

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

77. Angenäherte Untersuchung des Spannungszustandes in Rahmenecken

urn:nbn:de:hbz:466:1-74292

Visual Library

77. Angenäherte Untersuchung des Spannungszustandes in Rahmenecken. 737

				310	-	and the second second				
k	I	2	3	4	5	6	7	8	9	10
Fk	-0,0406	-0,1764	-0,3005	-0,3473	-0,2053	-0,6282	-1,0040	-1,1485	-0,4631	-1,3222
k	11	12	13	14	15	16	17	18	19	20
Fk	-2,0395	-2,3092	-0,8172	-2,2306	-3,3332	-3.7338	-1.2242	-3 2400	- 1 6725	-== 1662

Abb. 753a. Linien gleicher Hauptspannung o1.

Der Spannungszustand der Scheiben mit $H \ll L$, der aus den Schnittkräften nach Abschn. 10 statisch bestimmt angegeben werden kann, unterscheidet sich von dem Spannungszustand gedrungener Scheiben vor allem durch das Verhältnis von σ_z zu σ_x . In dem einen Falle ist $\sigma_z \ll \sigma_x$, in dem anderen Falle sind beide Spannungen von der gleichen Größenordnung. Das Vorzeichen der Längsspannung σ_x wechselt beim Träger in der Achse, dagegen bei gedrungenen Scheiben mit $H \approx L$ in den Wendepunkten der Querschnitte $x = \text{const} \det \text{Spannungsfläche} F$, also

Abb. 753 b. Linien gleicher Hauptspannung σ_2 .

Abb. 753 c. Längsspannungstrajektorien.

in der Nähe des abgestützten Scheibenrandes. Die Spannungen in Längs- oder Querschnitten lassen sich aber auch hier stets zu Schnittkräften zusammenfassen, welche mit den äußeren Kräften am Rande die Gleichgewichtsbedingungen erfüllen.

Bay, H.: Über den Spannungszustand in hohen Trägern und die Bewehrung von Eisenbetonwänden. Stuttgart 1931.

77. Angenäherte Untersuchung des Spannungszustandes in Rahmenecken.

Während die statisch bestimmte Berechnung der Spannungen aus den Schnittkräften zur Beurteilung der Festigkeit der Rahmenstäbe ausreicht, läßt sich das Kraftfeld im Bereich der Winkelpunkte der Stabachsen nur mit einem ebenen Spannungszustand vergleichen. Dieser ist durch polarisationsoptische Untersuchun-47

Beyer, Baustatik, 2. Aufl., 2. Neudruck.

738 77. Angenäherte Untersuchung des Spannungszustandes in Rahmenecken.

gen an rechtwinkligen, auf Biegung beanspruchten Stabecken gemessen worden. Darnach ist der ausspringende Bereich der Ecke fast spannungsfrei. Aus diesem Grunde liegt es nahe, das vorgeschriebene polygonale Kraftfeld durch einen Kreisringsektor mit konzentrischen Rändern zu begrenzen und die Spannungsaufgabe mit Polarkoordinaten zu lösen, wenn dabei sich voraussichtlich auch der Verschiebungszustand ändern wird.

Um die Randbedingungen und damit auch die Zahlenrechnung zu vereinfachen, wird über die Eintragung der Schnittkräfte an den Querschnitten der Scheibe nichts ausgesagt. Hier gelten vielmehr nur die Gleichgewichtsbedingungen zwischen den bekannten Schnittkräften N, M, Q des Rahmenstabes und den errechneten Span-

nungen σ_i , τ_{tr} , die ebenso wie die Spannungsfunktion mit Rücksicht auf die Randbedingungen in Polarkoordinaten angeschrieben werden. **Übertragung zweier Biegungsmomente** M (Abb. 754).

Die Spannungen sind unabhängig vom Winkel α , so daß die partielle Differentialgleichung (1057) ebenso wie die Plattengleichung (947) in bezug auf die Veränderliche r total wird.

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}\right) \left(\frac{d^2F}{dr^2} + \frac{1}{r}\frac{dF}{dr}\right) = 0 ; \qquad \sigma_r = \frac{1}{r}\frac{dF}{dr}, \qquad \sigma_t = \frac{d^2F}{dr^2}, \qquad \tau_{rt} = 0 .$$

Thre all gemeine Lösung steht bereits auf S. 650 und lautet mit $r_2/r = \varrho$ und $r_2/r_1 = \varrho_1$

$$F = c_0 + c_1 \ln \varrho + c_2 \frac{1}{\varrho^2} + c_3 \frac{1}{\varrho^2} \ln \varrho .$$
 (1086)

Die Integrationskonstanten lassen sich aus den Bedingungen

$$\sigma_r = -\frac{1}{r_2^2} \left(c_1 \varrho^2 - 2 c_2 + c_3 - 2 c_3 \ln \varrho \right) = 0$$

an den Rändern $r = r_1$ und $r = r_2$ und $M = \int_{r_1}^{r_1} \sigma_t r dr$ bestimmen. Man erhält mit

$$T_1 = r_1^2 \left[(\varrho_1^2 - 1)^2 - 4 \, \varrho_1^2 \, (\ln \varrho_1)^2 \right], \tag{1087a}$$

$$c_{1} = -\frac{M}{T_{1}}r_{2}^{2} \cdot 4\ln\varrho_{1}, \quad c_{2} = \frac{M}{T_{1}}r_{2}^{2}(1-\varrho_{1}^{2}-2\ln\varrho_{1}), \quad c_{3} = \frac{M}{T_{1}}r_{2}^{2} \cdot 2(1-\varrho_{1}^{2}) \int^{(10873)}$$

und daraus

BIBLIOTHEK

$$\sigma_r = \frac{4}{T_1} \left(-\ln\frac{\varrho_1}{\varrho} - \varrho_1^2 \ln\varrho + \varrho^2 \ln\varrho_1 \right), \quad \sigma_t = \frac{4}{T_1} \left(\varrho_1^2 - 1 - \ln\frac{\varrho_1}{\varrho} - \varrho_1^2 \ln\varrho - \varrho^2 \ln\varrho_1 \right).$$
(1087b)

 σ_r und σ_t sind Hauptspannungen, die Querschnitte bleiben eben.

Für einen Sektor mit $r_1 = 0.24$ m, $r_2 = 0.64$ m (Abb. 755a) wird $\varrho_1 = 2.6667$ und $T_1 = 0.57492$. Die Auswertung der Ergebnisse (1087b) liefert mit M = 1 mt/m die für

Ausgleich einer Querkraft.

alle Radialschnitte gleiche Spannungsverteilung der Abb. 755b. Die Gerade AB zeigt den linearen Verlauf von σ_t nach Navier.

Ausgleich einer Querkraft. Die Querkraft Q_a (Abb. 756) steht mit den Schnittkräften N_b , M_b , Q_b im Gleichgewicht [$(Q_a, N_b, M_b, Q_b) \equiv 0$]. Die Spannungsfunktion

$$F = \Phi(r) \cdot \sin \alpha$$

mit den Spannungskomponenten

$$\begin{aligned} \sigma_r &= \left(\frac{\Phi'}{r} - \frac{\Phi}{r^2}\right) \sin \alpha , \qquad \sigma_t = \Phi'' \cdot \sin \alpha ,\\ \tau_{rt} &= -\left(\frac{\Phi'}{r} - \frac{\Phi}{r^2}\right) \cos \alpha = -\frac{\sigma_r}{\operatorname{tg} \alpha} \end{aligned} \tag{1089}$$
liefert am Rande $\alpha = 0$ nur Schubspannungen $\tau_{rt}.$
Aus
$$\Delta \Delta F &= \left(\frac{d^2}{dr^2} - \frac{1}{r^2} + \frac{1}{r}\frac{d}{dr}\right) \left(\frac{d^2 \Phi}{dr^2} - \frac{\Phi}{r^2} + \frac{1}{r}\frac{d \Phi}{dr}\right) \cdot \sin \alpha$$
folgt für $\Phi(r)$ die totale Differentialgleichung
$$\left(\frac{d^2}{dr^2} - \frac{1}{r^2} + \frac{1}{r}\frac{d}{dr}\right)^2 \Phi = 0. \tag{1090a}$$

Ihre Lösung ist

$$\Phi = c_1 \frac{1}{\varrho^3} + c_2 \frac{\ln \varrho}{\varrho} + c_3 \frac{1}{\varrho} + c_4 \varrho , \qquad (10901)$$

wobei wieder $r_2/r = \varrho$ gesetzt wurde.

Die Integrationskonstanten c_1, c_2, c_4 lassen sich aus den Bedingungen

$$\sigma_r = \left(2c_1\frac{1}{\varrho} - c_2\varrho - 2c_4\varrho^3\right)\frac{\sin\alpha}{r_2^2} = -\tau_{rt}\operatorname{tg}\alpha = 0$$

an den Rändern $r = r_1$ und $r = r_2$ und aus der Bedingung $\int \tau_{rt} dr = Q_a$ am Rande

 $\varkappa=0$ ermitteln. Die Integrationskonstante c_3 ist ohne Einfluß auf die Spannungen und daher beliebig. Mit der Abkürzung

ergibt sich

$$T_{2} = r_{2}^{-1} \left[(\varrho_{1}^{2} + 1) \ln \varrho_{1} - (\varrho_{1}^{2} - 1) \right]$$

$$_{1} = \frac{\varrho_{1}^{2}}{2} \frac{Q_{a}}{T_{2}}, \quad c_{2} = (\varrho_{1}^{2} + 1) \frac{Q_{a}}{T_{2}}, \quad c_{4} = -\frac{1}{2} \frac{Q_{a}}{T_{2}} \right\}$$
(1091a)
$$47^{*}$$

5)

739

(1088)

BIBLIOTHEK

740 77. Angenäherte Untersuchung des Spannungszustandes in Rahmenecken.

und damit

$$\sigma_{r} = \frac{Q_{a}}{T_{2}} \Big[\frac{\varrho_{1}^{2}}{\varrho} - (\varrho_{1}^{2} + 1) \varrho + \varrho^{3} \Big] \sin \alpha , \qquad \tau_{rt} = -\frac{\sigma_{r}}{\operatorname{tg} \alpha}, \\ \sigma_{t} = \frac{Q_{a}}{T_{2}} \Big[3 \frac{\varrho_{1}^{2}}{\varrho} - (\varrho_{1}^{2} + 1) \varrho - \varrho^{3} \Big] \sin \alpha . \qquad (1091 \,\mathrm{b})$$

Die Spannungsresultierenden im Schnitt $b(\alpha = \alpha_0)$ stehen mit Q_a im Gleichgewicht:

Für den Sektor mit den Abmessungen nach Abb. 755 a, belastet nach Abb. 757, ist $q_1 = 2,6667$, $T_2 = 1,1805$. Mit

$$\begin{split} & \frac{Q_a}{T_2} \Big[\frac{\varrho_1^a}{\varrho} - (\varrho_1^2 + 1) \ \varrho + \varrho^3 \Big] = K_1 \text{,} \\ & \frac{Q_a}{T_2} \Big[3 \ \frac{\varrho_1^a}{\varrho} - (\varrho_1^2 + 1) \ \varrho - \varrho^3 \Big] = K_2 \end{split}$$

wird

 $\sigma_r = K_1 \sin \alpha \,, \qquad \sigma_t = K_2 \sin \alpha \,.$

Die Funktionen K_1 und K_2 sind in Abb. 758 dargestellt. Die Abb. 759a, b enthalten die Linien gleicher Hauptspannungen σ_1 , σ_2 , die Abb. 759c die Längsspannungstrajektorien für die Belastung nach Abb. 757.

78. Der Spannungszustand in Rahmenknoten.

Eine Belastung des Ringsektors nach Abb. 760a läßt sich durch Aufspaltung in die drei Anteile Abb. 760b, c, d auf die beiden Grundfälle zurückführen.

Preuß, E.: Versuche über die Spannungsverminderung durch die Ausrundung scharfer Ecken. Forsch.-Arb. Ing.-Wes. Heft 126. Berlin 1912. — Grüning, M.: Die Spannungen im Knotenpunkt eines Vierendeelträgers. Eisenbau 1914 S. 162. — Wyß, Th.: Die Kraftfelder in festen elastischen Körpern. Berlin 1926. — Cardinal v. Widdern, H.: Polarisationsoptische Spannungsmessungen an Stabecken. Mitteilungen aus dem Mechan.-Techn. Laboratorium der T. H. München, 3. Folge Heft 34. München 1930. — Kurzhalz, H.: Polarisationsoptische Untersuchungen an rechtwinkligen, auf Biegung beanspruchten Stabecken. Mitteilungen aus dem Mechan.-Techn. Laboratorium der T. H. München. 3. Folge Heft 35. München 1931.

78. Der Spannungszustand in Rahmenknoten.

Die Lösung der Aufgabe ist angenähert für eine durch die Querschnitte a, b, cbegrenzte rechteckige Knotenscheibe (Abb. 761) mit Hilfe einer Spannungsfunktion versucht worden, die zwar die Differentialgleichung (1055) und die Gleichgewichtsbedingungen in a, b, c befriedigt, dagegen nicht den Randbedingungen gerecht wird. Für das Kräftebild Abb. 761 ohne Querkraft in c ist nach M. Grüning

$$F = \frac{3 Q}{8 c^3 f^3} \left[x y \left(f^2 - \frac{1}{3} y^2 \right) (x^2 l + 2 c^3 - 3 c^2 l) + \frac{1}{5} x y l (f^2 - y^2)^2 - \frac{2}{3} f^3 l x^3 \right], (1092a)$$

für das Kräftebild Abb. 762 mit einer Querkraft in c (Stockwerkrahmen)

$$F = \frac{1}{16 e^3 f} \left[x^3 \left(y + f \right)^2 - \left(y + f \right)^4 x + \left(8 f^2 - 3 e^2 \right) x \left(y + f \right)^2 + 2 e^3 y^2 \right].$$
(1092b)

Die Spannungen lassen sich daraus mit (1054b) leicht ableiten. Die Lösung gibt jedoch ohne die ausreichende Berücksichtigung der Randbedingungen kein zutreffendes Bild des Kraftfeldes, da nicht der

Spannungszustand in den einspringenden Ecken erfaßt und sein Einfluß auf den Kern des Kraftfeldes bewertet wird.

Das Problem ist neuerdingsdurchSpannungsmessungen und vor allem durch optische Beobachtungen geklärt und von Th. Wyß an Kraftfeldern studiert worden, die sich an Hand des Versuchsmaterials mit Hilfe der analytischen Beziehungen über Tra-

Abb. 762.

jektorien aufzeichnen lassen. Dabei wird der Rahmenknoten in denjenigen Querschnitten abgegrenzt, in denen die einfachen Gesetze der Navierschen Balkenbiegung als zutreffend angenommen werden, so daß die Randbedingungen des Kraftfeldes durch Schnittkräfte bekannt sind.

Das Kräftebild zerfällt bei symmetrischen Knotenscheiben, die hier vorausgesetzt werden sollen, in den symmetrischen und in den antimetrischen Anteil mit grundsätzlich verschiedenen, ausgezeichneten Kraftfeldern.

a) Symmetrie der Belastung. Die Biegungsmomente, Quer- und Längskräfte der Querschnitte a, b sind einander gleich, am Querschnitt c ist nur die Längskraft $N_c = 2 Q_a$ von Null verschieden (Abb. 763a). Die Schubspannungen sind in der Symmetrielinie Null, die Hauptspannungen σ_1, σ_2 parallel zur x- und y-Achse. Das Kraftfeld stimmt mit demjenigen eines im Bereich c verstärkten Balkenabschnitts überein, der hier einegleichförmig verteilte Belastung aufnimmt (Abb. 763b). Die Kraftlinien α beschreiben im wesentlichen den Kraftfluß und die Beziehungen