

Lehrbuch der wichtigsten Kartenprojektionen

Möllinger, Oskar Zürich, 1882

De Mercatorprojektion	und ihre	Anwendung	in der	Schifffahi	rtskunde

urn:nbn:de:hbz:466:1-76263

In diesen Gleichungen sind die Winkel λ_1 λ φ_1 φ in Minuten einzusetzen.

2. Die Mercatorprojektion und ihre Anwendung in der Schifffahrtskunde.

Will man eine Plattkarte construiren, bei welcher die Abbildung dem Abgebildeten in den kleinsten Theilen ähnlich ist, so muss sich für die Projektion a b c d eines jeden unendlich kleinen Kugelrechteckes ABCD, welches von zwei Parallelkreisen und Meridianen be-

grenzt wird, die Basis zur Höhe ebenso verhalten, wie die entsprechenden Dimensionen auf der Kugel. In Fig. 26 sei abcd die Projektion eines unendlich kleinen Kugelrechteckes ABCD, so ist nach dem Gesagten

1) ab: ad = AB: AD
Bei der zu construirenden
Karte werden alle Meridiane in gleichen Entfernungen von einander angenommen, indem man als mittleren Parallelkreis der
Karte den Aequator wählt und auf diesen die wahren
Bogenlängen von Grad zu
Grad oder von 10 Grad zu
10 Grad aufträgt, und durch die Theilpunkte vertikale
Linien zieht, welche die Meridiane repräsentiren.

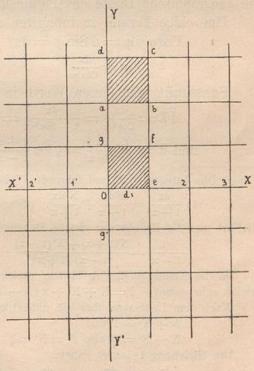


Fig. 26.

Die unendlich kleinen Seiten des Rechteckes ab c d seien ab == ds (Differential s) und ad == d λ , (Differential λ) dann ist auch (Fig. 26) Oe == ds und die Seiten des (siehe Seite 63 die Glch. für l') Kugelrechteckes sind: $\Lambda B == Oe \cos \varphi = ds \cos \varphi$

Möllinger's Kartenprojektionen.

(wenn φ die Breite des Parallelkreises bezeichnet auf welchem AB liegt) und AD = Oe = ds. Die Proportion 1) lautet daher:

$$ds: d\lambda = ds \cos \varphi : ds$$

Hieraus folgt:
$$d\lambda = \frac{ds}{\cos \varphi}$$

In dieser Gleichung ist ds der unendlich kleine Bogen des Aequators, welcher gleich demjenigen eines Meridianes d. h. gleich d φ ist, und daher 2) d $\lambda = \frac{\mathrm{d}\varphi}{\mathrm{Cos}\,\varphi}$

Wird diese Gleichung zwischen den Grenzen $\varphi = 0$ und $\varphi = \varphi$ integrirt, so ergibt sich die Länge $\lambda = \operatorname{Arc}(\alpha \text{ Minuten})$, (der Radius R der Erde wurde gleich 1 angenommen) welche in Fig. 26 vom Aequator resp. vom Punkte O aus nach Oa aufzutragen ist, vorausgesetzt, dass die geographische Breite des Parallelkreises ab gleich φ ist.

Um obige Formel zu integriren setze man $\sin \varphi = x$ und erhält

$$\cos \varphi \, d\varphi = d \sin \varphi = dx$$
$$d\varphi = \frac{dx}{\cos \varphi}$$

Substituirt man diesen Werth in Gleichung 2 so ist

$$d \lambda = \frac{dx}{\cos^2 \varphi} = \frac{dx}{1 - \sin^2 \varphi} = \frac{dx}{1 - x^2}$$
und $\lambda = \int \frac{dx}{1 - x^2} = \frac{1}{2} \log \frac{1 + x}{1 - x} + C^*$

*) Das Integral wird auf folgende Weise gelöst: Es sei

1) $\frac{dx}{1-x^2} = \frac{N dx}{1-x} + \frac{N' dx}{1+x}$, oder indem man die Gleichung mit dx dividirt und die Brüche auf gleiche Benennung bringt:

$$\frac{1}{1-x^2} = \frac{N(1+x) + N'(1-x)}{(1-x)(1+x)}$$

Da die Nenner beider Ausdrücke gleich sind, so müssen auch ihre Zähler gleich sein, somit: $1=N+N'+x\ (N-N')$

Nach dem Lehrsatze über die unbestimmten Coefficienten ist aber:

$$N + N' = 1$$
 und $N - N' = 0$ also $N = N' = \frac{1}{2}$

Die Gleichung 1) lautet daher:

$$\frac{dx}{1-x^2} = \frac{dx}{2(1-x)} + \frac{dx}{2(1+x)} \text{ und}$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \int \frac{dx}{1-x} + \frac{1}{2} \int \frac{dx}{1+x}$$

$$\int \frac{dx}{1-x^2} = -\frac{1}{2} \log (1-x) + \frac{1}{2} \log (1+x) + C$$

$$= \frac{1}{2} \left[\log (1+x) - \log (1-x) \right] + C$$

$$= \frac{1}{2} \log \frac{1+x}{1-x} + C$$

$$\lambda = \log \sqrt{\frac{1+x}{1-x}} + C$$

Setzt man in diese Gleichung für $x = \sin \varphi$ seinen Werth, so ergibt sich:

$$\lambda = \log \sqrt{\frac{1 + \sin \varphi}{1 - \sin \varphi}} + C \text{ oder}$$

$$\lambda = \log \sqrt{\frac{(1 + \sin \varphi)^2}{1 - \sin^2 \varphi}} + C$$

$$\lambda = \log \frac{1 + \sin \varphi}{\cos \varphi} + C$$

Nun ist aber $\frac{1 + \sin \varphi}{\cos \varphi} = \text{Tg}\left(45^{\circ} + \frac{\varphi}{2}\right)^{*}$ und daher $\lambda = \log^{\circ} \text{Tg}\left(45^{\circ} + \frac{\varphi}{2}\right) + C$

Dieses Integral ist aber zwischen den Grenzen q=0 und q=q zu nehmen, somit

$$\lambda = \stackrel{\circ}{\log} \operatorname{Tg} \left(45^{\circ} + \frac{\varphi}{2} \right) - \stackrel{\circ}{\log} \operatorname{Tg} 45^{\circ}$$

oder da $log Tg 45^\circ = log 1 = 0$ ist

(XLII)
$$\lambda = \log \operatorname{Tg} \left(45^{\circ} + \frac{q}{2}\right)$$

Um diesen Logarithmus durch den Brigg'schen auszudrücken muss er mit dem Modul M = loge = 0,434294482 dividirt werden und es ist daher:

(XLIIa)
$$\lambda = \frac{1}{M} \log \operatorname{Tg} \left(45^{\circ} + \frac{9}{2} \right)$$

In dieser Gleichung ist aber

$$\lambda = \operatorname{Arc} \alpha' = \alpha \operatorname{Arc} 1' = \alpha \operatorname{Sin} 1'$$

weil Arc 1'= Sin 1' angenommen werden kann, und daher

$$\alpha \operatorname{Sin} 1' = \frac{1}{M} \log \operatorname{Tg} \left(45^{\circ} + \frac{\varphi}{2} \right)$$

*)
$$\operatorname{Tg}\left(45^{\circ} + \frac{\varphi}{2}\right) = \frac{\operatorname{Tg} 45^{\circ} + \operatorname{Tg} \frac{\varphi}{2}}{1 - \operatorname{Tg} 45^{\circ} \operatorname{Tg} \frac{\varphi}{2}} = \frac{1 + \operatorname{Tg} \frac{\varphi}{2}}{1 - \operatorname{Tg} \frac{\varphi}{2}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}} = \frac{1 + \frac{\operatorname{Sin} \frac{\varphi}{2}}}{1 - \frac{\operatorname{Sin} \frac{\varphi}{2}}{\operatorname{Cos} \frac{\varphi}{2}}}$$

$$= \frac{\cos\frac{q}{2} + \sin\frac{q}{2}}{\cos\frac{q}{2} - \sin\frac{q}{2}} = \frac{\left(\cos\frac{q}{2} + \sin\frac{q}{2}\right)^2}{\cos^2\frac{q}{2} - \sin^2\frac{q}{2}} = \frac{1 + 2\sin\frac{q}{2}\cos\frac{q}{2}}{\cos q} = \frac{1 + \sin q}{\cos q}$$

$$\alpha = \frac{1}{\text{MSin 1'}} \log \text{Tg} \left(45^{\circ} + \frac{q}{2}\right)$$
XLIIb) $\alpha = 7915,7046 \dots \log \text{Tg} \left(45^{\circ} + \frac{q}{2}\right)^{*}$

 $\log 7915,7046 = 3,8984896.$

Mittelst dieser Gleichung wurden von mir die Werthe von α , deren auf einander folgende Differenzen mit φ zunehmen, und welche daher wachsende Breiten genannt werden, von Grad zu Grad berechnet. Dieselben sind in nachfolgender Tabelle zusammengestellt.**)

Werthe der wachsenden Breiten in Minuten.

Breite q	Wachsende Breite in Minuten	Differenz ***)	Breite φ	Wachsende Breite in Minuten α	Differenz
900	00	.00	630	4904,937	129,956
89	16299,557	2383,125	62	4774,981	125,756
88	13916,432	1394,325	61	4649.225	121,857
87	12522,107	989,587	60	4527,368	118,228
86	11532,520	767,898	59	4409,140	114,842
85	10764,622	627,732	58	4294,298	111,677
84	10136,890	531,070	57	4182,621	108,717
83	9605,820	460,360	56	4073,904	105,938
82	9145,460	406,396	55	3967,966	103,328
81	8739,064	363,766	54	3864,638	100,877
80	8375,298	329,591	53	3763,761	98,560
79	8045,707	301,141	52	3665,201	96,394
78	7744,566	277,361	51	3568,807	94,326
77	7467,205	257,137	50	3474,481	92,399
76	7210,068	239,729	49	3382,082	90,553
75	6970,339	224,596	48	3291,529	88,815
74	6745,743	211,319	47	3202,714	87,169
73	6534,424	199,584	46	3115,545	85,606
72	6334,840	189,139	45	3029,939	84,125
71	6145,701	179,783	44	2945,814	82,719
70	5965,918	171,361	43	2863,095	81,383
69	5794,557	163,739	42	2781,712	80,114
68	5630,818	156,813	41	2701,598	78,907
67	5474,005	150,492	40	2622,691	77,761
66	5323,513	144,703	39	2544,930	76,669
65	5178,810	139,388	38	2468,261	75,631
64	5039,422	134,485	37	2392,630	74,631

^{*)} Aus dieser Glch. ergibt sich a als Anzahl von Minuten des Erdäquators.

^{**)} Dieselben finden sich auch in den Werken von Mendoza und Guépratte, welche mir jedoch nicht zu Gebote standen, wahrscheinlich von Minute zu Minute angegeben.

^{***)} Auch Länge der auf einander folgenden Breitegrade.