

Die Ingenieur-Mathematik in elementarer Behandlung

Enthaltend die statischen Momente und Schwerpunktslagen, die Trägheits- und Centrifugalmomente für die wichtigsten Querschnittsformen und Körper der technischen Mechanik in rechnender und graphischer Behandlung unter Berücksichtigung der Methoden von Nehls, Mohr, Culmann, Land und Reye

> Holzmüller, Gustav Leipzig, 1897

Senkrechte Kreiskegel.

urn:nbn:de:hbz:466:1-76845

bei den umgekehrt aufgestellten parabolischen Gewölben von beliebiger Grundfläche, findet man zunächst $T_{xy} = \frac{Jh^2}{18}$. (Dies gilt auch von den entsprechenden Schrägkörpern, die aber vorläufig ausgeschlossen bleiben sollen.) T_{yz} und T_{zx} ergeben sich mit Hülfe der beiden Axialmomente des Horizontalschnittes, T_z mit Hülfe des Polarmomentes, wobei man die Summenprobe machen kann. T_x und T_y sind leicht zu bilden, ebenso T_p .

Auch die Stumpfe dieser Körper sind leicht zu berechnen, da nur der Ausdruck für h_1 vom Ausdrucke für h_2 abzuziehen und

dann auf den Schwerpunkt zu reduzieren ist.

D. Körper von der Ordnung 2.

364) Der senkrechte Kreiskegel.

Der Schnitt in der Höhe z ist, wenn G die Grundfläche bedeutet, $\frac{G}{h^2}z^2$, das Trägheitsmoment in Bezug auf die Ebene, auf die der Kegel mit der Spitze gestellt ist, wird aus $q = \frac{G}{h^2}z^4$ nach der Schichtenformel als $T_u = \frac{G}{h^2}\frac{h^5}{5} = \frac{Gh^3}{5}$ abgeleitet. In Bezug auf den Horizontalschnitt durch den Schwerpunkt wird

$$T_{xy} = \frac{Gh^3}{5} - \frac{Gh}{3} \left(\frac{3}{4}h\right)^2 = \frac{3}{80}Jh^2.$$

Für die senkrechte Achse hat der Querschnitt in Höhe z das Trägheitsmoment

$$\frac{Fr_z^2}{2} = \frac{Gz^2}{h^2} \cdot \frac{\left(r\frac{z}{h}\right)^2}{2} = \frac{Gr^2z^4}{2h^4}.$$

Die Schichtenformel giebt für den ganzen Körper

$$T_z = \frac{Gr^2}{2h^4} \frac{h^5}{5} = \frac{Gr^2h}{10} = \frac{Gh}{3} \cdot \frac{3r^2}{10} = \frac{3Jr^2}{10}.$$

Für jeden vertikalen Hauptschnitt wird das Trägheitsmoment halb so groß, also ist

$$T_{yz} = T_{zx} = \frac{3Jr^2}{20}.$$

Daraus folgt

$$T_x = T_{xz} + T_{xy} = \frac{3Jr^2}{20} + \frac{3Jh^2}{80} = \frac{3J}{80}(4r^2 + h^2).$$

Ebenso groß ist T_y . Das Polarmoment in Bezug auf den Schwerpunkt wird

$$T_x + T_y + T_z = 2 \cdot \frac{3J}{80} (4r^2 + h^2) + \frac{4}{4} \cdot \frac{3Jr^2}{10} = \frac{3J}{40} (16r^2 + h^2).$$