ . \end{split}$$

Zustand X<sub>2</sub> == -1 (Abb. 634d, Tabelle 63 S. 659).

$$\begin{aligned} \varkappa &= 9,33333 , \qquad \delta_{22} = 0,13616 \frac{a^2}{\pi} , \qquad \delta_{12} = -0,12013 \frac{a^2}{\pi} \\ w_i &= \frac{a^2}{\pi} \left( 0,13616 \, \Phi_1 + 0,125 \, \Phi_2 \right) , \qquad w_a = \frac{a^2}{\pi} \left( 0,01116 \, \Phi_1 - 0,125 \, \Phi_3 \right) , \\ M_{ri} &= -\frac{1}{\pi} \left( 0,07812 + 0,29167 \, \Phi_3 \right) , \\ M_{ro} &= -\frac{1}{\pi} \left( 0,07812 + 0,10417 \, \Phi_4 \right) . \\ \text{Belastung durch $p$ t/m (Abb. 634 e, Tabelle 63 S. 658). \\ \varkappa_1 &= -5,27208 , \qquad \varkappa_2 &= -23,9387 , \\ \delta_{10} &= 0,42516 \, p \, a^4 , \qquad \delta_{20} &= -0,15686 \, p \, a^4 , \\ w_i &= -p \, a^4 \left( 0,14123 \, \Phi_1 + 0,01562 \, \Phi_0 \right) , \\ w_a &= -p \, a^4 \left( 0,64122 \, \Phi_1 + 0,01562 \, \Phi_0 + 0,5 \, \Phi_3 + 0,5 \, \Phi_2 \right) , \\ M_{ri} &= p \, a^2 \left( -0,52742 + 0,19792 \, \Phi_1 \right) , \end{aligned}$$

 $M_{ra} = p a^2 (-0.52742 + 0.19792 \, \Phi_1 - 0.41667 \, \Phi_4)$  $+ 1,16667 \Phi_3).$ 

4. Elastizitätsgleichungen nach Erweiterung mit  $\frac{\pi}{a^2}$ 

$$\begin{array}{c|cccc} X_1 & X_2 \\ \hline & & \\ 1 & +0,30216 & -0,12013 \\ 2 & -0,12013 & +0,13616 \end{array} + 0,42516 \not p \ a^2 \ \pi \\ \hline & -0,15686 \ p \ a^2 \ \pi \end{array}$$

Lösung:  $X_1 = 1,4618 \ pa^2\pi, X_2 = 0,1377 \ pa^2\pi.$ 

5. Superposition.

Belastung  $w = w_0 - X_1 w_1 - X_2 w_2,$ Abb. 634.  $w_t = p \, a^4 \, (-0.14123 \, \varPhi_1 - 0.01562 \, \varPhi_0) - 1.4618 \, p \, a^2 \, \pi \cdot \frac{a^2}{\pi} \, (-0.12013 \, \varPhi_1)$  $-0.1377 p a^2 \pi \cdot \frac{a^2}{\pi} (0.13616 \Phi_1 + 0.125 \Phi_2).$  $= p a^4 (-0.01562 \Phi_0 + 0.01561 \Phi_1 - 0.01721 \Phi_2),$  $w_a = p a^4 (-0.01562 \ \Phi_0 - 0.28444 \ \Phi_1 - 0.31728 \ \Phi_2 - 0.30006 \ \Phi_3),$ 

×4-

14.72

Hauptsystem

X2=-1

4.10

 $M_{ri} = p a^2 \left(-0.10693 + 0.19792 \ \Phi_1 + 0.04016 \ \Phi_3 \right)$ 

 $M_{\rm r\,a} = p\,a^2\,(-\,0.10693\,+\,0.19792\,\varPhi_1\,+\,0.74031\,\varPhi_3\,-\,0.25005\,\varPhi_4)\,.$ 

Die Biegelinie und die Biegungsmomente  $M_r$ , ferner  $M_t$  und  $Q_r$  sind in Abb. 635 dargestellt.

Platten mit veränderlicher Dicke. Werden die Ausdrücke (945) der Biegungsmomente  $M_{\tau}, M_{\alpha}$  in die allgemeingültigen Gleichgewichtsbedingungen (947) eingesetzt, so entsteht die Differentialgleichung

$$N \Delta \Delta w + \frac{d N}{d r} \left( 2 \frac{d^3 w}{d r^3} + \frac{2 + \mu}{r} \frac{d^2 w}{d r^2} - \frac{1}{r^2} \frac{d w}{d r} \right) + \frac{d^2 N}{d r^2} \left( \frac{d^2 w}{d r^2} + \frac{\mu}{r} \frac{d w}{d r} \right) = p.$$
 (959)

Sie läßt sich durch Differentiation aus

$$\frac{d}{dr}\left[rN\frac{d}{dr}\left(\frac{d^2w}{dr^2} + \frac{1}{r}\frac{dw}{dr}\right) + r\frac{dN}{dr}\left(\frac{d^2w}{dr^2} + \frac{\mu}{r}\frac{dw}{dr}\right)\right] = pr \qquad (960)$$

gewinnen und daher mit  $dw/dr = \operatorname{tg} \varphi \approx \varphi$  und  $\overline{\varphi} = \varphi E h_0^3/12(1 - \mu^2) = \varphi N_0$  auch als Differentialgleichung 2ter Ordnung anschreiben:

$$\frac{N}{N_0}\frac{d^2\bar{\varphi}}{dr^2} + \left(\frac{N}{rN_0} + \frac{dN}{N_0dr}\right)\frac{d\bar{\varphi}}{dr} - \left(\frac{N}{N_0}\frac{1}{r^2} - \frac{\mu}{r}\frac{dN}{N_0dr}\right)\bar{\varphi} = \frac{1}{r}\left[\int_{r_i} pr\,dr + C\right].$$
(961)



 $r_i$  ist der innere Radius der Ringplatte (Abb. 636). Die Funktionen  $N/N_0 = h^3/h_0^3 = v_1$ ,  $dN/N_0 dr = v_2$  sind gegeben; die rechte Seite ist das Integral zur Gleichgewichtsbedingung (946).

$$rQ_{rz} = -\int_{r_i}^r pr dr + C \quad \text{und daher} \quad C = rQ_{rz} + \int_{r_i}^r pr dr. \tag{962}$$



BIBLIOTHEK PADERBORN Freier Außenrand  $(r_s = r_i, \text{Abb. 636}), Q_{rz,a} = 0, C = \mathfrak{P}.$ Freier Innenrand  $(r_s = r_a, \text{Abb. 636}), Q_{rz,i} = 0, C = 0.$ Freier Innen- und Außenrand  $(r_i < r_s < r_a), Q_{rz,i} = 0, C = 0.$ In diesem Falle ist die Querkraft in  $r = r_s$  unstetig, die Lösung der Gl. (961) daher für zwei Bereiche anzuschreiben. Nach Division mit  $\nu_1$  lautet die Gl. (961)

$$\frac{d^2\bar{\varphi}}{dr^2} + \left(\frac{1}{r} + \frac{\nu_2}{\nu_1}\right)\frac{d\bar{\varphi}}{dr} - \left(\frac{1}{r^2} - \frac{\mu}{r}\frac{\nu_2}{\nu_1}\right)\bar{\varphi} = \frac{1}{r\nu_1}\left[\int_{r_1} pr\,dr + C\right].\tag{963}$$

Sie läßt sich leicht angenähert berechnen, wenn die Differentialquotienten durch Differenzenquotienten ersetzt werden. Hierbei ist die Unstetigkeit der Querkraft bei einer Stützung nach Abb. 636 ohne Bedeutung für die Lösung. Die bekannten Vorzahlen der Gleichung werden durch einzelne Buchstaben abgekürzt. Es ist

$$\frac{1}{r} + \frac{\nu_2}{\nu_1} = a, \quad \frac{1}{r^2} - \frac{\mu}{r} \frac{\nu_2}{\nu_1} = b, \quad \frac{1}{\nu_1 r} \left( \int_{r_1}^r p \, r \, d \, r + C \right) = K. \tag{964}$$

Der Integrationsbereich  $(r_a - r_i)$  zerfällt in *n* Stufen•von konstanter Breite s mit den Intervallgrenzen  $0, \ldots, m, \ldots, n$ . Die Bedingung für die Formänderung der

#### Berechnung der Gründungsplatte für einen Schornstein.

Platte am Punkte m kann also in Verbindung mit den Bemerkungen auf S. 129 folgendermaßen angeschrieben werden:

$$+ \Delta^2 \overline{\varphi}_m + s a_m \Delta \overline{\varphi}_m - s^2 b_m \overline{\varphi}_m = K_m s^2,$$
  
$$- \overline{\varphi}_{m-1} \left( 1 - \frac{s a_m}{2} \right) + \overline{\varphi}_m \left( 2 + s^2 b_m \right) - \overline{\varphi}_{m+1} \left( 1 + \frac{s a_m}{2} \right) = -K_m s^2, \quad (965)$$
  
$$m = 0 \dots n.$$

Per Ansatz enthält (n + 3) unbekannte Wurzeln  $\varphi_m$  in (n + 1) linearen Gleichungen, die daher noch durch die Randbedingungen für  $r = r_i$  und  $r = r_a$  ergänzt werden müssen. Bei freien oder frei aufliegenden Rändern ist  $M_i = 0$ ,  $M_a = 0$ , bei eingespannten Rändern  $\varphi_i = 0$ ,  $\varphi_a = 0$ , bei der Kreisplatte außerdem  $\varphi_i = 0$ . Der Kern der Matrix enthält in jeder Zeile 3 unbekannte Wurzeln, die daher nach Abschn. 29 oder durch Iteration nach Abschn. 30 berechnet werden.

Die Schnittkräfte sind

$$M_{r} = -\frac{N}{N_{0}} \left( \frac{d\bar{\varphi}}{dr} + \frac{\mu}{r} \overline{\varphi} \right) \rightarrow -\frac{\nu_{1,m}}{2s} \left( \overline{\varphi}_{m+1} + \frac{2s\mu}{r_{m}} \overline{\varphi}_{m} - \overline{\varphi}_{m-1} \right),$$

$$M_{\alpha} = -\frac{N}{N_{0}} \left( \mu \frac{d\bar{\varphi}}{dr} + \frac{1}{r} \overline{\varphi} \right) \rightarrow -\frac{\mu\nu_{1,m}}{2s} \left( \overline{\varphi}_{m+1} + \frac{2s}{\mu r_{m}} \overline{\varphi}_{m} - \overline{\varphi}_{m-1} \right),$$

$$Q_{r} = -\frac{N}{N_{0}} \left( \frac{d^{2}\bar{\varphi}}{dr^{2}} - \frac{1}{r^{2}} \overline{\varphi} + \frac{1}{r} \frac{d\bar{\varphi}}{dr} \right) + \frac{dN}{N_{0}dr} \left( \frac{d\bar{\varphi}}{dr} + \frac{\mu}{r} \overline{\varphi} \right)$$

$$\rightarrow -\frac{\nu_{1,m}}{s^{2}} \left[ \left( 1 + \frac{s}{2r_{m}} - \frac{s}{2} \frac{\nu_{2,m}}{\nu_{1,m}} \right) \varphi_{m+1} - \left( 2 + \frac{s^{2}}{r_{m}^{2}} + \mu \frac{s^{2}}{r_{m}} \frac{\nu_{2,m}}{r_{m}} \right) \varphi_{m}$$

$$(966)$$

$$+ \left(1 - \frac{s}{2r_m} + \frac{s}{2} \frac{v_{2,m}}{v_{1,m}}\right) \varphi_{m-1}\right]$$

Die Verformung der Platte folgt aus  $dw/dr = \overline{\varphi}/N_0$  zu

$$w_{m+0,5} = w_{m-0,5} + \frac{\varphi_m}{N_0} s \,. \tag{967}$$

#### Berechnung der Gründungsplatte für einen Schornstein.

l. Geometrische Grundlagen. Abmessungen der Platte nach Abb. 637.

 $h_0 = h_6 = 2,2 \text{ m}$ ,  $h_{10} = 1,5 \text{ m}$ .

Intervallbreite  $s = r_a/10 = 0.9$  m. Im schrägen Teil der Platte ist

$$\begin{split} h_m &= h_6 - (h_6 - h_{10}) \; \frac{m-6}{n-6} = 2,2 - 0,175 \; (m-6) \; , \\ \bullet \qquad n = 10 \; , \qquad m = 6 \div 10 \; , \\ \mu &= \frac{1}{6} \; , \qquad N_0 = \frac{2 \, 100 \, 000 \cdot 2,2^3}{12 \cdot (1-0,028)} = 1918 \, 000 \; \mathrm{tm^2/m} \; . \end{split}$$

2. Belastung. Ringförmige Belastung Pnach Abb. 637 a. Der Bodendruck  $\overline{\dot{p}} = P/r_a^2 \pi$  wird gleichmäßig verteilt angenommen.

3. Vorzahlen der Differenzengleichungen (965) nach (964)

$$v_1 = \frac{h^3}{h_0^3}$$
,  $v_2 = \frac{1}{h_0^3} \frac{d}{dr} (h^3) = \frac{3 h^3}{h_0^3} \frac{1}{s} \frac{d}{dm} (h)$ , (Abb. 637 b)



665

Für freien Innenrand ( $r_i = 0$ ) ist nach S. 664 C = 0 und daher nach (964)

$$Ks^2 = \frac{s^2}{r_1 r} \int_0^r p \, r \, dr$$

 $0 \leq m \leq 5; \quad K_m \, s^2 = - \, \overline{\rho} \, r_a^3 \, \frac{m}{2 \, \nu_1 \, n^3} \, , \qquad 5 \leq m \leq 10; \quad K_m \, s^2 = - \, \overline{\rho} \, r_a^3 \, \frac{1}{2 \, \nu_1 \, n^3} \, \left(m - \frac{n^2}{m}\right).$ 

An den Unstetigkeitsstellen m = 5 und 6 werden die Funktionswerte  $v_1, v_2, K_m$  nach Abb. 637 c festgesetzt.

| m  | h     | <i>v</i> <sub>1, m</sub> | V2, m  | $\frac{1}{2 m}$ | 0,45 $\frac{v_2}{v_1}$ | $\frac{s a_m}{2}$ | $\frac{1}{m^2}$ | $\frac{0,15}{m}\frac{p_2}{p_1}$ | $s^2 b_m$ | $\frac{m}{2  \nu_1  n}$ | $\frac{n}{2\nu_1 m}$ | $K_m s^2$                               |
|----|-------|--------------------------|--------|-----------------|------------------------|-------------------|-----------------|---------------------------------|-----------|-------------------------|----------------------|-----------------------------------------|
| I  | 2,200 | I                        | 0      | 0,500           | 0                      | 0,500             | I               | 0                               | I         | 0,050                   | 21                   | $-0.050 \cdot \overline{p} r^{3}/n^{2}$ |
| 2  | 2,200 | I                        | 0      | 0,250           | 0                      | 0,250             | 0,250           | 0                               | 0,250     | 0,100                   | -                    | - 0,100                                 |
| :  | :     | 1                        | 1      | :               | :                      | :                 | :               | :                               | :         | :                       | :                    |                                         |
| 9  | 1,675 | 0,441                    | -0,154 | 0,056           | -0,157                 | -0,213            | 0,012           | -0,006                          | 0,018     | 1,022                   | 1,261                | - 0,230                                 |
| 10 | 1,500 | 0,317                    | -0,124 | 0,050           | -0,175                 | -0,225            | 0,010           | -0,006                          | 0,016     | 1,579                   | 1,579                | 0                                       |

4. Randbedingungen In Plattenmitte ist  $\varphi_0 = 0$ , daher wird die erste Differenzengleichung für den Punkt 1 aufgestellt. Bei m = 10 ist  $M_{10} = 0$ , so daß nach (966)

$$\overline{\varphi}_{11} + \frac{2s\mu}{r_{10}} \overline{\varphi}_{10} - \overline{\varphi}_{9} = \overline{\varphi}_{11} + 0.0333 \ \overline{\varphi}_{10} - \overline{\varphi}_{9} = 0$$

ist und 11 Gleichungen für die 11 Unbekannten  $\overline{arphi}_m$ ,  $m=1\dots 11$  zur Verfügung stehen.

5. Matrix der Differenzengleichungen (965) nach Elimination von  $\varphi_{11}$ .

| $0, \frac{p}{r}$ | $\overline{\varphi}_{10}$ | $\overline{\varphi}_9$ | $\overline{\varphi}_8$ | $\overline{\varphi}_7$ | $\overline{\varphi}_6$ | $\overline{\varphi}_{5}$ | $\overline{\varphi}_4$ | $\overline{\varphi}_3$ | $\overline{\varphi}_2$ | $\overline{\varphi}_1$ |
|------------------|---------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|
| 0                | 1                         |                        |                        | Planet of              |                        |                          |                        |                        | -1,500                 | 3,000                  |
| 0                |                           |                        |                        |                        |                        |                          |                        | -1,250                 | 2,250                  | -0,750                 |
| 0                |                           |                        | gar y                  |                        |                        |                          | -1,167                 | 2,111                  | -0,833                 |                        |
| 0                |                           |                        | a service a            |                        |                        | -1,125                   | 2,063                  | -0,875                 |                        |                        |
| - 0              |                           |                        |                        |                        | -1,100                 | 2,040                    | -0,900                 |                        |                        |                        |
| - 0              |                           |                        | in.                    | -0,866                 | 2,031                  | -1,134                   |                        |                        |                        |                        |
| -0               |                           |                        | -0,799                 | 2,027                  | -1,201                 |                          | - 24                   |                        |                        |                        |
| -0,              | Kasa                      | -0,796                 | 2,022                  | -1,204                 |                        |                          | Alera Ale              |                        |                        |                        |
| 87 -0,           | -0,787                    | 2,018                  | -1,213                 |                        | and the second         |                          |                        |                        |                        |                        |
| 12 0             | 2,042                     | -2,000                 |                        |                        | (Interior              |                          | ē. 22                  |                        |                        |                        |

#### Kreisplatte mit gleichbleibender Dicke auf elastischer Bettung.

Die Auflösung nach Abschn. 29 liefert

| $\overline{\varphi}_1$ | $\overline{arphi}_2$ | $\overline{\varphi}_3$ | $\overline{\varphi}_4$ | $\overline{\varphi}_{5}$ | $\widetilde{arphi}_6$ | $\overline{\varphi}_7$ |
|------------------------|----------------------|------------------------|------------------------|--------------------------|-----------------------|------------------------|
| -0,54941               | 1,13216              | -1,78824               | -2,55517               | -3,47254                 | -4,19757              | -4,64943               |

6. Die Verformung der Platte. Nach (967) ist für die Zwischenpunkte  $w_{m+0,5} = w_{m-0,5} + \overline{\varphi}_m s/N_0$ . Die Verformung wird mit  $w_{0,5} = 0$  auf den Plattenmittelpunkt bezogen, so daß mit

$$\frac{\overline{\varphi}_{8}}{-4.90251} \frac{\overline{\varphi}_{9}}{-4.95976} \frac{\overline{\varphi}_{10}}{-4.85775} \frac{\overline{\varphi}_{11}}{-4.79800} \frac{\overline{p}r_{a}^{3}}{n^{2}}$$

$$\overline{\varphi} = \overline{\varphi}^* \overline{\rho} r_a^3 / n^2; \qquad w_{m+0,5} = \frac{\rho r_a^s}{n^3 N_0} \sum \overline{\varphi}^*. \qquad \text{Abb. 637c}$$

| w <sub>0,5</sub> | W1,5  | <sup>21/</sup> 2,5 | $w_{3,5}$ | w4,5 | w5.5 | $w_{6,5}$ | W7,5 | w <sub>8,5</sub> | W9,5 | w <sub>10,5</sub> |     |
|------------------|-------|--------------------|-----------|------|------|-----------|------|------------------|------|-------------------|-----|
|                  | 1. 3. |                    |           |      | 1    |           |      |                  |      |                   | Dr4 |

 $\circ \left| -0,5494 \right| -1,6816 \left| -3,4698 \right| -6,0250 \left| -9,4975 \right| -13,6951 \left| -18,3445 \right| -23,2470 \left| -28,2008 \right| -33,0645 \right| \frac{F^2 a}{1000 N_0}$ 

7. Die Schnittkräfte. Mit  $r_m/s = m$  und  $r_a/s = n$  wird aus (966)

$$M_{\mathbf{r},\,m} = -\frac{p_{1,\,m}}{2\,n} \left( \overline{\varphi}_{m+1}^{*} + \frac{1}{3\,m} \,\overline{\varphi}_{m}^{*} - \overline{\varphi}_{m-1}^{*} \right) \overline{p} \, r_{a}^{2} \, .$$
$$M_{\alpha,\,m} = -\frac{p_{1,\,m}}{12\,n} \left( \overline{\varphi}_{m+1}^{*} + \frac{12}{m} \, \varphi_{m}^{*} - \overline{\varphi}_{m-1}^{*} \right) \overline{p} \, r_{a}^{2} \, .$$

In Plattenmitte ist  $\overline{\varphi}_0 = 0$ ,  $\left(\frac{\varphi_m}{m}\right)_{m \to 0} \approx \overline{\varphi}_1$ ,  $\overline{\varphi}_{-1} = -\overline{\varphi}_1$ . Z. B. ist

$$\begin{split} M_{r,0} &= -\frac{1}{20} \left( -0.54941 - \frac{1}{3} \ 0.54941 - 0.54941 \right) \overline{p} \ r_a^2 = 0.0641 \ \overline{p} \ r_a^2 \ \mathrm{mt} \,, \\ M_{r,1} &= -\frac{1}{20} \left( -1.13216 - \frac{1}{3} \ 0.54941 + 0 \right) \overline{p} \ r_a^2 \qquad = 0.0658 \ \overline{p} \ r_a^2 \ \mathrm{mt} \,, \\ M_{r,2} &= -\frac{1}{20} \left( -1.78824 - \frac{1}{6} \ 1.13216 + 0.54941 \right) \ \overline{p} \ r_a^2 = 0.0714 \ \overline{p} \ r_a^2 \ \mathrm{mt} \,. \end{split}$$

Die Momente sind in Abb. 637e dargestellt. Positive Momente erzeugen auf der Plattenunterseite Zugspannungen. Im Lastbereich wird die Momentenlinie parabelförmig ergänzt.

Um ein Urteil über die Genauigkeit der Differenzenmethode zu bekommen, sind die Momente  $M_r$  der Gründungsplatte mit gleichbleibender Dicke h = 2,2 m für eine Intervallteilung n = 6 und n = 10 berechnet und in Abb. 638 mit den Werten der exakten Berechnung  $(n = \infty)$  nach Tabelle 63 verglichen worden.



Kreisplatte mit gleichbleibender Dicke auf elastischer Bettung. Die äußeren Kräfte bestehen aus der Auflast p(r) und dem Bodendruck  $\overline{p}(r)$ , der nach den Angaben auf S. 17 proportional zur Einsenkung w

der Platte gesetzt werden soll ( $\overline{p} = cw$ ). Daher besteht zwischen dem Verschiebungszustand w und den äußeren Kräften nach (948) folgende Differentialbeziehung:



$$\frac{d^4w}{dr^4} + 2\frac{1}{r}\frac{d^3w}{dr^3} - \frac{1}{r^2}\frac{d^2w}{dr^2} + \frac{1}{r^3}\frac{dw}{dr} + \frac{c}{N}w = \frac{p}{N}.$$
 (968)

Sie besitzt auch Bedeutung für p = 0, um den Verschiebungszustand w für vorgeschriebene Randkräfte  $M_{r=r_n}$ ,  $Q_{r=r_n}$  anzugeben.

667

Um den geometrischen Zusammenhang in einfacher Weise zu klären, werden die Differentialquotienten hier ebenfalls durch Differenzenquotienten ersetzt. Dabei zerfällt der Integrationsbereich wiederum in n Stufen mit der konstanten Breite s. Für den Punkt k mit  $r = r_k$ ,  $s/r_k = \lambda_k$  und  $\phi = \phi_k$  entsteht folgende Gleichung  $k \ (k = 0, ..., n)$ ,

$$(1 - \lambda_{k})w_{k-2} - \left[2(2 - \lambda_{k}) + \frac{\lambda_{k}^{2}}{2}(2 + \lambda_{k})\right]w_{k-1} + \left[6 + 2\lambda_{k}^{2} + \frac{c\,s^{4}}{N}\right]w_{k} - \left[2(2 + \lambda_{k}) + \frac{\lambda_{k}^{2}}{2}(2 - \lambda_{k})\right]w_{k+1} + (1 + \lambda_{k})w_{k+2} = \frac{p_{k}\,s^{4}}{N}.$$
(969)

Die Wurzeln  $w_k$  des Ansatzes werden entweder mit dem Gaußschen Algorithmus nach S. 216 ff. oder durch Iteration einer Anfangslösung nach Abschn. 30 berechnet. Die fehlenden Gleichungen liefern die Randbedingungen. Die Schnittkräfte sind dann aus den Verschiebungen  $w_k$  folgendermaßen bestimmt:

$$M_{r,k} = -\frac{N}{s^{2}} \left( \Delta^{2} w_{k} + \mu \frac{s}{r_{k}} \Delta w_{k} \right) = -\frac{N}{s^{2}} \left[ w_{k+1} \left( 1 + \frac{\mu s}{2 r_{k}} \right) - 2 w_{k} + w_{k-1} \left( 1 - \frac{\mu s}{2 r_{k}} \right) \right],$$
  

$$M_{\alpha,k} = -\frac{N \mu}{s^{2}} \left( \Delta^{2} w_{k} + \frac{s}{\mu r_{k}} \Delta w_{k} \right) = -\frac{N \mu}{s^{2}} \left[ w_{k+1} \left( 1 + \frac{s}{2 \mu r_{k}} \right) - 2 w_{k} + w_{k-1} \left( 1 - \frac{s}{2 \mu r_{k}} \right) \right],$$
  

$$Q_{rz,k} = -\frac{N}{s^{3}} \left( \Delta^{3} w_{k} + \frac{s}{r_{k}} \Delta^{2} w_{k} - \frac{s^{2}}{r_{k}^{2}} \Delta w_{k} \right)$$
  

$$= -\frac{N}{2 s^{3}} \left[ w_{k+2} - w_{k+1} \left( 2 - 2 \lambda_{k} + \lambda_{k}^{2} \right) - 4 \lambda_{k} w_{k} + w_{k-1} \left( 2 + 2 \lambda_{k} + \lambda_{k}^{2} \right) - w_{k-2} \right].$$
  
(970)

w"

Berechnung der Gründungsplatte für einen Schornstein unter Berücksichtigung der elastischen Bettung.



1. Geometrische Grundlagen. Abmessungen der Platte nach Abb. 640. Mit  $\mu = 1/6$ ,  $E = 2100\,000 \text{ t/m}^2$  ist nach S. 645

$$N = \frac{2100000 \cdot 2, 2^3}{12 (1 - 0, 0278)} = 1916684 \text{ tm}^2/\text{m} \,.$$

2. Belastung. Die senkrechte Belastung P durch den Schornstein verteilt sich auf einen Ring von der Breite *s* und dem mittleren Radius  $r_5 = 4,5$  m. Der Bodendruck wird nach S. 17 mit  $\tilde{p} = cw$  angenommen. Der Leitwert *c* liegt zwischen 10 und 200 kg/cm<sup>3</sup>, so daß die Rechnung für beide Grenzwerte durchgeführt wird.

3. Die Randbedingungen. Am Rand  $r = r_{10}$  ist  $M_{r,10} = 0$ ,  $Q_{rz,10} = 0$ ; daher nach (970) mit s = 0.9,  $r_{10} = 9.0$ ,  $\lambda_{10} = 0.1$ 

$$1,0083 w_{11} - 2 w_{10} + 0,9917 w_9 = 0,$$

 $w_{12} - 1,81 w_{11} - 0,40 w_{10} + 2,21 w_9 - w_8 = 0$ .

In Plattenmitte ist aus Symmetriegründen  $w_{-1} = w_1$ ,  $w_{-2} = w_2$ . Die Glieder der Differentialgleichung (968) werden für den Plattenmittelpunkt mit r = 0 unbestimmt, so daß sich die erste Differenzengleichung (969) für k = 0erst nach einem Grenzübergang anschreiben läßt. Nach der Taylorentwicklung ist in der Umgebung des Mittelpunktes

$$w = w (0) + \frac{w''(0)}{2!} r^2 + \frac{w^{IV}(0)}{4!} r^4 + \cdots,$$
  

$$w' = w''(0) r + \frac{w^{IV}(0)}{3!} r^3 + \cdots,$$
  

$$= w''(0) + \frac{w^{IV}(0)}{2!} r^2 + \cdots, \qquad w''' = w^{IV}(0) r + \cdots,$$
  

$$w^{IV} = w^{IV}(0) + \cdots.$$

| N N |     |        |        |        |        |        |         |          |        |        |         |        |                |    | NE                                                         | -      | NT                                                        |
|-----|-----|--------|--------|--------|--------|--------|---------|----------|--------|--------|---------|--------|----------------|----|------------------------------------------------------------|--------|-----------------------------------------------------------|
| P1  | -   | 0      | 0      | 0      | 0      | 0      | 1       | 0        | 0      | 0      | 0       | 0      |                |    | /1000 :                                                    |        | /10001<br>/r <sup>2</sup> /n                              |
|     | 10  |        |        |        |        |        |         |          |        | 25 000 | 30024   | 63071  |                |    | $\left  \begin{array}{c} P r_n^2 \\ P \end{array} \right $ |        | $\left  \begin{array}{c} P_n^2 \\ P \end{array} \right  $ |
| 14  | 3   |        |        |        |        |        |         |          |        | I,I    | -2,0    | 2,0    |                | IO | 145764<br>0006                                             |        | 481 27.<br>3295                                           |
|     | 8   |        |        |        |        |        |         |          | 42 857 | 64 648 | 35368   | 59658  |                |    | 17.5<br>0,0                                                |        | 4 -0,                                                     |
|     |     |        |        |        |        |        |         |          | Ι,Ι    | - 4,2  | 4,9.    | -4,0   |                | 6  | 311.91                                                     |        | 16696.<br>1143                                            |
|     | 8   |        |        |        |        |        |         | 56667    | 04 664 | 34 673 | 30 812  | 000 00 |                |    | 66 21,<br>0,                                               |        | 08 0,<br>0,                                               |
|     | 5   |        |        |        |        |        |         | I,I(     | -4,30  | 6,0    | -3.79   | 2,00   |                | 8  | :5,1606<br>0,8613                                          |        | 0,8510<br>0,5826                                          |
|     | Lan |        |        |        |        | in a   | 000 000 | \$58 797 | 44239  | 66602  | 888 889 |        |                |    | 2026 2                                                     |        | 5 896<br>92                                               |
|     |     |        |        |        |        |        | I,2     | - 4,3    | 6,0    | -3.7   | 8'0     |        |                | 7  | 29,043                                                     |        | 1,590<br>1,089                                            |
|     | 9,7 |        |        |        |        | 50 000 | 36000   | 58979    | 36152  | 375000 |         |        | m <sup>3</sup> | 9  | 02 740<br>229                                              | m3     | 48391<br>078                                              |
|     |     |        |        |        |        | I,2    | -4.4    | 6,0      | -3.7   | 3'0    |         |        | o kg/c         |    | 32,8                                                       | o kg/c | 7 2,3<br>1,6                                              |
|     | 22  |        |        |        | 33 333 | 54688  | 83 423  | 96759    | 57143  |        |         |        | c = 1          | 5  | 132 60:                                                    | c = 20 | 94840<br>0185                                             |
|     |     |        |        |        | I,3    | - 4.5  | 6,0     | -3,6     | 3,0    |        | 1-21    |        | Für            |    | 69 36,<br>1,                                               | Für    | 16 2,                                                     |
|     | Pa  |        |        | 000 00 | 59260  | 28423  | 44 000  | 33 333   |        |        |         |        |                | 4  | 8,4679                                                     |        | 2,9514                                                    |
|     |     |        |        | I,5    | -4.7   | 6,1    | -3,6    | 8,0      |        |        |         |        |                |    | 339 3                                                      |        | 974                                                       |
|     | C3  |        | 00000  | 87500  | 25645  | 70313  | 000 00  |          |        |        |         | ing.   | iefert:        | 3  | 40,037                                                     |        | 2,668<br>1,827                                            |
| ,   | ~   |        | 2,0    | -5,1   | 6,2    | -3.5   | 0,8     |          |        |        |         |        | 1. 29 1        |    | 2914<br>43                                                 |        | 4233                                                      |
|     | 2   | 33333  | 000 00 | 03 423 | 52964  | 20 000 |         |          |        |        |         |        | Abschr         | CI | 41.02                                                      |        | 2,32<br>1,59                                              |
|     |     | 5,3.   | -6,5(  | 6,50   | -3,4   | 0,7.   |         |          |        |        |         |        | nach .         | I  | 57311<br>225                                               |        | 61 61 5<br>114                                            |
|     | 1   | 33 333 | 03 423 | 12 500 | 66667  |        |         |          |        |        |         |        | gung           |    | 4 41.5<br>1.4                                              | -      | 5 2,0                                                     |
|     | n   | -21,3  | 8,0    | - 3,3  | 0,6    |        |         |          |        |        |         |        | vuflö:         | 0  | 721 84<br>4282                                             |        | 961 28<br>3427                                            |
|     | 0   | 5217   | 000    | 0000   |        |        |         |          |        |        |         |        | Die A          | -  | w 41,                                                      |        | 1,<br>1,                                                  |
|     | n   | 16,00  | -3,50  | 0,50   |        |        |         |          |        |        |         |        | 6.             | k  | $\frac{w}{\overline{p}=c}$                                 |        | a = d                                                     |

#### Berechnung einer elastisch gestützten Gründungsplatte

669

Die Zahlenrechnung ist wegen ihrer Fehlerempfindlichkeit mit 6 Stellen durchgeführt worden. Der Bodendruck p ist in Abb. 640a dargestellt.

Daher lautet die Differentialgleichung (968) für den Plattenmittelpunkt r = 0

$$\begin{split} w^{IY}(0) &+ 2 \, w^{IY}(0) - \frac{w^{IY}(0)}{2!} + \frac{w^{IY}(0)}{3!} + \frac{c}{N} \, w \left( 0 \right) = 0 \; , \\ &\frac{8}{3} \, w^{IY}(0) + \frac{c}{N} \, w \left( 0 \right) = 0 \; , \end{split}$$

oder in Differenzen ausgedrückt

$$\left(\,16+\frac{c\,s^4}{N}\right)w_0-\frac{64}{3}\,w_1+\frac{16}{3}\,w_2=0\,.$$

4. Die Vorzahlen der Differenzengleichungen (969).

| k . | An    | $1 - \lambda_k$                   | $1 + \lambda_k$                                                           | $2 - \lambda_k$ | $2 + \lambda_k$ | $\lambda_k^2$         | [] <sub>k-1</sub>        | $[]_{k+1}$ | $6 + 2 \lambda_k^2$ |
|-----|-------|-----------------------------------|---------------------------------------------------------------------------|-----------------|-----------------|-----------------------|--------------------------|------------|---------------------|
| I   | I     | 0                                 | 2                                                                         | I               | 3               | I                     | 3,5                      | 6,5        | 8                   |
| 2   | 0,500 | 0,500                             | 1,500                                                                     | 1,500           | 2,500           | 0,250                 | 3,312500                 | 5,187500   | 6,5                 |
| 3   | 0,333 | 0,666                             | 1,333                                                                     | 1,666           | 2,333           | O,III                 | 3,462964                 | 4,759260   | 6,222               |
|     | •     | •                                 | •                                                                         | •               | •               |                       |                          |            |                     |
|     |       |                                   |                                                                           |                 |                 |                       |                          |            |                     |
| .   |       |                                   |                                                                           |                 |                 |                       |                          |            |                     |
|     |       | $\frac{c  s^4}{N} = \frac{10}{1}$ | $   \begin{array}{r}     000 \cdot 0.9^{4} \\     916 684   \end{array} $ | = 0,0034        | 32 oder         | $\frac{200000}{1916}$ | $\frac{0.09^4}{684} = 0$ | 0,068462.  |                     |

Mit  $p = \frac{P}{2r_5 \cdot \pi \cdot s} = \frac{10 P}{\pi r_u^2}$  wird für k = 5 das Absolutglied  $\frac{p_5 s^4}{N} = \frac{P r_u^3}{1000 \pi N}$ , die übrigen sind Null.

5. Matrix der Differenzengleichungen (969) für  $c = .10 \text{ kg/cm}^3$ . (Die Matrix für  $c = 200 \text{ kg/cm}^3$  ergibt sich durch Addition von 0,065039 zu den Hauptgliedern.) Die Wurzeln  $w_{11}$  und  $w_{12}$  sind bereits durch die Randbedingungen eliminiert. Matrix und Auflösung s. S. 669. 7. Die Schnittkräfte. Für r = 0 ist

$$M_{r,0} = M_{\alpha,0} = -N(1+\mu)\frac{d^2w}{dr^2} = -N(1+\mu)\frac{2}{s^2}(w_1 - w_0) = +0.0384\frac{P}{\pi}, \quad \left(-0.0234\frac{P}{\pi}\right).$$
  
Mit  $\frac{\mu s}{2r_k} = \frac{1}{12k}, \quad \frac{s}{2\mu r_k} = \frac{3}{k}$  ist nach (970) z.B.

$$\begin{split} M_{r,1} &= -\frac{1}{s^2} \left[ \left( 1 - \frac{1}{12} \right) \cdot 0 - 2 \, w_1 + \left( 1 + \frac{1}{12} \right) w_2 \right] = 0,043 \, \frac{1}{\pi} \,, \qquad \left( -0,019 \, \frac{1}{\pi} \right) \\ M_{r,2} &= -\frac{N}{s^2} \left[ \left( 1 - \frac{1}{24} \right) w_1 - 2 \, w_2 + \left( 1 + \frac{1}{24} \right) w_3 \right] = 0,051 \, \frac{P}{\pi} \,. \qquad \left( -0,011 \, \frac{P}{\pi} \right) \end{split}$$

Die eingeklammerten Werte gelten für  $c = 200 \text{ kg/cm}^3$ .

Die Schnittkräfte sind in Abb. 640b, c dargestellt.

BIBLIOTHEK

Melan, E.: Die Durchbiegung einer exzentrisch durch eine Einzellast belasteten Kreisplatte. Eisenbau Bd. 11 (1920) S. 190. — Nádai, A.: Die elastischen Platten. Berlin 1925. — Schleicher, F.: Kreisplatten auf elastischer Grundlage. Berlin 1926. — Crämer, H.: Die Beanspruchung von Kreisplatten mit veränderlicher Stärke. Beton u. Eisen 1928 S. 382. — Flügge, W.: Die strenge Berechnung von Kreisplatten unter Einzellasten. Berlin 1928. — Pichler, O.: Die Biegung kreissymmetrischer Platten von veränderlicher Dicke. Berlin 1928. — Haynal-Konyi: Die Berechnung von kreisförmig begrenzten Pilzdecken bei zentralsymmetrischer Belastung. Berlin 1929. — Schmidt, H.: Ein Beitrag zur Theorie der Biegung homogener Kreisplatten. Ing.-Arch, 1930 S. 147.

#### 69. Die Kreisplatte und die Kreisringplatte unter antimetrischer Belastung.

Die antimetrische Belastung ist graphisch durch Abb. 641, analytisch durch

$$b = p_0 \frac{r \cos \alpha}{a}$$
 und mit  $\frac{r}{a} = \varrho$  durch  $p = p_0 \varrho \cos \alpha$  (971)

beschrieben. Sie kann als der antimetrische Teil der hydraulischen Belastung einer senkrecht oder schräg eingebauten Kreisplatte oder als der antimetrische Teil des