

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

71. Die Lösung von Plattenaufgaben mit Differenzenrechnung

urn:nbn:de:hbz:466:1-74292

Visual Library

S. 262. — Huber, M. T.: Über die Biegung einer rechteckigen Platte von ungleicher Biegungsfestigkeit in der Längs- und Querrichtung bei einspannungsfreier Stützung des Randes usw. Bauing. 1924 S. 259. — Derselbe: Über die genaue Biegungsgleichung einer orthotropen Platte und ihre Anwendung auf kreuzweise bewehrte Betonplatten. Bauing. 1925 S. 878 — Si Luan Wei: Über die eingespannte rechteckige Platte mit gleichmäßig verteilter Belastung. Diss. Göttingen 1925. — Huber, M. T.: Vereinfachte strenge Lösung der Biegungsaufgabe einer rechteckigen Eisenbetonplatte bei geradliniger freier Stützung aller Ränder. Bauing. 1926 S. 121. — Derselbe: Anwendungen der Biegetheorie orthotroper Platten. Z. angew. Math. Mech. 1926 S. 228. — Marcus, H.: Die Grundlagen der Querschnittsbemessung kreuzweise bewehrter Platten. Bauing. 1926 S. 577. — Crämer, H.: Die Biegungsgleichung von Platten stetig veränderlicher Stärke. Beton u. Eisen 1929 S. 12. — Marcus, H.: Die Drillungsmomente rechteckiger Platten. Bauing. 1929 S. 497. — Ritter, M.: Die Anwendung der Theorie elastischer Platten auf den Eisenbeton. Bericht über die II. Int. Tagung f. Brücken- u. Hochbau, S. 694. Wien 1929. — Inada, T.: Die Berechnung auf 4 Seiten gestützter rechteckiger Platten. Betlin 1930. — Müller, E.: Die Berechnung rechteckiger, gleichförmig belasteter Platten, die an zwei gegenüberliegenden Rändern durch Träger unterstützt sind. Ing.-Arch. 1931 S. 606. — Crämer, H.: Die bauliche Aufnahme der Randdrillungsmomente vierseitig gelagerter Platten. Beton u. Eisen 1932 S. 95.

71. Die Lösung von Plattenaufgaben mit Differenzenrechnung.

Differenzengleichung eines Gitters. Die Anwendung der Theorie der Plattenbiegung bei beliebiger Belastung und Stützung ist ebenso wie die strenge Untersuchung ebener Spannungsprobleme im Bauwesen im wesentlichen durch die mathe-

matischen Schwierigkeiten der Lösung verhindert worden. Man begnügt sich daher für diese Aufgaben in der Regel mit qualitativ brauchbaren Näherungslösungen, zumal auch die Annahmen über die physikalischen Eigenschaften des Baustoffs und die Beschaffenheit der Stützung keineswegs streng erfüllt sind. Es liegt daher nahe, den stetigen Charakter des Ansatzes wie bei anderen Problemen der Mechanik aufzugeben und die Abhängigkeit zwischen Spannungs-, Verschiebungs- und Belastungszustand an endlichen Abschnitten der Platte zu beschreiben. Die stetiggekrümmte Biegefläche erscheint dabei als Vielkant, dessen Kanten sich im Grundriß je nach der Art der Koordinaten in Abständen Δx , Δy rechtwinklig schneiden oder als Strahlenbündel mit einer Schar konzentrischer Polygone erscheinen. Die Eckpunkte k des Vielkantes

sind Punkte der Biegefläche, die Kanten beschreiben ein elastisches Gitter. Die geometrische Abwandlung der Fläche zum Vielkant bedeutet mathematisch den Übergang vom Längendifferential zur Differenz zweier Strecken und vom Differentialquotienten zum Differenzenquotienten. Er ist zur numerischen Lösung von Aufgaben der Plattenbiegung zuerst von H. Marcus vollzogen worden.

Die Mittelebene der rechteckigen Platte wird zur Vorbereitung der Untersuchung durch zwei Systeme äquidistanter, sich winkelrecht kreuzender Geraden geteilt. Die Abstände Δx , Δy sind in der Regel gleichgroß ($\Delta x = \Delta y = s$).

Die Differentialquotienten werden nach ihrer geometrischen Bedeutung durch Funktionen der Ordinaten w_k der Gitterknoten ersetzt (Abschn. 20). Danach ist in Verbindung mit Abb. 659

$$\begin{split} & \left(\frac{\partial w}{\partial x}\right)_k \rightarrow \frac{w_{k+1} - w_{k-1}}{2 \, \Delta x}, \qquad \left(\frac{\partial w}{\partial y}\right)_k \rightarrow \frac{w_l - w_i}{2 \, \Delta y}, \\ & \frac{\partial^2 w}{\partial x \, \partial y}\right)_k \rightarrow \frac{w_{l+1} - w_{l-1} - w_{l+1} + w_{l-1}}{4 \, \Delta x \, \Delta y}, \\ & \left(\frac{\partial^2 w}{\partial x^2}\right)_k \rightarrow \frac{w_{k+1} - 2 \, w_k + w_{k-1}}{\Delta x^2}, \qquad \left(\frac{\partial^2 w}{\partial y^2}\right)_k \rightarrow \frac{w_l - 2 \, w_k + w_l}{\Delta y^2}, \end{split}$$

680

Schnittkräfte.

681

$$\begin{pmatrix} \frac{\partial^3 w}{\partial x^3} \end{pmatrix}_k \Rightarrow \frac{\Delta^2 w_{k+1} - \Delta^2 w_{k-1}}{2 \Delta x^3} = \frac{w_{k+2} - 2 w_{k+1} + 2 w_{k-1} - w_{k-2}}{2 \Delta x^3}, \\ \begin{pmatrix} \frac{\partial^3 w}{\partial y^3} \end{pmatrix}_k \Rightarrow \frac{w_m - 2 w_1 + 2 w_i - w_n}{2 \Delta y^3}, \\ \begin{pmatrix} \frac{\partial^4 w}{\partial x^2 \partial y^2} \end{pmatrix}_k = \left[\frac{\partial^2}{\partial y^2} \begin{pmatrix} \frac{\partial^2 w}{\partial x^2} \end{pmatrix}_k \right]_k \Rightarrow \frac{\left(\frac{\partial^2 w}{\partial x^2} \right)_i - 2 \left(\frac{\partial^2 w}{\partial x^2} \right)_k + \left(\frac{\partial^2 w}{\partial x^2} \right)_i}{\Delta y^2} \\ \Rightarrow \frac{4 w_k - 2 \left(w_{k+1} + w_{k-1} + w_i + w_i \right) + \left(w_{i-1} + w_{i+1} + w_{i+1} + w_{i-1} \right)}{\Delta x^2 \Delta y^2}, \\ \begin{pmatrix} \frac{\partial^4 w}{\partial x^4} \end{pmatrix}_k \Rightarrow \frac{\left(\frac{\partial^2 w}{\partial x^2} \right)_{k+1} - 2 \left(\frac{\partial^2 w}{\partial x^2} \right)_k + \left(\frac{\partial^4 w}{\partial x^2} \right)_{k-1}}{\Delta x^4} \\ \Rightarrow \frac{w_{k+2} - 4 w_{k+1} + 6 w_k - 4 w_{k-1} + w_{k-2}}{\Delta x^4}, \\ \begin{pmatrix} \frac{\partial^4 w}{\partial y^4} \end{pmatrix}_k \Rightarrow \frac{w_m - 4 w_i + 6 w_k - 4 w_i + w_k}{\Delta y^4}. \end{cases}$$

Die Differentialgleichungen der Plattenbiegung (929) und (931), (932) werden Differenzengleichungen, so daß der Zusammenhang zwischen der Belastungsintensität p_k , den Ordinaten w_k der Biegefläche und den Momentensummen M_k in folgender Weise beschrieben wird:

I.
$$\frac{\Delta^4 w_k}{\Delta x^4} + 2 \frac{\Delta^4 w_k}{\Delta x^2 \Delta y^2} + \frac{\Delta^4 w_k}{\Delta y^4} = \frac{\dot{p}_k}{N},$$

II.
$$\frac{\Delta^2 M_k}{\Delta x^2} + \frac{\Delta^2 M_k}{\Delta y^2} = -\dot{p}_k, \qquad \frac{\Delta^2 w_k}{\Delta x^2} + \frac{\Delta^2 w_k}{\Delta y^2} = -\frac{M_k}{N}.$$

Daraus entsteht an jedem freien Maschenknoten mit den Differer zenquotienten (998) und mit $\Delta y^2/\Delta x^2 = \alpha$ die Gleichung

I.
$$w_k \Big[6 \Big(\alpha + \frac{1}{\alpha} \Big) + 8 \Big] - 4 \Big[(1 + \alpha) (w_{k+1} + w_{k-1}) + \Big(1 + \frac{1}{\alpha} \Big) (w_l + w_l) \Big]$$

+ 2 $(w_{i-1} + w_{l-1} + w_{l+1} + w_{i+1}) + \alpha (w_{k+2} + w_{k-2})$
+ $\frac{1}{\alpha} (w_m + w_h) = p_k \frac{\alpha \Delta x^4}{N},$ (999)

II. $2(1 + \alpha) M_k - \alpha (M_{k+1} + M_{k-1}) - (M_1 + M_i) = p_k \alpha \Delta x^2$,

$$2(1 + \alpha) w_k - \alpha (w_{k+1} + w_{k-1}) - (w_i + w_i) = \frac{m_k}{N} \alpha \Delta x^2.$$

Bei gleich großen Abständen $\Delta x = \Delta y = s$ des Gitters ist

BIBLIOTHEK

I.
$$20 w_k - 8 (w_{k-1} + w_i + w_{k+1} + w_i) + 2 (w_{i-1} + w_{i-1} + w_{i+1} + w_{i+1})$$

 $+ (w_{k-2} + w_m + w_{k+2} + w_h) = p_k \frac{s^4}{N}.$ (1000)

II.
$$4 M_k - M_{k-1} - M_i - M_{k+1} - M_i = + p_k s^2$$
, (1001)

$$4 w_k - w_{k-1} - w_i - w_{k+1} - w_i = + \frac{M_k}{N} s^2.$$
(1002)

Schnittkräfte. Die Schnittkräfte der Platte sind nach (919) Funktionen von Differentialquotienten der Plattenbiegung und daher jetzt Funktionen von Differenzenquotienten, so daß die Schnittkräfte am Maschenknoten k in folgender Weise von den Verschiebungen des Gitters abhängen:

$$\begin{split} M_{x,k} &= -N\left(\frac{\Delta^2 w_k}{\Delta x^2} + \mu \frac{\Delta^2 w_k}{\Delta y^2}\right) = \frac{N}{s^2} \left[-w_{k-1} + 2w_k - w_{k+1} + \mu \left(-w_i + 2w_k - w_l\right)\right], \\ M_{y,k} &= -N\left(\mu \frac{\Delta^2 w_k}{\Delta x^2} + \frac{\Delta^2 w_k}{\Delta y^2}\right) = \frac{N}{s^2} \left[\mu \left(-w_{k-1} + 2w_k - w_{k+1}\right) - w_i + 2w_k - w_l\right], \\ M_k &= -N\left(\frac{\Delta^2 w_k}{\Delta x^2} + \frac{\Delta^2 w_k}{\Delta y^2}\right) = \frac{N}{s^2} \left[-w_i - w_{k-1} + 4w_k - w_{k+1} - w_l\right], \\ M_{xy,k} &= -N\left(1 - \mu\right) \frac{\Delta^2 w_k}{\Delta x \Delta y} = \frac{N\left(1 - \mu\right)}{4s^2} \left[w_{l-1} - w_{l+1} - w_{l-1} + w_{l+1}\right]. \end{split}$$
(1003)

$$Q_{xz,k} = \frac{\Delta M_k}{\Delta x} = \frac{1}{2s} (M_{k+1} - M_{k-1}) \\ = \frac{N}{2s^3} [w_{k-2} + (w_{l-1} + w_{l-1}) - (w_{l+1} + w_{l+1}) - w_{k+2} + 4 (w_{k+1} - w_{k-1})], \\ Q_{yz,k} = \frac{\Delta M_k}{\Delta y} = \frac{1}{2s} (M_l - M_l) \\ = \frac{N}{2s^3} [w_h + (w_{l+1} + w_{l-1}) - (w_{l+1} + w_{l-1}) - w_m + 4 (w_l - w_l)]. \\ A_{xz,k} = -\frac{1}{2s} [M_{k+1} - M_{k-1} + M_{xy,l} - M_{xy,l}] \\ = -\frac{N}{2s^3} [w_{k-2} + (6 - 2\mu) (w_{k+1} - w_{k-1}) \\ + (2 - \mu) (w_{l-1} + w_{l-1} - w_{l+1} - w_{l+1}) - w_{k+2}], \\ A_{yz,k} = -\frac{1}{2s} [M_l - M_l + M_{xy,k+1} - M_{xy,k-1}] \\ = -\frac{N}{2s^3} [w_h + (6 - 2\mu) (w_l - w_l) \\ \end{bmatrix}$$
(1004)

$$+ (2 - \mu) (w_{i+1} + w_{i-1} - w_{l-1} - w_{l+1}) - w_m].$$

Die Teilung Δx , Δy des Gitters ist in beiden Richtungen konstant. Je kleiner die Abschnitte gewählt werden, um so besser ist die Angleichung des Verschiebungszustandes des Gitters an die elastische Fläche der Platte, um so größer aber auch

682

die Anzahl der linearen Gleichungen (1000) und der Umfang der Zahlenrechnung. Die Zerlegung des Integrationsbereiches in quadratische Maschen ($\Delta x = \Delta y = s$) vereinfacht die Differenzengleichungen der Wurzeln M_k , w_k und die Ansätze für die Schnittkräfte. Die Poissonsche Zahl beträgt bei Eisenbetonplatten $\mu = 1/6$, sie kann aber auch zur einfachen Berechnung der Schnittkräfte, vor allem bei $\Delta x \neq \Delta y$ im Sinne dieser Näherungslösung Null gesetzt werden.

Die Bedingungen am Rande des Gitters und an den singulären Stellen der Belastungsfunktion. Um den Zusammenhang zwischen der Biegefläche w(x, y) der Platte und der vorgeschriebenen Belastung auch am

Plattenrande in endlichen Abschnitten Δx , Δy zu beschreiben, und die Schnittund Stützkräfte nach (1003) ff. abzuleiten, wird die elastische Fläche unabhängig von der Stützung erweitert, indem das Gitter und die Belastung p(x, y) stetig über den Plattenrand hinaus fortgesetzt werden. Damit ist die Bedingung $\Delta \Delta w = p/N$ auch außerhalb des Randes erfüllt (Abb. 660). Unter dieser VorausDie Bedingungen am Rande des Gitters und an den singulären Stellen der Belastungsfunktion. 683

setzung gelten die Ansätze (1004) für die Schnittkräfte Q_{xz} , Q_{yz} , M_{xy} und die Ansätze (1005) für die Auflagerkräfte A_{xz} , A_{yz} . In diesen lassen sich dann die Verschiebungen w der Nebenknoten außerhalb des Randes eliminieren, so daß sich die Auflagerkräfte folgendermaßen berechnen lassen:

a) Frei aufliegende Platte. Für den Randknoten
 k folgt nach (1003) aus $M_k=0$ und
 $w_i=w_k=w_i=0$

$$w_{k+1} = -w_{k-1} \,. \tag{1006}$$

Die Differenzengleichung (1001) liefert mit $M_i = M_k = M_l = 0$

Wk.

$$M_{k+1} = -M_{k-1} - p_k s^2$$

und die Differenzengleichung (1002) für den Nebenknoten (k + 1) ergibt

$$4 w_{k+1} - w_{l+1} - w_{k+2} - w_{l+1} = \frac{M_{k+1}}{N} s^2 = -\frac{M_{k-1}}{N} s^2 - \frac{p_k s^4}{N}$$
(006)

oder mit (1006)

$$w_{k+2} = 4 w_{k+1} + w_{l-1} + w_{l-1} + \frac{M_{k-1}}{N} s^2 + \frac{p_k s^4}{N}.$$

Nach (1002) ist für den Punkt (k-1)

$$\frac{w_{k-1}}{N} s^2 = 4 w_{k-1} - w_{k-2} - w_{i-1} - w_{i-1}$$
 ,

also

$$w_{k-2} = -w_{k-2} + \frac{p_k \, s^4}{N}. \tag{1007}$$

Damit geht Gl. (1005) über in

$$A_{xz,k} = \frac{N}{2s^3} \left[4 \left(3 - \mu \right) w_{k-1} - 2 w_{k-2} - 2 \left(2 - \mu \right) \left(w_{i-1} + w_{l-1} \right) + \frac{p_k s^4}{N} \right].$$
(1008)

Ebenso wird erhalten

$$A_{yz_{i}k} = \frac{N}{2s^{3}} \Big[4 \left(3 - \mu \right) w_{i} - 2 w_{h} - 2 \left(2 - \mu \right) \left(w_{i-1} + w_{i+1} \right) + \frac{p_{k} s^{4}}{N} \Big].$$
(1009)

b) Starr eingespannte Platte. Für den Randknoten k folgt nach (998) aus $dw/d\,x=0$

$$w_{k+1} = w_{k-1} \,. \tag{1010}$$

Die Differenzengleichung (1000) liefert mit $w_i = w_k = w_l = 0$ und (1010)

$$w_{k+2} = \frac{p_k s^4}{N} + 16 w_{k-1} - 4 (w_{i-1} + w_{i-1}) - w_{k-2}, \qquad (1011)$$

so daß nach (1005)

Axz

$$_{k} = \frac{N}{2 s^{3}} \left[16 w_{k-1} - 2 w_{k-2} - 4 (w_{i-1} + w_{i-1}) + \frac{p_{k} s^{4}}{N} \right]$$
(1012)

und ebenso

$$4_{yz,k} = \frac{N}{2s^3} \left[16 w_i - 2 w_k - 4 (w_{i-1} + w_{i+1}) + \frac{p_k s^4}{N} \right].$$
(1013)

Die Erweiterung der Fläche M_k und der elastischen Fläche w_k über den Rand hinaus zeigt Abb. 661 für einen Schnitt y = const. a) Frei aufliegende Platte, b) starr eingespannte Platte, c) freier Rand. Die Belastungsfunktion p ist dabei konstant angenommen worden.

Man kann aber auch zur Formulierung der Randbedingungen auf die Erweiterung der elastischen Fläche verzichten und die Differenzengleichungen und Schnittkräfte allein mit den Verschiebungen der Hauptknoten des Gitters anschreiben, wenn an Stelle des einzelnen Plattenelementes eine nach allen Seiten durchlaufende Platte mit den gleichen Stützenbedingungen untersucht wird. Die durchlaufende Platte

wird auf Schneiden gestützt und antimetrisch oder symmetrisch belastet. Die Formänderung der benachbarten Felder ist dann antimetrisch oder symmetrisch zur Formänderung des Hauptfeldes, so daß die Verschiebungen der Nebenknoten antimetrisch oder symmetrisch mit den Verschiebungen der Hauptknoten übereinstimmen. Die Differenzengleichungen der Randknoten enthalten jedoch dann neben der Belastungsintensität p die singulären Stützkräfte. Sie können also nur angeschrieben werden, wenn diese bekannt sind. Das gilt auch von den singulären Stützkräften bei Pilzdecken. Daher ist die Lösung mit Differenzen nur dann möglich, wenn an diesen Punkten die Randwerte der Unbekannten Null oder vorgeschrieben sind. Beim frei aufliegenden Rand ist $M_k = 0$ und $w_k = 0$, die Lösung also nach (1001), (1002) in zwei Stufen durchführbar. Beim eingespannten Rand ist $M_k \neq 0$, $w_k = 0$, so daß nur der allgemeine Ansatz (1000) verwendet werden kann. Bei Pilzdecken ist über den Stützen $w_k = 0$, also ebenfalls nur der allgemeine Ansatz anwendbar, doch ist es zweckmäßig, den Stützendruck als statisch überzählige Größe zu berechnen.

Werden die Randbedingungen durch Bedingungen über die Antimetrie oder Symmetrie der Formänderung ersetzt, so lassen sich die Stützkräfte Axz, Ayz nicht mehr nach (1005) ermitteln. Sind aber die Verschiebungen w_k bekannt, so können die Differenzengleichungen für die singulären Punkte nunmehr zur Bestimmung der singulären Stützkräfte dienen. Z.B. ist für die starr eingespannte Platte am Randknoten k nach (1000) mit

$$w_i = w_k = w_l = 0$$
, $w_{k+1} = w_{k-1}$, $w_{k+2} = w_{k-2}$,
 $2 w_{k-2} + 4 (w_{i-1} + w_{l-1}) - 16 w_{k-1} = \overline{p}_k \frac{s^4}{N}$,

wobe
i ϕ_k die Belastungsintensität unter Berücksichtigung der Stützkraft bedeutet. Nach Abb. 662 ist

$$\overline{p}_k s^2 = -2 A_{xz,k} s + p_k s^2,$$

womit wiederum wie in (1012)

$$A_{xz,k} = \frac{N}{2\,s^3} \Big[16\,w_{k-1} - 2\,w_{k-2} - 4\,(w_{i-1} + w_{l-1}) + \frac{p_k\,s^4}{N} \Big].$$

Den Verlauf von M_k und w_k für einen Schnitt y = const am Rande bei Ersatz der Randbedingungen durch Bedingungen über die Antimetrie oder Symmetrie der Formänderung zeigt Abb. 662. Die Belastungsfunktion p ist dabei konstant angenommen worden. Sie hat im Randknoten beim eingespannten Rand eine Singulalität, beim frei aufliegenden Rand einen Sprung.

iität, beim frei aufliegenden Rand einen Sprung. 1. Freie Auflagerung der Ränder. Die Verschiebungen w_{10} bis w_{25} und die Momentensummen M_{10} bis M_{25} in den Randpunkten sind nach S. 647 Null (Abb. 660). Daher werden zunächst die Momentensummen M_1 bis M_9 der Hauptknoten nach (1001) und daraus die Verschiebungen w_1 bis w_9 des Gitters nach

684

Die Bedingungen am Rande des Gitters und an den singulären Stellen der Belastungsfunktion. 685

(1002) berechnet. Damit sind nach (1003) auch die Biegungsmomente $M_{x,1}$ bis $M_{x,9}$, $M_{y,1}$ bis $M_{y,9}$ bekannt. Um die Drillungsmomente für alle Maschenknoten nach (1003) zu berechnen, sind auch die Verschiebungen der dem Rande benachbarten Nebenknoten notwendig. Diese ergeben sich aus der Bedingung (938) für die Momentensummen am Rande.

 $w_{27} = -w_1$ usw., $w_{33} = -w_3$ usw., an der Ecke $w_{31} = w_3$ usw. (1014)

Die Berechnung der Querkräfte Q_{10} bis Q_{25} und der Stützkräfte A_{10} bis A_{25} nach (1004), (1005) setzt außerdem noch die Kenntnis über die Größe der Momentensummen M_{26} bis M_{48} in denselben Nebenknoten voraus. Sie ergeben sich aus den Differenzengleichungen (1001) für die Randpunkte.

$$M_1 + M_{27} = -p_{10} s^2$$
 usw., $M_3 + M_{33} = -p_{14} s^2$ usw.

Eine andere Lösung mit Hilfe der Verschiebungen ist bereits auf S. 683 angegeben worden.

2. Starre Einspannung der Ränder. Die Verschiebungen w_{10} bis w_{25} sind Null, dagegen die Mo-

mentensummen M_{10} bis M_{25} von Null verschieden (Abb. 660). Daher werden die Verschiebungen w_1 bis w_9 der Hauptknoten mit dem allgemeinen Ansatz (1000) in einer Stufe berechnet. Hierbei gehen die Verschiebungen der am Rande benachbarten Nebenknoten in die

Gleichungen ein. Diese sind durch die Randbedingungen (942) bestimmt, da mit

$$\partial w/\partial y = 0$$
: $w_{27} = w_1$ usw., $\partial w/\partial x = 0$: $w_{33} = w_3$ usw. (1015)

Mit den Wurzelwerten w_k sind nach (1003) alle Biegungs- und Drillungsmomente in den Knoten 1 bis 25 bestimmt. Die Drillungsmomente in den Randpunkten ergeben sich nach Vorschrift zu Null. Die Berechnung der Auflagerkraft ist bereits auf S. 683 abgeleitet worden.

3. Zwei anschließende Ränder (10 bis 17) der Platte sind kräftefrei, die beiden anderen (18 bis 25) frei aufgelagert (Abb. 660). Die Verschiebungen und Momentensummen in den Randknoten 17 bis 25 sind Null, so daß damit auch die Verschiebungen der Nebenknoten 38 bis 48 als antimetrisch zu den Verschiebungen der symmetrisch liegenden Hauptknoten bekannt sind. Damit können die Differenzengleichungen für die Punkte 1 bis 16 angeschrieben werden. Als Wurzeln erscheinen nur noch die unbekannten Verschiebungen der Nebenknoten 26 bis 36 und 51 bis 58. Diese müssen durch die Bedingungen $M_{y,25}$ bis $M_{y,13} = 0$, $M_{x,13}$ bis $M_{x,17} = 0$, $A_{y,10}$ bis $A_{y,13} = 0$, $A_{x,13}$ bis $A_{x,16} = 0$ und $C_{13} = 0$ eliminiert werden.

Die beliebige Belastung von achsensymmetrischen Platten (freie Auflagerung oder starre Einspannung aller vier Ränder) wird durch die Umordnung der Belastung nach den beiden Achsen im Sinne von Abschn. 27 in vier unabhängige Teile zerlegt, so daß in (1001), (1002) nur die Momentensummen ${}^{(1)}M_k \dots {}^{(4)}M_k$ und die Verschiebungen ${}^{(1)}w_k \dots {}^{(4)}w_k$ eines Quadranten als Wurzeln auftreten.

$$M_k = {}^{(1)}M_k + \dots + {}^{(4)}M_k, \qquad w_k = {}^{(1)}w_k + \dots + {}^{(4)}w_k. \tag{1016}$$

Die Momentensummen und Verschiebungen in Punkten der Symmetrieachsen I, II

sind bei Antimetrie der Belastung nach *I* und *II* Null. Die Rechnung wird dadurch vereinfacht. Sind mehrere Belastungsfälle, also auch die Einflußflächen von Verschiebungen oder Schnittkräften zu untersuchen, so wird nach Abschn. 29 die konjugierte Matrix zu den Differenzengleichungen (1000) oder (1001), (4002) gebildet.

Flächenlasten, die nicht mit der Teilung des Gitters in Beziehung stehen, werden maschenweise zu Einzellasten zusammengefaßt und nach dem Hebelgesetz auf die Maschenknoten verteilt.

Der Umfang der Zahlenrechnung nimmt wesentlich zu, wenn die Symmetrieeigenschaften der Stützung ganz oder teilweise wegfallen. Die Art der Untersuchung nach S. 684 wird jedoch nicht geändert. Der Spannungszustand an kräftefreien Ecken k liefert stets 5 Bedingungen. Neben denjenigen des kräftefreien Randes mit

$$M_{x,k} = 0$$
, $M_{y,k} = 0$, $A_{xz,k} = 0$, $A_{yz,k} = 0$

ist nach den Bemerkungen auf S. 648 auch $M_{x\,y,k} = M_{y\,x,k} = 0$, also $(\partial^2 w / \partial x \, \partial y)_k = 0$.

Berechnung der rechteckigen Platte b/a = 4/3 mit frei aufliegenden Rändern für gleichmäßige Belastung p.

686

1. Gitterteilung (Abb. 663)

$$s = \frac{a}{6} = \frac{b}{8}.$$

2. Randwerte nach (938) und (1014). M_{13} bis $M_{20} = 0$, w_{13} bis $w_{20} = 0$.

$$w_{21} = -w_{10}$$
 usw., $w_{30} = -w_3$ usw.

$$w_{as} = w_{as} = 0$$
, $w_{as} = w_{1a}$.

3. Differenzengleichungen (1001), (1002) für die 12 Gitterpunkte.

Berechnung der rechteckigen Platte b/a = 4/3 mit frei aufliegenden Rändern. 687

4. Die Iteration einer Näherungslösung liefert

k	I	2	3	4	5	6	7	8	9	10	11	12	
M_k	923	827	530	879	789	507	737	664	432	464	422	282	$10^{-4} p a^2$
w_k	661	577	339	617	539	317	486	425	251	273	239	142	10-5 \$ a4/N

5. Schnittkräfte nach (1003) ff. und (1008), z. B.

$$\begin{split} M_{x,1} &= \frac{36}{a^2} \cdot \frac{10^{-5} \not p \, a^4}{N} \Big[-577 + 2 \cdot 661 - 577 + \frac{1}{6} \left(-617 + 2 \cdot 661 - 617 \right) \Big] = 0,066 \not p \, a^2 \,, \\ M_{y,1} &= \frac{36}{a^2} \cdot \frac{10^{-5} \not p \, a^4}{N} \Big[\frac{1}{6} \left(-577 + 2 \cdot 661 - 577 \right) - 617 + 2 \cdot 661 - 617 \Big] = 0,042 \not p \, a^2 \,, \\ M_{x\,y,16} &= \frac{36}{4} \frac{N}{a^2} \left(1 - \frac{1}{6} \right) \frac{10^{-5} \not p \, a^4}{N} \left[-142 - 142 - 142 - 142 \right] = -0,043 \not p \, a^2 \,, \\ A_{x,20} &= \frac{216}{2} \frac{N}{a^3} \cdot \frac{10^{-5} \not p \, a^4}{N} \Big[4 \cdot \left(3 - \frac{1}{6} \right) 339 - 2 \cdot 577 - 2 \left(2 - \frac{1}{6} \right) (317 + 317) \Big] + \frac{\not p \, a}{12} = 0,475 \not p \, a \,. \end{split}$$

Die Schnittkräfte sind in Abb. 664 dargestellt. Sie stimmen gut mit den genauen Werten S. 677 überein. Der Auflagerdruck ergibt sich nach der gestrichelten Linie und ist an den Ecken nicht Null wie bei der strengen Lösung. Der Fehler nimmt mit der Gitterteilung ab. Der Auflagerdruck ist daher nach den Ecken zu kleiner als die Zahlenrechnung angibt und verläuft etwa nach der ausgezogenen Linie.

Um die Abhängigkeit des Ergebnisses der Differenzenmethode von der Gitterteilung zu zeigen, ist eine quadratische, frei aufliegende, gleichmäßig belastete Platte für s = a/4 und a/8 berechnet worden. Die Ergebnisse weichen nur wenig voneinander ab (Abb. 665).

In Abb. 666 sind die Ergebnisse für eine Einzellast in Plattenmitte mit s = a/4, a/8, a/12 dargestellt. Sie weichen nur in geringer Umgebung der Last voneinander ab. Daher genügt cs, die Berechnung für ein grobes Gitter durchzuführen und nur im Lastbereich ein feineres Gitter einzuschalten. Für das grobe Gitter s = a/4 (Abb. 665a) lauten die Differenzengleichungen (1001)

h s e Abb. 664. Schnittkräfte der frei aufliegenden

Für das eingeschaltete feinere Gitter mit s = a/8 (Abb. 667) lauten die Gleichungen (1001)

688

Mit $M_2 = 0,125 P$ und $M_6 = M_2 - \frac{1}{4}(M_2 - M_3) = 0,112 P$ aus einer quadratischen Interpolation ergibt sich $M_4 = 0,243 P$, $M_1 = 0,493 P$. Die Werte stimmen nach Abb. 666 mit dem Ergebnis für das 8teilige Gitter gut überein. y/

 $w_{21} = w_{10}$ usw. .

Berechnung der rechteckigen Platte b/a=4/3mit eingespannten Rändern und gleichmäßiger Belastung p.

22 123

25

p a4

Abb. 668.

 $w_{30} = w_3$ usw., $w_{25} = w_{12}$. 3. Differenzengleichungen (1000) für die 12 Gitterpunkte.

 w_{13} bis $w_{20} = 0$,

2. Randwerte nach (942) und (1015).

$$\frac{p_k \, s^4}{N} = \frac{10^5}{6^4} \cdot \frac{p \, a^4}{10^5 \, N} \, .$$

w_1	w_2	w3	w_4	w_5	w_6	<i>w</i> ₇	w ₈	w_9	w ₁₀	w11	w12	10 ⁵ N
20	- 16	2	- 16	8		2						77,17
-8	21	- 8	4	16	4		2					77,17
I	4	21	- 16	. 2	-8	4		2				77.17
-8	4	R.	21	- 16	2	- 8	4	1.5	I			77,17
2	- 8	2	- 8	22	-8	2	- 8	2	1 and the	I		77,17
	2	-8	I	- 8	22		2	-8	1.1.8	E Frank	I	77,17
I	200		- 8	4		20	- 16	2	-8	4		77,17
15.00	I		2	- 8	2	-8	21	-8	2	- 8	2	77,17
		I		2	-8	I	- 8	21		2	-8	77,17
	1		I	3.10		-8	4		21	- 16	2	77,17
		-		I		2	- 8	2	-8	22	-8	77,17
1					I		2	- 8	I	- 8	22	77,17

4. Die Iteration einer Näherungslösung liefert

k	I	2	3	4	5	6	7	8	9	10	II	12	
w _k	227	187	86	207	171	79	149	124	59	67	56	27	10-5 \$ a4/N

BIBLIOTHEK PADERBORN Berechnung der rechteckigen Platte b/a = 4/3 mit frei aufliegenden Rändern. 689

5. Schnittkräfte nach (1003 ff.) und (1012), z. B. $M_{x,1} = \frac{36N}{a^2} \cdot \frac{10^{-5} p a^4}{N} \left[-187 + 2 \cdot 227 - 187 + \frac{1}{6} \left(-207 + 2 \cdot 227 - 207 \right) \right] = 0.032 p a^2,$ $M_{x,\,20} = \frac{36\,N}{a^2} \cdot \frac{10^{-5}\,p\,a^4}{N}$ $86 + 2 \cdot 0 - 86 + \frac{1}{6} \cdot 0 = -0.062 \neq a^2$, 216 N 10-5 p a4

$$A_{\pi, 20} = \frac{1}{2 a^3} \cdot \frac{1}{N} [16 \cdot 86$$

-2 \cdot 187 - 4 (79 + 79)] + $\frac{p}{12} = 0.49 p a$

Die Schnittkräfte sind in Abb. 669 dar-gestellt. Da der Auflagerdruck nach der strengen Lösung an der Ecke Null ist, wird das Ergebnis der Rechnung berichtigt (ausgezogene Linie). Der Fehler nimmt mit der Gitterteilung ab.

Berechnung der rechteckigen Platte b/a = 4/3 mit frei aufliegenden Rändern und einer Einzellast.

$$s = \frac{a}{6} = \frac{b}{8} \,.$$

2. Randwerte nach (938) und (1014). Am ganzen Rand ist

M = 0 und w = 0, $w_{21} = -w_{10}$ usw. 3. Belastungsumordnung. Zur Berechnung der Durchbiegung nach (1002) sind 35 Differenzengleichungen auf-

Abb. 670. Gitterteilung.

 $w_{\max} = 0,0107 \ Pa^2/N$,

zulösen. Es ist daher zweckmäßiger, die Belastung nach Abschn. 27 in die symmetrischen und antimetrischen Anteile zu den Achsen I, II umzuordnen (Abb. 672). In den Antimetrieachsen ist w = 0 und daher bekannt.

Beyer, Baustatik, 2 Aufl., 2 Neudruck.

IBLIOTHER

V/N

4. Differenzengleichungen (1001), (1002) für die 12 Gitterpunkte im 1. Quadranten.

$$b_k s^2 = \frac{P}{2}$$
, $\frac{M_k}{M_k} s^2 = \frac{4 M_k}{M_k} \cdot \frac{10^5}{2} \cdot \frac{P a^2}{M_k}$

 $P_{k}s = \frac{1}{4}$, $N s = \frac{1}{4}$ 144 10⁵ N In allen anderen Punkten sind die Belastungsglieder Null.

a) 4 symmetrische Einzellasten P/4 (Abb. 672a).

I -	2	3	4	5	6	7	8	9	10 '	I I	1.2	$P/_4$	$\frac{Pa^2}{10^5 N}$
4	-2		-2									0	228
-1	4	— I		-2								0	205
	-1	4			-2				De la	-10		0	113
-1			4	-2		— I	- As					o	249
	- I		-1	4	- I		- I					0	239
		- I		— I	4.			— I		PATER A	N. A.	0	124
			-1			4	-2		-1			0	287
				-1		- I	4	- I		— I	1.8	I	380
					- I		-1	4			-1	0	144
-	-					-1	7		4	-2		0	147
							- I		-1	4	-1	0	150
								- I		-1	4	0	73
k =	I	2	3	4	5	6	7	8	9	IO	II	1.2	West

 $w^{I} = \begin{bmatrix} 729 & 637 & 365 & 709 & 624 & 355 & 613 & 557 & 307 & 343 & 305 & 172 & Pa^{2}/10^{5} N \\ b)$ 4 Einzellasten P/4, symmetrisch zur y-Achse, antimetrisch zur x-Achse (Abb. 672b).

		E	6	7	8	0	10	11	12	Pla	Pa^2		
	4	5	~	/		9				- /4	10 ⁵ N		
	4	-2		-1			1			0	114		
	-1	4	-1		-1					0	121		
		— I	4			-1				0	57		
	I			4	-2		-1			0	214		
		I		— I	4	- I		-1		1	315		
			- I		- I	4		24	- I	0	107		
				- I		-	4	-2		0	114		
•					-1		- I	4	-1	0	121		
						- I		- 1	4	0	57		
k =	1	2	3	4	5	6	7	8	9	10	II	12	
$w^{II} =$	0	0	0	180	164	90	2'77	265	138	180	164	90	Pa2/105 N

BIBLIOTHEK PADERBORN Im Punkt 8

Berechnung der rechteckigen Platte b/a = 4/3 mit frei aufliegenden Rändern. 691

c) 4 Einzellasten P/4, symmetrisch zur x-Achse, antimetrisch zur y-Achse (Abb. 672c).

		2	3	5	6	8	9	II	12	P/4	$\left \frac{Pa^2}{To^5 N} \right $	Ŧ
		4	-1	-2						0	50,7	
		- I	4		- 2					0	37,6	
		-1		4	-1	-1				0	82,8	1
			-1	- I	4		- I			0	49,8	
				- I		4	- I	-1		I	230,8	
		The second			-I	-I	4		-1	0	79,3	
						-1		4	-1	0	66,8	
				-			-1	- I	4	0	36.5	
4								0			1 545	
<i>K</i> =	1	2	3	4	5	0	7	8	9	IO	II	12
- 111-	0	60	60	0	80	6.	-	and the	(ngan)	1 2 1	10-22-22	

w^{***} = 0 | 09 | 00 | 0 | 82 | 67 | 0 | 111 | 75 | 0 | 55 | $4^{1} P a^{2}/10^{5} N$ d) 4 antimetrische Einzellasten (Abb. 672d).

				5		6	8	9		11	12	1-4		$\frac{Pa^2}{10^5 N}$		
				4	-	-1	-1			1] (>	64,6		
				- I		4		-1	t			0	,	34,4		
				-1			4	-1	E.	-1		1		224,2		
					-	- 1	-1	4	H		-1	0		73,2		
							1			4	-1	0		64,6		
								-1		- I	4	0		34,4		
<i>k</i> =	I	2	3		4	5	(5	7	8		9	10	II	12	
$w^{IV} =$	0	0	0		0	49	3	6	0	90	5	60	0	49	36	$P a^2/10^5 N$

Die Superposition der Einzelergebnisse liefert die Ausbiegung infolge P = 1 im Punkt 8 mit $w_k = w_k^I + w_k^{II} + w_k^{II} + w_k^{IV}$ nach der Zusammenstellung auf S. 692. Das Ergebnis ist in Abb. 671 dargestellt.

5. Schnittkräfte nach (1003) ff. und (1008), z. B.

$$\begin{split} M_{x,8} &= \frac{36\,N}{a^2} \cdot \frac{P\,a^2}{10^5\,N} \left[-890 + 2 \cdot 1029 - 580 + \frac{1}{6} \left(-919 + 2 \cdot 1029 - 573 \right) \right] = 0,246\,P\,, \\ M_{y,8} &= \frac{36\,N}{a^2} \cdot \frac{P\,a^2}{10^5\,N} \left[\frac{1}{6} \left(-890 + 2 \cdot 1029 - 580 \right) - 919 + 2 \cdot 1029 - 573 \right] = 0,239\,P\,, \\ M_{x\,y,16} &= \frac{36\,N}{4\,a^2} \left(1 - \frac{1}{6} \right) \frac{P\,a^2}{10^5\,N} \left[-339 - 339 - 339 - 339 \right] = -0,102\,P\,, \\ A_{z,18} &= \frac{216\,N}{2\,a^3} \frac{P\,a^2}{10^5\,N} \left[4 \left(3 - \frac{1}{6} \right) 580 - 2 \cdot 1029 - 2 \left(2 - \frac{1}{6} \right) (548 + 339) \right] = 1,36\,P/a\,, \\ A_{y,13} &= \frac{216\,N}{2\,a^3} \cdot \frac{P\,a^2}{10^5\,N} \left[4 \left(3 - \frac{1}{6} \right) 523 - 2 \cdot 890 - 2 \left(2 - \frac{1}{6} \right) (573 + 365) \right] = 1,38\,P/a\,. \end{split}$$

BIBLIOTHEK

Die Schnittkräfte sind in Abb. 673 dargestellt. Der Auflagerdruck ergibt sich etwas zu groß, da das Integral längs des ganzen Randes etwa 1.4 P wird. Der Fehler nimmt mit der Gitterteilung ab.

a) Biegungsmomente der frei aufliegenden rechteckigen Platte mit einer Einzellast P.

b) Randkräfte der frei aufliegenden rechteckigen Platte mit einer Einzellast P.

Die Aufgabe kann auch mit einem Ansatz gelöst werden, wenn ein gröberes Gitter gewählt wird. Für das Gitter nach Abb. 674 lauten z. B. die Differenzengleichungen mit s = a/3

Diese Werte sind als Näherung durchaus noch brauchbar, wie der Vergleich mit der Zahlentafel am Rande der Seite zeigt. Für die Schnittkräfte sind dagegen größere Abweichungen zu erwarten.

So ist z. B. $M_{x,8} = 0.176 P$ gegenüber 0.246 P. Genauere Werte ergeben sich, wenn die Biegefläche mit den Näherungswerten aufgezeichnet wird und die Ordinaten zur Bestimmung der Momente für eine engere Teilung der Zeichnung entnommen werden. Auf diese Weise wird z. B. $M_{x,8} = 0.255 P$.

Berechnung einer Behälterwand mit hydrostatischer Belastung.

Die rechteckige Seitenwand eines Behälters mit quadratischem Grundriß ist am oberen Rande frei, am unteren elastisch eingespannt und an den Seiten starr eingespannt. Sie kann

692

Berechnung einer Behälterwand mit hydrostatischer Belastung.

daher in erster Annäherung als Platte berechnet werden, die an drei Seiten starr eingespannt und an einer Seite kräftefrei ist. Um die Rechnung abzukürzen, ist $\mu = 0$ angenommen worden.

1. Gitterteilung (Abb. 675).

$$s=\frac{a}{3}=\frac{b}{4}.$$

2. Randwerte nach (938) und (943). An den eingespannten Rändern ist

 $w_k = 0$, $w_{18} = w_6$ usw., $w_{25} = w_1$ usw.

Am freien Rand ist $M_y = 0$, $A_y = 0$. Mit (1003) folgt daraus

 $w_7=2\,w_5-w_3\,,\qquad w_8=2\,w_6-w_4\,,\qquad w_9=0\,.$

Diese Beziehungen liefern mit (1005)

$$w_{10} = w_1 - 12 w_3 + 8 w_4 + 12 w_5 - 8 w_6,$$

$$w_{11} = w_2 + 4 w_3 - 12 w_4 - 4 w_5 + 12 w_6.$$

3. Die Belastungszahlen. Die hydrostatische Belastung wird nach S. 682 über den Plattenrand hinaus stetig fortgesetzt und nach dem Hebelgesetz auf die Gitterpunkte verteilt (Abb. 675).

4. Differenzengleichungen (1000) für die Gitterpunkte 1 bis 6. Beim Aufstellen der Differenzengleichungen werden die Randbedingungen unter 2 berücksichtigt.

	<i>w</i> ₁	w_2	w_3	w4	w_5	w ₆	po a1 1000 N
	21	- 16	- 8	4	I		8,23
	-8	23	2	- 8		I	8,23
	-8	4	19	- 16	-6	4	4,12
1	2	- 8	- 8	21	2	- 6	4,12
	2	NY ST	- 12	8	16	- 16	o
Contraction of		2	4	- 12	-8	18	0

5. Die Iteration einer Näherungslösung liefert

k =	I	2	3	4	5	6	- Andrewin
$w_k =$	2,003	1,362	2,265	1,728	2,321	1,442	\$\$\$ \$

Die Biegefläche ist in Abb. 676 dargestellt.

IBLIOTHEK ADERBORN 694 72. Die Abschätzung des Spannungszustandes in rechteckigen Platten nach H. Marcus.

6. Schnittkräfte nach (1003) ff. und (1012), z. B.

$$\begin{split} M_{y,17} &= \frac{9N}{a^2} \frac{\dot{p}_0 a^4}{1000 N} \left[-2,003 - 2,003 \right] = 0,036 \, \dot{p}_0 a^2 \,, \\ M_{x,12} &= \frac{9N}{a^2} \frac{\dot{p}_0 a^4}{1000 N} \left[-1,442 - 1,442 \right] = 0,026 \, \dot{p}_0 a^2 \,, \\ A_{y,17} &= \frac{27N}{2 \, a^3} \frac{\dot{p}_0 a^4}{1000 N} \left[16 \cdot 2,003 - 2 \cdot 2,658 - 4 \cdot 2,724 \right] + \frac{\dot{p}_0 a}{6} = 0,38 \, \dot{p}_0 a. \end{split}$$

Die Schnittkräfte sind in Abb. 677 eingetragen.

Marcus, H.: Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. Berlin 1924, u. Arm. Beton 1919 S. 107. — Nielsen, N. S.: Bestemmelse af Spoendinger in Plader ved anvendelse af Differensligninger. Kopenhagen 1920. — Kirsten, O.: Beitrag zur Berechnung der rechteckigen Platte mit beliebigen Randbedingungen. Diss. Dresden 1924.

72. Die Abschätzung des Spannungszustandes in rechteckigen Platten nach H. Marcus.

Die Anwendung der Plattenstatik im Bauwesen ist durch die Beschreibung der statischen und geometrischen Zusammenhänge mit Differenzen und Differenzengleichungen aus den Ordinaten w_k der elastischen Fläche wesentlich gefördert worden, da die Aufgaben mit einfachen mathematischen Hilfsmitteln für die Bedürfnisse der Technik hinreichend genau gelöst werden. Da es jedoch in vielen Fällen genügt, das Spannungsbild zur Beurteilung der Sicherheit des Tragwerks in elementarer Weise summarisch zu erfassen, wird die Plattenbiegung in erster Annäherung mit der Formänderung zweier sich rechtwinklig kreuzender Trägerschaaren l_x , l_y verglichen, die sich unabhängig voneinander durchbiegen und die an den Enden unter denselben Bedingungen gelagert sind, wie der Plattenrand. Die Formänderung der Träger l_x entsteht durch eine Belastung p(x), diejenige der Träger l_y aus einer Belastung p(y). Ihre Summe ist an jedem Kreuzungspunkt (x, y) gleich der vorgeschriebenen Belastung p = p(x) + p(y) (Abb. 678). Bilden die Trägerschaaren