

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

Zahlenbeispiele

urn:nbn:de:hbz:466:1-74292

Visual Library

Beispiel für die Anwendung der Tabelle 63.

6			Φ_2	Ø3	Φ4
0,0	+ 1,0000	+ 1,00	0	- ∞	$+\infty$
1 2 3 4	$\begin{array}{r} + & 0,9999 \\ + & 0,9984 \\ + & 0,9919 \\ + & 0,9744 \end{array}$	+ 0,99 + 0,96 + 0,91 + 0,84	- 0,0230 - 0,0644 - 0,1084 - 0,1556	- 2,3026 - 1,6094 - 1,2040 - 0,9163	+ 99,0000 + 24,0000 + 10,1111 + 5,2500
5	+ 0,9375	+ 0,75	- 0,1733	- 0,6931	+ 3,0000
6 7 8 9	$\begin{array}{r} + & 0,8704 \\ + & 0,7599 \\ + & 0,5904 \\ + & 0,3439 \end{array}$	+ 0,64 + 0,51 + 0,36 + 0,19	- 0,1839 - 0,1748 - 0,1428 - 0,0853	- 0,5108 - 0,3567 - 0,2231 - 0,1053	$\begin{array}{r} + & 1,7778 \\ + & 1,0408 \\ + & 0,5625 \\ + & 0,2346 \end{array}$
1,0	0	0	0	0	0
1 2 3 4	- 0,4641 - 1,0736 - 1,856I - 2,8416	- 0,21 - 0,44 - 0,69 - 0,96	+ 0,1153 + 0,2625 + 0,4434 + 0,6595	+ 0,0953 + 0,1823 + 0,2624 + 0,3365	- 0,1736 - 0,3056 - 0,4083 - 0,4898
5	- 4,0625	- 1,25	+ 0,9123	+ 0,4055	- 0,5556
6 7 8 9	- 5.5536 - 7,3521 - 9,4976 - 12,0321	- 1,56 - 1,89 - 2,24 - 2,61	+ 1,2032 + 1,5335 + 1,9044 + 2,3171	+ 0,4700 + 0,5306 + 0,5878 + 0,6419	- 0,6094 - 0,6540 - 0,6914 - 0,7230
2,0	- 15,0000	- 3,00	+ 2,7726	+ 0,6931	- 0,7500
1 2 3 4	- 18,4481 - 22,4256 - 26,9841 - 32,1776	- 3,41 - 3,84 - 4,29 - 4,76	+ 3,2719 + 3,8161 + 4,4061 + 5,0427	+ 0,7419 + 0,7885 + 0,8329 + 0,8755	- 0,7732 - 0,7934 - 0,8110 - 0,8264
5	- 38,0625	- 5,25	+ 5,7268	+ 0,9163	- 0,8400

Tabelle 64. Funktionen Φ_0 bis Φ_4 .

Beispiel für die Anwendung der Tabelle 63.

Der Verlauf der Biegungsmomente wird für eine Kreisringplatte mit verschiedener Stützung aus der Tabelle 63 entwickelt ($\mu = 1/6$).

l. Innen eingespannte Kreisringplatte (Abb. 632a). Mit $\beta = b/a = 5.5/2.5 = 2.20$ ist nach S. 657

 $\varkappa_1 = 5,20 \;, \qquad \varkappa_2 = 6,48 \;, \qquad \psi_1 = 17,808 \;, \qquad \psi = 17,185 \;.$ Damit wird

 $M_r = -6,6445 + 1,2370 \ \Phi_1 - 5,5942 \ \Phi_4 + 8,8230 \ \Phi_3,$

 $M_t = -1,1074 + 0,5859 \ \Phi_1 + 5,5942 \ \Phi_4 + 8,8230 \ \Phi_3$ (Abb. 633a)

2. Innen frei gelagerte Kreisringplatte (Abb. 632 b). Mit $\beta=2,20$ ist nach S. 655

$$\varkappa_1 = -1,4710$$
, $\varkappa_2 = 7,8043$, und damit

$$\mu_{17} = 1,2370 \ \varphi_1 + 2,7811 \ \varphi_4 + 8,8230 \ \varphi_3$$

 $M_t = -0.5859 \, \varPhi_1 - 2.7811 \, \varPhi_4 + 8.8230 \, \varPhi_3 - 11.2132 \quad ({\rm Abb}, 633 \, {\rm b}).$

3. Außen eingespannte Kreisringplatte (Abb. 632c).

Mit
$$\beta = \frac{b}{a} = \frac{2.5}{5.5} = 0,4545$$
 ist nach S. 657

Abb. 632 b.

662 68. Die Kreisplatte und die Kreisringplatte unter zentralsymmetrischer Belastung.

Statische Untersuchung für die Decke eines kreisrunden Behälters mit Zwischenstützen.

Der Abstand der Stützen auf dem Parallelkreis r = a ist so klein, daß die Punkt- oder Flächenkräfte durch eine rotationssymmetrische Linienstützung ersetzt werden können. 1. Geometrische Grundlagen. Die Abmessungen des Tragwerks sind in Abb.634a ent-

1. Geometrische Grundlagen. Die Abmessungen des Tragwerks sind in Abb. 634a enthalten. Die Querdehnung wird mit $\mu = 1/4$ eingesetzt. 2. Hauptsystem und Überzählige. Zur Berechnung dient das Hauptsystem Abb. 634b. Überzählige Größen sind die Linienstützkraft X_1 über den ganzen äußeren Rand und die Stützkraft X_2 der Mittelstütze.

kraft X_2 der Mittelstütze. 3. Formänderung und Schnittkräfte des Hauptsystems. Die Verschiebungen werden im Nfachen Betrag angegeben und von den Schnittkräften nur die Biegungsmomente M_r berechnet.

Zustand $X_1 = -1$ (Abb. 634c, Tabelle 63 S. 659). $\beta = 2.0$, $\ln \beta = 0.693147$, $\varkappa = 4.48469$, $\delta_{11} = 0.30216 \frac{a^2}{\pi}$, $\delta_{21} = -0.12013 \frac{a^2}{\pi}$,

BLIOTHEK

Statische Untersuchung für die Decke eines kreisrunden Behälters mit Zwischenstützen. 663

$$\begin{split} w_i &= -\frac{a^2}{\pi} \ 0.12013 \ \varPhi_1 \ , \qquad \qquad w_a = -\frac{a^2}{\pi} \ (-0.24513 \ \varPhi_1 - 0.125 \ \varPhi_3 - 0.125 \ \varPhi_2) \\ M_{r\,i} &= -\frac{1}{\pi} \ 0.28029 \ , \qquad \qquad M_{r\,a} = -\frac{1}{\pi} \ (0.28029 + 0.10417 \ \varPhi_4 - 0.29167 \ \varPhi_3) \ . \end{split}$$

Zustand X₂ == -1 (Abb. 634d, Tabelle 63 S. 659).

$$\begin{aligned} \varkappa &= 9,33333 , \qquad \delta_{22} = 0,13616 \frac{a^2}{\pi} , \qquad \delta_{12} = -0,12013 \frac{a^2}{\pi} \\ w_i &= \frac{a^2}{\pi} \left(0,13616 \ \Phi_1 + 0,125 \ \Phi_2 \right) , \qquad w_a = \frac{a^2}{\pi} \left(0,01116 \ \Phi_1 - 0,125 \ \Phi_3 \right) , \\ M_{ri} &= -\frac{1}{\pi} \left(0,07812 + 0,29167 \ \Phi_3 \right) , \\ M_{ro} &= -\frac{1}{\pi} \left(0,07812 + 0,10417 \ \Phi_4 \right) . \\ \text{Belastung durch p t/m (Abb. 634 e, Tabelle 63 S. 658). \\ \varkappa_1 &= -5,27208 , \qquad \varkappa_2 &= -23,9387 , \\ \delta_{10} &= 0,42516 \ p \ a^4 , \qquad \delta_{20} &= -0,15686 \ p \ a^4 , \\ w_i &= -p \ a^4 \left(0,14123 \ \Phi_1 + 0,01562 \ \Phi_0 \right) , \\ w_a &= -p \ a^4 \left(0,64122 \ \Phi_1 + 0,01562 \ \Phi_0 + 0,5 \ \Phi_3 + 0,5 \ \Phi_2 \right) , \\ M_{ri} &= p \ a^2 \left(-0,52742 + 0,19792 \ \Phi_1 \right) , \end{aligned}$$

 $M_{ra} = p a^2 (-0.52742 + 0.19792 \, \Phi_1 - 0.41667 \, \Phi_4)$ $+ 1,16667 \Phi_3).$

4. Elastizitätsgleichungen nach Erweiterung mit $\frac{\pi}{a^2}$

$$\begin{array}{c|cccc} X_{1} & X_{2} \\ \hline & & \\ 1 & +0.30216 & -0.12013 \\ 2 & -0.12013 & +0.13616 \end{array} + 0.42516 \not p \, a^{2} \, \pi \\ \hline & -0.15686 \, \not p \, a^{2} \, \pi \end{array}$$

Lösung: $X_1 = 1,4618 \ pa^2\pi, X_2 = 0,1377 \ pa^2\pi.$

5. Superposition.

Belastung $w = w_0 - X_1 w_1 - X_2 w_2,$ Abb. 634. $w_t = p \, a^4 \, (-0.14123 \, \varPhi_1 - 0.01562 \, \varPhi_0) - 1.4618 \, p \, a^2 \, \pi \cdot \frac{a^2}{\pi} \, (-0.12013 \, \varPhi_1)$ $-0.1377 p a^2 \pi \cdot \frac{a^2}{\pi} (0.13616 \Phi_1 + 0.125 \Phi_2).$ $= p a^4 (-0.01562 \Phi_0 + 0.01561 \Phi_1 - 0.01721 \Phi_2),$ $w_a = p a^4 (-0.01562 \ \Phi_0 - 0.28444 \ \Phi_1 - 0.31728 \ \Phi_2 - 0.30006 \ \Phi_3),$

×4-

14.72

Hauptsystem

X2=-1

4.10

 $M_{ri} = p a^2 \left(-0.10693 + 0.19792 \ \Phi_1 + 0.04016 \ \Phi_3 \right)$

 $M_{\rm r\,a} = p\,a^2\,(-\,0.10693\,+\,0.19792\,\varPhi_1\,+\,0.74031\,\varPhi_3\,-\,0.25005\,\varPhi_4)\,.$

Die Biegelinie und die Biegungsmomente M_r , ferner M_t und Q_r sind in Abb. 635 dargestellt.

Platten mit veränderlicher Dicke. Werden die Ausdrücke (945) der Biegungsmomente M_{τ}, M_{α} in die allgemeingültigen Gleichgewichtsbedingungen (947) eingesetzt, so entsteht die Differentialgleichung

$$N \Delta \Delta w + \frac{d N}{d r} \left(2 \frac{d^3 w}{d r^3} + \frac{2 + \mu}{r} \frac{d^2 w}{d r^2} - \frac{1}{r^2} \frac{d w}{d r} \right) + \frac{d^2 N}{d r^2} \left(\frac{d^2 w}{d r^2} + \frac{\mu}{r} \frac{d w}{d r} \right) = p.$$
 (959)