

Die Statik im Stahlbetonbau

Beyer, Kurt

Berlin [u.a.], 1956

82. Membrantheorie von Rohr und Tonne

urn:nbn:de:hbz:466:1-74292

Visual Library

5. Die Bedingungsgleichungen unter Berücksichtigung der Randbedingungen.

w1	w2	w3	w4	w5	w_6	w7	w ₈	w ₉	w10	103 54 pr,
6,719	- 3,172	0,729								$\begin{bmatrix} B_0 \\ -0,461 \end{bmatrix}$
- 3,172	4,921	- 2,686	0,614							- 0,411
, 0,729	- 2,686	4,199	- 2,252	0,512		1910		-		- 0,359
	0,614	- 2,252	3,536	- 1,868	0,422					-0,308
		0,512	- 1,868	2,988	- 1,530	0,343				- 0,256
		TRACE	0,422	- 1,530	2,485	- 1,236	0,275			- 0,205
				0,343	- 1,236	2,044	- 0,982	0,216		- 0,154
					0,275	-0,982	1,661	- 0,764	0,166	- 0,103
						0,216	- 0,764	1,204	-0,332	- 0,051
		Provide a					0,166	-0,332	0,313	0

6. Auflösung. Die Iteration einer Näherungslösung liefert

R =	I	2	3	4	5	6	7	8	9	IO
$10^3 w_k =$	-0,2396	-0,5144	-0,6616	-0,6777	-0,6131	-0,5146	-0,4047	-0,2860	-0,1547	-0,0124 mm

7. Schnittkräfte nach (1261). Die Ausbiegung w_k und das Biegungsmoment M_{yk} sind in Abb. 820 S. 783 durch die Linie 4 dargestellt.

Pöschl, T., u. K. v. Terzaghi: Berechnung von Behältern nach neueren analytischen und graphischen Methoden. Berlin 1913 und 1926. — Meißner, E.: Beanspruchung und Formanderung zylindrischer Gefäße mit linear veränderlicher Wandstärke. Vjschr. Naturforsch. Ges. Zürich 1917 S. 153. — Pasternak, P.: Formeln zur raschen Berechnung der Biegebeanspruchurg in kreisrunden Behältern. Schweiz. Bauztg. Bd. 86 (1925) S. 129. — Derselbe: Vereinfachte Berechnung der Biegebeanspruchung in dünnwandigen kreisrunden Behältern. Verh. 2. Int. Kongr. f. techn. Mechanik. Zürich 1927. — Derselbe: Die praktische Berechnung der Biegebeanspruchung in kreisrunden Behältern mit gewölbten Böden und Decken und linear veränderlichen Wandstärken. Schweiz. Bauztg. Bd. 90 (1927). — Susok, K.: Formeln zur praktischen Berechnung der Biegungsbeanspruchung in kreisrunden Behältern mit linear veränderlichen Wandstärken. Schweiz. Bauztg. Bd. 90 (1927). — Susok, K.: Formeln zur praktischen Berechnung der Biegungsbeanspruchung in kreisrunden Behältern mit linear veränderlichen Wandstärken. Beton u. Eisen 1927 S. 450. — Steuermann, E.: Beitrag zur Berechnung des zylindrischen Behälters mit veränderlicher Wandstärke. Beton u. Eisen 1928 S. 286. — Miesel, K.: Über die Festigkeit von Kreiszylinderschalen mit nichtachsensymmetrischer Belastung. Ing.-Arch. 1930 S. 22. — Flügge, W.: Die Stabilität der Kreiszylinderschale. Ing.-Arch. 1931 S. 47. — Abdank, R.: Berechnung ganz oder teilweise gefüllter, freitragender, dünnwandiger Rohrleitungen mit beliebig geneigter Achse. Bautechn. 1931 S. 419. — v. Sanden, K., u. F. Tölke: Über Stabilitätsprobleme dünner kreiszylindrischer Schalen. Ing.-Arch. 1931 S. 24.

82. Membrantheorie von Rohr und Tonne.

Tonne und Rohr werden bei zahlreichen Anwendungen im Bauwesen längs der Ränder oder längs ausgezeichneter Mantellinien $\alpha = \text{const}$ stetig unterstützt und bei der statischen Untersuchung unendlich lang angenommen (Abb. 833). Eine von x unabhängige Belastung $p = p(\alpha)$ erzeugt dann mit $\mu = 0$ einen ebenen Spannungszustand, dessen Komponenten ebenso wie beim biegungssteifen gekrümmten Stabe berechnet werden (S. 131 und 136). Durch die Abstützung einzelner Querschnitte des Flächentragwerks mit biegungssteifen Rahmen, Bindern oder Querwänden

entstehen freitragende Rohre und Tonnen, deren differentiale Streifen sich nicht mehr gleichartig verhalten, so daß die Spannungen nach der Schalentheorie berechnet werden müssen. Gelten dabei mit $h \ll r$ dieselben Annahmen wie auf

S. 743, so lassen sich die inneren Kräfte auch hier durch Schnittkräfte, also durch Längs- und Querkräfte, Biegungs- und Drillungsmomente ausdrücken. Die räumliche Tragwirkung der Tonne ist zuerst von A. Föppl an Fachwerken (1894), von D. Thoma und E. Schwerin an Rohren (1920) und von F. Bauersfeld und m. Cowölben (1928) untersucht worden

U. Finsterwalder an freitragenden Gewölpen (1928) untersucht worden.

Um die Rechnung zu vereinfachen, können die Biegungsspannungen gegenüber den Dehnungsspannungen eines Abschnitts zunächst ebenso wie bei den rotationssymmetrischen Schalen vernachlässigt werden, wenn die Randbedingungen vollständig erfüllt sind oder wenn die Randstörungen keinen wesentlichen Einfluß auf den Spannungs- und Formänderungszustand besitzen. Das Kraftfeld der Schale wird dann allein durch Längskräfte und Schubkräfte beschrieben, während die Biegung nur geringe Nebenspannungen erzeugt.

Zur Berechnung der Längskräfte N_x , N_α und der Schubkräfte $N_{x\alpha}$ genügen die drei Gleichgewichtsbedingungen. Die Aufgabe ist also ebenso wie bei den rotationssymmetrischen Schalen statisch bestimmt. Die Gleichgewichtsbedingungen werden für die äußeren Kräfte eines differentialen Schalenteils $dx \cdot r d\alpha$ angeschrieben und dabei auf das Achsensystem der Abb. 838 bezogen. Der Ursprung der x-Achse fällt in den mittleren Breitenschnitt zwischen zwei Querstützen (Abstand 2*l*). Diese bedeuten Ränder des stetigen Zusammenhangs und damit Randbedingungen für die mathematische Beschreibung des Spannungs- und Verschiebungszustandes. Das-

selbe gilt von der Begrenzung der Tonnenschalen längs der Erzeugenden. Randstörungen des Membranzustandes sind also nur dann ausgeschlossen, wenn die an den Rändern der Schale vorhandenen Kräfte den stützenden Randgliedern ohne Zwang zugeführt werden können.

Die Wanddicke h ist konstant, die Belastung p eine stetige Funktion von x und α . Ihre Komponenten werden mit p_x , p_y , p_z bezeichnet. Die Verschiebungen der Punkte der Mittelfläche im Sinne der drei in Abb. 834 eingetragenen Achsen sind u, v, w.

Bedingungen für das Gleichgewicht der Kräfte an dem differentialen Abschnitt Abb. 834

$$\frac{\partial N_x}{\partial x} dx r d\alpha + \frac{\partial N_{x\alpha}}{\partial \alpha} d\alpha dx + p_x dx r d\alpha = 0,$$

$$\frac{\partial N_\alpha}{\partial \alpha} d\alpha dx + \frac{\partial N_{x\alpha}}{\partial x} dx r d\alpha + p_y dx r d\alpha = 0,$$

$$N_\alpha dx d\alpha + p_z dx r d\alpha = 0,$$

 $\frac{\partial N_{x\alpha}}{\partial x} + \frac{1}{r} \frac{\partial N_{\alpha}}{\partial \alpha} + p_{y} = 0, \qquad \frac{\partial N_{x}}{\partial x} + \frac{\partial N_{x\alpha}}{r \partial \alpha} + p_{x} = 0, \qquad N_{\alpha} + p_{z} r = 0.$ (1262)

Die Schnittkräfte können daher unabhängig voneinander berechnet werden.

$$N_{\alpha} = -r p_{z}, \qquad N_{x\alpha} = -\int \frac{1}{r} \frac{\partial N_{\alpha}}{\partial \alpha} dx - \int p_{y} dx + C_{1}(\alpha),$$

$$N_{x} = -\int \frac{1}{r} \frac{\partial N_{x\alpha}}{\partial \alpha} dx - \int p_{x} dx + C_{2}(\alpha).$$
(1263)

Spannungszustand einer freitragenden Druckrohrleitung.

Die Integrationskonstanten C_1 , C_2 sind unabhängig von x, aber Funktionen von α , und daher nur durch Randbedingungen für x = const bestimmt. Bei freier Auflagerung der Schale auf zwei Querstützen sind die Längskräfte N_x an den freien Rändern in $x = \pm l$ Null; bei freier Auskragung der Schale sind Längskraft N_x und Schubkraft $N_{\alpha x}$ am freien Rand Null. Randstörungen des Membranzustandes sind dabei aber nur dann ausgeschlossen, wenn die Dehnung von Schalenrand und Querstütze stetig ineinander übergehen. In allen anderen Fällen entstehen ebenso wie bei der Verbindung von Rotationsschale und Ringträger Biegungsspannungen, die sich allerdings ebenso wie dort nur auf eine schmale Randzone beschränken und daher keine große Bedeutung besitzen.

Der Verschiebungszustand der Mittelfläche (u, v, w) läßt sich mit den als bekannt anzusehenden Schnittkräften aus den folgenden Beziehungen berechnen:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = \frac{1}{Eh} (N_{x} - \mu N_{\alpha}), \qquad \varepsilon_{\alpha} = \frac{\partial v}{r \partial \alpha} - \frac{w}{r} = \frac{1}{Eh} (N_{\alpha} - \mu N_{x}),$$

$$\gamma_{x\alpha} = \frac{\partial u}{r \partial \alpha} + \frac{\partial v}{\partial x} = \frac{2(1+\mu)}{Eh} N_{\alpha x}.$$
(1264)

Spannungszustand einer freitragenden Druckrohrleitung.

1. Lösung für Eigengewicht $p_x = 0$, $p_y = g \sin \alpha$, $p_z = g \cos \alpha$. Nach (1263) ist $N_{\alpha} = -ag\cos\alpha$,

Abb. 835. Schnittkräfte infolge Eigengewicht.

us Symmetriegründen ist
$$N_{\alpha x} = 0$$
 für $x = 0$, also $C_1 = 0$

 N_{i}

$$a = + \frac{1}{a} \int 2g x \cos \alpha \, dx + C_2 = \frac{g}{a} \cos \alpha \, (x^2 + C_2) \, .$$

Für x = l ist $N_x = 0$, also $C_2 = -l^2$. Die Schnittkräfte lauten nunmehr

 $N_{\alpha} = -g \, a \cos \alpha \,, \qquad N_{\alpha x} = -2 \, g \, x \sin \alpha \,, \qquad N_x = -g \, a \, \frac{l^2}{a^2} \left(1 - \frac{x^2}{l^2}\right) \cos \alpha \,.$ Sie sind in Abb. 835 dargestellt.

Abb. 837. Schnittkräfte und Spannungstrajektorien in einem Rohrabschnitt.

A

2. Lösung für Wasserüberdruck $p_x = 0$, $p_y = 0$, $p_z = -\gamma (f - a \cos \alpha)$ (Abb. 836). Die Integration nach (1263) liefert

$$N_{\alpha} = a^2 \gamma \left(\frac{l}{a} - \cos \alpha\right), \qquad N_{\alpha x} = -\gamma a x \sin \alpha, \qquad N_x = -\gamma \frac{l^2}{2} \left(1 - \frac{x^2}{l^2}\right) \cos \alpha.$$

Die Schnittkräfte und Spannungstrajektorien sind bei Wasserfüllung ohne Überdruck, also für f = a = 1,10 m auf der linken Seite, bei Wasserfüllung mit f = 40,0 m auf der rechten Seite der Abb. 837 eingetragen. Die Hauptspannungen werden also bei wachsendem Überdruck immer mehr zu Ringspannungen. Dabei wird die Durchbiegung des Rohres kleiner.

Die Tonnenschale mit Querstützung. Die Mittelfläche der Tonnenschale ist ein zum Meridianschnitt $\alpha = 0$ symmetrischer Abschnitt einer Zylinderfläche mit parallelen Rändern $\alpha = \alpha^* = \text{const.}$ Die Krümmung des Breitenschnittes 1/rist eine Funktion von α , die Wanddicke *h* in der Regel konstant. Das Flächen-

tragwerk ruht entweder auf allen vier Rändern oder trägt sich zwischen den Querwänden frei. Daneben sind auch noch andere Stützungsmöglichkeiten vorhanden. Die Belastung p wirkt stetig, wird aber

im Hinblick auf die Anwendung im Bauwesen derart angenommen, daß $p_x = 0$ und

 p_y , p_z allein stetige Funktionen von α , also unabhängig von x sind. Die allgemeinen Gleichgewichtsbedingungen (1263) lauten dann folgendermaßen:

$$N_{\alpha} = -p_{z}r, \qquad N_{x\alpha} = -\left(p_{y} + \frac{1}{r} \frac{\partial N_{\alpha}}{\partial \alpha}\right)x + C_{1}(\alpha),$$

$$N_{x} = \frac{1}{r} \frac{\partial}{\partial \alpha}\left(p_{y} + \frac{1}{r} \frac{\partial N_{\alpha}}{\partial \alpha}\right)\frac{x^{2}}{2} - \frac{x}{r} \frac{\partial C_{1}(\alpha)}{\partial \alpha} + C_{2}(\alpha).$$

$$(1265)$$

Tragwerk und Belastung sind zum Querschnitt x = 0 symmetrisch, so daß zur Berechnung der Integrationskonstanten $C_1(\alpha)$, $C_2(\alpha)$ bei freier Auflagerung der Ränder $x = \pm l$ folgende Bedingungen gelten:

$$\begin{array}{ll} x = 0: & N_{\alpha x} = 0 \quad \text{also} \quad C_1(\alpha) = 0 , \\ x = \pm l: & N_x = 0 \quad \text{also} \quad C_2(\alpha) = -\frac{1}{r} \frac{\partial}{\partial \alpha} \left(p_y + \frac{1}{r} \frac{\partial N_\alpha}{\partial \alpha} \right) \frac{l^2}{2} . \end{array}$$
 (1266)

Die Schnittkräfte sind daher

$$N_{\alpha} = -p_{z}r, \ N_{\alpha x} = -\left(p_{y} + \frac{1}{r}\frac{\partial N_{\alpha}}{\partial \alpha}\right)x, \ N_{x} = -\frac{1}{r}\frac{\partial}{\partial \alpha}\left(p_{y} + \frac{1}{r}\frac{\partial N_{\alpha}}{\partial \alpha}\right)\left(\frac{l^{2} - z^{2}}{2}\right). \ (1267)$$

Ist x = 0 der freie Rand einer einseitig eingespannten Tonne mit $N_x = 0$, $N_{\alpha x} = 0$, so ist $C_1(\alpha) = 0$ und $C_2(\alpha) = 0$.

An den Längsrändern $\alpha^* = \text{const}$ werden in der Regel Längskräfte $N^*_{\alpha x}$ und Schubkräfte $N^*_{\alpha x}$ an Randglieder abgegeben. Der Längsspannungszustand der Schale bleibt dabei aber nur erhalten, wenn Dehnung und Spannung in der Grenzschicht zwischen den benachbarten Bauteilen stetig ineinander übergehen, ohne daß Biegungsspannungen entstehen.

Sind die Endtangenten des Breitenschnittes senkrecht ($\alpha^* = 90^{\circ}$), so sind bei lotrechter Belastung die Längskräfte N_{α}^* Null und daher am Rande nur noch Schubkräfte $N_{\alpha x}^*$ vorhanden, die einem Randglied zugeführt werden müssen. Sie sind nach (1267) zum Breitenschnitt x = 0 symmetrisch und erzeugen im Querschnitt xdes Randgliedes eine Längskraft

$$S = -\left(p_{y} + \frac{1}{r} \frac{\partial N_{\alpha}}{\partial \alpha}\right) \int_{l}^{x} x \, dx = \left(p_{y} + \frac{1}{r} \frac{\partial N_{\alpha}}{\partial \alpha}\right) \left(\frac{l^{2} - x^{2}}{2}\right). \tag{1268}$$

Die Tonnenschale mit Querstützung.

Die Längskräfte S der beiden Randglieder bilden mit den Längskräften N_x eines Querschnitts der Tonne eine Gleichgewichtsgruppe

$$S + \int_{0}^{\alpha^{*}} N_{x} r \, d\alpha = 0$$

und erhalten damit die Bedeutung der Biegungslängskraft eines Balkenträgers.

Die Form des Breitenschnittes steht mit dem Spannungszustand in einer Beziehung, die sich bei der Belastung der Tonne durch Eigengewicht g = const leicht verfolgen läßt, wenn der Parameter n in der Gleichung des Breitenschnittes $1/r = 1/a \cdot \cos^n \alpha$ durch verschiedene ganze Zahlen ersetzt wird. n = 3 liefert eine Parabel, n = 2 eine Kettenlinie, n = 0 einen Kreis und n = -1 eine Zykloide. Mit $\phi_x = 0$, $\phi_y = g \sin \alpha$, $\phi_z = g \cos \alpha$ ist dann

$$N_{\alpha} = -g a/\cos^{n-1} \alpha$$
, die Bogenkraft $H = -N_{\alpha} \cos \alpha = g a/\cos^{n-2} \alpha$,

$$N_{x\alpha} = -g x (2-n) \sin \alpha , \qquad N_x = -g \frac{(2-n)}{a} \cos^{n+1} \alpha \frac{l^2}{2} \left(1 - \frac{x^2}{l^2}\right). \qquad (1269)$$

a) Der Breitenschnitt ist eine Kettenlinie: n = 2.

$$H = g a = \text{const}$$
, $N_{x\alpha} = 0$, $N_x = 0$, $S = 0$. (1270)

Die Tonne überträgt das Eigengewicht abgesehen von Randstörungen biegungsfrei nach den Bauteilen am Rande $\alpha^* = \text{const.}$

b) Der Breitenschnitt ist der Kettenlinie einbeschrieben: n > 2.

Der Bogenschub nimmt mit wachsendem α zu, die Schubkräfte $N_{\alpha x} = N_{x \alpha}$ und die Längskräfte N_x sind positiv und daher S negativ.

c) Der Breitenschnitt ist gegen die Kettenlinie überhöht: n < 2.

Der Bogenschub nimmt mit wachsendem α ab, die Schubkräfte $N_{\alpha x} = N_{x \alpha}$ und die Längskräfte N_{π} sind negativ, die Längskraft S der Randglieder positiv. Bei Tonnen mit senkrechter Endtangente ($N_{\alpha}^{*} = 0$) wird das Eigengewicht vollständig nach den Querstützen abgetragen. Die Tonne wird zum Träger. Für freitragende Schalendächer mit Querstützung durch Wände oder Binder sind nur die überhöhten Breitenschnitte geeignet.

Nach diesen Untersuchungen kann das Gleichgewicht zwischen der stetigen Belastung einer Tonnenschale und den inneren Kräften eines Längsspannungszustandes nur in Verbindung mit einem Randglied hergestellt werden, dessen Längskraft S die Schubkräfte $N_{\alpha x}$ am Rande der Schale α^* aufnimmt und ausgleicht. Da jedoch der Sinn der Längskraft S des Randgliedes dem Sinne der Längskraft N_x des Schalenrandes stets entgegengesetzt ist, so kann sich in der Randzone kein Längsspannungszustand ausbilden. Die Unstetigkeit der Formänderung zwischen Schalenrand und Randglied bedeutet vielmehr stets Krümmungsänderungen durch Biegung. Sie sind um so größer, je mehr die mit der Angliederung besonderer Bauteile verbundene unstetige Gewichtsvermehrung die Annahmen über die äußeren Kräfte in den Gleichgewichtsbedingungen für den Längsspannungszustand verändert. Dabei ist zunächst noch immer ein Breitenschnitt mit senkrechter Endtangente angenommen worden. Die Verbindung von flachen Kreiszylinderschalen mit hohen Randträgern zwingt jedoch von vornherein ebenso wie die unstetige Belastung oder die unstetige Krümmung der Tonnenschalen dazu, die Biegungsspannungen des Flächentragwerks in den Vordergrund zu stellen. Dabei werden die Anschlußkräfte zwischen Träger und Schale in ähnlicher Weise wie bei den rotationssymmetrischen Schalen als die überzähligen Größen eines Hauptsystems betrachtet, das durch die Trennung der Randträger von der Schale entsteht. Die überzähligen Größen, also die Biegungsmomente, Längs- und Schubkräfte sind jetzt allerdings nicht mehr konstant, sondern Funktionen von x, die als periodische Funktionen in trigonometrischen Reihen entwickelt angenommen werden. Das Ergebnis entsteht

aber ebenşo wie bei den biegungssteifen rotationssymmetrischen Schalen durch die Überlagerung des Längsspannungszustandes aus der vorgeschriebenen Belastung mit den Biegungsspannungen aus den überzähligen Größen, für deren Berechnung die geometrischen Bedingungen über die gegenseitige Verschiebung und Verdrehung der Ufer der Anschlußquerschnitte von Schalen und Randträger verwendet werden. Die Lösung des Problems ist von U. Finsterwalder gezeigt worden. Mit Rücksicht auf Platzmangel muß auf die angegebene Literatur verwiesen werden.

1. Der Breitenschnitt ist eine Ellipse.

$$=\frac{a^2b^3}{(a^2\sin^2\alpha+b^2\cos^2\alpha)^{3/2}}.$$

Schnittkräfte aus Eigengewicht $p_x = g \sin \alpha$; $p_z = g \cos \alpha$.

$$N_{\alpha} = -g a^{2} b^{2} \frac{\cos \alpha}{(a^{2} \sin^{2} \alpha + b^{2} \cos^{2} \alpha)^{3/z}},$$

$$N_{z \alpha} = -g x \frac{2 a^{2} + (a^{2} - b^{2}) \cos^{2} \alpha}{a^{2} \sin^{2} \alpha + b^{2} \cos^{2} \alpha} \sin \alpha,$$
Abb. 839.
$$N_{x} = -\frac{g l^{2}}{2} \left(1 - \frac{x^{2}}{l^{2}}\right) \cos \alpha \frac{3 a^{2} b^{2} - 3 a^{2} (a^{2} - b^{2}) \sin^{2} \alpha - (a^{2} \sin^{2} \alpha + b^{2} \cos^{2} \alpha)^{2}}{a^{2} b^{2} (a^{2} \sin^{2} \alpha + b^{2} \cos^{2} \alpha)^{1/2}}$$

Schnittkräfte aus Schneelast. $p_y = p_s \sin \alpha \cos \alpha$, $p_z = p_z \cos^2 \alpha$.

$$N_{\alpha} = - p_{j} a^{2} b^{2} \frac{\cos^{2} \alpha}{(a^{2} \sin^{2} \alpha + b^{2} \cos^{2} \alpha)^{3}/_{2}},$$

$$N_{\alpha x} = -3 p_{j} a^{2} x \frac{\sin \alpha \cos \alpha}{a^{2} \sin^{2} \alpha + b^{2} \cos^{2} \alpha},$$

$$N_{x} = \frac{3}{2} p_{j} \frac{l^{2}}{b^{2}} \left(1 - \frac{x^{2}}{l^{2}}\right) \frac{a^{2} \sin^{2} \alpha - b^{2} \cos^{2} \alpha}{(a^{2} \sin^{2} \alpha + b^{2} \cos^{2} \alpha)^{1}/_{2}}.$$

Abb. 840.

Gleichung der

Kettenlinie

 $y = 8,28 - 4,78 \, \text{Col} \, \frac{x}{4,78}$

a = 4,78

IBLIOTHEK

Zykloide

 $x = \frac{i}{2} \left(\varphi - \sin \varphi \right)$

 $y = \frac{f}{2} (1 - \cos \varphi)$

 $0 \leq \varphi \leq t$

 $r = a \cos \alpha$.

Schnittkräfte aus Eigengewicht

$$p_y = g \sin \alpha, \ p_z = g \cos \alpha.$$

$$r_\alpha = -g a \cos^2 \alpha, \qquad N_{z\alpha} = -3 g a \frac{x}{a} \sin \alpha,$$

$$N_x = -\frac{3}{2} g a \frac{l^2}{a^2} \left(1 - \frac{x^2}{l^2}\right).$$

Die Schnittkräfte und Trajektorien sind in Abb. 840 mit denjenigen für eine Kettenlinie als Breitenschnitt verglichen worden.

Schnittkräfte aus Schneelast

$$p_y = p_s \sin \alpha \cos \alpha, \ p_z = p_s \cos^2 \alpha.$$

$$N_\alpha = -p_s a \cos^3 \alpha, \ N_x \alpha = -4 p_s x \sin \alpha \cos \alpha,$$

$$N_x = 2 p_s a \frac{l^2}{a^2} \left(1 - \frac{x^2}{l^2}\right) \frac{1 - 2 \cos^2 \alpha}{\cos \alpha}.$$

Schwerin, E.: Über die Spannungen in symmetrisch und unsymmetrisch belasteten Kugelschalen. Berlin 1918 und Arm. Beton 1919 S. 25. — Thoma, D.: Die Beanspruchung freitragender mit Wasser gefüllter Rohre. Z. ges. Turbinenwes. 1920 S. 17. — Schwerin, E.: Über die Spannungen in freitragenden gefüllten Rohren. Z. angew. Math. Mech. 1922 S. 340. —

83. Vieleckkuppeln.

Miesel, K.: Über die Festigkeit von Kreiszylinderschalen mit nichtachsensymmetrischer Belastung. Ing.-Arch. 1929 S. 22. — Geckeler, J.: Zur Theorie der Elastizität flacher rotationssymmetrischer Schalen. Ing.-Arch. 1930 S. 255. — Rüsch, H.: Theorie der querversteiften Zylinderschalen für schmale, unsymmetrische Kreissegmente. Diss. München 1931. — Finsterwalder, U.: Die querversteiften zylindrischen Schalengewölbe mit kreissegmentförmigem Querschnitt. Ing.-Arch. Bd. 4 (1933) S. 43.

83. Vieleckkuppeln.

Die Breitenschnitte der zyklisch symmetrischen Tragwerke sind in der Regel Vielecke mit gerader Seitenzahl (2n). Sie bilden *n* Tonnenschalen, die untereinander kongruent sind und sich gegeneinander in *n* Gratlinien abstützen. Die Krümmung des Querschnitts $1/R_{\beta}$ kann sich beliebig ändern. Sie ist jedoch in der Regel mathematisch bestimmt, der Querschnitt also z. B. ein Kreisbogen, eine Ellipse oder eine Zykloide.

Der Schalensektor ist durch einen Rand $\alpha = \alpha_2$ und durch zwei Gratlinien begrenzt, welche den Winkel $2\varphi = \pi/n$ einschließen (Abb. 841). Sind die Randbedingungen für $\alpha = \alpha_2$ nach S. 794 erfüllt und Randstörungen ohne Bedeutung, so erzeugt jede stetige Belastung allein Schnittkräfte N_{α} , $N_{\alpha x}$, N_x . Die allgemeinen Angaben darüber auf S. 794 enthalten zwei Funktionen $f_1(\alpha)$, $f_2(\alpha)$ als Integrationskonstante, über die im Sinne des Längsspannungszustandes in den Graten so verfügt werden kann, daß die Hauptschnittkräfte mit der Tangente an die Gratlinien zusammenfallen und daher die Komponenten in Richtung der Haupt- und Binormalen Null sind. Die Anzahl 2n der unbekannten Funktionen $f(\alpha)$ stimmt mit der Anzahl 2n der verfügbaren Bedingungsgleichungen der Schale für den Längsspannungszustand des Tragwerks in den Graten überein. Die Grate erhalten

daher bei jeder stetigen Belastung der Tonnen im wesentlichen nur Längskräfte. Die Integration der Gleichgewichtsbedingungen (1262) für eine Belastung aus $p_x = 0, \ p_y = p_y(\alpha), \ p_z = p_z(\alpha)$ liefert mit $R_g \equiv r$

$$\begin{split} N_{\alpha} &= - \not p_{z} R_{\beta}, \quad N_{\alpha x} = - \left(\frac{\partial N_{\alpha}}{R_{\beta} \partial \alpha} + \not p_{y} \right) x + f_{1} \left(\alpha \right) = - \not p_{y}^{*} x + f_{1} \left(\alpha \right), \\ N_{x} &= \frac{\partial p_{y}^{*}}{2 R_{\rho} \partial \alpha} x^{2} - \frac{\partial f_{1} \left(\alpha \right)}{R_{\rho} \partial \alpha} x + f_{2} \left(\alpha \right). \end{split}$$
(1271)

Die Belastung ist entweder symmetrisch (Eigengewicht, Schneelast) oder antimetrisch (Windbelastung).

Die Unstetigkeit der Mittelfläche in den Gratlinien zwingt zur Zerlegung des Spannungsbildes. Der eine Anteil beschreibt die Tragwirkung der Tonne zur Übertragung der Belastung nach den Gratlinien, der andere die Tragwirkung der Kuppel zur Übertragung der Randkräfte in den Gratlinien nach den Stützpunkten und Randgliedern.

Lösung bei zyklisch symmetrischer Belastung.

Anteil I. Die Schubkräfte $N_{\alpha x}$ sind in allen Symmetrieebenen, also auch in den Querschnitten x = 0 (Abb. 841) Null, so daß nach (1271) $f_1(\alpha) = 0$. Durch die Ausnützung der Symmetrie ist in den Gratschnitten nur noch die Bedingung verfügbar, daß die Komponente B_{α} der Hauptschnitteraft im der Gratschnitten Null ist

A00. 842.

schnittkraft in $x = l_{\alpha}$ in Richtung der Binormalen Null ist. Darnach gilt für den Grundriß eines differentialen Schalenteils (Abb. 842)

$$B_{\alpha} = (N_{\alpha,1} - 2N_{\alpha,\alpha,1}\cos\alpha \operatorname{tg} \varphi + N_{\alpha,1}\cos^2\alpha \operatorname{tg}^2 \varphi) R_{\beta} d\alpha \cos\varphi = 0,$$