

Lehrbuch der gotischen Konstruktionen

Ungewitter, Georg Gottlob Leipzig, 1890-

Durchbrochene Helme, Umgänge etc.

urn:nbn:de:hbz:466:1-76966

dürfen. In dieser Weise erklärt es sich auch, dass der Wind spezifisch schwere Körper in Form von Körnern oder Staub in die Lüfte zu heben vermag.

Ist die Bekrönung zu leicht, so durchbohrt man die Werkstücke senkrecht und lässt eine Eisenstange (weit besser Stab oder Rohr aus Kupfer oder Messing, letzteres ev. als Hülse für die Eisenstange) hindurchgreifen, die man unter der zu diesem Behuf voll gemauerten Spitze durch einen Keil (b in Fig. 1421), einen Splint, eine Platte oder auch ein Gewicht festhält. Neuerdings wird diese Stange meist mit einem Blitzableiter vereinigt, der aussen oder innen am Helm herabläuft. Das Vollmauern der Spitze bis 25 cm oder auch 50 und mehr cm innerer Weite empfiehlt sich gewöhnlich auch aus praktischen und statischen Gründen, viel Material ist dazu nicht erforderlich.

Eisenbe-

Wenn doch einmal eine Eisenstange angewandt wird, so liegt es nahe, dieselbe über den steinernen oder auch aus Metall getriebenen Knauf hinausragen zu lassen und sie als Kreuz, Wetterfahne, Stern oder andere Eisenbekrönung auszubilden. Ein Kreuz kann z. B. nach Fig. 1421 durch eine übergekröpfte und vernietete Querstange mit verschiedenartig gebogenen Versteifungsstäben c in den vier Winkeln gebildet werden. Die Dichtung über dem Knauf wird durch eine ausgeschmiedete Erbreiterung a und ev. auch noch ein Bleihütchen erzielt. Über dem Knauf drehet man wohl die vierkantige Stange nach Art der Fig. 1421a, dadurch kann der Widerstand gegen Biegung nach allen Seiten etwas gleichmässiger gemacht werden. Bei grösseren Kreuzen verlangt der Stamm eine Versteifung durch 2 oder 4 Fussbügen (Fig. 1422), welche sich auf den Knauf setzen oder besser (nach Viollet-le-Duc, tome IV pag. 428) um denselben herumgreifen, etwa wie in Fig. 1423. Näheres über Eisenbekrönungen, die schon in sehr früher Zeit vorkommen, s. bei den Holztürmen.

Durchbrochene Turmhelme, Umgänge, Bereicherung der Grate u. s. f.

Der Helm kann völlig glatt bleiben oder an den Gratkanten und auch noch auf den Mitten der Seiten (Chartres, Vendôme) Verstärkungsprofile erhalten und überdies auf den Flächen durch das erwähnte Schuppenwerk bereichert werden.

Eine wirksamere Belebung aber erhalten die Helmflächen durch einzelne oder Luken und zahlreiche Durchbrechungen, die dicht unter der Spitze des Luftaustausches wegen erwünscht sind, die sich aber auch sonst in verschiedenen Höhen bereits an den Türmen des Übergangsstiles als überbaute Dachfenster oder Luken finden. Ein Beispiel dieser Art von der Wormser Liebfrauenkirche giebt Fig. 1424 und 1424a. Bei den französischen Türmen sind diese Öffnungen recht schlank gebildet; auch ohne Überdachungen kommen sie an ihnen als lange rechteckige Schlitze in den Helmflächen vor (St. Denis, Soissons, Reims). Sie wirken sehr leicht, sind aber bei gar zu grosser Höhe statisch nicht günstig, da sie die bei dünnwandigen Türmen wichtige Ringverspannung zu stark unterbrechen.

Reicher und lebendiger erscheinen zentral gebildete Öffnungen, Viel-Vielpasse, passe, die aus einer eingesetzten grossen Steinplatte herausgearbeitet sind oder sich auch wohl in das schichtenweise Mauerwerk einschneiden. Sie können in grösseren Abständen über einander liegen, wie bei St. Etienne zu Caen, wo sie in den glatten, zwischen den Schuppenstreifen liegenden Mauerteilen in einer von unten nach oben abnehmenden Grösse als Sechspass, Fünfpass, Vierpass und schliesslich oben als drei immer kleiner werdende Dreipasse die Helmwände durchbrechen. Bei den Türmen

von Seez liegen sie als Fünfpasse dichter übereinander und machen oben schlanken Luken Platz. Überhaupt können die Vielpasse mit Schlitzen und mit Flächenverzierungen in abwechslungsreiche Verbindung treten.

Alle Masswerkbildungen, sowohl pfostengeteilte Fenster (beim Vierungsturm zu Lichfield in England sogar mit reichen Wimpergen darüber) als zusammenge- Masswerksetzte Vielpasse und Rosen können sich hier entfalten, dadurch dass sie sich einander mehr nähern und schliesslich die ganze Fläche überziehen, entsteht die überaus luftige und reiche Ausbildung der Helme, welche hauptsächlich in den Gebieten des einstigen deutschen Reiches vorkommt und im Turm des Freiburger Münsters wohl ihr vollendetstes Beispiel findet.

Als weitere reiche Beispiele seien angeführt: Das Münster zu Strassburg, die Liebfrauenkirche zu Esslingen, deren Helm durch einen Umgang nahe der Spitze eine reizvolle Bereicherung erfahren hat, die Kirche zu Thann, ein kleiner Turm am Dom zu Meissen, das Münster zu Basel, die Kathedrale zu Burgos, die erneuerte Spitze des Stephansdomes zu Wien und die nur als Pläne auf uns gekommenen, besonders reichen Helme zu Köln, Regensburg und Ulm, die zu vollenden unseren Tagen vorbehalten blieb und zum Teil noch bleibt. Kuppelartige Türme weisen schliesslich der Dom zu Frankfurt a. M. und die Mariastiegenkirche zu Wien auf.

Es ist schon vielfach gestritten über den in der Anlage eines durchbrochenen Daches enthaltenen Widerspruch. Wenn schon es sich nicht leugnen lässt, dass wir es hier weniger mit einer aus der Konstruktion entwickelten Form als mit einer ihrer formellen Wirkung halber, allerdings in vollendeter Weise, entwickelten Konstruktion zu thun haben, so sind doch die geläufigen Einwendungen unbegründet, und das Prinzip, welches der ganzen Gestaltung zu Grunde liegt, ist wohl auf die Spitze getrieben, aber keineswegs ein falsches. Denn zunächst ist, wie der Freiburger Turm erweist, der durchbrochene Helm ja gar kein Dach, sondern er bildet die Bekrönnng der oberen, nur von acht schlanken, bogenverbundenen Pfeilern eingeschlossenen, also allseitig offenen, über der Glockenstube gelegenen Halle, deren Steinboden das wirkliche Dach ist, von welchem aus das Regenwasser durch Wasserspeier abgeführt wird.

Wenn nun in Freiburg jene Halle nie zur Glockenstube bestimmt war, so würde doch auch eine Verwendung derselben in diesem Sinne leicht thunlich sein, sobald der Glockenstuhl und die in demselben enthaltenen Glocken durch eine obere Bedachung und durch ringsum angenagelte bleiüberzogene Schallbretter gesichert wäre, wie das z.B. an dem neuen Glockenstuhl in dem südlichen Turm der Kathedrale von Paris der Fall ist*), in welchen letzteren das Regenwasser gleichfalls durch die 8 riesigen Bogenöffnungen der Glockenstube freien Zutritt hat. Sowie daher ein Verschluss der Bogenöffnungen durch jene Bedeckung des Glockenstuhles überflüssig wurde, so tritt hinsiehtlich des Daches derselbe Fall ein, muss also eine Durchbrechung desselben statthaft sein.

Hiernach ist die Sachlage etwa die folgende: Soweit im Innern des Turmes sich nichts findet, was durch den Regen verdorben werden kann, ist es völlig gerechtfertigt, demselben freien Zutritt zu gestatten. Dass aber in Freiburg nichts verdorben worden ist, dürfte nach Verlauf von beiläufig einem halben Jahrtausend hinlänglich bewiesen sein. Ebenso gut würden auch die Türme der Notredame einen durchbrochenen Helm vertragen.

Hiernach stellt die Anlage eines solchen eben die Entwicklung der höchsten Pracht dar, welche doch auch ihre Rechte besitzt. Es wird dies wenigstens so leicht Niemand bezweifeln, der die Krone des Breisgaus gesehen hat. Sowie diese Pracht aber die höchste, und hinsichtlich des Zeitpunktes der Ausführung die letzte am Bau ist, so soll sie auch die letzte sein, an welche überhaupt zu denken ist, sie soll nur erstrebt werden, wo gar nichts Anderes mehr hat fehlen müssen. Die Krone ziert nur den Purpurmantel, über dem gewöhnlichen Kleid wird sie lächerlich.

Die Wirkung der Pracht, welche den durchbrochenen Steinhelmen eigen ist, geht bei modernen Nachbildungen derselben in Gusseisen verloren. Es ist eben eine Gedankenverwirrung, das letztere

^{*)} S. Viollet le Duc, tom. II. pag. 192.

Material in die Formen eines völlig fremden zu zwingen. Jene Versuche sind in der Wirklichkeit nichts Anderes, als wenn man einem gusseisernen Laternenarm die Form und Stärke eines Kragsteins vorschreibt. Nun könnte man zwar keine Einwendungen erheben gegen einen gusseisernen Helm an sich, dessen Formen eben aus der Natur des Materials entwickelt wären, bis jetzt aber sind derartige Versuche, wie namentlich der Helm über dem Zentralturm der Kathedrale in Rouen zeigt, kläglich missraten.

Die Konstruktion der durchbrochenen Steinhelme ist je nach den Grössen verschieden.

In kleineren Verhältnissen, welche die Bildung der Achtecksseite aus einer Herstellung einzigen Platte auf die Breite zulassen, werden diese Platten so aufeinander der Flächen. gestellt, dass die Stossfugen auf den Ecken abwechseln (s. f in Fig. 1425 sowie 1425 a). Hierdurch bestimmt sich die Breite der die Helmkanten begleitenden glatten Flächen durch die Notwendigkeit, neben der Fuge f der anstossenden Platte noch eine hinlängliche Steinstärke zu lassen.

Einfachsten Falles würden demnach, wie Fig. 1425 zeigt, viereckige Felder zu bilden sein und in denselben das Masswerk angeordnet werden, so dass ungefähr die Höhe jedes Feldes seiner mittleren Breite gleichkäme, oder aber alle Felder ganz oder nahezu die gleiche Höhe behaupteten, wie sie das untere etwa quadratische erhält.

Grössere Freiheit in der Bildung des Masswerks ergiebt sich durch ein Verlassen der viereckigen Plattenform und ein Zulassen von Lagerfugen, welche die Stränge des Masswerkes winkelrecht durchschneiden (s. Figur 1426). Nach demselben System können bei grösseren Dimensionen die einzelnen Achtecksseiten auch der Breite nach aus mehreren Stücken zusammengesetzt werden, immer unter der Bedingung der die Stränge des Masswerks winkelrecht durchschneidenden Fugen.

Dabei wird aber, wie bei einem scheitrechten Bogen, ein Herausdrängen der einzelnen Stücke nach den Kanten, und hierdurch in den letzteren eine, wenngleich schwache nach aussen gekehrte Schubkraft hervorgerufen.

Ein Widerstand gegen diese letztere ergiebt sich durch das Gewicht und die Steifigkeit von, entweder nur nach einer oder nach beiden Seiten, vorstehenden Rippen, deren Konstruktion sich jener der Gewölberippen nahezu analog verhält; d. h. die einzelnen Werkstücke derselben setzen sich aufeinander und nehmen das durchbrochene Plattenwerk der Helmwände, wie die Wölbrippen das Kappengemäuer in sich auf. Sie erhalten daher im Grundriss einfachsten Falles etwa die in Fig. 1427 angegebene Gestaltung.

Sowie also die Helmrippen durch ihre Stärke ein Ausweichen der Wände verhindern, so verhüten die Wände eine Einbiegung der Rippen nach innen. Zur Verstärkung dieses Widerstandes und überhaupt zu einer festeren Verbindung müssen bei grösseren Dimensionen die einzelnen Masswerkabteilungen in gewissen Höhen durch wagerecht laufende, lange Platten oder Steinbalken geschieden werden, welche als Spreizen zwischen den Rippen liegen und ringsum feste Kränze bilden.

Fig. 1428 stellt den unteren Teil einer Achtecksseite des Freiburger Helmes dar, in welchem die eigentlichen Rippen nach aussen nicht vortreten, indem die Stäbe r, denen die Laubbossen ansitzen, wenig konstruktive Bedeutung haben, und jenen Rippen nur mit einer Feder eingesetzt und weiter durch einzelne Eisen damit verbunden sind.

Die Rippen bestehen auf die Höhe jeder Abteilung aus zwei oder mehreren hochkantig aufeinandergestellten Werkstücken w, zwischen welche die einzelnen Masswerkplatten sich einsetzen,

so dass also der Grundriss in der betreffenden Höhe die aus Figur 1404 sich ergebende Fugenanordnung zeigt. Ein weiterer Verband mit den Masswerkplatten ist dann bewirkt durch die Binder a, auf deren Höhe also die mit f bezeichnete Fuge wegfällt. Den Bindern a sind dann die langen Stücke b aufgelegt, deren Stossfugen, welche bald in der Mitte, bald in der doppelten Zahl zu beiden Seiten etwa bei x liegen, wieder durch das darauf liegende Stück d gebunden werden, so dass sich also in jeder Höhenabteilung des Masswerks ein Kranz bildet, dessen Unverschiebbarkeit durch eine Verbindung auf Nut und Feder in der Lagerfuge, wie der Durchschnitt Fig. 1428 a zeigt, oder durch eine Verdübbelung vollkommen gesichert werden kann.

In den folgenden Abteilungen des Freiburger Helmes sind die Binder a verlassen, und die Stossfugen f gehen durch bis unter die horizontalen Kränze, welche dann wieder durch den Stücken b und d entsprechende Binder mit den Rippen zusammenhängen.

Das eigentliche System dieser Konstruktion ist in dem Freiburger Helm nicht klar ausgesprochen, da jene wagrechten Kränze ebenso wenig als die Rippen durch Vorsprünge bezeichnet sind.

Aus den Originalrissen der Kölner Türme aber scheint eine konsequentere Durchführung der Rippen und Kränze hervorzugehen, insofern beide Teile durch kräftige Gliederungen ausgesprochen sind und so ein Rahmwerk bilden, welchem die masswerkdurchbrochenen Platten sich einfügen. Dabei kann dann die Unverschiebbarkeit der Kränze entweder dadurch erzielt werden, dass sie aus 2 aufeinander liegenden Schichten mit wechselnden Stossfugen bestehen, oder dass dieser Fugenwechsel durch ihre Verbindung mit den darüber und darunter befindlichen Masswerkplatten hervorgebracht wird.

Die Rippen, welche in der Konstruktion der durchbrochenen Steinhelme eine so wesentliche Stellung einnehmen, finden sich, behufs einer Verstärkung des Eckver-Ausbildung bandes und der Ecken überhaupt, auch an den undurchbrochenen Helmen und sind ^{der Rippen} dann entweder und zwar am besten aus den betreffenden Werkstücken der einzelnen Schichten genommen, erfordern also eine grössere Stärke derselben, oder in selteneren Fällen, wie die Stäbe r an dem Freiburger Helm (Fig. 1428), den Graten angelehnt und durch einzelne Binder damit vereinigt.

Aus den Bindern, welche nur eine Verlängerung nach aussen erfordern würden, könnten etwa die Laubbossen abgeleitet werden, wenn sie sich nicht schon früher an andern Teilen, wie den Fialenriesen und Giebelkanten fänden, so dass die Übertragung derselben auf die Helme um ihrer dekorativen Wirkung willen als feststehend anzunehmen ist. An dem Freiburger Helme sind sie mit jenen Stäben aus denselben Stücken genommen, und letztere, wie schon oben erwähnt, durch eiserne Klammern an den Helm gebunden. Indes ist diese Konstruktion nur als Notbehelf anzusehen und die Ausarbeitung derselben aus den Werkstücken der Schichten, oder ein tieferes Einsetzen in die Helmkanten jedenfalls vorzuziehen. Über die Grösse und Abstände der Laubbossen gilt das bei den Fialenriesen Gesagte, d. h. es kann weder eine Beziehung der Zahl noch der Grösse zu den Helmdimensionen angenommen werden. Vor allem handelt es sich um eine klare, leicht erkennbare Gestaltung, so dass schon aus diesem Grunde die älteren, hornartigen Bildungen den Vorzug verdienen. An einem der Originalrisse des Strassburger Münsterturmes sind sie durch einen aus nasenbesetzten Bögen gebildeten Kamm ersetzt, der auch an Wimpergen vorkommt.

Die den Helm durchbrechenden Dachfenster, Fig. 1424, benutzen die Wände des Helmes zum Tragen der lotrechten Stirn- und Backenwände; eine derartige mässige Belastung verringert die Stabilität wenig. Ganz unschädlich, oft sogar als Ringversteifung Umgänge und Zwischengeschosse. nützlich, erweisen sich jene auf ausladenden Gesimsen angelegten, mit durchbrochenen Masswerkgalerien besetzten Umgänge (Fig. 1430), wie sie sich in einfacher Weise an den Marburger Türmen oberhalb der die Helmbasis bildenden vier Giebel finden. An einzelnen Werken der späteren Zeit finden sie sich mehrfach wiederholt, in ausgedehntester Weise in dem Originalriss eines Turmes vom Dome zu Regensburg, in welchem sie über den Helmkanten noch mit fialenbekrönten Pfeilern versehen sind, welche unterhalb der Fialenbasis mit den Helmrippen durch Strebebögen sich verbinden, die wieder unterhalb der Auskragung der nächsten darüber befindlichen Galerie anschliessen. In solcher Gestalt beherrschen sie den ganzen Aufbau und neutralisieren nahezu die Wirkung der ansteigenden Helmlinie.

Aus demselben Konstruktionsprinzip ergiebt sich die Anlage eines mit Fenstern durchbrochenen Zwischengeschosses in einer beliebigen Höhe des Helmes, wodurch derselbe in zwei Abteilungen geschieden wird, etwa nach Fig. 1429. Die Stärke der lotrechten Mauern des Zwischensatzes kann grösser sein als die der unteren Helmwände und muss hinreichen, dem Schub der oberen zu widerstehen. Unterhalb der lotrechten Wände entsteht keine Schwierigkeit, da hier der Ringdruck (s. S. 614) alles ausgleicht. Die Wandstärken der beiden Helmteile können verschieden sein.

Die grossartigste und geistreichste Anwendung, welche von der Tragkraft der Treppen und Helme gemacht ist, zeigt der nördliche Turm des Strassburger Münsters. Es Fialen auf ist die Konstruktion desselben so allbekannt und von Viollet le Duc (Dict. rais. tome V. pag. 439.) so meisterhaft dargelegt worden, dass wir uns hier auf eine kurze Angabe des Systems beschränken können.

Es ist nämlich (s. Fig. 1431) jeder Helmecke in der Höhe der Basis ein Treppenturm nach vier Sechseckseiten vorgelegt, dessen Spindel im Eckpunkt a steht, und welcher nur die Stufen von c-d enthält. Aus diesem ersteren entwickelt sich dann ein zweiter Treppenturm, dessen Pfeiler e und f auf denen des unteren Turmes, während g und h auf den Helmwänden aufsetzen, der vordere Eckpfeiler ist auf die Spindel a gestellt. Dieser zweite Treppenturm enthält die Stufen von d-i und trägt in derselben Weise einen folgenden, so dass der Treppengang der in Fig. 1431 punktierten Spirale folgt. Es entwickeln sich nun auf jeder Ecke sechs solcher Treppentürme aus einander, durch welche man bis auf die Höhe einer Gallerie gelangt, von der aus eine um das Zentrum des Turmes oder vielmehr um das darüber stehende, den Helm bekrönende Mitteltürmchen sich drehende Wendeltreppe weiter hinan führt. Zwischen jenen acht Treppentürmen sind unten die Helmwände reich mit Masswerk durchbrochen.

Eine solche Belastung der Helmgrate ist statisch oft sehr günstig (s. S. 609), in anderer Form spricht sie sich durch eine Umwandlung der Laubbossen in Fialen aus, deren Ansätze aus den Werkstücken der Rippen genommen, während Leib und Riese aus besonderen Stücken aufgesetzt sind. Ein Beispiel zeigt ein Treppenturm an der Südseite des Strassburger Münsters. Derselbe gewährt indes ein eigentümlich stachliges Ansehen.

Helme aus Ziegelstein.

Die Ausführung der Helme in Ziegelmauerwerk folgt im Wesentlichen denselben Prinzipien und bedingt nur einfachere Anlage und Detailbildung, dabei können die Lagerfugen gerade wie bei Werksteinhelmen normal zur Steigung oder wagerecht gelegt werden. Wagerechte Fugen bedingen jedoch entweder besondere Formziegel oder eine treppenförmige Fläche. Indes ist dieselbe vermöge der Höhe und der aus der steilen Richtung sich ergebenden geringen Stufenbreite von unten kaum wahrnehmbar.